[go: up one dir, main page]

WO2017024558A1 - 信道估计方法、基站、用户设备和系统 - Google Patents

信道估计方法、基站、用户设备和系统 Download PDF

Info

Publication number
WO2017024558A1
WO2017024558A1 PCT/CN2015/086779 CN2015086779W WO2017024558A1 WO 2017024558 A1 WO2017024558 A1 WO 2017024558A1 CN 2015086779 W CN2015086779 W CN 2015086779W WO 2017024558 A1 WO2017024558 A1 WO 2017024558A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
radio remote
notification information
system message
base station
Prior art date
Application number
PCT/CN2015/086779
Other languages
English (en)
French (fr)
Inventor
李启明
韩静
李安俭
戴喜增
赵越
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018505601A priority Critical patent/JP6933352B2/ja
Priority to MX2018001758A priority patent/MX381602B/es
Priority to CN202011086929.2A priority patent/CN112187681B/zh
Priority to EP15900756.6A priority patent/EP3324588B1/en
Priority to PCT/CN2015/086779 priority patent/WO2017024558A1/zh
Priority to CN201580067854.4A priority patent/CN107005498B/zh
Publication of WO2017024558A1 publication Critical patent/WO2017024558A1/zh
Priority to ZA2018/00865A priority patent/ZA201800865B/en
Priority to US15/894,379 priority patent/US10574485B2/en
Priority to US16/752,276 priority patent/US11095481B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a channel estimation method, a base station, a user equipment (UE), and a system.
  • a strip topology that is, a baseband unit (BBU) is mounted with multiple radio remote units (Radio Remote Unit, RRU), RRU is arranged along the railway track.
  • RRU Radio Remote Unit
  • the communication scene in this topology is called the radio remote scene.
  • multiple RRUs belong to the same physical cell, share the same cell identity (ID), and serve the UE in the cell to transmit the same wireless signal.
  • ID cell identity
  • the radius of the cell is greatly expanded, which effectively reduces the number of handovers during high-speed mobile operation of the UE, reduces network handover signaling overhead, and reduces handover failure rate.
  • SINR signal to interference plus noise ratio
  • the radio remote deployment can effectively reduce the number of handovers and improve the SINR of the received signal of the UE, in the radio remote scene, since multiple RRUs simultaneously transmit downlink signals for the UE, the signals received by the UE are more complex, and the channel estimation result is obtained. Very unsatisfactory, thus affecting the downlink data throughput of the UE.
  • the embodiments of the present invention provide a channel estimation method, apparatus, and system, which can effectively improve the accuracy of channel estimation, thereby effectively improving the downlink data throughput of the UE.
  • a method for transmitting information comprising:
  • the base station establishes a connection with the UE
  • the notification information that the UE is in a radio remote mode, where the notification information is used to indicate that the UE performs channel estimation by using a channel estimation algorithm applicable to the radio remote scene, where the channel estimation
  • the algorithm is used for channel estimation of signals after superimposing downlink signals from multiple RRUs.
  • the performing channel estimation on a signal after a downlink signal superimposed from multiple RRUs includes:
  • a Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the sending, by the UE, the notification information that the UE is in a radio remote mode include:
  • Radio resource control Transmitting a radio resource control (RRC) dedicated signaling to the UE, where a first indicator bit in the RRC dedicated signaling is used to indicate that the UE is in a radio remote mode;
  • the method further includes:
  • a channel estimation method comprising:
  • the UE receives the notification information, where the notification information indicates that the UE is in a radio remote scene;
  • channel estimation algorithm configured to perform channel estimation on the signals after the downlink signals are superimposed from the plurality of RRUs.
  • the performing channel estimation on a signal after the downlink signal is superimposed from the multiple RRUs includes:
  • a Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the UE receives the notification information, where the notification information indicates that the UE is in the radio Scenes, including:
  • the UE receives the RRC-specific signaling, where the first indicator bit in the RRC-specific signaling is used to indicate that the UE is in a radio remote mode; or
  • a base station in a third aspect, includes:
  • a processing unit configured to control a sending unit to establish a connection with the UE
  • the sending unit is further configured to send, to the UE, the notification information that the UE is in a radio remote mode, where the notification information is used to indicate that the UE uses a channel estimation that is applicable to the radio remote scene
  • the calculation method performs channel estimation, wherein the channel estimation algorithm is used for channel estimation of signals after superimposing downlink signals from a plurality of RRUs.
  • the performing, by the sending unit, performing channel estimation on the signal after the downlink signal superimposition from the multiple RRUs includes:
  • a Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the sending unit is specifically configured to send RRC dedicated signaling to the UE,
  • the first indicator bit in the RRC dedicated signaling is used to indicate that the UE is in a radio remote mode; or, a system message is sent to the UE, where a second indicator bit in the system message is used to indicate the The UE is in the radio remote mode; or, the system message is sent to the UE, where the system message carries the cell identifier of the radio coverage cell.
  • the processing unit is further configured to: Before the UE sends the notification information that the UE is in the radio remote mode, it is determined that the UE is in a high-speed mobile state.
  • a UE in a fourth aspect, includes:
  • a receiving unit configured to receive notification information, where the notification information indicates that the UE is in a radio remote scene
  • a processing unit configured to perform channel estimation by using a channel estimation algorithm applicable to the radio remote scene according to the notification information received by the receiving unit, where the channel estimation algorithm is used to superimpose downlink signals from multiple RRUs
  • the subsequent signals are channel estimates.
  • the processing unit is specifically configured to determine a delay and a Doppler frequency offset of a downlink signal from each of the multiple RRUs; Performing delay and frequency compensation on the downlink signal of each RRU according to the delay and the Doppler frequency offset; determining a Wiener coefficient for the compensated signal, and performing channel estimation by using the Wiener coefficient.
  • the receiving unit is specifically configured to receive RRC dedicated signaling, where the RRC special The first indicator bit in the signaling is used to indicate that the UE is in the radio remote mode; or the system message is received, and the second indicator bit in the system message is used to indicate that the UE is in the radio remote mode; or Receiving a system message, where the system message carries a cell identifier of a radio remote coverage cell.
  • a base station where the base station includes:
  • the memory is configured to store program instructions
  • the processor is configured to perform the following operations according to program instructions stored in the memory:
  • the notification information that the UE is in a radio remote mode
  • the notification information is used to indicate that the UE performs channel estimation by using a channel estimation algorithm that is applicable to the radio remote scene
  • the channel estimation algorithm is configured to perform channel estimation on signals after superimposing downlink signals from multiple RRUs.
  • the processor performs an operation for performing channel estimation by using the signal after the downlink signal is superimposed from the multiple RRUs by the UE, including:
  • a Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the performing, by the processor, the sending, by the communications interface, the notification information that the UE is in a radio remote mode includes:
  • the system message carries a cell identifier that the radio remotely covers the cell.
  • the processor is further configured to use the program stored in the memory The instruction does the following:
  • the notification information that the UE is in the radio remote mode is sent to the UE by using the communications interface, determining that the UE is in a high-speed mobile state.
  • a UE in a sixth aspect, includes:
  • the memory is configured to store program instructions
  • the processor is configured to perform the following operations according to program instructions stored in the memory:
  • channel estimation algorithm configured to perform channel estimation on the signals after the downlink signals are superimposed from the plurality of RRUs.
  • the performing, by the processor, performing the channel estimation operation on the signal after the downlink signal superimposition from the multiple RRUs includes:
  • a Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the processor is configured to receive the notification information by using the communication interface, the notification The information indicates that the UE is in the operation of the radio remote scene, and includes:
  • a communication system comprising:
  • a base station configured to establish a connection with the UE, and send, to the UE, the notification information that the UE is in a radio remote mode, where the notification information is used to indicate that the UE uses a channel estimation algorithm that is applicable to the radio remote scene Channel estimation, wherein the channel estimation algorithm is configured to perform channel estimation on signals after superimposing downlink signals from multiple RRUs;
  • the UE is configured to receive the notification information from the base station, where the notification information indicates that the UE is in a radio remote mode; and according to the notification information, use a channel estimation algorithm that is applicable to the radio remote scene Channel estimation, wherein the channel estimation algorithm is configured to perform channel estimation on signals after superimposing downlink signals from a plurality of RRUs.
  • the UE is specifically configured to determine a delay and a Doppler frequency offset of a downlink signal from each of the multiple RRUs; The delay and the Doppler frequency offset perform delay and frequency compensation on the downlink signal of each RRU; determine a Wiener coefficient for the compensated signal, and perform channel estimation by using the Wiener coefficient.
  • the base station is specifically configured to send RRC dedicated signaling to the UE, where a first indicator bit in the RRC dedicated signaling is used to indicate that the UE is in a radio remote mode; Or sending a system message to the UE, where the second indicator bit in the system message is used to indicate that the UE is in a radio remote mode; or, sending a system message to the UE, where the system message carries a radio frequency pull The cell identity of the far coverage cell.
  • the base station is further configured to send in the Before the UE is in the notification information of the radio remote scene, it is determined that the UE is in a high-speed mobile state.
  • the base station sends the notification information to the UE that the UE is in the radio remote mode, so that the UE can replace the adopted channel estimation algorithm after receiving the notification information, and the UE receives the radio frequency remotely.
  • channel estimation is performed on the signals after the multiple downlink signals are superimposed by using a suitable channel estimation algorithm in channel estimation, which can effectively improve the accuracy of channel estimation, thereby effectively improving the UE's Downstream data throughput.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • Embodiment 3 is a signal flow diagram according to Embodiment 1 of the present invention.
  • FIG. 5 is a signal flow diagram according to Embodiment 3 of the present invention.
  • FIG. 6 is a structural diagram of a base station according to Embodiment 4 of the present invention.
  • FIG. 7 is a structural diagram of a UE according to Embodiment 5 of the present invention.
  • FIG. 8 is a structural diagram of a base station according to Embodiment 6 of the present invention.
  • FIG. 9 is a structural diagram of a UE according to Embodiment 7 of the present invention.
  • FIG. 10 is a structural diagram of a communication system according to Embodiment 8 of the present invention.
  • FIG. 1 is a schematic diagram of a network architecture according to an embodiment of the present invention.
  • the embodiment of the present invention may be applied to a third-generation mobile communication technology (3G) network, and may also be applied to a Long Term Evolution (LTE) network.
  • 3G third-generation mobile communication technology
  • LTE Long Term Evolution
  • the following describes an LTE network as an example.
  • E-UTRAN Evolved-Universal Terrestrial Radio Access Network
  • the E-UTRAN communication system 100 in an LTE network referring to FIG. 1, the E-UTRAN communication system 100 includes a plurality of base stations 110 and other network entities.
  • HAT High Speed Train
  • the UE 120 can use the method provided by the embodiment of the present invention to receive downlink data received from the base station 110. Perform demodulation.
  • the base station 110 may be an evolved NodeB (eNB) in LTE.
  • eNB evolved NodeB
  • One base station 110 may support/manage one or more cells, and when the UE 120 needs to communicate with the network, it will select a cell to initiate access.
  • the UE 120 may also be referred to as a mobile terminal (MT), a mobile station (MS), or the like, and may communicate with one or more core networks via a Radio Access Network (RAN).
  • MT mobile terminal
  • MS mobile station
  • RAN Radio Access Network
  • the core network device 130 is connected to one or more base stations 110, and the core network device 130 includes a Mobility Management Entity (MME).
  • MME Mobility Management Entity
  • the embodiments of the present invention can be applied to different communication systems, and the specific devices of the base station are different according to different communication systems.
  • the base station controller (BSC) and the radio network controller (Radio Network) may be used. Controller, RNC), Evolved base station (eNB) or base station (Node B).
  • the embodiment of the present invention can be applied to a multi-node joint transmission scenario under high-speed conditions.
  • the following is an example of high-speed rail mobile communication using a radio remote scene.
  • the scenario is a radio remote environment.
  • a strip topology is used.
  • a plurality of RRUs are mounted under one BBU, and RRUs are arranged along a railway track.
  • the number of RRUs can be set as needed, and the number of RRUs shown in the figure is 4, which is merely illustrative and is not intended to limit the embodiments of the present invention.
  • the BBU in the radio remote scene is equivalent to the baseband unit of the base station, and the RRU is equivalent to the radio unit of the base station.
  • multiple RRUs belong to the same physical cell, share the same cell ID, and serve the UEs in the cell to transmit the same wireless signal.
  • the radius of the cell is greatly expanded, which effectively reduces the number of handovers during high-speed mobile operation of the UE, reduces network handover signaling overhead, and reduces handover failure rate. Moreover, since a plurality of RRUs simultaneously transmit downlink signals for the UE, the SINR of the signals received by the UE side is also greatly improved.
  • the radio remote deployment can effectively reduce the handover and improve the SINR of the received signal of the UE, the downlink signal demodulation performance is poor and the throughput rate is low because the traditional channel estimation algorithm has a poor effect in the radio remote scene.
  • the UE has an automatic time-frequency tracking function.
  • the UE can maintain good tracking performance for the received signal and can accurately perform channel estimation.
  • the UE receives The received signal is more complicated. It is assumed that the UE serves two RRUs at the same time. There are two main paths in the signal received by the UE. The power, relative delay and Doppler frequency offset of the two main paths change with time, and Doppler The frequency offset symbol is reversed. In this case, the traditional channel estimation result is inaccurate, thereby affecting the downlink throughput of the terminal.
  • the signal received by the UE is a superposition of downlink signals from multiple RRUs, and each RRU downlink arrival signal has different power, relative delay, and Doppler frequency offset.
  • the feature of the downlink signal received by the UE in the scenario is that the channel estimation algorithm that is specifically applicable to the scenario is used for channel estimation, and the channel estimation in the scenario can be improved. Accuracy, which in turn increases UE throughput.
  • FIG. 3 is a signal flow diagram of a first embodiment of the present invention.
  • the base station sends a notification information to the UE in a radio remote scene. After receiving the notification information, the UE may replace the channel estimation algorithm. Referring to FIG. 3, the method includes:
  • step 301 the base station establishes a connection with the UE.
  • the base station is a base station that is deployed by using a remote radio. After the UE establishes a connection with the base station, the UE is in a radio remote mode.
  • the process of establishing a connection between the base station and the UE may be, but not limited to, the following three situations: in an idle state.
  • the UE establishes a connection with the base station through cell selection and cell reselection; the UE in the connected state establishes a connection with the base station by using the handover; and the UE establishes a connection with the base station by using Radio Resource Control (RRC) reconstruction.
  • RRC Radio Resource Control
  • Step 302 The base station sends, to the UE, the notification information that the UE is in the radio remote mode.
  • the notification information is used to indicate that the UE performs channel estimation by using a channel estimation algorithm suitable for a radio remote scene, where the channel estimation algorithm is used for channel estimation of signals after superimposing downlink signals from multiple RRUs.
  • the base station may send the notification information to the UE in the RRC-specific signaling, or may carry the notification information in the system message and send the information to the UE.
  • the base station may first determine whether the UE is in a high-speed mobile state, and when it is determined that the UE is in the high-speed mobile state, send the UE that the UE is in the radio remote mode. Notification information, otherwise no notification information is sent.
  • the UE moving speed exceeds a preset speed threshold, the UE may be considered to be in a high-speed moving state, for example, the speed threshold may be set to 200 km/h.
  • the step of determining whether the UE is in a high-speed moving state is an optional step.
  • Step 303 The UE receives the notification information, where the notification information indicates that the UE is in a radio remote scene.
  • the UE receives the RRC-specific signaling, where the first indicator bit in the RRC-specific signaling is used to indicate that the UE is in the radio remote mode; or the UE receives the system message, and the second indicator bit in the system message It is used to indicate that the UE is in a radio remote scene.
  • Step 304 The UE performs channel estimation by using a channel estimation algorithm suitable for the radio remote scene according to the notification information.
  • the channel estimation algorithm is configured to perform channel estimation on signals after superimposing downlink signals from multiple RRUs. Specifically, the delay of the downlink signal from each RRU and the Doppler frequency offset are determined, the Wiener coefficient is determined according to the delay and the Doppler frequency offset, and the Wiener coefficient is used for channel estimation.
  • the base station sends the notification information to the UE that the UE is in the radio remote mode, so that the UE can replace the adopted channel estimation algorithm after receiving the notification information, and the UE receives the radio frequency remotely.
  • the characteristics of the downlink signals transmitted by the multiple RRUs for the UE are used to perform channel estimation on the signals after the multiple downlink signals are superimposed in the channel estimation, which can effectively improve the accuracy of the channel estimation, thereby effectively improving the downlink data throughput of the UE.
  • the base station sends notification information of the radio remote scene to the UE by using the RRC dedicated signaling.
  • the method includes:
  • step 401 the base station establishes a connection with the UE.
  • Step 402 The UE sends indication information to the base station, where the indication information is used to indicate that the UE supports a channel estimation algorithm applicable to the radio remote scene.
  • Step 403 The base station determines whether the UE is in a high-speed moving state.
  • step 404 is performed, otherwise no processing is performed.
  • the base station may first acquire the moving speed of the UE, and then determine whether the moving speed of the UE is greater than a speed threshold according to the preset speed threshold. When the moving speed of the UE is greater than the speed threshold, the UE is confirmed to be in a high-speed moving state.
  • the base station may also adopt any of the following manners to determine whether the UE is in a high-speed mobile state:
  • the UE reports the mobile state to the base station.
  • the UE that supports the mobile state report carries the message element of the UE mobile state in the signaling sent to the base station when accessing the base station.
  • the base station can read the speed gear position of the UE, and the signaling may specifically be an RRC connection setup complete message.
  • the base station acquires the number of handovers of the UE in the preset time, and divides the speed gear for the UE according to the number of handovers that the UE generates in a unit time. For example, the UE has performed more than 5 handovers in one minute, which is defined as high speed.
  • the base station determines the speed gear of the UE according to the Doppler shift of the received uplink signal of the UE.
  • the Doppler frequency offset is higher than 1000 Hz.
  • the base station obtains the location information of the UE by using the network side location, and obtains the UE speed information according to the change of the location of the UE, so that the gear position can be divided for the UE speed.
  • the UE speed is higher than 200 km/h.
  • the base station acquires UE speed data information from an application layer that includes speed information.
  • Step 403 is an optional step. In the embodiment of the present invention, step 403 may not be included. After step 402 is performed, step 404 is directly executed.
  • Step 404 The base station sends the RRC-specific signaling to the UE, where the first indicator bit in the RRC-specific signaling is used to indicate that the UE is in the radio remote mode.
  • the Boolean variable is used to indicate whether the UE is in a remote radio zooming scenario. For example, 0 indicates that the radio is not in the remote radio scene, and 1 indicates that the radio is in the remote radio scene.
  • Step 405 The UE performs channel estimation by using a channel estimation algorithm applicable to the radio remote scene according to the indication of the RRC dedicated signaling.
  • the channel estimation algorithm is configured to perform time-frequency tracking on downlink signals from each of the plurality of RRUs, determine delays and Doppler frequency offsets of downlink signals from each RRU, according to delay and Doppler The frequency deviation is used to determine the Wiener coefficient, and the Wiener coefficient is used for channel estimation.
  • the channel estimation algorithm applicable to the scenario is enabled by receiving the foregoing indication in the RRC dedicated signaling, so that the accuracy of the channel estimation in the foregoing scenario is improved, and the downlink of the UE can be improved. Throughput, improve network performance.
  • FIG. 5 is a schematic diagram of a signal flow according to Embodiment 3 of the present invention, which is sent by a base station to a UE by using a system message.
  • the method includes:
  • step 501 the base station establishes a connection with the UE.
  • step 502 the UE determines whether it is in a high speed moving state.
  • the UE may, but is not limited to, determine whether it is in a high-speed mobile state by using the following manner:
  • the speed is measured by the Global Positioning System (GPS), and the high speed is considered as 300 km/h or more.
  • GPS Global Positioning System
  • the number of handovers that occur within a unit time such as switching more than 5 times per minute, is considered as high speed.
  • the number of times of cell reselection in a unit time for example, cell reselection of more than 5 times per minute is regarded as high speed.
  • the historical cell residence time is judged. For example, if the average stay time in the first few cells is less than 10 seconds, it is regarded as high speed.
  • Step 503 When the UE determines that it is in a high-speed mobile state, the UE sends the indication information that the UE is in a high-speed mobile state to the base station.
  • the indication information that the UE supports the channel estimation algorithm applicable to the radio remote scene may also be sent.
  • Step 504 The base station sends a system message to the UE, where the second indicator bit in the system message is used to indicate that the UE is in a radio remote scene.
  • Step 505 The UE performs channel estimation by using a channel estimation algorithm applicable to the radio remote scene according to the indication of the system message.
  • the channel estimation algorithm is configured to determine a delay and a Doppler frequency offset of a downlink signal from each of the plurality of RRUs, and delay the downlink signal of each RRU according to the delay and the Doppler frequency offset. And frequency compensation, determining the Wiener coefficient for the compensated signal, and using the Wiener coefficient for channel estimation.
  • the channel estimation algorithm of the foregoing scenario improves the accuracy of the channel estimation of the UE in the foregoing scenario, thereby improving the downlink throughput of the UE and improving network performance.
  • the base station may also implicitly indicate that the UE is in the radio remote mode.
  • the system message may carry indication information indicating that some cells are radio remote coverage cells, and if the UE determines that it belongs to The radio remotely covers the cell, and the channel estimation algorithm suitable for the radio remote scene is enabled.
  • the channel estimation algorithm applicable to the radio remote scene used in the embodiment of the present invention is briefly described below by taking the example that the UE serves the two RRUs that share the same cell ID.
  • the channel estimation algorithm includes four main steps: delay estimation, Doppler estimation, delay and frequency compensation, and channel estimation. In these steps, it is necessary to select an appropriate method for processing the radio remote scene.
  • Step 1 Time delay estimation, the Inverse Fast Fourier Transform (IFFT) is applied to the signal to obtain the peak position of the first path of each main path, so that the delays of the two main paths can be obtained.
  • IFFT Inverse Fast Fourier Transform
  • Step 2 Doppler estimation, Doppler estimation is Doppler frequency offset estimation.
  • the Doppler estimation used in the traditional channel estimation algorithm is calculated based on the signal phase deflection of adjacent pilot symbols. Using the common phase reference signal (CRS) on the same subcarrier, the signal phase difference of the pilot signal position is divided by the interval time to obtain the Doppler frequency offset, but in the radio remote scene, due to the presence of more The downlink signal of each RRU, the Doppler frequency offset of each signal is not equal, and as the signal power changes, the dominant dominant signal will also change with time.
  • the traditional Doppler estimation method cannot accurately estimate Doppler. Le frequency bias.
  • a method of estimating a Doppler frequency offset of a plurality of harmonics from noise for example, a nonlinear LS estimation method is employed.
  • the frequency offset of signals from a plurality of RRUs can be estimated by a nonlinear LS method, a high-order Yule-Walker equation, or the like.
  • the nonlinear LS method is used to find the Doppler frequency offset of the two paths:
  • the time domain cross-correlation function of the received signal is:
  • n noise
  • p 0 or 1: represents the 0th RRU and the 1st RRU signal
  • N the number of subcarriers used
  • G() FFT transformation of a rectangular square wave, ie
  • T s time unit
  • the difference is more than 5 dB:
  • Step 3 Delay and frequency compensation, delay compensation can take a general approach.
  • the power of the two paths is first determined. If the power of the two paths differs greatly, for example, more than 5 dB, the frequency compensation is performed according to the strong path; if the powers of the two are equal, respectively, Two paths The Doppler frequency offset and the delay estimation are performed, and the Wiener coefficient is calculated according to the estimated value. By adjusting the center frequency of the UE local oscillator baseband at the center of the two-path Doppler frequency offset, the inter-carrier interference can be reduced.
  • Step 4 Channel estimation.
  • the channel estimation for the non-pilot position can be calculated based on the channel estimation of the pilot position.
  • the channel estimate of the non-pilot position is derived by multiplying the Wiener coefficient matrix by the channel estimate of the pilot position.
  • H Est W MMSE H LS ;
  • H Est represents a channel estimate of a non-pilot position
  • W MMSE represents a matrix of Wiener coefficients
  • H LS represents a channel estimate of a pilot position.
  • the Wiener coefficient matrix is obtained based on the time domain and frequency domain cross-correlation functions.
  • H LS is the channel estimate of the pilot symbol, which can be obtained by dividing the received sequence by the local sequence, which is no different from the conventional method.
  • WMMSE can be obtained by two-dimensional linear filtering, that is, Wiener filtering is performed on the frequency first, and then filtering in the time domain.
  • the frequency domain correlation function is as follows:
  • the time domain correlation function is as follows:
  • Time domain filtering can be expressed as:
  • FIG. 6 is a structural diagram of a base station according to Embodiment 4 of the present invention, where the base station is configured to perform a channel estimation method according to an embodiment of the present invention, where the base station includes:
  • the processing unit 601 is configured to control the sending unit 602 to establish a connection with the UE.
  • the sending unit 602 is further configured to send, to the UE, the notification information that the UE is in a radio remote mode, where the notification information is used to indicate that the UE uses a channel estimation algorithm that is applicable to the radio remote scene.
  • Channel estimation wherein the channel estimation algorithm is configured to perform channel estimation on signals after superimposing downlink signals from a plurality of RRUs.
  • the performing, by the sending unit 602, performing channel estimation on the signal after the downlink signal superimposed from the multiple RRUs includes:
  • a Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the sending unit 602 is specifically configured to send the RRC-specific signaling to the UE, where the first indicator bit in the RRC-specific signaling is used to indicate that the UE is in a radio remote mode; or And sending a system message to the UE, where the second indicator bit in the system message is used to indicate that the UE is in a radio remote scene.
  • the processing unit 601 is further configured to determine that the UE is in a high-speed mobile state before the sending unit 602 sends the UE the notification information that the UE is in the radio remote mode.
  • FIG. 7 is a structural diagram of a UE according to Embodiment 5 of the present invention.
  • the UE is configured to perform a channel estimation method according to an embodiment of the present invention, where the UE includes:
  • the receiving unit 701 is configured to receive notification information, where the notification information indicates that the UE is in a radio remote scene;
  • the processing unit 702 is configured to perform channel estimation by using a channel estimation algorithm applicable to the radio remote scene according to the notification information received by the receiving unit 701, where the channel estimation algorithm is used to downlink from multiple RRUs.
  • the signal after signal superposition performs channel estimation.
  • the processing unit 702 is specifically configured to determine a delay and a Doppler frequency offset of a downlink signal from each of the plurality of RRUs; and according to the delay and the Doppler frequency offset pair
  • the downlink signals of each RRU are subjected to delay and frequency compensation; the Wiener coefficients are determined for the compensated signals, and the Wiener coefficients are used for channel estimation.
  • the receiving unit 701 is specifically configured to receive RRC dedicated signaling, where a first indicator bit in the RRC dedicated signaling is used to indicate that the UE is in a radio remote mode; or, receive a system message.
  • the second indicator bit in the system message is used to indicate that the UE is in a radio remote scene.
  • FIG. 8 is a structural diagram of a base station according to Embodiment 6 of the present invention.
  • the base station is configured to perform a channel estimation method according to an embodiment of the present invention, where the base station includes:
  • the memory 802 is configured to store program instructions
  • the processor 803 is configured to perform the following operations according to the program instructions stored in the memory 802:
  • the notification information is used to indicate that the UE performs channel estimation by using a channel estimation algorithm applicable to the radio remote scene, where the channel estimation algorithm is used to superimpose signals after downlink signals from multiple RRUs Perform channel estimation.
  • the processor 803 performs an operation of instructing, by the UE, to perform channel estimation on a signal after downlink signal superimposition from multiple RRUs, including:
  • a Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the performing, by the processor 803, the sending, by the communications interface 801, the notification information that the UE is in a radio remote mode includes:
  • the RRC-specific signaling is sent to the UE by using the communications interface 801, where a first indicator bit in the RRC-specific signaling is used to indicate that the UE is in a radio remote mode; or
  • a system message is sent to the UE by using the communication interface 801, where a second indicator bit in the system message is used to indicate that the UE is in a radio remote scene.
  • the processor 803 is further configured to perform the following operations according to the program instructions stored in the memory 802:
  • the UE Before transmitting, by the communication interface 801, the UE, that the UE is in the radio remote mode, the UE is determined to be in a high-speed mobile state.
  • FIG. 9 is a structural diagram of a UE according to Embodiment 7 of the present invention.
  • the UE is configured to perform a channel estimation method according to an embodiment of the present invention, where the UE includes:
  • the processor 903 The processor 903;
  • the memory 902 is configured to store program instructions.
  • the processor 903 is configured to perform the following operations according to the program instructions stored in the memory 902. Make:
  • channel estimation algorithm configured to perform channel estimation on the signals after the downlink signals are superimposed from the plurality of RRUs.
  • the processor 903 performs the operation of performing channel estimation on the signal after the downlink signal superimposition from the multiple RRUs, including:
  • a Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the processor 903 performs the operation of receiving the notification information by using the communication interface 901, where the notification information indicates that the UE is in a remote operation of the remote radio, including:
  • the communication interface 901 Receiving, by the communication interface 901, the RRC-specific signaling, where the first indication bit in the RRC-specific signaling is used to indicate that the UE is in a radio remote scene; or
  • the system message is received by the communication interface 901, and the second indicator bit in the system message is used to indicate that the UE is in a radio remote scene.
  • FIG. 10 is a structural diagram of a communication system according to Embodiment 8 of the present invention.
  • the system is used to perform a channel estimation method according to an embodiment of the present invention.
  • the system includes:
  • the base station 1001 is configured to establish a connection with the UE 1002, and send, to the UE 1002, the notification information that the UE 1002 is in a radio remote mode, where the notification information is used to indicate that the UE 1002 adopts a channel estimation algorithm that is applicable to the radio remote scene.
  • the channel estimation algorithm is configured to perform channel estimation on signals after superimposing downlink signals from multiple RRUs;
  • the UE 1002 is configured to receive the notification information from the base station 1001, where the notification information indicates that the UE is in a radio remote mode; and according to the notification information, adopt a radio remote control
  • the channel estimation algorithm of the scene performs channel estimation, wherein the channel estimation algorithm is used for channel estimation of signals after superimposing downlink signals from a plurality of RRUs.
  • the UE 1002 is specifically configured to determine a delay and a Doppler frequency offset of a downlink signal from each of the plurality of RRUs; and according to the delay and the Doppler frequency offset
  • the downlink signal of each RRU is subjected to delay and frequency compensation; the Wiener coefficient is determined for the compensated signal, and the Wiener coefficient is used for channel estimation.
  • the base station 1001 is configured to send the RRC-specific signaling to the UE 1002, where a first indicator bit in the RRC-specific signaling is used to indicate that the UE 1002 is in a radio remote mode; or Sending a system message to the UE 1002, where a second indicator bit in the system message is used to indicate that the UE is in a radio remote scene.
  • the base station 1001 is further configured to determine that the UE 1002 is in a high-speed mobile state before sending the notification information that the UE 1002 is in a radio remote mode to the UE 1002.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及信道估计方法、基站、用户设备UE和系统,该方法包括:基站与用户设备UE建立连接;向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个射频拉远单元RRU的下行信号叠加之后的信号进行信道估计。UE能够采用合适的信道估计算法进行信道估计,能够有效提高信道估计的精确度,进而有效提高UE的下行数据吞吐量。

Description

信道估计方法、基站、用户设备和系统 技术领域
本发明涉及移动通信领域,尤其涉及信道估计方法、基站、用户设备(User Equipment,UE)和系统。
背景技术
随着科技的发展,用户在高速场景下进行通信的需求也日益增加,例如,用户在行进中的高铁列车上进行通信。当UE在高速移动状态下进行通信时,会出现吞吐率低、切换频繁、切换失败率高、无线链路失败率高等多种问题。
现有技术中,针对高铁移动通信切换频繁,吞吐量低等问题,一种解决方案是采用带状拓扑,即一个基带处理单元(Base Band Unit,BBU)下面挂载着多个射频拉远单元(Radio Remote Unit,RRU),RRU沿铁路轨道沿线布置,为描述方便,将这种拓扑下的通信场景称为射频拉远场景。在射频拉远场景下,多个RRU同属于一个物理小区,共享相同小区标识(identity,ID),同时为小区中的UE服务,传输同样的无线信号。在UE侧看来,小区的半径得到很大幅度的扩大,有效的减少了UE高速移动过程中的切换次数,减少了网络切换信令开销,降低了切换失败率。并且,由于多个RRU同时为UE传输下行信号,因此UE侧接收到的信号的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)也有很大程度的提升。
射频拉远部署虽然可以有效减少切换次数,提高UE接收信号的SINR,但是在上述射频拉远场景中,由于多个RRU同时为UE传输下行信号,因此UE接收到的信号较为复杂,信道估计结果十分不理想,从而影响UE的下行数据吞吐量。
发明内容
本发明实施例提供了信道估计方法、装置和系统,能够有效提高信道估计的精确度,进而有效提高UE的下行数据吞吐量。
第一方面,提供了一种信息发送方法,所述方法包括:
基站与UE建立连接;
向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
结合第一方面,在第一方面的第一种可能的实现方式中,所述对来自多个RRU的下行信号叠加之后的信号进行信道估计,包括:
确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述向所述UE发送所述UE处于射频拉远场景的通知信息,包括:
向所述UE发送无线资源控制(Radio Resource Control,RRC)专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,
向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
结合第一方面或第一方面的第一种或第二种可能的实现方式,在第一方 面的第三种可能的实现方式中,所述向所述UE发送所述UE处于射频拉远场景的通知信息之前,所述方法还包括:
确定所述UE处于高速移动状态。
第二方面,提供了一种信道估计方法,所述方法包括:
UE接收通知信息,所述通知信息指示所述UE处于射频拉远场景;
根据所述通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
结合第二方面,在第二方面的第一种可能的实现方式中,所述对来自多个RRU中下行信号叠加之后的信号进行信道估计,包括:
确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述UE接收通知信息,所述通知信息指示所述UE处于射频拉远场景,包括:
所述UE接收RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,
所述UE接收系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,所述UE接收系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
第三方面,提供了一种基站,所述基站包括:
处理单元,用于控制发送单元与UE建立连接;
所述发送单元,还用于向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估 计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
结合第三方面,在第三方面的第一种可能的实现方式中,所述发送单元指示的所述对来自多个RRU的下行信号叠加之后的信号进行信道估计,包括:
确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述发送单元,具体用于向所述UE发送RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
结合第三方面或第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述处理单元,还用于在所述发送单元向所述UE发送所述UE处于射频拉远场景的通知信息之前,确定所述UE处于高速移动状态。
第四方面,提供了一种UE,所述UE包括:
接收单元,用于接收通知信息,所述通知信息指示所述UE处于射频拉远场景;
处理单元,用于根据所述接收单元接收的通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
结合第四方面,在第四方面的第一种可能的实现方式中,所述处理单元,具体用于确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏; 根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述接收单元,具体用于接收RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,接收系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,接收系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
第五方面,提供了一种基站,所述基站包括:
通信接口;
存储器;
处理器;
所述存储器,用于存储程序指令;
所述处理器,用于根据所述存储器中存储的程序指令执行以下操作:
通过所述通信接口使所述基站与UE建立连接;
通过所述通信接口向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
结合第五方面,在第五方面的第一种可能的实现方式中,所述处理器执行指示所述UE对来自多个RRU的下行信号叠加之后的信号进行信道估计的操作,包括:
确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二 种可能的实现方式中,所述处理器执行所述通过所述通信接口向所述UE发送所述UE处于射频拉远场景的通知信息的操作,包括:
通过所述通信接口向所述UE发送RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,
通过所述通信接口向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,通过所述通信接口向所述UE发送系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
结合第五方面或第五方面的第一种或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述处理器还用于根据所述存储器中存储的程序指令执行以下操作:
在通过所述通信接口向所述UE发送所述UE处于射频拉远场景的通知信息之前,确定所述UE处于高速移动状态。
第六方面,提供了一种UE,所述UE包括:
通信接口;
存储器;
处理器;
所述存储器,用于存储程序指令;
所述处理器,用于根据所述存储器中存储的程序指令执行以下操作:
通过所述通信接口接收通知信息,所述通知信息指示所述UE处于射频拉远场景;
根据所述通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
结合第六方面,在第六方面的第一种可能的实现方式中,所述处理器执行所述对来自多个RRU的下行信号叠加之后的信号进行信道估计的操作,包括:
确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,所述处理器执行所述通过所述通信接口接收通知信息,所述通知信息指示所述UE处于射频拉远场景的操作,包括:
通过所述通信接口接收RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,
通过所述通信接口接收系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,通过所述通信接口接收系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
第七方面,提供了一种通信系统,所述系统包括:
基站,用于与UE建立连接;向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计;
所述UE,用于从所述基站接收所述通知信息,所述通知信息指示所述UE处于射频拉远场景;根据所述通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
结合第七方面,在第七方面的第一种可能的实现方式中,所述UE,具体用于确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
结合第七方面或第七方面的第一种可能的实现方式,在第七方面的第二 种可能的实现方式中,所述基站,具体用于向所述UE发送RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
结合第七方面或第七方面的第一种或第二种可能的实现方式,在第七方面的第三种可能的实现方式中,所述基站,还用于在所述向所述UE发送所述UE处于射频拉远场景的通知信息之前,确定所述UE处于高速移动状态。
本发明实施例中,由于基站向UE发送了该UE处于射频拉远场景的通知信息,因此可以使UE在接收到该通知信息后更换采用的信道估计算法,针对射频拉远场景下UE会接收到多个RRU为UE传输的下行信号的特点,在信道估计时采用合适的信道估计算法对多个下行信号叠加之后的信号进行信道估计,能够有效提高信道估计的精确度,进而有效提高UE的下行数据吞吐量。
附图说明
图1为本发明实施例的网络架构示意图;
图2为本发明实施例的应用场景示意图;
图3为本发明实施例一提供的信号流图;
图4为本发明实施例二提供的信号流图;
图5为本发明实施例三提供的信号流图;
图6为本发明实施例四提供的基站结构图;
图7为本发明实施例五提供的UE结构图;
图8为本发明实施例六提供的基站结构图;
图9为本发明实施例七提供的UE结构图;
图10为本发明实施例八提供的通信系统结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的网络架构示意图,本发明实施例可以应用于第三代移动通信技术(3rd-Generation,3G)网络,也可以应用于长期演进(Long Term Evolution,LTE)网络,为方便描述,以下以LTE网络为例进行说明。在LTE网络中的演进的通用陆面无线接入网络(Evolved-Universal Terrestrial Radio Access Network,E-UTRAN)通信系统100中,参照图1,E-UTRAN通信系统100包括若干基站110和其他网络实体,用以支撑若干UE120进行通信,其中,有一些UE120处于高速行进的高铁列车(High Speed Train,HST)中,对于这些UE120可以采用本发明实施例提供的方法对从基站110接收到的下行数据进行解调。
基站110,可以是LTE中的演进型基站(evolved NodeB,eNB)。一个基站110可能支持/管理一个或多个小区,UE120需要和网络通信时,它将选择一个小区发起接入。
UE120也可称之为移动终端(Mobile Terminal,MT)、移动台(Mobile Station,MS)等,可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信。
核心网设备130与一个或多个基站110连接,核心网设备130包括移动管理实体(Mobility Management Entity,MME)。
本发明实施例可以应用到不同的通讯系统中,对应于不同的通讯系统,基站的具体设备也不一样,具体的可以是基站控制器(Base Station Controller,BSC)、无线网络控制器(Radio Network Controller,RNC)、 演进型基站(eNB)或基站(Node B)。
本发明实施例可以应用于高速条件下多节点共同传输场景,下面仅以采用射频拉远场景的高铁移动通信为例进行说明。
图2为本发明实施例的应用场景示意图,该场景为射频拉远场景,采用带状拓扑,一个BBU下面挂载着多个RRU,RRU沿铁路轨道沿线布置,其中,上述多个为至少两个,RRU的数目可根据需要来设定,图中所示RRU的数目为4,该数目仅为举例说明,而不用于对本发明实施例的限定。射频拉远场景中的BBU相当于基站的基带单元,RRU相当于基站的射频单元。在射频拉远场景下,多个RRU同属于一个物理小区,共享相同小区ID,同时为小区中的UE服务,传输同样的无线信号。在UE侧看来,小区的半径得到很大幅度的扩大,有效的减少了UE高速移动过程中的切换次数,减少了网络切换信令开销,降低了切换失败率。并且,由于多个RRU同时为UE传输下行信号,因此UE侧接收到的信号的SINR也有很大程度的提升。
射频拉远部署虽然可以有效减少切换,提高UE接收信号的SINR,但是由于传统信道估计算法在射频拉远场景下的效果较差,因此下行信号解调性能不佳,吞吐率低。
通常地,UE具有自动时频跟踪功能,在传统宏网低速场景下,UE能够维持对接收信号的良好跟踪性能,能够准确的进行信道估计,但是在高铁专网射频拉远场景中,UE接收到的信号较为复杂,假设UE同时服务于两个RRU,UE接收的信号中存在两条主径,两条主径的功率、相对时延及多普勒频偏随时间变化,且多普勒频偏符号相反,这种情况下,传统的信道估计结果不准确,从而影响终端的下行吞吐量。
在高铁专网射频拉远场景下,UE接收到的信号是来自多个RRU的下行信号的叠加,而各个RRU下行到达信号之间具有不同的功率、相对时延以及多普勒频偏,针对该场景下UE接收的下行信号的特点,本发明实施例采用了专门适用于该场景的信道估计算法进行信道估计,能够提高该场景下信道估计 的精确度,进而提升UE吞吐量。
图3为本发明实施例一提供的信号流图,由基站向UE发送处于射频拉远场景的通知信息,UE接收到通知信息后可以更换信道估计算法,参照图3,该方法包括:
步骤301,基站与UE建立连接。
其中,基站为采用射频拉远部署的基站,当UE与该基站建立连接后,该UE处于射频拉远场景,基站与UE建立连接的过程可以但不限于下述三种情况:处于空闲态的UE通过小区选择、小区重选与基站建立连接;处于连接态的UE通过切换与基站建立连接;UE通过无线资源控制(Radio Resource Control,RRC)重建与基站建立连接。
步骤302,基站向UE发送该UE处于射频拉远场景的通知信息。
该通知信息用于指示UE采用适用于射频拉远场景的信道估计算法进行信道估计,其中,该信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
本发明实施例中,基站可以将通知信息携带在RRC专有信令中发送给UE,也可以将通知信息携带在系统消息中发送给UE。
由于当UE处于高速移动状态时更容易出现信道估计不准确的问题,因此基站可以先判断UE是否处于高速移动状态,当判断出UE处于高速移动状态时,向UE发送该UE处于射频拉远场景的通知信息,否则不发送通知信息。其中,当UE移动速度超过预设的速度阈值时,可以认为UE处于高速移动状态,例如,可以设定速度阈值为200km/h。其中,上述判断UE是否处于高速移动状态的步骤为可选步骤。
步骤303,UE接收通知信息,该通知信息指示该UE处于射频拉远场景。
具体地,UE接收RRC专有信令,该RRC专有信令中的第一指示位用于指示该UE处于射频拉远场景;或者,UE接收系统消息,该系统消息中的第二指示位用于指示该UE处于射频拉远场景。
步骤304,UE根据通知信息,采用适用于射频拉远场景的信道估计算法进行信道估计。
其中,该信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行进行信道估计。具体地,确定来自每个RRU的下行信号的时延与多普勒频偏,根据时延与多普勒频偏确定维纳(Wiener)系数,利用维纳系数进行信道估计。
本发明实施例中,由于基站向UE发送了该UE处于射频拉远场景的通知信息,因此可以使UE在接收到该通知信息后更换采用的信道估计算法,针对射频拉远场景下UE会接收到多个RRU为UE传输的下行信号的特点,在信道估计时对多个下行信号叠加之后的信号进行信道估计,能够有效提高信道估计的精确度,进而有效提高UE的下行数据吞吐量。
图4为本发明实施例二提供的信号流图,由基站通过RRC专有信令向UE发送处于射频拉远场景的通知信息,参照图4,该方法包括:
步骤401,基站与UE建立连接。
步骤402,UE向基站发送指示信息,该指示信息用于指示该UE支持适用于射频拉远场景的信道估计算法。
步骤403,基站判断该UE是否处于高速移动状态。
当判断结果为该UE处于高速移动状态时,执行步骤404,否则不进行任何处理。
其中,基站可以先获取UE的移动速度,然后根据预设的速度阈值,判断UE的移动速度是否大于速度阈值,当UE的移动速度大于速度阈值时,确认该UE处于高速移动状态。
本发明实施例中基站还可以采取如下任一种方式来判断该UE是否处于高速移动状态:
方式一,UE向基站上报移动状态,例如,支持移动状态上报的UE在接入基站时,在向基站发送的信令里携带UE移动状态的消息元素(Information  Element,IE),基站可从中读取UE的速度档位,该信令具体可以为RRC连接建立完成消息。
方式二,基站获取UE在预设时间内的切换数目,根据单位时间内UE发生的切换数目,为该UE划分速度档位,例如,UE在1分钟时间内发生了5次以上切换,定义为高速。
方式三,基站根据接收的UE的上行信号的多普勒频偏(Doppler shift)判断UE的速度档位,例如,多普勒频偏达到1000Hz以上为高速。
方式四,基站通过网络侧定位获取UE位置信息,根据UE位置变化可获得UE速度信息,从而可以为UE速度划分档位,例如,UE速度达到200km/h以上为高速。
方式五,基站从包含速度信息的应用层获取UE速度数据信息。
其中,步骤403为可选步骤,本发明实施例中,也可以不包括步骤403,步骤402执行完毕后,直接执行步骤404。
步骤404,基站向UE发送RRC专有信令,该RRC专有信令中的第一指示位用于指示该UE处于射频拉远场景。
具体可以通过布尔变量指示UE是否处于射频拉远场景,例如,0代表不处于射频拉远场景,1代表处于射频拉远场景。
步骤405,UE根据RRC专有信令的指示,采用适用于射频拉远场景的信道估计算法进行信道估计。
其中,该信道估计算法用于对来自多个RRU中的每个RRU的下行信号进行时频跟踪,确定来自每个RRU的下行信号的时延与多普勒频偏,根据时延与多普勒频偏确定维纳(Wiener)系数,利用维纳系数进行信道估计。
UE进入射频拉远场景后,通过接收RRC专有信令中的上述指示,启用适用于上述场景的信道估计算法,提高了UE在上述场景下的信道估计的精确性,进而能够提高UE的下行吞吐量,提高网络性能。
图5为本发明实施例三提供的信号流图,由基站通过系统消息向UE发送 处于射频拉远场景的通知信息,参照图5,该方法包括:
步骤501,基站与UE建立连接。
步骤502,UE判断自身是否处于高速移动状态。
本发明实施例中,UE可以但不限于采用如下方式判断自身是否处于高速移动状态:
方式一,通过自带全球定位系统(Global Positioning System,GPS)测速,如300km/h以上视为高速。
方式二,通过单位时间内发生的切换次数,如每分钟5次以上的切换视为高速。
方式三,通过单位时间内发生小区重选的次数,如每分钟5次以上的小区重选视为高速。
方式四,通过历史小区停留时间判断,如在前几个小区中平均停留时间小于10秒则视为高速。
步骤503,当UE判断出自身处于高速移动状态时,向基站发送该UE处于高速移动状态的指示信息。
同时,还可以发送该UE支持适用于射频拉远场景的信道估计算法的指示信息。
步骤504,基站向UE发送系统消息,该系统消息中的第二指示位用于指示该UE处于射频拉远场景。
步骤505,UE根据系统消息的指示,采用适用于射频拉远场景的信道估计算法进行信道估计。
其中,该信道估计算法用于确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏,根据时延与多普勒频偏对每个RRU的下行信号进行时延和频率补偿,针对补偿后的信号确定维纳(Wiener)系数,利用维纳系数进行信道估计。
UE接入射频拉远场景后,通过读取系统消息中的上述指示,启用适用于 上述场景的信道估计算法,提高了UE在上述场景下的信道估计的精确性,进而能够提高UE的下行吞吐量,提高网络性能。
此外,针对射频拉远场景,基站还可以通过隐式指示UE处于射频拉远场景,例如,可以在系统消息中携带指示某些小区为射频拉远覆盖小区的指示信息,UE若判断出自身属于射频拉远覆盖小区,则启用适用于射频拉远场景的信道估计算法。
下面以UE同时服务于两个共享相同小区ID的RRU为例,对本发明实施例中采用的适用于射频拉远场景的信道估计算法进行简单说明。
信道估计算法包括4个主要的步骤:时延估计、多普勒估计、时延和频率补偿、信道估计,在这几个步骤中均需针对射频拉远场景来选择合适的方法进行处理。
步骤一:时延估计,对信号进行快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT),得到每条主径的首达径峰值位置,从而可以得到两条主径的时延
Figure PCTCN2015086779-appb-000001
Figure PCTCN2015086779-appb-000002
步骤二:多普勒估计,多普勒估计即多普勒频偏估计,传统信道估计算法中所用到的多普勒估计是基于相邻导频符号的信号相位偏转计算得出。利用同一子载波上相邻公共参考信号(Common Reference Signal,CRS)导频信号位置的信号相位差,除以间隔时间得出多普勒频偏,但是在射频拉远场景下,由于存在来自多个RRU的下行信号,每条信号的多普勒频偏不等,而且随着信号功率变化,起主导主要的信号也将随时间改变,传统的多普勒估计方法不能够准确估计出多普勒频偏。本发明实施例中采用从噪声中估计多个谐波的多普勒频偏的方法,例如,非线性LS估计法。
可以通过非线性LS方法、高阶Yule-Walker方程等方法估计来自多个RRU的信号的频偏。这里以UE同时服务于两个RRU为例,采用非线性LS方法求出两径的多普勒频偏:
接收信号的时域互相关函数为:
Figure PCTCN2015086779-appb-000003
上述时域互相关函数可简写为:
Figure PCTCN2015086779-appb-000004
在上述时域互相关函数中,各参数的含义如下:
Figure PCTCN2015086779-appb-000005
时频位置(x,l)与(k,k+Δk)之间的互相关函数;
E():期望;
HLS(k,x):时频位置(k,x)上的LS信道估计;
n:噪声;
p=0或1:代表第0个RRU和第1个RRU信号;
N:所用的子载波个数;
Figure PCTCN2015086779-appb-000006
第p个RRU信号上的功率;
G():矩形方波的FFT变换,即
Figure PCTCN2015086779-appb-000007
fd,p:第p个RRU信号的多普勒频偏;
Fd,p=fd,p/Δf:其中Δf为子载波间隔;
Figure PCTCN2015086779-appb-000008
来自第p个RRU信号的时延;
Ts:时间单位;
上式期望可以通过在频率上的求平均得出:
Figure PCTCN2015086779-appb-000009
当两径功率相差较大时,例如相差5dB以上:
Figure PCTCN2015086779-appb-000010
当两径功率相近时,例如相差5dB以内:
Figure PCTCN2015086779-appb-000011
由上可知,当两径相近时,公式中存在不能消除的交叉项(后两项)。由于在射频拉远场景中,只有列车位于两个RRU中间位置时,才会出现两径相近的情况,此时两径的多普勒频偏几乎不随时间改变,可以通过在时间上 的平均去抑制交叉项,记
Figure PCTCN2015086779-appb-000012
所以平均互相关函数可以表示为:
Figure PCTCN2015086779-appb-000013
为简化公式,记:
Figure PCTCN2015086779-appb-000014
可得:
Figure PCTCN2015086779-appb-000015
进而可从下式求出两径的多普勒频偏:
Figure PCTCN2015086779-appb-000016
其中:
Figure PCTCN2015086779-appb-000017
Figure PCTCN2015086779-appb-000018
式中m表示每个子帧中所在OFDM符号位置:
m1:#0 and #4,#7 and #11,m2:#0 and #7,#4 and #11,m3:#4 and #7,m4:#0 and #11
步骤三:时延和频率补偿,时延补偿可以采取通用的方法。对于频率补偿,本发明实施例中,先要判断两条径的功率,若两径功率相差很大,例如5dB以上,则按照强径去做频率补偿;若两者功率相当,则可以分别对两条径 进行多普勒频偏和时延估计,按照估计的值进行维纳系数的计算,通过调整UE本地振荡器基带中心频率位于两径多普勒频偏的中心,可以降低载波间干扰。
步骤四:信道估计,本发明实施例中,对于非导频位置的信道估计可以基于导频位置的信道估计计算得出。
具体地,非导频位置的信道估计通过维纳系数矩阵乘以导频位置的信道估计得出。
HEst=WMMSEHLS
其中,HEst代表非导频位置的信道估计,WMMSE代表维纳系数矩阵,HLS代表导频位置的信道估计。维纳系数矩阵基于时域与频域互相关函数求得。
Figure PCTCN2015086779-appb-000019
Figure PCTCN2015086779-appb-000020
HLS是导频符号的信道估计,利用接收序列除以本地序列即可求出,与传统方法无异。WMMSE可以通过两次一维的线性滤波求出,即先在频率上做Wiener滤波,再进行时域上的滤波。频域相关函数如下:
Figure PCTCN2015086779-appb-000021
时域相关函数如下:
Figure PCTCN2015086779-appb-000022
所以频率滤波可以表示为:
Figure PCTCN2015086779-appb-000023
时域滤波可以表示为:
Figure PCTCN2015086779-appb-000024
通过实验可以发现,传统的信道估计方法不准确,UE吞吐量低下,而且尽管大幅提高信噪比,却仍然存在吞吐量的瓶颈。而本发明实施例提供的信道估计算法下UE下行吞吐量的增益明显。
图6为本发明实施例四提供的基站结构图,该基站用于执行本发明实施例提供的信道估计方法,该基站包括:
处理单元601,用于控制发送单元602与UE建立连接;
所述发送单元602,还用于向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
可选地,所述发送单元602指示的所述对来自多个RRU的下行信号叠加之后的信号进行信道估计,包括:
确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
可选地,所述发送单元602,具体用于向所述UE发送RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景。
可选地,所述处理单元601,还用于在所述发送单元602向所述UE发送所述UE处于射频拉远场景的通知信息之前,确定所述UE处于高速移动状态。
图7为本发明实施例五提供的UE结构图,该UE用于执行本发明实施例提供的信道估计方法,该UE包括:
接收单元701,用于接收通知信息,所述通知信息指示所述UE处于射频拉远场景;
处理单元702,用于根据所述接收单元701接收的通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
可选地,所述处理单元702,具体用于确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
可选地,所述接收单元701,具体用于接收RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,接收系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景。
图8为本发明实施例六提供的基站结构图,该基站用于执行本发明实施例提供的信道估计方法,该基站包括:
通信接口801;
存储器802;
处理器803;
所述存储器802,用于存储程序指令;
所述处理器803,用于根据所述存储器802中存储的程序指令执行以下操作:
通过所述通信接口801使所述基站与UE建立连接;
通过所述通信接口801向所述UE发送所述UE处于射频拉远场景的通知 信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
可选地,所述处理器803执行指示所述UE对来自多个RRU的下行信号叠加之后的信号进行信道估计的操作,包括:
确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
可选地,所述处理器803执行所述通过所述通信接口801向所述UE发送所述UE处于射频拉远场景的通知信息的操作,包括:
通过所述通信接口801向所述UE发送RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,
通过所述通信接口801向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景。
可选地,所述处理器803还用于根据所述存储器802中存储的程序指令执行以下操作:
在通过所述通信接口801向所述UE发送所述UE处于射频拉远场景的通知信息之前,确定所述UE处于高速移动状态。
图9为本发明实施例七提供的UE结构图,该UE用于执行本发明实施例提供的信道估计方法,该UE包括:
通信接口901;
存储器902;
处理器903;
所述存储器902,用于存储程序指令;
所述处理器903,用于根据所述存储器902中存储的程序指令执行以下操 作:
通过所述通信接口901接收通知信息,所述通知信息指示所述UE处于射频拉远场景;
根据所述通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
可选地,所述处理器903执行所述对来自多个RRU的下行信号叠加之后的信号进行信道估计的操作,包括:
确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
可选地,所述处理器903执行所述通过所述通信接口901接收通知信息,所述通知信息指示所述UE处于射频拉远场景的操作,包括:
通过所述通信接口901接收RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,
通过所述通信接口901接收系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景。
图10为本发明实施例八提供的通信系统结构图,该系统用于执行本发明实施例提供的信道估计方法,该系统包括:
基站1001,用于与UE1002建立连接;向所述UE1002发送所述UE1002处于射频拉远场景的通知信息,所述通知信息用于指示所述UE1002采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计;
所述UE1002,用于从所述基站1001接收所述通知信息,所述通知信息指示所述UE处于射频拉远场景;根据所述通知信息,采用适用于所述射频拉远 场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
可选地,所述UE1002,具体用于确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
可选地,所述基站1001,具体用于向所述UE1002发送RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE1002处于射频拉远场景;或者,向所述UE1002发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景。
可选地,所述基站1001,还用于在所述向所述UE1002发送所述UE1002处于射频拉远场景的通知信息之前,确定所述UE1002处于高速移动状态。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不 局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (18)

  1. 一种信息发送方法,其特征在于,所述方法包括:
    基站与用户设备UE建立连接;
    向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个射频拉远单元RRU的下行信号叠加之后的信号进行信道估计。
  2. 如权利要求1所述的方法,其特征在于,所述对来自多个RRU的下行信号叠加之后的信号进行信道估计,包括:
    确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
    根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
    针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
  3. 如权利要求1或2所述的方法,其特征在于,所述向所述UE发送所述UE处于射频拉远场景的通知信息,包括:
    向所述UE发送无线资源控制RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,
    向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,
    向所述UE发送系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
  4. 如权利要求1至3中任意一项权利要求所述的方法,其特征在于,所述向所述UE发送所述UE处于射频拉远场景的通知信息之前,所述方法还包括:
    确定所述UE处于高速移动状态。
  5. 一种信道估计方法,其特征在于,所述方法包括:
    用户设备UE接收通知信息,所述通知信息指示所述UE处于射频拉远场景;
    根据所述通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个射频拉远单元RRU中的下行信号叠加之后的信号进行信道估计。
  6. 如权利要求5所述的方法,其特征在于,所述对来自多个RRU中的下行信号叠加之后的信号进行信道估计,包括:
    确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
    根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
    针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
  7. 如权利要求5或6所述的方法,其特征在于,所述UE接收通知信息,所述通知信息指示所述UE处于射频拉远场景,包括:
    所述UE接收无线资源控制RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,
    所述UE接收系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,所述UE接收系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
  8. 一种基站,其特征在于,所述基站包括:
    处理单元,用于控制发送单元与用户设备UE建立连接;
    所述发送单元,还用于向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个射频拉远单元RRU的下行信号叠加之后的信号进行信道估计。
  9. 如权利要求8所述的基站,其特征在于,所述发送单元指示的所述对来自多个RRU的下行信号叠加之后的信号进行信道估计,包括:
    确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;
    根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;
    针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
  10. 如权利要求8或9所述的基站,其特征在于,所述发送单元,具体用于向所述UE发送无线资源控制RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
  11. 如权利要求8至10中任意一项权利要求所述的基站,其特征在于,所述处理单元,还用于在所述发送单元向所述UE发送所述UE处于射频拉远场景的通知信息之前,确定所述UE处于高速移动状态。
  12. 一种用户设备UE,其特征在于,所述UE包括:
    接收单元,用于接收通知信息,所述通知信息指示所述UE处于射频拉远场景;
    处理单元,用于根据所述接收单元接收的通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个射频拉远单元RRU的下行信号叠加之后的信号进行信道估计。
  13. 如权利要求12所述的UE,其特征在于,所述处理单元,具体用于确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
  14. 如权利要求12或13所述的UE,其特征在于,所述接收单元,具体用于接收无线资源控制RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,接收系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,接收系统消息,所述 系统消息中携带射频拉远覆盖小区的小区标识。
  15. 一种通信系统,其特征在于,所述系统包括:
    基站,用于与用户设备UE建立连接;向所述UE发送所述UE处于射频拉远场景的通知信息,所述通知信息用于指示所述UE采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个射频拉远单元RRU的下行信号叠加之后的信号进行信道估计;
    所述UE,用于从所述基站接收所述通知信息,所述通知信息指示所述UE处于射频拉远场景;根据所述通知信息,采用适用于所述射频拉远场景的信道估计算法进行信道估计,其中,所述信道估计算法用于对来自多个RRU的下行信号叠加之后的信号进行信道估计。
  16. 如权利要求15所述的系统,其特征在于,所述UE,具体用于确定来自多个RRU中的每个RRU的下行信号的时延与多普勒频偏;根据所述时延与所述多普勒频偏对所述每个RRU的下行信号进行时延和频率补偿;针对补偿后的信号确定维纳系数,利用所述维纳系数进行信道估计。
  17. 如权利要求15或16所述的系统,其特征在于,所述基站,具体用于向所述UE发送无线资源控制RRC专有信令,所述RRC专有信令中的第一指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中的第二指示位用于指示所述UE处于射频拉远场景;或者,向所述UE发送系统消息,所述系统消息中携带射频拉远覆盖小区的小区标识。
  18. 如权利要求15至17中任意一项权利要求所述的系统,其特征在于,所述基站,还用于在所述向所述UE发送所述UE处于射频拉远场景的通知信息之前,确定所述UE处于高速移动状态。
PCT/CN2015/086779 2015-08-12 2015-08-12 信道估计方法、基站、用户设备和系统 WO2017024558A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2018505601A JP6933352B2 (ja) 2015-08-12 2015-08-12 情報送信方法、チャネル推定方法、基地局、ユーザ機器、システム、およびプログラム
MX2018001758A MX381602B (es) 2015-08-12 2015-08-12 Método de estimación de canal, estación base, equipo de usuario, y sistema.
CN202011086929.2A CN112187681B (zh) 2015-08-12 2015-08-12 信道估计方法、基站、用户设备和系统
EP15900756.6A EP3324588B1 (en) 2015-08-12 2015-08-12 Channel estimation method, user equipment and system
PCT/CN2015/086779 WO2017024558A1 (zh) 2015-08-12 2015-08-12 信道估计方法、基站、用户设备和系统
CN201580067854.4A CN107005498B (zh) 2015-08-12 2015-08-12 信道估计方法、基站、用户设备和系统
ZA2018/00865A ZA201800865B (en) 2015-08-12 2018-02-09 Channel estimation method, base station, user equipment and system
US15/894,379 US10574485B2 (en) 2015-08-12 2018-02-12 Channel estimation method, base station, user equipment, and system
US16/752,276 US11095481B2 (en) 2015-08-12 2020-01-24 Channel estimation method, base station, user equipment, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/086779 WO2017024558A1 (zh) 2015-08-12 2015-08-12 信道估计方法、基站、用户设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/894,379 Continuation US10574485B2 (en) 2015-08-12 2018-02-12 Channel estimation method, base station, user equipment, and system

Publications (1)

Publication Number Publication Date
WO2017024558A1 true WO2017024558A1 (zh) 2017-02-16

Family

ID=57982918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086779 WO2017024558A1 (zh) 2015-08-12 2015-08-12 信道估计方法、基站、用户设备和系统

Country Status (7)

Country Link
US (2) US10574485B2 (zh)
EP (1) EP3324588B1 (zh)
JP (1) JP6933352B2 (zh)
CN (2) CN107005498B (zh)
MX (1) MX381602B (zh)
WO (1) WO2017024558A1 (zh)
ZA (1) ZA201800865B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375235B1 (en) 2015-11-09 2019-11-20 Telefonaktiebolaget LM Ericsson (PUBL) Random access handling in single frequency network with unidirectional antenna node arrangement
CN108432319B (zh) * 2015-11-09 2022-12-06 瑞典爱立信有限公司 对于高速列车的单向单频率网络布置中的上行链路资源分配
US10356636B2 (en) * 2017-04-03 2019-07-16 Qualcomm Incorporated Techniques and apparatuses to improve drone-mounted user equipment performance
US11419105B2 (en) * 2017-12-27 2022-08-16 Telefonaktiebolaget Lm Ericsson (Publ) Methods, systems and units of distributed base station system for handling downlink communication
CN110636019B (zh) * 2019-11-04 2022-04-22 展讯通信(上海)有限公司 信道估计方法及装置、存储介质、终端
EP4092925A4 (en) * 2020-02-10 2023-01-11 Huawei Technologies Co., Ltd. DATA TRANSMISSION METHOD AND APPARATUS
US11956645B2 (en) * 2020-03-24 2024-04-09 Qualcomm Incorporated Detection of high speed train scenario and indication of high speed train (HST) mode
WO2022067744A1 (zh) * 2020-09-30 2022-04-07 Oppo广东移动通信有限公司 时延补偿方法、装置、设备及介质
CN114828107A (zh) * 2021-01-21 2022-07-29 联发科技股份有限公司 用于测量和用户设备天线选择的方法
CN115550864B (zh) * 2022-11-25 2023-04-28 厦门大学 一种基于ue上行信号的5g nr室内定位系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215503A (zh) * 2010-04-09 2011-10-12 华为技术有限公司 组成载波管理方法及设备
CN102647371A (zh) * 2011-02-17 2012-08-22 中兴通讯股份有限公司 基带数据的传输方法、装置及系统
CN102739298A (zh) * 2012-06-13 2012-10-17 西安电子科技大学 高速铁路多RRU场景下移动Relay接收方法与装置
WO2013070145A1 (en) * 2011-11-07 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for transmitting and receiving downlink control information for mobile wireless communication

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102944B2 (en) * 2007-05-18 2012-01-24 Qualcomm Incorporated Mode and rate control for MIMO transmission
CN101184075B (zh) 2007-12-13 2012-01-04 华为技术有限公司 频偏补偿方法及装置
CN101304399B (zh) * 2008-04-17 2011-11-16 北京邮电大学 一种多频偏载波同步及信道估计的方法及设备
CN101877687B (zh) * 2009-04-28 2013-01-16 鼎桥通信技术有限公司 一种下行信号的传输方法
CN102104854A (zh) * 2009-12-22 2011-06-22 大唐移动通信设备有限公司 一种系统信息更新通知方法、系统和设备
CN102324958A (zh) * 2011-09-15 2012-01-18 上海大学 一种用于高速铁路环境下的mimo系统中的无线通信方法
JP2013123080A (ja) * 2011-11-07 2013-06-20 Ntt Docomo Inc 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
CN102420795A (zh) * 2011-12-02 2012-04-18 中国科学院上海微系统与信息技术研究所 应用于ofdm系统中的信道估计自适应的切换方法
US8964632B2 (en) * 2012-02-03 2015-02-24 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for channel estimation
EP2797242A4 (en) * 2012-02-11 2015-09-09 Lg Electronics Inc METHOD FOR RECEIVING DOWNLINK DATA CHANNELS IN WIRELESS COMMUNICATION SYSTEMS BASED ON A PLURALITY OF CELLS, AND APPARATUS FOR IMPLEMENTING SAID METHOD
CN104247301B (zh) * 2012-03-16 2017-10-17 英特尔公司 用于新载波类型(nct)的小区特定参考信号(crs)的下采样
WO2014010911A1 (ko) * 2012-07-09 2014-01-16 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
EP2869519A4 (en) * 2012-08-01 2015-10-07 Huawei Tech Co Ltd DATA MODULATION PROCESS AND SYSTEM AND USER DEVICE
JP6076044B2 (ja) * 2012-11-02 2017-02-08 株式会社Nttドコモ 無線通信方法、無線通信システム、無線基地局及びユーザ端末
WO2014112780A1 (ko) * 2013-01-16 2014-07-24 엘지전자 주식회사 다중 셀 기반 무선 통신 시스템에서 채널 상태 정보의 산출 방법 및 이를 위한 장치
US9634741B2 (en) 2013-07-29 2017-04-25 Lg Electronics Inc. Method and device for performing NIB CoMP transmission in wireless communication system
WO2015025613A1 (ja) * 2013-08-20 2015-02-26 株式会社日立製作所 無線通信システム、その制御方法及び基地局装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215503A (zh) * 2010-04-09 2011-10-12 华为技术有限公司 组成载波管理方法及设备
CN102647371A (zh) * 2011-02-17 2012-08-22 中兴通讯股份有限公司 基带数据的传输方法、装置及系统
WO2013070145A1 (en) * 2011-11-07 2013-05-16 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for transmitting and receiving downlink control information for mobile wireless communication
CN102739298A (zh) * 2012-06-13 2012-10-17 西安电子科技大学 高速铁路多RRU场景下移动Relay接收方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3324588A4 *

Also Published As

Publication number Publication date
US10574485B2 (en) 2020-02-25
EP3324588A4 (en) 2018-07-25
CN112187681B (zh) 2022-01-14
EP3324588A1 (en) 2018-05-23
US20200162288A1 (en) 2020-05-21
MX2018001758A (es) 2018-06-06
CN107005498A (zh) 2017-08-01
JP2018526893A (ja) 2018-09-13
CN112187681A (zh) 2021-01-05
EP3324588B1 (en) 2024-05-01
JP6933352B2 (ja) 2021-09-08
CN107005498B (zh) 2020-10-27
US11095481B2 (en) 2021-08-17
ZA201800865B (en) 2018-12-19
MX381602B (es) 2025-03-12
US20180167236A1 (en) 2018-06-14

Similar Documents

Publication Publication Date Title
WO2017024558A1 (zh) 信道估计方法、基站、用户设备和系统
EP2724579B1 (en) Wireless device positioning in multicarrier configurations
EP4050947A1 (en) Autonomous timing adjustment for a wireless device
US10404516B2 (en) Data demodulation method, user equipment, base station, and system
WO2016141529A1 (zh) 一种数据传输设备、方法及系统
CN107911325B (zh) 一种频偏预补偿方法及装置、通信设备
CN111245750B (zh) 频偏估计方法、装置及存储介质
CN115066838A (zh) 用于频率调制的参数配置的方法
US11601306B2 (en) Channel estimation in a wireless communication system
WO2021254365A1 (zh) 信息传输方法、装置、相关设备及存储设备
CN116319189B (zh) 用于无线通信的方法及装置
US20140348273A1 (en) Offset estimation using channel state information reference symbols and demodulation reference symbols
JP7244160B2 (ja) 情報送信方法、チャネル推定方法、基地局、ユーザ機器、システム、およびプログラム
TWI782658B (zh) 資訊傳輸方法、網路設備、終端設備及儲存介質
Lee et al. A novel discovery channel scheduling for inter-cell device-to-device discovery in 3GPP LTE asynchronous network
WO2023246759A1 (zh) 信道估计方法、设备及系统
WO2019134164A1 (zh) 一种高速移动信道下宽带专网的可靠传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018505601

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/001758

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE