[go: up one dir, main page]

WO2017038138A1 - Composite particles, method for producing same, and use of same - Google Patents

Composite particles, method for producing same, and use of same Download PDF

Info

Publication number
WO2017038138A1
WO2017038138A1 PCT/JP2016/060483 JP2016060483W WO2017038138A1 WO 2017038138 A1 WO2017038138 A1 WO 2017038138A1 JP 2016060483 W JP2016060483 W JP 2016060483W WO 2017038138 A1 WO2017038138 A1 WO 2017038138A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
composite
composite particles
metal oxide
surface area
Prior art date
Application number
PCT/JP2016/060483
Other languages
French (fr)
Japanese (ja)
Inventor
俊貴 竹中
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to JP2017537568A priority Critical patent/JP6522135B2/en
Priority to CN201680050384.5A priority patent/CN107949581B/en
Priority to KR1020187009159A priority patent/KR102047656B1/en
Publication of WO2017038138A1 publication Critical patent/WO2017038138A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/81Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to composite particles containing polymer particles and hydrophilic metal oxide particles attached to the surface of the polymer particles, a method for producing the same, and uses thereof (coating agent, optical film resin composition, molded product, And external preparations).
  • Polymer particles having an average particle size of 0.01 to 100 ⁇ m are, for example, additives for coating agents such as paints (matting agents, etc.), additives for inks (matting agents, etc.), and main components of adhesives. Or additives, additives for artificial marble (low shrinkage agents, etc.), paper treatment agents, packing materials for external agents such as cosmetics (fillers for improving slipperiness), column packing materials used for chromatography, static It is used in applications such as toner additives used for charge image development, anti-blocking agents for films, and light diffusing agents for light diffusers (such as light diffusing films).
  • composite polymer particles with hydrophilic metal oxide particles such as silica particles As one of methods for imparting new properties to polymer particles or improving the properties of polymer particles, composite polymer particles with hydrophilic metal oxide particles such as silica particles. Is considered. It is considered that the hydrophilicity of the particle surface can be improved by attaching hydrophilic metal oxide particles such as silica particles to the surface of the polymer particles. Since particles having hydrophilicity on the surface are easily dispersed in an aqueous medium, additives for water-based coating agents, for example, light diffusing agents used in water-based coating agents that form optical film coatings such as light diffusing films As, it can be used suitably.
  • Patent Document 1 discloses a method for producing composite particles including polymer particles and silica particles adhering to the polymer particles, in the presence of silica particles having water-soluble cellulose adsorbed on the surface.
  • a method for producing composite particles is described which includes a polymerization step in which monomers are subjected to aqueous suspension polymerization to obtain composite particles.
  • Comparative Example 4 of Patent Document 2 an emulsion obtained by absorbing a vinyl monomer containing a polymerization initiator in seed particles in an aqueous medium and colloidal silica are mixed, and the resulting mixture is obtained. A method for producing polymer particles in which the vinyl monomer is polymerized by heating is described.
  • the composite particles produced by the production method described in Patent Document 1 have relatively few surface irregularities derived from silica particles and the like, the surface irregularities derived from silica particles and the like significantly improve particle fluidity. As a result, there was room for improvement in particle fluidity (see Comparative Example 5 in the present specification).
  • the improvement of the particle fluidity of the composite particles can be achieved by improving the handling properties of the composite particles when manufacturing products using the composite particles, such as optical films such as light diffusion films, and in aqueous dispersion media such as aqueous binders. This contributes to the suppression of the occurrence of buns (lumps formed by agglomeration of composite particles).
  • silica particles contribute as a dispersant, but there is almost no adhesion to the surface of the polymer particles (the silica particles are not washed during washing). It was found that the polymer particles could not be given hydrophilicity and the fluidity of the polymer particles could not be improved (see Comparative Example 3 in the present specification).
  • the present invention has been made in view of such a situation, has hydrophilicity, and as a result, has excellent dispersion stability in an aqueous dispersion medium such as an aqueous binder, and also has excellent particle fluidity. It is an object of the present invention to provide composite particles, a production method thereof, and uses thereof.
  • the composite particles of the present invention have hydrophilicity due to the hydrophilicity of the hydrophilic metal oxide particles attached to the surface of the polymer particles, and as a result, are excellent in dispersion stability in an aqueous dispersion medium such as an aqueous binder. ing.
  • the improvement of the dispersion stability in the aqueous dispersion medium contributes to, for example, suppression of defects generated in the coating (coating film) when the composite particles are mixed with an aqueous binder and used as a coating agent.
  • the numerical value of (actual value of specific surface area) / (calculated value of specific surface area) represents how large the specific surface area is with respect to a true sphere, and thus represents the number of surface irregularities.
  • the composite particles of the present invention have many surface irregularities because (actual value of specific surface area) / (calculated value of specific surface area) is 1.20 or more. Since the composite particles of the present invention have many surface irregularities, they are excellent in particle fluidity.
  • the improvement of the particle fluidity of the composite particles can be achieved by improving the handling properties of the composite particles when manufacturing products using the composite particles, such as optical films such as light diffusion films, and in aqueous dispersion media such as aqueous binders. This contributes to the suppression of the generation of lumps (lumps formed by agglomeration of composite particles) and the formation of a good coating with a coating agent containing an aqueous binder.
  • the method for producing composite particles of the present invention is a method for producing composite particles comprising polymer particles composed of a polymer of a vinyl monomer, and hydrophilic metal oxide particles attached to the polymer particles, After the vinyl monomer is absorbed by the seed particles, the vinyl monomer is absorbed in an aqueous medium in the presence of hydrophilic metal oxide particles having water-soluble cellulose adsorbed on the surface and a reactive surfactant. It is characterized by including a polymerization step of obtaining composite particles by seed polymerization.
  • the vinyl monomer is polymerized in an aqueous medium in the presence of the hydrophilic metal oxide particles having water-soluble cellulose adsorbed on the surface, the water-soluble cellulose and the reactive surfactant. From the above, it is possible to improve the adhesion of the surface of the polymer particles during the polymerization by the action of the reactive surfactant, and to attach more hydrophilic metal oxide particles to the surface of the polymer particles, and to improve the hydrophilicity.
  • the hydrophilic metal oxide particles can be firmly attached to the surface of the polymer particles by the action of the water-soluble celluloses adsorbed on the surface of the metal oxide particles. For this reason, the hydrophilic metal oxide particles attached to the surface of the polymer particles have hydrophilicity.
  • aqueous dispersion medium such as an aqueous binder
  • hydrophilic metal oxide particles Many surface irregularities derived from product particles, etc. (actual value of specific surface area) / (calculated value of specific surface area) are large (for example, 1.20 or more), so that particle fluidity is excellent, and from the surface of polymer particles Composite particles in which the hydrophilic metal oxide particles are difficult to fall off can be obtained.
  • the seed is obtained by polymerizing the vinyl monomer in an aqueous medium in a state in which the dispersion stability is improved by the reactive surfactant. Since composite particles are obtained by polymerization, composite particles having a smaller particle diameter variation coefficient (for example, 15% or less) and high particle diameter uniformity (monodispersity) can be obtained.
  • the coating agent of the present invention is characterized by containing the composite particles of the present invention.
  • the coating agent of the present invention contains the composite particles of the present invention, light diffusibility can be imparted to the coating (coating film) formed from the coating agent.
  • the coating agent contains an aqueous solvent, the coating agent may be spoiled due to the excellent particle fluidity of the composite particles and the hydrophilicity of the hydrophilic metal oxide particles attached to the surface of the polymer particles. Suppressed and good dispersibility of the composite particles can be obtained. Therefore, the coating agent can form a good coating.
  • the optical film of the present invention is an optical film including a base film and a coating formed thereon, and the coating includes the composite particles of the present invention.
  • optical film of the present invention contains the composite particles of the present invention, it has light diffusibility.
  • the composite particles have hydrophilicity, and as a result, are excellent in dispersion stability in an aqueous dispersion medium such as an aqueous binder, and are excellent in particle fluidity, a production method thereof, and the Applications can be provided.
  • FIG. 2 is a scanning electron microscope (SEM) image showing the composite particles obtained in Example 1.
  • FIG. 2 is a transmission electron microscope (TEM) image showing a cross section of the composite particles obtained in Example 1.
  • FIG. 2 is a scanning electron microscope (SEM) image showing the composite particles obtained in Comparative Example 1.
  • FIG. It is a figure which shows the infrared absorption spectrum of the extract of the composite particle obtained in Example 1 with the infrared absorption spectrum of hydroxypropyl methylcellulose.
  • the (actual value of specific surface area) / (calculated value of specific surface area) is more preferably 1.30 or more, further preferably 1.40 or more, and most preferably 1.50 or more. preferable. By these, the particle fluidity of the composite particles can be further improved.
  • the (actual value of specific surface area) / (calculated value of specific surface area) is more preferably 50 or less, and further preferably 40 or less. Composite particles within these ranges are easy to manufacture.
  • the numerical value of the avalanche energy change AE (Avalanche Energy) before and after avalanche showing particle fluidity is preferably in the range of 10 to 50 kJ / kg. Thereby, composite particles with high particle fluidity can be realized.
  • the composite particle of the present invention has a particle diameter variation coefficient of 15% or less. Thereby, it is possible to realize composite particles having a highly uniform particle diameter.
  • the composite particles of the present invention preferably have a volume average particle diameter of 1 to 20 ⁇ m.
  • the composite particle suitable for uses such as a coating agent, an optical film, a molded object, a resin composition, an external preparation, demonstrated in detail later, is realizable.
  • the composite particles of the present invention are preferably those in which at least a part of the polymer particles is coated with a layer composed of a plurality of silica particles.
  • the polymer particles are a vinyl monomer polymer.
  • the vinyl monomer is a compound having a group (ethylenically unsaturated group (broadly defined vinyl group)) containing a polymerizable carbon-carbon double bond (ethylenically unsaturated bond; broadly defined vinyl bond). .
  • the vinyl monomer may be a monofunctional vinyl monomer having an ethylenically unsaturated group (broadly defined vinyl group), and may have two or more ethylenically unsaturated groups (broadly defined vinyl group). It may be a vinyl monomer.
  • Examples of the monofunctional vinyl monomer include ⁇ -methylene aliphatic monocarboxylic acid ester; styrene; o-methyl styrene, m-methyl styrene, p-methyl styrene, p-ethyl styrene, 2,4-dimethyl.
  • styrene such as p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene; vinyl carboxylates such as vinyl acetate, vinyl propionate, vinyl butyrate; acrylonitrile, acrylamide, etc.
  • Examples of the ⁇ -methylene aliphatic monocarboxylic acid ester include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-octyl acrylate, dodecyl acrylate, and 2-ethylhexyl acrylate.
  • ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and the like can be used as a monofunctional vinyl monomer. Further, two or more of these may be used in combination.
  • vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl isobutyl ether; vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone; N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl compounds such as N-vinylpyrrolidone; vinyl naphthalene salts and the like can be used as a monofunctional vinyl monomer by combining one or more of them in a range not impeding the effects of the present invention.
  • the above monofunctional vinyl monomers may be used alone or in combination of two or more.
  • the monofunctional vinyl monomers described above styrene, methyl methacrylate, and the like are more preferable as the monofunctional vinyl monomers used in the present invention because they are inexpensive.
  • polyfunctional vinyl monomer examples include divinylbenzene; ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate (repetition unit number: 2 to 10), propylene glycol di (meth) acrylate, polypropylene glycol di (Meth) acrylate (2-10 repeat units), 1,3-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, alkoxylated neopentyl glycol di (meth) acrylate, propoxylated neopentyl Bifunctional alkylene glycol di (meth) acrylates such as glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, dioxane glycol di (meth) acrylate; Range ol di (meth) acrylate, hexanediol di (meth) acrylate, alk
  • the vinyl monomer preferably includes both a monofunctional vinyl monomer and a polyfunctional vinyl monomer.
  • a favorable crosslinked structure can be formed in the polymer particles, and good solvent resistance can be imparted to the composite particles.
  • the amount of the polyfunctional vinyl monomer used is preferably in the range of 0.5 to 50% by weight, preferably in the range of 1 to 40% by weight, based on the total amount of vinyl monomers used. More preferably. As a result, a better cross-linked structure can be formed in the polymer particles, and further excellent solvent resistance can be imparted to the composite particles.
  • hydrophilic metal oxide particles means metal oxide particles that can be dispersed in water, and more specifically, takes hydrophilic behavior when introduced into water and stirred.
  • metal oxide particles i.e. metal oxide particles dispersed in water whose surface is completely wetted by water and thus has a contact angle of less than 90 ° to water.
  • Whether or not the metal oxide particles adhering to the surface of the polymer particles in the composite particles are hydrophilic is determined by whether or not the composite particles start to settle immediately as a result of the hydrophilicity test of the composite particles (see Examples). It can also be confirmed indirectly depending on whether or not.
  • the hydrophilic metal oxide particle is not particularly limited as long as it is a metal oxide particle having hydrophilicity (having a number of hydroxyl groups to show hydrophilicity).
  • Examples thereof include silica-coated metal oxide particles coated with metal oxide particles, composite oxide particles composed of at least one of tin oxide and zinc oxide doped with at least one of phosphorus and antimony, and the like.
  • colloidal silica can be preferably used.
  • colloidal silica include powdered colloidal silica such as precipitated silica powder and gas phase method silica powder; colloidal silica sol stably dispersed to a primary particle level in a medium.
  • colloidal silica sols stably dispersed to the primary particle level in a medium are more suitable for use in the production method of the present invention.
  • an aqueous silica sol, an organosilica sol or the like can be preferably used.
  • aqueous colloidal silica since the vinyl monomer is polymerized in an aqueous medium, it is most preferable to use aqueous colloidal silica from the viewpoint of dispersion stability of the colloidal silica sol.
  • the silica concentration (solid content concentration) in the colloidal silica sol is preferably 5 to 50% by weight because it is generally commercially available and can be easily obtained.
  • colloidal silica examples include Snowtex (registered trademark) series manufactured by Nissan Chemical Industries, Ltd., for example, general-purpose type Snowtex (registered trademark) (alkaline, which is spherical particles having an average primary particle size of 5 to 100 nm).
  • silica-coated metal oxide particles are used as the hydrophilic metal oxide particles, especially when the metal oxide other than silica is a metal oxide having high photocatalytic activity such as titanium oxide or zinc oxide.
  • Silica coating the metal oxide particles other than silica inactivates the photocatalytic activity of the metal oxide other than silica, so that the metal oxide other than silica and other components deteriorate due to photocatalytic reaction by ultraviolet rays (for example, yellow Can be effectively suppressed.
  • ultraviolet rays for example, yellow
  • the silica content in the silica-coated metal oxide particles is preferably 10% by weight or more.
  • the silica content in the silica-coated metal oxide particles is more preferably 10% by weight or more and 50% by weight or less.
  • the silica content in the silica-coated metal oxide particles is more than 50% by weight, the imparting of characteristics (for example, ultraviolet shielding characteristics) to the composite particles by the metal oxide other than silica is not remarkable.
  • Examples of the metal oxide other than silica constituting the silica-coated metal oxide particles include titanium oxide, zinc oxide, cerium oxide, iron oxide, zirconium oxide and the like, and at least one of titanium oxide and zinc oxide is preferable.
  • the metal oxide other than silica is at least one of titanium oxide and zinc oxide, excellent ultraviolet shielding properties can be imparted to the composite particles, and it can be suitably used for external preparations such as light diffusion plates and cosmetics.
  • titanium oxide and zinc oxide have high photocatalytic activity.
  • titanium oxide, zinc oxide, and other components are contained by inactivating the photocatalytic activity of titanium oxide and zinc oxide.
  • Deterioration for example, yellowing
  • a photocatalytic reaction by ultraviolet rays can be effectively suppressed.
  • the silica-coated metal oxide particles are at least one of silica-coated titanium oxide particles in which titanium oxide particles are coated with silica and silica-coated zinc oxide particles in which zinc oxide particles are coated with silica. preferable.
  • silica-coated titanium oxide particles commercially available products of silica-coated titanium oxide particles or an aqueous dispersion thereof can be used. Examples of commercially available silica-coated titanium oxide particles or aqueous dispersions thereof include “Maxlite (registered trademark) TS-01”, “Maxlite (registered trademark) TS-04”, and “Maxlite (registered trademark)”.
  • TS-043 “Maxlite (registered trademark) F-TS20” (manufactured by Showa Denko KK), “MT-100HP”, “MT-100WP”, “MT-500SA”, “WT-PF01” ( (Water dispersion with a solid content of 40 wt%) (above, manufactured by Teika Co., Ltd.), “STR-100A”, “STR-100W”, “GT-10W” (water dispersion with a solid content of 40 wt%) (above, ⁇ Chemical Industry Co., Ltd.), “ST-455WS” (Titanium Industry Co., Ltd.) and the like.
  • silica-coated zinc oxide particles commercially available products of silica-coated zinc oxide particles can be used.
  • examples of commercially available silica-coated zinc oxide particles include “Maxlite (registered trademark) ZS-032”, “Maxlite (registered trademark) ZS-032-D” (above, Showa Denko KK), “ FINEX (registered trademark) -30W “,” FINEX (registered trademark) -50W “(manufactured by Sakai Chemical Industry Co., Ltd.), and the like.
  • the composite oxide particles composed of at least one of tin oxide and zinc oxide doped with at least one of phosphorus and antimony include, for example, tin oxide (phosphorus-doped tin oxide) particles doped with phosphorus, and doped with antimony. And zinc oxide particles, and mixtures thereof. Since the substance containing antimony has a concern about environmental burden, the composite oxide particle may be composed of at least one of tin oxide doped with phosphorus and zinc oxide (for example, tin oxide doped with phosphorus). More preferred.
  • Examples of commercially available tin oxide (phosphorus-doped tin oxide) particles doped with phosphorus include “Cellnax (registered trademark) CX-S301H” (aqueous dispersion, manufactured by Nissan Chemical Industries, Ltd.).
  • Examples of the zinc oxide particles doped with antimony include “Selnax (registered trademark) CX-Z330H” (aqueous dispersion, manufactured by Nissan Chemical Industries, Ltd.).
  • the average primary particle diameter of the hydrophilic metal oxide particles is preferably in the range of 5 to 200 nm. If the average primary particle diameter is larger than 200 nm, the dispersion stability during the production of the composite particles is lowered, which is not preferable.
  • the average primary particle size of the hydrophilic metal oxide particles is preferably as small as possible, more preferably in the range of 5 to 150 nm, and still more preferably in the range of 8 to 100 nm.
  • the density (specific gravity) of the hydrophilic metal oxide particles is preferably in the range of 1.5 to 10.0 g / cm 3 .
  • the density is higher than 10.0 g / cm 3 , the dispersion stability during production of the composite particles is lowered, which is not preferable.
  • the content of the hydrophilic metal oxide particles in the composite particles of the present invention is not particularly limited, but is preferably in the range of 0.5 to 10% by weight.
  • the hydrophilicity of the composite particles can be further improved, and the particle fluidity can be further improved by further increasing (actual value of specific surface area) / (calculated value of specific surface area).
  • the composite particles of the present invention preferably further contain water-soluble celluloses.
  • the hydrophilic metal oxide particles are firmly attached to the surface of the polymer particles due to the inclusion of the water-soluble celluloses, the hydrophilic metal oxide particles are difficult to fall off from the surface of the polymer particles.
  • the hydrophilic metal oxide particles may be attached to the surface of the polymer particles via the water-soluble celluloses, or on the surface of the polymer particles. It may be attached directly.
  • the water-soluble celluloses may be attached to both the hydrophilic metal oxide particles and the polymer particles, or only to one of the hydrophilic metal oxide particles and the polymer particles. You may do it.
  • the water-soluble cellulose is not particularly limited, and examples thereof include alkyl celluloses such as methyl cellulose; hydroxyalkyl celluloses such as hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose; hydroxyalkylalkyl such as hydroxyethyl methyl cellulose and hydroxypropyl methyl cellulose.
  • alkyl celluloses such as methyl cellulose
  • hydroxyalkyl celluloses such as hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose
  • hydroxyalkylalkyl such as hydroxyethyl methyl cellulose and hydroxypropyl methyl cellulose.
  • Compounds such as celluloses are listed. Among these compounds, hydroxyalkylcelluloses and hydroxyalkylalkylcelluloses are preferable, and hydroxypropylcellulose (HPC) and hydroxypropylmethylcellulose (HPMC) are more preferable. These compounds may be used alone or in combination of two
  • HPC Hydroxypropyl cellulose
  • LCST critical solution temperature
  • commercially available products include, for example, NISSO (registered trademark) manufactured by Nippon Soda Co., Ltd.
  • the HPC series (“SSL”, “SL”, “L”, “M”, “H”, etc.) can be mentioned.
  • Metroles (registered trademark) series more specifically, Metrows (registered trademark) 60SH series having a cloud point of 60 ° C. (“ SH60-50 ”,“ 60SH-4000 ”,“ 60SH-10000 ”), and Metrows (registered trademark) 65SH series (“ 65SH-50 ”,“ 65SH-400 ”,“ 65SH-1500 ”) having a cloud point of 65 ° C. , “65SH-4000”), Metroles (registered trademark) 90SH series having a cloud point of 90 ° C. (“90SH-100”, “90SH-400”, “90SH-4000”, “90SH-15000”), etc. be able to.
  • the method for producing composite particles of the present invention is a method for producing composite particles comprising polymer particles composed of a polymer of a vinyl monomer, and hydrophilic metal oxide particles attached to the polymer particles, After the vinyl monomer is absorbed by the seed particles, the vinyl monomer is absorbed in an aqueous medium in the presence of hydrophilic metal oxide particles having water-soluble cellulose adsorbed on the surface and a reactive surfactant. A polymerization step for obtaining composite particles by seed polymerization is included.
  • the amount of the water-soluble cellulose adsorbed on the hydrophilic metal oxide particles is not particularly limited and can be appropriately set according to the specific surface area of the hydrophilic metal oxide particles used in the present invention.
  • the amount is preferably 0.05 g to 0.5 g per 1 g of the hydrophilic metal oxide particles.
  • the amount of water-soluble cellulose adsorbed on the hydrophilic metal oxide particles can be determined, for example, by the Journal of Polymer Science and Technology published by the Polymer Society of Japan (Japan Society of Polymer Science and Technology) Vol. 40, no. 10, pp. It can be measured using the method described in 697-702 (Oct, 1983). For example, it can be measured by [Method for measuring the amount of water-soluble cellulose adsorbed on hydrophilic metal oxide particles] described in the Examples section below.
  • the hydrophilic metal oxide particles are treated with the water-soluble celluloses to adsorb the water-soluble celluloses on the surfaces of the hydrophilic metal oxide particles. It is preferable to include an adsorption step.
  • a method for treating the hydrophilic metal oxide particles with the water-soluble celluloses for adsorbing the water-soluble celluloses on the surface of the hydrophilic metal oxide particles is not particularly limited, and a known method is applied.
  • a method in which hydrophilic metal oxide particles and water-soluble celluloses coexist in an aqueous medium, and water-soluble celluloses are physically adsorbed on the surface of the hydrophilic metal oxide particles Is Rheological and Interface Properties of Silicone Oil Emulsions Prepared by Polymer Pre-adsorbed onto Silica Particles, Colloids Surfaces: Eng.Aspects, 328,2008,114-122 method described in. The literature) are preferred.
  • the water-soluble celluloses adsorbed on the hydrophilic metal oxide particles by this treatment method are in a stable state with almost no desorption from the hydrophilic metal oxide particles in the polymerization step.
  • T means the lower critical solution temperature (° C.) or cloud point (° C.) of the water-soluble cellulose.
  • T means the lower critical solution temperature (° C.) or cloud point (° C.) of the water-soluble cellulose.
  • the hydrophilic metal oxide particles and the water-soluble cellulose are allowed to coexist under a temperature condition of (T-15) ° C. or higher and (T + 20) ° C. or lower, so that the hydrophilic metal is more effectively used.
  • Water-soluble celluloses can be physically adsorbed on the surface of the oxide particles.
  • the said water-soluble cellulose has only one of a lower critical solution temperature or a cloud point by the characteristic.
  • water-soluble celluloses that are not adsorbed on the hydrophilic metal oxide particles may be removed by centrifugation or the like before the polymerization step, or obtained in the polymerization step after the polymerization step. You may remove by washing
  • Reactive surfactant examples include any of anionic reactive surfactants, cationic reactive surfactants, zwitterionic reactive surfactants, and nonionic reactive surfactants. Although it can be used, it is preferable to use a nonionic reactive surfactant.
  • the reactive surfactant contains metal ions such as sodium ions, so that aggregation of hydrophilic metal oxide particles is likely to occur. As a result, the dispersion stability of the composite particles may decrease, and the uniformity of the particle diameter of the composite particles may decrease.
  • the reactive surfactant When a nonionic type reactive surfactant is used as the reactive surfactant, the reactive surfactant does not contain metal ions, so that the aggregation of hydrophilic metal oxide particles hardly occurs. As a result, the dispersion stability of the composite particles can be improved, and the uniformity of the particle diameter of the composite particles can be improved.
  • nonionic reactive surfactant examples include Adekaria Soap (registered trademark) ER-10 (100% pure) by Adeka Co., Ltd., Adekaria Soap (registered trademark) ER-20 (pure component). 75% by weight), Adekalia Soap (registered trademark) ER-30 (pure content 65% by weight, Adekalia Soap (registered trademark) ER-40 (pure content 60% by weight), Adekalia soap (registered trademark) NE-10 (100% by weight pure), Adekaria Soap (registered trademark) NE-20 (80% by weight pure), Adekaria Soap (registered trademark) NE-30 (80% by weight pure), and Adekaria Soap (registered) Trademark) NE-40 (pure content 40% by weight); Aqualon (registered trademark) RN-20 (pure content 10) which is polyoxyethylene nonylpropenyl phenyl ether manufactured by Daiichi Kogyo Sei
  • the type of the reactive surfactant is appropriately selected in consideration of the diameter of the obtained composite particles, the dispersion stability of the vinyl monomer at the time of polymerization, and the amount used is appropriately adjusted.
  • the amount of the reactive surfactant used is preferably in the range of 0.01 to 5 parts by weight, preferably in the range of 0.1 to 2.0 parts by weight, with respect to 100 parts by weight of the vinyl monomer. More preferably, it is within.
  • the amount of the reactive surfactant used is less than the above range, the polymerization stability may be lowered.
  • there are more usage-amounts of a reactive surfactant than the said range the cost for a reactive surfactant will deteriorate.
  • Non-reactive surfactant In the polymerization step of the production method of the present invention, the polymerization of the vinyl monomer in the aqueous medium may be performed in the presence of a non-reactive surfactant in order to further improve the dispersion stability.
  • the non-reactive surfactant include an anionic non-reactive surfactant, a cationic non-reactive surfactant, a zwitterionic non-reactive surfactant, and a nonionic non-reactive surfactant. Any non-reactive surfactant can be used as the non-reactive surfactant, particularly when a non-ionic reactive surfactant is used as the reactive surfactant. It is preferable to use it.
  • anionic non-reactive surfactant-sensitive surfactant examples include sodium oleate; fatty acid soap such as castor oil potash soap; alkyl sulfate ester salt such as sodium lauryl sulfate and ammonium lauryl sulfate; sodium dodecylbenzenesulfonate Alkyl benzene sulfonates; alkyl naphthalene sulfonates; alkane sulfonates; dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate; alkyl phosphate ester salts; naphthalene sulfonic acid formalin condensates; polyoxyethylene alkyl phenyl ether sulfates Salt; polyoxyethylene alkyl sulfate salt and the like.
  • Nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin Examples include fatty acid esters and oxyethylene-oxypropylene block polymers.
  • cationic non-reactive surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate; quaternary ammonium salts such as lauryltrimethylammonium chloride.
  • zwitterionic non-reactive surfactants examples include lauryl dimethylamine oxide, phosphate ester surfactants, phosphite ester surfactants, and the like. These non-reactive surfactants may be used alone or in combination of two or more.
  • the type of the non-reactive surfactant is appropriately selected in consideration of the diameter of the resulting composite particles, the dispersion stability of the vinyl monomer at the time of polymerization, and the amount used is appropriately adjusted.
  • the amount of the non-reactive surfactant used is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the vinyl monomer. When the amount of the non-reactive surfactant used is less than the above range, the polymerization stability may be lowered. Moreover, when the usage-amount of a non-reactive surfactant is more than the said range, the cost for a non-reactive surfactant will deteriorate.
  • aqueous medium examples of the aqueous medium used in the polymerization step of the production method of the present invention include water or a mixed medium of water and a water-soluble medium (for example, alcohol such as methanol and ethanol).
  • a water-soluble medium for example, alcohol such as methanol and ethanol.
  • the amount of the aqueous medium used is usually preferably 100 to 1000 parts by weight with respect to 100 parts by weight of the vinyl monomer used.
  • the polymerization of the vinyl monomer in the aqueous medium is preferably performed in the presence of a polymerization initiator.
  • an oil-soluble peroxide-based polymerization initiator or azo-based polymerization initiator usually used for polymerization in an aqueous medium can be suitably used.
  • peroxide-based polymerization initiator examples include benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide. Cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide and the like.
  • Examples of the azo polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,3- Dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3-trimethylbutyronitrile), 2,2′-azobis (2-isopropyl) Butyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), (2-carbamoylazo) isobutyronitrile 4,4′-azobis (4-cyanovaleric acid), dimethyl-2,2′-azobisisobutyrate and the like.
  • 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, peroxide are used from the viewpoint of decomposition rate and the like.
  • Lauroyl or the like is preferable as a polymerization initiator that can be used in the production method of the present invention.
  • the amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight and preferably 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the vinyl monomer used. Is more preferable.
  • the amount of the polymerization initiator used is less than 0.01 parts by weight with respect to 100 parts by weight of the vinyl monomer used, it is difficult to sufficiently perform the polymerization initiation function, and 10 parts by weight. Exceeding this is not preferable because an effect commensurate with the amount of use cannot be obtained and the cost is uneconomical.
  • the polymerization initiator may be mixed with a vinyl monomer, and then the resulting mixture may be dispersed in an aqueous medium, or both the polymerization initiator and the vinyl monomer may be separately aqueous. You may mix what was disperse
  • the polymerization of the vinyl monomer in the aqueous medium is water-soluble in order to suppress the generation of emulsified particles (polymer particles having a too small particle diameter) in the aqueous system.
  • the polymerization may be carried out in the presence of a polymerization inhibitor.
  • water-soluble polymerization inhibitor examples include nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, and polyphenols.
  • the addition amount of the polymerization inhibitor is preferably in the range of 0.02 to 0.2 parts by weight with respect to 100 parts by weight of the vinyl monomer for seed polymerization.
  • additives In the polymerization step of the production method of the present invention, other additives such as pigments, dyes, antioxidants, and the like, as long as the polymerization of the vinyl monomer in the aqueous medium does not interfere with the effects of the present invention. It may be carried out in the presence of an ultraviolet absorber or the like.
  • the pigment examples include inorganic pigments such as lead white, red lead, yellow lead, carbon black, ultramarine, zinc oxide, cobalt oxide, titanium dioxide, iron oxide, titanium yellow, and titanium black; Navels Yellow, Naphthol Yellow S , Yellow pigments such as Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake; Orange Pigments such as Molybdenum Orange, Permanent Orange RK, Benzidine Orange G, Indanthrene Brilliant Orange GK Permanent red 4R, risor red, pyrazolone, red 4R, watching red calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, alizarin lake, briri Red pigments such as Toccarmin B; Purple pigments such as Fast Violet B, Methyl Violet Lake, Dioxane Violet; Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyan
  • the dye examples include a nitroso dye, a nitro dye, an azo dye, a stilbene azo dye, a diphenylmethane dye, a triphenylmethane dye, a xanthene dye, an acridine dye, a quinoline dye, a methine dye, a polymethine dye, a thiazole dye, an indamine dye, and an Indian dye.
  • a phenol dye, an azine dye, an oxazine dye, a thiazine dye, a sulfur dye, etc. can be mentioned.
  • antioxidants examples include 2,6-di-t-butyl-4-methylphenol (BHT), n-octadecyl-3 ′-(3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) ) Propionate, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert-butyl-4- Hydroxybenzyl) isocyanurate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 3,9-bis [2- ⁇ 3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane Distearyl pent
  • ultraviolet absorber examples include benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers (for example, “ADEKA STAB (registered trademark) LA-31” manufactured by ADEKA Corporation), hydroxyphenyltriazine ultraviolet absorbers, and the like. .
  • seed particles are added to an emulsion containing the vinyl monomer and an aqueous medium.
  • the emulsion can be prepared by a known method. For example, a vinyl monomer and a reactive surfactant (and a non-reactive surfactant) are added to an aqueous medium and dispersed by a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer (registered trademark).
  • a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer (registered trademark).
  • the seed particles may be added to the emulsion as it is, or may be added to the emulsion in a form dispersed in an aqueous medium.
  • the vinyl monomer is absorbed by the seed particles. This absorption can usually be performed by stirring the emulsion at room temperature (about 20 ° C.) for 1 to 12 hours. Further, the emulsion may be heated to about 30 to 50 ° C. in order to promote the absorption of the vinyl monomer into the seed particles.
  • the seed particles swell by absorbing the vinyl monomer.
  • the mixing ratio of the vinyl monomer to the seed particles is preferably within the range of 5 to 300 parts by weight of the vinyl monomer for seed polymerization with respect to 1 part by weight of the seed particles. More preferably within the range of 250 parts by weight.
  • the mixing ratio of the vinyl monomer is smaller than the above range, the increase in particle diameter due to polymerization is small, and thus the production efficiency is lowered.
  • the mixing ratio of the vinyl monomer for seed polymerization to be absorbed is larger than the above range, the vinyl monomer for seed polymerization is not completely absorbed by the seed particles and is uniquely emulsion polymerized in an aqueous medium. As a result, polymer particles having an abnormally small particle size may be produced.
  • the end of absorption of the vinyl monomer into the seed particles can be determined by confirming the expansion of the particle diameter by observation with an optical microscope.
  • the particle size of the vinyl monomer droplets in the resulting emulsion is smaller than the particle size of the seed particles, the vinyl monomer is more efficiently absorbed by the seed particles. Therefore, it is preferable.
  • grains which concern on this invention can be obtained by polymerizing the vinyl-type monomer absorbed by the seed particle.
  • the polymerization temperature of the seed polymerization can be appropriately determined according to the type of vinyl monomer and the type of polymerization initiator used as necessary. Specifically, the polymerization temperature of the seed polymerization is preferably 25 to 110 ° C., more preferably 50 to 100 ° C.
  • the polymerization time for seed polymerization is preferably 1 to 12 hours.
  • the polymerization reaction of the seed polymerization may be performed in an atmosphere of an inert gas (for example, nitrogen) that is inert to the polymerization. In addition, it is preferable that the polymerization reaction of seed polymerization is performed by raising the temperature after the vinyl monomer and the polymerization initiator used as necessary are completely absorbed by the seed particles.
  • a polymer dispersion stabilizer may be added to the polymerization reaction system in order to improve the dispersion stability of the polymer particles.
  • the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (such as hydroxyethyl cellulose and carboxymethyl cellulose), and polyvinylpyrrolidone.
  • the polymer dispersion stabilizer and an inorganic water-soluble polymer compound such as sodium tripolyphosphate may be used in combination.
  • polyvinyl alcohol and polyvinyl pyrrolidone are preferred.
  • the addition amount of the polymer dispersion stabilizer is preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer.
  • the composite particles obtained by polymerizing the vinyl monomer absorbed by the seed particles are removed from the aqueous medium by filtration, centrifugation, or the like as necessary after the polymerization is completed. After being washed with a solvent, it is dried and isolated.
  • the drying method is not particularly limited. For example, a spray drying method typified by a spray dryer, a method of drying by adhering to a heated rotating drum typified by a drum dryer, a freeze drying method, etc. Is mentioned.
  • the seed particles are a polymer of a vinyl monomer for seed particles.
  • the vinyl monomer for seed particles may be the same as or different from the vinyl monomer used for seed polymerization.
  • the polymerization method for polymerizing the vinyl monomer for seed particles to obtain seed particles is not particularly limited, but dispersion polymerization, emulsion polymerization, soap-free emulsion polymerization, seed polymerization, suspension polymerization. Etc. can be used.
  • Seed particles with a substantially uniform particle size as a raw material are produced by polymerizing vinyl monomers for seed particles using polymerization methods such as soap-free emulsion polymerization (emulsion polymerization without using a surfactant) and dispersion polymerization. can do. Therefore, as a polymerization method for obtaining seed particles, emulsion polymerization, soap-free emulsion polymerization, seed polymerization, and dispersion polymerization are preferable.
  • a polymerization initiator is used as necessary.
  • the polymerization initiator include persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate, and potassium peroxodisulfate; benzoyl peroxide, lauroyl peroxide, o-chlorobenzoic peroxide, o-methoxyperoxide.
  • Organic peroxides such as benzoyl, 3,5,5-trimethylhexanoyl peroxide, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide; 2,2′-azobisisobuty And azo compounds such as rhonitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), and the like.
  • the polymerization initiator is preferably used in an amount of 0.1 to 3 parts by weight with respect to 100 parts by weight of the vinyl monomer for seed polymerization.
  • the weight average molecular weight of the obtained seed particles can be adjusted by adjusting the amount of the polymerization initiator used.
  • a molecular weight modifier may be used in order to adjust the weight average molecular weight of the obtained seed particles.
  • the molecular weight modifier include mercaptans such as n-octyl mercaptan and tert-dodecyl mercaptan; ⁇ -methylstyrene dimer; terpenes such as ⁇ -terpinene and dipentene; halogenated hydrocarbons such as chloroform and carbon tetrachloride, etc. Can be used.
  • the weight average molecular weight of the obtained seed particles can be adjusted by adjusting the amount of the molecular weight modifier used.
  • the seed particle is used as a primary seed particle, and after the vinyl monomer is absorbed by the primary seed particle, seed polymerization is performed once or a plurality of times to polymerize the vinyl monomer in an aqueous medium. It may be seed particles obtained by performing (secondary seed particles when obtained by performing seed polymerization once). This seed polymerization is the same as the seed polymerization for obtaining composite particles, except that hydrophilic metal oxide particles, water-soluble celluloses and a reactive surfactant are not required.
  • the composite particles of the present invention can be contained in a coating agent as a coating film (coating) softening agent, a matting agent for paint, a light diffusing agent, or the like.
  • the coating agent of the present invention contains the composite particles of the present invention.
  • the coating agent contains a binder resin as necessary.
  • a binder resin a resin soluble in an organic solvent or water, or an emulsion-type aqueous resin that can be dispersed in water can be used, and any known binder resin can be used.
  • the binder resin for example, trade names “Dianar (registered trademark) LR-102” and “Dianar (registered trademark) BR-106” manufactured by Mitsubishi Rayon Co., Ltd., or products manufactured by Dainichi Seika Kogyo Co., Ltd.
  • Acrylic resin such as “medium VM”; alkyd resin; polyester resin; polyurethane resin such as “E-5221P” manufactured by Daido Kasei Kogyo Co., Ltd .; chlorinated polyolefin resin; amorphous polyolefin resin; It is done.
  • These binder resins can be appropriately selected depending on the adhesion of the coating agent to the substrate to be coated, the environment in which it is used, and the like.
  • the compounding amount of the composite particles is appropriately adjusted depending on the thickness of the coating (coating film) formed by the coating agent containing the binder resin, the average particle diameter of the composite particles, the coating method, the application to be used, etc. It is preferably in the range of 1 to 300 parts by weight, more preferably in the range of 5 to 100 parts by weight with respect to parts by weight.
  • the compounding amount of the composite particles is less than 1 part by weight with respect to 100 parts by weight of the binder resin, the matte effect may not be sufficiently obtained.
  • the compounding amount of the composite particles exceeds 300 parts by weight with respect to 100 parts by weight of the binder resin, the dispersion of the composite particles may occur because the viscosity of the coating agent becomes too large. Appearance defects on the surface of the coating (coating film), such as micro-cracks on the surface of the coating (coating film) obtained by coating the coating agent, or roughness on the surface of the resulting coating (coating film). May happen.
  • the coating agent contains a medium as necessary.
  • a medium it is preferable to use a solvent (solvent) capable of dissolving the binder resin or a dispersion medium capable of dispersing the binder resin.
  • a solvent solvent capable of dissolving the binder resin
  • a dispersion medium capable of dispersing the binder resin.
  • any of an aqueous medium and an oily medium can be used.
  • Oil-based media include hydrocarbon solvents such as toluene, xylene and cyclohexane; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; dioxane, ethylene glycol diethyl ether and ethylene glycol mono And ether solvents such as butyl ether.
  • Examples of the aqueous medium include water and alcohols (for example, isopropanol). These media may use only 1 type and may mix and use 2 or more types.
  • the content of the medium in the coating agent is usually in the range of 20 to 60% by weight with respect to the total amount of the coating agent.
  • coating agents include curing agents, colorants (external pigments, color pigments, metal pigments, mica powder pigments, dyes, etc.), antistatic agents, leveling agents, fluidity modifiers, ultraviolet absorbers, light stabilizers, etc. Other additives may be included.
  • the substrate to which the coating agent is applied is not particularly limited, and a substrate according to the application can be used.
  • a glass substrate, a transparent substrate made of a transparent substrate resin, or the like is used as a substrate to be coated.
  • a transparent substrate as the substrate to be coated and coating a transparent substrate with a coating agent (light diffusion coating agent) that does not contain a colorant, a light diffusion film or An optical film such as an antiglare film can be produced.
  • the composite particles function as a light diffusing agent.
  • matte paper can be produced by using paper as a substrate to be coated and applying a coating agent (paper coating agent) containing no colorant to form a transparent coating film.
  • paper coating agent paper coating agent
  • Coating method of the coating agent is not particularly limited, and any known method can be used.
  • the coating method include a comma direct method, a spin coating method, a spray coating method, a roll coating method, a dipping method, a knife coating method, a curtain flow method, and a laminating method.
  • the coating agent may be diluted by adding a diluent in order to adjust the viscosity as necessary.
  • Diluents include hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether; water An alcohol solvent or the like. These diluents may be used alone or in combination of two or more. When manufacturing an optical film, it is preferable to use a method in which irregularities derived from composite particles are formed on the surface of the coating film as a coating method.
  • the coating agent of the present invention contains the composite particles of the present invention, light diffusibility can be imparted to the coating (coating film) formed from the coating agent.
  • the hardness of the composite particles is ensured by the hydrophilic metal oxide particles attached to the surface of the polymer particles, so the scratch resistance of the coating (coating film) formed from the coating agent is improved.
  • the coating agent contains an aqueous solvent, the coating agent may be spoiled due to the excellent particle fluidity of the composite particles and the hydrophilicity of the hydrophilic metal oxide particles attached to the surface of the polymer particles. Suppressed and good dispersibility of the composite particles can be obtained. Therefore, the coating agent can form a good coating.
  • the optical film of the present invention is an optical film including a base film and a coating formed thereon, and the coating includes the composite particles of the present invention.
  • the optical film of the present invention can be produced by a method in which the coating agent of the present invention is applied onto a substrate film to form a coating (coating film).
  • Specific examples of the optical film include a light diffusion film and an antiglare film.
  • the constituent material of the base film include glass and transparent resin.
  • the transparent resin include acrylic resins such as polymethyl methacrylate, alkyl (meth) acrylate-styrene copolymers, polyesters such as polycarbonate and polyethylene terephthalate (hereinafter abbreviated as “PET”), polyethylene, polypropylene, and polystyrene. Etc.
  • acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, and polystyrene are preferred when excellent transparency is required for the transparent resin.
  • These transparent resins can be used alone or in combination of two or more.
  • the thickness of the coating is preferably in the range of 5 to 100 ⁇ m.
  • the composite particles of the present invention can be used for a resin composition containing a base resin.
  • the resin composition of the present invention contains the composite particles of the present invention and a base resin. Since the resin composition includes the composite particles of the present invention and is excellent in light diffusibility, a lighting cover (light emitting diode (LED) lighting lighting cover, fluorescent lamp lighting lighting cover, etc.), a light diffusion sheet, and a light diffusion It can be used as a raw material for light diffusers such as plates.
  • thermoplastic resin a thermoplastic resin different from the polymer components constituting the composite particles is usually used.
  • the thermoplastic resin used as the base resin include (meth) acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, polyethylene, polypropylene, and polystyrene.
  • acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, and polystyrene are preferable when excellent transparency is required for the base resin.
  • These thermoplastic resins can be used alone or in combination of two or more.
  • the addition ratio of the composite particles to the base resin is preferably in the range of 0.1 to 70 parts by weight, preferably in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the base resin. Is more preferable.
  • the addition ratio of the composite particles to the base resin is less than 0.1 parts by weight with respect to 100 parts by weight of the base resin, it may be difficult to impart light diffusibility to the light diffuser.
  • the addition ratio of the composite particles to the base resin is more than 70 parts by weight with respect to 100 parts by weight of the base resin, the light diffuser is given light diffusibility, but the light diffuser transmits light. May be low.
  • the method for producing the resin composition is not particularly limited, and can be produced by mixing the composite particles and the base resin by a conventionally known method such as a mechanical pulverization and mixing method.
  • a mechanical pulverization and mixing method for example, the resin composition is obtained by mixing and stirring the composite particles and the base resin using an apparatus such as a Henschel mixer, a V-type mixer, a turbula mixer, a hybridizer, and a rocking mixer. Can be manufactured.
  • the resin composition of the present invention can be molded into a molded body.
  • the molded product of the present invention comprises the resin composition of the present invention.
  • Specific examples of the molded body include light diffusers such as illumination covers (light emitting diode (LED) illumination illumination covers, fluorescent lamp illumination illumination covers, etc.), light diffusion sheets, and light diffusion plates.
  • the composite particles and the base resin are mixed with a mixer and kneaded with a melt kneader such as an extruder to obtain a pellet made of a resin composition, and then the pellet is extruded or the pellet A molded body having an arbitrary shape can be obtained by injection molding after melting.
  • a melt kneader such as an extruder
  • the composite particles of the present invention are external preparations such as additives for improving the feeling of use such as slipperiness, additives for making skin defects such as pores, spots and wrinkles inconspicuous by the light diffusion effect, etc. Can be contained.
  • the external preparation contains the composite particles of the present invention.
  • the external preparation is a liquid external preparation such as a lotion or the like, the redispersibility of the composite particles is extremely good, and the usability is excellent.
  • the content of the composite particles in the external preparation can be appropriately set according to the type of external preparation, but is preferably in the range of 1 to 80% by weight, and more preferably in the range of 3 to 70% by weight. preferable.
  • the content of the composite particles with respect to the total amount of the external preparation is less than 1% by weight, a clear effect due to the inclusion of the composite particles may not be recognized.
  • the content of the composite particles exceeds 80% by weight, a remarkable effect commensurate with the increase in content may not be recognized, which is not preferable in terms of production cost.
  • the external preparation can be used, for example, as an external medicine or cosmetic.
  • the topical medicine is not particularly limited as long as it is applied to the skin, and specific examples include creams, ointments, emulsions and the like.
  • Cosmetics include, for example, soaps, body shampoos, facial cleansing creams, scrub facial cleansers, toothpastes, and other cosmetics; funerals, face powders (loose powders, pressed powders, etc.), foundations (powder foundations, liquid foundations, emulsification types) Foundation), lipstick, lip balm, blusher, eyebrow cosmetics (eye shadow, eyeliner, mascara, etc.), nail polish and other makeup cosmetics; pre-shave lotion, body lotion and other lotions; body powder, baby powder and other bodies
  • External preparations skin care agents such as lotion, cream, milky lotion (skin lotion), antiperspirants (liquid antiperspirants, solid antiperspirants, cream antiperspirants, etc.), packs, hair washing cosmetics, dyes Hair, hairdressing, aromatic
  • the composite particles blended in the external preparation may be treated with a surface treatment agent such as an oil agent, a silicone compound and a fluorine compound, an organic powder, an inorganic powder or the like.
  • a surface treatment agent such as an oil agent, a silicone compound and a fluorine compound, an organic powder, an inorganic powder or the like.
  • any oil agent can be used as long as it is usually used for external preparations.
  • hydrocarbon oils such as liquid paraffin, squalane, petrolatum, paraffin wax; lauric acid, myristic acid, palmitic acid, stearic acid, olein Higher fatty acids such as acids, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, synthetic fatty acids; ester oils such as glyceryl trioctanoate, propylene glycol dicaprate, cetyl 2-ethylhexanoate, isocetyl stearate; beeswax Waxes such as whale wax, lanolin, carnauba wax and candelilla wax; oils and fats such as linseed oil, cottonseed oil, castor oil, egg yolk oil, coconut oil; metal soaps such as zinc stearate and zinc laurate; cetyl alcohol, stearyl Alcohol
  • the method of treating the composite particles with the oil agent is not particularly limited.
  • a dry method in which an oil agent is added to the composite particles and the oil agent is coated by stirring with a mixer or the like, and the oil agent is ethanol, propanol, ethyl acetate.
  • a wet method for coating an oil agent can be used by dissolving in a suitable solvent such as hexane by heating, adding composite particles thereto, mixing and stirring, and then removing the solvent under reduced pressure or removing by heating.
  • any silicone compound can be used as long as it is usually used in external preparations.
  • the method for treating the composite particles with the silicone compound is not particularly limited, and for example, the dry method or the wet method described above can be used.
  • a baking treatment may be performed, or in the case of a reactive silicone compound, a reaction catalyst or the like may be added as appropriate.
  • the fluorine compound may be any compound as long as it is usually blended with an external preparation, and examples thereof include perfluoroalkyl group-containing esters, perfluoroalkylsilanes, perfluoropolyethers, and polymers having a perfluoro group.
  • a method for treating the composite particles with the fluorine compound is not particularly limited, and for example, the dry method or the wet method described above can be used.
  • a baking treatment may be performed, or in the case of a reactive fluorine compound, a reaction catalyst or the like may be added as appropriate.
  • organic powder examples include natural polymer compounds such as gum arabic, tragacanth gum, guar gum, locust bean gum, karaya gum, iris moss, quince seed, gelatin, shellac, rosin, and casein; sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, Semi-synthetic polymer compounds such as ethyl cellulose, sodium alginate, ester gum, nitrocellulose, hydroxypropyl cellulose, crystalline cellulose; polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide resin, silicone oil, Nylon particles, polymethyl methacrylate particles, crosslinked polystyrene particles, silicone particles, urethane particles, Ethylene particles include resin particles such as fluorine resin particles.
  • natural polymer compounds such as gum arabic, tragacanth gum, guar gum, locust bean gum, ka
  • the inorganic powder examples include iron oxide, ultramarine blue, salmon, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, talc, kaolin, mica, calcium carbonate, magnesium carbonate, and silicic acid.
  • examples thereof include aluminum, barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked gypsum), calcium phosphate, hydroxyapatite, and ceramic powder.
  • These organic powders and inorganic powders may be subjected to surface treatment in advance.
  • the surface treatment method a known surface treatment technique as described above can be used.
  • the main agent or additive generally used can be mix
  • a main agent or additive include water, lower alcohol (alcohol having 5 or less carbon atoms), fats and oils, hydrocarbons, higher fatty acids, higher alcohols, sterols, fatty acid esters, metal soaps, moisturizers, Surfactant, polymer compound, coloring material raw material, fragrance, clay minerals, antiseptic / bactericidal agent, anti-inflammatory agent, antioxidant, ultraviolet absorber, organic-inorganic composite particle, pH adjuster (triethanolamine, etc.), Special blending additives, active pharmaceutical ingredients, etc. are mentioned.
  • fats and oils include avocado oil, almond oil, olive oil, cacao fat, beef tallow, sesame fat, wheat germ oil, safflower oil, shea butter, turtle oil, straw oil, persic oil, castor oil, grape oil , Macadamia nut oil, mink oil, egg yolk oil, owl, palm oil, rosehip oil, hydrogenated oil, silicone oil, orange luffy oil, carnauba wax, candelilla wax, whale wax, jojoba oil, montan wax, beeswax, lanolin, etc. It is done.
  • hydrocarbon examples include liquid paraffin, petrolatum, paraffin, ceresin, microcrystalline wax, squalane and the like.
  • higher fatty acid examples include fatty acids having 11 or more carbon atoms such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, and synthetic fatty acid. Is mentioned.
  • higher alcohol examples include lauryl alcohol, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, lanolin alcohol, hydrogenated lanolin alcohol, hexyldecanol, octyldecanol, isostearyl alcohol, jojoba alcohol And alcohols having 6 or more carbon atoms such as decyltetradecanol.
  • sterol examples include cholesterol, dihydrocholesterol, phytocholesterol and the like.
  • fatty acid esters include linoleic acid esters such as ethyl linoleate; lanolin fatty acid esters such as lanolin fatty acid isopropyl; lauric acid esters such as hexyl laurate; isopropyl myristate, myristyl myristate, cetyl myristate, myristic acid Myristic acid esters such as octyldecyl and octyldodecyl myristate; oleic acid esters such as decyl oleate and octyldodecyl oleate; dimethyloctanoic acid esters such as hexyldecyl dimethyloctanoate; cetyl isooctanoate (cetyl 2-ethylhexanoate) Isooctanoic acid ester such as decyl palmitate; g
  • metal soap examples include zinc laurate, zinc myristate, magnesium myristate, zinc palmitate, zinc stearate, aluminum stearate, calcium stearate, magnesium stearate, zinc undecylenate and the like.
  • humectant examples include glycerin, propylene glycol, 1,3-butylene glycol, polyethylene glycol, sodium dl-pyrrolidonecarboxylate, sodium lactate, sorbitol, sodium hyaluronate, polyglycerin, xylit, maltitol and the like. It is done.
  • the surfactant include anionic surfactants such as higher fatty acid soaps, higher alcohol sulfates, N-acyl glutamates and phosphates; cationic interfaces such as amine salts and quaternary ammonium salts.
  • Active agents amphoteric surfactants such as betaine type, amino acid type, imidazoline type, lecithin; fatty acid monoglyceride, polyethylene glycol, propylene glycol fatty acid ester, sorbitan fatty acid ester (for example, sorbitan isostearate), sucrose fatty acid ester, polyglycerin fatty acid
  • Nonionic surfactants such as esters and ethylene oxide condensates are listed.
  • polymer compound examples include natural polymer compounds such as gum arabic, gum tragacanth, guar gum, locust bean gum, karaya gum, iris moss, quince seed, gelatin, shellac, rosin, and casein; sodium carboxymethyl cellulose, hydroxyethyl cellulose, Semi-synthetic polymer compounds such as methyl cellulose, ethyl cellulose, sodium alginate, ester gum, nitrocellulose, hydroxypropyl cellulose, crystalline cellulose; polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide resin, silicone Oil, nylon particles, poly (meth) acrylate particles (for example, polymethyl methacrylate particles), Polystyrene particles, silicone particles, urethane particles, synthetic polymer compound of the resin particles such as polyethylene particles.
  • (meth) acryl means methacryl or acryl
  • the color material raw material include iron oxide (red iron oxide, yellow iron oxide, black iron oxide, etc.), ultramarine blue, sweet potato, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, Talc, kaolin, calcium carbonate, magnesium carbonate, mica, aluminum silicate, barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked gypsum), calcium phosphate, hydroxyapatite, ceramic powder And inorganic pigments such as azo, nitro, nitroso, xanthene, quinoline, anthraquinoline, indigo, triphenylmethane, phthalocyanine, and pyrene.
  • iron oxide red iron oxide, yellow iron oxide, black iron oxide, etc.
  • ultramarine blue sweet potato
  • chromium oxide chromium hydroxide
  • carbon black manganese violet
  • powder raw material such as the above-described polymer compound powder raw material and coloring material raw material
  • those subjected to surface treatment in advance can be used.
  • a surface treatment method known surface treatment techniques can be used, for example, oil treatment with hydrocarbon oil, ester oil, lanolin, etc., silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, etc.
  • clay minerals include components having several functions such as extender pigments and adsorbents, such as talc, mica, sericite, titanium sericite (sericite coated with titanium oxide), and white cloud. Mother, VEEGUM (registered trademark) manufactured by Vanderbilt, and the like.
  • fragrance examples include anisaldehyde, benzyl acetate, geraniol and the like.
  • Specific examples of the antiseptic / bactericidal agent include methyl paraben, ethyl paraben, propyl paraben, benzalkonium, benzethonium and the like.
  • Specific examples of the antioxidant include dibutylhydroxytoluene, butylhydroxyanisole, propyl gallate, tocopherol and the like.
  • the anti-inflammatory agent examples include ⁇ -aminocaproic acid, glycyrrhizic acid, dipotassium glycyrrhizinate, ⁇ -glycyrrhetinic acid, lysozyme chloride, guaiazulene, hydrocortisone and the like. These can be used individually or in mixture of 2 or more types.
  • Specific examples of the ultraviolet absorber include inorganic absorbents such as fine particle titanium oxide, fine particle zinc oxide, fine particle cerium oxide, fine particle iron oxide, fine particle zirconium oxide, benzoic acid-based, paraaminobenzoic acid-based, and anthranilic acid-based. And organic absorbents such as salicylic acid, cinnamic acid, benzophenone, and dibenzoylmethane.
  • the special combination additive include hormones such as estradiol, estrone, ethinyl estradiol, cortisone, hydrocortisone, prednisone, vitamins such as vitamin A, vitamin B, vitamin C, vitamin E, citric acid, tartaric acid, lactic acid Skin astringents such as aluminum chloride, aluminum sulfate / potassium sulfate, allantochlorohydroxyalumonium, zinc paraphenol sulfonate, zinc sulfate, cantalis tincture, pepper tincture, ginger tincture, assembly extract, garlic extract, hinokitiol, carpronium chloride And hair growth promoters such as pentadecanoic acid glyceride, vitamin E, estrogen, and photosensitizer, and whitening agents such as magnesium phosphate-L-ascorbate and kojic acid.
  • hormones such as estradiol, estrone, ethinyl estradiol, cortisone,
  • the external preparation contains the composite particles of the present invention having excellent particle fluidity, the external preparation has good slip properties. Moreover, when the said external preparation contains an aqueous solvent, the dispersibility of a composite particle is acquired with the hydrophilic property of the hydrophilic metal oxide particle adhering to the surface of a polymer particle.
  • the average primary particle size of the hydrophilic metal oxide particles (specifically, the Z average particle size calculated by the cumulant analysis method) is, for example, a particle size measuring device (“Zetasizer Nano ZS manufactured by Malvern) by a dynamic light scattering method. )).
  • a dispersion liquid in which hydrophilic metal oxide particles to be measured are dispersed in ion-exchanged water is used.
  • the dispersion is prepared so that the concentration of the hydrophilic metal oxide particles is 1% by weight.
  • the dispersion is prepared so that the concentration of the hydrophilic metal oxide particles is 0.1% by weight.
  • a polyethylene cell is set in the measurement part of the particle size measuring apparatus by the dynamic light scattering method (“Zetasizer Nano ZS” manufactured by Malvern), and the dispersion liquid is dispensed into the polyethylene cell. The Z average particle diameter of the metal oxide particles is measured.
  • the Z average particle diameter is a value obtained by analyzing measurement data of a dynamic light scattering method such as a particle dispersion using a cumulant analysis method.
  • the average value of the particle diameter and the polydispersity index (PDI) are obtained, and the average value of the particle diameter is defined as the Z average particle diameter.
  • the work of fitting a polynomial to the logarithm of the G1 correlation function obtained by measurement is called cumulant analysis, and the constant b in the following equation is called a second-order cumulant or Z-average diffusion coefficient.
  • LN (G1) A + bt + ct 2 + dt 3 + et 4 +...
  • a value obtained by converting the constant b into a particle diameter using the viscosity of the dispersion and several apparatus constants is the Z average particle diameter.
  • volume average particle size of seed particles used for production of composite particles or polymer particles is measured by a laser diffraction / scattering particle size distribution measuring device (“LS 13 320” manufactured by Beckman Coulter, Inc.) and a universal liquid sample module. Do.
  • the measurement is performed in a state where the seed particles are dispersed by performing pump circulation in the universal liquid sample module, and in a state where the ultrasonic unit (ULM ULTRASONIC MODULE) is activated, and the volume average particle diameter of the seed particles ( Calculate the arithmetic mean diameter in the volume-based particle size distribution.
  • the measurement conditions are shown below.
  • volume average particle diameter of composite particle or polymer particle and coefficient of variation of particle diameter The volume average particle diameter of the composite particles or polymer particles is measured by Coulter Multisizer III (measurement device manufactured by Beckman Coulter, Inc.). Measurement shall be performed using an aperture calibrated according to the Multisizer TM 3 User's Manual issued by Beckman Coulter, Inc.
  • the aperture used for the measurement is appropriately selected according to the size of the particles to be measured (composite particles or polymer particles).
  • the current aperture current
  • gain gain
  • 0.1 g of particles to be measured (composite particles or polymer particles) in 10 ml of a 0.1% by weight nonionic surfactant aqueous solution (TOUCMIXER MT-31, manufactured by Yamato Scientific Co., Ltd.). )) And an ultrasonic cleaner (“ULTRASONIC CLEANER VS-150” manufactured by VervoCrea Co., Ltd.) and used as a dispersion.
  • the beaker is stirred gently to the extent that bubbles do not enter, and the measurement ends when 100,000 particles are measured.
  • the volume average particle diameter of the particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
  • the coefficient of variation (CV value) of the particle diameter of the composite particles or polymer particles is calculated by the following formula.
  • Coefficient of variation of particle diameter of composite particle or polymer particle (standard deviation of particle size distribution based on volume of composite particle or polymer particle ⁇ volume average particle diameter of composite particle or polymer particle) ⁇ 100
  • the specific surface area of the particles was measured by the BET method (nitrogen adsorption method) described in ISO 9277 1st edition JIS Z 8830: 2001.
  • the BET nitrogen adsorption isotherm was measured using an automatic specific surface area / pore distribution measuring device Tristar 3000 manufactured by Shimadzu Corporation.
  • the specific surface area was calculated using the method. After performing the pretreatment by the heated gas purge, the measurement was performed using the constant volume method under the condition of the adsorbate cross section of 0.162 nm 2 using nitrogen as the adsorbate.
  • the pretreatment is performed by performing a nitrogen purge for 20 minutes while heating the container containing the particles at 65 ° C., allowing to cool to room temperature, and then heating the container at 65 ° C. This was performed by performing vacuum deaeration until the pressure in the container was 0.05 mmHg or less.
  • Density measurement method The density of the particles (composite particles or polymer particles) is measured by the method A described in “Pigment Test Method—Part 11: Density—Section 1: Pycnometer Method” of JIS K 5101-11-1: 2004. In accordance with the above, the following apparatus and reference liquid (substitution liquid with known density) were used, and the density of the particles (sample) was calculated by the following calculation formula.
  • a centrifuge (“Hitachi High-Speed Cooling Centrifuge manufactured by Hitachi High-Technologies Corporation) is used. Using HIMAC CR22GII ”), centrifuge at 25000 G for 30 minutes. 1 ml of 5% phenol aqueous solution is added to 1 ml of the obtained supernatant, 5 ml of concentrated sulfuric acid is added, and the mixture is allowed to stand for 10 minutes, and then left in an aqueous solution at 25 ° C. for 10 minutes to obtain a measurement sample. .
  • the absorbance at 485 nm was measured with an ultraviolet-visible spectrophotometer (“UV-visible spectrophotometer UV-2450” manufactured by Shimadzu Corporation), and a calibration curve (relationship between the absorbance and the concentration of water-soluble celluloses). Is used to determine the concentration (g / l) of water-soluble celluloses in the supernatant.
  • UV-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation
  • the calibration curve is created by the following method. That is, three types of aqueous solutions with different concentrations are prepared by adding 0.01 g, 0.05 g, and 0.1 g of water-soluble cellulose used in preparing the dispersion medium to 100 g of ion-exchanged water. 0.25 g of each prepared aqueous solution is diluted with 0.75 g of ion-exchanged water, and the absorbance of each diluted aqueous solution is measured. Then, a calibration curve of a linear curve is created by plotting the weight and absorbance of water-soluble celluloses in the aqueous solution.
  • the cellulose present as a residue on the surface of the composite particle is detected by the following method. That is, first, 10 g of the composite particles are precisely weighed into a beaker having an internal volume of 300 ml. Next, after adding about 150 mL of distilled water to the contents of the beaker, a few drops of methanol are added while stirring until the composite particles are dispersed throughout the liquid without layer separation, and stirred for about 30 minutes. After stirring, the mixture was centrifuged at a rotational speed of 3000 rpm for 20 minutes. Filter through 5C filter paper.
  • the obtained filtrate was collected in a beaker, concentrated to dryness to about 5 ml without being completely dried, then filtered through “GL Chromatodisc” (aqueous science company 13A, pore size 0.45 ⁇ m), and the filtrate. was completely dried (solvent distilled off) to obtain a dried product (an extract with distilled water and methanol). Then, about the obtained dried solid, the peak derived from water-soluble cellulose is detected by infrared spectroscopy (single reflection type ATR (total reflection) method) with the following apparatus and conditions.
  • the obtained monomer mixture was mixed with 2000 g of ion-exchanged water as an aqueous medium containing 5.3 g of sodium dioctyl sulfosuccinate as a non-reactive surfactant in a container having an internal volume of 5 L, and a high-speed stirrer (Trade name “Homomixer MARK II 2.5 type”, manufactured by Primix Co., Ltd.) was processed at a rotational speed of 8000 rpm for 10 minutes to obtain an emulsion. To this emulsion, 32 g of the primary seed particle slurry was added and the mixture was stirred for 6 hours. It was confirmed with an optical microscope that the monomer mixture in the emulsion was completely absorbed by the primary seed particles.
  • this dispersion and 1000 g of an aqueous solution in which 19 g of polyvinylpyrrolidone (PVP K-90 manufactured by Nippon Shokubai Co., Ltd.) as a polymer dispersion stabilizer are dissolved are placed in an autoclave having an internal volume of 5 L, and stirred at 60 ° C.
  • secondary seed particles having a volume average particle diameter of 3.5 ⁇ m (hereinafter referred to as “3.5 ⁇ m secondary seed particles”) were obtained in a slurry state.
  • Example 1 Production example of composite particles
  • a 5 L container having a stirrer 1000 g of ion-exchanged water as an aqueous medium and 5.0 g of sodium dioctyl sulfosuccinate as a non-reactive surfactant were charged.
  • the contents of this container were mixed with 900 g of methyl methacrylate (MMA) as a vinyl monomer and 100 g of ethylene glycol dimethacrylate (EGDMA), and 2,2′-azobis (2,4-dimethylvalero) as a polymerization initiator.
  • Nitrile) (ADVN) 0.6 g and benzoyl peroxide (BPO) 0.6 g were added.
  • the contents of the container were stirred for 10 minutes at a rotational speed of 8000 rpm with a high-speed stirrer (trade name “Homomixer MARK II 2.5 type”, manufactured by Primix Co., Ltd.) to obtain an emulsion.
  • a high-speed stirrer trade name “Homomixer MARK II 2.5 type”, manufactured by Primix Co., Ltd.
  • 80 g of the slurry of 3.5 ⁇ m secondary seed particles was added and stirred at 30 ° C. with the stirring device at a rotation speed of 100 rpm for 3 hours.
  • the body methyl methacrylate and ethylene glycol dimethacrylate
  • the composite particle was composed of polymer particles, Including the hydrophilic metal oxide particles adhering to the coalesced particles (black dot portion of the TEM image in FIG. 2), it was recognized that there were many convex portions on the surface derived from the hydrophilic metal oxide particles. Moreover, in this composite particle, it was recognized that the surface of the polymer particle was covered with a layer made of hydrophilic metal oxide particles. In addition, it is estimated that the convex part of the surface was formed by mixing hydrophilic metal oxide particles and small particles of vinyl monomer (so-called emulsion).
  • the volume average particle size was 14.5 ⁇ m
  • the particle size variation coefficient (CV value) was 11.5%
  • the particle size distribution was sharp.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.16 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 3.37
  • the content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.8 kJ / kg.
  • the obtained composite particles have dispersibility in water, that is, have hydrophilicity (this is because the surface of the composite particles has a hydrophilic metal). It was confirmed that oxide particles were present).
  • the obtained composite particles were subjected to infrared spectroscopic measurement of the extract by the method described in the section “Method for detecting water-soluble cellulose present on the composite particle surface”.
  • FIG. 1 the infrared absorption spectrum of the extract of the obtained composite particles is shown by a solid line, and the infrared absorption spectrum of hydroxypropylmethylcellulose is shown by a broken line. From the measurement results shown in FIG.
  • Example 2 Production example of composite particles
  • Composite particles were obtained in the same manner as in Example 1 except that 70 g of 1.0 ⁇ m secondary seed particles were used instead of 80 g of the slurry of 3.5 ⁇ m secondary seed particles.
  • the volume average particle size was 4.5 ⁇ m
  • the particle size variation coefficient (CV value) was 12.0%
  • the particle size distribution was sharp.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 2.58 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 2.32.
  • the content of the hydrophilic metal oxide particles (ignition residue) was 3.20% by weight, and the AE indicating particle fluidity was 42.0 kJ / kg.
  • Example 3 Production example of composite particles
  • reactive surfactant instead of 16 g of AQUALON (registered trademark) RN2025, 4 g of ADEKA rear soap (registered trademark) ER-10 (nonionic type, manufactured by ADEKA Corporation) was used in the same manner as in Example 1. Thus, composite particles were obtained.
  • the volume average particle size was 14.5 ⁇ m
  • the particle size variation coefficient (CV value) was 11.4%
  • the particle size distribution was sharp.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.15 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 3.34
  • the content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.6 kJ / kg.
  • Example 4 Production example of composite particles
  • As the hydrophilic metal oxide particles instead of 85 g of Snowtex (registered trademark) O-40 (SiO 2 pure amount 34 g), Snowtex (registered trademark) O (abbreviated as “ST-O”, manufactured by Nissan Chemical Industries, Ltd.) A composite particle was obtained in the same manner as in Example 1 except that 85 g (a pure content of SiO 2 17 g) of colloidal silica, average primary particle diameter 13 nm, solid content 20 wt% was used.
  • the volume average particle size was 14.3 ⁇ m
  • the particle size variation coefficient (CV value) was 11.7%
  • the particle size distribution was sharp.
  • the obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.65 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 4.72.
  • the content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.5 kJ / kg.
  • Example 5 Production example of composite particles
  • water-soluble celluloses instead of Metros (registered trademark) 65SH-50 6.8 g, Metrows (registered trademark) 65SH-400 (abbreviation “HPMC (65SH-400)”, Shin-Etsu Chemical Co., Ltd. hydroxypropyl methylcellulose, Composite particles were obtained in the same manner as in Example 1 except that 6.8 g (cloud point 65 ° C.) was used.
  • the volume average particle size was 14.4 ⁇ m
  • the particle size variation coefficient (CV value) was 11.5%
  • the particle size distribution was sharp.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.17 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 3.37
  • the content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.2 kJ / kg.
  • Example 6 Production example of composite particles
  • As water-soluble celluloses instead of Metros (registered trademark) 65SH-50 6.8 g, NISSO HPC M (Nippon Soda Co., Ltd. hydroxypropylcellulose, lower critical solution temperature 45 ° C.) 6.8 g was used. In the same manner as in Example 1, composite particles were obtained.
  • the volume average particle size was 14.5 ⁇ m
  • the particle size variation coefficient (CV value) was 11.6%
  • the particle size distribution was sharp.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.16 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 3.36
  • the content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.5 kJ / kg.
  • Example 7 Production example of composite particles
  • MMA methyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • MMA methyl methacrylate
  • MMA methyl methacrylate
  • styrene 100 g of styrene
  • EGDMA ethylene glycol dimethacrylate
  • the volume average particle size was 4.2 ⁇ m
  • the particle size variation coefficient (CV value) was 12.1%
  • the particle size distribution was sharp.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 2.62 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 2.20
  • the content of the hydrophilic metal oxide particles (ignition residue) was 3.20% by weight, and the AE indicating particle fluidity was 43.5 kJ / kg.
  • Example 8 Production example of composite particles
  • vinyl monomers instead of 900 g of methyl methacrylate (MMA) and 100 g of ethylene glycol dimethacrylate (EGDMA), 350 g of butyl acrylate (BA), 350 g of butyl methacrylate (BMA), and ethylene glycol dimethacrylate (EGDMA) ) 300 g, and 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN) 0.6 g and benzoyl peroxide (BPO) 0.6 g were used as polymerization initiators instead of 2,2′- Composite particles were obtained in the same manner as in Example 2 except that 6.0 g of azobis (2,4-dimethylvaleronitrile) (ADVN) and 6.0 g of benzoyl peroxide (BPO) were used.
  • ADVN 2,2′-azobis (2,4-dimethylvaleronitrile)
  • BPO benzoyl peroxide
  • the volume average particle size was 4.5 ⁇ m
  • the particle size variation coefficient (CV value) was 11.1%
  • the particle size distribution was sharp.
  • the obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 2.60 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 2.34
  • the content of the hydrophilic metal oxide particles (ignition residue) was 3.10% by weight, and the AE indicating particle fluidity was 42.1 kJ / kg.
  • Example 9 Production example of composite particles
  • hydrophilic metal oxide particles instead of 85 g of Snowtex (registered trademark) O-40 (SiO 2 pure amount 34 g), an aqueous dispersion GT-10W of ultrafine silica-coated titanium oxide particles (manufactured by Sakai Chemical Industry Co., Ltd.) , Average primary particle size: 115 nm, solid content 40% by weight, silica coating amount (silica content in silica-coated metal oxide particles) 20% by weight) 85 g (pure amount of silica-coated titanium oxide particles 34 g) and polymerization
  • an initiator instead of 0.6 g of 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN) and 0.6 g of benzoyl peroxide (BPO), 2,2′-azobis (2,4-dimethyl) Composite particles were obtained in the same manner as in Example 1 except that 6.0 g of valeronitrile) (ADVN) and
  • the volume average particle size was 14.0 ⁇ m
  • the particle size variation coefficient (CV value) was 11.7%
  • the particle size distribution was sharp.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual value of measured specific surface area of 8.61 m 2 / g, (measured value of specific surface area) / (calculated value of specific surface area) of 24.11
  • the content of the hydrophilic metal oxide particles (residue on ignition) was 2.45% by weight
  • the AE indicating particle fluidity was 40.6 kJ / kg.
  • Example 10 Production example of composite particles
  • Composite particles were obtained in the same manner as in Example 9 except that 70 g of 1.0 ⁇ m secondary seed particles were used instead of 80 g of the slurry of 3.5 ⁇ m secondary seed particles.
  • the volume average particle size was 4.7 ⁇ m
  • the particle size variation coefficient (CV value) was 12.1%
  • the particle size distribution was sharp.
  • the obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 9.57 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 9.00
  • the content of the hydrophilic metal oxide particles (ignition residue) was 2.10% by weight, and the AE showing particle fluidity was 48.5 kJ / kg.
  • Example 11 Production example of composite particles
  • hydrophilic metal oxide particles instead of 85 g of ultrafine silica-coated titanium oxide aqueous dispersion GT-10W (pure amount of silica-coated titanium oxide particles 34 g), ultrafine silica-coated zinc oxide particles FINEX-30W (Sakai Chemical Industry) Composite particles were obtained in the same manner as in Example 9 except that 34 g of an average primary particle size manufactured by Co., Ltd., 137 nm, and a silica coating amount (silica content in silica-coated metal oxide particles) of 20% by weight) was used.
  • the volume average particle size was 14.1 ⁇ m
  • the particle size variation coefficient (CV value) was 13.8%
  • the particle size distribution was sharp.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 6.63 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 18.70
  • the content of the hydrophilic metal oxide particles (ignition residue) was 2.35% by weight, and the AE indicating particle fluidity was 38.4 kJ / kg.
  • Example 12 Production example of composite particles
  • GT-10W pure 34 g of silica-coated titanium oxide particles
  • Composite particles were obtained in the same manner as in Example 9, except that 170 g of “Nax (registered trademark) CX-Z330H” (manufactured by Nissan Chemical Industries, Ltd., average primary particle size: 20 nm, solid content 20 wt%) was used.
  • the volume average particle size was 15.2 ⁇ m
  • the particle size variation coefficient (CV value) was 11.8%
  • the particle size distribution was sharp.
  • the obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 3.03 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 9.21
  • the content of the hydrophilic metal oxide particles (ignition residue) was 2.10% by weight, and the AE indicating particle fluidity was 38.0 kJ / kg.
  • Example 13 Production example of composite particles
  • hydrophilic metal oxide particles instead of 85 g of ultrafine particle silica-coated titanium oxide aqueous dispersion GT-10W (pure amount of silica-coated titanium oxide particles 34 g), an aqueous dispersion of phosphorus-doped tin oxide particles “CELLAX (registered) A composite particle was obtained in the same manner as in Example 9 except that 113 g (trademark) CX-S301H (manufactured by Nissan Chemical Industries, Ltd., average primary particle size: 20 nm, solid content 30% by weight) was used.
  • the volume average particle size was 15.2 ⁇ m
  • the particle size variation coefficient (CV value) was 12.1%
  • the particle size distribution was sharp.
  • the obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 3.11 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 9.45
  • the content of the hydrophilic metal oxide particles (residue on ignition) was 2.12% by weight, and the AE indicating particle fluidity was 37.6 kJ / kg.
  • the volume average particle size was 14.5 ⁇ m and the coefficient of variation (CV value) of the particle size was 10.0%.
  • the obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 0.40 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 1.16,
  • the AE showing particle fluidity was 84.6 kJ / kg.
  • the volume average particle size was 4.2 ⁇ m and the variation coefficient (CV value) of the particle size was 11.0%.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.00 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 0.84,
  • the AE indicating the particle fluidity was 69.1 kJ / kg.
  • the volume average particle diameter was 4.5 ⁇ m, and the coefficient of variation (CV value) of the particle diameter was 11.0%.
  • the obtained particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.02 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 0.92, hydrophilic
  • the content of the conductive metal oxide particles (ignition residue) was less than the lower limit of quantification, and the AE indicating particle fluidity was 61.2 kJ / kg.
  • the obtained particles were found to contain almost no hydrophilic metal oxide particles because the ignition residue was less than the lower limit of quantification, and it was recognized that they were polymer particles rather than composite particles.
  • silica (average primary particle diameter 25 nm, solid content 40 wt%) (SiO 2 pure amount 1.1 g) and Metrolose (registered trademark) 65SH-400 (abbreviated as “HPMC (65SH-400) as water-soluble celluloses” ), 0.22 g of hydroxypropyl methylcellulose manufactured by Shin-Etsu Chemical Co., Ltd., cloud point 65 ° C.), and mixed for 24 hours at a temperature of 60 ° C.
  • HPMC 65SH-400
  • HPMC hydroxypropyl methylcellulose manufactured by Shin-Etsu Chemical Co., Ltd., cloud point 65 ° C.
  • MMA methyl methacrylate
  • EGDMA ethylene glycol dimethacrylate
  • ADVN 2,2′-azobis (2,4-dimethylvaleronitrile
  • the monomer mixture containing the polymerization initiator is added to the dispersion medium in the polymerization vessel, and the mixture is stirred with a homomixer (High Flex Disperser HG-2 manufactured by SMT) at 9000 rpm for about 3 minutes.
  • the monomer mixture was finely dispersed therein.
  • reaction solution in the polymerization vessel was cooled to room temperature while stirring.
  • reaction solution is suction filtered using a qualitative filter paper 101 (“Toyo Qualitative Filter Paper” manufactured by Advantech Toyo Co., Ltd.), washed with ion-exchanged water, subsequently drained, and then dried overnight in a 90 ° C. oven. As a result, composite particles were obtained.
  • a qualitative filter paper 101 (“Toyo Qualitative Filter Paper” manufactured by Advantech Toyo Co., Ltd.
  • the volume average particle size was 7.9 ⁇ m
  • the coefficient of variation (CV value) in particle size was 36.3%.
  • the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 0.63 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 1.00,
  • the content of the hydrophilic metal oxide particles (ignition residue) was 1.45% by weight, and the AE indicating particle fluidity was 56.8 kJ / kg.
  • the polymer particles of Comparative Examples 1 to 3 do not contain hydrophilic metal oxide particles or hardly contain them, and thus have no hydrophilicity, whereas the composite particles of Examples 1 to 13 In addition to the polymer particles, it was found to have hydrophilicity because it contains hydrophilic metal oxide particles attached to the surface of the polymer particles.
  • the polymer particles of Comparative Examples 1 to 3 and the composite particles of Comparative Example 5 have less surface irregularities, whereas (actual value of specific surface area) / (calculated value of specific surface area) is less than 1.20.
  • the composite particles of Examples 1 to 13 were found to have many surface irregularities, and (actual value of specific surface area) / (calculated value of specific surface area) was 1.20 or more.
  • the polymer particles of Comparative Examples 1 to 3 and the composite particles of Comparative Example 5 have a particle fluidity of AE of more than 50 kJ / kg, and the particle fluidity is low, whereas the composite particles of Examples 1 to 13 It was confirmed that the particles had a high particle fluidity with an AE showing particle fluidity of 50 kJ / kg or less.
  • the composite particles of Comparative Example 5 have a particle size variation coefficient of more than 15% and the particle size uniformity is low, whereas the composite particles of Examples 1 to 13 have a particle size variation coefficient of 15 %, And it was confirmed that the uniformity of the particle diameter was high.
  • Example 14 Production example of optical film
  • 1.5 g of water-based binder resin manufactured by Daido Kasei Kogyo Co., Ltd., trade name “E-5221P”, solid content 20 wt%, urethane binder
  • the mixture was mixed to uniformly disperse the composite particles in the aqueous binder resin to prepare a coating agent (coating resin composition).
  • the coating agent was applied on a PET film having a thickness of 100 ⁇ m as a base film using a 100 ⁇ m applicator (width 8 cm) to form a wet coating film.
  • the coating film on the PET film is dried by heating in a thermostat at 70 ° C. for 10 minutes, and the base film and a coating of 8 cm in length (applicator width) ⁇ 30 cm in width (dried state) A coating film) was obtained.
  • the composite particles were immediately dispersed uniformly in the aqueous binder resin. Moreover, when the defect which generate
  • Comparative Example 6 Comparative production example of optical film
  • a film was obtained in the same manner as in Example 8 except that the polymer particles prepared in Comparative Example 1 were used in place of the composite particles prepared in Example 1.
  • the aqueous binder resin and the composite particles were mixed, it was easy to fool.
  • produced in the coating (dried coating film) formed on the base film was confirmed visually, there were 10 or more defects that occurred.
  • Example 15 Production example of light diffusing plate
  • a methacrylic resin trade name “Acripet (registered trademark) MF 001 G200”, manufactured by Mitsubishi Rayon Co., Ltd.
  • the mixture was melt-kneaded at 200 ° C. in an extruder and then pelletized to obtain pellets as a resin composition.
  • the obtained pellets were molded by an injection molding machine under the condition of a cylinder temperature of 230 ° C. to prepare a light diffusion plate as a molded body having a thickness of 2 mm and 50 mm ⁇ 100 mm.
  • Example 15 The haze and total light transmittance of the light diffusion plate obtained in Example 15 were measured using a haze meter “NDH-4000” manufactured by Nippon Denshoku Industries Co., Ltd. The total light transmittance was measured according to JIS K 7361-1, and the haze was measured according to JIS K 7136. Table 3 shows the measurement results of the total light transmittance and haze of the obtained light diffusion plate.
  • Example 16 Production example of external preparation (lotion)] 0.5 parts by weight of the composite particles obtained in Example 9 were mixed with 65.0 parts by weight of ethanol, 33.0 parts by weight of purified water, and 0.1 parts by weight of a fragrance to prepare a lotion as an external preparation. .
  • the prepared lotion had extremely good redispersibility of the composite particles and excellent usability.
  • the composite particles of the present invention are, for example, coating agents (coating compositions for paper), coating agents for information recording paper, or coating agents (coating compositions) used as coating agents for optical members such as optical films.
  • An anti-blocking agent for films such as food packaging films;
  • an external preparation such as an additive for external preparations such as cosmetics (additive for improving slipperiness or correcting skin defects such as spots and wrinkles) It can be used as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Birds (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymerisation Methods In General (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Provided are composite particles having affinity for water and, as a result, excellent dispersion stability in aqueous dispersion media such as aqueous binders, as well as excellent particle fluidity. The composite particles include polymer particles comprising a polymer of a vinyl monomer, and hydrophilic metal oxide particles adhered to the surface of the polymer particles, wherein the ratio of the calculated value (m2/g) of the specific surface area computed by the formula (calculated value of specific surface area) = 6/(ρ × D) from the volume-average particle diameter D (μm) and density ρ (g/cm3) of the composite particles, assuming the shape of the composite particles to be a true sphere, and the observed value (m2/g) of the specific surface area of the composite particles obtained by actual measurement (observed value of specific surface area)/(calculated value of specific surface area) is 1.20 or higher.

Description

複合粒子及びその製造方法、並びにその用途COMPOSITE PARTICLE, PROCESS FOR PRODUCING THE SAME, AND USE THEREOF
 本発明は、重合体粒子と、この重合体粒子の表面に付着した親水性金属酸化物粒子とを含む複合粒子及びその製造方法、並びにその用途(コーティング剤、光学フィルム樹脂組成物、成形体、及び外用剤)に関するものである。 The present invention relates to composite particles containing polymer particles and hydrophilic metal oxide particles attached to the surface of the polymer particles, a method for producing the same, and uses thereof (coating agent, optical film resin composition, molded product, And external preparations).
 平均粒子径が0.01~100μmの重合体粒子は、例えば、塗料等のコーティング剤用の添加剤(艶消し剤等)、インク用の添加剤(艶消し剤等)、接着剤の主成分又は添加剤、人工大理石用の添加剤(低収縮化剤等)、紙処理剤、化粧品等の外用剤の充填材(滑り性向上のための充填剤)、クロマトグラフィーに用いるカラム充填材、静電荷像現像に使用されるトナー用の添加剤、フィルム用のアンチブロッキング剤、光拡散体(光拡散フィルム等)用の光拡散剤等の用途で使用されている。 Polymer particles having an average particle size of 0.01 to 100 μm are, for example, additives for coating agents such as paints (matting agents, etc.), additives for inks (matting agents, etc.), and main components of adhesives. Or additives, additives for artificial marble (low shrinkage agents, etc.), paper treatment agents, packing materials for external agents such as cosmetics (fillers for improving slipperiness), column packing materials used for chromatography, static It is used in applications such as toner additives used for charge image development, anti-blocking agents for films, and light diffusing agents for light diffusers (such as light diffusing films).
 ところで、近年、重合体粒子に新たな特性を持たせる、若しくは、重合体粒子の特性を向上させる方法の一つとして、重合体粒子にシリカ粒子等の親水性金属酸化物粒子を複合化することが考えられている。重合体粒子の表面にシリカ粒子等の親水性金属酸化物粒子を付着させると、粒子表面の親水性を向上させることができると考えられる。表面に親水性を有する粒子は、水性媒体に分散し易いため、水系コーティング剤用の添加剤、例えば、光拡散フィルムのような光学フィルムのコーティングを形成する水系コーティング剤に使用される光拡散剤として、好適に使用することができる。 By the way, in recent years, as one of methods for imparting new properties to polymer particles or improving the properties of polymer particles, composite polymer particles with hydrophilic metal oxide particles such as silica particles. Is considered. It is considered that the hydrophilicity of the particle surface can be improved by attaching hydrophilic metal oxide particles such as silica particles to the surface of the polymer particles. Since particles having hydrophilicity on the surface are easily dispersed in an aqueous medium, additives for water-based coating agents, for example, light diffusing agents used in water-based coating agents that form optical film coatings such as light diffusing films As, it can be used suitably.
 特許文献1には、重合体粒子と、この重合体粒子に付着したシリカ粒子とを含む複合粒子の製造方法であって、水溶性セルロース類が表面に吸着したシリカ粒子の存在下で、重合性モノマーを、水系懸濁重合させて、複合粒子を得る重合工程を含む複合粒子の製造方法が記載されている。 Patent Document 1 discloses a method for producing composite particles including polymer particles and silica particles adhering to the polymer particles, in the presence of silica particles having water-soluble cellulose adsorbed on the surface. A method for producing composite particles is described which includes a polymerization step in which monomers are subjected to aqueous suspension polymerization to obtain composite particles.
 また、特許文献2の比較例4には、重合開始剤を含むビニル系単量体を水性媒体中でシード粒子に吸収させて得られたエマルジョンと、コロイダルシリカとを混合し、得られた混合物を加熱して前記ビニル系単量体を重合させる重合体粒子の製造方法が記載されている。 In Comparative Example 4 of Patent Document 2, an emulsion obtained by absorbing a vinyl monomer containing a polymerization initiator in seed particles in an aqueous medium and colloidal silica are mixed, and the resulting mixture is obtained. A method for producing polymer particles in which the vinyl monomer is polymerized by heating is described.
国際公開第2015/071984号International Publication No. 2015/071984 特許第5281781号公報Japanese Patent No. 5281781
 しかしながら、特許文献1に記載の製造方法にて製造された複合粒子は、シリカ粒子等に由来する表面凹凸が比較的少ないために、シリカ粒子等に由来する表面凹凸が粒子流動性を顕著に向上させるほどの効果を発揮できず、粒子流動性に改善の余地があった(本願明細書の比較例5参照)。複合粒子の粒子流動性の向上は、複合粒子を利用した製品、例えば光拡散フィルムのような光学フィルム等を製造する時における複合粒子のハンドリング性の向上や、水系バインダー等の水系分散媒中におけるだま(複合粒子が凝集して形成された塊)の発生の抑制などに寄与する。 However, since the composite particles produced by the production method described in Patent Document 1 have relatively few surface irregularities derived from silica particles and the like, the surface irregularities derived from silica particles and the like significantly improve particle fluidity. As a result, there was room for improvement in particle fluidity (see Comparative Example 5 in the present specification). The improvement of the particle fluidity of the composite particles can be achieved by improving the handling properties of the composite particles when manufacturing products using the composite particles, such as optical films such as light diffusion films, and in aqueous dispersion media such as aqueous binders. This contributes to the suppression of the occurrence of buns (lumps formed by agglomeration of composite particles).
 また、本願発明者に検討によれば、特許文献2の比較例4の製造方法では、シリカ粒子は、分散剤として寄与するが、重合体粒子表面への付着はほとんどなく(洗浄時にシリカ粒子がほとんど除去されると考えられる)、重合体粒子に親水性を付与できず、また、重合体粒子の粒子流動性を向上できないことが分かった(本願明細書の比較例3参照)。 Further, according to the inventor of the present application, in the production method of Comparative Example 4 of Patent Document 2, silica particles contribute as a dispersant, but there is almost no adhesion to the surface of the polymer particles (the silica particles are not washed during washing). It was found that the polymer particles could not be given hydrophilicity and the fluidity of the polymer particles could not be improved (see Comparative Example 3 in the present specification).
 本発明は、このような状況に鑑みてなされたものであり、親水性を有し、その結果として水系バインダー等の水系分散媒中での分散安定性に優れていると共に、粒子流動性に優れている複合粒子及びその製造方法、並びにその用途を提供することを目的としている。 The present invention has been made in view of such a situation, has hydrophilicity, and as a result, has excellent dispersion stability in an aqueous dispersion medium such as an aqueous binder, and also has excellent particle fluidity. It is an object of the present invention to provide composite particles, a production method thereof, and uses thereof.
 本発明の複合粒子は、ビニル系単量体の重合体からなる重合体粒子と、重合体粒子の表面に付着した親水性金属酸化物粒子とを含む複合粒子であって、前記複合粒子の形状を真球と仮定して前記複合粒子の体積平均粒子径D(μm)及び密度ρ(g/cm)から以下の式
 (比表面積の計算値)=6/(ρ×D)
により算出される比表面積の計算値(m/g)と、実際の測定により得られた前記複合粒子の比表面積の実測値(m/g)との比(比表面積の実測値)/(比表面積の計算値)が1.20以上であることを特徴としている。
The composite particle of the present invention is a composite particle comprising polymer particles composed of a polymer of a vinyl monomer, and hydrophilic metal oxide particles attached to the surface of the polymer particle, wherein the shape of the composite particle As a true sphere, the following formula (calculated value of specific surface area) = 6 / (ρ × D) from the volume average particle diameter D (μm) and density ρ (g / cm 3 ) of the composite particles
Ratio of the calculated specific surface area (m 2 / g) calculated by the above and the actual measured specific surface area (m 2 / g) of the composite particles obtained by actual measurement (measured specific surface area) / (Calculated value of specific surface area) is 1.20 or more.
 本発明の複合粒子は、重合体粒子の表面に付着した親水性金属酸化物粒子の親水性により、親水性を有し、その結果として水系バインダー等の水系分散媒中での分散安定性に優れている。水系分散媒中での分散安定性の向上は、例えば、複合粒子を水系バインダーに混ぜてコーティング剤として使用するときのコーティング(塗膜)に発生する欠点の抑制に寄与する。 The composite particles of the present invention have hydrophilicity due to the hydrophilicity of the hydrophilic metal oxide particles attached to the surface of the polymer particles, and as a result, are excellent in dispersion stability in an aqueous dispersion medium such as an aqueous binder. ing. The improvement of the dispersion stability in the aqueous dispersion medium contributes to, for example, suppression of defects generated in the coating (coating film) when the composite particles are mixed with an aqueous binder and used as a coating agent.
 また、(比表面積の実測値)/(比表面積の計算値)の数値は、真球の場合に対して比表面積がどれだけ大きいかを表すので、表面凹凸の多さを表している。本発明の複合粒子は、(比表面積の実測値)/(比表面積の計算値)が1.20以上であるので、表面凹凸が多い。本発明の複合粒子は、表面凹凸が多いため、粒子流動性に優れている。複合粒子の粒子流動性の向上は、複合粒子を利用した製品、例えば光拡散フィルムのような光学フィルム等を製造する時における複合粒子のハンドリング性の向上や、水系バインダー等の水系分散媒中におけるだま(複合粒子が凝集して形成された塊)の発生の抑制及びそれによる水系バインダーを含むコーティング剤による良好なコーティングの形成などに寄与する。 Also, the numerical value of (actual value of specific surface area) / (calculated value of specific surface area) represents how large the specific surface area is with respect to a true sphere, and thus represents the number of surface irregularities. The composite particles of the present invention have many surface irregularities because (actual value of specific surface area) / (calculated value of specific surface area) is 1.20 or more. Since the composite particles of the present invention have many surface irregularities, they are excellent in particle fluidity. The improvement of the particle fluidity of the composite particles can be achieved by improving the handling properties of the composite particles when manufacturing products using the composite particles, such as optical films such as light diffusion films, and in aqueous dispersion media such as aqueous binders. This contributes to the suppression of the generation of lumps (lumps formed by agglomeration of composite particles) and the formation of a good coating with a coating agent containing an aqueous binder.
 本発明の複合粒子の製造方法は、ビニル系単量体の重合体からなる重合体粒子と、この重合体粒子に付着した親水性金属酸化物粒子とを含む複合粒子の製造方法であって、シード粒子にビニル系単量体を吸収させた後、水溶性セルロース類が表面に吸着した親水性金属酸化物粒子と反応性界面活性剤との存在下でビニル系単量体を水性媒体中で重合させるシード重合により、複合粒子を得る重合工程を含むことを特徴としている。 The method for producing composite particles of the present invention is a method for producing composite particles comprising polymer particles composed of a polymer of a vinyl monomer, and hydrophilic metal oxide particles attached to the polymer particles, After the vinyl monomer is absorbed by the seed particles, the vinyl monomer is absorbed in an aqueous medium in the presence of hydrophilic metal oxide particles having water-soluble cellulose adsorbed on the surface and a reactive surfactant. It is characterized by including a polymerization step of obtaining composite particles by seed polymerization.
 上記方法によれば、水溶性セルロース類が表面に吸着した親水性金属酸化物粒子と水溶性セルロース類と反応性界面活性剤との存在下でビニル系単量体を水性媒体中で重合させることから、反応性界面活性剤の作用により重合中における重合体粒子の表面の付着性を向上させてより多くの親水性金属酸化物粒子を重合体粒子の表面に付着させることができると共に、親水性金属酸化物粒子の表面に吸着した水溶性セルロース類の作用により親水性金属酸化物粒子を重合体粒子の表面に強固に付着させることができる。このため、重合体粒子の表面に付着した親水性金属酸化物粒子により親水性を有し、その結果として水系バインダー等の水系分散媒中での分散安定性に優れていると共に、親水性金属酸化物粒子等に由来する表面凹凸が多く(比表面積の実測値)/(比表面積の計算値)が大きい(例えば1.20以上)ために、粒子流動性に優れ、しかも重合体粒子の表面から親水性金属酸化物粒子が脱落し難い複合粒子を得ることができる。 According to the above method, the vinyl monomer is polymerized in an aqueous medium in the presence of the hydrophilic metal oxide particles having water-soluble cellulose adsorbed on the surface, the water-soluble cellulose and the reactive surfactant. From the above, it is possible to improve the adhesion of the surface of the polymer particles during the polymerization by the action of the reactive surfactant, and to attach more hydrophilic metal oxide particles to the surface of the polymer particles, and to improve the hydrophilicity. The hydrophilic metal oxide particles can be firmly attached to the surface of the polymer particles by the action of the water-soluble celluloses adsorbed on the surface of the metal oxide particles. For this reason, the hydrophilic metal oxide particles attached to the surface of the polymer particles have hydrophilicity. As a result, they have excellent dispersion stability in an aqueous dispersion medium such as an aqueous binder, and hydrophilic metal oxide particles. Many surface irregularities derived from product particles, etc. (actual value of specific surface area) / (calculated value of specific surface area) are large (for example, 1.20 or more), so that particle fluidity is excellent, and from the surface of polymer particles Composite particles in which the hydrophilic metal oxide particles are difficult to fall off can be obtained.
 また、上記方法によれば、シード粒子にビニル系単量体を吸収させた後、反応性界面活性剤により分散安定性を向上させた状態でビニル系単量体を水性媒体中で重合させるシード重合により複合粒子を得るので、より粒子径の変動係数が小さく(例えば15%以下)、粒子径の均一性(単分散性)が高い複合粒子を得ることができる。 Further, according to the above method, after the vinyl monomer is absorbed by the seed particles, the seed is obtained by polymerizing the vinyl monomer in an aqueous medium in a state in which the dispersion stability is improved by the reactive surfactant. Since composite particles are obtained by polymerization, composite particles having a smaller particle diameter variation coefficient (for example, 15% or less) and high particle diameter uniformity (monodispersity) can be obtained.
 また、本発明のコーティング剤は、本発明の複合粒子を含むことを特徴としている。 The coating agent of the present invention is characterized by containing the composite particles of the present invention.
 本発明のコーティング剤は、本発明の複合粒子を含むことから、当該コーティング剤から形成されたコーティング(塗膜)に光拡散性を付与することができる。また、上記コーティング剤は、水性溶媒を含むものである場合には、複合粒子の優れた粒子流動性と、重合体粒子の表面に付着した親水性金属酸化物粒子の親水性とにより、だまの発生が抑制され、複合粒子の良好な分散性が得られる。それゆえ、上記コーティング剤は、良好なコーティングを形成できる。 Since the coating agent of the present invention contains the composite particles of the present invention, light diffusibility can be imparted to the coating (coating film) formed from the coating agent. In addition, when the coating agent contains an aqueous solvent, the coating agent may be spoiled due to the excellent particle fluidity of the composite particles and the hydrophilicity of the hydrophilic metal oxide particles attached to the surface of the polymer particles. Suppressed and good dispersibility of the composite particles can be obtained. Therefore, the coating agent can form a good coating.
 本発明の光学フィルムは、基材フィルムと、その上に形成されているコーティングとを含む光学フィルムであって、前記コーティングが、本発明の複合粒子を含むことを特徴としている。 The optical film of the present invention is an optical film including a base film and a coating formed thereon, and the coating includes the composite particles of the present invention.
 本発明の光学フィルムは、本発明の複合粒子を含むことから、光拡散性を有する。 Since the optical film of the present invention contains the composite particles of the present invention, it has light diffusibility.
 本発明によれば、親水性を有し、その結果として水系バインダー等の水系分散媒中での分散安定性に優れていると共に、粒子流動性に優れている複合粒子及びその製造方法、並びにその用途を提供することができる。 According to the present invention, the composite particles have hydrophilicity, and as a result, are excellent in dispersion stability in an aqueous dispersion medium such as an aqueous binder, and are excellent in particle fluidity, a production method thereof, and the Applications can be provided.
実施例1で得られた複合粒子を示す走査型電子顕微鏡(SEM)画像である。2 is a scanning electron microscope (SEM) image showing the composite particles obtained in Example 1. FIG. 実施例1で得られた複合粒子の断面を示す透過型電子顕微鏡(TEM)画像である。2 is a transmission electron microscope (TEM) image showing a cross section of the composite particles obtained in Example 1. FIG. 比較例1で得られた複合粒子を示す走査型電子顕微鏡(SEM)画像である。2 is a scanning electron microscope (SEM) image showing the composite particles obtained in Comparative Example 1. FIG. 実施例1で得られた複合粒子の抽出物の赤外吸収スペクトルを、ヒドロキシプロピルメチルセルロースの赤外吸収スペクトルと共に示す図である。It is a figure which shows the infrared absorption spectrum of the extract of the composite particle obtained in Example 1 with the infrared absorption spectrum of hydroxypropyl methylcellulose.
 以下、本発明をより詳細に説明する。
 〔複合粒子〕
 本発明の複合粒子は、ビニル系単量体の重合体からなる重合体粒子と、重合体粒子の表面に付着した親水性金属酸化物粒子とを含む複合粒子であって、前記複合粒子の形状を真球と仮定して前記複合粒子の体積平均粒子径D(μm)及び密度ρ(g/cm)から以下の式
 (比表面積の計算値)=6/(ρ×D)
により算出される比表面積の計算値(m/g)と、実際の測定により得られた前記複合粒子の比表面積の実測値(m/g)との比(比表面積の実測値)/(比表面積の計算値)が1.20以上である。
Hereinafter, the present invention will be described in more detail.
[Composite particles]
The composite particle of the present invention is a composite particle comprising polymer particles composed of a polymer of a vinyl monomer, and hydrophilic metal oxide particles attached to the surface of the polymer particle, wherein the shape of the composite particle As a true sphere, the following formula (calculated value of specific surface area) = 6 / (ρ × D) from the volume average particle diameter D (μm) and density ρ (g / cm 3 ) of the composite particles
Ratio of the calculated specific surface area (m 2 / g) calculated by the above and the actual measured specific surface area (m 2 / g) of the composite particles obtained by actual measurement (measured specific surface area) / (Calculated value of specific surface area) is 1.20 or more.
 前記の(比表面積の実測値)/(比表面積の計算値)は、1.30以上であることがより好ましく、1.40以上であることがさらに好ましく、1.50以上であることが最も好ましい。これらにより、複合粒子の粒子流動性をさらに向上させることができる。また、前記の(比表面積の実測値)/(比表面積の計算値)は、50以下であることがより好ましく、40以下であることがさらに好ましい。これら範囲内の複合粒子は、製造が容易である。 The (actual value of specific surface area) / (calculated value of specific surface area) is more preferably 1.30 or more, further preferably 1.40 or more, and most preferably 1.50 or more. preferable. By these, the particle fluidity of the composite particles can be further improved. The (actual value of specific surface area) / (calculated value of specific surface area) is more preferably 50 or less, and further preferably 40 or less. Composite particles within these ranges are easy to manufacture.
 本発明の複合粒子は、粒子流動性を示す、なだれ前後のアバランシェエネルギー変化AE(Avalanche Energy)の数値が、10~50kJ/kgの範囲内であることが好ましい。これにより、粒子流動性の高い複合粒子を実現することができる。 In the composite particles of the present invention, the numerical value of the avalanche energy change AE (Avalanche Energy) before and after avalanche showing particle fluidity is preferably in the range of 10 to 50 kJ / kg. Thereby, composite particles with high particle fluidity can be realized.
 本発明の複合粒子は、粒子径の変動係数が、15%以下である。これにより、粒子径の均一性の高い複合粒子を実現することができる。 The composite particle of the present invention has a particle diameter variation coefficient of 15% or less. Thereby, it is possible to realize composite particles having a highly uniform particle diameter.
 本発明の複合粒子は、体積平均粒子径が、1~20μmであることが好ましい。これにより、後段で詳細に説明するコーティング剤、光学フィルム、成形体、樹脂組成物、外用剤等の用途に好適な複合粒子を実現することができる。 The composite particles of the present invention preferably have a volume average particle diameter of 1 to 20 μm. Thereby, the composite particle suitable for uses, such as a coating agent, an optical film, a molded object, a resin composition, an external preparation, demonstrated in detail later, is realizable.
 本発明の複合粒子は、前記重合体粒子の少なくとも一部が複数のシリカ粒子からなる層で被覆されているものであることが好ましい。 The composite particles of the present invention are preferably those in which at least a part of the polymer particles is coated with a layer composed of a plurality of silica particles.
 (ビニル系単量体)
 前記重合体粒子は、ビニル系単量体の重合体である。前記ビニル系単量体は、重合可能な炭素-炭素二重結合(エチレン性不飽和結合;広義のビニル結合)を含む基(エチレン性不飽和基(広義のビニル基))を有する化合物である。
(Vinyl monomer)
The polymer particles are a vinyl monomer polymer. The vinyl monomer is a compound having a group (ethylenically unsaturated group (broadly defined vinyl group)) containing a polymerizable carbon-carbon double bond (ethylenically unsaturated bond; broadly defined vinyl bond). .
 前記ビニル系単量体は、エチレン性不飽和基(広義のビニル基)を有する単官能ビニル系単量体であってもよく、2個以上のエチレン性不飽和基(広義のビニル基)を有するビニル系単量体であってもよい。 The vinyl monomer may be a monofunctional vinyl monomer having an ethylenically unsaturated group (broadly defined vinyl group), and may have two or more ethylenically unsaturated groups (broadly defined vinyl group). It may be a vinyl monomer.
 前記単官能ビニル系単量体としては、例えば、α-メチレン脂肪族モノカルボン酸エステル;スチレン;o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-エチルスチレン、2,4-ジメチルスチレン、p-n-ブチルスチレン、p-tert-ブチルスチレン、p-n-ヘキシルスチレン、p-n-オクチルスチレン、p-n-ノニルスチレン、p-n-デシルスチレン、p-n-ドデシルスチレン、p-メトキシスチレン、p-フェニルスチレン、p-クロロスチレン、3,4-ジクロロスチレン等のスチレンの誘導体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のカルボン酸ビニル;アクリロニトリル、アクリルアミド等のようなアクリル酸エステル以外のアクリル酸誘導体;メタクリロニトリル、メタクリルアミド等のようなメタクリル酸エステル以外のメタクリル酸誘導体等が挙げられる。 Examples of the monofunctional vinyl monomer include α-methylene aliphatic monocarboxylic acid ester; styrene; o-methyl styrene, m-methyl styrene, p-methyl styrene, p-ethyl styrene, 2,4-dimethyl. Styrene, pn-butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene Derivatives of styrene such as p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene; vinyl carboxylates such as vinyl acetate, vinyl propionate, vinyl butyrate; acrylonitrile, acrylamide, etc. Acrylic acid derivatives other than acrylic esters; methacrylonitrile, methacrylate Methacrylic acid derivatives other than methacrylic acid esters such as Ruamido like.
 前記α-メチレン脂肪族モノカルボン酸エステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸n-オクチル、アクリル酸ドデシル、アクリル酸2-エチルヘキシル、アクリル酸ステアリル、アクリル酸ラウリル、アクリル酸2-クロロエチル、アクリル酸フェニル、アクリル酸2-(ジメチルアミノ)エチル、アクリル酸2-(ジエチルアミノ)エチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリル、メタクリル酸ラウリル、メタクリル酸フェニル、メタクリル酸2-(ジメチルアミノ)エチル、メタクリル酸2-(ジエチルアミノ)エチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル等のメタクリル酸エステル;α-クロロアクリル酸メチル等のα-ハロアクリル酸エステル等が挙げられる。 Examples of the α-methylene aliphatic monocarboxylic acid ester include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-octyl acrylate, dodecyl acrylate, and 2-ethylhexyl acrylate. , Stearyl acrylate, lauryl acrylate, 2-chloroethyl acrylate, phenyl acrylate, 2- (dimethylamino) ethyl acrylate, 2- (diethylamino) ethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxy acrylate Acrylic esters such as propyl; methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-ethyl methacrylate Methacrylic acid such as hexyl, stearyl methacrylate, lauryl methacrylate, phenyl methacrylate, 2- (dimethylamino) ethyl methacrylate, 2- (diethylamino) ethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate Esters: α-haloacrylic acid esters such as methyl α-chloroacrylate.
 場合によっては、アクリル酸、メタクリル酸、マレイン酸、フマル酸等のようなα,β-不飽和カルボン酸を単官能ビニル系単量体として使用することもできる。さらに、これらを2種以上組み合わせて用いてもよい。また、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドン等のN-ビニル化合物;ビニルナフタリン塩等を、本発明の効果を妨げない範囲で1種又は2種以上を組み合わせて単官能ビニル系単量体として使用することもできる。 In some cases, α, β-unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and the like can be used as a monofunctional vinyl monomer. Further, two or more of these may be used in combination. Also, vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl isobutyl ether; vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone; N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl compounds such as N-vinylpyrrolidone; vinyl naphthalene salts and the like can be used as a monofunctional vinyl monomer by combining one or more of them in a range not impeding the effects of the present invention.
 なお、本発明において、上記した単官能ビニル系単量体は、1種又は2種以上を組み合わせて使用してよい。また、上記した単官能ビニル系単量体の中でも、スチレンやメタクリル酸メチル等は、安価であることから、本発明で使用する単官能ビニル系単量体としてより好ましい。 In the present invention, the above monofunctional vinyl monomers may be used alone or in combination of two or more. Among the monofunctional vinyl monomers described above, styrene, methyl methacrylate, and the like are more preferable as the monofunctional vinyl monomers used in the present invention because they are inexpensive.
 前記多官能ビニル系単量体としては、ジビニルベンゼン;エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート(繰り返し単位数が2~10)、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(繰り返し単位数が2~10)、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、アルコキシ化ネオペンチルグリコールジ(メタ)アクリレート、プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート等の2官能アルキレングリコールジ(メタ)アクリレート;ブチレンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、アルコキシ化ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジオールジ(メタ)アクリレート、ドデカンジオールジ(メタ)アクリレート、トリシクロデカンジオールジ(メタ)アクリレート等の2官能アルキレンジオールジ(メタ)アクリレート;エトキシ化(繰り返し単位数が2~10)ビスフェノールAジ(メタ)アクリレート等の2官能エトキシ化ビスフェノールAジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリアクリロイルオキシエチルフォスフェート等の3官能トリメチロールプロパントリ(メタ)アクリレート類;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の4官能テトラ(メタ)アクリレート;ジペンタエリスリトールヘキサ(メタ)アクリレート等の6官能ジペンタエリスリトールヘキサ(メタ)アクリレート類;ポリ(ペンタエリスリトール)アクリレート等の8官能ペンタエリスリトール(メタ)アクリレート類;エトキシ化イソシアヌル酸トリ(メタ)アクリレートのような3官能の窒素原子含有環状(メタ)アクリレート類等が挙げられる。なお、本出願書類において、「(メタ)アクリレート」は、メタクリレート又はアクリレートを意味する。 Examples of the polyfunctional vinyl monomer include divinylbenzene; ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate (repetition unit number: 2 to 10), propylene glycol di (meth) acrylate, polypropylene glycol di (Meth) acrylate (2-10 repeat units), 1,3-butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, alkoxylated neopentyl glycol di (meth) acrylate, propoxylated neopentyl Bifunctional alkylene glycol di (meth) acrylates such as glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, dioxane glycol di (meth) acrylate; Range ol di (meth) acrylate, hexanediol di (meth) acrylate, alkoxylated hexanediol di (meth) acrylate, cyclohexanediol di (meth) acrylate, dodecanediol di (meth) acrylate, tricyclodecanediol di (meth) Bifunctional alkylene diol di (meth) acrylates such as acrylates; Bifunctional ethoxylated bisphenol A di (meth) acrylates such as ethoxylated (2-10 repeat units) bisphenol A di (meth) acrylates; Trifunctional trimethylo such as (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, triacryloyloxyethyl phosphate Propane tri (meth) acrylates; tetrafunctional tetra (meth) acrylates such as pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate; hexafunctional dipentaerythritol hexa such as dipentaerythritol hexa (meth) acrylate (Meth) acrylates; octafunctional pentaerythritol (meth) acrylates such as poly (pentaerythritol) acrylate; trifunctional nitrogen atom-containing cyclic (meth) acrylates such as ethoxylated isocyanuric acid tri (meth) acrylate Can be mentioned. In this application document, “(meth) acrylate” means methacrylate or acrylate.
 前記ビニル系単量体は、単官能ビニル系単量体及び多官能ビニル系単量体の両方を含むことが好ましい。これにより、重合体粒子中に良好な架橋構造を形成して、複合粒子に良好な耐溶剤性を付与することができる。多官能ビニル系単量体の使用量は、ビニル系単量体の総使用量に対して、0.5~50重量%の範囲内であることが好ましく、1~40重量%の範囲内であることがより好ましい。これにより、重合体粒子中にさらに良好な架橋構造を形成して、複合粒子にさらに優れた耐溶剤性を付与することができる。 The vinyl monomer preferably includes both a monofunctional vinyl monomer and a polyfunctional vinyl monomer. Thereby, a favorable crosslinked structure can be formed in the polymer particles, and good solvent resistance can be imparted to the composite particles. The amount of the polyfunctional vinyl monomer used is preferably in the range of 0.5 to 50% by weight, preferably in the range of 1 to 40% by weight, based on the total amount of vinyl monomers used. More preferably. As a result, a better cross-linked structure can be formed in the polymer particles, and further excellent solvent resistance can be imparted to the composite particles.
 (親水性金属酸化物粒子)
 本出願書類において、「親水性金属酸化物粒子」とは、水中に分散しうる金属酸化物粒子を意味し、より詳細には、水中に導入して撹拌した場合に、親水性の挙動をとる金属酸化物粒子、すなわち表面が水により完全に濡れ、従って水に対して90゜より小さい接触角を有する、水中に分散する金属酸化物粒子を意味する。複合粒子における重合体粒子の表面に付着した金属酸化物粒子が親水性であるか否かは、複合粒子の親水性試験(実施例参照)を実施した結果、すぐに複合粒子の沈降が始まるか否かによって間接的に確認することもできる。前記親水性金属酸化物粒子としては、親水性を有する(親水性を示す程度の数の水酸基を有する)金属酸化物粒子であれば特に限定されるものではないが、シリカ粒子、シリカによってシリカ以外の金属酸化物の粒子が被覆されてなるシリカ被覆金属酸化物粒子、リン及びアンチモンの少なくとも一方でドープされた酸化スズ及び酸化亜鉛の少なくとも一方からなる複合酸化物粒子等が挙げられる。
(Hydrophilic metal oxide particles)
In the present application document, the term “hydrophilic metal oxide particles” means metal oxide particles that can be dispersed in water, and more specifically, takes hydrophilic behavior when introduced into water and stirred. By metal oxide particles, i.e. metal oxide particles dispersed in water whose surface is completely wetted by water and thus has a contact angle of less than 90 ° to water. Whether or not the metal oxide particles adhering to the surface of the polymer particles in the composite particles are hydrophilic is determined by whether or not the composite particles start to settle immediately as a result of the hydrophilicity test of the composite particles (see Examples). It can also be confirmed indirectly depending on whether or not. The hydrophilic metal oxide particle is not particularly limited as long as it is a metal oxide particle having hydrophilicity (having a number of hydroxyl groups to show hydrophilicity). Examples thereof include silica-coated metal oxide particles coated with metal oxide particles, composite oxide particles composed of at least one of tin oxide and zinc oxide doped with at least one of phosphorus and antimony, and the like.
 前記シリカ粒子としては、コロイダルシリカを好ましく使用することができる。前記コロイダルシリカとしては、沈降性シリカパウダー、気相法シリカパウダー等パウダー状のコロイダルシリカ;媒体中で一次粒子レベルまで安定分散させたコロイダルシリカのゾルを挙げることができる。これらの中でも、媒体中で一次粒子レベルまで安定分散させたコロイダルシリカのゾルが、本発明の製造方法での使用により適している。 As the silica particles, colloidal silica can be preferably used. Examples of the colloidal silica include powdered colloidal silica such as precipitated silica powder and gas phase method silica powder; colloidal silica sol stably dispersed to a primary particle level in a medium. Among these, colloidal silica sols stably dispersed to the primary particle level in a medium are more suitable for use in the production method of the present invention.
 前記コロイダルシリカのゾルとしては、水性シリカゾル、オルガノシリカゾル等を好適に使用することができる。特に、本発明の製造方法では、ビニル系単量体を水性媒体中で重合させるため、コロイダルシリカのゾルの分散安定性の面から水性コロイダルシリカを使用することが最も好ましい。コロイダルシリカのゾル中のシリカ濃度(固形分濃度)は、5~50重量%のものが一般に市販されており、容易に入手できるので好ましい。 As the colloidal silica sol, an aqueous silica sol, an organosilica sol or the like can be preferably used. In particular, in the production method of the present invention, since the vinyl monomer is polymerized in an aqueous medium, it is most preferable to use aqueous colloidal silica from the viewpoint of dispersion stability of the colloidal silica sol. The silica concentration (solid content concentration) in the colloidal silica sol is preferably 5 to 50% by weight because it is generally commercially available and can be easily obtained.
 前記コロイダルシリカの市販品としては、日産化学工業株式会社製のスノーテックス(登録商標)シリーズ、例えば、平均一次粒子径が5~100nmの球状粒子である汎用タイプのスノーテックス(登録商標)(アルカリ性:「ST-XS」、「ST-30」、「ST-50」、「ST-30L」、「ST-ZL」、酸性:「ST-OXS」、「ST-O」、「ST-O-40」、「ST-OL」、「ST-OZL35」)、平均一次粒子径が70~480nmの球状粒子である大粒タイプのスノーテックス(登録商標)(アルカリ性:「ST-MP-2040」、「ST-MP-4540M」)、平均一次粒子径が40~100nmの細長い形状をした鎖状タイプのスノーテックス(登録商標)(アルカリ性:「ST-UP」、酸性:「ST-OUP」)、平均一次粒子径が10~25nmの球状粒子が連結したパールネックレス状タイプのスノーテックス(登録商標)(アルカリ性:「ST-PS-S」、「ST-PS-M」、酸性:「ST-PS-SO」、「ST-PS-MO」)等を挙げることができる。 Examples of commercially available colloidal silica include Snowtex (registered trademark) series manufactured by Nissan Chemical Industries, Ltd., for example, general-purpose type Snowtex (registered trademark) (alkaline, which is spherical particles having an average primary particle size of 5 to 100 nm). : "ST-XS", "ST-30", "ST-50", "ST-30L", "ST-ZL", acidic: "ST-OXS", "ST-O", "ST-O-" 40 ”,“ ST-OL ”,“ ST-OZL35 ”), large-sized SNOWTEX® (alkaline:“ ST-MP-2040 ”,“ Spherical particles having an average primary particle diameter of 70 to 480 nm ”,“ ST-MP-4540M "), a chain-type Snowtex (registered trademark) having an average primary particle diameter of 40 to 100 nm (alkaline:" ST-UP ", acidic: ST-OUP "), Snowtex (registered trademark) of a pearl necklace type in which spherical particles having an average primary particle diameter of 10 to 25 nm are connected (alkalinity:" ST-PS-S "," ST-PS-M ", Acidity: “ST-PS-SO”, “ST-PS-MO”) and the like.
 前記親水性金属酸化物粒子としてシリカ被覆金属酸化物粒子を用いた場合、特にシリカ以外の金属酸化物が酸化チタンや酸化亜鉛等のような高い光触媒活性を持つ金属酸化物である場合に、シリカ以外の金属酸化物の粒子を被覆するシリカがシリカ以外の金属酸化物の光触媒活性を不活性化することにより、シリカ以外の金属酸化物や他の成分が紫外線による光触媒反応で劣化する(例えば黄変する)ことを効果的に抑制できる。その結果、複合粒子やそれを用いた製品の耐候性を効果的に向上させることができる。 When silica-coated metal oxide particles are used as the hydrophilic metal oxide particles, especially when the metal oxide other than silica is a metal oxide having high photocatalytic activity such as titanium oxide or zinc oxide. Silica coating the metal oxide particles other than silica inactivates the photocatalytic activity of the metal oxide other than silica, so that the metal oxide other than silica and other components deteriorate due to photocatalytic reaction by ultraviolet rays (for example, yellow Can be effectively suppressed. As a result, the weather resistance of the composite particles and products using the same can be effectively improved.
 前記シリカ被覆金属酸化物粒子におけるシリカの含有量は、10重量%以上であることが好ましい。前記シリカ被覆金属酸化物粒子におけるシリカの含有量が10重量%より少ないと、シリカによる複合粒子やそれを用いた製品の紫外線による劣化(例えば黄変)を抑制する効果が小さくなる。前記シリカ被覆金属酸化物粒子におけるシリカの含有量は、10重量%以上50重量%以下であることがより好ましい。前記シリカ被覆金属酸化物粒子におけるシリカの含有量が50重量%より多いと、シリカ以外の金属酸化物による複合粒子への特性(例えば紫外線遮蔽特性)の付与が顕著でない。 The silica content in the silica-coated metal oxide particles is preferably 10% by weight or more. When the silica content in the silica-coated metal oxide particles is less than 10% by weight, the effect of suppressing deterioration (for example, yellowing) of composite particles of silica and products using the silica by ultraviolet rays becomes small. The silica content in the silica-coated metal oxide particles is more preferably 10% by weight or more and 50% by weight or less. When the silica content in the silica-coated metal oxide particles is more than 50% by weight, the imparting of characteristics (for example, ultraviolet shielding characteristics) to the composite particles by the metal oxide other than silica is not remarkable.
 前記シリカ被覆金属酸化物粒子を構成するシリカ以外の金属酸化物としては、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄、酸化ジルコニウム等が挙げられるが、酸化チタン及び酸化亜鉛の少なくとも一方が好ましい。シリカ以外の金属酸化物が酸化チタン及び酸化亜鉛の少なくとも一方である場合、優れた紫外線遮蔽性を複合粒子に付与することができ、光拡散板や化粧品等の外用剤に好適に使用できる。また、酸化チタンや酸化亜鉛は高い光触媒活性を持っているが、本発明の複合粒子では、酸化チタンや酸化亜鉛の光触媒活性を不活性化することにより、酸化チタンや酸化亜鉛、他の成分が紫外線による光触媒反応で劣化する(例えば黄変する)ことを効果的に抑制できる。その結果、シリカ以外の金属酸化物として酸化チタン及び酸化亜鉛の少なくとも一方を含む複合粒子やそれを用いた製品の耐候性を向上させることができる。 Examples of the metal oxide other than silica constituting the silica-coated metal oxide particles include titanium oxide, zinc oxide, cerium oxide, iron oxide, zirconium oxide and the like, and at least one of titanium oxide and zinc oxide is preferable. When the metal oxide other than silica is at least one of titanium oxide and zinc oxide, excellent ultraviolet shielding properties can be imparted to the composite particles, and it can be suitably used for external preparations such as light diffusion plates and cosmetics. In addition, titanium oxide and zinc oxide have high photocatalytic activity. However, in the composite particles of the present invention, titanium oxide, zinc oxide, and other components are contained by inactivating the photocatalytic activity of titanium oxide and zinc oxide. Deterioration (for example, yellowing) due to a photocatalytic reaction by ultraviolet rays can be effectively suppressed. As a result, it is possible to improve the weather resistance of composite particles containing at least one of titanium oxide and zinc oxide as metal oxides other than silica and products using the same.
 前記シリカ被覆金属酸化物粒子は、シリカによって酸化チタンの粒子が被覆されてなるシリカ被覆酸化チタン粒子、及びシリカによって酸化亜鉛の粒子が被覆されてなるシリカ被覆酸化亜鉛粒子の少なくとも一方であることが好ましい。前記シリカ被覆酸化チタン粒子としては、シリカ被覆酸化チタン粒子又はその水分散体の市販品を用いることができる。前記シリカ被覆酸化チタン粒子又はその水分散体の市販品としては、例えば、「マックスライト(登録商標)TS-01」、「マックスライト(登録商標)TS-04」、「マックスライト(登録商標)TS-043」、「マックスライト(登録商標)F-TS20」(以上、昭和電工株式会社製)、「MT-100HP」、「MT-100WP」、「MT-500SA」、「WT-PF01」(固形分40重量%の水分散体)(以上、テイカ株式会社製)、「STR-100A」、「STR-100W」「GT-10W」(固形分40重量%の水分散体)(以上、堺化学工業株式会社製)、「ST-455WS」(チタン工業株式会社製)等が挙げられる。 The silica-coated metal oxide particles are at least one of silica-coated titanium oxide particles in which titanium oxide particles are coated with silica and silica-coated zinc oxide particles in which zinc oxide particles are coated with silica. preferable. As the silica-coated titanium oxide particles, commercially available products of silica-coated titanium oxide particles or an aqueous dispersion thereof can be used. Examples of commercially available silica-coated titanium oxide particles or aqueous dispersions thereof include “Maxlite (registered trademark) TS-01”, “Maxlite (registered trademark) TS-04”, and “Maxlite (registered trademark)”. “TS-043”, “Maxlite (registered trademark) F-TS20” (manufactured by Showa Denko KK), “MT-100HP”, “MT-100WP”, “MT-500SA”, “WT-PF01” ( (Water dispersion with a solid content of 40 wt%) (above, manufactured by Teika Co., Ltd.), “STR-100A”, “STR-100W”, “GT-10W” (water dispersion with a solid content of 40 wt%) (above, 堺Chemical Industry Co., Ltd.), “ST-455WS” (Titanium Industry Co., Ltd.) and the like.
 前記シリカ被覆酸化亜鉛粒子としては、シリカ被覆酸化亜鉛粒子の市販品を用いることができる。前記シリカ被覆酸化亜鉛粒子の市販品としては、例えば、「マックスライト(登録商標)ZS-032」、「マックスライト(登録商標)ZS-032-D」(以上、昭和電工株式会社製)、「FINEX(登録商標)-30W」、「FINEX(登録商標)-50W」(以上、堺化学工業株式会社製)等が挙げられる。 As the silica-coated zinc oxide particles, commercially available products of silica-coated zinc oxide particles can be used. Examples of commercially available silica-coated zinc oxide particles include “Maxlite (registered trademark) ZS-032”, “Maxlite (registered trademark) ZS-032-D” (above, Showa Denko KK), “ FINEX (registered trademark) -30W "," FINEX (registered trademark) -50W "(manufactured by Sakai Chemical Industry Co., Ltd.), and the like.
 前記のリン及びアンチモンの少なくとも一方でドープされた酸化スズ及び酸化亜鉛の少なくとも一方からなる複合酸化物粒子としては、例えば、リンでドープされた酸化スズ(リンドープ型酸化スズ)粒子、アンチモンでドープされた酸化亜鉛粒子、これらの混合物等が挙げられる。アンチモンを含む物質は、環境負荷への懸念があることから、前記複合酸化物粒子は、リンでドープされた酸化スズ及び酸化亜鉛の少なくとも一方(例えばリンでドープされた酸化スズ)からなることがより好ましい。前記リンでドープされた酸化スズ(リンドープ型酸化スズ)粒子の市販品としては、例えば、「セルナックス(登録商標)CX-S301H」(水分散体、日産化学工業株式会社製)が挙げられる。アンチモンでドープされた酸化亜鉛粒子としては、例えば、「セルナックス(登録商標)CX-Z330H」(水分散体、日産化学工業株式会社製)が挙げられる。 Examples of the composite oxide particles composed of at least one of tin oxide and zinc oxide doped with at least one of phosphorus and antimony include, for example, tin oxide (phosphorus-doped tin oxide) particles doped with phosphorus, and doped with antimony. And zinc oxide particles, and mixtures thereof. Since the substance containing antimony has a concern about environmental burden, the composite oxide particle may be composed of at least one of tin oxide doped with phosphorus and zinc oxide (for example, tin oxide doped with phosphorus). More preferred. Examples of commercially available tin oxide (phosphorus-doped tin oxide) particles doped with phosphorus include “Cellnax (registered trademark) CX-S301H” (aqueous dispersion, manufactured by Nissan Chemical Industries, Ltd.). Examples of the zinc oxide particles doped with antimony include “Selnax (registered trademark) CX-Z330H” (aqueous dispersion, manufactured by Nissan Chemical Industries, Ltd.).
 前記親水性金属酸化物粒子の平均一次粒子径は、5~200nmの範囲内であることが好ましい。平均一次粒子径が200nmより大きいと、複合粒子製造時の分散安定性が低くなるため、好ましくない。また、前記親水性金属酸化物粒子の平均一次粒子径は、できるだけ小さいことが好ましく、5~150nmの範囲内であることがより好ましく、8~100nmの範囲内であることが更により好ましい。 The average primary particle diameter of the hydrophilic metal oxide particles is preferably in the range of 5 to 200 nm. If the average primary particle diameter is larger than 200 nm, the dispersion stability during the production of the composite particles is lowered, which is not preferable. The average primary particle size of the hydrophilic metal oxide particles is preferably as small as possible, more preferably in the range of 5 to 150 nm, and still more preferably in the range of 8 to 100 nm.
 前記親水性金属酸化物粒子の密度(比重)は、1.5~10.0g/cmの範囲内であることが好ましい。密度が10.0g/cmより大きいと、複合粒子製造時の分散安定性が低くなるため、好ましくない。 The density (specific gravity) of the hydrophilic metal oxide particles is preferably in the range of 1.5 to 10.0 g / cm 3 . When the density is higher than 10.0 g / cm 3 , the dispersion stability during production of the composite particles is lowered, which is not preferable.
 また、本発明の複合粒子における前記親水性金属酸化物粒子の含有量は、特に限定されないが、0.5~10重量%の範囲内であることが好ましい。これにより、複合粒子の親水性をさらに向上させることができると共に、(比表面積の実測値)/(比表面積の計算値)をさらに大きくして粒子流動性をさらに向上させることができる。 Further, the content of the hydrophilic metal oxide particles in the composite particles of the present invention is not particularly limited, but is preferably in the range of 0.5 to 10% by weight. Thereby, the hydrophilicity of the composite particles can be further improved, and the particle fluidity can be further improved by further increasing (actual value of specific surface area) / (calculated value of specific surface area).
 (水溶性セルロース類)
 本発明の複合粒子は、水溶性セルロース類をさらに含むことが好ましい。この場合、水溶性セルロース類の含有により、重合体粒子の表面に親水性金属酸化物粒子が強固に付着されるため、重合体粒子の表面から親水性金属酸化物粒子が脱落し難い。
(Water-soluble celluloses)
The composite particles of the present invention preferably further contain water-soluble celluloses. In this case, since the hydrophilic metal oxide particles are firmly attached to the surface of the polymer particles due to the inclusion of the water-soluble celluloses, the hydrophilic metal oxide particles are difficult to fall off from the surface of the polymer particles.
 水溶性セルロース類をさらに含む複合粒子において、前記親水性金属酸化物粒子は、前記水溶性セルロース類を介して前記重合体粒子の表面に付着していてもよいし、前記重合体粒子の表面に直接付着していてもよい。言い換えれば、前記水溶性セルロース類は、前記親水性金属酸化物粒子及び前記重合体粒子の両方に付着していてもよいし、前記親水性金属酸化物粒子及び前記重合体粒子の一方にのみ付着していてもよい。 In the composite particles further containing water-soluble celluloses, the hydrophilic metal oxide particles may be attached to the surface of the polymer particles via the water-soluble celluloses, or on the surface of the polymer particles. It may be attached directly. In other words, the water-soluble celluloses may be attached to both the hydrophilic metal oxide particles and the polymer particles, or only to one of the hydrophilic metal oxide particles and the polymer particles. You may do it.
 前記水溶性セルロース類としては、特に限定されず、例えば、メチルセルロース等のアルキルセルロース類;ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のヒドロキシアルキルセルロース類;ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等のヒドロキシアルキルアルキルセルロース類等の化合物が挙げられる。これらの化合物の中でも、ヒドロキシアルキルセルロース類、ヒドロキシアルキルアルキルセルロース類が好ましく、ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(HPMC)がより好ましい。また、これら化合物は、1種又は2種以上を組み合わせて使用してよい。 The water-soluble cellulose is not particularly limited, and examples thereof include alkyl celluloses such as methyl cellulose; hydroxyalkyl celluloses such as hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose; hydroxyalkylalkyl such as hydroxyethyl methyl cellulose and hydroxypropyl methyl cellulose. Compounds such as celluloses are listed. Among these compounds, hydroxyalkylcelluloses and hydroxyalkylalkylcelluloses are preferable, and hydroxypropylcellulose (HPC) and hydroxypropylmethylcellulose (HPMC) are more preferable. These compounds may be used alone or in combination of two or more.
 ヒドロキシプロピルセルロース(HPC)は、一般的に、45℃の下限臨界共溶温度(LCST)を有することが知られており、市販品としては、例えば、日本曹達株式会社製のNISSO(登録商標) HPCシリーズ(「SSL」、「SL」、「L」、「M」、「H」等)を挙げることができる。 Hydroxypropyl cellulose (HPC) is generally known to have a lower critical solution temperature (LCST) of 45 ° C., and commercially available products include, for example, NISSO (registered trademark) manufactured by Nippon Soda Co., Ltd. The HPC series (“SSL”, “SL”, “L”, “M”, “H”, etc.) can be mentioned.
 また、ヒドロキシプロピルメチルセルロース(HPMC)の市販品としては、信越化学工業株式会社製のメトローズ(登録商標)シリーズ、より具体的には、60℃の曇点を有するメトローズ(登録商標)60SHシリーズ(「SH60-50」、「60SH-4000」、「60SH-10000」)、65℃の曇点を有するメトローズ(登録商標)65SHシリーズ(「65SH-50」、「65SH-400」、「65SH-1500」、「65SH-4000」)、90℃の曇点を有するメトローズ(登録商標)90SHシリーズ(「90SH-100」、「90SH-400」、「90SH-4000」、「90SH-15000」)等を挙げることができる。 Moreover, as a commercial item of hydroxypropyl methylcellulose (HPMC), Shin-Etsu Chemical Co., Ltd.'s Metroles (registered trademark) series, more specifically, Metrows (registered trademark) 60SH series having a cloud point of 60 ° C. (“ SH60-50 ”,“ 60SH-4000 ”,“ 60SH-10000 ”), and Metrows (registered trademark) 65SH series (“ 65SH-50 ”,“ 65SH-400 ”,“ 65SH-1500 ”) having a cloud point of 65 ° C. , “65SH-4000”), Metroles (registered trademark) 90SH series having a cloud point of 90 ° C. (“90SH-100”, “90SH-400”, “90SH-4000”, “90SH-15000”), etc. be able to.
 〔複合粒子の製造方法〕
 本発明の複合粒子の製造方法は、ビニル系単量体の重合体からなる重合体粒子と、この重合体粒子に付着した親水性金属酸化物粒子とを含む複合粒子の製造方法であって、シード粒子にビニル系単量体を吸収させた後、水溶性セルロース類が表面に吸着した親水性金属酸化物粒子と反応性界面活性剤との存在下でビニル系単量体を水性媒体中で重合させるシード重合により、複合粒子を得る重合工程を含んでいる。
[Production method of composite particles]
The method for producing composite particles of the present invention is a method for producing composite particles comprising polymer particles composed of a polymer of a vinyl monomer, and hydrophilic metal oxide particles attached to the polymer particles, After the vinyl monomer is absorbed by the seed particles, the vinyl monomer is absorbed in an aqueous medium in the presence of hydrophilic metal oxide particles having water-soluble cellulose adsorbed on the surface and a reactive surfactant. A polymerization step for obtaining composite particles by seed polymerization is included.
 (水溶性セルロース類が表面に吸着した親水性金属酸化物粒子)
 前記親水性金属酸化物粒子への前記水溶性セルロース類の吸着量は、特に限定されず、本発明において使用する親水性金属酸化物粒子の比表面積に応じて適宜設定することができるが、前記親水性金属酸化物粒子1gあたり0.05g~0.5gであることが好ましい。
(Hydrophilic metal oxide particles with water-soluble cellulose adsorbed on the surface)
The amount of the water-soluble cellulose adsorbed on the hydrophilic metal oxide particles is not particularly limited and can be appropriately set according to the specific surface area of the hydrophilic metal oxide particles used in the present invention. The amount is preferably 0.05 g to 0.5 g per 1 g of the hydrophilic metal oxide particles.
 なお、水溶性セルロース類の親水性金属酸化物粒子への吸着量は、例えば、公益社団法人高分子学会発行の高分子論文集(Japanese Journal of Polymer Science and Technology)Vol.40,No.10,pp.697-702(Oct,1983)に記載されている方法を用いて測定することができる。例えば、後述する実施例の項に記載の〔親水性金属酸化物粒子への水溶性セルロース類の吸着量の測定方法〕により、測定することができる。 The amount of water-soluble cellulose adsorbed on the hydrophilic metal oxide particles can be determined, for example, by the Journal of Polymer Science and Technology published by the Polymer Society of Japan (Japan Society of Polymer Science and Technology) Vol. 40, no. 10, pp. It can be measured using the method described in 697-702 (Oct, 1983). For example, it can be measured by [Method for measuring the amount of water-soluble cellulose adsorbed on hydrophilic metal oxide particles] described in the Examples section below.
 本発明の製造方法は、前記重合工程の前に、前記親水性金属酸化物粒子を前記水溶性セルロース類で処理して、前記親水性金属酸化物粒子の表面に前記水溶性セルロース類を吸着させる吸着工程を含むことが好ましい。 In the production method of the present invention, before the polymerization step, the hydrophilic metal oxide particles are treated with the water-soluble celluloses to adsorb the water-soluble celluloses on the surfaces of the hydrophilic metal oxide particles. It is preferable to include an adsorption step.
 前記親水性金属酸化物粒子の表面に前記水溶性セルロース類を吸着させるための、前記水溶性セルロース類による前記親水性金属酸化物粒子の処理方法としては、特に限定されず、公知の方法を適用することができ、例えば、水系媒体中において親水性金属酸化物粒子及び水溶性セルロース類を共存させ、親水性金属酸化物粒子の表面に水溶性セルロース類を物理的に吸着させる方法(具体例としては、Rheological and Interfacial Properties of Silicone Oil Emulsions Prepared by Polymer Pre-adsorbed onto Silica Particles,Colloids Surfaces A:Physicochem.Eng.Aspects,328,2008,114-122.の文献に記載の方法)が好ましい。この処理方法により親水性金属酸化物粒子に吸着させた水溶性セルロース類は、前記重合工程において、親水性金属酸化物粒子からほとんど脱離せず、安定した状態にある。 A method for treating the hydrophilic metal oxide particles with the water-soluble celluloses for adsorbing the water-soluble celluloses on the surface of the hydrophilic metal oxide particles is not particularly limited, and a known method is applied. For example, a method in which hydrophilic metal oxide particles and water-soluble celluloses coexist in an aqueous medium, and water-soluble celluloses are physically adsorbed on the surface of the hydrophilic metal oxide particles (as a specific example) Is Rheological and Interface Properties of Silicone Oil Emulsions Prepared by Polymer Pre-adsorbed onto Silica Particles, Colloids Surfaces: Eng.Aspects, 328,2008,114-122 method described in. The literature) are preferred. The water-soluble celluloses adsorbed on the hydrophilic metal oxide particles by this treatment method are in a stable state with almost no desorption from the hydrophilic metal oxide particles in the polymerization step.
 また、前記水溶性セルロース類の(T-15)℃(Tは、前記水溶性セルロース類の下限臨界共溶温度(℃)又は曇点(℃)を意味する。)以上の温度条件下、より好ましくは、(T-15)℃以上、(T+20)℃以下の温度条件下で、前記親水性金属酸化物粒子と前記水溶性セルロース類とを共存させることにより、より効果的に前記親水性金属酸化物粒子の表面に水溶性セルロース類を物理的に吸着させることができる。なお、前記水溶性セルロース類は、その特性により、下限臨界共溶温度又は曇点のどちらか一方のみを有する。 Further, under the temperature condition above (T-15) ° C. of the water-soluble cellulose (T means the lower critical solution temperature (° C.) or cloud point (° C.) of the water-soluble cellulose). Preferably, the hydrophilic metal oxide particles and the water-soluble cellulose are allowed to coexist under a temperature condition of (T-15) ° C. or higher and (T + 20) ° C. or lower, so that the hydrophilic metal is more effectively used. Water-soluble celluloses can be physically adsorbed on the surface of the oxide particles. In addition, the said water-soluble cellulose has only one of a lower critical solution temperature or a cloud point by the characteristic.
 なお、前記吸着工程において、親水性金属酸化物粒子に吸着されなかった水溶性セルロース類は、前記重合工程前に遠心分離等によって取り除いてもよいし、前記重合工程の後、前記重合工程で得られた複合粒子を精製する精製工程において洗浄によって取り除いてもよい。 In the adsorption step, water-soluble celluloses that are not adsorbed on the hydrophilic metal oxide particles may be removed by centrifugation or the like before the polymerization step, or obtained in the polymerization step after the polymerization step. You may remove by washing | cleaning in the refinement | purification process which refine | purifies the obtained composite particle.
 (反応性界面活性剤)
 前記反応性界面活性剤としては、アニオン型の反応性界面活性剤、カチオン型の反応性界面活性剤、両性イオン型の反応性界面活性剤、及びノニオン型の反応性界面活性剤の何れをも用いることができるが、ノニオン型の反応性界面活性剤を用いることが好ましい。前記反応性界面活性剤としてアニオン型の反応性界面活性剤を用いた場合、反応性界面活性剤中にナトリウムイオンなどの金属イオンが含まれるために、親水性金属酸化物粒子の凝集が起こりやすくなり、その結果として複合粒子の分散安定性が低下して複合粒子の粒子径の均一性が低下する恐れがある。前記反応性界面活性剤としてノニオン型の反応性界面活性剤を用いた場合、反応性界面活性剤中に金属イオンが含まれないために、親水性金属酸化物粒子の凝集が起こりにくく、その結果として複合粒子の分散安定性が向上して複合粒子の粒子径の均一性を向上させることができる。
(Reactive surfactant)
Examples of the reactive surfactant include any of anionic reactive surfactants, cationic reactive surfactants, zwitterionic reactive surfactants, and nonionic reactive surfactants. Although it can be used, it is preferable to use a nonionic reactive surfactant. When an anionic reactive surfactant is used as the reactive surfactant, the reactive surfactant contains metal ions such as sodium ions, so that aggregation of hydrophilic metal oxide particles is likely to occur. As a result, the dispersion stability of the composite particles may decrease, and the uniformity of the particle diameter of the composite particles may decrease. When a nonionic type reactive surfactant is used as the reactive surfactant, the reactive surfactant does not contain metal ions, so that the aggregation of hydrophilic metal oxide particles hardly occurs. As a result, the dispersion stability of the composite particles can be improved, and the uniformity of the particle diameter of the composite particles can be improved.
 前記ノニオン型の反応性界面活性剤としては、例えば、株式会社ADEKA製のアデカリアソープ(登録商標)ER-10(純分100重量%)、アデカリアソープ(登録商標)ER-20(純分75重量%)、アデカリアソープ(登録商標)ER-30(純分65重量%、アデカリアソープ(登録商標)ER-40(純分60重量%)、アデカリアソープ(登録商標)NE-10(純分100重量%)、アデカリアソープ(登録商標)NE-20(純分80重量%)、アデカリアソープ(登録商標)NE-30(純分80重量%)、及びアデカリアソープ(登録商標)NE-40(純分40重量%);第一工業製薬株式会社製のポリオキシエチレンノニルプロペニルフェニルエーテルであるアクアロン(登録商標)RN-20(純分100重量%)、アクアロン(登録商標)RN-2025(純分25重量%)、アクアロン(登録商標)RN-30(純分100重量%)、及びアクアロン(登録商標)RN-50(純分65重量%);花王株式会社製のポリオキシアルキレンアルケニルエーテルであるラテムル(登録商標)PD-420(純分100重量%)、ラテムル(登録商標)PD-430(純分100重量%)、及びラテムル(登録商標)PD-450(純分100重量%)等が挙げられる。前記反応性界面活性剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the nonionic reactive surfactant include Adekaria Soap (registered trademark) ER-10 (100% pure) by Adeka Co., Ltd., Adekaria Soap (registered trademark) ER-20 (pure component). 75% by weight), Adekalia Soap (registered trademark) ER-30 (pure content 65% by weight, Adekalia Soap (registered trademark) ER-40 (pure content 60% by weight), Adekalia soap (registered trademark) NE-10 (100% by weight pure), Adekaria Soap (registered trademark) NE-20 (80% by weight pure), Adekaria Soap (registered trademark) NE-30 (80% by weight pure), and Adekaria Soap (registered) Trademark) NE-40 (pure content 40% by weight); Aqualon (registered trademark) RN-20 (pure content 10) which is polyoxyethylene nonylpropenyl phenyl ether manufactured by Daiichi Kogyo Seiyaku Co., Ltd. %), Aqualon (registered trademark) RN-2025 (25% pure), Aqualon (registered trademark) RN-30 (100% pure), and Aqualon (registered trademark) RN-50 (65% pure) %); LATEMUL (registered trademark) PD-420 (100% by weight pure), LATEMUL (registered trademark) PD-430 (100% by weight pure), (Registered trademark) PD-450 (pure content: 100% by weight), etc. The reactive surfactants may be used alone or in combination of two or more.
 前記反応性界面活性剤は、得られる複合粒子の径や重合時におけるビニル系単量体の分散安定性等を考慮して、種類が適宜選択され、使用量が適宜調整される。反応性界面活性剤の使用量は、前記ビニル系単量体100重量部に対して、0.01~5重量部の範囲内であることが好ましく、0.1~2.0重量部の範囲内であることがより好ましい。反応性界面活性剤の使用量が上記範囲より少ない場合には、重合安定性が低くなるおそれがある。また、反応性界面活性剤の使用量が上記範囲より多い場合には、反応性界面活性剤分のコストが悪化する。 The type of the reactive surfactant is appropriately selected in consideration of the diameter of the obtained composite particles, the dispersion stability of the vinyl monomer at the time of polymerization, and the amount used is appropriately adjusted. The amount of the reactive surfactant used is preferably in the range of 0.01 to 5 parts by weight, preferably in the range of 0.1 to 2.0 parts by weight, with respect to 100 parts by weight of the vinyl monomer. More preferably, it is within. When the amount of the reactive surfactant used is less than the above range, the polymerization stability may be lowered. Moreover, when there are more usage-amounts of a reactive surfactant than the said range, the cost for a reactive surfactant will deteriorate.
 (非反応性界面活性剤)
 本発明の製造方法の前記重合工程において、前記水性媒体中でのビニル系単量体の重合は、分散安定性をより向上させるために、非反応性界面活性剤の存在下で行ってもよい。前記非反応性界面活性剤としては、アニオン型の非反応性界面活性剤、カチオン型の非反応性界面活性剤、両性イオン型の非反応性界面活性剤及びノニオン型の非反応性界面活性剤の何れをも用いることができるが、特に前記反応性界面活性剤としてノニオン型の反応性界面活性剤を用いる場合には、前記非反応性界面活性剤としてアニオン型の非反応性界面活性剤を用いることが好ましい。
(Non-reactive surfactant)
In the polymerization step of the production method of the present invention, the polymerization of the vinyl monomer in the aqueous medium may be performed in the presence of a non-reactive surfactant in order to further improve the dispersion stability. . Examples of the non-reactive surfactant include an anionic non-reactive surfactant, a cationic non-reactive surfactant, a zwitterionic non-reactive surfactant, and a nonionic non-reactive surfactant. Any non-reactive surfactant can be used as the non-reactive surfactant, particularly when a non-ionic reactive surfactant is used as the reactive surfactant. It is preferable to use it.
 アニオン型の非反反応性界面活性剤応性界面活性剤としては、例えば、オレイン酸ナトリウム;ヒマシ油カリ石鹸等の脂肪酸石鹸;ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸塩;アルカンスルホン酸塩;ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩;アルキルリン酸エステル塩;ナフタレンスルホン酸ホルマリン縮合物;ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩;ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。 Examples of the anionic non-reactive surfactant-sensitive surfactant include sodium oleate; fatty acid soap such as castor oil potash soap; alkyl sulfate ester salt such as sodium lauryl sulfate and ammonium lauryl sulfate; sodium dodecylbenzenesulfonate Alkyl benzene sulfonates; alkyl naphthalene sulfonates; alkane sulfonates; dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate; alkyl phosphate ester salts; naphthalene sulfonic acid formalin condensates; polyoxyethylene alkyl phenyl ether sulfates Salt; polyoxyethylene alkyl sulfate salt and the like.
 ノニオン型の非反応性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステル、オキシエチレン-オキシプロピレンブロックポリマー等が挙げられる。 Nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin Examples include fatty acid esters and oxyethylene-oxypropylene block polymers.
 カチオン型の非反応性界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。 Examples of the cationic non-reactive surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate; quaternary ammonium salts such as lauryltrimethylammonium chloride.
 両性イオン型の非反応性界面活性剤としては、ラウリルジメチルアミンオキサイド、リン酸エステル系界面活性剤、亜リン酸エステル系界面活性剤等が挙げられる。これら非反応性界面活性剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of zwitterionic non-reactive surfactants include lauryl dimethylamine oxide, phosphate ester surfactants, phosphite ester surfactants, and the like. These non-reactive surfactants may be used alone or in combination of two or more.
 前記非反応性界面活性剤は、得られる複合粒子の径や重合時におけるビニル系単量体の分散安定性等を考慮して、種類が適宜選択され、使用量が適宜調整される。非反応性界面活性剤の使用量は、前記ビニル系単量体100重量部に対して0.01~5重量部の範囲内であることが好ましい。非反応性界面活性剤の使用量が上記範囲より少ない場合には、重合安定性が低くなるおそれがある。また、非反応性界面活性剤の使用量が上記範囲より多い場合には、非反応性界面活性剤分のコストが悪化する。 The type of the non-reactive surfactant is appropriately selected in consideration of the diameter of the resulting composite particles, the dispersion stability of the vinyl monomer at the time of polymerization, and the amount used is appropriately adjusted. The amount of the non-reactive surfactant used is preferably in the range of 0.01 to 5 parts by weight with respect to 100 parts by weight of the vinyl monomer. When the amount of the non-reactive surfactant used is less than the above range, the polymerization stability may be lowered. Moreover, when the usage-amount of a non-reactive surfactant is more than the said range, the cost for a non-reactive surfactant will deteriorate.
 (水性媒体)
 本発明の製造方法の前記重合工程において使用される水性媒体としては、水、又は、水と水溶性媒体(例えば、メタノール、エタノール等のアルコール)との混合媒体が挙げられる。前記水性媒体の使用量は、複合粒子の安定化を図るために、通常、ビニル系単量体の使用量100重量部に対して、100~1000重量部であることが好ましい。
(Aqueous medium)
Examples of the aqueous medium used in the polymerization step of the production method of the present invention include water or a mixed medium of water and a water-soluble medium (for example, alcohol such as methanol and ethanol). In order to stabilize the composite particles, the amount of the aqueous medium used is usually preferably 100 to 1000 parts by weight with respect to 100 parts by weight of the vinyl monomer used.
 (重合開始剤)
 本発明の製造方法の前記重合工程において、前記水性媒体中でのビニル系単量体の重合は、重合開始剤の存在下で行うことが好ましい。
(Polymerization initiator)
In the polymerization step of the production method of the present invention, the polymerization of the vinyl monomer in the aqueous medium is preferably performed in the presence of a polymerization initiator.
 前記重合開始剤としては、通常、水性媒体中での重合に用いられる油溶性の過酸化物系重合開始剤又はアゾ系重合開始剤を好適に使用することができる。 As the polymerization initiator, an oil-soluble peroxide-based polymerization initiator or azo-based polymerization initiator usually used for polymerization in an aqueous medium can be suitably used.
 前記過酸化物系重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、過酸化オクタノイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシジカーボネート、キュメンハイドロパーオキサイド、シクロヘキサノンパーオキサイド、t-ブチルハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド等が挙げられる。 Examples of the peroxide-based polymerization initiator include benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide. Cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide and the like.
 前記アゾ系重合開始剤としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,3-ジメチルブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2’-アゾビス(2-イソプロピルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、(2-カルバモイルアゾ)イソブチロニトリル、4,4’-アゾビス(4-シアノバレリン酸)、ジメチル-2,2’-アゾビスイソブチレート等が挙げられる。 Examples of the azo polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,3- Dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3-trimethylbutyronitrile), 2,2′-azobis (2-isopropyl) Butyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), (2-carbamoylazo) isobutyronitrile 4,4′-azobis (4-cyanovaleric acid), dimethyl-2,2′-azobisisobutyrate and the like.
 上記した重合開始剤のなかでも、分解速度等の観点から、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル等が本発明の製造方法で使用され得る重合開始剤として好ましい。 Among the above polymerization initiators, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, peroxide are used from the viewpoint of decomposition rate and the like. Lauroyl or the like is preferable as a polymerization initiator that can be used in the production method of the present invention.
 前記重合開始剤の使用量は、前記ビニル系単量体の使用量100重量部に対して、0.01~10重量部であることが好ましく、0.1~5.0重量部であることがより好ましい。前記重合開始剤の使用量が、前記ビニル系単量体の使用量100重量部に対して、0.01重量部未満であると、重合開始の機能を十分に果たし難く、また、10重量部を超えると、使用量に見合った効果が得られず、コスト的に不経済的であるため好ましくない。 The amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight and preferably 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the vinyl monomer used. Is more preferable. When the amount of the polymerization initiator used is less than 0.01 parts by weight with respect to 100 parts by weight of the vinyl monomer used, it is difficult to sufficiently perform the polymerization initiation function, and 10 parts by weight. Exceeding this is not preferable because an effect commensurate with the amount of use cannot be obtained and the cost is uneconomical.
 なお、前記重合開始剤は、ビニル系単量体に混合した後、得られた混合物を水性媒体中に分散させてもよいし、重合開始剤とビニル系単量体との両者を別々に水性媒体に分散させたものを混合してもよい。 The polymerization initiator may be mixed with a vinyl monomer, and then the resulting mixture may be dispersed in an aqueous medium, or both the polymerization initiator and the vinyl monomer may be separately aqueous. You may mix what was disperse | distributed to the medium.
 (重合禁止剤)
 本発明の製造方法の前記重合工程において、前記水性媒体中でのビニル系単量体の重合は、水系での乳化粒子(粒子径の小さすぎる重合体粒子)の発生を抑えるために、水溶性の重合禁止剤の存在下で行ってもよい。
(Polymerization inhibitor)
In the polymerization step of the production method of the present invention, the polymerization of the vinyl monomer in the aqueous medium is water-soluble in order to suppress the generation of emulsified particles (polymer particles having a too small particle diameter) in the aqueous system. The polymerization may be carried out in the presence of a polymerization inhibitor.
 前記水溶性の重合禁止剤としては、例えば、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等を挙げることができる。前記重合禁止剤の添加量は、シード重合用のビニル系単量体100重量部に対して0.02~0.2重量部の範囲内であることが好ましい。 Examples of the water-soluble polymerization inhibitor include nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, and polyphenols. The addition amount of the polymerization inhibitor is preferably in the range of 0.02 to 0.2 parts by weight with respect to 100 parts by weight of the vinyl monomer for seed polymerization.
 (その他添加剤)
 本発明の製造方法の前記重合工程において、前記水性媒体中でのビニル系単量体の重合は、本発明の効果を妨げない範囲で、その他の添加剤、例えば、顔料、染料、酸化防止剤、紫外線吸収剤などの存在下で行われてよい。
(Other additives)
In the polymerization step of the production method of the present invention, other additives such as pigments, dyes, antioxidants, and the like, as long as the polymerization of the vinyl monomer in the aqueous medium does not interfere with the effects of the present invention. It may be carried out in the presence of an ultraviolet absorber or the like.
 前記顔料としては、例えば、鉛白、鉛丹、黄鉛、カーボンブラック、群青、酸化亜鉛、酸化コバルト、二酸化チタン、酸化鉄、チタン黄、チタンブラック等の無機顔料;ネーブルスイエロー、ナフトールイエローS、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ等の黄色顔料;モリブデンオレンジ、パーマネントオレンジRK、ベンジジンオレンジG、インダンスレンブリリアントオレンジGK等の橙色顔料;パーマネントレッド4R、リソールレッド、ピラゾロン、レッド4R、ウォッチングレッドカルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミンB等の赤色顔料;ファストバイオレットB、メチルバイオレットレーキ、ジオキサンバイオレット等の紫色顔料;アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩化物;ファストスカイブルー、インダンスレンブルーBC等の青色顔料;ピグメントグリーンB、マラカイトグリーンレーキ、ファナルイエローグリーンG等の緑色顔料;イソインドリノン顔料、キナクリドン顔料、ペリノン顔料、ペリレン顔料、不溶性アゾ顔料、溶性アゾ顔料、染色レーキ顔料等の有機顔料を挙げることができる。 Examples of the pigment include inorganic pigments such as lead white, red lead, yellow lead, carbon black, ultramarine, zinc oxide, cobalt oxide, titanium dioxide, iron oxide, titanium yellow, and titanium black; Navels Yellow, Naphthol Yellow S , Yellow pigments such as Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake; Orange Pigments such as Molybdenum Orange, Permanent Orange RK, Benzidine Orange G, Indanthrene Brilliant Orange GK Permanent red 4R, risor red, pyrazolone, red 4R, watching red calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, alizarin lake, briri Red pigments such as Toccarmin B; Purple pigments such as Fast Violet B, Methyl Violet Lake, Dioxane Violet; Alkaline Blue Lake, Victoria Blue Lake, Phthalocyanine Blue, Metal-free Phthalocyanine Blue, Phthalocyanine Blue Partial Chloride; Fast Sky Blue, Indance Blue pigments such as Ren Blue BC; Green pigments such as Pigment Green B, Malachite Green Lake, and Fanal Yellow Green G; Isoindolinone pigments, quinacridone pigments, perinone pigments, perylene pigments, insoluble azo pigments, soluble azo pigments, dye lakes Organic pigments such as pigments can be mentioned.
 前記染料としては、例えば、ニトロソ染料、ニトロ染料、アゾ染料、スチルベンアゾ染料、ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料、アクリジン染料、キノリン染料、メチン染料、ポリメチン染料、チアゾール染料、インダミン染料、インドフェノール染料、アジン染料、オキサジン染料、チアジン染料、硫化染料等を挙げることができる。 Examples of the dye include a nitroso dye, a nitro dye, an azo dye, a stilbene azo dye, a diphenylmethane dye, a triphenylmethane dye, a xanthene dye, an acridine dye, a quinoline dye, a methine dye, a polymethine dye, a thiazole dye, an indamine dye, and an Indian dye. A phenol dye, an azine dye, an oxazine dye, a thiazine dye, a sulfur dye, etc. can be mentioned.
 前記酸化防止剤としては、2,6-ジ-t-ブチル-4-メチルフェノール(BHT)、n-オクタデシル-3’-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート、ペンタエリスリチル-テトラキス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、3,9-ビス〔2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン等のフェノール系酸化防止剤;ジステアリルペンタエリスリトールジフォスファイト、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジフォスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビフェニレンジフォスフォナイト、ビス(2-t-ブチル-4-メチルフェニル)ペンタエリスリトールジフォスファイト、2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロポキシ]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン等のリン系酸化防止剤;フェニル-1-ナフチルアミン、オクチル化ジフェニルアミン、4,4-ビス(α,α-ジメチルベンジル)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン等のアミン系酸化防止剤等を挙げることができる。 Examples of the antioxidant include 2,6-di-t-butyl-4-methylphenol (BHT), n-octadecyl-3 ′-(3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) ) Propionate, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert-butyl-4- Hydroxybenzyl) isocyanurate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 3,9-bis [2- {3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane Distearyl pentaerythritol diphosphite, tris (2,4-di-t-butylphenyl) phosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, Tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylenediphosphonite, bis (2-t-butyl-4-methylphenyl) pentaerythritol diphosphite, 2,4,8,10 -Tetra-t-butyl-6- [3- (3-methyl-4-hydroxy-5-t-butylphenyl) propoxy] dibenzo [d, f] [1,3,2] dioxaphosphine Phosphorous antioxidants; phenyl-1-naphthylamine, octylated diphenylamine, 4,4-bis (α, α-dimethylbenzyl) diphenylami , Mention may be made of N, N'-di-2-naphthyl -p- amine antioxidants such as phenylenediamine.
 前記紫外線吸収剤としては、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤(例えば、株式会社ADEKA製の「アデカスタブ(登録商標)LA-31」)、ヒドロキシフェニルトリアジン系紫外線吸収剤等が例示できる。 Examples of the ultraviolet absorber include benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers (for example, “ADEKA STAB (registered trademark) LA-31” manufactured by ADEKA Corporation), hydroxyphenyltriazine ultraviolet absorbers, and the like. .
 (重合の方法)
 シード重合では、前記ビニル系単量体と水性媒体とを含む乳化液にシード粒子を添加する。上記乳化液は、公知の方法により作製できる。例えば、ビニル系単量体及び反応性界面活性剤(及び非反応性界面活性剤)を水性媒体に添加し、ホモジナイザー、超音波処理機、ナノマイザー(登録商標)等の微細乳化機により分散させることで、乳化液を得ることができる。
(Method of polymerization)
In seed polymerization, seed particles are added to an emulsion containing the vinyl monomer and an aqueous medium. The emulsion can be prepared by a known method. For example, a vinyl monomer and a reactive surfactant (and a non-reactive surfactant) are added to an aqueous medium and dispersed by a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer (registered trademark). Thus, an emulsion can be obtained.
 シード粒子は、そのままで乳化液に添加されてもよく、水性媒体に分散された形態で乳化液に添加されてもよい。シード粒子が乳化液へ添加された後、ビニル系単量体がシード粒子に吸収される。この吸収は、通常、乳化液を、室温(約20℃)で1~12時間攪拌することにより行うことができる。また、シード粒子へのビニル系単量体の吸収を促進するために、乳化液を30~50℃程度に加温してもよい。 The seed particles may be added to the emulsion as it is, or may be added to the emulsion in a form dispersed in an aqueous medium. After the seed particles are added to the emulsion, the vinyl monomer is absorbed by the seed particles. This absorption can usually be performed by stirring the emulsion at room temperature (about 20 ° C.) for 1 to 12 hours. Further, the emulsion may be heated to about 30 to 50 ° C. in order to promote the absorption of the vinyl monomer into the seed particles.
 シード粒子は、ビニル系単量体を吸収することにより膨潤する。ビニル系単量体とシード粒子との混合比率は、シード粒子1重量部に対して、シード重合用のビニル系単量体が、5~300重量部の範囲内であることが好ましく、100~250重量部の範囲内であることがより好ましい。ビニル系単量体の混合比率が上記範囲より小さくなると、重合による粒子径の増加が小さくなるので、製造効率が低下する。一方、吸収するシード重合用のビニル系単量体の混合比率が上記範囲より大きくなると、シード重合用のビニル系単量体が完全にシード粒子に吸収されず、水性媒体中で独自に乳化重合して、異常に粒子径の小さい重合体粒子が生成されることがある。なお、シード粒子へのビニル系単量体の吸収の終了は、光学顕微鏡の観察で粒子径の拡大を確認することにより判定することができる。 The seed particles swell by absorbing the vinyl monomer. The mixing ratio of the vinyl monomer to the seed particles is preferably within the range of 5 to 300 parts by weight of the vinyl monomer for seed polymerization with respect to 1 part by weight of the seed particles. More preferably within the range of 250 parts by weight. When the mixing ratio of the vinyl monomer is smaller than the above range, the increase in particle diameter due to polymerization is small, and thus the production efficiency is lowered. On the other hand, if the mixing ratio of the vinyl monomer for seed polymerization to be absorbed is larger than the above range, the vinyl monomer for seed polymerization is not completely absorbed by the seed particles and is uniquely emulsion polymerized in an aqueous medium. As a result, polymer particles having an abnormally small particle size may be produced. The end of absorption of the vinyl monomer into the seed particles can be determined by confirming the expansion of the particle diameter by observation with an optical microscope.
 得られた乳化液中に存するビニル系単量体の液滴の粒子径は、シード粒子の粒子径よりも小さくなるようにした方が、ビニル系単量体がシード粒子に効率よく吸収されるので好ましい。 If the particle size of the vinyl monomer droplets in the resulting emulsion is smaller than the particle size of the seed particles, the vinyl monomer is more efficiently absorbed by the seed particles. Therefore, it is preferable.
 そして、シード粒子に吸収されたビニル系単量体を重合させることにより、本発明に係る複合粒子を得ることができる。 And the composite particle | grains which concern on this invention can be obtained by polymerizing the vinyl-type monomer absorbed by the seed particle.
 上記シード重合の重合温度は、ビニル系単量体の種類及び必要に応じて用いられる重合開始剤の種類に応じて適宜決定することができる。シード重合の重合温度は、具体的には、25~110℃であることが好ましく、50~100℃であることがより好ましい。また、シード重合の重合時間は、1~12時間であることが好ましい。シード重合の重合反応は、重合に対して不活性な不活性ガス(例えば窒素)の雰囲気下で行ってもよい。なお、シード重合の重合反応は、ビニル系単量体及び必要に応じて用いられる重合開始剤がシード粒子に完全に吸収された後に、昇温して行われるのが好ましい。 The polymerization temperature of the seed polymerization can be appropriately determined according to the type of vinyl monomer and the type of polymerization initiator used as necessary. Specifically, the polymerization temperature of the seed polymerization is preferably 25 to 110 ° C., more preferably 50 to 100 ° C. The polymerization time for seed polymerization is preferably 1 to 12 hours. The polymerization reaction of the seed polymerization may be performed in an atmosphere of an inert gas (for example, nitrogen) that is inert to the polymerization. In addition, it is preferable that the polymerization reaction of seed polymerization is performed by raising the temperature after the vinyl monomer and the polymerization initiator used as necessary are completely absorbed by the seed particles.
 上記シード重合においては、重合体粒子の分散安定性を向上させるために、高分子分散安定剤を重合反応系に添加してもよい。上記高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドン等が挙げられる。また、上記高分子分散安定剤と、トリポリリン酸ナトリウム等の無機系水溶性高分子化合物とが併用されてもよい。これら高分子分散安定剤のうち、ポリビニルアルコール及びポリビニルピロリドンが好ましい。上記高分子分散安定剤の添加量は、ビニル系単量体100重量部に対して1~10重量部の範囲内であることが好ましい。 In the seed polymerization, a polymer dispersion stabilizer may be added to the polymerization reaction system in order to improve the dispersion stability of the polymer particles. Examples of the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (such as hydroxyethyl cellulose and carboxymethyl cellulose), and polyvinylpyrrolidone. Moreover, the polymer dispersion stabilizer and an inorganic water-soluble polymer compound such as sodium tripolyphosphate may be used in combination. Of these polymer dispersion stabilizers, polyvinyl alcohol and polyvinyl pyrrolidone are preferred. The addition amount of the polymer dispersion stabilizer is preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of the vinyl monomer.
 このようにして、シード粒子に吸収されたビニル系単量体を重合させることにより得られた複合粒子は、重合完了後、必要に応じて濾過や遠心分離等により水性媒体が除去され、水及び/又は溶剤で洗浄された後、乾燥、単離される。乾燥方法は、特に限定されるものではないが、例えば、スプレードライヤーに代表される噴霧乾燥法、ドラムドライヤーに代表される加熱された回転ドラムに付着させて乾燥する方法、凍結乾燥法等の方法が挙げられる。 In this way, the composite particles obtained by polymerizing the vinyl monomer absorbed by the seed particles are removed from the aqueous medium by filtration, centrifugation, or the like as necessary after the polymerization is completed. After being washed with a solvent, it is dried and isolated. The drying method is not particularly limited. For example, a spray drying method typified by a spray dryer, a method of drying by adhering to a heated rotating drum typified by a drum dryer, a freeze drying method, etc. Is mentioned.
 (シード粒子)
 シード粒子は、シード粒子用のビニル系単量体の重合体である。シード粒子用のビニル系単量体は、シード重合に用いるビニル系単量体と同一であってもよく異なっていてもよい。
(Seed particles)
The seed particles are a polymer of a vinyl monomer for seed particles. The vinyl monomer for seed particles may be the same as or different from the vinyl monomer used for seed polymerization.
 シード粒子を得るべくシード粒子用のビニル系単量体を重合するための重合法については、特に限定されるものではないが、分散重合、乳化重合、ソープフリー乳化重合、シード重合、懸濁重合等を用いることができる。シード重合によって略均一な粒子径の重合体粒子を得るためには、最初に略均一の粒子径のシード粒子を使用し、これらのシード粒子を略一様に成長させることが必要になる。原料となる略均一な粒子径のシード粒子は、シード粒子用のビニル系単量体をソープフリー乳化重合(界面活性剤を使用しない乳化重合)及び分散重合等の重合法で重合することによって製造することができる。したがって、シード粒子を得るための重合法としては、乳化重合、ソープフリー乳化重合、シード重合、及び分散重合が好ましい。 The polymerization method for polymerizing the vinyl monomer for seed particles to obtain seed particles is not particularly limited, but dispersion polymerization, emulsion polymerization, soap-free emulsion polymerization, seed polymerization, suspension polymerization. Etc. can be used. In order to obtain polymer particles having a substantially uniform particle size by seed polymerization, it is first necessary to use seed particles having a substantially uniform particle size and grow these seed particles substantially uniformly. Seed particles with a substantially uniform particle size as a raw material are produced by polymerizing vinyl monomers for seed particles using polymerization methods such as soap-free emulsion polymerization (emulsion polymerization without using a surfactant) and dispersion polymerization. can do. Therefore, as a polymerization method for obtaining seed particles, emulsion polymerization, soap-free emulsion polymerization, seed polymerization, and dispersion polymerization are preferable.
 シード粒子を得るためのシード粒子用のビニル系単量体の重合においても、必要に応じて重合開始剤が使用される。上記重合開始剤としては、例えば、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム、ペルオキソ二硫酸カリウム等の過硫酸塩類;過酸化ベンゾイル、過酸化ラウロイル、o-クロロ過酸化ベンゾイル、o-メトキシ過酸化ベンゾイル、3,5,5-トリメチルヘキサノイルパーオキサイド、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、1,1’-アゾビスシクロヘキサンカルボニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。上記重合開始剤の使用量は、シード重合用のビニル系単量体100重量部に対して0.1~3重量部の範囲内であることが好ましい。上記重合開始剤の使用量の加減により、得られるシード粒子の重量平均分子量を調整することができる。 In the polymerization of the vinyl monomer for seed particles to obtain seed particles, a polymerization initiator is used as necessary. Examples of the polymerization initiator include persulfates such as potassium persulfate, ammonium persulfate, sodium persulfate, and potassium peroxodisulfate; benzoyl peroxide, lauroyl peroxide, o-chlorobenzoic peroxide, o-methoxyperoxide. Organic peroxides such as benzoyl, 3,5,5-trimethylhexanoyl peroxide, tert-butylperoxy-2-ethylhexanoate, di-tert-butyl peroxide; 2,2′-azobisisobuty And azo compounds such as rhonitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), and the like. The polymerization initiator is preferably used in an amount of 0.1 to 3 parts by weight with respect to 100 parts by weight of the vinyl monomer for seed polymerization. The weight average molecular weight of the obtained seed particles can be adjusted by adjusting the amount of the polymerization initiator used.
 シード粒子を得るための重合においては、得られるシード粒子の重量平均分子量を調整するために、分子量調整剤を使用してもよい。前記分子量調整剤としては、n-オクチルメルカプタン、tert-ドデシルメルカプタン等のメルカプタン類;α-メチルスチレンダイマー;γ-テルピネン、ジペンテン等のテルペン類;クロロホルム、四塩化炭素等のハロゲン化炭化水素類等を使用できる。上記分子量調整剤の使用量の加減により、得られるシード粒子の重量平均分子量を調整することができる。 In the polymerization for obtaining seed particles, a molecular weight modifier may be used in order to adjust the weight average molecular weight of the obtained seed particles. Examples of the molecular weight modifier include mercaptans such as n-octyl mercaptan and tert-dodecyl mercaptan; α-methylstyrene dimer; terpenes such as γ-terpinene and dipentene; halogenated hydrocarbons such as chloroform and carbon tetrachloride, etc. Can be used. The weight average molecular weight of the obtained seed particles can be adjusted by adjusting the amount of the molecular weight modifier used.
 シード粒子は、前記シード粒子を一次シード粒子として使用し、一次シード粒子にビニル系単量体を吸収させた後、ビニル系単量体を水性媒体中で重合させるシード重合を1回又は複数回行うことにより得られたシード粒子(シード重合を1回行うことにより得られた場合、二次シード粒子)であってもよい。このシード重合は、親水性金属酸化物粒子と水溶性セルロース類と反応性界面活性剤とを必要としないこと以外は複合粒子を得るためのシード重合と同様である。 The seed particle is used as a primary seed particle, and after the vinyl monomer is absorbed by the primary seed particle, seed polymerization is performed once or a plurality of times to polymerize the vinyl monomer in an aqueous medium. It may be seed particles obtained by performing (secondary seed particles when obtained by performing seed polymerization once). This seed polymerization is the same as the seed polymerization for obtaining composite particles, except that hydrophilic metal oxide particles, water-soluble celluloses and a reactive surfactant are not required.
 〔コーティング剤〕
 本発明の複合粒子は、塗膜(コーティング)軟質化剤、塗料用艶消し剤、光拡散剤等としてコーティング剤に含有させることが可能である。本発明のコーティング剤は、本発明の複合粒子を含んでいる。
〔Coating agent〕
The composite particles of the present invention can be contained in a coating agent as a coating film (coating) softening agent, a matting agent for paint, a light diffusing agent, or the like. The coating agent of the present invention contains the composite particles of the present invention.
 前記コーティング剤は、必要に応じてバインダー樹脂を含んでいる。バインダー樹脂としては、有機溶剤もしくは水に可溶な樹脂、又は水中に分散できるエマルジョン型の水性樹脂を使用でき、公知のバインダー樹脂をいずれも利用できる。バインダー樹脂としては、例えば、三菱レイヨン株式会社製の商品名「ダイヤナール(登録商標)LR-102」や「ダイヤナール(登録商標)BR-106」、或いは、大日精化工業株式会社製の商品名「メジウム VM」等のアクリル系樹脂;アルキド樹脂;ポリエステル樹脂;大同化成工業株式会社製の商品名「E-5221P」等のポリウレタン樹脂;塩素化ポリオレフィン樹脂;アモルファスポリオレフィン樹脂;シリコーン樹脂等が挙げられる。これらバインダー樹脂は、塗工される基材へのコーティング剤の密着性や使用される環境等によって適宜選択され得る。 The coating agent contains a binder resin as necessary. As the binder resin, a resin soluble in an organic solvent or water, or an emulsion-type aqueous resin that can be dispersed in water can be used, and any known binder resin can be used. As the binder resin, for example, trade names “Dianar (registered trademark) LR-102” and “Dianar (registered trademark) BR-106” manufactured by Mitsubishi Rayon Co., Ltd., or products manufactured by Dainichi Seika Kogyo Co., Ltd. Acrylic resin such as “medium VM”; alkyd resin; polyester resin; polyurethane resin such as “E-5221P” manufactured by Daido Kasei Kogyo Co., Ltd .; chlorinated polyolefin resin; amorphous polyolefin resin; It is done. These binder resins can be appropriately selected depending on the adhesion of the coating agent to the substrate to be coated, the environment in which it is used, and the like.
 複合粒子の配合量は、バインダー樹脂を含むコーティング剤により形成されるコーティング(塗膜)の厚み、複合粒子の平均粒子径、塗工方法、使用する用途等によって適宜調整されるが、バインダー樹脂100重量部に対して、1~300重量部の範囲内であることが好ましく、5~100重量部の範囲内であることがより好ましい。複合粒子の配合量が、バインダー樹脂100重量部に対して、1重量部未満である場合、艶消し効果が十分得られないことがある。また、複合粒子の配合量が、バインダー樹脂100重量部に対して、300重量部を超える場合にはコーティング剤の粘度が大きくなりすぎるために複合粒子の分散不良が起こることがあり、この結果、コーティング剤の塗工によって得られるコーティング(塗膜)表面にマイクロクラックが発生する、或いは、得られるコーティング(塗膜)表面にザラツキが生じる等のような、コーティング(塗膜)表面の外観不良が起こることがある。 The compounding amount of the composite particles is appropriately adjusted depending on the thickness of the coating (coating film) formed by the coating agent containing the binder resin, the average particle diameter of the composite particles, the coating method, the application to be used, etc. It is preferably in the range of 1 to 300 parts by weight, more preferably in the range of 5 to 100 parts by weight with respect to parts by weight. When the compounding amount of the composite particles is less than 1 part by weight with respect to 100 parts by weight of the binder resin, the matte effect may not be sufficiently obtained. In addition, when the compounding amount of the composite particles exceeds 300 parts by weight with respect to 100 parts by weight of the binder resin, the dispersion of the composite particles may occur because the viscosity of the coating agent becomes too large. Appearance defects on the surface of the coating (coating film), such as micro-cracks on the surface of the coating (coating film) obtained by coating the coating agent, or roughness on the surface of the resulting coating (coating film). May happen.
 前記コーティング剤は、必要に応じて、媒体を含んでいる。前記媒体として、バインダー樹脂を溶解できる溶剤(溶媒)、又はバインダー樹脂を分散できる分散媒を使用することが好ましい。分散媒又は溶媒としては、水性の媒体及び油性の媒体がいずれも使用できる。油性の媒体としては、トルエン、キシレン、シクロヘキサン等の炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;ジオキサン、エチレングリコールジエチルエーテル、エチレングリコールモノブチルエーテル等のエーテル系溶剤等が挙げられる。水性の媒体としては、水、アルコール類(例えばイソプロパノール)等が挙げられる。これら媒体は、1種のみを使用してもよく、2種以上を混合して使用してもよい。コーティング剤中における媒体の含有量は、コーティング剤全量に対し、通常、20~60重量%の範囲内である。 The coating agent contains a medium as necessary. As the medium, it is preferable to use a solvent (solvent) capable of dissolving the binder resin or a dispersion medium capable of dispersing the binder resin. As the dispersion medium or solvent, any of an aqueous medium and an oily medium can be used. Oil-based media include hydrocarbon solvents such as toluene, xylene and cyclohexane; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; dioxane, ethylene glycol diethyl ether and ethylene glycol mono And ether solvents such as butyl ether. Examples of the aqueous medium include water and alcohols (for example, isopropanol). These media may use only 1 type and may mix and use 2 or more types. The content of the medium in the coating agent is usually in the range of 20 to 60% by weight with respect to the total amount of the coating agent.
 さらに、コーティング剤には、硬化剤、着色剤(体質顔料、着色顔料、金属顔料、マイカ粉顔料、染料等)、帯電防止剤、レベリング剤、流動性調整剤、紫外線吸収剤、光安定剤等の他の添加剤が含まれていてもよい。 Furthermore, coating agents include curing agents, colorants (external pigments, color pigments, metal pigments, mica powder pigments, dyes, etc.), antistatic agents, leveling agents, fluidity modifiers, ultraviolet absorbers, light stabilizers, etc. Other additives may be included.
 コーティング剤の被塗布基材としては、特に限定されず、用途に応じた基材が使用できる。 The substrate to which the coating agent is applied is not particularly limited, and a substrate according to the application can be used.
 例えば、光学用途では、ガラス基材、透明基材樹脂からなる透明基材等が被塗布基材として使用される。被塗布基材として透明基材を使用し、着色剤を含まないコーティング剤(光拡散用コーティング剤)を透明基材上に塗工して透明の塗膜を形成することで、光拡散フィルムや防眩フィルム等の光学フィルムを製造することができる。この場合、複合粒子は光拡散剤として機能する。 For example, in an optical application, a glass substrate, a transparent substrate made of a transparent substrate resin, or the like is used as a substrate to be coated. By using a transparent substrate as the substrate to be coated and coating a transparent substrate with a coating agent (light diffusion coating agent) that does not contain a colorant, a light diffusion film or An optical film such as an antiglare film can be produced. In this case, the composite particles function as a light diffusing agent.
 また、被塗布基材として紙を使用し、着色剤を含まないコーティング剤(紙用コーティング剤)を塗工して透明の塗膜を形成することで、艶消し紙を製造することができる。 Also, matte paper can be produced by using paper as a substrate to be coated and applying a coating agent (paper coating agent) containing no colorant to form a transparent coating film.
 コーティング剤の塗工方法は、特に限定されず、公知の方法をいずれも使用できる。塗工方法としては、例えば、コンマダイレクト法、スピンコーティング法、スプレーコーティング法、ロールコート法、ディッピング法、ナイフコート法、カーテンフロー法、ラミネート法等の方法が挙げられる。コーティング剤は、必要に応じて粘度を調整するために、希釈剤を加えて希釈してもよい。希釈剤としては、トルエン、キシレン等の炭化水素系溶剤;メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;ジオキサン、エチレングリコールジエチルエーテル等のエーテル系溶剤;水;アルコール系溶剤等が挙げられる。これら希釈剤は、単独で使用してもよく、2種以上を混合して使用してもよい。光学フィルムを製造する場合には、塗工方法として、複合粒子に由来する凹凸が塗膜表面に形成されるような方法を使用することが好ましい。 Coating method of the coating agent is not particularly limited, and any known method can be used. Examples of the coating method include a comma direct method, a spin coating method, a spray coating method, a roll coating method, a dipping method, a knife coating method, a curtain flow method, and a laminating method. The coating agent may be diluted by adding a diluent in order to adjust the viscosity as necessary. Diluents include hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether; water An alcohol solvent or the like. These diluents may be used alone or in combination of two or more. When manufacturing an optical film, it is preferable to use a method in which irregularities derived from composite particles are formed on the surface of the coating film as a coating method.
 本発明のコーティング剤は、本発明の複合粒子を含むことから、当該コーティング剤から形成されたコーティング(塗膜)に光拡散性を付与することができる。また、上記コーティング剤では、複合粒子の硬度が重合体粒子表面に付着した親水性金属酸化物粒子により確保されているので、当該コーティング剤から形成されたコーティング(塗膜)の耐スクラッチ性の向上を期待できる。また、上記コーティング剤は、水性溶媒を含むものである場合には、複合粒子の優れた粒子流動性と、重合体粒子の表面に付着した親水性金属酸化物粒子の親水性とにより、だまの発生が抑制され、複合粒子の良好な分散性が得られる。それゆえ、上記コーティング剤は、良好なコーティングを形成できる。 Since the coating agent of the present invention contains the composite particles of the present invention, light diffusibility can be imparted to the coating (coating film) formed from the coating agent. In the above coating agent, the hardness of the composite particles is ensured by the hydrophilic metal oxide particles attached to the surface of the polymer particles, so the scratch resistance of the coating (coating film) formed from the coating agent is improved. Can be expected. In addition, when the coating agent contains an aqueous solvent, the coating agent may be spoiled due to the excellent particle fluidity of the composite particles and the hydrophilicity of the hydrophilic metal oxide particles attached to the surface of the polymer particles. Suppressed and good dispersibility of the composite particles can be obtained. Therefore, the coating agent can form a good coating.
 〔光学フィルム〕
 本発明の光学フィルムは、基材フィルムと、その上に形成されているコーティングとを含む光学フィルムであって、前記コーティングが本発明の複合粒子を含むものである。本発明の光学フィルムは、本発明のコーティング剤を基材フィルム上に塗工してコーティング(塗膜)を形成する方法で製造できる。光学フィルムの具体例としては、光拡散フィルムや防眩フィルム等を挙げることができる。
[Optical film]
The optical film of the present invention is an optical film including a base film and a coating formed thereon, and the coating includes the composite particles of the present invention. The optical film of the present invention can be produced by a method in which the coating agent of the present invention is applied onto a substrate film to form a coating (coating film). Specific examples of the optical film include a light diffusion film and an antiglare film.
 前記基材フィルムの構成材料の具体例としては、ガラスや、透明樹脂等を挙げることができる。前記透明樹脂としては、例えば、ポリメチルメタクリレート等のアクリル樹脂、(メタ)アクリル酸アルキル-スチレン共重合体、ポリカーボネート、ポリエチレンテレフタレート(以下「PET」と略記する)等のポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン等が挙げられる。これら透明樹脂の中でも、優れた透明性が透明樹脂に求められる場合には、アクリル樹脂、(メタ)アクリル酸アルキル-スチレン共重合体、ポリカーボネート、ポリエステル、及びポリスチレンが好ましい。これらの透明樹脂は、それぞれ単独で、又は2種以上を組み合わせて使用できる。 Specific examples of the constituent material of the base film include glass and transparent resin. Examples of the transparent resin include acrylic resins such as polymethyl methacrylate, alkyl (meth) acrylate-styrene copolymers, polyesters such as polycarbonate and polyethylene terephthalate (hereinafter abbreviated as “PET”), polyethylene, polypropylene, and polystyrene. Etc. Among these transparent resins, acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, and polystyrene are preferred when excellent transparency is required for the transparent resin. These transparent resins can be used alone or in combination of two or more.
 前記コーティングの厚みは、5~100μmの範囲内であることが好ましい。 The thickness of the coating is preferably in the range of 5 to 100 μm.
 〔樹脂組成物〕
 本発明の複合粒子は、基材樹脂を含む樹脂組成物に用いることができる。本発明の樹脂組成物は、本発明の複合粒子と基材樹脂とを含むものである。前記樹脂組成物は、本発明の複合粒子を含み、光拡散性に優れることから、照明カバー(発光ダイオード(LED)照明用照明カバー、蛍光灯照明用照明カバー等)、光拡散シート、光拡散板等の光拡散体の原料として使用できる。
(Resin composition)
The composite particles of the present invention can be used for a resin composition containing a base resin. The resin composition of the present invention contains the composite particles of the present invention and a base resin. Since the resin composition includes the composite particles of the present invention and is excellent in light diffusibility, a lighting cover (light emitting diode (LED) lighting lighting cover, fluorescent lamp lighting lighting cover, etc.), a light diffusion sheet, and a light diffusion It can be used as a raw material for light diffusers such as plates.
 前記基材樹脂としては、通常、複合粒子を構成する重合体の成分と異なる熱可塑性樹脂が使用される。前記基材樹脂として使用する熱可塑性樹脂としては、例えば、(メタ)アクリル樹脂、(メタ)アクリル酸アルキル-スチレン共重合体、ポリカーボネート、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン等が挙げられる。これら熱可塑性樹脂の中でも、優れた透明性が基材樹脂に求められる場合には、アクリル樹脂、(メタ)アクリル酸アルキル-スチレン共重合体、ポリカーボネート、ポリエステル、及びポリスチレンが好ましい。これらの熱可塑性樹脂は、それぞれ単独で、又は2種以上を組み合わせて使用できる。 As the base resin, a thermoplastic resin different from the polymer components constituting the composite particles is usually used. Examples of the thermoplastic resin used as the base resin include (meth) acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, polyethylene, polypropylene, and polystyrene. Among these thermoplastic resins, acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, and polystyrene are preferable when excellent transparency is required for the base resin. These thermoplastic resins can be used alone or in combination of two or more.
 前記基材樹脂への複合粒子の添加割合は、基材樹脂100重量部に対して、0.1~70重量部の範囲内であることが好ましく、1~50重量部の範囲内であることがより好ましい。前記基材樹脂への複合粒子の添加割合が、基材樹脂100重量部に対して、0.1重量部未満の場合、光拡散体に光拡散性を与えにくくなることがある。前記基材樹脂への複合粒子の添加割合が、基材樹脂100重量部に対して、70重量部より多い場合、上記した光拡散体に光拡散性を与えられるが前記光拡散体の光透過性が低くなることがある。 The addition ratio of the composite particles to the base resin is preferably in the range of 0.1 to 70 parts by weight, preferably in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the base resin. Is more preferable. When the addition ratio of the composite particles to the base resin is less than 0.1 parts by weight with respect to 100 parts by weight of the base resin, it may be difficult to impart light diffusibility to the light diffuser. When the addition ratio of the composite particles to the base resin is more than 70 parts by weight with respect to 100 parts by weight of the base resin, the light diffuser is given light diffusibility, but the light diffuser transmits light. May be low.
 樹脂組成物の製造方法は、特に限定されず、複合粒子と基材樹脂とを機械式粉砕混合方法等のような従来公知の方法で混合することにより製造できる。機械式粉砕混合方法では、例えば、ヘンシェルミキサー、V型混合機、ターブラミキサー、ハイブリダイザー、ロッキングミキサー等の装置を用いて複合粒子と基材樹脂とを混合し撹拌することにより、樹脂組成物を製造できる。 The method for producing the resin composition is not particularly limited, and can be produced by mixing the composite particles and the base resin by a conventionally known method such as a mechanical pulverization and mixing method. In the mechanical pulverization and mixing method, for example, the resin composition is obtained by mixing and stirring the composite particles and the base resin using an apparatus such as a Henschel mixer, a V-type mixer, a turbula mixer, a hybridizer, and a rocking mixer. Can be manufactured.
 〔成形体〕
 本発明の樹脂組成物は、成形して成形体とすることができる。本発明の成形体は、本発明の樹脂組成物からなる。前記成形体の具体例としては、照明カバー(発光ダイオード(LED)照明用照明カバー、蛍光灯照明用照明カバー等)、光拡散シート、光拡散板等の光拡散体を挙げることができる。
[Molded body]
The resin composition of the present invention can be molded into a molded body. The molded product of the present invention comprises the resin composition of the present invention. Specific examples of the molded body include light diffusers such as illumination covers (light emitting diode (LED) illumination illumination covers, fluorescent lamp illumination illumination covers, etc.), light diffusion sheets, and light diffusion plates.
 例えば、複合粒子と基材樹脂とを混合機で混合し、押出機等の溶融混練機で混練することで樹脂組成物からなるペレットを得た後、このペレットを押出成形するか、あるいはこのペレットを溶融後に射出成形することにより、任意の形状の成形体を得ることができる。 For example, the composite particles and the base resin are mixed with a mixer and kneaded with a melt kneader such as an extruder to obtain a pellet made of a resin composition, and then the pellet is extruded or the pellet A molded body having an arbitrary shape can be obtained by injection molding after melting.
 〔外用剤〕
 本発明の複合粒子は、滑り性等の使用感を向上させるための添加剤や、光拡散効果により、毛穴、シミ、シワ等の肌の欠点を目立たなくするための添加剤等として、外用剤に含有させることができる。前記外用剤は、本発明の複合粒子を含んでいる。前記外用剤は、ローション等のような液状の外用剤である場合、複合粒子の再分散性が極めて良く、使用感に優れている。
[External preparation]
The composite particles of the present invention are external preparations such as additives for improving the feeling of use such as slipperiness, additives for making skin defects such as pores, spots and wrinkles inconspicuous by the light diffusion effect, etc. Can be contained. The external preparation contains the composite particles of the present invention. When the external preparation is a liquid external preparation such as a lotion or the like, the redispersibility of the composite particles is extremely good, and the usability is excellent.
 前記外用剤における複合粒子の含有量は、外用剤の種類に応じて適宜設定できるが、1~80重量%の範囲内であることが好ましく、3~70重量%の範囲内であることがより好ましい。外用剤全量に対する複合粒子の含有量が1重量%を下回ると、複合粒子の含有による明確な効果が認められないことがある。また、複合粒子の含有量が80重量%を上回ると、含有量の増加に見合った顕著な効果が認められないことがあるため、生産コスト上好ましくない。 The content of the composite particles in the external preparation can be appropriately set according to the type of external preparation, but is preferably in the range of 1 to 80% by weight, and more preferably in the range of 3 to 70% by weight. preferable. When the content of the composite particles with respect to the total amount of the external preparation is less than 1% by weight, a clear effect due to the inclusion of the composite particles may not be recognized. On the other hand, if the content of the composite particles exceeds 80% by weight, a remarkable effect commensurate with the increase in content may not be recognized, which is not preferable in terms of production cost.
 前記外用剤は、例えば、外用医薬品や化粧料等として使用できる。外用医薬品としては、皮膚に適用するものであれば特に限定されないが、具体的には、クリーム、軟膏、乳剤等が挙げられる。化粧料としては、例えば、石鹸、ボディシャンプー、洗顔クリーム、スクラブ洗顔料、歯磨き等の洗浄用化粧品;おしろい類、フェイスパウダー(ルースパウダー、プレストパウダー等)、ファンデーション(パウダーファンデーション、リキッドファンデーション、乳化型ファンデーション等)、口紅、リップクリーム、頬紅、眉目化粧品(アイシャドー、アイライナー、マスカラ等)、マニキュア等のメイクアップ化粧料;プレシェーブローション、ボディローション等のローション剤;ボディパウダー、ベビーパウダー等のボディー用外用剤;化粧水、クリーム、乳液(化粧乳液)等のスキンケア剤、制汗剤(液状制汗剤、固形状制汗剤、クリーム状制汗剤等)、パック類、洗髪用化粧品、染毛料、整髪料、芳香性化粧品、浴用剤、日焼け止め製品、サンタン製品、ひげ剃り用クリーム等が挙げられる。 The external preparation can be used, for example, as an external medicine or cosmetic. The topical medicine is not particularly limited as long as it is applied to the skin, and specific examples include creams, ointments, emulsions and the like. Cosmetics include, for example, soaps, body shampoos, facial cleansing creams, scrub facial cleansers, toothpastes, and other cosmetics; funerals, face powders (loose powders, pressed powders, etc.), foundations (powder foundations, liquid foundations, emulsification types) Foundation), lipstick, lip balm, blusher, eyebrow cosmetics (eye shadow, eyeliner, mascara, etc.), nail polish and other makeup cosmetics; pre-shave lotion, body lotion and other lotions; body powder, baby powder and other bodies External preparations: skin care agents such as lotion, cream, milky lotion (skin lotion), antiperspirants (liquid antiperspirants, solid antiperspirants, cream antiperspirants, etc.), packs, hair washing cosmetics, dyes Hair, hairdressing, aromatic cosmetics, bath preparation, sun Only protection products, suntan products, include the shaving cream and the like.
 前記外用剤中に配合される複合粒子は、油剤、シリコーン化合物及びフッ素化合物等の表面処理剤や有機粉体、無機粉体等で処理したものであってもよい。 The composite particles blended in the external preparation may be treated with a surface treatment agent such as an oil agent, a silicone compound and a fluorine compound, an organic powder, an inorganic powder or the like.
 前記油剤としては、通常外用剤に使用されているものであればいずれでもよく、例えば流動パラフィン、スクワラン、ワセリン、パラフィンワックス等の炭化水素油;ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸、ウンデシレン酸、オキシステアリン酸、リノール酸、ラノリン脂肪酸、合成脂肪酸等の高級脂肪酸;トリオクタン酸グリセリル、ジカプリン酸プロピレングリコール、2-エチルヘキサン酸セチル、ステアリン酸イソセチル等のエステル油;ミツロウ、鯨ロウ、ラノリン、カルナウバロウ、キャンデリラロウ等のロウ類;アマニ油、綿実油、ヒマシ油、卵黄油、ヤシ油等の油脂類;ステアリン酸亜鉛、ラウリン酸亜鉛等の金属石鹸;セチルアルコール、ステアリルアルコール、オレイルアルコール等の高級アルコール等が挙げられる。また、複合粒子を前記油剤で処理する方法は特に限定されないが、例えば、複合粒子に油剤を添加し、ミキサー等で撹拌することにより油剤をコーティングする乾式法や、油剤をエタノール、プロパノール、酢酸エチル、ヘキサン等の適当な溶媒に加熱溶解し、それに複合粒子を加えて混合撹拌した後、溶媒を減圧除去又は加熱除去することにより、油剤をコーティングする湿式法等を利用することができる。 As the oil agent, any oil agent can be used as long as it is usually used for external preparations. For example, hydrocarbon oils such as liquid paraffin, squalane, petrolatum, paraffin wax; lauric acid, myristic acid, palmitic acid, stearic acid, olein Higher fatty acids such as acids, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, synthetic fatty acids; ester oils such as glyceryl trioctanoate, propylene glycol dicaprate, cetyl 2-ethylhexanoate, isocetyl stearate; beeswax Waxes such as whale wax, lanolin, carnauba wax and candelilla wax; oils and fats such as linseed oil, cottonseed oil, castor oil, egg yolk oil, coconut oil; metal soaps such as zinc stearate and zinc laurate; cetyl alcohol, stearyl Alcohol, oleyl Higher alcohols such as alcohol and the like. Further, the method of treating the composite particles with the oil agent is not particularly limited. For example, a dry method in which an oil agent is added to the composite particles and the oil agent is coated by stirring with a mixer or the like, and the oil agent is ethanol, propanol, ethyl acetate. A wet method for coating an oil agent can be used by dissolving in a suitable solvent such as hexane by heating, adding composite particles thereto, mixing and stirring, and then removing the solvent under reduced pressure or removing by heating.
 前記シリコーン化合物としては、通常外用剤に使用されるものであればいずれでもよく、例えばジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン、アクリル-シリコーン系グラフト重合体、有機シリコーン樹脂部分架橋型オルガノポリシロキサン重合物等が挙げられる。複合粒子をシリコーン化合物で処理する方法は特に限定されないが、例えば、上記の乾式法や湿式法を利用できる。また、必要に応じて焼き付け処理を行ったり、反応性を有するシリコーン化合物の場合は反応触媒等を適宜添加してもよい。 As the silicone compound, any silicone compound can be used as long as it is usually used in external preparations. For example, dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, acrylic-silicone graft polymer, organic silicone resin partially crosslinked Type organopolysiloxane polymer. The method for treating the composite particles with the silicone compound is not particularly limited, and for example, the dry method or the wet method described above can be used. In addition, if necessary, a baking treatment may be performed, or in the case of a reactive silicone compound, a reaction catalyst or the like may be added as appropriate.
 前記フッ素化合物は、通常外用剤に配合されるものであればいずれでもよく、例えばパーフルオロアルキル基含有エステル、パーフルオロアルキルシラン、パーフルオロポリエーテル、パーフルオロ基を有する重合体等が挙げられる。複合粒子をフッ素化合物で処理する方法も特に限定されないが、例えば、前記の乾式法や湿式法を利用できる。また、必要に応じて焼き付け処理を行ったり、反応性を有するフッ素化合物の場合は反応触媒等を適宜添加してもよい。 The fluorine compound may be any compound as long as it is usually blended with an external preparation, and examples thereof include perfluoroalkyl group-containing esters, perfluoroalkylsilanes, perfluoropolyethers, and polymers having a perfluoro group. A method for treating the composite particles with the fluorine compound is not particularly limited, and for example, the dry method or the wet method described above can be used. In addition, if necessary, a baking treatment may be performed, or in the case of a reactive fluorine compound, a reaction catalyst or the like may be added as appropriate.
 前記有機粉体としては、例えばアラビアゴム、トラガントガム、グアーガム、ローカストビーンガム、カラヤガム、アイリスモス、クインスシード、ゼラチン、セラック、ロジン、カゼイン等の天然高分子化合物;カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、アルギン酸ナトリウム、エステルガム、ニトロセルロース、ヒドロキシプロピルセルロース、結晶セルロース等の半合成高分子化合物;ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリビニルメチルエーテル、ポリアミド樹脂、シリコーン油、ナイロン粒子、ポリメタクリル酸メチル粒子、架橋ポリスチレン粒子、シリコーン粒子、ウレタン粒子、ポリエチレン粒子、フッ素樹脂粒子等の樹脂粒子が挙げられる。また、前記無機粉体としては、例えば酸化鉄、群青、コンジョウ、酸化クロム、水酸化クロム、カーボンブラック、マンガンバイオレット、酸化チタン、酸化亜鉛、タルク、カオリン、マイカ、炭酸カルシウム、炭酸マグネシウム、ケイ酸アルミニウム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネシウム、シリカ、ゼオライト、硫酸バリウム、焼成硫酸カルシウム(焼セッコウ)、リン酸カルシウム、ヒドロキシアパタイト、セラミックパウダー等が挙げられる。また、これら有機粉体や無機粉体は、予め表面処理を行ったものでもよい。表面処理方法としては、前記のような、公知の表面処理技術が利用できる。 Examples of the organic powder include natural polymer compounds such as gum arabic, tragacanth gum, guar gum, locust bean gum, karaya gum, iris moss, quince seed, gelatin, shellac, rosin, and casein; sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, Semi-synthetic polymer compounds such as ethyl cellulose, sodium alginate, ester gum, nitrocellulose, hydroxypropyl cellulose, crystalline cellulose; polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide resin, silicone oil, Nylon particles, polymethyl methacrylate particles, crosslinked polystyrene particles, silicone particles, urethane particles, Ethylene particles include resin particles such as fluorine resin particles. Examples of the inorganic powder include iron oxide, ultramarine blue, salmon, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, talc, kaolin, mica, calcium carbonate, magnesium carbonate, and silicic acid. Examples thereof include aluminum, barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked gypsum), calcium phosphate, hydroxyapatite, and ceramic powder. These organic powders and inorganic powders may be subjected to surface treatment in advance. As the surface treatment method, a known surface treatment technique as described above can be used.
 また、前記外用剤には、本発明の効果を損なわない範囲で、一般に用いられている主剤又は添加物を目的に応じて配合できる。そのような主剤又は添加物としては、例えば、水、低級アルコール(炭素数5以下のアルコール)、油脂及びロウ類、炭化水素、高級脂肪酸、高級アルコール、ステロール、脂肪酸エステル、金属石鹸、保湿剤、界面活性剤、高分子化合物、色材原料、香料、粘土鉱物類、防腐・殺菌剤、抗炎症剤、酸化防止剤、紫外線吸収剤、有機無機複合粒子、pH調整剤(トリエタノールアミン等)、特殊配合添加物、医薬品活性成分等が挙げられる。 Moreover, the main agent or additive generally used can be mix | blended with the said external preparation according to the objective in the range which does not impair the effect of this invention. Examples of such a main agent or additive include water, lower alcohol (alcohol having 5 or less carbon atoms), fats and oils, hydrocarbons, higher fatty acids, higher alcohols, sterols, fatty acid esters, metal soaps, moisturizers, Surfactant, polymer compound, coloring material raw material, fragrance, clay minerals, antiseptic / bactericidal agent, anti-inflammatory agent, antioxidant, ultraviolet absorber, organic-inorganic composite particle, pH adjuster (triethanolamine, etc.), Special blending additives, active pharmaceutical ingredients, etc. are mentioned.
 前記油脂及びロウ類の具体例としては、アボガド油、アーモンド油、オリーブ油、カカオ脂、牛脂、ゴマ脂、小麦胚芽油、サフラワー油、シアバター、タートル油、椿油、パーシック油、ひまし油、ブドウ油、マカダミアナッツ油、ミンク油、卵黄油、モクロウ、ヤシ油、ローズヒップ油、硬化油、シリコーン油、オレンジラフィー油、カルナバロウ、キャンデリラロウ、鯨ロウ、ホホバ油、モンタンロウ、ミツロウ、ラノリン等が挙げられる。 Specific examples of the fats and oils include avocado oil, almond oil, olive oil, cacao fat, beef tallow, sesame fat, wheat germ oil, safflower oil, shea butter, turtle oil, straw oil, persic oil, castor oil, grape oil , Macadamia nut oil, mink oil, egg yolk oil, owl, palm oil, rosehip oil, hydrogenated oil, silicone oil, orange luffy oil, carnauba wax, candelilla wax, whale wax, jojoba oil, montan wax, beeswax, lanolin, etc. It is done.
 前記炭化水素の具体例としては、流動パラフィン、ワセリン、パラフィン、セレシン、マイクロクリスタリンワックス、スクワラン等が挙げられる。 Specific examples of the hydrocarbon include liquid paraffin, petrolatum, paraffin, ceresin, microcrystalline wax, squalane and the like.
 前記高級脂肪酸の具体例としては、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、ベヘニン酸、ウンデシレン酸、オキシステアリン酸、リノール酸、ラノリン脂肪酸、合成脂肪酸等の炭素数11以上の脂肪酸が挙げられる。 Specific examples of the higher fatty acid include fatty acids having 11 or more carbon atoms such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, and synthetic fatty acid. Is mentioned.
 前記高級アルコールの具体例としては、ラウリルアルコール、セチルアルコール、セトステアリルアルコール、ステアリルアルコール、オレイルアルコール、ベヘニルアルコール、ラノリンアルコール、水素添加ラノリンアルコール、へキシルデカノール、オクチルデカノール、イソステアリルアルコール、ホホバアルコール、デシルテトラデカノール等の炭素数6以上のアルコールが挙げられる。 Specific examples of the higher alcohol include lauryl alcohol, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, lanolin alcohol, hydrogenated lanolin alcohol, hexyldecanol, octyldecanol, isostearyl alcohol, jojoba alcohol And alcohols having 6 or more carbon atoms such as decyltetradecanol.
 前記ステロールの具体例としては、コレステロール、ジヒドロコレステロール、フィトコレステロール等が挙げられる。 Specific examples of the sterol include cholesterol, dihydrocholesterol, phytocholesterol and the like.
 前記脂肪酸エステルの具体例としては、リノール酸エチル等のリノール酸エステル;ラノリン脂肪酸イソプロピル等のラノリン脂肪酸エステル;ラウリン酸ヘキシル等のラウリン酸エステル;ミリスチン酸イソプロピル、ミリスチン酸ミリスチル、ミリスチン酸セチル、ミリスチン酸オクチルデシル、ミリスチン酸オクチルドデシル等のミリスチン酸エステル;オレイン酸デシル、オレイン酸オクチルドデシル等のオレイン酸エステル;ジメチルオクタン酸ヘキシルデシル等のジメチルオクタン酸エステル;イソオクタン酸セチル(2-エチルヘキサン酸セチル)等のイソオクタン酸エステル;パルミチン酸デシル等のパルミチン酸エステル;トリミリスチン酸グリセリン、トリ(カプリル・カプリン酸)グリセリン、ジオレイン酸プロピレングリコール、トリイソステアリン酸グリセリン、トリイソオクタン酸グリセリン、乳酸セチル、乳酸ミリスチル、リンゴ酸ジイソステアリル、イソステアリン酸コレステリル、12-ヒドロキシステアリン酸コレステリル等の環状アルコール脂肪酸エステル等が挙げられる。 Specific examples of the fatty acid esters include linoleic acid esters such as ethyl linoleate; lanolin fatty acid esters such as lanolin fatty acid isopropyl; lauric acid esters such as hexyl laurate; isopropyl myristate, myristyl myristate, cetyl myristate, myristic acid Myristic acid esters such as octyldecyl and octyldodecyl myristate; oleic acid esters such as decyl oleate and octyldodecyl oleate; dimethyloctanoic acid esters such as hexyldecyl dimethyloctanoate; cetyl isooctanoate (cetyl 2-ethylhexanoate) Isooctanoic acid ester such as decyl palmitate; glyceryl trimyristate, tri (caprylic / capric) glycerin, propylene dioleate Glycol, triisostearate glycerin, triisooctanoate glycerin, cetyl lactate, myristyl lactate, diisostearyl malate, cholesteryl isostearate, cyclic alcohol fatty acid esters such as 12 hydroxystearic acid cholesteryl, and the like.
 前記金属石鹸の具体例としては、ラウリン酸亜鉛、ミリスチン酸亜鉛、ミリスチン酸マグネシウム、パルミチン酸亜鉛、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ウンデシレン酸亜鉛等が挙げられる。 Specific examples of the metal soap include zinc laurate, zinc myristate, magnesium myristate, zinc palmitate, zinc stearate, aluminum stearate, calcium stearate, magnesium stearate, zinc undecylenate and the like.
 前記保湿剤の具体例としては、グリセリン、プロピレングリコール、1,3-ブチレングリコール、ポリエチレングリコール、dl-ピロリドンカルボン酸ナトリウム、乳酸ナトリウム、ソルビトール、ヒアルロン酸ナトリウム、ポリグリセリン、キシリット、マルチトール等が挙げられる。 Specific examples of the humectant include glycerin, propylene glycol, 1,3-butylene glycol, polyethylene glycol, sodium dl-pyrrolidonecarboxylate, sodium lactate, sorbitol, sodium hyaluronate, polyglycerin, xylit, maltitol and the like. It is done.
 前記界面活性剤の具体例としては、高級脂肪酸石鹸、高級アルコール硫酸エステル、N-アシルグルタミン酸塩、リン酸エステル塩等のアニオン性界面活性剤;アミン塩、第4級アンモニウム塩等のカチオン性界面活性剤;ベタイン型、アミノ酸型、イミダゾリン型、レシチン等の両性界面活性剤;脂肪酸モノグリセリド、ポリエチレングリコール、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル(例えば、イソステアリン酸ソルビタン等)、蔗糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、酸化エチレン縮合物等の非イオン性界面活性剤が挙げられる。 Specific examples of the surfactant include anionic surfactants such as higher fatty acid soaps, higher alcohol sulfates, N-acyl glutamates and phosphates; cationic interfaces such as amine salts and quaternary ammonium salts. Active agents: amphoteric surfactants such as betaine type, amino acid type, imidazoline type, lecithin; fatty acid monoglyceride, polyethylene glycol, propylene glycol fatty acid ester, sorbitan fatty acid ester (for example, sorbitan isostearate), sucrose fatty acid ester, polyglycerin fatty acid Nonionic surfactants such as esters and ethylene oxide condensates are listed.
 前記高分子化合物の具体例としては、アラビアゴム、トラガントガム、グアーガム、ローカストビーンガム、カラヤガム、アイリスモス、クインスシード、ゼラチン、セラック、ロジン、カゼイン等の天然高分子化合物;カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、アルギン酸ナトリウム、エステルガム、ニトロセルロース、ヒドロキシプロピルセルロース、結晶セルロース等の半合成高分子化合物;ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリビニルメチルエーテル、ポリアミド樹脂、シリコーン油、ナイロン粒子、ポリ(メタ)アクリル酸エステル粒子(例えば、ポリメタクリル酸メチル粒子等)、ポリスチレン粒子、シリコーン系粒子、ウレタン粒子、ポリエチレン粒子等の樹脂粒子等の合成高分子化合物が挙げられる。なお、本出願書類において、「(メタ)アクリル」は、メタクリル又はアクリルを意味する。 Specific examples of the polymer compound include natural polymer compounds such as gum arabic, gum tragacanth, guar gum, locust bean gum, karaya gum, iris moss, quince seed, gelatin, shellac, rosin, and casein; sodium carboxymethyl cellulose, hydroxyethyl cellulose, Semi-synthetic polymer compounds such as methyl cellulose, ethyl cellulose, sodium alginate, ester gum, nitrocellulose, hydroxypropyl cellulose, crystalline cellulose; polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide resin, silicone Oil, nylon particles, poly (meth) acrylate particles (for example, polymethyl methacrylate particles), Polystyrene particles, silicone particles, urethane particles, synthetic polymer compound of the resin particles such as polyethylene particles. In the present application documents, “(meth) acryl” means methacryl or acryl.
 前記色材原料の具体例としては、酸化鉄(赤色酸化鉄、黄色酸化鉄、黒色酸化鉄等)、群青、コンジョウ、酸化クロム、水酸化クロム、カーボンブラック、マンガンバイオレット、酸化チタン、酸化亜鉛、タルク、カオリン、炭酸カルシウム、炭酸マグネシウム、雲母、ケイ酸アルミニウム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネシウム、シリカ、ゼオライト、硫酸バリウム、焼成硫酸カルシウム(焼セッコウ)、リン酸カルシウム、ヒドロキシアパタイト、セラミックパウダー等の無機顔料、アゾ系、ニトロ系、ニトロソ系、キサンテン系、キノリン系、アントラキノリン系、インジゴ系、トリフェニルメタン系、フタロシアニン系、ピレン系等のタール色素が挙げられる。 Specific examples of the color material raw material include iron oxide (red iron oxide, yellow iron oxide, black iron oxide, etc.), ultramarine blue, sweet potato, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, Talc, kaolin, calcium carbonate, magnesium carbonate, mica, aluminum silicate, barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked gypsum), calcium phosphate, hydroxyapatite, ceramic powder And inorganic pigments such as azo, nitro, nitroso, xanthene, quinoline, anthraquinoline, indigo, triphenylmethane, phthalocyanine, and pyrene.
 なお、上記した高分子化合物の粉体原料や色材原料などの粉体原料は、予め表面処理を行ったものも使用することができる。表面処理の方法としては、公知の表面処理技術が利用でき、例えば、炭化水素油、エステル油、ラノリン等による油剤処理、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフェニルポリシロキサン等によるシリコーン処理、パーフルオロアルキル基含有エステル、パーフルオロアルキルシラン、パーフルオロポリエーテル及びパーフルオロアルキル基を有する重合体等によるフッ素化合物処理、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等によるシランカップリング剤処理、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート等によるチタンカップリング剤処理、金属石鹸処理、アシルグルタミン酸等によるアミノ酸処理、水添卵黄レシチン等によるレシチン処理、コラーゲン処理、ポリエチレン処理、保湿性処理、無機化合物処理、メカノケミカル処理等の処理方法が挙げられる。 In addition, as the powder raw material such as the above-described polymer compound powder raw material and coloring material raw material, those subjected to surface treatment in advance can be used. As a surface treatment method, known surface treatment techniques can be used, for example, oil treatment with hydrocarbon oil, ester oil, lanolin, etc., silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, etc. Fluorine compound treatment with perfluoroalkyl group-containing ester, perfluoroalkylsilane, perfluoropolyether and polymer having perfluoroalkyl group, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, etc. Silane coupling agent treatment with isopropyl triisostearoyl titanate, titanium coupling agent treatment with isopropyl tris (dioctylpyrophosphate) titanate, metal soap treatment, acylglutami Amino treatment with acid, lecithin treatment with hydrogenated egg yolk lecithin, collagen treatment, polyethylene process, moisture retention treatment, an inorganic compound treatment, and processing methods such as mechanochemical treatment.
 前記粘土鉱物類の具体例としては、体質顔料及び吸着剤などの数種の機能を兼ね備えた成分、例えば、タルク、マイカ、セリサイト、チタンセリサイト(酸化チタンで被覆されたセリサイト)、白雲母、バンダービルト社製のVEEGUM(登録商標)等が挙げられる。 Specific examples of the clay minerals include components having several functions such as extender pigments and adsorbents, such as talc, mica, sericite, titanium sericite (sericite coated with titanium oxide), and white cloud. Mother, VEEGUM (registered trademark) manufactured by Vanderbilt, and the like.
 前記香料の具体例としては、アニスアルデヒド、ベンジルアセテート、ゲラニオール等が挙げられる。前記防腐・殺菌剤の具体例としては、メチルパラベン、エチルパラベン、プロピルパラベン、ベンザルコニウム、ベンゼトニウム等が挙げられる。前記酸化防止剤の具体例としては、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸プロピル、トコフェロール等が挙げられる。前記抗炎症剤の具体例としては、ε-アミノカプロン酸、グリチルリチン酸、グリチルリチン酸ジカリウム、β-グリチルレチン酸、塩化リゾチーム、グアイアズレン、ヒドロコルチゾン等を挙げることができる。これらは、単独又は2種以上を混合して用いることができる。前記紫外線吸収剤の具体例としては、微粒子酸化チタン、微粒子酸化亜鉛、微粒子酸化セリウム、微粒子酸化鉄、微粒子酸化ジルコニウム等の無機系吸収剤、安息香酸系、パラアミノ安息香酸系、アントラニリック酸系、サルチル酸系、桂皮酸系、ベンゾフェノン系、ジベンゾイルメタン系等の有機系吸収剤が挙げられる。 Specific examples of the fragrance include anisaldehyde, benzyl acetate, geraniol and the like. Specific examples of the antiseptic / bactericidal agent include methyl paraben, ethyl paraben, propyl paraben, benzalkonium, benzethonium and the like. Specific examples of the antioxidant include dibutylhydroxytoluene, butylhydroxyanisole, propyl gallate, tocopherol and the like. Specific examples of the anti-inflammatory agent include ε-aminocaproic acid, glycyrrhizic acid, dipotassium glycyrrhizinate, β-glycyrrhetinic acid, lysozyme chloride, guaiazulene, hydrocortisone and the like. These can be used individually or in mixture of 2 or more types. Specific examples of the ultraviolet absorber include inorganic absorbents such as fine particle titanium oxide, fine particle zinc oxide, fine particle cerium oxide, fine particle iron oxide, fine particle zirconium oxide, benzoic acid-based, paraaminobenzoic acid-based, and anthranilic acid-based. And organic absorbents such as salicylic acid, cinnamic acid, benzophenone, and dibenzoylmethane.
 前記特殊配合添加物の具体例としては、エストラジオール、エストロン、エチニルエストラジオール、コルチゾン、ヒドロコルチゾン、プレドニゾン等のホルモン類、ビタミンA、ビタミンB、ビタミンC、ビタミンE等のビタミン類、クエン酸、酒石酸、乳酸、塩化アルミニウム、硫酸アルミニウム・カリウム、アラントインクロルヒドロキシアルムニウム、パラフェノールスルホン酸亜鉛、硫酸亜鉛等の皮膚収斂剤、カンタリスチンキ、トウガラシチンキ、ショウキョウチンキ、センブリエキス、ニンニクエキス、ヒノキチオール、塩化カルプロニウム、ペンタデカン酸グリセリド、ビタミンE、エストロゲン、感光素等の発毛促進剤、リン酸-L-アスコルビン酸マグネシウム、コウジ酸等の美白剤等が挙げられる。 Specific examples of the special combination additive include hormones such as estradiol, estrone, ethinyl estradiol, cortisone, hydrocortisone, prednisone, vitamins such as vitamin A, vitamin B, vitamin C, vitamin E, citric acid, tartaric acid, lactic acid Skin astringents such as aluminum chloride, aluminum sulfate / potassium sulfate, allantochlorohydroxyalumonium, zinc paraphenol sulfonate, zinc sulfate, cantalis tincture, pepper tincture, ginger tincture, assembly extract, garlic extract, hinokitiol, carpronium chloride And hair growth promoters such as pentadecanoic acid glyceride, vitamin E, estrogen, and photosensitizer, and whitening agents such as magnesium phosphate-L-ascorbate and kojic acid.
 前記外用剤は、粒子流動性に優れた本発明の複合粒子を含むことから、良好な滑り性を有する。また、前記外用剤が、水性溶媒を含むものである場合には、重合体粒子の表面に付着した親水性金属酸化物粒子の親水性により、複合粒子の良好な分散性が得られる。 Since the external preparation contains the composite particles of the present invention having excellent particle fluidity, the external preparation has good slip properties. Moreover, when the said external preparation contains an aqueous solvent, the dispersibility of a composite particle is acquired with the hydrophilic property of the hydrophilic metal oxide particle adhering to the surface of a polymer particle.
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。まず、実施例及び比較例中の各測定方法及び水溶性セルロース類の検出方法について説明する。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. First, each measuring method in Examples and Comparative Examples and a method for detecting water-soluble cellulose will be described.
 〔親水性金属酸化物粒子の平均一次粒子径の測定方法〕
 親水性金属酸化物粒子の平均一次粒子径(具体的には、キュムラント解析法で算出したZ平均粒子径)は、例えば動的光散乱法による粒径測定装置(Malvern社製の「Zetasizer Nano ZS」)により測定する。
[Measurement method of average primary particle diameter of hydrophilic metal oxide particles]
The average primary particle size of the hydrophilic metal oxide particles (specifically, the Z average particle size calculated by the cumulant analysis method) is, for example, a particle size measuring device (“Zetasizer Nano ZS manufactured by Malvern) by a dynamic light scattering method. )).
 測定試料としては、測定する親水性金属酸化物粒子をイオン交換水中に分散させて、分散液としたものを使用する。なお、親水性金属酸化物粒子の想定の平均一次粒子径が100nm未満の場合は、親水性金属酸化物粒子の濃度が1重量%となるように上記分散液を調製し、親水性金属酸化物粒子の想定の平均一次粒子径が100nm以上の場合は、親水性金属酸化物粒子の濃度が0.1重量%となるように上記分散液を調製する。上記動的光散乱法による粒径測定装置(Malvern社製の「Zetasizer Nano ZS」)の測定部に、ポリエチレン製セルをセットし、前記ポリエチレン製セルに上記分散液を分注して、親水性金属酸化物粒子のZ平均粒子径を測定する。 As a measurement sample, a dispersion liquid in which hydrophilic metal oxide particles to be measured are dispersed in ion-exchanged water is used. When the assumed average primary particle size of the hydrophilic metal oxide particles is less than 100 nm, the dispersion is prepared so that the concentration of the hydrophilic metal oxide particles is 1% by weight. When the assumed average primary particle diameter of the particles is 100 nm or more, the dispersion is prepared so that the concentration of the hydrophilic metal oxide particles is 0.1% by weight. A polyethylene cell is set in the measurement part of the particle size measuring apparatus by the dynamic light scattering method (“Zetasizer Nano ZS” manufactured by Malvern), and the dispersion liquid is dispensed into the polyethylene cell. The Z average particle diameter of the metal oxide particles is measured.
 Z平均粒子径とは、粒子分散物等の動的光散乱法の測定データを、キュムラント解析法を用いて解析して得られる値である。 The Z average particle diameter is a value obtained by analyzing measurement data of a dynamic light scattering method such as a particle dispersion using a cumulant analysis method.
 キュムラント解析法においては、粒子径の平均値と多分散指数(PDI)が得られ、この粒子径の平均値が、Z平均粒子径と定義される。厳密には、測定で得られたG1相関関数の対数に、多項式をフィットさせる作業を、キュムラント解析といい、下式における定数bが、二次キュムラント又はZ平均拡散係数とよばれる。 In the cumulant analysis method, the average value of the particle diameter and the polydispersity index (PDI) are obtained, and the average value of the particle diameter is defined as the Z average particle diameter. Strictly speaking, the work of fitting a polynomial to the logarithm of the G1 correlation function obtained by measurement is called cumulant analysis, and the constant b in the following equation is called a second-order cumulant or Z-average diffusion coefficient.
 LN(G1)=A+bt+ct+dt+et+・・・
 上記定数bを、上記分散液の粘度と幾つかの装置定数を用いて粒子径に換算した値がZ平均粒子径である。
LN (G1) = A + bt + ct 2 + dt 3 + et 4 +...
A value obtained by converting the constant b into a particle diameter using the viscosity of the dispersion and several apparatus constants is the Z average particle diameter.
 〔複合粒子又は重合体粒子の製造に使用したシード粒子の体積平均粒子径の測定方法〕
 複合粒子又は重合体粒子の製造に使用したシード粒子の体積平均粒子径の測定は、レーザー回折・散乱方式粒度分布測定装置(ベックマン・コールター株式会社製「LS 13 320」)及びユニバーサルリキッドサンプルモジュールによって行う。
[Measurement method of volume average particle diameter of seed particles used for production of composite particles or polymer particles]
The volume average particle size of the seed particles used for the production of the composite particles or polymer particles is measured by a laser diffraction / scattering particle size distribution measuring device (“LS 13 320” manufactured by Beckman Coulter, Inc.) and a universal liquid sample module. Do.
 具体的には、シード粒子分散体0.1gを0.1重量%ノニオン性界面活性剤水溶液10ml中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散体としたものを使用する。 Specifically, 0.1 g of the seed particle dispersion in 10 ml of a 0.1 wt% nonionic surfactant aqueous solution, touch mixer (manufactured by Yamato Kagaku Co., Ltd., “TOUCHMIXER MT-31”) and ultrasonic cleaner (stock) Dispersed using “ULTRASONIC CLEANER VS-150” manufactured by Vervo Crear, Inc., and used as a dispersion.
 測定は、ユニバーサルリキッドサンプルモジュール中でポンプ循環を行うことによって上記シード粒子を分散させた状態、かつ、超音波ユニット(ULM ULTRASONIC MODULE)を起動させた状態で行い、シード粒子の体積平均粒子径(体積基準の粒度分布における算術平均径)を算出する。測定条件を下記に示す。 The measurement is performed in a state where the seed particles are dispersed by performing pump circulation in the universal liquid sample module, and in a state where the ultrasonic unit (ULM ULTRASONIC MODULE) is activated, and the volume average particle diameter of the seed particles ( Calculate the arithmetic mean diameter in the volume-based particle size distribution. The measurement conditions are shown below.
 媒体=水
 媒体の屈折率=1.333
 固体の屈折率=シード粒子の屈折率
  (シード粒子がポリメタクリル酸メチル粒子である場合、1.495)
 PIDS相対濃度:40~55%程度
Medium = Water Refractive index of medium = 1.333
Refractive index of solid = refractive index of seed particles (when seed particles are polymethyl methacrylate particles, 1.495)
PIDS relative concentration: about 40-55%
 〔複合粒子又は重合体粒子の体積平均粒子径及び粒子径の変動係数の測定方法〕
 複合粒子又は重合体粒子の体積平均粒子径は、コールターマルチサイザーIII(ベックマン・コールター株式会社製測定装置)により測定する。測定は、ベックマン・コールター株式会社発行のMultisizerTM 3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。
[Measurement method of volume average particle diameter of composite particle or polymer particle and coefficient of variation of particle diameter]
The volume average particle diameter of the composite particles or polymer particles is measured by Coulter Multisizer III (measurement device manufactured by Beckman Coulter, Inc.). Measurement shall be performed using an aperture calibrated according to the Multisizer ™ 3 User's Manual issued by Beckman Coulter, Inc.
 なお、測定に用いるアパチャーは、測定対象の粒子(複合粒子又は重合体粒子)の大きさに応じて適宜選択する。50μmのサイズを有するアパチャーを選択した場合は、Current(アパチャー電流)は-800、Gain(ゲイン)は4と設定とした。 In addition, the aperture used for the measurement is appropriately selected according to the size of the particles to be measured (composite particles or polymer particles). When an aperture having a size of 50 μm was selected, the current (aperture current) was set to −800 and the gain (gain) was set to 4.
 測定用試料としては、測定対象の粒子(複合粒子又は重合体粒子)0.1gを0.1重量%ノニオン性界面活性剤水溶液10ml中にタッチミキサー(ヤマト科学株式会社製、「TOUCHMIXER MT-31」)及び超音波洗浄器(株式会社ヴェルヴォクリーア製、「ULTRASONIC CLEANER VS-150」)を用いて分散させ、分散体としたものを使用する。測定中はビーカー内を気泡が入らない程度に緩く攪拌しておき、前記粒子を10万個測定した時点で測定を終了する。前記粒子の体積平均粒子径は、10万個の粒子の体積基準の粒度分布における算術平均である。 As a sample for measurement, 0.1 g of particles to be measured (composite particles or polymer particles) in 10 ml of a 0.1% by weight nonionic surfactant aqueous solution (TOUCMIXER MT-31, manufactured by Yamato Scientific Co., Ltd.). )) And an ultrasonic cleaner (“ULTRASONIC CLEANER VS-150” manufactured by VervoCrea Co., Ltd.) and used as a dispersion. During the measurement, the beaker is stirred gently to the extent that bubbles do not enter, and the measurement ends when 100,000 particles are measured. The volume average particle diameter of the particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
 複合粒子又は重合体粒子の粒子径の変動係数(CV値)は、以下の数式によって算出する。
 複合粒子又は重合体粒子の粒子径の変動係数
 =(複合粒子又は重合体粒子の体積基準の粒度分布の標準偏差
         ÷複合粒子又は重合体粒子の体積平均粒子径)×100
The coefficient of variation (CV value) of the particle diameter of the composite particles or polymer particles is calculated by the following formula.
Coefficient of variation of particle diameter of composite particle or polymer particle = (standard deviation of particle size distribution based on volume of composite particle or polymer particle ÷ volume average particle diameter of composite particle or polymer particle) × 100
 〔比表面積(実測値)の測定方法〕
 粒子(複合粒子又は重合体粒子)の比表面積は、ISO 9277第1版 JIS Z 8830:2001記載のBET法(窒素吸着法)により測定した。測定対象の粒子(複合粒子又は重合体粒子)について、株式会社島津製作所社製の自動比表面積/細孔分布測定装置Tristar3000を用いてBET窒素吸着等温線を測定し、窒素吸着量からBET多点法を用いて比表面積を算出した。加熱ガスパージによる前処理を実施した後、吸着質として窒素を用い、吸着質断面積0.162nmの条件下で定容量法を用いて測定を行った。なお、前記前処理は、具体的には、前記粒子が入った容器を65℃で加熱しながら、窒素パージを20分行い、室温放冷した後、その容器を65℃で加熱しながら、前記容器内の圧力が0.05mmHg以下になるまで真空脱気を行うことにより、行った。
[Measurement method of specific surface area (actual value)]
The specific surface area of the particles (composite particles or polymer particles) was measured by the BET method (nitrogen adsorption method) described in ISO 9277 1st edition JIS Z 8830: 2001. For the particles to be measured (composite particles or polymer particles), the BET nitrogen adsorption isotherm was measured using an automatic specific surface area / pore distribution measuring device Tristar 3000 manufactured by Shimadzu Corporation. The specific surface area was calculated using the method. After performing the pretreatment by the heated gas purge, the measurement was performed using the constant volume method under the condition of the adsorbate cross section of 0.162 nm 2 using nitrogen as the adsorbate. Specifically, the pretreatment is performed by performing a nitrogen purge for 20 minutes while heating the container containing the particles at 65 ° C., allowing to cool to room temperature, and then heating the container at 65 ° C. This was performed by performing vacuum deaeration until the pressure in the container was 0.05 mmHg or less.
 〔(比表面積の実測値)/(比表面積の計算値)の算出方法〕
 粒子(複合粒子又は重合体粒子)の体積平均粒子径をD(μm)、前記粒子の密度をρ(g/cm)とし、前記粒子の形状を真球と仮定し、かつ前記粒子の全てが体積平均粒子径Dに等しい粒子径を有しているものと仮定すると、前記粒子の比表面積の計算値(m/g)は、以下の式
 (比表面積の計算値)=6/(ρ×D)
により算出される。
[Calculation method of (actual value of specific surface area) / (calculated value of specific surface area)]
The volume average particle diameter of the particles (composite particles or polymer particles) is D (μm), the density of the particles is ρ (g / cm 3 ), the shape of the particles is assumed to be a true sphere, and all of the particles Assuming that has a particle diameter equal to the volume average particle diameter D, the calculated value (m 2 / g) of the specific surface area of the particles is the following formula (calculated value of specific surface area) = 6 / ( ρ × D)
Is calculated by
 したがって、この比表面積の計算値(m/g)と、実際の測定により得られた前記粒子の比表面積の実測値(m/g)との比
 (比表面積の実測値)/(比表面積の計算値)
は、以下の式
 (比表面積の実測値)/(比表面積の計算値)
                 =(比表面積の実測値)×ρ×D/6
により算出される。
Therefore, the ratio between the calculated value of the specific surface area (m 2 / g) and the actual value of the specific surface area of the particles obtained by actual measurement (m 2 / g) (actual value of the specific surface area) / (ratio Calculated surface area)
Is the following formula (actual value of specific surface area) / (calculated value of specific surface area)
= (Actual value of specific surface area) × ρ × D / 6
Is calculated by
 〔密度の測定方法〕
 前記粒子(複合粒子又は重合体粒子)の密度の測定は、JIS K 5101-11-1:2004の「顔料試験方法-第11部:密度-第1節:ピクノメーター法」に記載のA法に準拠して、以下の装置及び基準液(密度既知の置換液体)を用いて行い、以下の計算式で前記粒子(試料)の密度を算出した。
 装置:容量が50mlのピクノメーター
 基準液:99.5%エタノール
     (15℃での密度d15=0.795g/cm
(計算式)
 ρ=m×ρ(m-m+m
  ρ:試料の密度(g/cm
  m:試料の重量(g)
  ρ:15℃での基準液の密度(g/cm
  m:基準液を満たしたピクノメーターの重量(g)
  m:試料及び基準液を満たしたピクノメーターの重量(g)
[Density measurement method]
The density of the particles (composite particles or polymer particles) is measured by the method A described in “Pigment Test Method—Part 11: Density—Section 1: Pycnometer Method” of JIS K 5101-11-1: 2004. In accordance with the above, the following apparatus and reference liquid (substitution liquid with known density) were used, and the density of the particles (sample) was calculated by the following calculation formula.
Apparatus: Pycnometer with a volume of 50 ml Reference solution: 99.5% ethanol (density d 15 = 15.95 g / cm 3 at 15 ° C.)
(a formula)
ρ = m s × ρ w (m a −m b + m s )
ρ: Sample density (g / cm 3 )
m s : sample weight (g)
ρ w : density of reference solution at 15 ° C. (g / cm 3 )
m a : weight of the pycnometer filled with the reference solution (g)
m b : weight of the pycnometer filled with the sample and the reference solution (g)
 〔親水性金属酸化物粒子の含有量の測定方法〕
 後述する実施例及び比較例で得られた複合粒子又は重合体粒子については、上記強熱残分は親水性金属酸化物粒子の含有量(重量%)とほぼ等しいことから、以下の強熱残分の測定方法により測定された強熱残分を親水性金属酸化物粒子の含有量(重量%)とする。
[Method for measuring content of hydrophilic metal oxide particles]
For the composite particles or polymer particles obtained in Examples and Comparative Examples described later, the ignition residue is almost equal to the content (% by weight) of the hydrophilic metal oxide particles. The ignition residue measured by the minute measurement method is defined as the content (% by weight) of the hydrophilic metal oxide particles.
 (強熱残分の測定方法)
 測定対象の粒子(複合粒子又は重合体粒子)1.0gを計量した後、計量した粒子を550℃で30分間、電気炉内で焼失させて、残った残渣の重量(g)を測定する。そして、測定した残渣の重量(g)を、測定前の粒子の重量(1.0g)で除し、百分率換算して、強熱残分(重量%)を得る。
(Measurement method of ignition residue)
After weighing 1.0 g of particles to be measured (composite particles or polymer particles), the weighed particles are burned off in an electric furnace at 550 ° C. for 30 minutes, and the weight (g) of the remaining residue is measured. And the weight (g) of the measured residue is remove | divided by the weight (1.0g) of the particle | grains before a measurement, and it converts into a percentage and obtains an ignition residue (weight%).
 〔粒子流動性を示す評価値の測定方法〕
 測定対象の粒子(複合粒子又は重合体粒子)を100g計量して測定試料とした。そして、この測定試料中の粒子について、粉体流動性測定装置(Mercury Scientific社製の「パウダーアナライザー REVOLUTION」)を用いて、粒子流動性を示す評価値として、なだれ前後のアバランシェエネルギー変化AE(kJ/kg)を下記測定条件で測定した。このAEの値が低いほど、粒子流動性が高いことを示す。
 <測定条件>
 回転数0.3rpmで、150回のなだれを測定
[Measurement method of evaluation value showing particle fluidity]
100 g of particles to be measured (composite particles or polymer particles) were weighed to make a measurement sample. Then, for the particles in the measurement sample, an avalanche energy change AE (kJ) before and after avalanche is used as an evaluation value indicating particle fluidity using a powder fluidity measuring device (“Powder Analyzer REVOLUTION” manufactured by Mercury Scientific). / Kg) was measured under the following measurement conditions. It shows that particle | grain fluidity is so high that the value of this AE is low.
<Measurement conditions>
Measure avalanche 150 times at 0.3 rpm
 〔親水性試験〕
 ビーカーにイオン交換水100gを加え、静置した状態で測定対象の粒子(複合粒子又は重合体粒子)0.2gを液面にのせる。1時間未満の時間経過で粒子が水中に分散した場合は粒子が水への分散性を有する(親水性を有する)と判断し、1時間以上経過しても液面から粒子が沈降しなければ粒子が水への分散性を有しない(親水性を有しない)と判断した。
[Hydrophilicity test]
100 g of ion-exchanged water is added to a beaker, and 0.2 g of particles to be measured (composite particles or polymer particles) are placed on the liquid surface in a standing state. If the particles are dispersed in water after a lapse of less than 1 hour, it is judged that the particles have dispersibility in water (has hydrophilicity), and the particles do not settle from the liquid level even after 1 hour or more. It was judged that the particles have no dispersibility in water (no hydrophilicity).
 〔親水性金属酸化物粒子への水溶性セルロース類の吸着量の測定方法〕
 一部の実施例については、複合粒子の製造工程で得た水溶性セルロース類が吸着した親水性金属酸化物粒子を含む分散媒を用い、親水性金属酸化物粒子1gあたりの水溶性セルロース類の吸着量(g)を以下の方法により、測定した。
[Method for measuring the amount of water-soluble cellulose adsorbed on hydrophilic metal oxide particles]
For some examples, using a dispersion medium containing hydrophilic metal oxide particles adsorbed with water-soluble cellulose obtained in the composite particle production process, water-soluble celluloses per gram of hydrophilic metal oxide particles The amount of adsorption (g) was measured by the following method.
 水溶性セルロース類が吸着した親水性金属酸化物粒子を含む分散媒0.25gを、イオン交換水1gを加えて希釈した後、遠心分離機(株式会社日立ハイテクノロジーズ製の「日立高速冷却遠心機 HIMAC CR22GII」)を用い、25000Gにて、30分間遠心分離する。得られた上澄み液1mlに、5%フェノール水溶液1mlを添加し、さらに、5mlの濃硫酸を添加後、10分間放置し、さらに、25℃の水溶液中に10分間静置して測定試料を得る。前記測定試料について、紫外可視分光光度計(株式会社島津製作所製の「紫外可視分光光度計UV-2450」)で485nmにおける吸光度を測定し、較正曲線(吸光度と水溶性セルロース類の濃度との関係を表す曲線)を用いて、上記上澄み液中における水溶性セルロース類の濃度(g/l)を求める。 After 0.25 g of a dispersion medium containing hydrophilic metal oxide particles adsorbed with water-soluble celluloses is diluted by adding 1 g of ion exchange water, a centrifuge (“Hitachi High-Speed Cooling Centrifuge manufactured by Hitachi High-Technologies Corporation) is used. Using HIMAC CR22GII ”), centrifuge at 25000 G for 30 minutes. 1 ml of 5% phenol aqueous solution is added to 1 ml of the obtained supernatant, 5 ml of concentrated sulfuric acid is added, and the mixture is allowed to stand for 10 minutes, and then left in an aqueous solution at 25 ° C. for 10 minutes to obtain a measurement sample. . For the measurement sample, the absorbance at 485 nm was measured with an ultraviolet-visible spectrophotometer (“UV-visible spectrophotometer UV-2450” manufactured by Shimadzu Corporation), and a calibration curve (relationship between the absorbance and the concentration of water-soluble celluloses). Is used to determine the concentration (g / l) of water-soluble celluloses in the supernatant.
 なお、較正曲線は次に示す方法により、作成する。すなわち、イオン交換水100gに分散媒の作製時に使用する水溶性セルロース類を0.01g、0.05g、0.1g添加した濃度の異なる3種の水溶液を作製する。作製した各水溶液0.25gを、それぞれ、0.75gのイオン交換水で希釈し、希釈後の水溶液のそれぞれについて、吸光度を測定する。そして水溶液中の水溶性セルロース類の重量と吸光度をプロットすることで一次曲線の較正曲線を作成する。 The calibration curve is created by the following method. That is, three types of aqueous solutions with different concentrations are prepared by adding 0.01 g, 0.05 g, and 0.1 g of water-soluble cellulose used in preparing the dispersion medium to 100 g of ion-exchanged water. 0.25 g of each prepared aqueous solution is diluted with 0.75 g of ion-exchanged water, and the absorbance of each diluted aqueous solution is measured. Then, a calibration curve of a linear curve is created by plotting the weight and absorbance of water-soluble celluloses in the aqueous solution.
 そして、以下の式により、親水性金属酸化物粒子1gあたりの水溶性セルロース類の吸着量(g)を求める。
 D=(W-C×V)÷Ws
 D:親水性金属酸化物粒子1gあたりの
   水溶性セルロース類の吸着量(g)
 C:上記上澄み液中における水溶性セルロース類の濃度(g/l)
 W:複合粒子の製造に使用した水溶性セルロース類の重量(g)
 Ws:複合粒子の製造に使用した親水性金属酸化物粒子の重量(g)
 V:複合粒子の製造において上記分散媒の調製に使用した
   水性媒体の体積(l)
And the adsorption amount (g) of water-soluble cellulose per 1g of hydrophilic metal oxide particles is calculated | required with the following formula | equation.
D = (W H −C × V) ÷ Ws
D: Adsorption amount of water-soluble celluloses per gram of hydrophilic metal oxide particles (g)
C: Concentration (g / l) of water-soluble celluloses in the supernatant
W H : Weight of water-soluble cellulose used for production of composite particles (g)
Ws: Weight of hydrophilic metal oxide particles used for production of composite particles (g)
V: Volume of aqueous medium (l) used for the preparation of the dispersion medium in the production of composite particles
 〔複合粒子表面に存在する水溶性セルロース類の検出方法〕
 複合粒子表面に残渣として存在するセルロース類の検出は、以下の方法で行う。すなわち、まず、複合粒子10gを内容量300mlのビーカーに精秤する。次いで、ビーカーの内容物に蒸留水を約150mL添加した後、攪拌しながら複合粒子が層分離なく液全体に分散する状態になるまでメタノールを数滴滴下し、約30分間攪拌する。攪拌後、回転速度3000rpmで20分間、遠心分離し、上澄み液をNo.5C濾紙で濾過する。得られた濾液をビーカーに採取し、完全に乾固させず約5mlまで濃縮乾燥させた後に、「GLクロマトディスク」(ジーエルサイエンス株式会社製、水系13A、孔径0.45μm)で濾過し、濾液を完全に乾固(溶媒留去)させて乾固物(蒸留水及びメタノールによる抽出物)を得た。その後、得られた乾固物について、以下の装置及び条件により、赤外分光法(一回反射型ATR(全反射)法)にて水溶性セルロース由来のピークを検出する。
[Method for detecting water-soluble celluloses present on the surface of composite particles]
The cellulose present as a residue on the surface of the composite particle is detected by the following method. That is, first, 10 g of the composite particles are precisely weighed into a beaker having an internal volume of 300 ml. Next, after adding about 150 mL of distilled water to the contents of the beaker, a few drops of methanol are added while stirring until the composite particles are dispersed throughout the liquid without layer separation, and stirred for about 30 minutes. After stirring, the mixture was centrifuged at a rotational speed of 3000 rpm for 20 minutes. Filter through 5C filter paper. The obtained filtrate was collected in a beaker, concentrated to dryness to about 5 ml without being completely dried, then filtered through “GL Chromatodisc” (aqueous science company 13A, pore size 0.45 μm), and the filtrate. Was completely dried (solvent distilled off) to obtain a dried product (an extract with distilled water and methanol). Then, about the obtained dried solid, the peak derived from water-soluble cellulose is detected by infrared spectroscopy (single reflection type ATR (total reflection) method) with the following apparatus and conditions.
・測定装置:フーリエ変換赤外分光光度計(製品名「Nicolet
      (登録商標) iS10」、Thermo 
      SCIENTIFIC社製)及び
      一回反射型水平状ATR(製品名「Smart iTR」、
      Thermo SCIENTIFIC社製)
・ATR結晶:ダイヤモンド及びZnSeレンズ、角度=42°
・測定法:一回ATR法
・測定波数領域:4000cm-1~650cm-1
・測定深度の波数依存性:補正せず
・検出器:重水素化硫酸トリグリシン(DTGS)検出器
     及びKBrビームスプリッター
・分解能:4cm-1
・積算回数:16回(バックグランド測定時も同様)
・ Measuring device: Fourier transform infrared spectrophotometer (product name: Nicolet
(Registered trademark) iS10 ", Thermo
SCIENTIFIC) and single reflection type horizontal ATR (product name “Smart iTR”,
(Thermo SCIENTIFIC)
ATR crystal: diamond and ZnSe lens, angle = 42 °
Measurement method: Single ATR method Measurement wave number range: 4000 cm −1 to 650 cm −1
-Wave depth dependence of measurement depth: No correction-Detector: Deglycated triglycine sulfate (DTGS) detector and KBr beam splitter-Resolution: 4 cm -1
・ Number of integration: 16 times (same for background measurement)
 〔シード粒子の製造例1〕
 (一次シード粒子の製造)
 水性媒体としての純水3000g中にビニル系単量体としてのメタクリル酸エチル520gと、分子量調整剤としてのn-オクチルメルカプタン9.2gを5Lオートクレーブに投入して、55℃まで昇温した。その後、重合開始剤としてのペルオキソ二硫酸カリウム2.60gを純水120gに溶解した水溶液をオートクレーブの内容物に添加して窒素パージした。その後、55℃で12時間重合を行い、体積平均粒子径0.75μmの一次シード粒子をスラリーの状態で得ることができた。
[Production Example 1 of Seed Particles]
(Manufacture of primary seed particles)
In 3000 g of pure water as an aqueous medium, 520 g of ethyl methacrylate as a vinyl monomer and 9.2 g of n-octyl mercaptan as a molecular weight modifier were charged into a 5 L autoclave and heated to 55 ° C. Thereafter, an aqueous solution prepared by dissolving 2.60 g of potassium peroxodisulfate as a polymerization initiator in 120 g of pure water was added to the contents of the autoclave and purged with nitrogen. Thereafter, polymerization was carried out at 55 ° C. for 12 hours, and primary seed particles having a volume average particle diameter of 0.75 μm could be obtained in a slurry state.
 (二次シード粒子の製造)
 ビニル系単量体としてのメタクリル酸メチル500gに、重合開始剤としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)5.3gを溶解し、単量体混合物を得た。
(Manufacture of secondary seed particles)
In 500 g of methyl methacrylate as a vinyl monomer, 5.3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator was dissolved to obtain a monomer mixture.
 内容量5Lの容器内で、得られた単量体混合物を、非反応性界面活性剤としてのジオクチルスルホコハク酸ナトリウム5.3gが含まれた水性媒体としてのイオン交換水2000gと混合し、高速攪拌機(商品名「ホモミクサーMARK II 2.5型」、プライミクス株式会社製)にて回転数8000rpmで10分間処理して、乳化液を得た。この乳化液に、前記一次シード粒子のスラリー32gを加えて、この混合液を6時間攪拌した。光学顕微鏡にて乳化液中の単量体混合物は完全に一次シード粒子に吸収されていることを確認した。 The obtained monomer mixture was mixed with 2000 g of ion-exchanged water as an aqueous medium containing 5.3 g of sodium dioctyl sulfosuccinate as a non-reactive surfactant in a container having an internal volume of 5 L, and a high-speed stirrer (Trade name “Homomixer MARK II 2.5 type”, manufactured by Primix Co., Ltd.) was processed at a rotational speed of 8000 rpm for 10 minutes to obtain an emulsion. To this emulsion, 32 g of the primary seed particle slurry was added and the mixture was stirred for 6 hours. It was confirmed with an optical microscope that the monomer mixture in the emulsion was completely absorbed by the primary seed particles.
 その後、この分散液と、高分子分散安定剤としてのポリビニルピロリドン(株式会社日本触媒製PVP K-90)19gが溶解している水溶液1000gとを内容量5Lのオートクレーブに入れ、攪拌しながら60℃で8時間重合を行い、体積平均粒子径3.5μmの二次シード粒子(以下、「3.5μm二次シード粒子」と呼ぶ)をスラリーの状態で得ることができた。 Thereafter, this dispersion and 1000 g of an aqueous solution in which 19 g of polyvinylpyrrolidone (PVP K-90 manufactured by Nippon Shokubai Co., Ltd.) as a polymer dispersion stabilizer are dissolved are placed in an autoclave having an internal volume of 5 L, and stirred at 60 ° C. And secondary seed particles having a volume average particle diameter of 3.5 μm (hereinafter referred to as “3.5 μm secondary seed particles”) were obtained in a slurry state.
 〔シード粒子の製造例2〕
 (一次シード粒子の製造)
 内容量5Lのオートクレーブ内で、水性媒体としての純水3000g中に、ビニル系単量体としてのメタクリル酸エチル520gと分子量調整剤としてのn-オクチルメルカプタン5.6gとを投入して、70℃まで昇温した。その後、重合開始剤としてのペルオキソ二硫酸カリウム2.68gを純水125gに溶解した水溶液をオートクレーブの内容物に添加して窒素パージした。その後、70℃で12時間重合を行い、体積平均粒子径0.45μmの一次シード粒子をスラリーの状態で得ることができた。
[Production Example 2 of Seed Particles]
(Manufacture of primary seed particles)
In an autoclave having an internal volume of 5 L, 520 g of ethyl methacrylate as a vinyl monomer and 5.6 g of n-octyl mercaptan as a molecular weight modifier are charged into 3000 g of pure water as an aqueous medium, and 70 ° C. The temperature was raised to. Thereafter, an aqueous solution prepared by dissolving 2.68 g of potassium peroxodisulfate as a polymerization initiator in 125 g of pure water was added to the contents of the autoclave and purged with nitrogen. Thereafter, polymerization was carried out at 70 ° C. for 12 hours, and primary seed particles having a volume average particle diameter of 0.45 μm could be obtained in a slurry state.
 (二次シード粒子の製造)
 内容量5Lのオートクレーブ内で、水性媒体としての純水3200g中にビニル系単量体としてのメタクリル酸メチル360gと分子量調整剤としてのn-オクチルメルカプタン3.6gと前記一次シード粒子(体積平均粒子径0.45μm)のスラリー250gとを投入して、70℃まで昇温した。その後、重合開始剤としてのペルオキソ二硫酸カリウム1.80gを純水125gに溶解した水溶液をオートクレーブの内容物に添加して窒素パージした。その後、70℃で12時間重合を行い、体積平均粒子径1.0μmの二次シード粒子(以下、「1.0μm二次シード粒子」と呼ぶ)をスラリーの状態で得ることができた。
(Manufacture of secondary seed particles)
In an autoclave having an internal volume of 5 L, 360 g of methyl methacrylate as a vinyl monomer and 3.6 g of n-octyl mercaptan as a molecular weight modifier in 3200 g of pure water as an aqueous medium and the primary seed particles (volume average particles) 250 g of slurry having a diameter of 0.45 μm was added and the temperature was raised to 70 ° C. Thereafter, an aqueous solution in which 1.80 g of potassium peroxodisulfate as a polymerization initiator was dissolved in 125 g of pure water was added to the contents of the autoclave and purged with nitrogen. Thereafter, polymerization was performed at 70 ° C. for 12 hours, and secondary seed particles having a volume average particle diameter of 1.0 μm (hereinafter referred to as “1.0 μm secondary seed particles”) were obtained in a slurry state.
 〔実施例1:複合粒子の製造例〕
 攪拌装置を有する内容量5Lの容器内に、水性媒体としてのイオン交換水1000gと、非反応性界面活性剤としてのジオクチルスルホコハク酸ナトリウム5.0gとを投入した。この容器の内容物に、ビニル系単量体としてのメタクリル酸メチル(MMA)900g及びエチレングリコールジメタクリレート(EGDMA)100gと、重合開始剤としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)0.6g及び過酸化ベンゾイル(BPO)0.6gとを加えた。前記容器の内容物を高速攪拌機(商品名「ホモミクサーMARK II 2.5型」、プライミクス株式会社製)にて回転数8000rpmで10分間攪拌してエマルジョンを得た。得られたエマルジョンに、前記3.5μm二次シード粒子のスラリー80gを添加して、30℃で前記攪拌装置により回転数100rpmで3時間攪拌し、3.5μm二次シード粒子にビニル系単量体(メタクリル酸メチル及びエチレングリコールジメタクリレート)を吸収させた。
[Example 1: Production example of composite particles]
In a 5 L container having a stirrer, 1000 g of ion-exchanged water as an aqueous medium and 5.0 g of sodium dioctyl sulfosuccinate as a non-reactive surfactant were charged. The contents of this container were mixed with 900 g of methyl methacrylate (MMA) as a vinyl monomer and 100 g of ethylene glycol dimethacrylate (EGDMA), and 2,2′-azobis (2,4-dimethylvalero) as a polymerization initiator. Nitrile) (ADVN) 0.6 g and benzoyl peroxide (BPO) 0.6 g were added. The contents of the container were stirred for 10 minutes at a rotational speed of 8000 rpm with a high-speed stirrer (trade name “Homomixer MARK II 2.5 type”, manufactured by Primix Co., Ltd.) to obtain an emulsion. To the obtained emulsion, 80 g of the slurry of 3.5 μm secondary seed particles was added and stirred at 30 ° C. with the stirring device at a rotation speed of 100 rpm for 3 hours. The body (methyl methacrylate and ethylene glycol dimethacrylate) was absorbed.
 内容量5Lのオートクレーブ内に、イオン交換水1800gと、親水性金属酸化物粒子としてのスノーテックス(登録商標)O-40(略称「ST-O-40」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径25nm、固形分40重量%)85g(SiO純分量34g)と、水溶性セルロース類としてのメトローズ(登録商標)65SH-50(略称「HPMC(65SH-50)」、信越化学工業株式会社製ヒドロキシプロピルメチルセルロース、曇点65℃)6.8gを投入し、60℃の温度で24時間混合した。この分散媒を用いて親水性金属酸化物粒子(シリカ粒子)に対する水溶性セルロース類の吸着量を測定したところ、5.02mg/mの水溶性セルロース類が親水性金属酸化物粒子に吸着していた。得られた混合物に、前記エマルジョンと、反応性界面活性剤としてのアクアロン(登録商標)RN2025(ノニオン型、第一工業製薬株式会社製、純分25重量%)16gと、重合禁止剤としての亜硝酸ナトリウム0.6gとを添加して、60℃で5時間重合を行った。その後、ろ過により固体を得て、水5Lで洗浄を行った後に固形分を取り出し、真空乾燥機で12時間乾燥を行う事で、複合粒子を得た。 In an autoclave having an internal volume of 5 L, 1800 g of ion-exchanged water and Snowtex (registered trademark) O-40 (abbreviated as “ST-O-40” as hydrophilic metal oxide particles, colloidal silica manufactured by Nissan Chemical Industries, Ltd., Average primary particle size 25 nm, solid content 40 wt%) 85 g (SiO 2 pure amount 34 g), Metrolose (registered trademark) 65SH-50 (abbreviated as “HPMC (65SH-50)”) as a water-soluble cellulose, Shin-Etsu Chemical Co., Ltd. 6.8 g) (hydroxypropyl methylcellulose manufactured by Co., Ltd., cloud point 65 ° C.) was added and mixed at a temperature of 60 ° C. for 24 hours. When the amount of water-soluble cellulose adsorbed on hydrophilic metal oxide particles (silica particles) was measured using this dispersion medium, 5.02 mg / m 2 of water-soluble cellulose was adsorbed on the hydrophilic metal oxide particles. It was. In the obtained mixture, the emulsion, 16 g of Aqualon (registered trademark) RN2025 (nonionic type, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., pure content 25% by weight) as a reactive surfactant, Sodium nitrate 0.6g was added and superposition | polymerization was performed at 60 degreeC for 5 hours. Thereafter, a solid was obtained by filtration, and after washing with 5 L of water, the solid content was taken out and dried in a vacuum dryer for 12 hours to obtain composite particles.
 得られた複合粒子の断面をSEM(走査型電子顕微鏡)及びTEM(透過型電子顕微鏡)で確認したところ、図1及び図2に示すように、当該複合粒子は、重合体粒子と、当該重合体粒子に付着した親水性金属酸化物粒子(図2のTEM画像の黒点部分)とを含み、親水性金属酸化物粒子に由来する表面の凸部が多いことが認められた。また、この複合粒子において、重合体粒子の表面は、親水性金属酸化物粒子からなる層で被覆されていることが認められた。なお、表面の凸部は、親水性金属酸化物粒子とビニル系単量体の小粒子(いわゆる乳化物)とが混ざり合って形成されたものと推測される。 When the cross section of the obtained composite particle was confirmed by SEM (scanning electron microscope) and TEM (transmission electron microscope), as shown in FIG. 1 and FIG. 2, the composite particle was composed of polymer particles, Including the hydrophilic metal oxide particles adhering to the coalesced particles (black dot portion of the TEM image in FIG. 2), it was recognized that there were many convex portions on the surface derived from the hydrophilic metal oxide particles. Moreover, in this composite particle, it was recognized that the surface of the polymer particle was covered with a layer made of hydrophilic metal oxide particles. In addition, it is estimated that the convex part of the surface was formed by mixing hydrophilic metal oxide particles and small particles of vinyl monomer (so-called emulsion).
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が14.5μmで粒子径の変動係数(CV値)が11.5%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が1.16m/g、(比表面積の実測値)/(比表面積の計算値)が3.37、親水性金属酸化物粒子の含有量(強熱残分)が1.40重量%、粒子流動性を示すAEが30.8kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 14.5 μm, the particle size variation coefficient (CV value) was 11.5%, and the particle size distribution was sharp. Further, the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.16 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 3.37, The content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.8 kJ / kg.
 また、親水性試験を実施した結果、すぐに沈降が始まることから、得られた複合粒子が水への分散性を有すること、すなわち親水性を有すること(これは、複合粒子表面に親水性金属酸化物粒子が存在することを示す)を確認した。 In addition, as a result of carrying out the hydrophilicity test, since sedimentation starts immediately, the obtained composite particles have dispersibility in water, that is, have hydrophilicity (this is because the surface of the composite particles has a hydrophilic metal). It was confirmed that oxide particles were present).
 また、得られた複合粒子について、「複合粒子表面に存在する水溶性セルロース類の検出方法」の項で述べた方法で抽出物の赤外分光測定を行った。図1に、得られた複合粒子の抽出物の赤外吸収スペクトルを実線で、ヒドロキシプロピルメチルセルロースの赤外吸収スペクトルを破線でそれぞれ示す。図1に示す測定結果より、複合粒子の抽出物の赤外吸収スペクトルでは、C-O-C結合に起因する吸収ピークが波数1110~1000cm-1付近に見られ、CH変角振動及び-O-H変角振動に起因する吸収ピークが波数1500~1250cm-1に見られた。これは、ヒドロキシプロピルセルロースと類似する赤外吸収スペクトルであることから、複合粒子の抽出物中にヒドロキシプロピルメチルセルロースが存在することが推測できた。 Further, the obtained composite particles were subjected to infrared spectroscopic measurement of the extract by the method described in the section “Method for detecting water-soluble cellulose present on the composite particle surface”. In FIG. 1, the infrared absorption spectrum of the extract of the obtained composite particles is shown by a solid line, and the infrared absorption spectrum of hydroxypropylmethylcellulose is shown by a broken line. From the measurement results shown in FIG. 1, in the infrared absorption spectrum of the composite particle extract, an absorption peak due to C—O—C bond is observed in the vicinity of wave number 1110 to 1000 cm −1 , and CH 3 bending vibration and − Absorption peaks due to O—H bending vibration were observed at wave numbers of 1500 to 1250 cm −1 . Since this is an infrared absorption spectrum similar to that of hydroxypropylcellulose, it can be inferred that hydroxypropylmethylcellulose is present in the composite particle extract.
 〔実施例2:複合粒子の製造例〕
 3.5μm二次シード粒子のスラリー80gに代えて1.0μm二次シード粒子70gを使用した以外は実施例1と同様にして複合粒子を得た。
[Example 2: Production example of composite particles]
Composite particles were obtained in the same manner as in Example 1 except that 70 g of 1.0 μm secondary seed particles were used instead of 80 g of the slurry of 3.5 μm secondary seed particles.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が4.5μmで粒子径の変動係数(CV値)が12.0%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が2.58m/g、(比表面積の実測値)/(比表面積の計算値)が2.32、親水性金属酸化物粒子の含有量(強熱残分)が3.20重量%、粒子流動性を示すAEが42.0kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 4.5 μm, the particle size variation coefficient (CV value) was 12.0%, and the particle size distribution was sharp. Further, the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 2.58 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 2.32. The content of the hydrophilic metal oxide particles (ignition residue) was 3.20% by weight, and the AE indicating particle fluidity was 42.0 kJ / kg.
 また、親水性試験を実施した結果、すぐに沈降が始まることから、得られた複合粒子が水への分散性を有すること、すなわち親水性を有することを確認した。 Further, as a result of carrying out the hydrophilicity test, since sedimentation immediately started, it was confirmed that the obtained composite particles had dispersibility in water, that is, hydrophilicity.
 〔実施例3:複合粒子の製造例〕
 反応性界面活性剤として、アクアロン(登録商標)RN2025 16gに代えて、アデカリアソープ(登録商標)ER-10(ノニオン型、株式会社ADEKA社製)4gを使用した以外は実施例1と同様にして複合粒子を得た。
[Example 3: Production example of composite particles]
As reactive surfactant, instead of 16 g of AQUALON (registered trademark) RN2025, 4 g of ADEKA rear soap (registered trademark) ER-10 (nonionic type, manufactured by ADEKA Corporation) was used in the same manner as in Example 1. Thus, composite particles were obtained.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が14.5μmで粒子径の変動係数(CV値)が11.4%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が1.15m/g、(比表面積の実測値)/(比表面積の計算値)が3.34、親水性金属酸化物粒子の含有量(強熱残分)が1.40重量%、粒子流動性を示すAEが30.6kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 14.5 μm, the particle size variation coefficient (CV value) was 11.4%, and the particle size distribution was sharp. Further, the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.15 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 3.34, The content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.6 kJ / kg.
 また、親水性試験を実施した結果、すぐに沈降が始まることから、得られた複合粒子が水への分散性を有すること、すなわち親水性を有することを確認した。 Further, as a result of carrying out the hydrophilicity test, since sedimentation immediately started, it was confirmed that the obtained composite particles had dispersibility in water, that is, hydrophilicity.
 〔実施例4:複合粒子の製造例〕
 親水性金属酸化物粒子として、スノーテックス(登録商標)O-40 85g(SiO純分量34g)に代えて、スノーテックス(登録商標)O(略称「ST-O」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径13nm、固形分20重量%)85g(SiO純分量17g)を使用した以外は実施例1と同様にして複合粒子を得た。
[Example 4: Production example of composite particles]
As the hydrophilic metal oxide particles, instead of 85 g of Snowtex (registered trademark) O-40 (SiO 2 pure amount 34 g), Snowtex (registered trademark) O (abbreviated as “ST-O”, manufactured by Nissan Chemical Industries, Ltd.) A composite particle was obtained in the same manner as in Example 1 except that 85 g (a pure content of SiO 2 17 g) of colloidal silica, average primary particle diameter 13 nm, solid content 20 wt% was used.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が14.3μmで粒子径の変動係数(CV値)が11.7%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が1.65m/g、(比表面積の実測値)/(比表面積の計算値)が4.72、親水性金属酸化物粒子の含有量(強熱残分)が1.40重量%、粒子流動性を示すAEが30.5kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 14.3 μm, the particle size variation coefficient (CV value) was 11.7%, and the particle size distribution was sharp. The obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.65 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 4.72. The content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.5 kJ / kg.
 また、親水性試験を実施した結果、すぐに沈降が始まることから、得られた複合粒子が水への分散性を有すること、すなわち親水性を有することを確認した。 Further, as a result of carrying out the hydrophilicity test, since sedimentation immediately started, it was confirmed that the obtained composite particles had dispersibility in water, that is, hydrophilicity.
 〔実施例5:複合粒子の製造例〕
 水溶性セルロース類として、メトローズ(登録商標)65SH-50 6.8gに代えて、メトローズ(登録商標)65SH-400(略称「HPMC(65SH-400)」、信越化学工業株式会社製ヒドロキシプロピルメチルセルロース、曇点65℃)6.8gを使用した以外は実施例1と同様にして複合粒子を得た。
[Example 5: Production example of composite particles]
As water-soluble celluloses, instead of Metros (registered trademark) 65SH-50 6.8 g, Metrows (registered trademark) 65SH-400 (abbreviation “HPMC (65SH-400)”, Shin-Etsu Chemical Co., Ltd. hydroxypropyl methylcellulose, Composite particles were obtained in the same manner as in Example 1 except that 6.8 g (cloud point 65 ° C.) was used.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が14.4μmで粒子径の変動係数(CV値)が11.5%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が1.17m/g、(比表面積の実測値)/(比表面積の計算値)が3.37、親水性金属酸化物粒子の含有量(強熱残分)が1.40重量%、粒子流動性を示すAEが30.2kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 14.4 μm, the particle size variation coefficient (CV value) was 11.5%, and the particle size distribution was sharp. Further, the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.17 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 3.37, The content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.2 kJ / kg.
 また、親水性試験を実施した結果、すぐに沈降が始まることから、得られた複合粒子が水への分散性を有すること、すなわち親水性を有することを確認した。 Further, as a result of carrying out the hydrophilicity test, since sedimentation immediately started, it was confirmed that the obtained composite particles had dispersibility in water, that is, hydrophilicity.
 〔実施例6:複合粒子の製造例〕
 水溶性セルロース類として、メトローズ(登録商標)65SH-50 6.8gに代えて、NISSO HPC M(日本曹達株式会社製ヒドロキシプロピルセルロース、下限臨界共溶温度45℃)6.8gを使用した以外は実施例1と同様にして複合粒子を得た。
[Example 6: Production example of composite particles]
As water-soluble celluloses, instead of Metros (registered trademark) 65SH-50 6.8 g, NISSO HPC M (Nippon Soda Co., Ltd. hydroxypropylcellulose, lower critical solution temperature 45 ° C.) 6.8 g was used. In the same manner as in Example 1, composite particles were obtained.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が14.5μmで粒子径の変動係数(CV値)が11.6%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が1.16m/g、(比表面積の実測値)/(比表面積の計算値)が3.36、親水性金属酸化物粒子の含有量(強熱残分)が1.40重量%、粒子流動性を示すAEが30.5kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 14.5 μm, the particle size variation coefficient (CV value) was 11.6%, and the particle size distribution was sharp. Further, the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.16 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 3.36, The content of the hydrophilic metal oxide particles (ignition residue) was 1.40% by weight, and the AE indicating particle fluidity was 30.5 kJ / kg.
 また、親水性試験を実施した結果、すぐに沈降が始まることから、得られた複合粒子が水への分散性を有すること、すなわち親水性を有することを確認した。 Further, as a result of carrying out the hydrophilicity test, since sedimentation immediately started, it was confirmed that the obtained composite particles had dispersibility in water, that is, hydrophilicity.
 〔実施例7:複合粒子の製造例〕
 ビニル系単量体として、メタクリル酸メチル(MMA)900g及びエチレングリコールジメタクリレート(EGDMA)100gに代えて、メタクリル酸メチル(MMA)800g、スチレン100g、及びエチレングリコールジメタクリレート(EGDMA)100gを使用した以外は実施例2と同様にして複合粒子を得た。
[Example 7: Production example of composite particles]
Instead of 900 g of methyl methacrylate (MMA) and 100 g of ethylene glycol dimethacrylate (EGDMA), 800 g of methyl methacrylate (MMA), 100 g of styrene, and 100 g of ethylene glycol dimethacrylate (EGDMA) were used as vinyl monomers. Except for the above, composite particles were obtained in the same manner as in Example 2.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が4.2μmで粒子径の変動係数(CV値)が12.1%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が2.62m/g、(比表面積の実測値)/(比表面積の計算値)が2.20、親水性金属酸化物粒子の含有量(強熱残分)が3.20重量%、粒子流動性を示すAEが43.5kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 4.2 μm, the particle size variation coefficient (CV value) was 12.1%, and the particle size distribution was sharp. Further, the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 2.62 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 2.20, The content of the hydrophilic metal oxide particles (ignition residue) was 3.20% by weight, and the AE indicating particle fluidity was 43.5 kJ / kg.
 また、親水性試験を実施した結果、すぐに沈降が始まることから、得られた複合粒子が水への分散性を有すること、すなわち親水性を有することを確認した。 Further, as a result of carrying out the hydrophilicity test, since sedimentation immediately started, it was confirmed that the obtained composite particles had dispersibility in water, that is, hydrophilicity.
 〔実施例8:複合粒子の製造例〕
 ビニル系単量体として、メタクリル酸メチル(MMA)900g及びエチレングリコールジメタクリレート(EGDMA)100gに代えて、アクリル酸ブチル(BA)350g、メタクリル酸ブチル(BMA)350g、及びエチレングリコールジメタクリレート(EGDMA)300gを使用し、重合開始剤として、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)0.6g及び過酸化ベンゾイル(BPO)0.6gに代えて2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)6.0g及び過酸化ベンゾイル(BPO)6.0gを使用した以外は実施例2と同様にして複合粒子を得た。
[Example 8: Production example of composite particles]
As vinyl monomers, instead of 900 g of methyl methacrylate (MMA) and 100 g of ethylene glycol dimethacrylate (EGDMA), 350 g of butyl acrylate (BA), 350 g of butyl methacrylate (BMA), and ethylene glycol dimethacrylate (EGDMA) ) 300 g, and 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN) 0.6 g and benzoyl peroxide (BPO) 0.6 g were used as polymerization initiators instead of 2,2′- Composite particles were obtained in the same manner as in Example 2 except that 6.0 g of azobis (2,4-dimethylvaleronitrile) (ADVN) and 6.0 g of benzoyl peroxide (BPO) were used.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が4.5μmで粒子径の変動係数(CV値)が11.1%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が2.60m/g、(比表面積の実測値)/(比表面積の計算値)が2.34、親水性金属酸化物粒子の含有量(強熱残分)が3.10重量%、粒子流動性を示すAEが42.1kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 4.5 μm, the particle size variation coefficient (CV value) was 11.1%, and the particle size distribution was sharp. The obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 2.60 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 2.34, The content of the hydrophilic metal oxide particles (ignition residue) was 3.10% by weight, and the AE indicating particle fluidity was 42.1 kJ / kg.
 〔実施例9:複合粒子の製造例〕
 親水性金属酸化物粒子として、スノーテックス(登録商標)O-40 85g(SiO純分量34g)に代えて、超微粒子シリカ被覆酸化チタン粒子の水分散体GT-10W(堺化学工業株式会社製、平均一次粒子径:115nm、固形分40重量%、シリカ被覆量(シリカ被覆金属酸化物粒子におけるシリカ含有量)20重量%)85g(シリカ被覆酸化チタン粒子の純分量34g)を使用し、重合開始剤として、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)0.6g及び過酸化ベンゾイル(BPO)0.6gに代えて2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)6.0g及び過酸化ベンゾイル(BPO)6.0gを使用した以外は実施例1と同様にして複合粒子を得た。
[Example 9: Production example of composite particles]
As hydrophilic metal oxide particles, instead of 85 g of Snowtex (registered trademark) O-40 (SiO 2 pure amount 34 g), an aqueous dispersion GT-10W of ultrafine silica-coated titanium oxide particles (manufactured by Sakai Chemical Industry Co., Ltd.) , Average primary particle size: 115 nm, solid content 40% by weight, silica coating amount (silica content in silica-coated metal oxide particles) 20% by weight) 85 g (pure amount of silica-coated titanium oxide particles 34 g) and polymerization As an initiator, instead of 0.6 g of 2,2′-azobis (2,4-dimethylvaleronitrile) (ADVN) and 0.6 g of benzoyl peroxide (BPO), 2,2′-azobis (2,4-dimethyl) Composite particles were obtained in the same manner as in Example 1 except that 6.0 g of valeronitrile) (ADVN) and 6.0 g of benzoyl peroxide (BPO) were used.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が14.0μmで粒子径の変動係数(CV値)が11.7%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が8.61m/g、(比表面積の実測値)/(比表面積の計算値)が24.11、親水性金属酸化物粒子の含有量(強熱残分)が2.45重量%、粒子流動性を示すAEが40.6kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 14.0 μm, the particle size variation coefficient (CV value) was 11.7%, and the particle size distribution was sharp. Further, the obtained composite particles have a density of 1.2 g / cm 3 , an actual value of measured specific surface area of 8.61 m 2 / g, (measured value of specific surface area) / (calculated value of specific surface area) of 24.11, The content of the hydrophilic metal oxide particles (residue on ignition) was 2.45% by weight, and the AE indicating particle fluidity was 40.6 kJ / kg.
 〔実施例10:複合粒子の製造例〕
 3.5μm二次シード粒子のスラリー80gに代えて1.0μm二次シード粒子70gを使用した以外は実施例9と同様にして複合粒子を得た。
[Example 10: Production example of composite particles]
Composite particles were obtained in the same manner as in Example 9 except that 70 g of 1.0 μm secondary seed particles were used instead of 80 g of the slurry of 3.5 μm secondary seed particles.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が4.7μmで粒子径の変動係数(CV値)が12.1%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が9.57m/g、(比表面積の実測値)/(比表面積の計算値)が9.00、親水性金属酸化物粒子の含有量(強熱残分)が2.10重量%、粒子流動性を示すAEが48.5kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 4.7 μm, the particle size variation coefficient (CV value) was 12.1%, and the particle size distribution was sharp. The obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 9.57 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 9.00, The content of the hydrophilic metal oxide particles (ignition residue) was 2.10% by weight, and the AE showing particle fluidity was 48.5 kJ / kg.
 〔実施例11:複合粒子の製造例〕
 親水性金属酸化物粒子として、超微粒子シリカ被覆酸化チタン水分散体GT-10W 85g(シリカ被覆酸化チタン粒子の純分量34g)に代えて、超微粒子シリカ被覆酸化亜鉛粒子FINEX-30W(堺化学工業株式会社製、平均一次粒子径:137nm、シリカ被覆量(シリカ被覆金属酸化物粒子におけるシリカ含有量)20重量%)34gを使用した以外は実施例9と同様にして複合粒子を得た。
[Example 11: Production example of composite particles]
As hydrophilic metal oxide particles, instead of 85 g of ultrafine silica-coated titanium oxide aqueous dispersion GT-10W (pure amount of silica-coated titanium oxide particles 34 g), ultrafine silica-coated zinc oxide particles FINEX-30W (Sakai Chemical Industry) Composite particles were obtained in the same manner as in Example 9 except that 34 g of an average primary particle size manufactured by Co., Ltd., 137 nm, and a silica coating amount (silica content in silica-coated metal oxide particles) of 20% by weight) was used.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が14.1μmで粒子径の変動係数(CV値)が13.8%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が6.63m/g、(比表面積の実測値)/(比表面積の計算値)が18.70、親水性金属酸化物粒子の含有量(強熱残分)が2.35重量%、粒子流動性を示すAEが38.4kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 14.1 μm, the particle size variation coefficient (CV value) was 13.8%, and the particle size distribution was sharp. The obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 6.63 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 18.70, The content of the hydrophilic metal oxide particles (ignition residue) was 2.35% by weight, and the AE indicating particle fluidity was 38.4 kJ / kg.
 〔実施例12:複合粒子の製造例〕
 親水性金属酸化物粒子として、超微粒子シリカ被覆酸化チタン水分散体GT-10W 85g(シリカ被覆酸化チタン粒子の純分量34g)に代えて、アンチモンでドープされた酸化亜鉛粒子の水分散体「セルナックス(登録商標)CX-Z330H」(日産化学工業株式会社製、平均一次粒子径:20nm、固形分20重量%)170gを使用した以外は実施例9と同様にして複合粒子を得た。
[Example 12: Production example of composite particles]
Instead of 85 g of ultrafine silica-coated titanium oxide aqueous dispersion GT-10W (pure 34 g of silica-coated titanium oxide particles) as hydrophilic metal oxide particles, an aqueous dispersion of zinc oxide particles doped with antimony “cell” Composite particles were obtained in the same manner as in Example 9, except that 170 g of “Nax (registered trademark) CX-Z330H” (manufactured by Nissan Chemical Industries, Ltd., average primary particle size: 20 nm, solid content 20 wt%) was used.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が15.2μmで粒子径の変動係数(CV値)が11.8%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が3.03m/g、(比表面積の実測値)/(比表面積の計算値)が9.21、親水性金属酸化物粒子の含有量(強熱残分)が2.10重量%、粒子流動性を示すAEが38.0kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 15.2 μm, the particle size variation coefficient (CV value) was 11.8%, and the particle size distribution was sharp. The obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 3.03 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 9.21, The content of the hydrophilic metal oxide particles (ignition residue) was 2.10% by weight, and the AE indicating particle fluidity was 38.0 kJ / kg.
 〔実施例13:複合粒子の製造例〕
 親水性金属酸化物粒子として、超微粒子シリカ被覆酸化チタン水分散体GT-10W 85g(シリカ被覆酸化チタン粒子の純分量34g)に代えて、リンドープ型酸化スズ粒子の水分散体「セルナックス(登録商標)CX-S301H」(日産化学工業株式会社製、平均一次粒子径:20nm、固形分30重量%)113gを使用した以外は実施例9と同様にして複合粒子を得た。
[Example 13: Production example of composite particles]
As hydrophilic metal oxide particles, instead of 85 g of ultrafine particle silica-coated titanium oxide aqueous dispersion GT-10W (pure amount of silica-coated titanium oxide particles 34 g), an aqueous dispersion of phosphorus-doped tin oxide particles “CELLAX (registered) A composite particle was obtained in the same manner as in Example 9 except that 113 g (trademark) CX-S301H (manufactured by Nissan Chemical Industries, Ltd., average primary particle size: 20 nm, solid content 30% by weight) was used.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が15.2μmで粒子径の変動係数(CV値)が12.1%であり、粒度分布がシャープであった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が3.11m/g、(比表面積の実測値)/(比表面積の計算値)が9.45、親水性金属酸化物粒子の含有量(強熱残分)が2.12重量%、粒子流動性を示すAEが37.6kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 15.2 μm, the particle size variation coefficient (CV value) was 12.1%, and the particle size distribution was sharp. The obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 3.11 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 9.45, The content of the hydrophilic metal oxide particles (residue on ignition) was 2.12% by weight, and the AE indicating particle fluidity was 37.6 kJ / kg.
 〔比較例1:複合粒子の比較製造例〕
 親水性金属酸化物粒子としてのスノーテックス(登録商標)O-40と、水溶性セルロース類としてのメトローズ(登録商標)65SH-400とを使用しないこと、及び、反応性界面活性剤としてのアクアロン(登録商標)RN2025 16gに代えて高分子分散安定剤であるポリビニルアルコール50gを使用したこと以外は、実施例1と同様にして重合体粒子を得た。
[Comparative Example 1: Comparative production example of composite particles]
Do not use SNOWTEX (registered trademark) O-40 as hydrophilic metal oxide particles and Metrolose (registered trademark) 65SH-400 as water-soluble celluloses, and aqualon as a reactive surfactant ( (Registered Trademark) Polymer particles were obtained in the same manner as in Example 1 except that 50 g of polyvinyl alcohol as a polymer dispersion stabilizer was used instead of 16 g of RN2025.
 得られた重合体粒子の断面をSEM(走査型電子顕微鏡)で確認したところ、図3に示すように、表面凹凸がほとんどないことが認められた。 When the cross section of the obtained polymer particles was confirmed by SEM (scanning electron microscope), it was recognized that there was almost no surface unevenness as shown in FIG.
 得られた重合体粒子の粒度分布を測定したところ、体積平均粒子径が14.5μmで粒子径の変動係数(CV値)が10.0%であった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が0.40m/g、(比表面積の実測値)/(比表面積の計算値)が1.16、粒子流動性を示すAEが84.6kJ/kgであった。 When the particle size distribution of the obtained polymer particles was measured, the volume average particle size was 14.5 μm and the coefficient of variation (CV value) of the particle size was 10.0%. The obtained composite particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 0.40 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 1.16, The AE showing particle fluidity was 84.6 kJ / kg.
 また、親水性試験を実施した結果、1時間以上経過しても沈降がなく、得られた重合体粒子が水への分散性を有しないこと、すなわち親水性を有しないことを確認した。 Further, as a result of carrying out the hydrophilicity test, it was confirmed that there was no sedimentation even after 1 hour or more and that the obtained polymer particles were not dispersible in water, that is, were not hydrophilic.
 〔比較例2:複合粒子の比較製造例〕
 親水性金属酸化物粒子としてのスノーテックス(登録商標)O-40と、水溶性セルロース類としてのメトローズ(登録商標)65SH-400とを使用しないこと、及び、反応性界面活性剤としてのアクアロン(登録商標)RN2025 16gに代えて高分子分散安定剤であるポリビニルアルコール50gを使用したこと以外は、実施例2と同様にして重合体粒子を得た。
[Comparative Example 2: Comparative production example of composite particles]
Do not use SNOWTEX (registered trademark) O-40 as hydrophilic metal oxide particles and Metrolose (registered trademark) 65SH-400 as water-soluble celluloses, and aqualon as a reactive surfactant ( (Registered Trademark) Polymer particles were obtained in the same manner as in Example 2 except that 50 g of polyvinyl alcohol as a polymer dispersion stabilizer was used instead of 16 g of RN2025.
 得られた重合体粒子の粒度分布を測定したところ、体積平均粒子径が4.2μmで粒子径の変動係数(CV値)が11.0%であった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が1.00m/g、(比表面積の実測値)/(比表面積の計算値)が0.84、粒子流動性を示すAEが69.1kJ/kgであった。 When the particle size distribution of the obtained polymer particles was measured, the volume average particle size was 4.2 μm and the variation coefficient (CV value) of the particle size was 11.0%. Further, the obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.00 m 2 / g, (actual measurement of specific surface area) / (calculated value of specific surface area) of 0.84, The AE indicating the particle fluidity was 69.1 kJ / kg.
 また、親水性試験を実施した結果、1時間以上経過しても沈降がなく、得られた重合体粒子が水への分散性を有しないこと、すなわち親水性を有しないことを確認した。 Further, as a result of carrying out the hydrophilicity test, it was confirmed that there was no sedimentation even after 1 hour or more and that the obtained polymer particles were not dispersible in water, that is, were not hydrophilic.
 〔比較例3:複合粒子の比較製造例〕
 親水性金属酸化物粒子としてのスノーテックス(登録商標)O-40の使用量を85g(SiO純分量34g)から480g(SiO純分量192g)に変更したこと、及び、水溶性セルロース類としてのメトローズ(登録商標)65SH-400と、反応性界面活性剤としてのアクアロン(登録商標)RN2025とを使用しないこと以外は、実施例2と同様にして粒子を得た。
[Comparative Example 3: Comparative production example of composite particles]
The amount of SNOWTEX (registered trademark) O-40 used as hydrophilic metal oxide particles was changed from 85 g (SiO 2 pure amount 34 g) to 480 g (SiO 2 pure amount 192 g), and water-soluble celluloses Particles were obtained in the same manner as in Example 2 except that no Metroze (registered trademark) 65SH-400 and Aqualon (registered trademark) RN2025 as a reactive surfactant were used.
 得られた粒子の粒度分布を測定したところ、体積平均粒子径が4.5μmで粒子径の変動係数(CV値)が11.0%であった。また、得られた粒子は、密度1.2g/cm、比表面積の実測値が1.02m/g、(比表面積の実測値)/(比表面積の計算値)が0.92、親水性金属酸化物粒子の含有量(強熱残分)が定量下限未満、粒子流動性を示すAEが61.2kJ/kgであった。得られた粒子は、強熱残分が定量下限未満であることから、親水性金属酸化物粒子をほとんど含まないと認められ、複合粒子ではなく重合体粒子であると認められた。 When the particle size distribution of the obtained particles was measured, the volume average particle diameter was 4.5 μm, and the coefficient of variation (CV value) of the particle diameter was 11.0%. The obtained particles had a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 1.02 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 0.92, hydrophilic The content of the conductive metal oxide particles (ignition residue) was less than the lower limit of quantification, and the AE indicating particle fluidity was 61.2 kJ / kg. The obtained particles were found to contain almost no hydrophilic metal oxide particles because the ignition residue was less than the lower limit of quantification, and it was recognized that they were polymer particles rather than composite particles.
 また、親水性試験を実施した結果、1時間以上経過しても沈降がなく、得られた重合体粒子が水への分散性を有しないこと、すなわち親水性を有しないことを確認した。 Further, as a result of carrying out the hydrophilicity test, it was confirmed that there was no sedimentation even after 1 hour or more and that the obtained polymer particles were not dispersible in water, that is, were not hydrophilic.
 〔比較例4:複合粒子の比較製造例〕
 親水性金属酸化物粒子としてのスノーテックス(登録商標)O-40の使用量を85g(SiO純分量34g)から210g(SiO純分量84g)に変更したこと、水溶性セルロース類としてのメトローズ(登録商標)65SH-400 6.8gに代えてアルカリ金属塩である塩化ナトリウム72gを使用したこと、及び反応性界面活性剤としてのアクアロン(登録商標)RN2025を使用しないこと以外は、実施例1と同様にしてシード重合を試みた。しかしながら、分散媒中における単量体混合物の液滴安定性が低く、複合粒子を得ることができなかった。
[Comparative Example 4: Comparative production example of composite particles]
The amount of SNOWTEX (registered trademark) O-40 used as hydrophilic metal oxide particles was changed from 85 g (SiO 2 pure amount 34 g) to 210 g (SiO 2 pure amount 84 g), and Metrows as water-soluble celluloses Example 1 except that 72 g of sodium chloride, an alkali metal salt, was used in place of 6.8 g of (registered trademark) 65SH-400, and that Aqualon (registered trademark) RN2025 as a reactive surfactant was not used. In the same manner as above, seed polymerization was attempted. However, the droplet stability of the monomer mixture in the dispersion medium was low, and composite particles could not be obtained.
 〔比較例5:複合粒子の比較製造例〕
 攪拌装置を有する重合容器に、水性媒体としての水150gと、親水性金属酸化物粒子としてのスノーテックス(登録商標)O-40(略称「ST-O-40」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径25nm、固形分40重量%)2.75g(SiO純分量1.1g)と、水溶性セルロース類としてのメトローズ(登録商標)65SH-400(略称「HPMC(65SH-400)、信越化学工業株式会社製ヒドロキシプロピルメチルセルロース、曇点65℃)0.22gとを投入し、60℃の温度で24時間混合した。これにより、水溶性セルロース類が吸着した親水性金属酸化物粒子(シリカ粒子)を含む分散媒を得た。
[Comparative Example 5: Comparative production example of composite particles]
In a polymerization vessel having a stirrer, 150 g of water as an aqueous medium and SNOWTEX (registered trademark) O-40 (abbreviated as “ST-O-40” as hydrophilic metal oxide particles, colloidal manufactured by Nissan Chemical Industries, Ltd. 2.75 g of silica (average primary particle diameter 25 nm, solid content 40 wt%) (SiO 2 pure amount 1.1 g) and Metrolose (registered trademark) 65SH-400 (abbreviated as “HPMC (65SH-400) as water-soluble celluloses” ), 0.22 g of hydroxypropyl methylcellulose manufactured by Shin-Etsu Chemical Co., Ltd., cloud point 65 ° C.), and mixed for 24 hours at a temperature of 60 ° C. Thus, the hydrophilic metal oxide adsorbed with water-soluble celluloses A dispersion medium containing particles (silica particles) was obtained.
 別途、ビニル系単量体としてのメタクリル酸メチル(MMA)50g及びエチレングリコールジメタクリレート(EGDMA)2.5gと、重合開始剤としての2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)0.5gとを均一に混合し、溶解させて、重合開始剤を含む単量体混合物を調製した。 Separately, 50 g of methyl methacrylate (MMA) as a vinyl monomer and 2.5 g of ethylene glycol dimethacrylate (EGDMA) and 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator ( ADVN) 0.5 g was uniformly mixed and dissolved to prepare a monomer mixture containing a polymerization initiator.
 この重合開始剤を含む単量体混合物を前記重合容器内の上記分散媒に加えて、ホモミキサー(SMT社製ハイフレックスディスパーサーHG-2)にて9000rpmで約3分攪拌し、上記分散媒中に上記単量体混合物を微分散させた。 The monomer mixture containing the polymerization initiator is added to the dispersion medium in the polymerization vessel, and the mixture is stirred with a homomixer (High Flex Disperser HG-2 manufactured by SMT) at 9000 rpm for about 3 minutes. The monomer mixture was finely dispersed therein.
 その後、攪拌速度70rpmで攪拌を継続させ、上記単量体混合物を加えた分散媒の温度が55℃になってから6時間重合を行った。 Thereafter, stirring was continued at a stirring speed of 70 rpm, and polymerization was performed for 6 hours after the temperature of the dispersion medium to which the monomer mixture was added reached 55 ° C.
 次いで、攪拌しながら重合容器内の反応液を室温まで冷却した。次いで、前記反応液を、定性ろ紙101(アドバンテック東洋社製「東洋 定性ろ紙」)を用いて吸引ろ過し、イオン交換水で洗浄、続いて脱液し、その後、90℃のオーブン中で一昼夜乾燥させることで複合粒子を得た。 Next, the reaction solution in the polymerization vessel was cooled to room temperature while stirring. Next, the reaction solution is suction filtered using a qualitative filter paper 101 (“Toyo Qualitative Filter Paper” manufactured by Advantech Toyo Co., Ltd.), washed with ion-exchanged water, subsequently drained, and then dried overnight in a 90 ° C. oven. As a result, composite particles were obtained.
 得られた複合粒子の粒度分布を測定したところ、体積平均粒子径が7.9μmで粒子径の変動係数(CV値)が36.3%であった。また、得られた複合粒子は、密度1.2g/cm、比表面積の実測値が0.63m/g、(比表面積の実測値)/(比表面積の計算値)が1.00、親水性金属酸化物粒子の含有量(強熱残分)が1.45重量%、粒子流動性を示すAEが56.8kJ/kgであった。 When the particle size distribution of the obtained composite particles was measured, the volume average particle size was 7.9 μm, and the coefficient of variation (CV value) in particle size was 36.3%. The obtained composite particles have a density of 1.2 g / cm 3 , an actual measurement of specific surface area of 0.63 m 2 / g, (actual value of specific surface area) / (calculated value of specific surface area) of 1.00, The content of the hydrophilic metal oxide particles (ignition residue) was 1.45% by weight, and the AE indicating particle fluidity was 56.8 kJ / kg.
 また、親水性試験を実施した結果、すぐに沈降が始まることから、得られた複合粒子が水への分散性を有すること、すなわち親水性を有することを確認した。 Further, as a result of carrying out the hydrophilicity test, since sedimentation immediately started, it was confirmed that the obtained composite particles had dispersibility in water, that is, hydrophilicity.
 実施例1~13及び比較例1~5について、製造に使用した各種原料の使用量、製造に使用した親水性金属酸化物粒子の平均一次粒子径の測定結果、製造により得られた粒子(複合粒子又は重合体粒子)の体積平均粒子径、粒子径の変動係数(CV値)、比表面積の実測値、(比表面積の実測値)/(比表面積の計算値)、親水性金属酸化物粒子の含有量(強熱残分)、及び粒子流動性を示すAEの測定結果を表1及び表2に示す。 For Examples 1 to 13 and Comparative Examples 1 to 5, the amount of various raw materials used in the production, the measurement result of the average primary particle diameter of the hydrophilic metal oxide particles used in the production, the particles obtained by the production (composite Particles or polymer particles) volume average particle diameter, coefficient of variation of particle diameter (CV value), actual measurement of specific surface area, (actual value of specific surface area) / (calculated value of specific surface area), hydrophilic metal oxide particles Table 1 and Table 2 show the AE measurement results indicating the content (ignition residue) and particle fluidity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上のように、水溶性セルロースを使用しなかった比較例3及び4の製造方法では、重合体粒子と、この重合体粒子の表面に付着した親水性金属酸化物粒子とを含む複合粒子を得ることができなかったのに対し、水溶性セルロースを使用した実施例1~13の製造方法では、重合体粒子と、この重合体粒子の表面に付着した親水性金属酸化物粒子とを含む複合粒子を得ることができた。 As described above, in the production methods of Comparative Examples 3 and 4 in which water-soluble cellulose is not used, composite particles including polymer particles and hydrophilic metal oxide particles attached to the surface of the polymer particles are obtained. In contrast, in the production methods of Examples 1 to 13 using water-soluble cellulose, composite particles containing polymer particles and hydrophilic metal oxide particles attached to the surface of the polymer particles Could get.
 また、比較例1~3の重合体粒子は、親水性金属酸化物粒子を含まないか、あるいはほとんど含まないために、親水性を有しないのに対し、実施例1~13の複合粒子は、重合体粒子に加えて、この重合体粒子の表面に付着した親水性金属酸化物粒子を含むために、親水性を有することが認められた。 The polymer particles of Comparative Examples 1 to 3 do not contain hydrophilic metal oxide particles or hardly contain them, and thus have no hydrophilicity, whereas the composite particles of Examples 1 to 13 In addition to the polymer particles, it was found to have hydrophilicity because it contains hydrophilic metal oxide particles attached to the surface of the polymer particles.
 また、比較例1~3の重合体粒子及び比較例5の複合粒子は、表面凹凸が少なく、(比表面積の実測値)/(比表面積の計算値)が1.20未満であるのに対し、実施例1~13の複合粒子は、表面凹凸が多く、(比表面積の実測値)/(比表面積の計算値)が1.20以上であることが認められた。 Further, the polymer particles of Comparative Examples 1 to 3 and the composite particles of Comparative Example 5 have less surface irregularities, whereas (actual value of specific surface area) / (calculated value of specific surface area) is less than 1.20. The composite particles of Examples 1 to 13 were found to have many surface irregularities, and (actual value of specific surface area) / (calculated value of specific surface area) was 1.20 or more.
 また、比較例1~3の重合体粒子及び比較例5の複合粒子は、粒子流動性を示すAEが50kJ/kg超であり、粒子流動性が低いのに対し、実施例1~13の複合粒子は、粒子流動性を示すAEが50kJ/kg以下であり、粒子流動性が高いことが認められた。 In addition, the polymer particles of Comparative Examples 1 to 3 and the composite particles of Comparative Example 5 have a particle fluidity of AE of more than 50 kJ / kg, and the particle fluidity is low, whereas the composite particles of Examples 1 to 13 It was confirmed that the particles had a high particle fluidity with an AE showing particle fluidity of 50 kJ / kg or less.
 また、比較例5の複合粒子は、粒子径の変動係数が15%超であり、粒子径の均一性が低いのに対し、実施例1~13の複合粒子は、粒子径の変動係数が15%以下であり、粒子径の均一性が高いことが認められた。 The composite particles of Comparative Example 5 have a particle size variation coefficient of more than 15% and the particle size uniformity is low, whereas the composite particles of Examples 1 to 13 have a particle size variation coefficient of 15 %, And it was confirmed that the uniformity of the particle diameter was high.
 〔実施例14:光学フィルムの製造例〕
 バインダー樹脂としての水系バインダー樹脂(大同化成工業株式会社製、商品名「E-5221P」、固形分20重量%、ウレタンバインダー)1.5gと、実施例1で作製した複合粒子0.5gとを混合して、複合粒子を水系バインダー樹脂中に均一に分散させて、コーティング剤(塗工用樹脂組成物)を調製した。
[Example 14: Production example of optical film]
1.5 g of water-based binder resin (manufactured by Daido Kasei Kogyo Co., Ltd., trade name “E-5221P”, solid content 20 wt%, urethane binder) as binder resin and 0.5 g of composite particles prepared in Example 1 The mixture was mixed to uniformly disperse the composite particles in the aqueous binder resin to prepare a coating agent (coating resin composition).
 このコーティング剤を100μmのアプリケーター(幅8cm)を用いて、基材フィルムとしての厚さ100μmのPETフィルム上に塗布して、ウェット状態の塗布膜を形成した。70℃の恒温槽で10分間加熱することによりPETフィルム上の塗布膜を乾燥させて、基材フィルムと、その上に形成されている縦8cm(アプリケーターの幅)×横30cmのコーティング(乾燥状態の塗布膜)とを含むフィルムを得た。 The coating agent was applied on a PET film having a thickness of 100 μm as a base film using a 100 μm applicator (width 8 cm) to form a wet coating film. The coating film on the PET film is dried by heating in a thermostat at 70 ° C. for 10 minutes, and the base film and a coating of 8 cm in length (applicator width) × 30 cm in width (dried state) A coating film) was obtained.
 水系バインダー樹脂と複合粒子とを混合した際に複合粒子はすぐに水系バインダー樹脂中に均一に分散した。また、基材フィルム上に形成されたコーティング(乾燥状態の塗布膜)に発生した欠点を目視により確認したところ、発生した欠点はなく複合粒子が均一に分散した状態であった。 When the aqueous binder resin and the composite particles were mixed, the composite particles were immediately dispersed uniformly in the aqueous binder resin. Moreover, when the defect which generate | occur | produced in the coating (dry coating film) formed on the base film was confirmed by visual observation, there was no defect which occurred and the composite particles were uniformly dispersed.
 〔比較例6:光学フィルムの比較製造例〕
 実施例1で作製した複合粒子に代えて比較例1で作製した重合体粒子を使用した以外は実施例8と同様にしてフィルムを得た。水系バインダー樹脂と複合粒子とを混合した際に、だまができやすかった。また、基材フィルム上に形成されたコーティング(乾燥状態の塗布膜)に発生した欠点を目視により確認したところ、発生した欠点は10個以上あった。
[Comparative Example 6: Comparative production example of optical film]
A film was obtained in the same manner as in Example 8 except that the polymer particles prepared in Comparative Example 1 were used in place of the composite particles prepared in Example 1. When the aqueous binder resin and the composite particles were mixed, it was easy to fool. Moreover, when the defect which generate | occur | produced in the coating (dried coating film) formed on the base film was confirmed visually, there were 10 or more defects that occurred.
 〔実施例15:光拡散板の製造例〕
 実施例10で得られた複合粒子を5.0重量部と、基材樹脂としての透明樹脂であるメタクリル樹脂(商品名「アクリペット(登録商標)MF 001 G200」、三菱レイヨン株式会社製)100重量部とを80℃に設定したオーブンで一昼夜乾燥した後、押出機中で200℃にて溶融混練した後、ペレット化して、樹脂組成物としてのペレットを得た。得られたペレットを射出成形機でシリンダー温度230℃の条件で成形することにより、2mm厚、50mm×100mmの成形体としての光拡散板を作製した。
[Example 15: Production example of light diffusing plate]
5.0 parts by weight of the composite particles obtained in Example 10 and a methacrylic resin (trade name “Acripet (registered trademark) MF 001 G200”, manufactured by Mitsubishi Rayon Co., Ltd.), which is a transparent resin as a base resin, 100 After drying for a whole day and night in an oven set at 80 ° C. by weight, the mixture was melt-kneaded at 200 ° C. in an extruder and then pelletized to obtain pellets as a resin composition. The obtained pellets were molded by an injection molding machine under the condition of a cylinder temperature of 230 ° C. to prepare a light diffusion plate as a molded body having a thickness of 2 mm and 50 mm × 100 mm.
 〔光拡散板の全光線透過率及びヘイズの測定〕
 実施例15で得られた光拡散板のヘイズ及び全光線透過率を、日本電色工業株式会社製のヘイズメーター「NDH-4000」を使用して測定した。全光線透過率の測定はJIS K 7361-1に、ヘイズの測定はJIS K 7136にそれぞれ従って実施した。得られた光拡散板の全光線透過率及びヘイズの測定結果を表3に示す。
(Measurement of total light transmittance and haze of light diffusion plate)
The haze and total light transmittance of the light diffusion plate obtained in Example 15 were measured using a haze meter “NDH-4000” manufactured by Nippon Denshoku Industries Co., Ltd. The total light transmittance was measured according to JIS K 7361-1, and the haze was measured according to JIS K 7136. Table 3 shows the measurement results of the total light transmittance and haze of the obtained light diffusion plate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 なお、表3に示すヘイズ及び全光線透過率は、3個の測定サンプルの測定値の平均値である(測定サンプル数n=3)。ヘイズの値は、光拡散板を透過した光(透過光)の拡散性が高いほど、高くなる。 In addition, the haze and total light transmittance shown in Table 3 are average values of measured values of three measurement samples (number of measurement samples n = 3). The haze value becomes higher as the diffusibility of the light (transmitted light) transmitted through the light diffusion plate is higher.
 〔実施例16:外用剤(ローション)の製造例〕
 実施例9で得られた複合粒子0.5重量部を、エタノール65.0重量部、精製水33.0重量部、及び香料0.1重量部と混ぜ合わせ、外用剤としてのローションを作製した。作製したローションは、複合粒子の再分散性が極めて良く、使用感も優れていた。
[Example 16: Production example of external preparation (lotion)]
0.5 parts by weight of the composite particles obtained in Example 9 were mixed with 65.0 parts by weight of ethanol, 33.0 parts by weight of purified water, and 0.1 parts by weight of a fragrance to prepare a lotion as an external preparation. . The prepared lotion had extremely good redispersibility of the composite particles and excellent usability.
 本発明の複合粒子は、例えば、塗料、紙用コーティング剤、情報記録紙用コーティング剤、又は光学フィルム等の光学部材用コーティング剤等として用いられるコーティング剤(塗布用組成物)の添加剤(艶消し剤、塗膜軟質化剤、意匠性付与剤等);光拡散体(照明カバー、光拡散板、光拡散フィルム等)を製造するための光拡散性樹脂組成物に配合される光拡散剤;食品包装用フィルム等のフィルムのブロッキング防止剤;化粧品等の外用剤用の添加剤(滑り性向上、又は、シミやシワ等の肌の欠点補正のための添加剤)等のような外用剤の原料として、利用可能である。 The composite particles of the present invention are, for example, coating agents (coating compositions for paper), coating agents for information recording paper, or coating agents (coating compositions) used as coating agents for optical members such as optical films. A light diffusing agent blended in a light diffusing resin composition for producing a light diffuser (lighting cover, light diffusing plate, light diffusing film, etc.); An anti-blocking agent for films such as food packaging films; an external preparation such as an additive for external preparations such as cosmetics (additive for improving slipperiness or correcting skin defects such as spots and wrinkles) It can be used as a raw material.
 本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from the spirit or main features thereof. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 また、この出願は、2015年8月31日に日本で出願された特願2015-171019に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。
 
This application also claims priority based on Japanese Patent Application No. 2015-171019 filed in Japan on August 31, 2015. By this reference, the entire contents thereof are incorporated into the present application.

Claims (16)

  1.  ビニル系単量体の重合体からなる重合体粒子と、重合体粒子の表面に付着した親水性金属酸化物粒子とを含む複合粒子であって、
     前記複合粒子の形状を真球と仮定して前記複合粒子の体積平均粒子径D(μm)及び密度ρ(g/cm)から以下の式
     (比表面積の計算値)=6/(ρ×D)
    により算出される比表面積の計算値(m/g)と、実際の測定により得られた前記複合粒子の比表面積の実測値(m/g)との比
     (比表面積の実測値)/(比表面積の計算値)
    が1.20以上であることを特徴とする複合粒子。
    A composite particle comprising polymer particles made of a vinyl monomer polymer and hydrophilic metal oxide particles attached to the surface of the polymer particles,
    Assuming that the shape of the composite particle is a true sphere, from the volume average particle diameter D (μm) and density ρ (g / cm 3 ) of the composite particle, the following formula (calculated value of specific surface area) = 6 / (ρ × D)
    The ratio of the calculated value of the specific surface area calculated by (m 2 / g) and the actual value of the specific surface area (m 2 / g) of the composite particles obtained by actual measurement (actual value of the specific surface area) / (Calculated value of specific surface area)
    Is a composite particle characterized by being 1.20 or more.
  2.  請求項1に記載の複合粒子であって、
     水溶性セルロース類をさらに含むことを特徴とする複合粒子。
    The composite particle according to claim 1,
    A composite particle further comprising water-soluble celluloses.
  3.  請求項1又は2に記載の複合粒子であって、
     粒子径の変動係数が、15%以下であることを特徴とする複合粒子。
    The composite particle according to claim 1 or 2,
    A composite particle having a coefficient of variation in particle diameter of 15% or less.
  4.  請求項1~3の何れか1項に記載の複合粒子であって、
     体積平均粒子径が、1~20μmであることを特徴とする複合粒子。
    The composite particle according to any one of claims 1 to 3,
    A composite particle having a volume average particle diameter of 1 to 20 μm.
  5.  請求項1~4の何れか1項に記載の複合粒子であって、
     前記親水性金属酸化物粒子の含有量が、0.5~10重量%の範囲内であることを特徴とする複合粒子。
    The composite particle according to any one of claims 1 to 4,
    Composite particles, wherein the content of the hydrophilic metal oxide particles is in the range of 0.5 to 10% by weight.
  6.  請求項1~5の何れか1項に記載の複合粒子であって、
     前記親水性金属酸化物粒子の平均一次粒子径が、5~200nmの範囲内であることを特徴とする複合粒子。
    The composite particle according to any one of claims 1 to 5,
    An average primary particle diameter of the hydrophilic metal oxide particles is in the range of 5 to 200 nm.
  7.  請求項1~6の何れか1項に記載の複合粒子であって、
     粒子流動性を示す、なだれ前後のアバランシェエネルギー変化AEの数値が、10~50kJ/kgの範囲内であることを特徴とする複合粒子。
    The composite particle according to any one of claims 1 to 6,
    A composite particle characterized by a numerical value of avalanche energy change AE before and after avalanche showing particle fluidity within a range of 10 to 50 kJ / kg.
  8.  ビニル系単量体の重合体からなる重合体粒子と、この重合体粒子に付着した親水性金属酸化物粒子とを含む複合粒子の製造方法であって、
     シード粒子にビニル系単量体を吸収させた後、水溶性セルロース類が表面に吸着した親水性金属酸化物粒子と反応性界面活性剤との存在下でビニル系単量体を水性媒体中で重合させるシード重合により、複合粒子を得る重合工程を含むことを特徴とする複合粒子の製造方法。
    A method for producing composite particles comprising polymer particles comprising a polymer of a vinyl monomer, and hydrophilic metal oxide particles attached to the polymer particles,
    After the vinyl monomer is absorbed by the seed particles, the vinyl monomer is absorbed in an aqueous medium in the presence of hydrophilic metal oxide particles having water-soluble cellulose adsorbed on the surface and a reactive surfactant. A method for producing composite particles, comprising a polymerization step of obtaining composite particles by seed polymerization.
  9.  請求項8に記載の複合粒子の製造方法であって、
     前記水溶性セルロース類として、ヒドロキシプロピルセルロース及び/又はヒドロキシメチルプロピルセルロースを用いることを特徴とする複合粒子の製造方法。
    A method for producing composite particles according to claim 8,
    Hydroxypropylcellulose and / or hydroxymethylpropylcellulose is used as the water-soluble celluloses.
  10.  請求項8又は9に記載の複合粒子の製造方法であって、
     前記重合工程の前に、前記親水性金属酸化物粒子を前記水溶性セルロース類で処理して、前記親水性金属酸化物粒子の表面に前記水溶性セルロース類を吸着させる吸着工程を含むことを特徴とする複合粒子の製造方法。
    A method for producing composite particles according to claim 8 or 9,
    Before the polymerization step, the method includes an adsorption step of treating the hydrophilic metal oxide particles with the water-soluble celluloses to adsorb the water-soluble celluloses on the surface of the hydrophilic metal oxide particles. A method for producing composite particles.
  11.  請求項8~10の何れか1項に記載の複合粒子の製造方法であって、
     前記反応性界面活性剤としてノニオン型の反応性界面活性剤を用いることを特徴とする複合粒子の製造方法。
    A method for producing a composite particle according to any one of claims 8 to 10,
    A method for producing composite particles, wherein a nonionic reactive surfactant is used as the reactive surfactant.
  12.  請求項1~7の何れか1項に記載の複合粒子を含むことを特徴とするコーティング剤。 A coating agent comprising the composite particles according to any one of claims 1 to 7.
  13.  基材フィルムと、その上に形成されているコーティングとを含む光学フィルムであって、
     前記コーティングが、請求項1~7の何れか1項に記載の複合粒子を含むことを特徴とする光学フィルム。
    An optical film comprising a base film and a coating formed thereon,
    An optical film, wherein the coating contains the composite particles according to any one of claims 1 to 7.
  14.  請求項1~7のいずれか1項に記載の重合体粒子と基材樹脂とを含むことを特徴とする樹脂組成物。 A resin composition comprising the polymer particles according to any one of claims 1 to 7 and a base resin.
  15.  請求項14に記載の樹脂組成物からなることを特徴とする成形体。 A molded body comprising the resin composition according to claim 14.
  16.  請求項1~7のいずれか1項に記載の重合体粒子を含むことを特徴とする外用剤。
     
    An external preparation comprising the polymer particles according to any one of claims 1 to 7.
PCT/JP2016/060483 2015-08-31 2016-03-30 Composite particles, method for producing same, and use of same WO2017038138A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017537568A JP6522135B2 (en) 2015-08-31 2016-03-30 Composite particle, method for producing the same, and use thereof
CN201680050384.5A CN107949581B (en) 2015-08-31 2016-03-30 Composite particles and methods for their manufacture, and uses thereof
KR1020187009159A KR102047656B1 (en) 2015-08-31 2016-03-30 Composite particles, preparation method thereof and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-171019 2015-08-31
JP2015171019 2015-08-31

Publications (1)

Publication Number Publication Date
WO2017038138A1 true WO2017038138A1 (en) 2017-03-09

Family

ID=58188757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060483 WO2017038138A1 (en) 2015-08-31 2016-03-30 Composite particles, method for producing same, and use of same

Country Status (4)

Country Link
JP (1) JP6522135B2 (en)
KR (1) KR102047656B1 (en)
CN (1) CN107949581B (en)
WO (1) WO2017038138A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007572A (en) * 2019-06-06 2022-02-01 凸版印刷株式会社 Composite particle and method for producing the same, personal care product, particle for personal care and method for producing the same, personal care article, composition for personal care
WO2022259989A1 (en) * 2021-06-08 2022-12-15 キヤノン株式会社 Polarized light-emitting particles for specimen inspection
US12201705B2 (en) 2020-10-19 2025-01-21 The Procter And Gamble Company Oral care article comprising a delivery carrier and solid hydrophilic particles comprising a bleaching agent

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868128A (en) * 2019-03-13 2019-06-11 西安石油大学 A kind of loaded paraffin removing with chemical method ball and its preparation method and application
KR102723133B1 (en) * 2019-08-22 2024-10-28 주식회사 엘지화학 Manufacturing method for thermoplastic resin composite material, thermoplastic resin composite material and article comprising same
CN112175433B (en) * 2020-09-18 2022-01-11 三棵树涂料股份有限公司 A kind of high-efficiency antibacterial and aldehyde-removing composite additive and its preparation method and application
AU2021365764B2 (en) * 2020-10-19 2024-12-05 The Procter & Gamble Company Oral care article comprising a hydrophobic delivery carrier and solid hydrophilic particles comprising an active agent for oral care
JP7552673B2 (en) 2022-11-29 2024-09-18 味の素株式会社 Resin composition
CN115976468A (en) * 2022-12-22 2023-04-18 深圳怡诚新材料有限公司 Super-hydrophilic film layer and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03244675A (en) * 1990-02-23 1991-10-31 Kansai Paint Co Ltd Cationic electrodeposition polymer in fine gel particle form and its manufacture
JPH04175351A (en) * 1989-09-05 1992-06-23 Toagosei Chem Ind Co Ltd Organic polymer powder
JPH10298774A (en) * 1997-04-18 1998-11-10 Nkk Corp Method for forming insulating film for electrical steel sheet with excellent properties after strain relief annealing
WO2015071984A1 (en) * 2013-11-13 2015-05-21 積水化成品工業株式会社 Composite particles, method for producing same, and use thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281781A (en) 1975-12-29 1977-07-08 Johnan Seisakusho Assembly device for arm assemblies of window regulator for use in automobiles
JPH0598302A (en) * 1991-10-07 1993-04-20 Nippon Shokubai Co Ltd Metallic element-carrying fine carbon particle and its production
JP3589723B2 (en) * 1994-12-27 2004-11-17 京セラミタ株式会社 Magnetic particles and method for producing the same
CN103140505B (en) * 2010-09-28 2017-06-30 积水化成品工业株式会社 Resin particle and its manufacture method and anti-dazzle film, light-diffusing resin composition and external preparation
JP5727323B2 (en) * 2011-03-17 2015-06-03 積水化成品工業株式会社 Organic-inorganic composite particles, production method thereof, and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175351A (en) * 1989-09-05 1992-06-23 Toagosei Chem Ind Co Ltd Organic polymer powder
JPH03244675A (en) * 1990-02-23 1991-10-31 Kansai Paint Co Ltd Cationic electrodeposition polymer in fine gel particle form and its manufacture
JPH10298774A (en) * 1997-04-18 1998-11-10 Nkk Corp Method for forming insulating film for electrical steel sheet with excellent properties after strain relief annealing
WO2015071984A1 (en) * 2013-11-13 2015-05-21 積水化成品工業株式会社 Composite particles, method for producing same, and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114007572A (en) * 2019-06-06 2022-02-01 凸版印刷株式会社 Composite particle and method for producing the same, personal care product, particle for personal care and method for producing the same, personal care article, composition for personal care
US12201705B2 (en) 2020-10-19 2025-01-21 The Procter And Gamble Company Oral care article comprising a delivery carrier and solid hydrophilic particles comprising a bleaching agent
WO2022259989A1 (en) * 2021-06-08 2022-12-15 キヤノン株式会社 Polarized light-emitting particles for specimen inspection

Also Published As

Publication number Publication date
CN107949581A (en) 2018-04-20
JPWO2017038138A1 (en) 2018-06-14
CN107949581B (en) 2020-09-29
JP6522135B2 (en) 2019-05-29
KR102047656B1 (en) 2019-11-22
KR20180048934A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
WO2017038138A1 (en) Composite particles, method for producing same, and use of same
JP6661721B2 (en) Composite particles and their uses
JP6284917B2 (en) Porous resin particle, method for producing porous resin particle, and use thereof
JP6316309B2 (en) Composite particle, method for producing composite particle, and use thereof
US9200154B2 (en) Porous resin particles, method of manufacturing the same, and use of the same
JP5075860B2 (en) Resin particle, its production method and its use
WO2013027849A9 (en) Irregularly shaped resin particles, method for producing same, and use of same
JP6294204B2 (en) Composite particle, method for producing composite particle, and use thereof
JP6645944B2 (en) Composite particle, method for producing the same and use thereof
EP2783678B1 (en) Porous resin particles, method of manufacturing the same, and use of the same
JP6199222B2 (en) Composite particle, method for producing composite particle, and external preparation
TWI579325B (en) Composite particle, method for fabricating the same and usage thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187009159

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16841170

Country of ref document: EP

Kind code of ref document: A1