[go: up one dir, main page]

WO2017047890A1 - Method for predicting wear and lifespan of press tool by using wear model - Google Patents

Method for predicting wear and lifespan of press tool by using wear model Download PDF

Info

Publication number
WO2017047890A1
WO2017047890A1 PCT/KR2016/003279 KR2016003279W WO2017047890A1 WO 2017047890 A1 WO2017047890 A1 WO 2017047890A1 KR 2016003279 W KR2016003279 W KR 2016003279W WO 2017047890 A1 WO2017047890 A1 WO 2017047890A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
press tool
model
strain
damage
Prior art date
Application number
PCT/KR2016/003279
Other languages
French (fr)
Korean (ko)
Inventor
김낙수
천승현
이준민
전용근
Original Assignee
서강대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서강대학교산학협력단 filed Critical 서강대학교산학협력단
Publication of WO2017047890A1 publication Critical patent/WO2017047890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a method for predicting wear and life of a press tool used in a press process.
  • the press process for forming a base material such as a sheet using a press tool includes a shearing process, a bending process, a drawing process, and the like.
  • the problem to be solved by the present invention is to provide a quantitative and reliable tool wear prediction method.
  • a method of predicting wear of a press tool may include calculating a grinding wear amount of the press tool by applying a grinding wear model to a finite element analysis simulation program, and using the grinding wear amount and the press tool. Calculating a fatigue wear amount based on the difference of the measured wear amount obtained by performing the press process, and applying the grinding wear model reflecting the grinding wear amount and the fatigue wear model reflecting the fatigue wear amount to the finite element analysis simulation program. Calculating a wear amount of the press tool using a wear simulation of the tool.
  • the grinding wear model may be a modified Archard model.
  • the modified Archard model can calculate the wear depth by the following equation.
  • W is the wear depth
  • P is the vertical pressure acting on the press tool
  • v is the speed at which the material slides on the surface of the press tool
  • H is the surface hardness of the press tool
  • t is the contact angle between the press tool and the material.
  • K represents the wear factor of the press tool
  • a, b, c represent wear constants that impart freedom to the factors affecting the wear of the press tool.
  • K, a, b, and c may be obtained by a pin-on-disc test according to ASTM G99 standard.
  • the fatigue wear model may be a Lemaitre model.
  • the Lemaitre model calculates the damage value increase by the following equation, and the fatigue wear amount may be calculated based on the damage increase.
  • Is the increase in damage value due to fatigue accumulation Is the increase in strain in the elastic region, Damage strain energy release rate in the elastic region, Is the Poisson's ratio, Is the Young's modulus, Is the damage value, Is the effective stress in the elastic region, Is the hydrostatic stress in the elastic region, Wow Represents the damage factor that controls the degree of damage increase that occurs depending on the material of the press tool.
  • the wear prediction method of the press tool according to another embodiment of the present invention may further include applying a shape update algorithm to the wear simulation to reflect the shape change of the press tool according to the wear.
  • the surface shape is updated in such a manner as to gradually retract the surface node constituting the shape of the press tool according to the amount of wear for grinding wear, and the accumulated damage value for the fatigue wear is
  • the surface shape can be updated in such a way as to remove the surface elements that make up the shape of the press tool.
  • the wear prediction method of the press tool according to another embodiment of the present invention may further include the step of simulating the plastic behavior of the press tool to reflect on the wear simulation of the press tool.
  • the plastic behavior of the press tool can be simulated by the following Johnson-cook flow stress equation.
  • Is the flow stress Is the yield stress at a given reference temperature
  • Is the coefficient of strain hardening Is the plastic strain
  • Is the strain hardening coefficient Is the coefficient of strain-rate hardening
  • Is the plastic strain rate Is a given reference strain rate set to reflect the test results
  • Is the temperature Is room temperature
  • Is the melting temperature Is the material constant.
  • the wear prediction method of the press tool according to another embodiment of the present invention may further include the step of simulating the plastic behavior of the workpiece generated before the necking and reflecting it to the wear simulation of the press tool.
  • the plastic behavior of the workpiece can be simulated by the following Swift equation.
  • Represents the flow stress Represents the stress coefficient
  • Represents strain Represents the initial strain
  • Represents the strain hardening coefficient
  • the wear prediction method of the press tool according to another embodiment of the present invention may further include the step of simulating the fracture model of the workpiece to reflect in the wear simulation of the press tool.
  • the fracture model of the workpiece can be simulated by the following Enhanced Lemaitre damage model.
  • Is the damage rate per unit time Represents the equivalent plastic strain, Represents Young's modulus, Represents a load parameter, Represents the strain threshold (Threshold logarithmic strain at which Lemaitre damage model), Represents the triaxiality ratio, Is Indicates, , , Is a material parameter.
  • the wear of the press tool can be accurately predicted by applying the grinding wear model and the fatigue wear model to predict the wear of the press tool.
  • FIG. 1 is a view for explaining an experiment for determining a constant related to material properties of a press tool by a pin-on-disk method in a modified Archard model used in a wear prediction method of a press tool according to an embodiment of the present invention. to be.
  • FIG. 2 is a view for explaining a process of determining constants related to material properties of a press tool through derivation of a graph corresponding to the wear depth measured by the pin-on-disk method of FIG. 1.
  • Figure 3 is a graph showing the amount of wear of the press tool (punch) according to the punching number obtained through the experiment using the blanking process as an example and the amount of wear of the press tool obtained through the simulation of the wear prediction method according to an embodiment of the present invention.
  • Figure 4 is a graph showing the change in the size of the hole formed through the experiment and the size of the hole obtained through the simulation of the wear prediction method according to an embodiment of the present invention by using the blanking process as an example.
  • the wear prediction method of a press tool relates to a method of predicting wear by calculating an amount of wear of a press tool using a wear model.
  • the wear prediction method of the press tool calculates the amount of grinding wear of the press tool by applying the grinding wear model to the finite element analysis simulation program.
  • the finite element analysis simulation program may be any simulation program using the finite element analysis program, for example, it may be a DEFORM simulation program.
  • the grinding wear model is used to calculate the amount of grinding wear that occurs gradually on the surface of the press tool, and the Archard model modified with the grinding wear model is used. That is, the amount of grinding wear of the press tool is calculated by applying the modified Archard model modified from the previously known grinding wear model Archard model to the finite element analysis simulation program.
  • the modified Archard model calculates the wear depth (W) by the following equation.
  • W is the wear depth
  • P is the vertical pressure acting on the press tool
  • v is the speed at which the material slides on the surface of the press tool
  • H is the surface hardness of the press tool
  • t is the contact angle between the press tool and the material.
  • K represents the wear factor of the press tool
  • a, b, c represent wear constants that impart freedom to the factors affecting the wear of the press tool.
  • the constants K, a, b, c of the modified Archard model may be determined by a pin-on-disc test according to ASTM G99 standard. Specifically, these constants can be obtained through experiments using the pin 10 and the disk 20 as shown in FIG. As shown in the figure, the disk 20 may have a disc shape.
  • the pin 10 may be formed in a cylindrical shape with the same material as the press tool used in the pressing process, and the disk 20 may be formed with the same material as the plate material to be pressed.
  • a constant contact pressure P is applied to the pin 10 in a downward direction, and the disk 20 is in this state.
  • the fatigue wear amount is calculated based on the difference between the grinding wear amount calculated using the modified Archard model obtained as described above and the actual wear amount obtained by performing a press process using an actual press tool. . That is, since the wear occurring in the press tool consists of fatigue wear due to fatigue accumulation in addition to the grinding wear, the remaining portion except the grinding wear amount is regarded as the fatigue wear amount from the actually measured wear amount. If damage accumulates inside the press tool due to repetitive loads during the pressing process and the damage value reaches a threshold value, fatigue wear is considered to occur on the surface of the press tool due to fatigue accumulation. To simulate this phenomenon, the Lemaitre model is used as a fatigue wear model that can calculate damage caused by repeated loading.
  • the fatigue wear amount is calculated by using the difference between the grinding wear amount and the actual wear process obtained by performing the actual press process using the press tool, and the fatigue wear model reflecting the fatigue wear amount is applied to the finite element analysis simulation.
  • the Lemaitre model is used as the fatigue wear model.
  • damage models such as the Lemaitre model calculate damage only in the plastic zone, but fatigue wear is a phenomenon caused by damage accumulation in the elastic zone, so the fatigue wear is calculated by determining the existing Lemaitre model to the elastic zone. .
  • the Lemaitre model uses the damage value increment ( ), And the fatigue wear amount is calculated based on the damage value increment.
  • Is the increase in damage value due to fatigue accumulation Is the increase in strain in the elastic region, Damage strain energy release rate in the elastic region, Is the Poisson's ratio, Is the Young's modulus, Is the damage value, Is the effective stress in the elastic region, Is the hydrostatic stress in the elastic region, Wow Represents the damage factor that controls the degree of damage increase that occurs depending on the material of the press tool.
  • the damage factor is Wow Can be determined using the difference between the experimental results and the results of the model considering only the grinding wear described above. For example, an additional fatigue wear model can be applied to the simulation model to calculate the amount of wear on the press tool, and the damage factor to minimize the error between the calculated and experimental values.
  • the wear simulation of the press tool is derived by applying the above-described grinding wear model reflecting the grinding wear amount and the fatigue wear model reflecting the fatigue wear amount to the finite element analysis simulation program.
  • FIG. 3 shows a comparison between the amount of wear of the press tool according to the punching number obtained through actual experiments and the amount of wear of the press tool obtained through simulation.
  • only the grinding wear model is applied (Calculation without Compared to fatigue, the calculation with fatigue model (Calculation with fatigue) is closer to the experimental results.
  • a shape update algorithm to the wear simulation can reflect the shape change of the press tool according to the progress of the wear.
  • the surface geometry is updated by progressively retracting the surface node constituting the press tool according to the amount of wear, and for fatigue wear the press is pressed when the accumulated damage reaches a threshold.
  • the surface shape can be updated by removing the surface elements that make up the shape of the tool.
  • Figure 4 is a graph showing the change in the size of the hole is obtained through the simulation of the wear prediction method according to the embodiment of the present invention and the shape of the hole formed through the experiment using the blanking process as an example, Determine when to change the tool.
  • FIG. 4 shows the reduced hole. Shows the area of. Referring to FIG. 4, the area reduction (Experiment) obtained through the experiment and the area reduction (Calculation) obtained through the simulation results are approximated, and the regression line approximating the calculation result by the linear function is shown in FIG. 4. Same as
  • the replacement cycle of the press tool can be calculated by the following equation.
  • the replacement cycle of the press tool is 99,010 hits by the above equation.
  • the press tool can be processed with SKD11 material, using the Johnson-cook flow stress model to simulate the plastic behavior of the material of the press tool occurring before the necking (necking) Can be reflected in wear simulation. This can be done by the following Johnson-cook flow stress equation.
  • Is the flow stress Is the yield stress at a given reference temperature
  • Is the coefficient of strain hardening Is the plastic strain
  • Is the strain hardening coefficient Is the coefficient of strain-rate hardening
  • Is the plastic strain rate Is a given reference strain rate set to reflect the test results
  • Is the temperature Is room temperature
  • Is the melting temperature Is the material constant.
  • the Johnson-cook flow stress model is a phenomenological constitutive model for materials that takes into account plastic strain, plastic strain velocity, and temperature effects.
  • a press tool can be processed from SKD11 material, and general tensile tests can be conducted to determine the material properties of the tool.
  • the die-only material has a very high initial yield stress, so the load applied to the tool during normal shear deduction does not reach the initial yield stress point of the tool and only causes elastic deformation. Material properties do not contribute a great deal to the evaluation of tool wear. For this reason, in the embodiment of the present invention, the material properties of the SKD11 material used the values in the following table which are already known by the above formula.
  • the plastic behavior of the workpiece (plate) generated before the necking can be simulated and reflected in the wear simulation.
  • the plate may be formed of SUS430, and may simulate the plastic behavior of the material generated before necking using the Swift flow stress model to reflect the wear simulation. This can be done by the following Swift equation.
  • the material constant stress coefficient, strain, initial strain can be determined through the room temperature tensile test and simulation.
  • the Swift equation can simulate the behavior from the moment the plastic deformation of the material starts until the necking occurs.
  • the fracture model of the workpiece may be simulated and reflected in the wear simulation using the Enhanced Lemaitre damage model.
  • the plate may be formed of SUS430, and the Enhanced Lemaitre Damage Model may be used to simulate the fracture of the material after necking and to consider the shear properties of the material. This can be done by the following Swift equation.
  • Is the damage rate per unit time Represents the equivalent plastic strain, Represents Young's modulus, Represents a load parameter, Represents the strain threshold (Threshold logarithmic strain at which Lemaitre damage model), Represents the triaxiality ratio, Is Indicates, , , Is a material parameter.
  • the present invention relates to a method for predicting the life of a press tool and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

A method for predicting the wear of a press tool comprises the steps of: calculating an abrasive wear amount of the press tool by applying an abrasive wear model to a finite element analysis simulation program; calculating a fatigue wear amount on the basis of a difference between the abrasive wear amount and an actually measured wear amount obtained by performing an actual press process using the press tool; and calculating a wear amount of the press tool by applying, to the finite element analysis simulation program, an abrasive wear model in which the abrasive wear amount is reflected and a fatigue wear model in which the fatigue wear amount is reflected, and using a wear simulation of the press tool.

Description

마모 모델을 이용한 프레스 공구의 마모 및 수명 예측 방법Prediction of Wear and Life of Press Tool Using Wear Model
본 발명은 프레스 공정에 사용되는 프레스 공구의 마모 및 수명을 예측하는 방법에 관한 것이다.The present invention relates to a method for predicting wear and life of a press tool used in a press process.
프레스 공구를 이용하여 판재와 같은 모재를 성형하는 프레스 공정으로는 전단 공정, 굽힘 공정, 드로잉 공정 등이 있다.The press process for forming a base material such as a sheet using a press tool includes a shearing process, a bending process, a drawing process, and the like.
프레스 공정에서는 공구 표면에서 공구와 판재의 접촉 및 미끄러짐에 의한 마찰이 발생하고 또한 공정 도중 판재로부터 가루나 먼지가 발생한다. 이러한 요인들이 공구 표면의 연삭 마모를 발생시키며, 나아가 프레스 공정의 특성상 공구에 지속적인 반복 하중이 작용하기 때문에 비점진적인 부피 손실 형태의 피로마모가 발생한다. 이러한 마모는 공구의 치수 변화를 초래하고 판재 성형의 정밀성을 저하시켜 성형성과 제품의 품질에 부정적 영향을 미친다. 따라서 제품의 생산성 향상 및 원가 절감을 위해 공구의 마모량을 예측하여 적정 시기에 공구를 교체하는 것이 매우 중요하다.In the press process, friction occurs due to contact and sliding of the tool and the plate on the tool surface, and powder or dust is generated from the plate during the process. These factors lead to grinding wear on the tool surface, and furthermore fatigue fatigue in the form of non-gradual volume loss due to the constant cyclic loading of the tool due to the nature of the press process. This wear results in dimensional changes in the tool and degrades the precision of sheet forming, which negatively affects formability and product quality. Therefore, it is very important to predict tool wear and replace the tool in a timely manner in order to improve product productivity and reduce cost.
그러나 현재까지 공구의 마모량을 예측하고 공구 교체 시기를 결정하는 체계적인 방법이 알려져 있지 않기 때문에, 산업 현장에서는 실무자의 주관적인 경험이나 노하우에 의존하여 공구 마모에 의한 교체 시기를 판단하고 있다.However, until now, a systematic method for estimating tool wear amount and determining tool replacement time is not known. Therefore, in the industrial field, it is determined by tool wearer's subjective experience or know-how.
이로 인해 공정 조건이나 환경이 조금만 달라져도 공구의 마모 수명을 판단하기 위해 많은 시행착오를 거쳐야 하며, 그만큼의 시간과 비용이 소모된다. 나아가 체계적인 공구 교체 시기의 판단은 프레스 공정에서 비용과 시간을 절감시키기 때문에 공구 마모 예측 기법의 체계화가 더욱 필요한 실정이다.This requires a lot of trial and error to determine the wear life of the tool, even if the process conditions or environment are slightly different, and it takes much time and money. Furthermore, the systematic determination of tool replacement time saves cost and time in the press process, and thus requires more systematic tool wear prediction techniques.
본 발명이 해결하고자 하는 과제는 정량적이고 신뢰성 있는 공구 마모 예측 방법을 제공하는 것이다.The problem to be solved by the present invention is to provide a quantitative and reliable tool wear prediction method.
본 발명의 실시예에 따른 프레스 공구의 마모를 예측하는 방법은, 유한요소 해석 시뮬레이션 프로그램에 연삭 마모 모델을 적용하여 상기 프레스 공구의 연삭 마모량을 산출하는 단계, 상기 연삭 마모량과 상기 프레스 공구를 이용한 실제 프레스 공정을 수행하여 얻어진 실측 마모량의 차이에 기초하여 피로 마모량을 산출하는 단계, 그리고 상기 연삭 마모량이 반영된 연삭 마모 모델 및 상기 피로 마모량이 반영된 피로 마모 모델을 상기 유한요소 해석 시뮬레이션 프로그램에 적용하여 상기 프레스 공구의 마모 시뮬레이션을 이용하여 상기 프레스 공구의 마모량을 산출하는 단계를 포함한다.According to an embodiment of the present invention, a method of predicting wear of a press tool may include calculating a grinding wear amount of the press tool by applying a grinding wear model to a finite element analysis simulation program, and using the grinding wear amount and the press tool. Calculating a fatigue wear amount based on the difference of the measured wear amount obtained by performing the press process, and applying the grinding wear model reflecting the grinding wear amount and the fatigue wear model reflecting the fatigue wear amount to the finite element analysis simulation program. Calculating a wear amount of the press tool using a wear simulation of the tool.
상기 연삭 마모 모델은 수정된 Archard 모델일 수 있다.The grinding wear model may be a modified Archard model.
상기 수정된 Archard 모델은 다음 수식에 의해 마모 깊이를 산출할 수 있다.The modified Archard model can calculate the wear depth by the following equation.
[수식][Equation]
Figure PCTKR2016003279-appb-I000001
Figure PCTKR2016003279-appb-I000001
여기서, W는 마모 깊이(wear depth), P는 프레스 공구에 작용하는 수직 압력, v는 소재가 프레스 공구 표면에서 미끄러지는 속도, H는 프레스 공구의 표면 경도, t는 프레스 공구와 소재가 접촉하는 시간, K는 프레스 공구의 마모 계수, a, b, c는 프레스 공구의 마모에 영향을 미치는 인자들에 자유도를 부여하는 마모 상수를 나타낸다.Where W is the wear depth, P is the vertical pressure acting on the press tool, v is the speed at which the material slides on the surface of the press tool, H is the surface hardness of the press tool, and t is the contact angle between the press tool and the material. The time, K, represents the wear factor of the press tool, and a, b, c represent wear constants that impart freedom to the factors affecting the wear of the press tool.
상기 K, a, b, c는 ASTM G99 규격에 따른 핀-온-디스크(pin-on-disc) 시험에 의해 구해질 수 있다.K, a, b, and c may be obtained by a pin-on-disc test according to ASTM G99 standard.
상기 피로 마모 모델은 Lemaitre 모델일 수 있다.The fatigue wear model may be a Lemaitre model.
상기 Lemaitre 모델은 다음 수식에 의해 손상 값 증가분을 산출하고, 상기 피로 마모량은 상기 손상 증가분을 기초로 산출될 수 있다.The Lemaitre model calculates the damage value increase by the following equation, and the fatigue wear amount may be calculated based on the damage increase.
[수식] [Equation]
Figure PCTKR2016003279-appb-I000002
Figure PCTKR2016003279-appb-I000002
여기서,
Figure PCTKR2016003279-appb-I000003
는 피로 누적에 의한 손상 값 증가분,
Figure PCTKR2016003279-appb-I000004
는 탄성 영역에서의 변형률 증가분,
Figure PCTKR2016003279-appb-I000005
는 탄성 영역에서의 손상 스트레인 에너지 해방률(damage strain energy release rate),
Figure PCTKR2016003279-appb-I000006
는 포아송 비(Poisson's ratio),
Figure PCTKR2016003279-appb-I000007
는 탄성 계수(young's modulus),
Figure PCTKR2016003279-appb-I000008
는 손상 값,
Figure PCTKR2016003279-appb-I000009
는 탄성 영역에서의 유효 응력,
Figure PCTKR2016003279-appb-I000010
는 탄성 영역에서의 정수압 응력,
Figure PCTKR2016003279-appb-I000011
Figure PCTKR2016003279-appb-I000012
는 프레스 공구의 재료에 따라 발생하는 손상 증가분의 정도를 조절하는 손상 계수를 나타낸다.
here,
Figure PCTKR2016003279-appb-I000003
Is the increase in damage value due to fatigue accumulation,
Figure PCTKR2016003279-appb-I000004
Is the increase in strain in the elastic region,
Figure PCTKR2016003279-appb-I000005
Damage strain energy release rate in the elastic region,
Figure PCTKR2016003279-appb-I000006
Is the Poisson's ratio,
Figure PCTKR2016003279-appb-I000007
Is the Young's modulus,
Figure PCTKR2016003279-appb-I000008
Is the damage value,
Figure PCTKR2016003279-appb-I000009
Is the effective stress in the elastic region,
Figure PCTKR2016003279-appb-I000010
Is the hydrostatic stress in the elastic region,
Figure PCTKR2016003279-appb-I000011
Wow
Figure PCTKR2016003279-appb-I000012
Represents the damage factor that controls the degree of damage increase that occurs depending on the material of the press tool.
본 발명의 다른 실시예에 따른 프레스 공구의 마모 예측 방법은 상기 마모 시뮬레이션에 형상 업데이트 알고리즘을 적용하여 마모에 따른 상기 프레스 공구의 형상 변화를 반영하는 단계를 더 포함할 수 있다.The wear prediction method of the press tool according to another embodiment of the present invention may further include applying a shape update algorithm to the wear simulation to reflect the shape change of the press tool according to the wear.
상기 프레스 공구의 형상 변화를 반영하는 단계에서, 연삭 마모에 대해서는 상기 프레스 공구의 형상을 구성하는 표면 노드를 마모량에 따라 점진적으로 후퇴하는 방식으로 표면 형상을 업데이트하고, 피로 마모에 대해서는 누적된 손상치가 임계값에 도달하면 상기 프레스 공구의 형상을 구성하는 표면 요소를 제거하는 방식으로 표면 형상을 업데이트할 수 있다.In the step of reflecting the shape change of the press tool, the surface shape is updated in such a manner as to gradually retract the surface node constituting the shape of the press tool according to the amount of wear for grinding wear, and the accumulated damage value for the fatigue wear is When the threshold is reached, the surface shape can be updated in such a way as to remove the surface elements that make up the shape of the press tool.
본 발명의 다른 실시예에 따른 프레스 공구의 마모 예측 방법은 상기 프레스 공구의 소성 거동을 모사하여 상기 프레스 공구의 마모 시뮬레이션에 반영하는 단계를 더 포함할 수 있다.The wear prediction method of the press tool according to another embodiment of the present invention may further include the step of simulating the plastic behavior of the press tool to reflect on the wear simulation of the press tool.
상기 프레스 공구의 소성 거동은 다음의 Johnson-cook 유동응력 수식에 의해 모사될 수 있다.The plastic behavior of the press tool can be simulated by the following Johnson-cook flow stress equation.
[수식][Equation]
Figure PCTKR2016003279-appb-I000013
Figure PCTKR2016003279-appb-I000013
여기서,
Figure PCTKR2016003279-appb-I000014
는 유동응력이고,
Figure PCTKR2016003279-appb-I000015
는 주어진 온도에서 정의되는 항복 응력(yield stress at a given reference temperature)이고,
Figure PCTKR2016003279-appb-I000016
는 변형률 경화 계수(coefficient of strain hardening)이고,
Figure PCTKR2016003279-appb-I000017
는 소성 변형률(plastic strain)이고,
Figure PCTKR2016003279-appb-I000018
은 변형률 경화 계수(strain hardening coefficient)이고,
Figure PCTKR2016003279-appb-I000019
는 변형률 속도 경화 계수(coefficient of strain-rate hardening)이고,
Figure PCTKR2016003279-appb-I000020
는 소성 변형률 속도(plastic strain rate)이고,
Figure PCTKR2016003279-appb-I000021
는 시험 결과를 반영할 수 있도록 설정되는 주어진 변형률 속도(reference strain rate)이고,
Figure PCTKR2016003279-appb-I000022
는 온도이고,
Figure PCTKR2016003279-appb-I000023
는 상온(room temperature)이고,
Figure PCTKR2016003279-appb-I000024
는 녹는 온도(melting temperature)이고,
Figure PCTKR2016003279-appb-I000025
은 재료 상수(material constant)이다.
here,
Figure PCTKR2016003279-appb-I000014
Is the flow stress,
Figure PCTKR2016003279-appb-I000015
Is the yield stress at a given reference temperature,
Figure PCTKR2016003279-appb-I000016
Is the coefficient of strain hardening,
Figure PCTKR2016003279-appb-I000017
Is the plastic strain,
Figure PCTKR2016003279-appb-I000018
Is the strain hardening coefficient,
Figure PCTKR2016003279-appb-I000019
Is the coefficient of strain-rate hardening,
Figure PCTKR2016003279-appb-I000020
Is the plastic strain rate,
Figure PCTKR2016003279-appb-I000021
Is a given reference strain rate set to reflect the test results,
Figure PCTKR2016003279-appb-I000022
Is the temperature,
Figure PCTKR2016003279-appb-I000023
Is room temperature,
Figure PCTKR2016003279-appb-I000024
Is the melting temperature,
Figure PCTKR2016003279-appb-I000025
Is the material constant.
본 발명의 또 다른 실시예에 따른 프레스 공구의 마모 예측 방법은 넥킹 이전에 발생하는 가공물의 소성 거동을 모사하여 상기 프레스 공구의 마모 시뮬레이션에 반영하는 단계를 더 포함할 수 있다.The wear prediction method of the press tool according to another embodiment of the present invention may further include the step of simulating the plastic behavior of the workpiece generated before the necking and reflecting it to the wear simulation of the press tool.
상기 가공물의 소성 거동은 다음의 Swift 수식에 의해 모사될 수 있다.The plastic behavior of the workpiece can be simulated by the following Swift equation.
[수식][Equation]
Figure PCTKR2016003279-appb-I000026
Figure PCTKR2016003279-appb-I000026
여기서,
Figure PCTKR2016003279-appb-I000027
는 유동응력(flow stress)을 나타내고,
Figure PCTKR2016003279-appb-I000028
는 응력 계수(stress coefficient)를 나타내며,
Figure PCTKR2016003279-appb-I000029
는 스트레인(strain)을 나타내고,
Figure PCTKR2016003279-appb-I000030
는 초기 스트레인(initial strain)을 나타내며,
Figure PCTKR2016003279-appb-I000031
은 스트레인 경화 계수(strain hardening coefficient)를 나타낸다.
here,
Figure PCTKR2016003279-appb-I000027
Represents the flow stress,
Figure PCTKR2016003279-appb-I000028
Represents the stress coefficient,
Figure PCTKR2016003279-appb-I000029
Represents strain,
Figure PCTKR2016003279-appb-I000030
Represents the initial strain,
Figure PCTKR2016003279-appb-I000031
Represents the strain hardening coefficient.
본 발명의 또 다른 실시예에 따른 프레스 공구의 마모 예측 방법은 가공물의 파단 모델을 모사하여 상기 프레스 공구의 마모 시뮬레이션에 반영하는 단계를 더 포함할 수 있다.The wear prediction method of the press tool according to another embodiment of the present invention may further include the step of simulating the fracture model of the workpiece to reflect in the wear simulation of the press tool.
상기 가공물의 파단 모델은 다음의 Enhanced Lemaitre 손상 모델에 의해 모사될 수 있다.The fracture model of the workpiece can be simulated by the following Enhanced Lemaitre damage model.
[수식][Equation]
Figure PCTKR2016003279-appb-I000032
Figure PCTKR2016003279-appb-I000032
여기서,
Figure PCTKR2016003279-appb-I000033
는 단위 시간당 손상값 증분량(damage rate)을 나타내고,
Figure PCTKR2016003279-appb-I000034
는 등가 소성 변형률(equivalent plastic strain)을 나타내며,
Figure PCTKR2016003279-appb-I000035
는 영 계수(Young's modulus)를 나타내고,
Figure PCTKR2016003279-appb-I000036
는 로드 상수(Lode parameter)를 나타내며,
Figure PCTKR2016003279-appb-I000037
는 스트레인 스레숄드(strain threshold, Threshold logarithmic strain at which Lemaitre damage model)를 나타내고,
Figure PCTKR2016003279-appb-I000038
는 3축 비(triaxiality ratio)를 나타내며,
Figure PCTKR2016003279-appb-I000039
Figure PCTKR2016003279-appb-I000040
를 나타내고,
Figure PCTKR2016003279-appb-I000041
,
Figure PCTKR2016003279-appb-I000042
,
Figure PCTKR2016003279-appb-I000043
은 재료 상수(material parameter)이다.
here,
Figure PCTKR2016003279-appb-I000033
Is the damage rate per unit time,
Figure PCTKR2016003279-appb-I000034
Represents the equivalent plastic strain,
Figure PCTKR2016003279-appb-I000035
Represents Young's modulus,
Figure PCTKR2016003279-appb-I000036
Represents a load parameter,
Figure PCTKR2016003279-appb-I000037
Represents the strain threshold (Threshold logarithmic strain at which Lemaitre damage model),
Figure PCTKR2016003279-appb-I000038
Represents the triaxiality ratio,
Figure PCTKR2016003279-appb-I000039
Is
Figure PCTKR2016003279-appb-I000040
Indicates,
Figure PCTKR2016003279-appb-I000041
,
Figure PCTKR2016003279-appb-I000042
,
Figure PCTKR2016003279-appb-I000043
Is a material parameter.
본 발명에 의하면, 연삭 마모 모델과 피로 마모 모델을 적용하여 프레스 공구의 마모를 예측함으로써, 프레스 공구의 마모를 정확히 예측할 수 있다.According to the present invention, the wear of the press tool can be accurately predicted by applying the grinding wear model and the fatigue wear model to predict the wear of the press tool.
도 1은 본 발명의 실시예에 따른 프레스 공구의 마모 예측 방법에 사용되는 수정된 Archard 모델에서 핀-온-디스크 방법에 의해 프레스 공구의 재료 특성과 관련된 상수를 결정하기 위한 실험을 설명하기 위한 도면이다.BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view for explaining an experiment for determining a constant related to material properties of a press tool by a pin-on-disk method in a modified Archard model used in a wear prediction method of a press tool according to an embodiment of the present invention. to be.
도 2는 도 1의 핀-온-디스크 방법에 의해 실측된 마모 깊이에 맞는 그래프의 도출을 통해 프레스 공구의 재료 특성과 관련된 상수를 결정하는 과정을 설명하기 위한 도면이다.FIG. 2 is a view for explaining a process of determining constants related to material properties of a press tool through derivation of a graph corresponding to the wear depth measured by the pin-on-disk method of FIG. 1.
도 3은 블랭킹 공정을 예로 하여 실험을 통해서 얻은 타발수에 따른 프레스 공구(펀치)의 마모량과 본 발명의 실시예에 따른 마모 예측 방법의 시뮬레이션을 통해 얻은 프레스 공구의 마모량을 대비하여 보여주는 그래프이다.Figure 3 is a graph showing the amount of wear of the press tool (punch) according to the punching number obtained through the experiment using the blanking process as an example and the amount of wear of the press tool obtained through the simulation of the wear prediction method according to an embodiment of the present invention.
도 4는 블랭킹 공정을 예로 하여 실험을 통해서 얻은 성형되는 구멍의 크기 변화와 본 발명의 실시예에 따른 마모 예측 방법의 시뮬레이션을 통해 얻은 구멍의 크기 변화를 대비하여 보여주는 그래프이다.Figure 4 is a graph showing the change in the size of the hole formed through the experiment and the size of the hole obtained through the simulation of the wear prediction method according to an embodiment of the present invention by using the blanking process as an example.
이하에서 첨부된 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
본 발명의 실시예에 따른 프레스 공구의 마모 예측 방법은 마모 모델을 이용하여 프레스 공구의 마모량을 산출하여 마모를 예측할 수 있는 방법에 관한 것이다.The wear prediction method of a press tool according to an embodiment of the present invention relates to a method of predicting wear by calculating an amount of wear of a press tool using a wear model.
먼저, 본 발명의 실시예에 따른 프레스 공구의 마모 예측 방법은 유한요소 해석 시뮬레이션 프로그램에 연삭 마모 모델을 적용하여 프레스 공구의 연삭 마모량을 산출한다.First, the wear prediction method of the press tool according to the embodiment of the present invention calculates the amount of grinding wear of the press tool by applying the grinding wear model to the finite element analysis simulation program.
여기서, 유한요소 해석 시뮬레이션 프로그램은 유한요소 해석 프로그램을 이용하는 임의의 시뮬레이션 프로그램일 수 있으며, 예를 들어 DEFORM 시뮬레이션 프로그램일 수 있다.Here, the finite element analysis simulation program may be any simulation program using the finite element analysis program, for example, it may be a DEFORM simulation program.
본 발명의 실시예에서는, 프레스 공구의 표면에서 점진적으로 발생하는 연삭 마모량을 산출하기 위해 연삭 마모 모델을 사용하며, 연삭 마모 모델로 수정된 Archard 모델을 사용한다. 즉, 기존에 알려진 연삭 마모 모델인 Archard 모델을 수정한 수정된 Archard 모델을 유한요소 해석 시뮬레이션 프로그램에 적용하여 프레스 공구의 연삭 마모량을 산출한다.In the embodiment of the present invention, the grinding wear model is used to calculate the amount of grinding wear that occurs gradually on the surface of the press tool, and the Archard model modified with the grinding wear model is used. That is, the amount of grinding wear of the press tool is calculated by applying the modified Archard model modified from the previously known grinding wear model Archard model to the finite element analysis simulation program.
수정된 Archard 모델은 다음 수식에 의해 마모 깊이(W)를 산출한다.The modified Archard model calculates the wear depth (W) by the following equation.
[수식][Equation]
Figure PCTKR2016003279-appb-I000044
Figure PCTKR2016003279-appb-I000044
여기서, W는 마모 깊이(wear depth), P는 프레스 공구에 작용하는 수직 압력, v는 소재가 프레스 공구 표면에서 미끄러지는 속도, H는 프레스 공구의 표면 경도, t는 프레스 공구와 소재가 접촉하는 시간, K는 프레스 공구의 마모 계수, a, b, c는 프레스 공구의 마모에 영향을 미치는 인자들에 자유도를 부여하는 마모 상수를 나타낸다.Where W is the wear depth, P is the vertical pressure acting on the press tool, v is the speed at which the material slides on the surface of the press tool, H is the surface hardness of the press tool, and t is the contact angle between the press tool and the material. The time, K, represents the wear factor of the press tool, and a, b, c represent wear constants that impart freedom to the factors affecting the wear of the press tool.
이때, 수정된 Archard 모델의 상수 K, a, b, c는 ASTM G99 규격에 따른 핀-온-디스크(pin-on-disc) 시험에 의해 결정될 수 있다. 구체적으로, 이들 상수는 도 1에 도시된 바와 같은 핀(10)과 디스크(20)를 이용한 실험을 통해 구해질 수 있다. 도면에 도시된 바와 같이 디스크(20)는 원판 형태를 가질 수 있다.At this time, the constants K, a, b, c of the modified Archard model may be determined by a pin-on-disc test according to ASTM G99 standard. Specifically, these constants can be obtained through experiments using the pin 10 and the disk 20 as shown in FIG. As shown in the figure, the disk 20 may have a disc shape.
예를 들어, 핀(10)은 프레스 공정에 사용되는 프레스 공구와 동일한 소재로 원기둥 형태로 형성될 수 있으며, 디스크(20)는 프레스 가공되는 판재와 동일한 소재로 형성될 수 있다. 도 1에 도시된 바와 같이, 핀(10)의 밑면을 디스크(20)의 상면에 접촉시킨 상태에서 핀(10)에 아래 방향으로 일정한 접촉 압력(P)을 가하고, 이 상태로 디스크(20)를 일정한 속도(v)로 일정 시간(t) 동안 회전시킨다. 접촉 압력(P)과 속도(v)를 변화시키면서 시험을 진행하고, 시험을 진행하면서 핀(10)의 마모 정도를 측정하고 또한 시간 또는 디스크(20)의 회전 횟수에 따른 핀(10)의 마모량 그래프를 작성한다. 그리고 상기한 수정된 Archard 모델의 수식에 이미 알고 있는 시험 조건인 P, v, 프레스 공구의 표면 경도인 H, 핀의 마모량 W를 대입하고, 미지수 K, a, b, c의 값을 변경하면서 실험 값과 일치하는 곡선을 구한다. 예를 들어, 도 2의 그래프에 나타난 바와 같이, 핀-온-디스크 시험을 통해 얻어진 소정 크기의 수직 하중을 가한 상태에서 디스크의 회전 횟수(cycles)와 그에 따른 마모 깊이(wear depth)를 그래프 상에 표시하고 그와 일치하는 곡선을 도출하여 미지수인 상수 K, a, b, c를 결정할 수 있다.For example, the pin 10 may be formed in a cylindrical shape with the same material as the press tool used in the pressing process, and the disk 20 may be formed with the same material as the plate material to be pressed. As shown in FIG. 1, in a state in which the bottom surface of the pin 10 is in contact with the top surface of the disk 20, a constant contact pressure P is applied to the pin 10 in a downward direction, and the disk 20 is in this state. Rotate for a constant time t at a constant speed v. The test is carried out while varying the contact pressure P and the speed v, and the degree of wear of the pin 10 is measured while the test is carried out, and the amount of wear of the pin 10 according to the time or the number of rotations of the disk 20. Create a graph. Experiment by changing the values of unknown K, a, b, c by substituting P, v, H, which is the surface hardness of the press tool, and the amount of wear of the pin W, which are already known in the modified Archard model equation Find the curve that matches the value. For example, as shown in the graph of FIG. 2, the number of cycles of the disk and its corresponding wear depth in the state of applying a predetermined vertical load obtained through the pin-on-disk test is shown on the graph. We can determine the unknown constants K, a, b, and c by deriving a curve that matches
한편, 본 발명의 실시예에 따르면, 상기한 바와 같이 얻어진 수정된 Archard 모델을 이용하여 산출된 연삭 마모량과 실제 프레스 공구를 이용한 프레스 공정을 수행하여 얻어진 실측 마모량의 차이에 기초하여 피로 마모량을 산출한다. 즉, 프레스 공구에서 발생하는 마모는 연삭 마모 외에 피로 누적에 의한 피로 마모로 이루어지기 때문에, 실제 측정된 마모량에서 연삭 마모량을 제외한 나머지 부분을 피로 마모량으로 간주하는 것이다. 프레스 공정 중의 반복적인 하중에 의해 프레스 공구 내부에 손상이 누적되고 손상 값이 임계치에 도달할 경우 피로 누적에 의한 프레스 공구의 표면에서 피로 마모가 생긴다고 간주하는 것이다. 이러한 현상을 시뮬레이션으로 계산하기 위해 반복적인 하중에 의해 발생되는 손상을 계산할 수 있는 Lemaitre 모델을 피로 마모 모델로 사용한다.Meanwhile, according to the embodiment of the present invention, the fatigue wear amount is calculated based on the difference between the grinding wear amount calculated using the modified Archard model obtained as described above and the actual wear amount obtained by performing a press process using an actual press tool. . That is, since the wear occurring in the press tool consists of fatigue wear due to fatigue accumulation in addition to the grinding wear, the remaining portion except the grinding wear amount is regarded as the fatigue wear amount from the actually measured wear amount. If damage accumulates inside the press tool due to repetitive loads during the pressing process and the damage value reaches a threshold value, fatigue wear is considered to occur on the surface of the press tool due to fatigue accumulation. To simulate this phenomenon, the Lemaitre model is used as a fatigue wear model that can calculate damage caused by repeated loading.
즉, 연삭 마모량과 프레스 공구를 이용한 실제 프레스 공정을 수행하여 얻어진 실측 마모량의 차이를 이용하여 피로 마모량을 산출하고, 이 피로 마모량이 반영된 피로 마모 모델을 유한요소 해석 시뮬레이션에 적용하는 것이다. 이때 피로 마모 모델로 Lemaitre 모델이 사용된다.That is, the fatigue wear amount is calculated by using the difference between the grinding wear amount and the actual wear process obtained by performing the actual press process using the press tool, and the fatigue wear model reflecting the fatigue wear amount is applied to the finite element analysis simulation. The Lemaitre model is used as the fatigue wear model.
일반적으로 Lemaitre 모델과 같은 손상 모델은 소성 영역에서만 손상을 계산하지만, 피로 마모의 경우 탄성 영역에서의 손상 누적에 의해 발생하는 현상이기 때문에, 기존의 Lemaitre 모델을 탄성 영역까지 확정하여 피로 마모량을 계산한다.In general, damage models such as the Lemaitre model calculate damage only in the plastic zone, but fatigue wear is a phenomenon caused by damage accumulation in the elastic zone, so the fatigue wear is calculated by determining the existing Lemaitre model to the elastic zone. .
본 발명의 실시예에 따르면, Lemaitre 모델은 다음 수식에 의해 손상 값 증가분(
Figure PCTKR2016003279-appb-I000045
)을 산출하고, 피로 마모량은 손상 값 증가분을 기초로 산출된다.
According to an embodiment of the present invention, the Lemaitre model uses the damage value increment (
Figure PCTKR2016003279-appb-I000045
), And the fatigue wear amount is calculated based on the damage value increment.
[수식][Equation]
Figure PCTKR2016003279-appb-I000046
Figure PCTKR2016003279-appb-I000046
여기서,
Figure PCTKR2016003279-appb-I000047
는 피로 누적에 의한 손상 값 증가분,
Figure PCTKR2016003279-appb-I000048
는 탄성 영역에서의 변형률 증가분,
Figure PCTKR2016003279-appb-I000049
는 탄성 영역에서의 손상 스트레인 에너지 해방률(damage strain energy release rate),
Figure PCTKR2016003279-appb-I000050
는 포아송 비(Poisson's ratio),
Figure PCTKR2016003279-appb-I000051
는 탄성 계수(young's modulus),
Figure PCTKR2016003279-appb-I000052
는 손상 값,
Figure PCTKR2016003279-appb-I000053
는 탄성 영역에서의 유효 응력,
Figure PCTKR2016003279-appb-I000054
는 탄성 영역에서의 정수압 응력,
Figure PCTKR2016003279-appb-I000055
Figure PCTKR2016003279-appb-I000056
는 프레스 공구의 재료에 따라 발생하는 손상 증가분의 정도를 조절하는 손상 계수를 나타낸다.
here,
Figure PCTKR2016003279-appb-I000047
Is the increase in damage value due to fatigue accumulation,
Figure PCTKR2016003279-appb-I000048
Is the increase in strain in the elastic region,
Figure PCTKR2016003279-appb-I000049
Damage strain energy release rate in the elastic region,
Figure PCTKR2016003279-appb-I000050
Is the Poisson's ratio,
Figure PCTKR2016003279-appb-I000051
Is the Young's modulus,
Figure PCTKR2016003279-appb-I000052
Is the damage value,
Figure PCTKR2016003279-appb-I000053
Is the effective stress in the elastic region,
Figure PCTKR2016003279-appb-I000054
Is the hydrostatic stress in the elastic region,
Figure PCTKR2016003279-appb-I000055
Wow
Figure PCTKR2016003279-appb-I000056
Represents the damage factor that controls the degree of damage increase that occurs depending on the material of the press tool.
이때, 손상 계수인
Figure PCTKR2016003279-appb-I000057
Figure PCTKR2016003279-appb-I000058
는 위에서 설명한 연삭 마모만을 고려한 모델의 결과와 실험 값과의 차이를 이용하여 결정될 수 있다. 예를 들어, 시뮬레이션 모델에 피로 마모 모델을 추가로 적용하여 프레스 공구의 마모량을 계산하고, 계산된 값과 실험 값과의 오차가 최소화되도록 하는 손상 계수
Figure PCTKR2016003279-appb-I000059
Figure PCTKR2016003279-appb-I000060
를 최적화 기법을 통해 도출할 수 있다.
Where the damage factor is
Figure PCTKR2016003279-appb-I000057
Wow
Figure PCTKR2016003279-appb-I000058
Can be determined using the difference between the experimental results and the results of the model considering only the grinding wear described above. For example, an additional fatigue wear model can be applied to the simulation model to calculate the amount of wear on the press tool, and the damage factor to minimize the error between the calculated and experimental values.
Figure PCTKR2016003279-appb-I000059
Wow
Figure PCTKR2016003279-appb-I000060
Can be derived through an optimization technique.
위에서 설명한 연삭 마모량이 반영된 연삭 마모 모델과 피로 마모량이 반영된 피로 마모 모델을 상기한 유한요소 해석 시뮬레이션 프로그램에 적용하여 프레스 공구의 마모 시뮬레이션을 도출한다.The wear simulation of the press tool is derived by applying the above-described grinding wear model reflecting the grinding wear amount and the fatigue wear model reflecting the fatigue wear amount to the finite element analysis simulation program.
도 3은 블랭킹 공정을 예로 하여 실제 실험을 통해서 얻은 타발수에 따른 프레스 공구의 마모량과 시뮬레이션을 통해 얻은 프레스 공구의 마모량을 대비하여 보여주며, 도 3을 참조하면 연삭 마모 모델만을 적용한 경우(Calculation without fatigue)에 비해 피로 마모 모델을 함께 적용한 경우(Calculation with fatigue)가 실제 실험을 통해서 얻은 결과(Experiment)에 더 근접함을 알 수 있다.FIG. 3 shows a comparison between the amount of wear of the press tool according to the punching number obtained through actual experiments and the amount of wear of the press tool obtained through simulation. Referring to FIG. 3, only the grinding wear model is applied (Calculation without Compared to fatigue, the calculation with fatigue model (Calculation with fatigue) is closer to the experimental results.
한편, 본 발명의 실시예에 따르면, 마모 시뮬레이션에 형상 업데이트 알고리즘을 적용하여 마모 진행에 따른 프레스 공구의 형상 변화를 반영할 수 있다. 예를 들어, 프레스 공구에 발생하는 연삭 마모에 대해서는 프레스 공구를 구성하는 포면 노드를 마모량에 따라 점진적으로 후퇴하는 방식으로 표면 형상을 업데이트하고, 피로 마모에 대해서는 누적된 손상치가 임계값에 도달하면 프레스 공구의 형상을 구성하는 표면 요소를 제거하는 방식으로 표면 형상을 업데이트할 수 있다. 이와 같은 방식으로 포면 형상 업데이트 알고리즘을 적용함으로써 마모 진행에 따른 프레스 공구의 형상 변화가 반영될 수 있고 그에 의해 보다 정확한 마모 예측이 가능해진다.On the other hand, according to an embodiment of the present invention, by applying a shape update algorithm to the wear simulation can reflect the shape change of the press tool according to the progress of the wear. For example, for grinding wear occurring in a press tool, the surface geometry is updated by progressively retracting the surface node constituting the press tool according to the amount of wear, and for fatigue wear the press is pressed when the accumulated damage reaches a threshold. The surface shape can be updated by removing the surface elements that make up the shape of the tool. By applying the surface shape update algorithm in this way, the shape change of the press tool as the wear progresses can be reflected, thereby enabling more accurate wear prediction.
한편, 도 4는 블랭킹 공정을 예로 하여 실험을 통해서 얻은 성형되는 구멍의 크기 변화와 본 발명의 실시예에 따른 마모 예측 방법의 시뮬레이션을 통해 얻은 구멍의 크기 변화를 대비하여 보여주는 그래프이며, 이를 이용하여 공구의 교체 시기를 결정할 수 있다.On the other hand, Figure 4 is a graph showing the change in the size of the hole is obtained through the simulation of the wear prediction method according to the embodiment of the present invention and the shape of the hole formed through the experiment using the blanking process as an example, Determine when to change the tool.
즉, 프레스 공정(예를 들어, 블랭킹 공정)이 진행됨에 따라 프레스 공구에 마모가 발생하고 프레스 공구의 마모에 의해 판재에 생성되는 구멍의 크기가 점차로 감소하게 되며, 도 4는 이와 같이 감소하는 구멍의 면적을 보여준다. 도 4를 참조하면 실험을 통해서 얻은 구멍의 면적 감소(Experiment)와 시뮬레이션 결과를 통해서 얻은 면적 감소(Calculation)는 근사하게 진행하며, 계산 결과를 선형 함수로 근사화시킨 회귀직선(regression line)은 도 4와 같다.That is, as the press process (for example, the blanking process) proceeds, wear occurs in the press tool, and the size of the hole formed in the plate by the wear of the press tool gradually decreases, and FIG. 4 shows the reduced hole. Shows the area of. Referring to FIG. 4, the area reduction (Experiment) obtained through the experiment and the area reduction (Calculation) obtained through the simulation results are approximated, and the regression line approximating the calculation result by the linear function is shown in FIG. 4. Same as
이를 이용하여 다음 식에 의해 프레스 공구의 교체 주기를 다음 식에 의해 산출할 수 있다.Using this, the replacement cycle of the press tool can be calculated by the following equation.
[수식][Equation]
Figure PCTKR2016003279-appb-I000061
Figure PCTKR2016003279-appb-I000061
여기서,
Figure PCTKR2016003279-appb-I000062
은 구멍의 면적 감소율을 나타내고
Figure PCTKR2016003279-appb-I000063
은 타발수를 나타낸다.
here,
Figure PCTKR2016003279-appb-I000062
Represents the area reduction rate of the hole
Figure PCTKR2016003279-appb-I000063
Represents the punching number.
예를 들어, 허용할 수 있는 구멍의 면적 감소량을 0.2㎟로 가정하면, 프레스 공구의 교체 주기는 위의 식에 의해 99,010타발이 된다.For example, assuming that the allowable area reduction of the hole is 0.2 mm 2, the replacement cycle of the press tool is 99,010 hits by the above equation.
한편, 본 발명의 다른 실시예에 따르면, 프레스 공구의 경우 SKD11 소재로 가공될 수 있으며, Johnson-cook 유동응력 모델을 이용하여 넥킹(necking) 이전에 발생하는 프레스 공구의 재료의 소성 거동을 모사하여 마모 시뮬레이션에 반영할 수 있다. 이는 다음의 Johnson-cook 유동응력 수식에 의해 이루어질 수 있다.On the other hand, according to another embodiment of the present invention, the press tool can be processed with SKD11 material, using the Johnson-cook flow stress model to simulate the plastic behavior of the material of the press tool occurring before the necking (necking) Can be reflected in wear simulation. This can be done by the following Johnson-cook flow stress equation.
[수식][Equation]
Figure PCTKR2016003279-appb-I000064
Figure PCTKR2016003279-appb-I000064
여기서,
Figure PCTKR2016003279-appb-I000065
는 유동응력이고,
Figure PCTKR2016003279-appb-I000066
는 주어진 온도에서 정의되는 항복 응력(yield stress at a given reference temperature)이고,
Figure PCTKR2016003279-appb-I000067
는 변형률 경화 계수(coefficient of strain hardening)이고,
Figure PCTKR2016003279-appb-I000068
는 소성 변형률(plastic strain)이고,
Figure PCTKR2016003279-appb-I000069
은 변형률 경화 계수(strain hardening coefficient)이고,
Figure PCTKR2016003279-appb-I000070
는 변형률 속도 경화 계수(coefficient of strain-rate hardening)이고,
Figure PCTKR2016003279-appb-I000071
는 소성 변형률 속도(plastic strain rate)이고,
Figure PCTKR2016003279-appb-I000072
는 시험 결과를 반영할 수 있도록 설정되는 주어진 변형률 속도(reference strain rate)이고,
Figure PCTKR2016003279-appb-I000073
는 온도이고,
Figure PCTKR2016003279-appb-I000074
는 상온(room temperature)이고,
Figure PCTKR2016003279-appb-I000075
는 녹는 온도(melting temperature)이고,
Figure PCTKR2016003279-appb-I000076
은 재료 상수(material constant)이다.
here,
Figure PCTKR2016003279-appb-I000065
Is the flow stress,
Figure PCTKR2016003279-appb-I000066
Is the yield stress at a given reference temperature,
Figure PCTKR2016003279-appb-I000067
Is the coefficient of strain hardening,
Figure PCTKR2016003279-appb-I000068
Is the plastic strain,
Figure PCTKR2016003279-appb-I000069
Is the strain hardening coefficient,
Figure PCTKR2016003279-appb-I000070
Is the coefficient of strain-rate hardening,
Figure PCTKR2016003279-appb-I000071
Is the plastic strain rate,
Figure PCTKR2016003279-appb-I000072
Is a given reference strain rate set to reflect the test results,
Figure PCTKR2016003279-appb-I000073
Is the temperature,
Figure PCTKR2016003279-appb-I000074
Is room temperature,
Figure PCTKR2016003279-appb-I000075
Is the melting temperature,
Figure PCTKR2016003279-appb-I000076
Is the material constant.
Johnson-cook 유동응력 모델은 소성 변형률, 소성 변형률 속도, 온도에 의한 효과를 고려한 재료에 대한 현상학적 구성 모델이다.The Johnson-cook flow stress model is a phenomenological constitutive model for materials that takes into account plastic strain, plastic strain velocity, and temperature effects.
예를 들어, 프레스 공구의 경우 SKD11 소재로 가공될 수 있으며, 공구의 재료 특성을 파악하기 위해 일반적인 인장시험을 진행할 수 있다. 그러나 SKD11 소재의 경우 다이 전용 재료로 초기 항복응력이 매우 높아 일반적인 전단 공저 시 공구에 가해지는 하중이 공구의 초기 항복 응력 점에 도달하지 못하고 탄성변형만을 유발하기 때문에 공구의 경우에는 소성 거동을 표현하는 재료 특성이 공구의 마모를 평가하는데 큰 비중을 차지하지 않는다. 이러한 이유로 본 발명의 실시예에서는 SKD11 소재의 재료특성은 상기 수식에 의해 이미 알려진 다음의 표의 값을 사용하였다.For example, a press tool can be processed from SKD11 material, and general tensile tests can be conducted to determine the material properties of the tool. However, in the case of SKD11 material, the die-only material has a very high initial yield stress, so the load applied to the tool during normal shear deduction does not reach the initial yield stress point of the tool and only causes elastic deformation. Material properties do not contribute a great deal to the evaluation of tool wear. For this reason, in the embodiment of the present invention, the material properties of the SKD11 material used the values in the following table which are already known by the above formula.
[표][table]
Figure PCTKR2016003279-appb-I000077
Figure PCTKR2016003279-appb-I000077
한편, 본 발명의 다른 실시예에 따르면, 넥킹 이전에 발생하는 가공물(판재) 의 소성 거동을 모사하여 마모 시뮬레이션에 반영할 수 있다. 예를 들어, 판재는 SUS430으로 형성될 수 있으며, Swift 유동응력 모델을 이용하여 넥킹 이전에 발생하는 재료의 소성 거동을 모사하여 마모 시뮬레이션에 반영할 수 있다. 이는 다음의 Swift 수식에 의해 이루어질 수 있다.On the other hand, according to another embodiment of the present invention, the plastic behavior of the workpiece (plate) generated before the necking can be simulated and reflected in the wear simulation. For example, the plate may be formed of SUS430, and may simulate the plastic behavior of the material generated before necking using the Swift flow stress model to reflect the wear simulation. This can be done by the following Swift equation.
[수식][Equation]
Figure PCTKR2016003279-appb-I000078
Figure PCTKR2016003279-appb-I000078
여기서
Figure PCTKR2016003279-appb-I000079
는 유동응력(flow stress)을 나타내고,
Figure PCTKR2016003279-appb-I000080
는 응력 계수(stress coefficient)를 나타내며,
Figure PCTKR2016003279-appb-I000081
는 스트레인(strain)을 나타내고,
Figure PCTKR2016003279-appb-I000082
는 초기 스트레인(initial strain)을 나타내며,
Figure PCTKR2016003279-appb-I000083
은 스트레인 경화 계수(strain hardening coefficient)를 나타낸다. 이때, 재료 상수인 응력 계수, 스트레인, 초기 스트레인은 상온 인장시험과 시뮬레이션을 통해 결정될 수 있다.
here
Figure PCTKR2016003279-appb-I000079
Represents the flow stress,
Figure PCTKR2016003279-appb-I000080
Represents the stress coefficient,
Figure PCTKR2016003279-appb-I000081
Represents strain,
Figure PCTKR2016003279-appb-I000082
Represents the initial strain,
Figure PCTKR2016003279-appb-I000083
Represents the strain hardening coefficient. At this time, the material constant stress coefficient, strain, initial strain can be determined through the room temperature tensile test and simulation.
이러한 Swift 수식에 의해 재료의 소성변형이 일어나기 시작하는 순간부터 넥킹이 일어나기 전까지의 거동을 모사할 수 있다.The Swift equation can simulate the behavior from the moment the plastic deformation of the material starts until the necking occurs.
한편, 본 발명의 다른 실시예에 따르면, Enhanced Lemaitre 손상 모델을 이용하여 가공물(판재)의 파단 모델을 모사하여 마모 시뮬레이션에 반영할 수 있다. 예를 들어, 판재는 SUS430으로 형성될 수 있으며, Enhanced Lemaitre 손상 모델을 이용하여 넥킹 이후의 재료의 파단을 모사하고 재료의 전단 특성을 고려할 수 있다. 이는 다음의 Swift 수식에 의해 이루어질 수 있다.Meanwhile, according to another embodiment of the present invention, the fracture model of the workpiece (plate) may be simulated and reflected in the wear simulation using the Enhanced Lemaitre damage model. For example, the plate may be formed of SUS430, and the Enhanced Lemaitre Damage Model may be used to simulate the fracture of the material after necking and to consider the shear properties of the material. This can be done by the following Swift equation.
Figure PCTKR2016003279-appb-I000084
Figure PCTKR2016003279-appb-I000084
여기서,
Figure PCTKR2016003279-appb-I000085
는 단위 시간당 손상값 증분량(damage rate)을 나타내고,
Figure PCTKR2016003279-appb-I000086
는 등가 소성 변형률(equivalent plastic strain)을 나타내며,
Figure PCTKR2016003279-appb-I000087
는 영 계수(Young's modulus)를 나타내고,
Figure PCTKR2016003279-appb-I000088
는 로드 상수(Lode parameter)를 나타내며,
Figure PCTKR2016003279-appb-I000089
는 스트레인 스레숄드(strain threshold, Threshold logarithmic strain at which Lemaitre damage model)를 나타내고,
Figure PCTKR2016003279-appb-I000090
는 3축 비(triaxiality ratio)를 나타내며,
Figure PCTKR2016003279-appb-I000091
Figure PCTKR2016003279-appb-I000092
를 나타내고,
Figure PCTKR2016003279-appb-I000093
,
Figure PCTKR2016003279-appb-I000094
,
Figure PCTKR2016003279-appb-I000095
은 재료 상수(material parameter)이다.
here,
Figure PCTKR2016003279-appb-I000085
Is the damage rate per unit time,
Figure PCTKR2016003279-appb-I000086
Represents the equivalent plastic strain,
Figure PCTKR2016003279-appb-I000087
Represents Young's modulus,
Figure PCTKR2016003279-appb-I000088
Represents a load parameter,
Figure PCTKR2016003279-appb-I000089
Represents the strain threshold (Threshold logarithmic strain at which Lemaitre damage model),
Figure PCTKR2016003279-appb-I000090
Represents the triaxiality ratio,
Figure PCTKR2016003279-appb-I000091
Is
Figure PCTKR2016003279-appb-I000092
Indicates,
Figure PCTKR2016003279-appb-I000093
,
Figure PCTKR2016003279-appb-I000094
,
Figure PCTKR2016003279-appb-I000095
Is a material parameter.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements using the basic concept of the present invention as defined in the following claims are also rights of the present invention. It belongs to the range.
본 발명은 프레스 공구의 수명을 예측할 수 있는 방법에 관한 것으로 산업상 이용가능성이 있다.The present invention relates to a method for predicting the life of a press tool and has industrial applicability.

Claims (14)

  1. 프레스 공구의 마모를 예측하는 방법으로서,As a method of predicting wear of a press tool,
    유한요소 해석 시뮬레이션 프로그램에 연삭 마모 모델을 적용하여 상기 프레스 공구의 연삭 마모량을 산출하는 단계,Calculating a grinding wear amount of the press tool by applying a grinding wear model to a finite element analysis simulation program;
    상기 연삭 마모량과 상기 프레스 공구를 이용한 실제 프레스 공정을 수행하여 얻어진 실측 마모량의 차이에 기초하여 피로 마모량을 산출하는 단계, 그리고Calculating a fatigue wear amount based on a difference between the grinding wear amount and an actual wear amount obtained by performing an actual press process using the press tool, and
    상기 연삭 마모량이 반영된 연삭 마모 모델 및 상기 피로 마모량이 반영된 피로 마모 모델을 상기 유한요소 해석 시뮬레이션 프로그램에 적용하여 상기 프레스 공구의 마모 시뮬레이션을 이용하여 상기 프레스 공구의 마모량을 산출하는 단계를 포함하는 프레스 공구의 마모 예측 방법.A press tool comprising the step of calculating the wear amount of the press tool using the wear simulation of the press tool by applying the grinding wear model reflecting the grinding wear amount and the fatigue wear model reflecting the fatigue wear amount to the finite element analysis simulation program Wear prediction method.
  2. 제1항에서,In claim 1,
    상기 연삭 마모 모델은 수정된 Archard 모델인 프레스 공구의 마모 예측 방법.The grinding wear model is a modified Archard model wear prediction method of the press tool.
  3. 제2항에서,In claim 2,
    상기 수정된 Archard 모델은 다음 수식에 의해 마모 깊이를 산출하는 프레스 공구의 마모 예측 방법.The modified Archard model is a wear prediction method of the press tool to calculate the wear depth by the following formula.
    [수식][Equation]
    Figure PCTKR2016003279-appb-I000096
    Figure PCTKR2016003279-appb-I000096
    (여기서, W는 마모 깊이(wear depth), P는 프레스 공구에 작용하는 수직 압력, v는 소재가 프레스 공구 표면에서 미끄러지는 속도, H는 프레스 공구의 표면 경도, t는 프레스 공구와 소재가 접촉하는 시간, K는 프레스 공구의 마모 계수, a, b, c는 프레스 공구의 마모에 영향을 미치는 인자들에 자유도를 부여하는 마모 상수를 나타냄)(W is the wear depth, P is the vertical pressure acting on the press tool, v is the speed at which the material slides on the surface of the press tool, H is the surface hardness of the press tool, t is the contact between the press tool and the material Time, K is the wear factor of the press tool, a, b, c are the wear constants that give the degrees of freedom to the factors affecting the wear of the press tool)
  4. 제3항에서,In claim 3,
    상기 K, a, b, c는 ASTM G99 규격에 따른 핀-온-디스크(pin-on-disc) 시험에 의해 구해지는 프레스 공구의 마모 예측 방법.K, a, b, c is a wear prediction method of the press tool obtained by a pin-on-disc test according to the ASTM G99 standard.
  5. 제1항에서,In claim 1,
    상기 피로 마모 모델은 Lemaitre 모델인 프레스 공구의 마모 예측 방법.The fatigue wear model is Lemaitre model wear prediction method of the press tool.
  6. 제5항에서,In claim 5,
    상기 Lemaitre 모델은 다음 수식에 의해 손상 값 증가분을 산출하고, 상기 피로 마모량은 상기 손상 증가분을 기초로 산출되는 프레스 공구의 마모 예측 방법.The Lemaitre model calculates an increase in damage value by the following equation, and the fatigue wear amount is calculated based on the damage increase.
    [수식][Equation]
    Figure PCTKR2016003279-appb-I000097
    Figure PCTKR2016003279-appb-I000097
    (여기서,
    Figure PCTKR2016003279-appb-I000098
    는 피로 누적에 의한 손상 값 증가분,
    Figure PCTKR2016003279-appb-I000099
    는 탄성 영역에서의 변형률 증가분,
    Figure PCTKR2016003279-appb-I000100
    는 탄성 영역에서의 손상 스트레인 에너지 해방률(damage strain energy release rate),
    Figure PCTKR2016003279-appb-I000101
    는 포아송 비(Poisson's ratio),
    Figure PCTKR2016003279-appb-I000102
    는 탄성 계수(young's modulus),
    Figure PCTKR2016003279-appb-I000103
    는 손상 값,
    Figure PCTKR2016003279-appb-I000104
    는 탄성 영역에서의 유효 응력,
    Figure PCTKR2016003279-appb-I000105
    는 탄성 영역에서의 정수압 응력,
    Figure PCTKR2016003279-appb-I000106
    Figure PCTKR2016003279-appb-I000107
    는 프레스 공구의 재료에 따라 발생하는 손상 증가분의 정도를 조절하는 손상 계수를 나타냄)
    (here,
    Figure PCTKR2016003279-appb-I000098
    Is the increase in damage value due to fatigue accumulation,
    Figure PCTKR2016003279-appb-I000099
    Is the increase in strain in the elastic region,
    Figure PCTKR2016003279-appb-I000100
    Damage strain energy release rate in the elastic region,
    Figure PCTKR2016003279-appb-I000101
    Is the Poisson's ratio,
    Figure PCTKR2016003279-appb-I000102
    Is the Young's modulus,
    Figure PCTKR2016003279-appb-I000103
    Is the damage value,
    Figure PCTKR2016003279-appb-I000104
    Is the effective stress in the elastic region,
    Figure PCTKR2016003279-appb-I000105
    Is the hydrostatic stress in the elastic region,
    Figure PCTKR2016003279-appb-I000106
    Wow
    Figure PCTKR2016003279-appb-I000107
    Represents the damage factor that controls the degree of damage increase that occurs depending on the material of the press tool)
  7. 제1항에서,In claim 1,
    상기 마모 시뮬레이션에 형상 업데이트 알고리즘을 적용하여 마모에 따른 상기 프레스 공구의 형상 변화를 반영하는 단계를 더 포함하는 프레스 공구의 마모 예측 방법.And applying a shape update algorithm to the wear simulation to reflect a change in shape of the press tool according to wear.
  8. 제7항에서,In claim 7,
    상기 프레스 공구의 형상 변화를 반영하는 단계에서, 연삭 마모에 대해서는 상기 프레스 공구의 형상을 구성하는 표면 노드를 마모량에 따라 점진적으로 후퇴하는 방식으로 표면 형상을 업데이트하고, 피로 마모에 대해서는 누적된 손상치가 임계값에 도달하면 상기 프레스 공구의 형상을 구성하는 표면 요소를 제거하는 방식으로 표면 형상을 업데이트하는 프레스 공구의 마모 예측 방법.In the step of reflecting the shape change of the press tool, the surface shape is updated in such a manner as to gradually retract the surface node constituting the shape of the press tool according to the amount of wear for grinding wear, and the accumulated damage value for the fatigue wear is And a method of predicting wear of the press tool when the threshold value is reached to update the surface shape in such a way as to remove the surface elements constituting the shape of the press tool.
  9. 제1항에서,In claim 1,
    상기 프레스 공구의 소성 거동을 모사하여 상기 프레스 공구의 마모 시뮬레이션에 반영하는 단계를 더 포함하는 프레스 공구의 마모 예측 방법.And simulating the plastic behavior of the press tool and reflecting it in the wear simulation of the press tool.
  10. 제9항에서,In claim 9,
    상기 프레스 공구의 소성 거동은 다음의 Johnson-cook 유동응력 수식에 의해 모사되는 프레스 공구의 마모 예측 방법.The plastic behavior of the press tool is a wear prediction method of the press tool is simulated by the following Johnson-cook flow stress equation.
    [수식][Equation]
    Figure PCTKR2016003279-appb-I000108
    Figure PCTKR2016003279-appb-I000108
    (여기서,
    Figure PCTKR2016003279-appb-I000109
    는 유동응력이고,
    Figure PCTKR2016003279-appb-I000110
    는 주어진 온도에서 정의되는 항복 응력(yield stress at a given reference temperature)이고,
    Figure PCTKR2016003279-appb-I000111
    는 변형률 경화 계수(coefficient of strain hardening)이고,
    Figure PCTKR2016003279-appb-I000112
    는 소성 변형률(plastic strain)이고,
    Figure PCTKR2016003279-appb-I000113
    은 변형률 경화 계수(strain hardening coefficient)이고,
    Figure PCTKR2016003279-appb-I000114
    는 변형률 속도 경화 계수(coefficient of strain-rate hardening)이고,
    Figure PCTKR2016003279-appb-I000115
    는 소성 변형률 속도(plastic strain rate)이고,
    Figure PCTKR2016003279-appb-I000116
    는 시험 결과를 반영할 수 있도록 설정되는 주어진 변형률 속도(reference strain rate)이고,
    Figure PCTKR2016003279-appb-I000117
    는 온도이고,
    Figure PCTKR2016003279-appb-I000118
    는 상온(room temperature)이고,
    Figure PCTKR2016003279-appb-I000119
    는 녹는 온도(melting temperature)이고,
    Figure PCTKR2016003279-appb-I000120
    은 재료 상수(material constant)임)
    (here,
    Figure PCTKR2016003279-appb-I000109
    Is the flow stress,
    Figure PCTKR2016003279-appb-I000110
    Is the yield stress at a given reference temperature,
    Figure PCTKR2016003279-appb-I000111
    Is the coefficient of strain hardening,
    Figure PCTKR2016003279-appb-I000112
    Is the plastic strain,
    Figure PCTKR2016003279-appb-I000113
    Is the strain hardening coefficient,
    Figure PCTKR2016003279-appb-I000114
    Is the coefficient of strain-rate hardening,
    Figure PCTKR2016003279-appb-I000115
    Is the plastic strain rate,
    Figure PCTKR2016003279-appb-I000116
    Is a given reference strain rate set to reflect the test results,
    Figure PCTKR2016003279-appb-I000117
    Is the temperature,
    Figure PCTKR2016003279-appb-I000118
    Is room temperature,
    Figure PCTKR2016003279-appb-I000119
    Is the melting temperature,
    Figure PCTKR2016003279-appb-I000120
    Is the material constant)
  11. 제1항에서,In claim 1,
    넥킹 이전에 발생하는 가공물의 소성 거동을 모사하여 상기 프레스 공구의 마모 시뮬레이션에 반영하는 단계를 더 포함하는 프레스 공구의 마모 예측 방법.A method of predicting wear of a press tool further comprising simulating the plastic behavior of the workpiece occurring before necking and reflecting it in the wear simulation of the press tool.
  12. 제11항에서,In claim 11,
    상기 가공물의 소성 거동은 다음의 Swift 수식에 의해 모사되는 프레스 공구의 마모 예측 방법.The plastic behavior of the workpiece is a wear prediction method of the press tool is simulated by the following Swift equation.
    [수식][Equation]
    Figure PCTKR2016003279-appb-I000121
    Figure PCTKR2016003279-appb-I000121
    (여기서
    Figure PCTKR2016003279-appb-I000122
    는 유동응력(flow stress)을 나타내고,
    Figure PCTKR2016003279-appb-I000123
    는 응력 계수(stress coefficient)를 나타내며,
    Figure PCTKR2016003279-appb-I000124
    는 스트레인(strain)을 나타내고,
    Figure PCTKR2016003279-appb-I000125
    는 초기 스트레인(initial strain)을 나타내며,
    Figure PCTKR2016003279-appb-I000126
    은 스트레인 경화 계수(strain hardening coefficient)를 나타냄)
    (here
    Figure PCTKR2016003279-appb-I000122
    Represents the flow stress,
    Figure PCTKR2016003279-appb-I000123
    Represents the stress coefficient,
    Figure PCTKR2016003279-appb-I000124
    Represents strain,
    Figure PCTKR2016003279-appb-I000125
    Represents the initial strain,
    Figure PCTKR2016003279-appb-I000126
    Represents the strain hardening coefficient)
  13. 제1항에서,In claim 1,
    가공물의 파단 모델을 모사하여 상기 프레스 공구의 마모 시뮬레이션에 반영하는 단계를 더 포함하는 프레스 공구의 마모 예측 방법.A method of predicting wear of a press tool further comprising replicating a fracture model of a workpiece and reflecting it in the wear simulation of the press tool.
  14. 제13항에서,In claim 13,
    상기 가공물의 파단 모델은 다음의 Enhanced Lemaitre 손상 모델에 의해 모사되는 프레스 공구의 마모 예측 방법.The failure model of the workpiece is simulated by the following Enhanced Lemaitre damage model.
    [수식][Equation]
    Figure PCTKR2016003279-appb-I000127
    Figure PCTKR2016003279-appb-I000127
    (여기서,
    Figure PCTKR2016003279-appb-I000128
    는 단위 시간당 손상값 증분량(damage rate)을 나타내고,
    Figure PCTKR2016003279-appb-I000129
    는 등가 소성 변형률(equivalent plastic strain)을 나타내며,
    Figure PCTKR2016003279-appb-I000130
    는 영 계수(Young's modulus)를 나타내고,
    Figure PCTKR2016003279-appb-I000131
    는 로드 상수(Lode parameter)를 나타내며,
    Figure PCTKR2016003279-appb-I000132
    는 스트레인 스레숄드(strain threshold, Threshold logarithmic strain at which Lemaitre damage model)를 나타내고,
    Figure PCTKR2016003279-appb-I000133
    는 3축 비(triaxiality ratio)를 나타내며,
    Figure PCTKR2016003279-appb-I000134
    Figure PCTKR2016003279-appb-I000135
    를 나타내고,
    Figure PCTKR2016003279-appb-I000136
    ,
    Figure PCTKR2016003279-appb-I000137
    ,
    Figure PCTKR2016003279-appb-I000138
    은 재료 상수(material parameter)임)
    (here,
    Figure PCTKR2016003279-appb-I000128
    Is the damage rate per unit time,
    Figure PCTKR2016003279-appb-I000129
    Represents the equivalent plastic strain,
    Figure PCTKR2016003279-appb-I000130
    Represents Young's modulus,
    Figure PCTKR2016003279-appb-I000131
    Represents a load parameter,
    Figure PCTKR2016003279-appb-I000132
    Represents the strain threshold (Threshold logarithmic strain at which Lemaitre damage model),
    Figure PCTKR2016003279-appb-I000133
    Represents the triaxiality ratio,
    Figure PCTKR2016003279-appb-I000134
    Is
    Figure PCTKR2016003279-appb-I000135
    Indicates,
    Figure PCTKR2016003279-appb-I000136
    ,
    Figure PCTKR2016003279-appb-I000137
    ,
    Figure PCTKR2016003279-appb-I000138
    Is a material parameter)
PCT/KR2016/003279 2015-09-14 2016-03-30 Method for predicting wear and lifespan of press tool by using wear model WO2017047890A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0129467 2015-09-14
KR1020150129467A KR20170031906A (en) 2015-09-14 2015-09-14 Prediction method of wear and life of press tool using wear model

Publications (1)

Publication Number Publication Date
WO2017047890A1 true WO2017047890A1 (en) 2017-03-23

Family

ID=58289372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003279 WO2017047890A1 (en) 2015-09-14 2016-03-30 Method for predicting wear and lifespan of press tool by using wear model

Country Status (2)

Country Link
KR (1) KR20170031906A (en)
WO (1) WO2017047890A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112926234A (en) * 2021-01-26 2021-06-08 西华大学 High-temperature tensile test and high-temperature rheological damage model construction method for metal material
CN113723020A (en) * 2021-03-19 2021-11-30 南京长江都市建筑设计股份有限公司 Method for predicting wall surface deposition and wall surface abrasion loss based on numerical simulation
CN114414244A (en) * 2022-01-26 2022-04-29 广州大学 Bearing wear device and bearing wear life prediction method
CN114997489A (en) * 2022-05-27 2022-09-02 西北工业大学 Hinge non-uniform wear prediction method based on multi-body dynamics
CN115290432A (en) * 2022-08-07 2022-11-04 西南石油大学 Perforation erosion rate prediction and erosion damage evaluation method for perforated casing
CN117592976A (en) * 2024-01-19 2024-02-23 山东豪泉软件技术有限公司 Cutter residual life prediction method, device, equipment and medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102001583B1 (en) * 2017-09-06 2019-07-18 대구대학교 산학협력단 prediction method for the wear life of the coating layer for press die
KR102011688B1 (en) * 2017-09-06 2019-10-14 대구대학교 산학협력단 wear test method of coating layer for press die
KR101999112B1 (en) 2017-10-18 2019-07-11 (주)스마트랩 Tool life maintenance system and tool life maintenance method for machine tools
KR102036980B1 (en) * 2018-01-05 2019-10-25 경상대학교산학협력단 A Method for Predicting Tool Wear Overlap Geometry
CN113962044B (en) * 2021-11-17 2024-07-05 北京航空航天大学 Digital twinning-oriented brake pad wear prediction model construction method
GB202208573D0 (en) * 2022-06-13 2022-07-27 Rolls Royce Plc Surface assessment
CN116579507B (en) * 2023-07-13 2024-01-12 东泰精密塑胶科技(深圳)有限公司 Intelligent processing system for technological parameters of plastic mold

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012260A1 (en) * 1998-08-28 2000-03-09 Mori Seiki Co., Ltd. Method of preparing tool wear data, estimating tool wear amount, and making decision on the use of the tool
JP2008221454A (en) * 2007-02-15 2008-09-25 Kobe Steel Ltd Tool wear predicting method, tool wear predicting program, and tool wear predicting system
JP2012016757A (en) * 2010-07-06 2012-01-26 Jtekt Corp Device for predicting uneven-wear shape of rotary tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776956B1 (en) 2010-12-09 2017-09-19 두산공작기계 주식회사 Tool Damage Detection Apparatus For Machine Tool and Detection Method Thereby
KR20130107807A (en) 2012-03-23 2013-10-02 현대자동차주식회사 Device and method for controling tools

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012260A1 (en) * 1998-08-28 2000-03-09 Mori Seiki Co., Ltd. Method of preparing tool wear data, estimating tool wear amount, and making decision on the use of the tool
JP2008221454A (en) * 2007-02-15 2008-09-25 Kobe Steel Ltd Tool wear predicting method, tool wear predicting program, and tool wear predicting system
JP2012016757A (en) * 2010-07-06 2012-01-26 Jtekt Corp Device for predicting uneven-wear shape of rotary tool

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM, SEUL - KEE ET AL.: "Development of Computational Evaluation Method for Fatigue Crack Growth Rate based on Viscoplastic-Damage Model", JOURNAL OF THE COMPUTATIONAL STRUCTURAL ENGINEERING INSTITUTE OF KOREA, vol. 28, no. 1, February 2015 (2015-02-01), pages 1 - 8 *
KU, JA - KYUNG ET AL.: "A Study on Wear-Life Prediction of Conductor Roll Polisher in EGL Polishing Process", JOURNAL OF THE KOREAN SOCIETY FOR PRECISION ENGINEERING, vol. 28, no. 9, September 2011 (2011-09-01), pages 1062 - 1069 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112926234A (en) * 2021-01-26 2021-06-08 西华大学 High-temperature tensile test and high-temperature rheological damage model construction method for metal material
CN113723020A (en) * 2021-03-19 2021-11-30 南京长江都市建筑设计股份有限公司 Method for predicting wall surface deposition and wall surface abrasion loss based on numerical simulation
CN113723020B (en) * 2021-03-19 2022-10-25 南京长江都市建筑设计股份有限公司 Method for predicting wall surface deposition and wall surface abrasion loss based on numerical simulation
CN114414244A (en) * 2022-01-26 2022-04-29 广州大学 Bearing wear device and bearing wear life prediction method
CN114997489A (en) * 2022-05-27 2022-09-02 西北工业大学 Hinge non-uniform wear prediction method based on multi-body dynamics
CN115290432A (en) * 2022-08-07 2022-11-04 西南石油大学 Perforation erosion rate prediction and erosion damage evaluation method for perforated casing
CN115290432B (en) * 2022-08-07 2024-06-11 西南石油大学 Method for predicting erosion rate and evaluating erosion damage of perforation sleeve
CN117592976A (en) * 2024-01-19 2024-02-23 山东豪泉软件技术有限公司 Cutter residual life prediction method, device, equipment and medium
CN117592976B (en) * 2024-01-19 2024-04-26 山东豪泉软件技术有限公司 Cutter residual life prediction method, device, equipment and medium

Also Published As

Publication number Publication date
KR20170031906A (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2017047890A1 (en) Method for predicting wear and lifespan of press tool by using wear model
Özel et al. Finite element method simulation of machining of AISI 1045 steel with a round edge cutting tool
Hor et al. Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range
CN111709176B (en) Finite element simulation method and system considering plasticity and damage constitutive relation
CN106843172B (en) On-line quality prediction method of complex industrial process based on JY-KPLS
US8437991B2 (en) Systems and methods for predicting heat transfer coefficients during quenching
CN117170308B (en) Machine tool dynamic error compensation method and system based on instruction sequence analysis
JP2016193455A (en) Metal plate bending forming control method
Kukielka et al. Incremental modelling and numerical solution of the contact problem between movable elastic and elastic/visco-plastic bodies and application in the technological processes
WO2017010778A1 (en) Condition based preventive maintenance apparatus and method for large operation system
Lin et al. A thermoelastic-plastic large deformation model for orthogonal cutting with tool flank wear—Part I: Computational procedures
CN104550496B (en) A kind of method of work of mould dynamic fit accuracy compensation
CN107066775A (en) A kind of Forecasting Methodology of cutter turning temperature rise average
CN117253568B (en) Coating process optimization method and system for preparing yttrium oxide crucible
Zhou et al. A modified parallel-sided shear zone model for determining material constitutive law
CN119536129A (en) A CNC machine tool operation control system and a double-station sawing and drilling integrated machine tool
Wei et al. Adaptive thermal error prediction for CNC machine tool spindle using online measurement and an improved recursive least square algorithm
Mirza et al. Modelling the hot plane strain compression test Part 1–Effect of specimen geometry, strain rate, and friction on deformation
Lin et al. Optimization of flow stress model and 3D-processing map for spray-formed aluminum alloy 7055 based on GA-BP artificial neural network
JP5900026B2 (en) Method and apparatus for estimating furnace temperature distribution
JP4231426B2 (en) Metal material molding simulation method
CN116343964B (en) Construction method of double-phase stainless steel viscosity constitutive model
Rothe et al. Field assisted sintering technology, part II: simulation
Wolf et al. Transient Wear Modelling of Coated Cutting Tools
Yoo et al. Finite element modelling of the high-velocity impact forging process by the explicit time integration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846712

Country of ref document: EP

Kind code of ref document: A1