WO2017038108A1 - Semiconductor device and semiconductor device manufacturing method - Google Patents
Semiconductor device and semiconductor device manufacturing method Download PDFInfo
- Publication number
- WO2017038108A1 WO2017038108A1 PCT/JP2016/053635 JP2016053635W WO2017038108A1 WO 2017038108 A1 WO2017038108 A1 WO 2017038108A1 JP 2016053635 W JP2016053635 W JP 2016053635W WO 2017038108 A1 WO2017038108 A1 WO 2017038108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wiring
- semiconductor device
- insulating film
- space
- pattern
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 131
- 238000004519 manufacturing process Methods 0.000 title claims description 30
- 239000000758 substrate Substances 0.000 claims abstract description 79
- 230000000149 penetrating effect Effects 0.000 claims abstract description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 34
- 238000002955 isolation Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 44
- 229910052710 silicon Inorganic materials 0.000 description 38
- 239000010703 silicon Substances 0.000 description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 37
- 238000005530 etching Methods 0.000 description 26
- 239000010949 copper Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 19
- 230000004888 barrier function Effects 0.000 description 13
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000011229 interlayer Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 238000009966 trimming Methods 0.000 description 4
- 239000011800 void material Substances 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000009623 Bosch process Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/0401—Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05075—Plural internal layers
- H01L2224/0508—Plural internal layers being stacked
- H01L2224/05085—Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
- H01L2224/05089—Disposition of the additional element
- H01L2224/05093—Disposition of the additional element of a plurality of vias
- H01L2224/05096—Uniform arrangement, i.e. array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05567—Disposition the external layer being at least partially embedded in the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/11—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1302—Disposition
- H01L2224/13022—Disposition the bump connector being at least partially embedded in the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13147—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16237—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
Definitions
- the present invention relates to a semiconductor device and a manufacturing method thereof.
- TSV Through-Silicon Via; hereinafter abbreviated as “TSV” as appropriate
- TSV Through-Silicon Via
- the TSV is an electrode that penetrates the substrate of the conductor chip in a direction perpendicular to the substrate, and is used for connection between upper and lower chips.
- the space for connection and the insertion of the interposer can be omitted, so that the package size can be reduced.
- TSV As a method of forming TSV, there is a method of embedding a conductor by forming a hole penetrating silicon from the back surface opposite to the device formation surface of the silicon substrate. Prior to the formation of the holes, the back side of the silicon substrate is polished to reduce the thickness.
- a technique is known that uses an insulating film such as an STI (Shallow Trench Isolator) for element isolation as an etching stopper when forming TSV holes in a silicon substrate by etching (see, for example, Patent Document 1).
- the via diameter is larger than the opening formed in the insulating film in the range from the back surface of the substrate to the interface with the insulating film, and the via diameter is the same as the size of the opening inside the opening.
- the thickness of the silicon varies within the wafer surface due to the polishing of the back surface of the silicon substrate.
- the space portion between the wirings may be over-etched in the lowermost M1 wiring layer when the TSV hole is formed. Due to over-etching in the space between the M1 wires, there is a concern that the formation of a barrier metal or seed layer in the hole or the generation of voids may occur, and the reliability of the TSV may be reduced.
- the disclosed technology provides a semiconductor device having a highly reliable through via and a manufacturing method thereof.
- a semiconductor device includes: A semiconductor substrate; A first wiring formed in a first wiring layer on the semiconductor substrate; A through via passing through the semiconductor substrate and connected to the first wiring; A first insulating film located at a location corresponding to an inter-wiring space of the first wiring at an interface between the through via and the first wiring layer; Have
- TSV through silicon via
- circuit elements such as transistors (TR) are formed on the surface of the silicon substrate 101, and the M1 wiring 103 of the first wiring layer and the M2 wiring 104 of the second wiring layer are formed thereon.
- a multilayer wiring including the same is formed.
- Bump electrodes 106 as external connection terminals are formed on the outermost surface of the wafer.
- the STI insulating film 102 and the interlayer insulating film 107 are also etched in the process of forming holes for TSV from the back surface of the substrate in the TSV formation area A of the silicon substrate 101. As described above, overetching occurs in the space portion between the M1 wiring 103 and the M1 wiring 103 by the etching at this time.
- FIG. 1B shows a state after the TSV 105 is formed. Problems arise in both the areas B1 and B2 enclosed by the square. In the region B1, a void 120 due to over-etching occurs in a space portion between the wirings of the M1 layer. In the region B2, the M2 wiring 104 is offset from the M1 wiring 103 in consideration of over-etching of the TSV 105 in advance, and is arranged above the space between the M1 wirings 103. Due to the restriction of the maximum line width rule, it is difficult to make the M1 wiring 103 connected to the TSV 105 as a solid film, and the line-and-space wiring pattern is maintained. The TSV 105 is received by the two layers M1 and M2, and the M2 wiring is used as an etching stopper. In this configuration, since the wiring to the circuit including the transistor (TR) can be drawn only in the layers after M2, the transmission speed is inferior.
- TR transistor
- the M2 wiring 104 is disposed as an etching stopper for the TSV 105 and offset with respect to the M1 wiring 103, a wiring area for connecting the TSV 105 and the bump electrode 106 is increased. Therefore, the chip area increases and the number of wiring layers routed to the circuit increases. Furthermore, there is little overlap between the M1 wiring 103 and the M2 wiring 104, and the number of vias connecting the M1 wiring 103 and the M2 wiring 104 is limited, which causes a reduction in allowable current.
- FIG. 2 and 3 are diagrams for explaining the generation of voids in the region B1.
- a hole 115 for TSV 105 is formed in the silicon substrate 101.
- the wafer is fixed to the support substrate 110 with the adhesive 109 with the bump electrode 106 facing down.
- the wiring layers above the bump electrodes 106 and M2 are omitted.
- a hole 115 is formed using a hard mask 112 such as silicon nitride (SiN).
- SiN silicon nitride
- FIG. 2 is a top view when cut along a cut surface C passing through the STI insulating film 102.
- FIG. The M1 wiring 103 is exposed in the hole 115.
- the M2 wiring 104 is exposed at a location corresponding to the space between the M1 wirings 103. A part of the M2 wiring 104 is covered with the interlayer insulating film 108, but a portion where the M2 wiring 104 is exposed or a portion where the interlayer insulating film 108 is thin becomes a void generation portion.
- an insulating film 116 is formed on the inner wall of the hole 115, the insulating film 116 on the bottom surface of the hole 115 is etched back by anisotropic etching, and the hole 115 is then filled with a conductive film 118.
- a seed layer for forming a barrier metal or a conductive film 118 is difficult to be formed in a portion where the M2 wiring 104 is exposed in the M1 space portion by overetching, and it is difficult to completely fill the hole 115.
- the lower diagram in FIG. 3 is a top view when the STI insulating film 102 is cut along a cut surface D passing through the M1 wiring 103. A void is generated in the space portion between the M1 wirings 103, and the M2 wiring 104 remains exposed.
- 4 and 5 are diagrams showing the semiconductor device 10 of the embodiment in comparison with a general configuration. 4 and 5 are both cross-sectional views in a plane orthogonal to the direction in which the wiring extends. 4 shows a state before TSV formation, and FIG. 5 shows a state after TSV formation.
- the STI insulating film 12b is arranged at a position corresponding to the M1 space between the M1 wirings in the TSV formation area.
- the M2 wiring 14 is formed at a position aligned with the M1 wiring 13 without being offset with respect to the M1 wiring 13.
- the STI insulating film 12b By disposing the STI insulating film 12b at a position corresponding to the M1 space, overetching in the M1 space portion is suppressed. By suppressing over-etching in the M1 space portion, TSV can be received only by the M1 wiring 13 and the M2 wiring 14 can be overlapped at the same position as the M1 wiring 13. In addition, a lead-out wiring from the layer of the M1 wiring 13 to the circuit portion can be taken.
- the STI insulating film 102 is formed in the entire TSV formation area in the general configuration shown in the figure below.
- the STI insulating film 12b is formed on the silicon substrate 11 at a position corresponding to the M1 space of the TSV formation area with a predetermined width and a predetermined interval.
- the STI insulating film 12b is an elongated pattern corresponding to the space shape between the M1 wirings 13 and extending in the depth direction of the drawing.
- the STI insulating film disposed inside the line and space pattern of the M1 wiring 13 is “STI insulating film 12b”, and the STI insulating film disposed outside the line and space pattern is “STI insulating film 12a”. " The STI insulating films 12a and 12b are combined to form the STI insulating film 12.
- the M2 wiring 104 is offset in the wiring width (line width) direction with respect to the M1 wiring 103, and the lead-out wiring 104d to the circuit portion extends in the M2 layer.
- the M2 wiring 14 is aligned with the M1 wiring 13, and the lead-out wiring 13d to the circuit portion extends in the M1 layer. This is because overetching in the M1 space portion is suppressed, and TSV can be received only by the M1 wiring 13.
- the problem described above occurs in both the regions B1 and B2 in the general configuration in the lower diagram in FIG. That is, the void 120 is generated in the M1 space portion (B1), the offset arrangement of the M1 wiring 103 and the M2 wiring 104, and the arrangement limitation of the extraction wiring 104d (B2).
- a part of the interlayer insulating film 23 remains as the insulating film 23s in the region X1 corresponding to the space between the M1 wirings 13.
- the insulating film 23s suppresses over-etching in the M1 space portion and causes the M1 wiring 13 to function as an etching stopper. Thereby, it is possible to prevent the formation of a barrier metal or a seed layer in the M1 space and the generation of voids in the TSV 15.
- the M2 wiring 14 can be disposed immediately above the M1 wiring 13 and the TSV 15 can be received only by the M1 wiring 13. Since the lead-out wiring 13d to the circuit extends from the M1 layer, it is advantageous in terms of transmission speed. In addition, the wiring area connecting TSV 15 and bump electrode 106 can be reduced, and the chip area and the number of wiring layers drawn to the circuit can be reduced. Furthermore, since the overlap between the M1 wiring 13 and the M2 wiring 14 is large, the number of vias connecting the M1 wiring 13 and the M2 wiring 14 can be increased, and the allowable current increases.
- 6A and 6B are configuration diagrams of the semiconductor device 10A of the first embodiment.
- the semiconductor device 10A is a type in which the edge of the TSV 15 (interface with the silicon substrate 11) does not cover the STI insulating film 12a outside the line-and-space pattern, like the semiconductor device 10 in the upper diagram of FIG.
- the STI insulating film 12b is arranged so as to cover a portion corresponding to the M1 space in the TSV formation area.
- the insulating film 23s is located between the TSV15 and the M1 space.
- the configuration of the semiconductor device 10A is the same as that of the semiconductor device 10 in the upper diagram of FIG.
- FIGS. 6A and 6B are manufacturing process diagrams of the semiconductor device 10A of FIG.
- STI insulating films 12a and 12b are formed at predetermined positions on the silicon substrate 11, a circuit element such as a transistor (TR) on the silicon substrate 11, a multilayer wiring including an M1 wiring 13 and an M2 wiring 14, A bump electrode 106 (see FIGS. 6A and 6B) is formed.
- the bump electrodes 106 and the wiring layers after M3 are omitted for the sake of simplicity.
- the STI insulating film 12b is formed at a predetermined position on the silicon substrate 11 simultaneously with the patterning of the element isolation (STI) insulating film 12 that partitions the circuit region. More specifically, the STI insulating film 12 b is formed at a position corresponding to the space between the M1 wirings 13.
- the line width Mw of the M1 wiring 13 is 2 ⁇ m
- the space width Sw is 0.5 ⁇ m
- the width of the STI insulating film 12b (indicated as “STI width” in the figure) Tw is 0.8 ⁇ m
- the space Lw between STIs is 1. 0.7 ⁇ m.
- the STI width Tw is larger than the space width Sw of the M1 wiring 13.
- FIG. 7 is a diagram when the upper diagram in FIG. 7 is cut along the cut surface E and viewed from the substrate surface (opposite the back surface 11R). In the region corresponding to the wiring pattern of the M1 wiring 13, the STI insulating film 12b is not formed, and the silicon substrate 11 is exposed.
- Edge trimming is a process in which grooves are formed in the edge portion of a wafer in order to prevent cracking from the edge when the wafer is ground and thinned.
- the surface on which the bump electrode 106 is formed is used as a bonding surface, and the back surface 11R of the silicon substrate 11 is directed upward in the drawing.
- the back surface 11R of the silicon substrate 11 is ground (back grind) so that the thickness T of the silicon substrate 11 is, for example, 50 to 70 ⁇ m.
- an insulating film 112 such as SiN is formed on the back surface of the thinned silicon substrate 11, and a resist 113 is applied and patterned to form a predetermined opening 114.
- the thickness of the insulating film 112 is, for example, 0.5 ⁇ m to 1 ⁇ m.
- the diameter ⁇ of the opening 114 corresponds to the diameter of the TSV and is, for example, 10 ⁇ m.
- the silicon substrate 11 is etched by a Bosch process to form TSV holes 115.
- the diameter ⁇ of the hole 115 is 10 ⁇ m.
- the width w1 of the line and space pattern of the M1 wiring 13 is, for example, 12 ⁇ m.
- the STI insulating film 12b is formed at a position corresponding to the M1 space (see FIG. 8), and the STI insulating film 12b serves as a buffer against etching.
- the interlayer insulating film 23 remains as the insulating film 23s in the M1 space position on the bottom surface of the hole 115.
- This insulating film 23s may include a part of the STI insulating film 12b.
- the insulating film 23s has a function of suppressing or controlling overetching of the M1 space portion.
- the M1 wiring 13 serves as an etching stopper.
- FIG. 9 is a top view when viewed from the side of the hole 115 by cutting along the cutting plane E in the upper diagram of FIG.
- the STI insulating film 12a outside the line and space pattern remains outside the hole 115.
- the M1 wiring 13 is exposed.
- the insulating film 23 s remains in a stripe shape or a strip shape.
- the insulating film 23 s covers the edge of the M1 wiring 13 and is wider than the space width between the M1 wirings 13.
- an insulating film 116 is formed on the entire surface including the sidewalls of the hole 115 by a low temperature CVD (Chemical Vapor Deposition) method.
- a TEOS film may be used as the insulating film 116.
- the film thickness of the insulating film 116 on the bottom and side walls of the hole 115 is, for example, 0.2 to 0.5 ⁇ m.
- the film thickness of the insulating film 116 on the insulating film 112 is, for example, 1.0 to 1.5 ⁇ m.
- the insulating film 116 on the bottom surface of the hole 115 is etched back by anisotropic etching to expose the M1 wiring 13.
- a part of the insulating film 116 may be attached to the insulating film 23s at this stage.
- the adhesion portion 116b of the insulating film 116 is also used as the insulating film 23s.
- a barrier metal and a seed layer are formed on the entire surface by PVD (Physical Vapor Deposition). .
- PVD Physical Vapor Deposition
- the barrier metal is, for example, titanium (Ti) with a thickness of 0.1 to 0.5 ⁇ m, and the seed layer is copper (Cu) with a thickness of 0.5 to 1.0 ⁇ m, but other suitable metal materials may be used. Good.
- copper (Cu) 118 is filled into the holes 115 by electrolytic plating. Since the M1 space portion is covered with the insulating film 23s and the overetching is suppressed, the formation failure of the barrier metal and the seed layer and the generation of voids are suppressed.
- copper (Cu) 118 is planarized by CMP (Chemical Mechanical Polishing) to form TSV15.
- CMP Chemical Mechanical Polishing
- a barrier metal / seed layer 121 is formed by PVD, a resist 122 is applied, and an opening 123 corresponding to the backside wiring is patterned.
- the barrier metal is, for example, titanium (Ti) with a thickness of 0.1 to 0.5 ⁇ m
- the seed layer is copper (Cu) with a thickness of 0.5 to 1.0 ⁇ m.
- the width w4 of the opening 123 is, for example, 80 to 100 ⁇ m.
- the back wiring 125 is formed of copper (Cu) by electrolytic plating.
- the thickness of the back wiring 125 is, for example, 2 to 4 ⁇ m.
- the resist 122 is peeled off, and unnecessary layer stack (barrier metal / seed layer) 121 is removed by wet etching.
- a photosensitive resin 126 is applied, and the opening 127 corresponding to the back electrode is patterned.
- the width w5 of the back electrode is, for example, 60 to 80 ⁇ m.
- the back electrode 130 is formed by, for example, a nickel (Ni) film 131 and a gold (Au) film 132 by electroless plating.
- the thickness of the Ni film 131 is, for example, 2 to 4 ⁇ m
- the thickness of the Au film 132 is, for example, 0.03 to 0.1 ⁇ m.
- the back electrode 130 side is bonded to the dicing film 7 and the support substrate 110 is peeled (debonded).
- the adhesive 109 on the device surface side is washed away.
- the bump electrode 106 formed on the outermost surface of the multilayer wiring is omitted.
- Each chip 3 may be a semiconductor device 10A.
- overetching of the M1 space portion is suppressed by the insulating film 23s at the interface between the TSV15 and the M1 layer, and the semiconductor device 10A having the highly reliable TSV15 is realized.
- the M2 wiring 14 and the M1 wiring 13 are arranged in the direction perpendicular to the substrate, the wiring area and the number of stacked layers can be reduced. Since the overlap between the M1 wiring 13 and the M2 wiring 14 can be widened, the number of vias between the M1 wiring 13 and the M2 wiring 14 can be increased, and the allowable current can be increased. Since the lead-out wiring 13d to the circuit portion including the transistor (TR) can be taken out from the layer of the M1 wiring 13, the transmission speed is improved.
- the M2 wiring 14 is stacked in the same layout as the M1 wiring, but the present invention is not limited to this example.
- the wiring layout after M2 is free as long as the design rule allows as long as the chip size is not significantly increased.
- the bump electrode 106 on the most surface side of the multilayer wiring may be a solder bump or a copper (Cu) pillar-shaped electrode.
- Second Embodiment 19A and 19B show a semiconductor device 10B of the second embodiment.
- the edge of the TSV formation area is on the STI insulating film 12a outside the line and space pattern.
- the STI insulating film 12b inside the line and space pattern is formed at a position corresponding to the space between the M1 wires 13 (M1 space).
- the insulating film 23s is located between the TSV15 and the M1 space, and the insulating film 23t remains inside the TSV15 and outside the line and space pattern.
- the insulating film 23t exists along the circumference of the TSV 15 in the vicinity of the boundary between the TSV 15 and the M1 layer.
- the insulating film 23s and the insulating film 23t suppress over-etching in the region corresponding to the M1 space and the region outside the line and space pattern in the TSV formation region. Thereby, formation failure of the barrier metal and the seed layer in the region along the arc of the M1 space portion and the TSV hole, and generation of voids in the TSV 15 can be suppressed.
- the M2 wiring 14 is arranged immediately above the M1 wiring 13, so that the TSV 15 can be received only by the M1 wiring 13, and the lead wiring 13d to the circuit can be drawn from the M1 layer. As a result, the reliability of the TSV is improved, and the transmission speed is improved, the chip size is reduced, and the allowable current is increased.
- 20 to 24 are manufacturing process diagrams of the semiconductor device 10B of the second embodiment.
- STI insulating films 12a and 12b are formed at predetermined positions on the silicon substrate 11, and a multilayer wiring including an element such as a transistor (TR), an M1 wiring 13, and an M2 wiring 14 in a circuit region on the silicon substrate 11.
- bump electrodes 106 are formed.
- the bump electrode 106 and the wiring layers after M3 are omitted for the sake of simplicity of illustration.
- the STI insulating film 12b and the STI insulating film 12a are formed at predetermined positions on the silicon substrate 11 simultaneously with the patterning of the element isolation (STI) insulating film 12 that partitions the circuit region.
- the width (indicated as “STI width” in the figure) Tw of the STI insulating film 12b and the space width Lw between STI are 0.8 ⁇ m and 1.7 ⁇ m, respectively.
- the line width Mw of the first M1 wiring 13 is 2 ⁇ m, and the space width Sw is 0.5 ⁇ m.
- the lower diagram in FIG. 20 is a diagram when the upper diagram in FIG. 20 is cut along the cut surface E and viewed from the substrate surface (opposite to the back surface 11R). In the region corresponding to the wiring pattern of the M1 wiring 13, the STI insulating film 12b is not formed, and the silicon substrate 11 is exposed.
- Edge trimming is a process in which grooves are formed in the edge portion of a wafer in order to prevent cracking from the edge when the wafer is ground and thinned.
- the surface on which the bump electrode 106 is formed is used as a bonding surface, and the back surface 11R of the silicon substrate 11 is directed upward in the drawing.
- the back surface 11R of the silicon substrate 11 is ground (back grind) so that the thickness T of the silicon substrate 11 is, for example, 50 to 70 ⁇ m.
- an insulating film 112 such as SiN is formed on the back surface of the thinned silicon substrate 11.
- a resist 113 is applied on the insulating film 112 and patterned to form a predetermined opening 114.
- the thickness of the insulating film 112 is, for example, 0.5 ⁇ m to 1 ⁇ m.
- the diameter ⁇ of the opening 114 corresponds to the diameter of the TSV and is, for example, 10 ⁇ m.
- the silicon substrate 11 is etched by a Bosch process to form TSV holes 115.
- the diameter ⁇ of the hole 115 is 10 ⁇ m.
- the width w6 of the line and space pattern of the M1 wiring 13 is, for example, 7 ⁇ m.
- the distance w7 from the outer edge in the width direction of the line and space pattern to the side wall of the hole 115 is 1.5 ⁇ m.
- the STI insulating film 12b is formed at a position corresponding to the M1 space, and the STI insulating film 12a is formed outside the line and space pattern (see FIG. 21).
- the STI insulating film 12b and the STI insulating film 12a serve as a buffer material against etching when the hole 115 is formed.
- a part of the interlayer insulating film 23 remains as an insulating film 23s in the M1 space position on the bottom surface of the hole 115.
- a part of the interlayer insulating film 23 remains as an insulating film 23t in a region along the arc in the hole outside the line and space pattern.
- the insulating film 23s may include a part of the STI insulating film 12b.
- the insulating film 23t may include a part of the STI insulating film 12a.
- the STI insulating film 12 a outside the hole 115 and outside the line and space pattern remains on the silicon substrate 11.
- the insulating film 23s remains in a stripe shape or a strip shape. Further, the insulating film 23t remains in an arc shape outside the outermost M1 wiring 13 inside the hole 115.
- an insulating film 116 such as a TEOS film is formed on the entire surface including the sidewall of the hole 115 by a low temperature CVD (Chemical Vapor Deposition) method.
- the insulating film 116 on the bottom surface of the hole 115 is etched back by anisotropic etching to expose the M1 wiring 13.
- An insulating film 116 s remains on the sidewall of the hole 115.
- a part of the insulating film 116 may be attached to the insulating film 23s at this stage. In this case, the adhesion portion 116b of the insulating film 116 is also used as the insulating film 23s.
- a barrier metal and a seed layer (not shown) are formed, and the hole 115 is filled with copper (Cu) 118 by electrolytic plating. Since the M1 space portion and the outside of the line and space pattern are covered with the insulating film 23s and the insulating film 23t, respectively, and over-etching is suppressed, formation defects of the barrier metal and the seed layer and generation of voids are suppressed. Is done.
- the subsequent processing is the same as in FIGS. 13 to 18 of the first embodiment. That is, copper (Cu) 118 is planarized by CMP (Chemical Mechanical Polishing) to form TSV 15. Subsequently, the back surface wiring 125 connected to the TSV 15 is formed, and the back surface electrode 130 is formed on the back surface wiring 125.
- CMP Chemical Mechanical Polishing
- the semiconductor device 10A having the highly reliable TSV 15 is realized.
- the M2 wiring 14 and the M1 wiring 13 are arranged in the direction perpendicular to the substrate, the wiring area and the number of stacked layers can be reduced. Since the overlap between the M1 wiring 13 and the M2 wiring 14 can be widened, the number of vias can be increased and the allowable current can be increased. Since the lead-out wiring 13d to the circuit portion including the transistor (TR) can be taken out from the layer of the M1 wiring 13, the transmission speed is improved.
- the M2 wiring 14 is overlapped in the same layout as the M1 wiring, but the wiring layout after M2 is free within the range allowed by the design rule as long as the chip size is not significantly increased.
- ⁇ Wiring layout to receive TSV> 25 to 27 show the layout of the M1 wiring that receives TSV15.
- FIG. 25 shows strip-shaped M1 patterns and corresponding STI patterns.
- the M1 width is 2 ⁇ m or more, and the space between M1 is 0.5 ⁇ m or more.
- the STI pattern of FIG. 25B the STI width is 0.8 ⁇ m or more, and the STI space is 1.7 ⁇ m or more.
- the STI width of the STI insulating film 12b in the TSV formation area is wider than the space between M1. This suppresses overetching in the space portion between the M1 wirings.
- FIG. 25 shows an arrangement example in which the outer region of the line and space pattern does not cover the TSV as in the first embodiment, but the outer two M1 patterns are removed, and the second embodiment It may be applied to the configuration.
- FIG. 26 shows an M1 pattern combining a strip and a frame (frame) and a corresponding STI pattern.
- the M1 width is 2 ⁇ m or more
- the M1 space is 0.5 ⁇ m or more
- the STI width is 0.8 ⁇ m or more
- the STI space is 1.7 ⁇ m or more.
- the STI insulating film 12b in the TSV formation area is designed to completely cover the space between M1. This suppresses overetching in the space portion between the M1 wirings in the TSV formation area.
- FIG. 27 shows a mesh-like M1 pattern and a corresponding STI pattern.
- the M1 width A that is the wiring width of the TSV formation region is 1 ⁇ m or more
- the M1 width B that is the wiring width of the outer frame portion is 2 ⁇ m or more
- the space between M1 is 1 ⁇ m or more.
- the STI pattern of FIG. 27B the STI width of the STI insulating film 12b in the TSV formation region is 1.3 ⁇ m or more
- the STI space A in the TSV formation region is 0.7 ⁇ m or more
- the outer STI space B is 1. 7 ⁇ m or more.
- FIG. 27C when the outline of the M1 pattern is superimposed on the STI pattern, the STI insulating film 12b is arranged so as to cover the space between M1.
- the layout of the M1 wiring is not limited to the examples of FIGS. 25 to 27, and any layout can be adopted within the scope of the design rule.
- the wiring after M2 may be the same as or different from the layout of the M1 wiring.
- Arbitrary layouts can be adopted as the wiring layout after M2 within the range allowed by the design rule.
- ⁇ Application example> 28 and 29 show a configuration example of an electronic component using the semiconductor device 10 (including 10A or 10B).
- FIG. 28 shows an example of an electronic component 50A laminated face-to-face (facing the device surface).
- the first semiconductor device 10 and the second semiconductor device 40 are stacked on the package substrate 51.
- the first semiconductor device 10 is the semiconductor device A of the first embodiment or the semiconductor device of the second embodiment, and has a TSV 15.
- the first semiconductor device 10 is electrically connected to the electrode of the package substrate 51 or the copper (Cu) wiring 53 by the solder bump 136 joined to the back electrode 130.
- the device surface 10fc of the first semiconductor device is mounted upward with respect to the package substrate 51, and faces the device surface 40fc of the second semiconductor device.
- the bump electrode 106 of the first semiconductor device 10 is connected to the surface electrode of the second semiconductor device 40.
- An underfill agent 55 is filled between the package substrate 51 and the first semiconductor device 10 and between the first semiconductor device 10 and the second semiconductor device 40, and the entire stacked structure is sealed with the mold resin 61.
- the first semiconductor device 10 and the package substrate 51, and the second semiconductor device 40 and the package substrate 51 are connected with high density at a short distance by the TSV15.
- the first semiconductor device 10 and the second semiconductor device 40 are connected with high density at a short distance by face-to-face lamination.
- FIG. 29 shows an example of an electronic component 50B laminated face-to-back (device surface and back electrode face each other).
- a first semiconductor device 10 and a second semiconductor device 40 are stacked on a package substrate 51.
- the first semiconductor device 10 is the semiconductor device A of the first embodiment or the semiconductor device of the second embodiment, and has a TSV 15.
- the device surface 10 fc of the first semiconductor device 10 is mounted downward facing the package substrate 51, and is electrically connected to the electrode of the package substrate 51 or the copper (Cu) wiring 53 by the bump electrode 106 formed on the device surface 10 fc. Connected to.
- the device surface 40fc of the second semiconductor device 40 is stacked to face the back surface 10bc of the first semiconductor device.
- the bump electrode 146 of the second semiconductor device 40 is electrically connected to the back electrode 130 of the first semiconductor device 10.
- An underfill agent 55 is filled between the package substrate 51 and the first semiconductor device 10 and between the first semiconductor device 10 and the second semiconductor device 40, and the entire stacked structure is sealed with the mold resin 61.
- the TSV 15 connects the first semiconductor device 10 and the second semiconductor device 40 and the second semiconductor device 40 and the package substrate 51 with high density at a short distance. Further, since the first semiconductor device 10 is mounted face-down on the package substrate 51, the first semiconductor device 10 and the package substrate 51 are also connected with high density over a short distance.
- the number of stacked chips is not limited to two.
- Two or more first semiconductor devices 10 having the TSV 15 may be stacked to form a stacked structure of three or more layers. Since the TSV 15 of the embodiment suppresses voids and has high connection reliability, the reliability of the electronic component 50 can be maintained even when a laminated structure of three or more layers is used.
- the TSV 15 of the embodiment is advantageous in terms of transmission speed because it can take a lead wiring from the M1 wiring layer to the circuit unit.
- STI may be arranged between wiring spaces outside the region where the TSV 15 is formed.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Provided is a semiconductor device having a highly reliable through via hole. This semiconductor device has: a semiconductor substrate; first wiring formed in a first wiring layer on the semiconductor substrate; a through via hole, which is penetrating the semiconductor substrate, and is connected to the first wiring; and a first insulating film positioned at an area corresponding to an inter-wiring space of the first wiring, said area being at the interface between the through via hole and the first wiring layer.
Description
本発明は、半導体装置とその製造方法に関する。
The present invention relates to a semiconductor device and a manufacturing method thereof.
半導体装置の実装技術において、シリコン貫通電極(TSV:Through-Silicon Via;以下、適宜「TSV」と略称する)が用いられている。TSVは、導体チップの基板を基板と垂直な方向に貫通する電極であり、上下のチップ同士の接続等に用いられる。TSVを用いた3次元実装パッケージは、結線のための空間やインターポーザの挿入を省略できるため、パッケージサイズを小さくすることができる。
In semiconductor device mounting technology, a through silicon via (TSV: Through-Silicon Via; hereinafter abbreviated as “TSV” as appropriate) is used. The TSV is an electrode that penetrates the substrate of the conductor chip in a direction perpendicular to the substrate, and is used for connection between upper and lower chips. In the three-dimensional mounting package using the TSV, the space for connection and the insertion of the interposer can be omitted, so that the package size can be reduced.
TSVの形成法として、シリコン基板のデバイス形成面と反対側の裏面からシリコンを貫通するホールを形成して、導電体を埋め込む手法がある。ホールの形成に先立って、シリコン基板の裏面側を研磨して厚さを低減する。
As a method of forming TSV, there is a method of embedding a conductor by forming a hole penetrating silicon from the back surface opposite to the device formation surface of the silicon substrate. Prior to the formation of the holes, the back side of the silicon substrate is polished to reduce the thickness.
エッチングによりシリコン基板にTSV用のホールを形成する際に、素子分離用のSTI(Shallow Trench Isolator)等の絶縁膜をエッチングストッパとして利用する技術が知られている(たとえば、特許文献1参照)。この技術では、ビアの径は、基板裏面から絶縁膜との界面までの範囲では絶縁膜に形成された開口よりも大きく、開口の内部でビア径が開口のサイズと同じになる。
A technique is known that uses an insulating film such as an STI (Shallow Trench Isolator) for element isolation as an etching stopper when forming TSV holes in a silicon substrate by etching (see, for example, Patent Document 1). In this technique, the via diameter is larger than the opening formed in the insulating film in the range from the back surface of the substrate to the interface with the insulating film, and the via diameter is the same as the size of the opening inside the opening.
シリコン基板の裏面の研磨により、ウェハ面内でシリコンの厚さがばらつく。シリコンが薄い箇所では、TSV用のホールを形成する際に、最下層のM1配線層で配線間のスペース部がオーバーエッチングされることがある。M1配線間のスペース部でのオーバーエッチングにより、ホール内へのバリアメタルやシード層の形成不良や、ボイドの発生が懸念され、TSVの信頼性が低下するおそれがある。
The thickness of the silicon varies within the wafer surface due to the polishing of the back surface of the silicon substrate. In the portion where the silicon is thin, the space portion between the wirings may be over-etched in the lowermost M1 wiring layer when the TSV hole is formed. Due to over-etching in the space between the M1 wires, there is a concern that the formation of a barrier metal or seed layer in the hole or the generation of voids may occur, and the reliability of the TSV may be reduced.
そこで、開示の技術により、信頼性の高い貫通ビアを有する半導体装置と、その製造方法を提供する。
Therefore, the disclosed technology provides a semiconductor device having a highly reliable through via and a manufacturing method thereof.
本発明の一態様では、半導体装置は、
半導体基板と、
前記半導体基板上の第1の配線層に形成された第1配線と、
前記半導体基板を貫通し、前記第1配線に接続される貫通ビアと、
前記貫通ビアと前記第1の配線層の界面で、前記第1配線の配線間スペースに対応する箇所に位置する第1の絶縁膜と、
を有する。 In one embodiment of the present invention, a semiconductor device includes:
A semiconductor substrate;
A first wiring formed in a first wiring layer on the semiconductor substrate;
A through via passing through the semiconductor substrate and connected to the first wiring;
A first insulating film located at a location corresponding to an inter-wiring space of the first wiring at an interface between the through via and the first wiring layer;
Have
半導体基板と、
前記半導体基板上の第1の配線層に形成された第1配線と、
前記半導体基板を貫通し、前記第1配線に接続される貫通ビアと、
前記貫通ビアと前記第1の配線層の界面で、前記第1配線の配線間スペースに対応する箇所に位置する第1の絶縁膜と、
を有する。 In one embodiment of the present invention, a semiconductor device includes:
A semiconductor substrate;
A first wiring formed in a first wiring layer on the semiconductor substrate;
A through via passing through the semiconductor substrate and connected to the first wiring;
A first insulating film located at a location corresponding to an inter-wiring space of the first wiring at an interface between the through via and the first wiring layer;
Have
上記の構成により、信頼性の高い貫通ビアを有する半導体装置と、その製造方法が実現される。
With the above configuration, a semiconductor device having a highly reliable through via and a manufacturing method thereof are realized.
実施形態に先立って、発明者らが見出したシリコン貫通ビア(TSV)に生じる問題点を説明する。図1AのTSV形成前の状態では、シリコン基板101の表面にトランジスタ(TR)等の回路素子が形成され、その上層に、第1配線層のM1配線103と第2配線層のM2配線104を含む多層配線が形成されている。ウェハの最表面には、外部接続端子としてのバンプ電極106が形成されている。シリコン基板101のTSV形成エリアAに、基板裏面からTSV用のホールを形成する工程で、STI絶縁膜102と層間絶縁膜107もエッチングされる。このときのエッチングで、M1配線103とM1配線103の間のスペース部にオーバーエッチングが発生することは、上述のとおりである。
Prior to the embodiment, problems that occur in the through silicon via (TSV) found by the inventors will be described. In the state before TSV formation in FIG. 1A, circuit elements such as transistors (TR) are formed on the surface of the silicon substrate 101, and the M1 wiring 103 of the first wiring layer and the M2 wiring 104 of the second wiring layer are formed thereon. A multilayer wiring including the same is formed. Bump electrodes 106 as external connection terminals are formed on the outermost surface of the wafer. The STI insulating film 102 and the interlayer insulating film 107 are also etched in the process of forming holes for TSV from the back surface of the substrate in the TSV formation area A of the silicon substrate 101. As described above, overetching occurs in the space portion between the M1 wiring 103 and the M1 wiring 103 by the etching at this time.
図1Bは、TSV105を形成した後の状態を示す。四角で囲む領域B1とB2の双方で問題が生じる。領域B1では、M1層の配線間のスペース部に、オーバーエッチングによるボイド120が発生する。領域B2では、TSV105のオーバーエッチングをあらかじめ考慮して、M2配線104がM1配線103からオフセットして、M1配線103間のスペース上方に配置される。最大線幅ルールの制約から、TSV105と接続されるM1配線103をベタ膜とすることは困難であり、ライン・アンド・スペースの配線パタンが維持される。M1とM2の2層でTSV105を受けとり、M2配線をエッチングストッパとして用いる。この構成では、トランジスタ(TR)を含む回路への配線の引き出しをM2以降の層でしかできないため、伝送速度が劣る。
FIG. 1B shows a state after the TSV 105 is formed. Problems arise in both the areas B1 and B2 enclosed by the square. In the region B1, a void 120 due to over-etching occurs in a space portion between the wirings of the M1 layer. In the region B2, the M2 wiring 104 is offset from the M1 wiring 103 in consideration of over-etching of the TSV 105 in advance, and is arranged above the space between the M1 wirings 103. Due to the restriction of the maximum line width rule, it is difficult to make the M1 wiring 103 connected to the TSV 105 as a solid film, and the line-and-space wiring pattern is maintained. The TSV 105 is received by the two layers M1 and M2, and the M2 wiring is used as an etching stopper. In this configuration, since the wiring to the circuit including the transistor (TR) can be drawn only in the layers after M2, the transmission speed is inferior.
また、M2配線104がTSV105のエッチングストッパとしてM1配線103に対してオフセットして配置されるため、TSV105とバンプ電極106を接続する配線エリアが大きくなる。そのため、チップ面積の増大や、回路へ引き回す配線層の数が増大する。さらに、M1配線103とM2配線104のオーバーラップが少なく、M1配線103とM2配線104を接続するビアの配置数が限られるため許容電流低下の原因となる。
Further, since the M2 wiring 104 is disposed as an etching stopper for the TSV 105 and offset with respect to the M1 wiring 103, a wiring area for connecting the TSV 105 and the bump electrode 106 is increased. Therefore, the chip area increases and the number of wiring layers routed to the circuit increases. Furthermore, there is little overlap between the M1 wiring 103 and the M2 wiring 104, and the number of vias connecting the M1 wiring 103 and the M2 wiring 104 is limited, which causes a reduction in allowable current.
図2及び図3は、領域B1でのボイドの発生を説明する図である。図2で、シリコン基板101にTSV105用のホール115を形成する。このとき、ウェハはバンプ電極106を下にして、接着剤109でサポート基板110に固定される。図示の便宜上、バンプ電極106とM2より上層の配線層は省略してある。シリコン基板101を一定の厚さに研磨した後に、窒化シリコン(SiN)等のハードマスク112を用いてホール115を形成する。ホール115を形成するエッチングにより、M1配線103間のスペース(以下、適宜「M1スペース」と称する)部分で層間絶縁膜108の一部がオーバーエッチングされる。
2 and 3 are diagrams for explaining the generation of voids in the region B1. In FIG. 2, a hole 115 for TSV 105 is formed in the silicon substrate 101. At this time, the wafer is fixed to the support substrate 110 with the adhesive 109 with the bump electrode 106 facing down. For convenience of illustration, the wiring layers above the bump electrodes 106 and M2 are omitted. After the silicon substrate 101 is polished to a certain thickness, a hole 115 is formed using a hard mask 112 such as silicon nitride (SiN). By etching to form the holes 115, a part of the interlayer insulating film 108 is over-etched at a space between the M1 wirings 103 (hereinafter referred to as “M1 space” as appropriate).
図2の下側の図は、STI絶縁膜102を通る切断面Cで切ったときの上面図である。ホール115内にM1配線103が露出している。M1配線103間のスペースに当たる箇所で、M2配線104が露出している。M2配線104の一部は、層間絶縁膜108で覆われているが、M2配線104が露出した箇所や、層間絶縁膜108が薄くなっている部分がボイドの発生箇所となる。
2 is a top view when cut along a cut surface C passing through the STI insulating film 102. FIG. The M1 wiring 103 is exposed in the hole 115. The M2 wiring 104 is exposed at a location corresponding to the space between the M1 wirings 103. A part of the M2 wiring 104 is covered with the interlayer insulating film 108, but a portion where the M2 wiring 104 is exposed or a portion where the interlayer insulating film 108 is thin becomes a void generation portion.
図3に示すように、ホール115の内壁に絶縁膜116を形成し、ホール115の底面の絶縁膜116を異方性エッチングでエッチバックしてから、ホール115内を導電膜118で埋め込む。オーバーエッチングによりM1スペース部でM2配線104が露出した箇所には、バリアメタルや導電膜118を形成するためのシード層が形成されにくく、ホール115内を完全に埋め込むことが困難である。図3の下側の図は、STI絶縁膜102からM1配線103を通る切断面Dで切ったときの上面図である。M1配線103間のスペース部分にボイドが生じ、M2配線104が露出した状態のままである。
As shown in FIG. 3, an insulating film 116 is formed on the inner wall of the hole 115, the insulating film 116 on the bottom surface of the hole 115 is etched back by anisotropic etching, and the hole 115 is then filled with a conductive film 118. A seed layer for forming a barrier metal or a conductive film 118 is difficult to be formed in a portion where the M2 wiring 104 is exposed in the M1 space portion by overetching, and it is difficult to completely fill the hole 115. The lower diagram in FIG. 3 is a top view when the STI insulating film 102 is cut along a cut surface D passing through the M1 wiring 103. A void is generated in the space portion between the M1 wirings 103, and the M2 wiring 104 remains exposed.
図4及び図5は、実施形態の半導体装置10を一般的な構成と比較して示す図である。図4と図5はともに、配線が延びる方向と直交する面での断面図である。図4はTSV形成前、図5はTSV形成後の状態を示す。
4 and 5 are diagrams showing the semiconductor device 10 of the embodiment in comparison with a general configuration. 4 and 5 are both cross-sectional views in a plane orthogonal to the direction in which the wiring extends. 4 shows a state before TSV formation, and FIG. 5 shows a state after TSV formation.
実施形態では、上述した一般構成の問題点を解決するために、(1)TSV形成エリア内で、M1配線間のM1スペースに対応する位置にSTI絶縁膜12bを配置する。(2)M2配線14をM1配線13に対してオフセットさせずに、M1配線13と揃った位置に形成する。
In the embodiment, in order to solve the problems of the general configuration described above, (1) the STI insulating film 12b is arranged at a position corresponding to the M1 space between the M1 wirings in the TSV formation area. (2) The M2 wiring 14 is formed at a position aligned with the M1 wiring 13 without being offset with respect to the M1 wiring 13.
M1スペースに対応する位置にSTI絶縁膜12bを配置することで、M1スペース部分でのオーバーエッチングを抑制する。M1スペース部分でのオーバーエッチングを抑制することで、M1配線13だけでTSVを受け取り、M2配線14をM1配線13と同じ位置に重ねることができる。また、M1配線13の層から回路部への引き出し配線をとることができる。
By disposing the STI insulating film 12b at a position corresponding to the M1 space, overetching in the M1 space portion is suppressed. By suppressing over-etching in the M1 space portion, TSV can be received only by the M1 wiring 13 and the M2 wiring 14 can be overlapped at the same position as the M1 wiring 13. In addition, a lead-out wiring from the layer of the M1 wiring 13 to the circuit portion can be taken.
図4のTSV形成前の状態で、下図の一般構成では、TSV形成エリア全体にSTI絶縁膜102が形成されている。これに対し、上図の実施形態の半導体装置10は、TSV形成エリアのM1スペースに対応する位置のシリコン基板11に、所定幅、所定の間隔でSTI絶縁膜12bが形成されている。STI絶縁膜12bは、M1配線13間のスペース形状に対応し、紙面の奥行き方向に向かって延びる細長い形状のパタンである。便宜上、M1配線13のライン・アンド・スペースパタンの内側に配置されるSTI絶縁膜を「STI絶縁膜12b」、ライン・アンド・スペースパタンの外側に配置されるSTI絶縁膜を「STI絶縁膜12a」とする。STI絶縁膜12aと12bを合わせてSTI絶縁膜12とする。
In the state before the TSV formation in FIG. 4, the STI insulating film 102 is formed in the entire TSV formation area in the general configuration shown in the figure below. On the other hand, in the semiconductor device 10 of the above embodiment, the STI insulating film 12b is formed on the silicon substrate 11 at a position corresponding to the M1 space of the TSV formation area with a predetermined width and a predetermined interval. The STI insulating film 12b is an elongated pattern corresponding to the space shape between the M1 wirings 13 and extending in the depth direction of the drawing. For convenience, the STI insulating film disposed inside the line and space pattern of the M1 wiring 13 is “STI insulating film 12b”, and the STI insulating film disposed outside the line and space pattern is “STI insulating film 12a”. " The STI insulating films 12a and 12b are combined to form the STI insulating film 12.
図4の下図の一般構成では、M2配線104がM1配線103に対して、配線幅(ライン幅)方向にオフセットし、M2層で回路部への引き出し配線104dが延びている。これに対し、図4の上図の実施形態の半導体装置10は、M2配線14がM1配線13と揃って配置され、M1層で回路部への引き出し配線13dが延びている。これは、M1スペース部分でのオーバーエッチングが抑制され、M1配線13だけでTSVを受け取ることができるからである。
4, the M2 wiring 104 is offset in the wiring width (line width) direction with respect to the M1 wiring 103, and the lead-out wiring 104d to the circuit portion extends in the M2 layer. On the other hand, in the semiconductor device 10 of the embodiment shown in the upper diagram of FIG. 4, the M2 wiring 14 is aligned with the M1 wiring 13, and the lead-out wiring 13d to the circuit portion extends in the M1 layer. This is because overetching in the M1 space portion is suppressed, and TSV can be received only by the M1 wiring 13.
図5のTSV形成後の状態において、図5の下図の一般構成では、領域B1とB2の双方で上述した問題が生じる。すなわち、M1スペース部分でのボイド120の発生(B1)と、M1配線103とM2配線104のオフセット配置及び引き出し配線104dの配置制限の問題(B2)である。
In the state after the TSV formation in FIG. 5, the problem described above occurs in both the regions B1 and B2 in the general configuration in the lower diagram in FIG. That is, the void 120 is generated in the M1 space portion (B1), the offset arrangement of the M1 wiring 103 and the M2 wiring 104, and the arrangement limitation of the extraction wiring 104d (B2).
これに対し、図5の上図の実施形態の半導体装置10は、M1配線13間のスペースに対応する領域X1に、層間絶縁膜23の一部が絶縁膜23sとして残る。絶縁膜23sはM1スペース部分でのオーバーエッチングを抑制し、M1配線13をエッチングストッパとして機能させる。これにより、M1スペース部分へのバリアメタルやシード層の形成不良、TSV15内部でのボイドの発生などを防止することができる。
On the other hand, in the semiconductor device 10 of the embodiment in the upper diagram of FIG. 5, a part of the interlayer insulating film 23 remains as the insulating film 23s in the region X1 corresponding to the space between the M1 wirings 13. The insulating film 23s suppresses over-etching in the M1 space portion and causes the M1 wiring 13 to function as an etching stopper. Thereby, it is possible to prevent the formation of a barrier metal or a seed layer in the M1 space and the generation of voids in the TSV 15.
M1スペース部分のオーバーエッチングを抑制することで、M2配線14をM1配線13の直上に配置して、M1配線13だけでTSV15を受けることができる。回路への引き出し配線13dがM1層から延びるので、伝送速度の点で有利である。また、TSV15とバンプ電極106をつなぐ配線エリアを小さくでき、チップ面積と、回路へ引き出す配線層の数を低減することができる。さらに、M1配線13とM2配線14のオーバーラップが大きいので、M1配線13とM2配線14を接続するビアの配置数を増やすことができ、許容電流が増加する。
<第1実施形態>
図6A及び図6Bは、第1実施形態の半導体装置10Aの構成図である。半導体装置10Aは、図5の上図の半導体装置10と同様に、TSV15のエッジ(シリコン基板11との界面)がライン・アンド・スペースパタンの外側にあるSTI絶縁膜12aにかからないタイプである。図6AのTSV形成前は、TSV形成エリア内のM1スペースに対応する箇所をカバーするようにSTI絶縁膜12bが配置される。図6BのTSV形成後では、TSV15とM1スペースの間に、絶縁膜23sが位置する。半導体装置10Aの構成は、図5の上図の半導体装置10と同じであるため、重複する説明を省略する。 By suppressing over-etching of the M1 space portion, theM2 wiring 14 can be disposed immediately above the M1 wiring 13 and the TSV 15 can be received only by the M1 wiring 13. Since the lead-out wiring 13d to the circuit extends from the M1 layer, it is advantageous in terms of transmission speed. In addition, the wiring area connecting TSV 15 and bump electrode 106 can be reduced, and the chip area and the number of wiring layers drawn to the circuit can be reduced. Furthermore, since the overlap between the M1 wiring 13 and the M2 wiring 14 is large, the number of vias connecting the M1 wiring 13 and the M2 wiring 14 can be increased, and the allowable current increases.
<First Embodiment>
6A and 6B are configuration diagrams of thesemiconductor device 10A of the first embodiment. The semiconductor device 10A is a type in which the edge of the TSV 15 (interface with the silicon substrate 11) does not cover the STI insulating film 12a outside the line-and-space pattern, like the semiconductor device 10 in the upper diagram of FIG. Before the TSV formation of FIG. 6A, the STI insulating film 12b is arranged so as to cover a portion corresponding to the M1 space in the TSV formation area. 6B, the insulating film 23s is located between the TSV15 and the M1 space. The configuration of the semiconductor device 10A is the same as that of the semiconductor device 10 in the upper diagram of FIG.
<第1実施形態>
図6A及び図6Bは、第1実施形態の半導体装置10Aの構成図である。半導体装置10Aは、図5の上図の半導体装置10と同様に、TSV15のエッジ(シリコン基板11との界面)がライン・アンド・スペースパタンの外側にあるSTI絶縁膜12aにかからないタイプである。図6AのTSV形成前は、TSV形成エリア内のM1スペースに対応する箇所をカバーするようにSTI絶縁膜12bが配置される。図6BのTSV形成後では、TSV15とM1スペースの間に、絶縁膜23sが位置する。半導体装置10Aの構成は、図5の上図の半導体装置10と同じであるため、重複する説明を省略する。 By suppressing over-etching of the M1 space portion, the
<First Embodiment>
6A and 6B are configuration diagrams of the
図7~図18は、図8の半導体装置10Aの製造工程図である。図7において、シリコン基板11の所定の位置にSTI絶縁膜12a、12bを形成し、シリコン基板11上にトランジスタ(TR)等の回路素子と、M1配線13とM2配線14を含む多層配線と、バンプ電極106(図6A及び図6B参照)を形成する。図7では、図示の簡略化のためバンプ電極106とM3以降の配線層を省略している。
7 to 18 are manufacturing process diagrams of the semiconductor device 10A of FIG. In FIG. 7, STI insulating films 12a and 12b are formed at predetermined positions on the silicon substrate 11, a circuit element such as a transistor (TR) on the silicon substrate 11, a multilayer wiring including an M1 wiring 13 and an M2 wiring 14, A bump electrode 106 (see FIGS. 6A and 6B) is formed. In FIG. 7, the bump electrodes 106 and the wiring layers after M3 are omitted for the sake of simplicity.
STI絶縁膜12bは、回路領域を区画する素子分離(STI)絶縁膜12のパタニングと同時に、シリコン基板11の所定位置に形成されている。より具体的には、STI絶縁膜12bは、M1配線13間のスペースに対応する位置に形成される。一例として、M1配線13のライン幅Mwは2μm、スペース幅Swは0.5μm、STI絶縁膜12bの幅(図中、「STI幅」と表記)Twは0.8μm、STI間スペースLwは1.7μmである。STI幅Twは、M1配線13のスペース幅Swよりも大きい。図7の下側の図は、図7の上側の図を切断面Eで切って基板表面(裏面11Rの反対側)から見たときの図である。M1配線13の配線パタンに対応する領域にはSTI絶縁膜12bが形成されておらず、シリコン基板11が露出する。
The STI insulating film 12b is formed at a predetermined position on the silicon substrate 11 simultaneously with the patterning of the element isolation (STI) insulating film 12 that partitions the circuit region. More specifically, the STI insulating film 12 b is formed at a position corresponding to the space between the M1 wirings 13. As an example, the line width Mw of the M1 wiring 13 is 2 μm, the space width Sw is 0.5 μm, the width of the STI insulating film 12b (indicated as “STI width” in the figure) Tw is 0.8 μm, and the space Lw between STIs is 1. 0.7 μm. The STI width Tw is larger than the space width Sw of the M1 wiring 13. The lower diagram in FIG. 7 is a diagram when the upper diagram in FIG. 7 is cut along the cut surface E and viewed from the substrate surface (opposite the back surface 11R). In the region corresponding to the wiring pattern of the M1 wiring 13, the STI insulating film 12b is not formed, and the silicon substrate 11 is exposed.
エッジトリミングを行った後に、接着剤109でウェハをサポート基板110に仮接合(テンポラリ・ボンディング)する。エッジトリミングは、ウェハを研削して薄化する際にエッジからの割れを防止するため、ウェハのエッジ部に溝を形成しておく処理である。仮接合では、バンプ電極106が形成された面を接合面とし、シリコン基板11の裏面11Rを図の上側に向ける。シリコン基板11の裏面11Rを研削(バックグラインド)して、シリコン基板11の厚さTを、たとえば50~70μmにする。
After edge trimming, the wafer is temporarily bonded (temporary bonding) to the support substrate 110 with the adhesive 109. Edge trimming is a process in which grooves are formed in the edge portion of a wafer in order to prevent cracking from the edge when the wafer is ground and thinned. In the temporary bonding, the surface on which the bump electrode 106 is formed is used as a bonding surface, and the back surface 11R of the silicon substrate 11 is directed upward in the drawing. The back surface 11R of the silicon substrate 11 is ground (back grind) so that the thickness T of the silicon substrate 11 is, for example, 50 to 70 μm.
次に、図8で、薄化したシリコン基板11の裏面にSiN等の絶縁膜112を形成し、レジスト113を塗布してパタニングし、所定の開口114を形成する。絶縁膜112の厚さは、たとえば0.5μm~1μmである。開口114の径φは、TSVの径に対応しており、たとえば10μmである。
Next, in FIG. 8, an insulating film 112 such as SiN is formed on the back surface of the thinned silicon substrate 11, and a resist 113 is applied and patterned to form a predetermined opening 114. The thickness of the insulating film 112 is, for example, 0.5 μm to 1 μm. The diameter φ of the opening 114 corresponds to the diameter of the TSV and is, for example, 10 μm.
次に、図9で、ボッシュプロセスによりシリコン基板11にエッチングを行い、TSV用のホール115を形成する。ホール115の径φは、10μmである。M1配線13のライン・アンド・スペースパタンの幅w1は、たとえば12μmである。従来手法ではバックグラインド後のシリコン基板11の厚さばらつきにより、シリコン基板11の薄い箇所でのM1スペースのオーバーエッチングが問題となっていた。第1実施形態では、M1スペースに対応する位置にSTI絶縁膜12bが形成されており(図8参照)、STI絶縁膜12bがエッチングに対する緩衝材となる。その結果、エッチング終了後に、ホール115の底面のM1スペース位置に、層間絶縁膜23の一部が絶縁膜23sとして残る。この絶縁膜23sにはSTI絶縁膜12bの一部が含まれていてもよい。絶縁膜23sは、M1スペース部分のオーバーエッチングを抑制または制御する機能を有する。M1配線13は、エッチングストッパとしての役割を果たす。
Next, in FIG. 9, the silicon substrate 11 is etched by a Bosch process to form TSV holes 115. The diameter φ of the hole 115 is 10 μm. The width w1 of the line and space pattern of the M1 wiring 13 is, for example, 12 μm. In the conventional method, due to the thickness variation of the silicon substrate 11 after back grinding, over-etching of the M1 space in a thin portion of the silicon substrate 11 has been a problem. In the first embodiment, the STI insulating film 12b is formed at a position corresponding to the M1 space (see FIG. 8), and the STI insulating film 12b serves as a buffer against etching. As a result, after the etching is completed, a part of the interlayer insulating film 23 remains as the insulating film 23s in the M1 space position on the bottom surface of the hole 115. This insulating film 23s may include a part of the STI insulating film 12b. The insulating film 23s has a function of suppressing or controlling overetching of the M1 space portion. The M1 wiring 13 serves as an etching stopper.
図9の下図は、図9の上図の切断面Eで切断して、ホール115側から見たときの上面図である。ライン・アンド・スペースパタンの外側にあるSTI絶縁膜12aは、ホール115の外側に残っている。ホール115の内部では、M1配線13が露出している。隣接するM1配線13間には、絶縁膜23sが縞状あるいはストリップ状に残っている。絶縁膜23sはM1配線13のエッジを覆って、M1配線13間のスペース幅よりも広い幅となっている。
9 is a top view when viewed from the side of the hole 115 by cutting along the cutting plane E in the upper diagram of FIG. The STI insulating film 12a outside the line and space pattern remains outside the hole 115. Inside the hole 115, the M1 wiring 13 is exposed. Between the adjacent M1 wirings 13, the insulating film 23 s remains in a stripe shape or a strip shape. The insulating film 23 s covers the edge of the M1 wiring 13 and is wider than the space width between the M1 wirings 13.
次に、図10で、低温CVD(Chemical Vapor Deposition:化学気相成長)法により、ホール115の側壁を含む全面に絶縁膜116を形成する。絶縁膜116として、TEOS膜を用いてもよい。ホール115の底面及び側壁の絶縁膜116の膜厚は、たとえば0.2~0.5μmである。絶縁膜112上の絶縁膜116の膜厚は、たとえば1.0~1.5μmである。
Next, in FIG. 10, an insulating film 116 is formed on the entire surface including the sidewalls of the hole 115 by a low temperature CVD (Chemical Vapor Deposition) method. A TEOS film may be used as the insulating film 116. The film thickness of the insulating film 116 on the bottom and side walls of the hole 115 is, for example, 0.2 to 0.5 μm. The film thickness of the insulating film 116 on the insulating film 112 is, for example, 1.0 to 1.5 μm.
次に、図11で、異方性エッチングにより、ホール115の底面の絶縁膜116をエッチバックして、M1配線13を露出する。この段階の絶縁膜23sに、絶縁膜116の一部が付着していてもよい。この場合は、絶縁膜116の付着部分116bも合わせて絶縁膜23sとする
次に、図12で、PVD(Physical Vapor Deposition:物理気相成長)法により、全面にバリアメタルとシード層を形成する。図示の簡略化のため、バリアメタルとシード層の図示を省略する。バリアメタルは、たとえば厚さ0.1~0.5μmのチタン(Ti)、シード層は、0.5~1.0μmの銅(Cu)であるが、その他の適切な金属材料を用いてもよい。シード層形成後に、電解メッキによりホール115内に、銅(Cu)118を充填する。M1スペース部分が絶縁膜23sに覆われてオーバーエッチングが抑制されているので、バリアメタルやシード層の形成不良やボイドの発生は抑制される。 Next, in FIG. 11, the insulatingfilm 116 on the bottom surface of the hole 115 is etched back by anisotropic etching to expose the M1 wiring 13. A part of the insulating film 116 may be attached to the insulating film 23s at this stage. In this case, the adhesion portion 116b of the insulating film 116 is also used as the insulating film 23s. Next, in FIG. 12, a barrier metal and a seed layer are formed on the entire surface by PVD (Physical Vapor Deposition). . For simplicity of illustration, illustration of the barrier metal and the seed layer is omitted. The barrier metal is, for example, titanium (Ti) with a thickness of 0.1 to 0.5 μm, and the seed layer is copper (Cu) with a thickness of 0.5 to 1.0 μm, but other suitable metal materials may be used. Good. After the seed layer is formed, copper (Cu) 118 is filled into the holes 115 by electrolytic plating. Since the M1 space portion is covered with the insulating film 23s and the overetching is suppressed, the formation failure of the barrier metal and the seed layer and the generation of voids are suppressed.
次に、図12で、PVD(Physical Vapor Deposition:物理気相成長)法により、全面にバリアメタルとシード層を形成する。図示の簡略化のため、バリアメタルとシード層の図示を省略する。バリアメタルは、たとえば厚さ0.1~0.5μmのチタン(Ti)、シード層は、0.5~1.0μmの銅(Cu)であるが、その他の適切な金属材料を用いてもよい。シード層形成後に、電解メッキによりホール115内に、銅(Cu)118を充填する。M1スペース部分が絶縁膜23sに覆われてオーバーエッチングが抑制されているので、バリアメタルやシード層の形成不良やボイドの発生は抑制される。 Next, in FIG. 11, the insulating
次に、図13で銅(Cu)118をCMP(Chemical Mechanical Polishing:化学機械研磨)で平坦化し、TSV15を形成する。続いて、PVDによりバリアメタルとシード層の積層121を形成し、レジスト122を塗布して、裏面配線に対応する開口123をパタニングする。バリアメタルは、たとえば厚さ0.1~0.5μmのチタン(Ti)、シード層は、0.5~1.0μmの銅(Cu)である。開口123の幅w4は、たとえば80~100μmである。
Next, in FIG. 13, copper (Cu) 118 is planarized by CMP (Chemical Mechanical Polishing) to form TSV15. Subsequently, a barrier metal / seed layer 121 is formed by PVD, a resist 122 is applied, and an opening 123 corresponding to the backside wiring is patterned. The barrier metal is, for example, titanium (Ti) with a thickness of 0.1 to 0.5 μm, and the seed layer is copper (Cu) with a thickness of 0.5 to 1.0 μm. The width w4 of the opening 123 is, for example, 80 to 100 μm.
次に、図14で、電解メッキにより、裏面配線125を銅(Cu)で形成する。裏面配線125の厚さは、例えば2~4μmである。その後、レジスト122を剥離し、ウェットエッチングで不要な部分の積層(バリアメタル/シード層)121を除去する。
Next, in FIG. 14, the back wiring 125 is formed of copper (Cu) by electrolytic plating. The thickness of the back wiring 125 is, for example, 2 to 4 μm. Thereafter, the resist 122 is peeled off, and unnecessary layer stack (barrier metal / seed layer) 121 is removed by wet etching.
次に、図15で、感光性樹脂126を塗布し、裏面電極に対応する開口127をパタニングする。裏面電極の幅w5は、たとえば60~80μmである。
Next, in FIG. 15, a photosensitive resin 126 is applied, and the opening 127 corresponding to the back electrode is patterned. The width w5 of the back electrode is, for example, 60 to 80 μm.
次に、図16で、無電解メッキにより、たとえばニッケル(Ni)膜131と金(Au)膜132で裏面電極130を形成する。Ni膜131の厚さは、たとえば2~4μm、Au膜132の厚さは、たとえば0.03~0.1μmである。
Next, in FIG. 16, the back electrode 130 is formed by, for example, a nickel (Ni) film 131 and a gold (Au) film 132 by electroless plating. The thickness of the Ni film 131 is, for example, 2 to 4 μm, and the thickness of the Au film 132 is, for example, 0.03 to 0.1 μm.
次に、図17で、裏面電極130側をダイシングフィルム7に張り合わせ、サポート基板110を剥離(デボンド)する。デバイス面側の接着剤109を洗浄除去する。なお、多層配線の最表面に形成されているバンプ電極106は省略してある。
Next, in FIG. 17, the back electrode 130 side is bonded to the dicing film 7 and the support substrate 110 is peeled (debonded). The adhesive 109 on the device surface side is washed away. The bump electrode 106 formed on the outermost surface of the multilayer wiring is omitted.
次に、図18でダイシングブレード5でダイシングを行い、ウェハ2をチップ3に分断する。個々のチップ3を半導体装置10Aとしてもよい。この方法により、TSV15とM1層との界面で、絶縁膜23sによりM1スペース部分のオーバーエッチングが抑制され、信頼性の高いTSV15を有する半導体装置10Aが実現する。また、M2配線14とM1配線13が基板と垂直方向に揃って配置されるので、配線面積と積層数を低減することができる。M1配線13とM2配線14のオーバーラップを広くとれるので、M1配線13とM2配線14の間のビア数を増やすことができ、許容電流を大きくできる。M1配線13の層からトランジスタ(TR)を含む回路部への引き出し配線13dを取り出すことができるので、伝送速度が向上する。
Next, dicing is performed with the dicing blade 5 in FIG. 18 to divide the wafer 2 into chips 3. Each chip 3 may be a semiconductor device 10A. By this method, overetching of the M1 space portion is suppressed by the insulating film 23s at the interface between the TSV15 and the M1 layer, and the semiconductor device 10A having the highly reliable TSV15 is realized. Further, since the M2 wiring 14 and the M1 wiring 13 are arranged in the direction perpendicular to the substrate, the wiring area and the number of stacked layers can be reduced. Since the overlap between the M1 wiring 13 and the M2 wiring 14 can be widened, the number of vias between the M1 wiring 13 and the M2 wiring 14 can be increased, and the allowable current can be increased. Since the lead-out wiring 13d to the circuit portion including the transistor (TR) can be taken out from the layer of the M1 wiring 13, the transmission speed is improved.
なお、第1実施形態では、M2配線14をM1配線と同じレイアウトで重ねて配置したが、この例に限定されない。M2以降の配線レイアウトは、チップサイズの著しい増大を生じさせない限り、デザインルールが許す範囲内で自由である。また、多層配線の最も表面側のバンプ電極106は、はんだバンプであってもよいし、銅(Cu)のピラー形状の電極であってもよい。
<第2実施形態>
図19A及び図19Bは、第2実施形態の半導体装置10Bを示す。第2実施形態では、M1層のライン・アンド・スペースパタンの外側にあるSTI絶縁膜12aがTSV15の内部に位置するタイプの半導体装置10Bを提供する。 In the first embodiment, theM2 wiring 14 is stacked in the same layout as the M1 wiring, but the present invention is not limited to this example. The wiring layout after M2 is free as long as the design rule allows as long as the chip size is not significantly increased. Further, the bump electrode 106 on the most surface side of the multilayer wiring may be a solder bump or a copper (Cu) pillar-shaped electrode.
Second Embodiment
19A and 19B show asemiconductor device 10B of the second embodiment. In the second embodiment, there is provided a semiconductor device 10B of a type in which the STI insulating film 12a outside the line and space pattern of the M1 layer is located inside the TSV15.
<第2実施形態>
図19A及び図19Bは、第2実施形態の半導体装置10Bを示す。第2実施形態では、M1層のライン・アンド・スペースパタンの外側にあるSTI絶縁膜12aがTSV15の内部に位置するタイプの半導体装置10Bを提供する。 In the first embodiment, the
Second Embodiment
19A and 19B show a
図19AのTSV形成前は、TSV形成エリアのエッジが、ライン・アンド・スペースパタンの外側のSTI絶縁膜12aにかかっている。ライン・アンド・スペースパタンの内側のSTI絶縁膜12bは、M1配線13間のスペース(M1スペース)に対応する位置に形成されている。
Before the TSV formation in FIG. 19A, the edge of the TSV formation area is on the STI insulating film 12a outside the line and space pattern. The STI insulating film 12b inside the line and space pattern is formed at a position corresponding to the space between the M1 wires 13 (M1 space).
図19BのTSV形成後は、TSV15とM1スペースの間に絶縁膜23sが位置するとともに、TSV15の内側、かつライン・アンド・スペースパタンの外側に、絶縁膜23tが残る。絶縁膜23tは、TSV15とM1層の境界近傍で、TSV15の周に沿って存在する。
19B, after forming the TSV, the insulating film 23s is located between the TSV15 and the M1 space, and the insulating film 23t remains inside the TSV15 and outside the line and space pattern. The insulating film 23t exists along the circumference of the TSV 15 in the vicinity of the boundary between the TSV 15 and the M1 layer.
この構成でも、絶縁膜23sと絶縁膜23tにより、TSV形成領域内において、M1スペースに対応する部分とライン・アンド・スペースパタンの外側の領域でのオーバーエッチングを抑制する。これによりM1スペース部分とTSVホールの円弧に沿った領域でのバリアメタル及びシード層の形成不良や、TSV15内部でのボイドの発生を抑制することができる。また、M2配線14をM1配線13の直上に配置して、M1配線13だけでTSV15を受けることができ、回路への引き出し配線13dをM1層から引き出すことができる。これにより、TSVの信頼性の向上とともに、伝送速度の向上、チップサイズの低減、許容電流の増大を実現する。
Even in this configuration, the insulating film 23s and the insulating film 23t suppress over-etching in the region corresponding to the M1 space and the region outside the line and space pattern in the TSV formation region. Thereby, formation failure of the barrier metal and the seed layer in the region along the arc of the M1 space portion and the TSV hole, and generation of voids in the TSV 15 can be suppressed. Further, the M2 wiring 14 is arranged immediately above the M1 wiring 13, so that the TSV 15 can be received only by the M1 wiring 13, and the lead wiring 13d to the circuit can be drawn from the M1 layer. As a result, the reliability of the TSV is improved, and the transmission speed is improved, the chip size is reduced, and the allowable current is increased.
図20~図24は、第2実施形態の半導体装置10Bの製造工程図である。図20において、シリコン基板11の所定の位置にSTI絶縁膜12a、12bを形成し、シリコン基板11上の回路領域にトランジスタ(TR)等の素子と、M1配線13とM2配線14を含む多層配線と、バンプ電極106(図19参照)を形成する。図20では、図示の簡略化のため、バンプ電極106とM3以降の配線層を省略している。
20 to 24 are manufacturing process diagrams of the semiconductor device 10B of the second embodiment. In FIG. 20, STI insulating films 12a and 12b are formed at predetermined positions on the silicon substrate 11, and a multilayer wiring including an element such as a transistor (TR), an M1 wiring 13, and an M2 wiring 14 in a circuit region on the silicon substrate 11. Then, bump electrodes 106 (see FIG. 19) are formed. In FIG. 20, the bump electrode 106 and the wiring layers after M3 are omitted for the sake of simplicity of illustration.
STI絶縁膜12b及びSTI絶縁膜12aは、回路領域を区画する素子分離(STI)絶縁膜12のパタニングと同時に、シリコン基板11の所定位置に形成されている。この例で、STI絶縁膜12bの幅(図中、「STI幅」と表記)TwとSTI間スペース幅Lwは、それぞれ0.8μmと1.7μmである。第1M1配線13のライン幅Mwは、2μm、スペース幅Swは0.5μmである。
The STI insulating film 12b and the STI insulating film 12a are formed at predetermined positions on the silicon substrate 11 simultaneously with the patterning of the element isolation (STI) insulating film 12 that partitions the circuit region. In this example, the width (indicated as “STI width” in the figure) Tw of the STI insulating film 12b and the space width Lw between STI are 0.8 μm and 1.7 μm, respectively. The line width Mw of the first M1 wiring 13 is 2 μm, and the space width Sw is 0.5 μm.
図20の下側の図は、図20の上側の図を切断面Eで切って基板表面(裏面11Rの反対側)から見たときの図である。M1配線13の配線パタンに対応する領域にはSTI絶縁膜12bが形成されておらず、シリコン基板11が露出する。
The lower diagram in FIG. 20 is a diagram when the upper diagram in FIG. 20 is cut along the cut surface E and viewed from the substrate surface (opposite to the back surface 11R). In the region corresponding to the wiring pattern of the M1 wiring 13, the STI insulating film 12b is not formed, and the silicon substrate 11 is exposed.
エッジトリミングを行った後に、接着剤109でウェハをサポート基板110に仮接合(テンポラリ・ボンディング)する。エッジトリミングは、ウェハを研削して薄化する際にエッジからの割れを防止するため、ウェハのエッジ部に溝を形成しておく処理である。仮接合では、バンプ電極106が形成された面を接合面とし、シリコン基板11の裏面11Rを図の上側に向ける。シリコン基板11の裏面11Rを研削(バックグラインド)して、シリコン基板11の厚さTを、たとえば50~70μmにする。
After edge trimming, the wafer is temporarily bonded (temporary bonding) to the support substrate 110 with the adhesive 109. Edge trimming is a process in which grooves are formed in the edge portion of a wafer in order to prevent cracking from the edge when the wafer is ground and thinned. In the temporary bonding, the surface on which the bump electrode 106 is formed is used as a bonding surface, and the back surface 11R of the silicon substrate 11 is directed upward in the drawing. The back surface 11R of the silicon substrate 11 is ground (back grind) so that the thickness T of the silicon substrate 11 is, for example, 50 to 70 μm.
次に、図21で、薄化したシリコン基板11の裏面にSiN等の絶縁膜112を形成する。絶縁膜112上にレジスト113を塗布してパタニングし、所定の開口114を形成する。絶縁膜112の厚さは、たとえば0.5μm~1μmである。開口114の径φはTSVの径に対応しており、たとえば10μmである。
Next, in FIG. 21, an insulating film 112 such as SiN is formed on the back surface of the thinned silicon substrate 11. A resist 113 is applied on the insulating film 112 and patterned to form a predetermined opening 114. The thickness of the insulating film 112 is, for example, 0.5 μm to 1 μm. The diameter φ of the opening 114 corresponds to the diameter of the TSV and is, for example, 10 μm.
次に、図22で、ボッシュプロセスによりシリコン基板11にエッチングを行い、TSV用のホール115を形成する。ホール115の径φは、10μmである。M1配線13のライン・アンド・スペースパタンの幅w6は、たとえば7μmである。ライン・アンド・スペースパタンの幅方向の外側のエッジから、ホール115の側壁までの距離w7は、1.5μmである。
Next, in FIG. 22, the silicon substrate 11 is etched by a Bosch process to form TSV holes 115. The diameter φ of the hole 115 is 10 μm. The width w6 of the line and space pattern of the M1 wiring 13 is, for example, 7 μm. The distance w7 from the outer edge in the width direction of the line and space pattern to the side wall of the hole 115 is 1.5 μm.
第2実施形態では、M1スペースに対応する位置にSTI絶縁膜12bが形成され、ライン・アンド・スペースパターンの外側にSTI絶縁膜12aが形成されている(図21参照)。STI絶縁膜12bとSTI絶縁膜12aが、ホール115の形成時のエッチングに対する緩衝材となる。エッチング終了後に、層間絶縁膜23の一部がホール115の底面のM1スペース位置に絶縁膜23sとして残る。また、ライン・アンド・スペースパタンの外側で、ホール内の円弧に沿った領域に、層間絶縁膜23の一部が絶縁膜23tとして残る。絶縁膜23sにはSTI絶縁膜12bの一部が含まれていてもよい。絶縁膜23tにはSTI絶縁膜12aの一部が含まれていてもよい。
In the second embodiment, the STI insulating film 12b is formed at a position corresponding to the M1 space, and the STI insulating film 12a is formed outside the line and space pattern (see FIG. 21). The STI insulating film 12b and the STI insulating film 12a serve as a buffer material against etching when the hole 115 is formed. After the etching is completed, a part of the interlayer insulating film 23 remains as an insulating film 23s in the M1 space position on the bottom surface of the hole 115. Further, a part of the interlayer insulating film 23 remains as an insulating film 23t in a region along the arc in the hole outside the line and space pattern. The insulating film 23s may include a part of the STI insulating film 12b. The insulating film 23t may include a part of the STI insulating film 12a.
図22の下図は、図22の上図の切断面Eで切断して、ホール115側から見たときの上面図である。ホール115の外側、かつライン・アンド・スペースパタンの外側にあるSTI絶縁膜12aは、シリコン基板11に残っている。ホール115の内部ではM1配線13が露出し、隣接するM1配線13間には、絶縁膜23sが縞状あるいはストリップ状に残っている。また、ホール115の内部で最も外側のM1配線13の外側には、絶縁膜23tが円弧状に残っている。
22 is a top view when viewed from the side of the hole 115 by cutting along the cutting plane E in the upper diagram of FIG. The STI insulating film 12 a outside the hole 115 and outside the line and space pattern remains on the silicon substrate 11. Inside the hole 115, the M1 wiring 13 is exposed, and between the adjacent M1 wirings 13, the insulating film 23s remains in a stripe shape or a strip shape. Further, the insulating film 23t remains in an arc shape outside the outermost M1 wiring 13 inside the hole 115.
次に、図23で、低温CVD(Chemical Vapor Deposition:化学気相成長)法により、ホール115の側壁を含む全面に、TEOS膜等の絶縁膜116を形成する。異方性エッチングにより、ホール115の底面の絶縁膜116をエッチバックして、M1配線13を露出する。ホール115の側壁には、絶縁膜116sが残る。この段階の絶縁膜23sに絶縁膜116の一部が付着していてもよい。この場合は、絶縁膜116の付着部分116bも合わせて絶縁膜23sとする。
Next, in FIG. 23, an insulating film 116 such as a TEOS film is formed on the entire surface including the sidewall of the hole 115 by a low temperature CVD (Chemical Vapor Deposition) method. The insulating film 116 on the bottom surface of the hole 115 is etched back by anisotropic etching to expose the M1 wiring 13. An insulating film 116 s remains on the sidewall of the hole 115. A part of the insulating film 116 may be attached to the insulating film 23s at this stage. In this case, the adhesion portion 116b of the insulating film 116 is also used as the insulating film 23s.
次に、図24で、図示しないバリアメタルとシード層を形成し、電解メッキによりホール115内に銅(Cu)118を充填する。M1スペース部分とライン・アンド・スペースパタンの外側が、それぞれ絶縁膜23sと絶縁膜23tに覆われてオーバーエッチングが抑制されているので、バリアメタル及びシード層の形成不良や、ボイドの発生は抑制される。
Next, in FIG. 24, a barrier metal and a seed layer (not shown) are formed, and the hole 115 is filled with copper (Cu) 118 by electrolytic plating. Since the M1 space portion and the outside of the line and space pattern are covered with the insulating film 23s and the insulating film 23t, respectively, and over-etching is suppressed, formation defects of the barrier metal and the seed layer and generation of voids are suppressed. Is done.
その後の処理は、第1実施形態の図13~図18と同一である。すなわち、銅(Cu)118をCMP(Chemical Mechanical Polishing:化学機械研磨)で平坦化し、TSV15を形成する。続いて、TSV15に接続される裏面配線125を形成し、裏面配線125上に裏面電極130を形成する。
The subsequent processing is the same as in FIGS. 13 to 18 of the first embodiment. That is, copper (Cu) 118 is planarized by CMP (Chemical Mechanical Polishing) to form TSV 15. Subsequently, the back surface wiring 125 connected to the TSV 15 is formed, and the back surface electrode 130 is formed on the back surface wiring 125.
第2実施形態では、TSV15とM1層の界面で、絶縁膜23sによりM1スペース部分のオーバーエッチングが抑制されるとともに、ライン・アンド・スペースパタンの外側のホール内領域でオーバーエッチングが抑制される。これにより、信頼性の高いTSV15を有する半導体装置10Aが実現する。第1実施形態と同様に、M2配線14とM1配線13が基板と垂直方向に揃って配置されるので、配線面積と積層数を低減できる。M1配線13とM2配線14のオーバーラップを広くとれるので、ビア数を増やすことができ許容電流を大きくできる。M1配線13の層からトランジスタ(TR)を含む回路部への引き出し配線13dを取り出すことができるので、伝送速度が向上する。
In the second embodiment, over-etching of the M1 space portion is suppressed by the insulating film 23s at the interface between the TSV 15 and the M1 layer, and over-etching is suppressed in the hole inner region outside the line and space pattern. Thereby, the semiconductor device 10A having the highly reliable TSV 15 is realized. Similar to the first embodiment, since the M2 wiring 14 and the M1 wiring 13 are arranged in the direction perpendicular to the substrate, the wiring area and the number of stacked layers can be reduced. Since the overlap between the M1 wiring 13 and the M2 wiring 14 can be widened, the number of vias can be increased and the allowable current can be increased. Since the lead-out wiring 13d to the circuit portion including the transistor (TR) can be taken out from the layer of the M1 wiring 13, the transmission speed is improved.
第2実施形態でも、M2配線14をM1配線と同じレイアウトで重ねて配置したが、M2以降の配線レイアウトは、チップサイズの著しい増大を生じさせない限り、デザインルールが許す範囲内で自由である。
<TSVを受ける配線レイアウト>
図25~図27は、TSV15を受けるM1配線のレイアウトを示す。図25は、短冊状のM1パタンと、対応するSTIパタンを示す。図25(A)のM1パタンにおいて、M1幅は2μm以上、M1間スペースは0.5μm以上である。図25(B)のSTIパタンにおいて、STI幅は0.8μm以上、STI間スペースは1.7μm以上である。図25(C)で、STIパタンにM1パタンの輪郭を重ね合わせると、TSV形成エリア内のSTI絶縁膜12bのSTI幅は、M1間スペースよりも広くとってある。これによりM1配線間のスペース部分でのオーバーエッチングを抑制する。 Also in the second embodiment, theM2 wiring 14 is overlapped in the same layout as the M1 wiring, but the wiring layout after M2 is free within the range allowed by the design rule as long as the chip size is not significantly increased.
<Wiring layout to receive TSV>
25 to 27 show the layout of the M1 wiring that receives TSV15. FIG. 25 shows strip-shaped M1 patterns and corresponding STI patterns. In the M1 pattern of FIG. 25A, the M1 width is 2 μm or more, and the space between M1 is 0.5 μm or more. In the STI pattern of FIG. 25B, the STI width is 0.8 μm or more, and the STI space is 1.7 μm or more. In FIG. 25C, when the outline of the M1 pattern is superimposed on the STI pattern, the STI width of theSTI insulating film 12b in the TSV formation area is wider than the space between M1. This suppresses overetching in the space portion between the M1 wirings.
<TSVを受ける配線レイアウト>
図25~図27は、TSV15を受けるM1配線のレイアウトを示す。図25は、短冊状のM1パタンと、対応するSTIパタンを示す。図25(A)のM1パタンにおいて、M1幅は2μm以上、M1間スペースは0.5μm以上である。図25(B)のSTIパタンにおいて、STI幅は0.8μm以上、STI間スペースは1.7μm以上である。図25(C)で、STIパタンにM1パタンの輪郭を重ね合わせると、TSV形成エリア内のSTI絶縁膜12bのSTI幅は、M1間スペースよりも広くとってある。これによりM1配線間のスペース部分でのオーバーエッチングを抑制する。 Also in the second embodiment, the
<Wiring layout to receive TSV>
25 to 27 show the layout of the M1 wiring that receives TSV15. FIG. 25 shows strip-shaped M1 patterns and corresponding STI patterns. In the M1 pattern of FIG. 25A, the M1 width is 2 μm or more, and the space between M1 is 0.5 μm or more. In the STI pattern of FIG. 25B, the STI width is 0.8 μm or more, and the STI space is 1.7 μm or more. In FIG. 25C, when the outline of the M1 pattern is superimposed on the STI pattern, the STI width of the
図25では、第1実施形態のようにライン・アンド・スペースパタンの外側の領域がTSVにかからない配置例を示しているが、外側の2本のM1パタンをとり除いて、第2実施形態の構成に適用してもよい。
FIG. 25 shows an arrangement example in which the outer region of the line and space pattern does not cover the TSV as in the first embodiment, but the outer two M1 patterns are removed, and the second embodiment It may be applied to the configuration.
図26は、短冊と額縁(フレーム)を組み合わせたM1パタンと、対応するSTIパタンを示す。図25と同様に、M1幅は2μm以上、M1間スペースは0.5μm以上、STI幅は0.8μm以上、STI間スペースは1.7μm以上である。図26(C)に示すように、STIパタンにM1パタンの輪郭を重ね合わせると、TSV形成エリア内のSTI絶縁膜12bが、M1間スペースを完全にカバーするように設計されている。これによりTSV形成エリアでM1配線間のスペース部分でのオーバーエッチングを抑制する。
FIG. 26 shows an M1 pattern combining a strip and a frame (frame) and a corresponding STI pattern. Similarly to FIG. 25, the M1 width is 2 μm or more, the M1 space is 0.5 μm or more, the STI width is 0.8 μm or more, and the STI space is 1.7 μm or more. As shown in FIG. 26C, when the outline of the M1 pattern is superimposed on the STI pattern, the STI insulating film 12b in the TSV formation area is designed to completely cover the space between M1. This suppresses overetching in the space portion between the M1 wirings in the TSV formation area.
図27は、メッシュ状のM1パタンと、」対応するSTIパタンを示す。図27(A)のM1パタンにおいて、TSV形成領域の配線幅であるM1幅Aは1μm以上、外側のフレーム部分の配線幅であるM1幅Bは2μm以上、M1間スペースは1μm以上である。図27(B)のSTIパタンにおいて、TSV形成領域のSTI絶縁膜12bのSTI幅は1.3μm以上、TSV形成領域のSTI間スペースAは0.7μm以上、外側のSTI間スペースBは1.7μm以上である。図27(C)に示すように、STIパタンにM1パタンの輪郭を重ね合わせると、M1間スペースをカバーするようにSTI絶縁膜12bが配置されている。
FIG. 27 shows a mesh-like M1 pattern and a corresponding STI pattern. In the M1 pattern of FIG. 27A, the M1 width A that is the wiring width of the TSV formation region is 1 μm or more, the M1 width B that is the wiring width of the outer frame portion is 2 μm or more, and the space between M1 is 1 μm or more. In the STI pattern of FIG. 27B, the STI width of the STI insulating film 12b in the TSV formation region is 1.3 μm or more, the STI space A in the TSV formation region is 0.7 μm or more, and the outer STI space B is 1. 7 μm or more. As shown in FIG. 27C, when the outline of the M1 pattern is superimposed on the STI pattern, the STI insulating film 12b is arranged so as to cover the space between M1.
M1配線のレイアウトは図25~27の例に限定されず、デザインルールの範囲内で任意のレイアウトを採用できる。M2以降の配線については、M1配線のレイアウトと同じであってもよいし、異なっていてもよい。M2以降の配線レイアウトはデザインルールが許す範囲内で任意のレイアウトを採用できる。
<適用例>
図28と図29は、半導体装置10(10Aまたは10Bを含む)を用いた電子部品の構成例を示す。 The layout of the M1 wiring is not limited to the examples of FIGS. 25 to 27, and any layout can be adopted within the scope of the design rule. The wiring after M2 may be the same as or different from the layout of the M1 wiring. Arbitrary layouts can be adopted as the wiring layout after M2 within the range allowed by the design rule.
<Application example>
28 and 29 show a configuration example of an electronic component using the semiconductor device 10 (including 10A or 10B).
<適用例>
図28と図29は、半導体装置10(10Aまたは10Bを含む)を用いた電子部品の構成例を示す。 The layout of the M1 wiring is not limited to the examples of FIGS. 25 to 27, and any layout can be adopted within the scope of the design rule. The wiring after M2 may be the same as or different from the layout of the M1 wiring. Arbitrary layouts can be adopted as the wiring layout after M2 within the range allowed by the design rule.
<Application example>
28 and 29 show a configuration example of an electronic component using the semiconductor device 10 (including 10A or 10B).
図28は、face-to-face(デバイス面対向)に積層された電子部品50Aの例である。電子部品50Aは、パッケージ基板51上に、第1の半導体装置10と、第2の半導体装置40が積層されている。第1の半導体装置10は、第1実施形態の半導体装置Aまたは第2実施形態の半導体装置であり、TSV15を有する。
FIG. 28 shows an example of an electronic component 50A laminated face-to-face (facing the device surface). In the electronic component 50 </ b> A, the first semiconductor device 10 and the second semiconductor device 40 are stacked on the package substrate 51. The first semiconductor device 10 is the semiconductor device A of the first embodiment or the semiconductor device of the second embodiment, and has a TSV 15.
第1の半導体装置10は、裏面電極130に接合されるはんだバンプ136により、パッケージ基板51の電極または銅(Cu)配線53に電気的に接続される。第1の半導体装置のデバイス面10fcはパッケージ基板51に対して上向きに搭載され、第2の半導体装置のデバイス面40fcと対向する。第1の半導体装置10のバンプ電極106が、第2の半導体装置40の表面電極に接続される。
The first semiconductor device 10 is electrically connected to the electrode of the package substrate 51 or the copper (Cu) wiring 53 by the solder bump 136 joined to the back electrode 130. The device surface 10fc of the first semiconductor device is mounted upward with respect to the package substrate 51, and faces the device surface 40fc of the second semiconductor device. The bump electrode 106 of the first semiconductor device 10 is connected to the surface electrode of the second semiconductor device 40.
パッケージ基板51と第1の半導体装置10の間、及び第1の半導体装置10と第2の半導体装置40の間に、アンダーフィル剤55が充填され、積層構造全体がモールド樹脂61で封止される。
An underfill agent 55 is filled between the package substrate 51 and the first semiconductor device 10 and between the first semiconductor device 10 and the second semiconductor device 40, and the entire stacked structure is sealed with the mold resin 61. The
電子部品50Aでは、TSV15により第1の半導体装置10とパッケージ基板51、及び第2の半導体装置40とパッケージ基板51の間が短距離で高密度に接続される。また、face-to-face積層により、第1の半導体装置10と第2の半導体装置40が短距離で高密度に接続される。
In the electronic component 50A, the first semiconductor device 10 and the package substrate 51, and the second semiconductor device 40 and the package substrate 51 are connected with high density at a short distance by the TSV15. In addition, the first semiconductor device 10 and the second semiconductor device 40 are connected with high density at a short distance by face-to-face lamination.
図29は、face-to-back(デバイス面と裏面電極とが対向)に積層された電子部品50Bの例である。電子部品50Bは、パッケージ基板51上に、第1の半導体装置10と、第2の半導体装置40が積層されている。第1の半導体装置10は、第1実施形態の半導体装置Aまたは第2実施形態の半導体装置であり、TSV15を有する。
FIG. 29 shows an example of an electronic component 50B laminated face-to-back (device surface and back electrode face each other). In the electronic component 50 </ b> B, a first semiconductor device 10 and a second semiconductor device 40 are stacked on a package substrate 51. The first semiconductor device 10 is the semiconductor device A of the first embodiment or the semiconductor device of the second embodiment, and has a TSV 15.
第1の半導体装置10のデバイス面10fcは、パッケージ基板51と向かい合って下向きに搭載され、デバイス面10fcに形成されたバンプ電極106により、パッケージ基板51の電極または銅(Cu)配線53に電気的に接続される。第2の半導体装置40のデバイス面40fcは、第1の半導体装置の裏面10bcと対向して積層される。たとえば、第2の半導体装置40のバンプ電極146が、第1の半導体装置10の裏面電極130に電気的に接続される。パッケージ基板51と第1の半導体装置10の間、及び第1の半導体装置10と第2の半導体装置40の間に、アンダーフィル剤55が充填され、積層構造全体がモールド樹脂61で封止される。
The device surface 10 fc of the first semiconductor device 10 is mounted downward facing the package substrate 51, and is electrically connected to the electrode of the package substrate 51 or the copper (Cu) wiring 53 by the bump electrode 106 formed on the device surface 10 fc. Connected to. The device surface 40fc of the second semiconductor device 40 is stacked to face the back surface 10bc of the first semiconductor device. For example, the bump electrode 146 of the second semiconductor device 40 is electrically connected to the back electrode 130 of the first semiconductor device 10. An underfill agent 55 is filled between the package substrate 51 and the first semiconductor device 10 and between the first semiconductor device 10 and the second semiconductor device 40, and the entire stacked structure is sealed with the mold resin 61. The
電子部品50Bでは、TSV15により第1の半導体装置10と第2の半導体装置40の間、及び第2の半導体装置40とパッケージ基板51の間が短距離で高密度に接続される。また、第1の半導体装置10はフェイスダウンでパッケージ基板51に搭載されているので、第1の半導体装置10とパッケージ基板51の間も、短距離で高密度に接続される。
In the electronic component 50B, the TSV 15 connects the first semiconductor device 10 and the second semiconductor device 40 and the second semiconductor device 40 and the package substrate 51 with high density at a short distance. Further, since the first semiconductor device 10 is mounted face-down on the package substrate 51, the first semiconductor device 10 and the package substrate 51 are also connected with high density over a short distance.
図28と図29において、積層されるチップの数は2つに限定されない。TSV15を有する第1の半導体装置10を2以上積層して、3層以上の積層構造としてもよい。実施形態のTSV15は、ボイドを抑制し接続信頼性が高いので、3層以上の積層構造とする場合も電子部品50の信頼性を保つことができる。また、実施形態のTSV15は、M1配線層から回路部へ引き出し配線をとることができるので、伝送速度の点で有利である。
28 and 29, the number of stacked chips is not limited to two. Two or more first semiconductor devices 10 having the TSV 15 may be stacked to form a stacked structure of three or more layers. Since the TSV 15 of the embodiment suppresses voids and has high connection reliability, the reliability of the electronic component 50 can be maintained even when a laminated structure of three or more layers is used. In addition, the TSV 15 of the embodiment is advantageous in terms of transmission speed because it can take a lead wiring from the M1 wiring layer to the circuit unit.
また、第1実施形態、第2実施形態を通じて、TSV15が形成される領域外の配線スペース間にSTIを配置してもよい。これにより、位置ずれ等を考慮した製造マージンを確保することができる。
In addition, through the first embodiment and the second embodiment, STI may be arranged between wiring spaces outside the region where the TSV 15 is formed. Thereby, it is possible to secure a manufacturing margin in consideration of misalignment and the like.
この出願は、2015年8月31日に日本国特許庁に出願された特許出願第2015-171056号に基づき、その全内容を含むものである。
This application is based on Patent Application No. 2015-171056 filed with the Japan Patent Office on August 31, 2015, and includes the entire contents thereof.
10、10A、10B 半導体装置
11 シリコン基板
12、12a、12b STI絶縁膜
13 M1配線(第1配線)
13d 引き出し配線
14 M2配線(第2配線)
15 TSV(貫通ビア)
23 層間絶縁膜
23s 絶縁膜
106 バンプ電極
130 裏面電極
TR トランジスタ 10, 10A,10B Semiconductor device 11 Silicon substrates 12, 12a, 12b STI insulating film 13 M1 wiring (first wiring)
13d Lead wiring 14 M2 wiring (second wiring)
15 TSV (through via)
23Interlayer insulating film 23s Insulating film 106 Bump electrode 130 Back electrode TR Transistor
11 シリコン基板
12、12a、12b STI絶縁膜
13 M1配線(第1配線)
13d 引き出し配線
14 M2配線(第2配線)
15 TSV(貫通ビア)
23 層間絶縁膜
23s 絶縁膜
106 バンプ電極
130 裏面電極
TR トランジスタ 10, 10A,
15 TSV (through via)
23
Claims (19)
- 半導体基板と、
前記半導体基板上の第1の配線層に形成された第1配線と、
前記半導体基板を貫通し、前記第1配線に接続される貫通ビアと、
前記貫通ビアと前記第1の配線層の界面で、前記第1配線の配線間スペースに対応する箇所に位置する第1の絶縁膜と、
を有することを特徴とする半導体装置。 A semiconductor substrate;
A first wiring formed in a first wiring layer on the semiconductor substrate;
A through via passing through the semiconductor substrate and connected to the first wiring;
A first insulating film located at a location corresponding to an inter-wiring space of the first wiring at an interface between the through via and the first wiring layer;
A semiconductor device comprising: - 前記半導体基板上に形成され、前記第1の配線層の下に位置する第2の絶縁膜を有し、
前記第2の絶縁膜と前記第1の絶縁膜とは同じ材料を有することを特徴とする請求項1に記載の半導体装置。 A second insulating film formed on the semiconductor substrate and positioned below the first wiring layer;
The semiconductor device according to claim 1, wherein the second insulating film and the first insulating film have the same material. - 前記第1配線は、平面視で前記貫通ビアと重なる第1部分と、平面視で前記貫通ビアと重ならない第2部分とを有することを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the first wiring has a first portion that overlaps the through via in a plan view and a second portion that does not overlap the through via in a plan view.
- 前記半導体基板に形成され、平面視で前記第2部分の前記第1配線の配線間スペースに対応して位置する第3の絶縁膜を有することを特徴とする請求項3に記載の半導体装置。 4. The semiconductor device according to claim 3, further comprising a third insulating film formed on the semiconductor substrate and positioned corresponding to an inter-wiring space of the first wiring in the second portion in plan view.
- 前記第1配線は、ライン・アンド・スペースパタンを有し、
前記ライン・アンド・スペースパタンの幅は、前記貫通ビアの径よりも大きいことを特徴とする請求項1に記載の半導体装置。 The first wiring has a line and space pattern;
The semiconductor device according to claim 1, wherein a width of the line and space pattern is larger than a diameter of the through via. - 前記第1配線は、ライン・アンド・スペースパタンを有し、
前記ライン・アンド・スペースパタンの幅は、前記貫通ビアの径よりも小さいことを特徴とする請求項1に記載の半導体装置。 The first wiring has a line and space pattern;
The semiconductor device according to claim 1, wherein a width of the line and space pattern is smaller than a diameter of the through via. - 前記第1の絶縁膜は、前記配線間スペースに対応する箇所と、前記ライン・アンド・スペースパタンの外側かつ前記貫通ビアの内側の領域に位置することを特徴とする請求項6に記載の半導体装置。 7. The semiconductor according to claim 6, wherein the first insulating film is located in a portion corresponding to the inter-wiring space, and in a region outside the line and space pattern and inside the through via. apparatus.
- 前記第1配線は、前記半導体基板の表面に形成された回路素子に電気的に接続される引き出し配線を含むことを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein the first wiring includes a lead wiring electrically connected to a circuit element formed on the surface of the semiconductor substrate.
- 前記第1の配線層の上層の第2の配線層に形成される第2配線、
を有し、前記第2配線は前記第1配線と揃う位置に配置されることを特徴とする請求項1に記載の半導体装置。 A second wiring formed in a second wiring layer above the first wiring layer;
The semiconductor device according to claim 1, wherein the second wiring is disposed at a position aligned with the first wiring. - 前記第1の絶縁膜は、平面視で縞状またはストリップ状の形状を有することを特徴とする請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein the first insulating film has a striped or strip shape in plan view.
- パッケージ基板と、
前記パッケージ基板に搭載される第1の半導体装置と、
前記半導体装置上に搭載される第2の半導体装置と、
を有し、
前記第1の半導体装置は、半導体基板と、前記半導体基板上の第1の配線層に形成された第1配線と、前記半導体基板を貫通し、前記第1配線に接続される貫通ビアと、前記貫通ビアと前記第1の配線層の界面で、前記第1配線の配線間スペースに対応する箇所に位置する第1の絶縁膜と、を有する
ことを特徴とする電子部品。 A package substrate;
A first semiconductor device mounted on the package substrate;
A second semiconductor device mounted on the semiconductor device;
Have
The first semiconductor device includes a semiconductor substrate, a first wiring formed in a first wiring layer on the semiconductor substrate, a through via that penetrates the semiconductor substrate and is connected to the first wiring, An electronic component comprising: a first insulating film located at a location corresponding to an inter-wiring space of the first wiring at an interface between the through via and the first wiring layer. - 前記第1の半導体装置と前記第2の半導体装置は、デバイス面同士が対向して積層されていることを特徴とする請求項11に記載の電子部品。 12. The electronic component according to claim 11, wherein the first semiconductor device and the second semiconductor device are stacked so that device surfaces thereof are opposed to each other.
- 前記第1の半導体装置と前記第2の半導体装置は、一方のデバイス面と他方の基板裏面が対向して積層されていることを特徴とする請求項11に記載の電子部品。 12. The electronic component according to claim 11, wherein the first semiconductor device and the second semiconductor device are laminated such that one device surface and the other substrate back surface face each other.
- 半導体基板内に、第1の絶縁膜を形成し、
前記第1の絶縁膜を形成した後に、前記半導体基板上に第2の絶縁膜を形成し、
前記第2の絶縁膜上に、平面視で前記第1の絶縁膜に対応する位置に配線間スペースが位置するように配線パタンを形成し、
前記半導体基板の裏面側から前記半導体基板を貫通するホールを形成して、前記ホール内に前記配線パタンを露出しつつ、前記配線パタンの配線間スペースに対応する位置に前記第2の絶縁膜の一部を残し、
前記ホール内に導電膜を形成して貫通ビアを形成する
ことを特徴とする半導体装置の製造方法。 Forming a first insulating film in the semiconductor substrate;
After forming the first insulating film, forming a second insulating film on the semiconductor substrate,
A wiring pattern is formed on the second insulating film so that a space between the wirings is located at a position corresponding to the first insulating film in a plan view.
A hole penetrating the semiconductor substrate is formed from the back side of the semiconductor substrate, and the wiring pattern is exposed in the hole, and the second insulating film is formed at a position corresponding to the space between the wiring patterns. Leave a part,
A method of manufacturing a semiconductor device, wherein a through-via is formed by forming a conductive film in the hole. - 前記第1の絶縁膜のパタンは、第1の幅を有し第1の間隔で配置され、
前記配線パタンは、第2の幅を有し第2の間隔で配置され、
前記第1の幅は、前記第2の幅よりも大きいことを特徴とする請求項14に記載の半導体装置の製造方法。 The pattern of the first insulating film has a first width and is arranged at a first interval,
The wiring pattern has a second width and is arranged at a second interval,
The method of manufacturing a semiconductor device according to claim 14, wherein the first width is larger than the second width. - 前記第1の絶縁膜のパタンは、第1の幅を有し第1の間隔で配置され、
前記配線パタンは、第2の幅を有し第2の間隔で配置され、
前記第1の間隔は、前記第2の間隔よりも小さいことを特徴とする請求項14に記載の半導体装置の製造方法。 The pattern of the first insulating film has a first width and is arranged at a first interval,
The wiring pattern has a second width and is arranged at a second interval,
The method of manufacturing a semiconductor device according to claim 14, wherein the first interval is smaller than the second interval. - 前記第1の絶縁膜は、素子分離用の絶縁膜の形成と同時に形成されることを特徴とする請求項14に記載の半導体装置の製造方法。 15. The method of manufacturing a semiconductor device according to claim 14, wherein the first insulating film is formed simultaneously with the formation of the insulating film for element isolation.
- 前記第1の絶縁膜は、縞状またはストリップ状のパタンを含むことを特徴とする請求項14に記載の半導体装置の製造方法。 15. The method of manufacturing a semiconductor device according to claim 14, wherein the first insulating film includes a striped or striped pattern.
- 前記貫通ビアが形成された後に、前記貫通ビアが形成された領域の外側で、前記第1の絶縁膜の一部が平面視で前記配線パタンの配線間スペースに対応する位置に配置されることを特徴とする請求項14に記載の半導体装置の製造方法。 After the through via is formed, a part of the first insulating film is disposed at a position corresponding to the space between the wiring patterns in a plan view outside the region where the through via is formed. The method of manufacturing a semiconductor device according to claim 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015171056A JP2017050340A (en) | 2015-08-31 | 2015-08-31 | Semiconductor device and semiconductor device manufacturing method |
JP2015-171056 | 2015-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017038108A1 true WO2017038108A1 (en) | 2017-03-09 |
Family
ID=58186903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/053635 WO2017038108A1 (en) | 2015-08-31 | 2016-02-08 | Semiconductor device and semiconductor device manufacturing method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017050340A (en) |
WO (1) | WO2017038108A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163293A1 (en) * | 2018-02-23 | 2019-08-29 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device and semiconductor device production method |
CN112310074A (en) * | 2019-07-31 | 2021-02-02 | 株式会社村田制作所 | Semiconductor device and high frequency module |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7087618B2 (en) | 2018-04-17 | 2022-06-21 | 大日本印刷株式会社 | Passive element |
US11282769B2 (en) | 2020-06-11 | 2022-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Oversized via as through-substrate-via (TSV) stop layer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011009645A (en) * | 2009-06-29 | 2011-01-13 | Toshiba Corp | Semiconductor device and method of manufacturing the same |
JP2011119432A (en) * | 2009-12-03 | 2011-06-16 | Seiko Epson Corp | Semiconductor device and method of manufacturing semiconductor device |
JP2013089816A (en) * | 2011-10-19 | 2013-05-13 | Toshiba Corp | Semiconductor device and method of manufacturing the same |
JP2013105957A (en) * | 2011-11-15 | 2013-05-30 | Rohm Co Ltd | Semiconductor device, manufacturing method of the same and electronic component |
JP2014011248A (en) * | 2012-06-28 | 2014-01-20 | Ps4 Luxco S A R L | Semiconductor device and manufacturing method of the same |
JP2014192295A (en) * | 2013-03-27 | 2014-10-06 | Hitachi Ltd | Semiconductor device |
-
2015
- 2015-08-31 JP JP2015171056A patent/JP2017050340A/en active Pending
-
2016
- 2016-02-08 WO PCT/JP2016/053635 patent/WO2017038108A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011009645A (en) * | 2009-06-29 | 2011-01-13 | Toshiba Corp | Semiconductor device and method of manufacturing the same |
JP2011119432A (en) * | 2009-12-03 | 2011-06-16 | Seiko Epson Corp | Semiconductor device and method of manufacturing semiconductor device |
JP2013089816A (en) * | 2011-10-19 | 2013-05-13 | Toshiba Corp | Semiconductor device and method of manufacturing the same |
JP2013105957A (en) * | 2011-11-15 | 2013-05-30 | Rohm Co Ltd | Semiconductor device, manufacturing method of the same and electronic component |
JP2014011248A (en) * | 2012-06-28 | 2014-01-20 | Ps4 Luxco S A R L | Semiconductor device and manufacturing method of the same |
JP2014192295A (en) * | 2013-03-27 | 2014-10-06 | Hitachi Ltd | Semiconductor device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163293A1 (en) * | 2018-02-23 | 2019-08-29 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor device and semiconductor device production method |
US11380584B2 (en) | 2018-02-23 | 2022-07-05 | Sony Semiconductor Solutions Corporation | Semiconductor device and manufacturing method of semiconductor device including a through electrode for connection of wirings |
US11791210B2 (en) | 2018-02-23 | 2023-10-17 | Sony Semiconductor Solutions Corporation | Semiconductor device and manufacturing method of semiconductor device including a through electrode for connection of wirings |
CN112310074A (en) * | 2019-07-31 | 2021-02-02 | 株式会社村田制作所 | Semiconductor device and high frequency module |
Also Published As
Publication number | Publication date |
---|---|
JP2017050340A (en) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10937667B2 (en) | Semiconductor device and method for manufacturing the same | |
US9793192B2 (en) | Formation of through via before contact processing | |
TWI399827B (en) | Method of forming stacked dies | |
TWI397972B (en) | Semiconductor device manufacturing method | |
CN109962064B (en) | Semiconductor device, method of manufacturing the same, and semiconductor package including the same | |
CN112490235A (en) | Integrated circuit and stack and method of making the same | |
JP2010045371A (en) | Through-silicon-via structure including conductive protective film, and method of forming the same | |
JP5780165B2 (en) | Semiconductor device and manufacturing method thereof | |
US10008436B2 (en) | Semiconductor device | |
CN103515302B (en) | Semiconductor device and method of manufacture | |
WO2017038108A1 (en) | Semiconductor device and semiconductor device manufacturing method | |
TW202406018A (en) | Interconnecting structure with high aspect ratio tsv and method for forming the same | |
TWI546866B (en) | Semiconductor device and fabricating method thereof | |
CN114649300A (en) | Semiconductor device including through-silicon via structure and method of manufacturing the same | |
KR20230043271A (en) | Semiconductor device and semiconductor package | |
JP5751131B2 (en) | Semiconductor device and manufacturing method thereof | |
TWI877829B (en) | Semiconductor device and method of manufacturing the same | |
TW201312665A (en) | Wafer level package structure and the fabrication method thereof | |
TWI459507B (en) | Method for fabricating through-silicon via structure | |
TWI514531B (en) | Semiconductor structure and manufacturing method thereof | |
TW202449890A (en) | Semiconductor device and manufacturing method thereof | |
TW202510256A (en) | Semiconductor device and method of manufacturing the same | |
KR20250028216A (en) | Semiconductor device and method | |
JP2023521483A (en) | Semiconductor structure and manufacturing method thereof | |
KR20120120776A (en) | Semiconductor package and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16841141 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16841141 Country of ref document: EP Kind code of ref document: A1 |