WO2017018699A1 - Cryogenic liquid storage tank - Google Patents
Cryogenic liquid storage tank Download PDFInfo
- Publication number
- WO2017018699A1 WO2017018699A1 PCT/KR2016/007622 KR2016007622W WO2017018699A1 WO 2017018699 A1 WO2017018699 A1 WO 2017018699A1 KR 2016007622 W KR2016007622 W KR 2016007622W WO 2017018699 A1 WO2017018699 A1 WO 2017018699A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- storage tank
- cryogenic liquid
- outer container
- container
- Prior art date
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 45
- 238000009413 insulation Methods 0.000 claims abstract description 36
- 239000011810 insulating material Substances 0.000 claims abstract description 17
- 239000000463 material Substances 0.000 claims description 23
- 229910001562 pearlite Inorganic materials 0.000 claims description 23
- 239000007787 solid Substances 0.000 claims description 19
- 230000000694 effects Effects 0.000 claims description 11
- 239000012774 insulation material Substances 0.000 claims description 10
- 230000000903 blocking effect Effects 0.000 claims description 9
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 8
- 239000006260 foam Substances 0.000 claims description 7
- 239000011491 glass wool Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 229920002799 BoPET Polymers 0.000 claims description 5
- 239000005041 Mylar™ Substances 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- -1 vacuum panel Substances 0.000 claims description 5
- 229920001342 Bakelite® Polymers 0.000 claims description 4
- 239000004637 bakelite Substances 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 8
- 238000009835 boiling Methods 0.000 abstract description 4
- 229910052742 iron Inorganic materials 0.000 abstract description 4
- 239000000446 fuel Substances 0.000 abstract description 3
- 238000010792 warming Methods 0.000 abstract description 3
- 230000009977 dual effect Effects 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 238000002309 gasification Methods 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000000843 powder Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 4
- 239000011151 fibre-reinforced plastic Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000011888 foil Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920005830 Polyurethane Foam Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 239000011496 polyurethane foam Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C3/00—Vessels not under pressure
- F17C3/02—Vessels not under pressure with provision for thermal insulation
- F17C3/08—Vessels not under pressure with provision for thermal insulation by vacuum spaces, e.g. Dewar flask
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
Definitions
- the present invention is to improve the storage capacity of the liquid by improving the heat insulating ability in the storage tank of cryogenic liquid gas, more specifically in the cryogenic tank having a dual structure of the inner container and the outer container, the vacuum between the inner and outer containers
- the present invention relates to a cryogenic liquid storage tank, which is applied and heat insulating material is installed on an outer container surface to increase heat-transfer efficiency, facilitate vacuum insulation measures, and reduce iron plate material of an outer container.
- LNG 162 °C
- liquid nitrogen (-196 °C)
- liquid oxygen (-183 °C)
- liquid argon (-186 °C)
- liquid hydrogen 253 °C
- a large storage tank of liquids has a double container structure of an inner container and an outer container, and has a heat insulating structure applying a filling of 24 cm thick pearlite powder and a vacuum of 10 -2 Torr between the inner and outer containers.
- the pearlite powder which is flour-sized, adheres to the suction port during filling of the pearlite powder between internal and external containers and is pumped with a vacuum pump, thereby inhibiting air intake.
- Uniform vacuum formation of the entire space is very difficult, long vacuum time is required, and the pearlite powder is settled down by the load as time goes by during the long-term operation of the storage tank, and the upper part of the tank has no pearlite powder and is insulated.
- This deterioration problem, and the amount of vaporization has a big disadvantage of 2.5% of the storage amount.
- liquid nitrogen and liquid argon which are widely used in the industry, are evaporated due to heat inflow during storage and released into the atmosphere through safety valves, there is no risk of explosion because they are not combustible.
- LNG or liquefied hydrogen is explosive and must be discharged to a minimum, so the thermal insulation performance of these storage tanks becomes particularly important.
- IMO International Maritime Organization
- the present invention devises a heat insulating technology for separating and applying a vacuum and a solid insulating material to solve the problem that the vacuum is not formed smoothly and the problem of low heat insulating ability when applying the vacuum to the pearlite powder, which is a problem of the conventional vacuum pearlite insulation method
- the present invention is to reduce the liquid evaporation loss by improving the thermal insulation capacity of the conventional storage tank as described above, through the improvement of the thermal insulation structure of cryogenic storage tanks, flammable liquids such as LNG, liquid hydrogen, liquid nitrogen, liquid oxygen This is to minimize the evaporation of the liquid generated during the storage or transportation of industrial cryogenic liquids, such as nitrogen and liquid nitrogen.
- the present invention is to achieve the above object and to solve the problem, instead of the structure of the vacuum pearlite powder insulation is applied as an insulation measure between the inner and outer containers of all the conventional cryogenic liquid storage tank, the high vacuum in the space between the inner container and the outer container And a heat radiation blocker, and a solid insulation material is installed on the outer surface of the outer tank.
- the interval between the inner and outer containers to which the vacuum is applied is reduced from about 5 cm to about 8 cm in the tank of the present invention from 24 cm of the conventional tank.
- the vacuum between the inside and the outside may be variously applied from a conventional vacuum degree to a high vacuum.
- Heat transfer phenomenon In the medium vacuum, conduction and convective heat transfer are blocked, but radiant heat transfer exists, so the radiant heat blocking agent may be an aluminum foil having a radiant heat blocking effect including Mylar (polyethylene telephthalate).
- the outer tank surface insulating material of the present invention may be a polyurethane foam block, polystyrene foam block, glass wool (Glass wool), VIP (vacuum panel), a pearlite block or a powder-like insulating material can be hypothesized,
- the solid insulation material that is hypothesized is fixed by a guide material such as FRP (Fiber Reinforced Plastics).
- the thermal barrier performance of the tank according to the present invention has an effect of increasing by 15 times or more than the thermal insulation performance of the conventional tank.
- the amount of vaporization loss is greatly reduced, thereby reducing the energy required for the production of cryogenic liquids, thereby reducing the amount of CO 2 emission, a global warming regulatory substance, and in the case of LNG, reducing the amount of vaporization loss and safety resulting from the operation of LNG fuel ships. It is a very effective technique.
- the insulation thickness of the conventional vacuum pearlite powder is 24cm
- the size of the outer tank is large
- the present invention provides an effect of reducing the steel sheet material cost required for the production of the outer tank as the tank interval between the inside and the outside is about 5 ⁇ 8cm. Done.
- FIG. 1 is a schematic view of a cryogenic storage tank according to an embodiment of the present invention.
- Figure 2 is a schematic diagram showing a conventional vacuum pearlite adiabatic cryogenic storage tank.
- Figure 4 is a picture of the results of analyzing the heat transfer through the wall of the conventional storage tank.
- the present invention relates to an insulating structure of a tank for storing a cryogenic liquid having a low boiling point, more specifically, to form a high vacuum and a radiation heat shield in the space between the inner container 110 and the outer container 120, the insulating material on the surface of the outer tank
- the hypothesis relates to a new cryogenic storage tank thermal insulation structure, characterized in that the thermal intrusion from the outside greatly reduced.
- the inner container 110 and the outer container 120 is composed of a double structure as in the conventional storage tank 200, the inside and outside A high vacuum and a radiation heat shield are applied to the space between the containers, and a solid heat insulating material 140 is installed on the outer surface of the outer container 120.
- the outer surface 150 of the solid insulation 140 may be a variety of materials for the jacket, such as FRP for the fixed installation of the heat insulating material.
- the space 130 between the inner and outer containers is applied with high vacuum 1x10 -3 ⁇ 10 -5 Torr to block conduction heat transfer and convective heat transfer, and radiant heat shielding is made of thin film such as aluminum foil and Mylar with a thickness of 1 ⁇ 2cm. It is hypothesized to be wound around the wall of the inner container 110.
- a urethane foam block, a styrofoam insulation material, a pearlite, or the like may be applied.
- the configuration of the cryogenic liquid storage tank in the storage tank for storing the cryogenic liquid consisting of a double container having an inner container 110 and the outer container 120, the inner container 110 Between the outer container 120 and a high vacuum state is formed to block the transfer of conductive heat, convective heat, the heat transfer block 130 forming a predetermined space that can be provided with a radiation heat shield for blocking the transfer of radiant heat is Provided;
- On the outer surface of the outer container 120 is a solid insulation material selectively applied to any one or more of urethane foam block, styro product insulation, glass wool, vacuum panel, bakelite and pearlite material to block heat flow from the outside ( 140);
- the outer surface of the solid insulating material 140 including a fixed guide portion 150 using a material of the FRP material for the fixed installation of the solid insulating material 140; is provided, including, to maximize the thermal insulation effect It is characterized by improving.
- the heat transfer blocking unit 130 by forming a high vacuum state of 1x10 -3 ⁇ 10 -5 Torr, to block the transmission of the conduction heat and convection heat generated between the inner container 110 and the outer container 120. It features.
- the heat transfer blocking unit 130 is provided with a radiation heat shield selectively applied from a material of aluminum or Mylar material, to block the transfer of radiant heat generated between the inner container 110 and the outer container 120. It features.
- the solid insulation material 140 is provided on the outer surface of the outer container 120 to block the heat inflow from the outside, urethane foam block, styro product insulation, glass wool, vacuum panel, bakelite and pearlite Any one or more of the materials are selectively applied to serve to block heat inflow to the outer container 120.
- the inner heat shield is provided with a radiation heat shielding agent ) And the transfer of radiant heat generated between the outer container 120 and a solid insulation material 140 on the outer surface of the outer container 120 to block heat inflow from the outside to the outer container 120.
- it has a configuration of cryogenic liquid storage tank that improves thermal insulation performance through maximization of thermal barrier effect.
- Figure 2 is a schematic diagram showing a conventional vacuum pearlite thermal insulation cryogenic storage tank 200, the insulation between the inner container 110 and the outer container 120 is a pearlite powder 160 and a vacuum degree of 1x10 -2 Torr with a total thickness of 24cm It is produced.
- Figure 3 is a result of the embodiment for analyzing the heat transfer amount according to the wall insulation structure by the storage tank 100 of the present invention
- the total insulation thickness is 24cm (inner vessel 110 thickness 10mm + super insulation 50mm + outer vessel (120) 9mm + urethane foam thickness 171mm)
- the heat transfer amount is 0.768W / m 2 . If the capacity of the cryogenic liquid storage tank is 10m 3 , the area of the inner container 110 is 31.68m 2 , and the total heat inflow of the wall of the inner container 110 is 24.33W. When converted into the amount of vaporization of the liquid nitrogen storage tank it can be seen that the combined heat inflow of the pipe and the support is about 0.5%.
- Figure 4 is a picture of the results of analyzing the heat transfer through the wall of the conventional storage tank 200.
- the thickness of the wall is the same 24cm (inner container 10mm + pearlite powder 221mm + outer container 9mm) and the heat transfer value is 11.3W / m 2 .
- the storage capacity is 10m 3
- the total heat inflow of the wall is 358W.
- the heat inflow amount is 1/15. It can be confirmed that the invention has a configuration that has a very useful effect in the storage of explosive liquids such as LNG or liquid hydrogen, especially by reducing the thermal insulation performance greatly improved.
- Another embodiment of the present invention may be applied to increase or decrease the size of the storage tank with the control of the insulation effect by reducing or increasing the thickness of the insulation, the change of the high and low degree of vacuum, the vacuum radiation block 130 material
- various materials such as Mylar, aluminum foil, and various insulating materials such as glass wool, vacuum panel, and beike in addition to the urethane foam as the external solid insulation material 140 will be possible.
- the iron plate requirement of the outer tank container of the conventional tank is based on 140cm diameter of the inner container 110, the diameter of the outer container 120 is 188cm and the total area is 46.75m 2 , the weight of the iron plate takes 3.3Ton, while the outer container 120 according to the present invention is 150cm in diameter, the area is 33.25m 2 , the weight is 2.35Ton to reduce the material cost of about 1Ton Will have
- the difference between the other materials is that the conventional tank is insulated from pearlite powder, while the present invention requires a urethane block and a radiant heat shield, and a highly efficient storage tank with greatly improved thermal insulation effect.
- the conventional vacuum pearlite thermal insulation cryogenic liquid As described above, by applying high vacuum insulation between the inner vessel 110 and the outer vessel 120 of the cryogenic liquid having a low boiling point and applying a solid insulator to the outer surface of the outer vessel 120, the conventional vacuum pearlite thermal insulation cryogenic liquid It is an invention that the insulation effect is greatly improved while the thickness of the storage tank is the same or reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
The present invention relates to a storage tank for a cryogenic liquid having a low boiling temperature, which increases liquid storage capacity by enhancing adiabatic efficiency and, more specifically, to a cryogenic liquid storage tank having a dual structure of an inner container (110) and an outer container (120), in which a vacuum is applied to the space between the inner and outer containers, and a heat insulating material is provided on the outer surface of the outer container (120), which makes it possible to: increase heat shield efficiency; decrease a heat insulation space to easily form heat insulation; and reduce the iron plate of the outer container (120). Accordingly, it is possible to significantly reduce the amount of a cryogenic liquid lost by means of gasification while storing or carrying the cryogenic liquid, thereby saving energy required for producing a cryogenic liquid to reduce the emission of CO2, which is a substance regulated for preventing global warming, and reducing the amount of LNG gasified according to the operation of an LNG fuel ship and providing safety.
Description
본 발명은 초저온 액체가스의 저장탱크에 있어서 단열능력을 향상시켜 액체의 저장능력을 증진시키기 위한 것으로, 보다 상세하게는 내부용기 및 외부용기의 이중구조를 갖는 초저온 탱크에서, 내외 용기 사이에 진공이 적용되고 외부용기 표면에 단열재가 가설됨으로써 열차단 효율이 상승하고, 진공단열 조치가 용이하며, 외부용기의 철판재료가 절감되는 초저온 액체 저장탱크에 관한 것이다.The present invention is to improve the storage capacity of the liquid by improving the heat insulating ability in the storage tank of cryogenic liquid gas, more specifically in the cryogenic tank having a dual structure of the inner container and the outer container, the vacuum between the inner and outer containers The present invention relates to a cryogenic liquid storage tank, which is applied and heat insulating material is installed on an outer container surface to increase heat-transfer efficiency, facilitate vacuum insulation measures, and reduce iron plate material of an outer container.
LNG(-162℃), 액체질소(-196℃), 액체산소(-183℃), 액체알곤(-186℃), 액체수소(-253℃) 등은 모두 비등점이 매우 낮은 액체로, 저장 중 탱크 외부로부터 열유입에 의하여 지속적으로 증발손실이 발생하게 된다.LNG (-162 ℃), liquid nitrogen (-196 ℃), liquid oxygen (-183 ℃), liquid argon (-186 ℃) and liquid hydrogen (-253 ℃) are all liquids with very low boiling points. Evaporation loss is continuously generated by heat inflow from outside the tank.
종래 이 액체들의 대형 저장탱크는 내부용기와 외부용기의 이중용기 구조로구성되며, 이 내외 용기 사이에 24cm 두께의 펄라이트 분말의 충전과 10-2Torr의 진공을 적용하는 단열 구조로 되어 있다.Conventionally, a large storage tank of liquids has a double container structure of an inner container and an outer container, and has a heat insulating structure applying a filling of 24 cm thick pearlite powder and a vacuum of 10 -2 Torr between the inner and outer containers.
그러나 상기 종래 저장탱크의 단열방식인 진공펄라이트 단열의 문제들로는내외용기 사이에 펄라이트 분말을 충전한 후 진공펌프로 펌핑하는 과정 중 밀가루 크기인 펄라이트 분말이 흡입구에 달라붙어 공기 흡입이 저해되어 충전된 펄라이트 전체 공간의 균일한 진공 형성이 매우 어렵고, 진공 시간이 길게 소요되는 문제와,또한 저장탱크를 설치하여 장기간 운용 중 시간이 흐름에 따라 펄라이트 분말이 하중에 의하여 내려앉아 탱크 상부는 펄라이트분말이 없어 단열이 저하되는 문제, 그리고 일 기화량이 저장량의 2.5%로 큰 단점들을 보유하고 있다.However, as a problem of vacuum pearlite insulation, which is an insulation method of the conventional storage tank, the pearlite powder, which is flour-sized, adheres to the suction port during filling of the pearlite powder between internal and external containers and is pumped with a vacuum pump, thereby inhibiting air intake. Uniform vacuum formation of the entire space is very difficult, long vacuum time is required, and the pearlite powder is settled down by the load as time goes by during the long-term operation of the storage tank, and the upper part of the tank has no pearlite powder and is insulated. This deterioration problem, and the amount of vaporization has a big disadvantage of 2.5% of the storage amount.
산업계에 널리 쓰이는 액체질소, 액체알곤 등은 저장 중 열유입으로 기화량이 증가하여 안전밸브를 통하여 대기 중으로 방출된다 하더라도, 연소성이 없으므로폭발의 위험이 없으나, 근래 청정에너지원으로 전세계적으로 사용량이 증가하고 있는 LNG(액화천연가스)나 액체수소 경우는 폭발성이 있어 배출이 최소가 되어야 하므로, 이들 저장탱크의 단열성능이 특히 중요하게 된다. 특히, LNG의 경우는 IMO(국제해사기구)의 선박연료 환경 지역별 규제에 의하여 LNG추진 연안선박의 보급이 진행되고 있어, 증발을 최소화할 수 있는 저장탱크 기술이 크게 요구된다.Although liquid nitrogen and liquid argon, which are widely used in the industry, are evaporated due to heat inflow during storage and released into the atmosphere through safety valves, there is no risk of explosion because they are not combustible. LNG or liquefied hydrogen is explosive and must be discharged to a minimum, so the thermal insulation performance of these storage tanks becomes particularly important. In particular, in the case of LNG, the propulsion of LNG-promoted coastal ships is in progress according to IMO (International Maritime Organization) 's regional regulations for marine fuel environment, and storage tank technology that can minimize evaporation is greatly required.
본 발명은 종래의 진공펄라이트 단열방식의 문제점인 펄라이트 분말에 진공을 적용할 때, 진공이 원활히 형성되지 않는 문제와 단열능력이 적은 문제를 해소하기 위하여 진공과 고체단열재를 분리 적용하는 단열 기술을 고안한 것으로, 본 발명에 의하면 고진공에서 저진공까지 다양하고 균일한 진공의 적용이 가능하며, 고체 단열재도 각종 열전도도가 낮은 물질의 적용이 가능하게 되어 단열 효율이 크게향상되게 된다.The present invention devises a heat insulating technology for separating and applying a vacuum and a solid insulating material to solve the problem that the vacuum is not formed smoothly and the problem of low heat insulating ability when applying the vacuum to the pearlite powder, which is a problem of the conventional vacuum pearlite insulation method According to the present invention, it is possible to apply various and uniform vacuums from high vacuum to low vacuum, and to apply various materials having low thermal conductivity to the solid heat insulating material, thereby greatly improving the heat insulating efficiency.
종래 단열관련 특허들로는 국내 공고번호 1020070074486 "열회수 싸이클을 이용한 차량용 초저온 액체연료 저장탱크", 1020130043255 "초저온 액체 저장용 탱크", 출원번호 1020130040459 "초저온저장탱크" 등이 있으며, 이들 액체들의 저장탱크 단열능력을 향상시키기 위한 기술을 개시하고 있으나, 본 발명의 내용과는 상이하다.Conventional insulation patents include domestic publication No. 1020070074486 "Cryogenic liquid fuel storage tank for vehicles using heat recovery cycle", 1020130043255 "Cryogenic storage tank for cryogenic liquids", Application No. 1020130040459 "Cryogenic storage tanks", etc. To disclose a technique for improving the, it is different from the content of the present invention.
따라서 본 발명은 상기한 바와 같은 종래 저장탱크의 단열능력을 향상시켜 액체증발 손실량을 감소시키기 위한 것으로서, 초저온 저장탱크의 단열구조의 개선을 통하여 LNG, 액체수소 등의 가연성 액체 및 액체질소, 액체산소, 액체질소 등의 산업용 초저온 액체의 저장이나 운송 중 발생하는 액체의 기화증발량을 최소화하기 위한 것이다.Therefore, the present invention is to reduce the liquid evaporation loss by improving the thermal insulation capacity of the conventional storage tank as described above, through the improvement of the thermal insulation structure of cryogenic storage tanks, flammable liquids such as LNG, liquid hydrogen, liquid nitrogen, liquid oxygen This is to minimize the evaporation of the liquid generated during the storage or transportation of industrial cryogenic liquids, such as nitrogen and liquid nitrogen.
본 발명은 상기 목적을 달성하고 문제를 해결하기 위한 것으로, 종래의 모든 초저온 액체 저장탱크의 내외용기 사이에 단열조치로 적용되는 진공펄라이트 분말 단열의 구조 대신에, 내부용기와 외부용기 사이 공간에는 고진공과 복사열 차단제를 가설하고, 외부탱크 외부 표면에 고체단열재가 가설되는 구조를 제공한다. 이때 진공이 적용되는 내외부 용기의 간격은 종래 탱크의 24cm에서 본 발명 탱크는 5~8cm 정도로 감소하게 된다.The present invention is to achieve the above object and to solve the problem, instead of the structure of the vacuum pearlite powder insulation is applied as an insulation measure between the inner and outer containers of all the conventional cryogenic liquid storage tank, the high vacuum in the space between the inner container and the outer container And a heat radiation blocker, and a solid insulation material is installed on the outer surface of the outer tank. In this case, the interval between the inner and outer containers to which the vacuum is applied is reduced from about 5 cm to about 8 cm in the tank of the present invention from 24 cm of the conventional tank.
본 발명의 실시 예에 따른 초저온 탱크에 있어서, 상기 내외부 사이의 진공은 종래의 진공도부터 고진공까지 다양하게 적용될 수 있다. 또한 열전달 현상 중진공에서는 전도와 대류열전달이 차단되나 복사열전달이 존재하므로 이 복사열 차단제로 Mylar(Polyethylene telephthalate)를 포함한 복사열 차단 효과가 있는 알루미늄 호일 등이 가설되어 질 수 있다.In the cryogenic tank according to an embodiment of the present invention, the vacuum between the inside and the outside may be variously applied from a conventional vacuum degree to a high vacuum. Heat transfer phenomenon In the medium vacuum, conduction and convective heat transfer are blocked, but radiant heat transfer exists, so the radiant heat blocking agent may be an aluminum foil having a radiant heat blocking effect including Mylar (polyethylene telephthalate).
또한, 본 발명의 상기 외부탱크 표면 단열재로는 폴리우레탄폼 블록, 폴리스틸렌폼 블록, 그라스 울(Glass wool), VIP(진공판넬), 펄라이트 블록 또는 분말 등통상의 단열물질이 가설될 수 있는 것으로, 가설되는 고체단열재는 FRP(Fiber Reinforced Plastics, 섬유강화플라스틱) 등의 가이드 물질에 의하여 고정된다.In addition, the outer tank surface insulating material of the present invention may be a polyurethane foam block, polystyrene foam block, glass wool (Glass wool), VIP (vacuum panel), a pearlite block or a powder-like insulating material can be hypothesized, The solid insulation material that is hypothesized is fixed by a guide material such as FRP (Fiber Reinforced Plastics).
이러한 각종 단열 물질의 변경은 본 기술적 사상에 포함된 것으로 해석되어야 할 것 이다.Changes to these various insulating materials should be interpreted as being included in the present technical idea.
본 발명에 따르면, 내부용기와 외부용기 사이 공간에는 고진공과 복사열 차단제를 형성하고 외부탱크 표면에 단열재를 가설함으로써, 진공이 적용되는 내외부용기의 간격을 크게 감소시켜 진공 형성이 용이하게 하여 제작성을 향상시키며, 저장된 초저온 액체의 증발손실량을 최소화할 수 있는 새로운 초저온 저장탱크를 제공하게 된다. 본 발명의 한 실시 예에 따르면 본 발명에 의한 탱크의 열차단 성능이 종래 탱크의 단열 성능보다 15배 이상 증가되는 효과를 가져온다.According to the present invention, by forming a high vacuum and radiant heat shielding agent in the space between the inner container and the outer container and by installing a heat insulating material on the surface of the outer tank, the gap between the inner and outer containers to which the vacuum is applied is greatly reduced to facilitate the formation of vacuum It will also provide a new cryogenic storage tank that will minimize the evaporation loss of stored cryogenic liquids. According to an embodiment of the present invention, the thermal barrier performance of the tank according to the present invention has an effect of increasing by 15 times or more than the thermal insulation performance of the conventional tank.
또한, 기화손실량이 크게 감소하게 되므로 초저온 액체의 생산에 소요되는 에너지의 절감으로 지구온난화 규제물질인 CO2 방출량 감소 효과, 그리고 LNG의 경우 LNG연료선박의 운용에 따른 기화손실량의 절감과 안전성을 제공하는 매우 효과적인 기술이 된다.In addition, the amount of vaporization loss is greatly reduced, thereby reducing the energy required for the production of cryogenic liquids, thereby reducing the amount of CO 2 emission, a global warming regulatory substance, and in the case of LNG, reducing the amount of vaporization loss and safety resulting from the operation of LNG fuel ships. It is a very effective technique.
한편, 종래 진공펄라이트 분말의 단열방식의 단열 두께는 24cm로 외부탱크의 크기가 큰 반면, 본 발명은 내외부 사이의 탱크간격이 5~8cm 정도로 외부탱크의 제작에 소요되는 철판 재료비의 절감 효과를 제공하게 된다.On the other hand, while the insulation thickness of the conventional vacuum pearlite powder is 24cm, the size of the outer tank is large, while the present invention provides an effect of reducing the steel sheet material cost required for the production of the outer tank as the tank interval between the inside and the outside is about 5 ~ 8cm. Done.
도 1은 본 발명의 일 실시예에 따른 초저온 저장탱크의 개요도이다.1 is a schematic view of a cryogenic storage tank according to an embodiment of the present invention.
도 2는 종래 진공펄라이트 단열 초저온 저장탱크를 도시한 개요도이다.Figure 2 is a schematic diagram showing a conventional vacuum pearlite adiabatic cryogenic storage tank.
도 3은 본 발명의 일 실시예에 따른 저장탱크의 벽체를 통한 전열량 해석결3 is a heat transfer analysis through the wall of the storage tank according to an embodiment of the present invention
과의 그림이다.This is a picture of a lesson.
도 4는 종래 저장탱크의 벽체를 통한 전열량을 해석한 결과의 그림이다.Figure 4 is a picture of the results of analyzing the heat transfer through the wall of the conventional storage tank.
* 도면의 주요 부호* Major sign in the drawing
100: 본 발명 저장탱크 110: 내부용기100: the present invention storage tank 110: inner container
120: 외부용기 130: 열전달 차단부120: outer container 130: heat transfer block
140: 고체단열재 150: 고정가이드부140: solid insulating material 150: fixed guide portion
160: 진공펄라이트 200: 종래 저장탱크160: vacuum pearlite 200: conventional storage tank
본 발명은 비등점이 낮은 초저온 액체를 저장하는 탱크의 단열구조에 관한것으로, 보다 상세하게는 내부용기(110)와 외부용기(120) 사이 공간에 고진공과 복사열 차단제를 형성하고, 외부탱크 표면에 단열재를 가설하여 외부로부터의 열침입을 크게 감소시킨 것을 특징으로 하는 새로운 초저온 저장탱크 단열구조에 관한 것이다.The present invention relates to an insulating structure of a tank for storing a cryogenic liquid having a low boiling point, more specifically, to form a high vacuum and a radiation heat shield in the space between the inner container 110 and the outer container 120, the insulating material on the surface of the outer tank The hypothesis relates to a new cryogenic storage tank thermal insulation structure, characterized in that the thermal intrusion from the outside greatly reduced.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예에 대하여 구체적으로 설명하도록 한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타내며, 도면의 탱크의 가설 형태인 수평탱크를 포함하여 수직탱크도 동일하게 적용된다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same reference numerals given in each drawing represent the same members, and the same applies to vertical tanks, including horizontal tanks, which are hypothetical forms of tanks in the drawings.
도 1은 본 발명의 실시예에 따른 대표도로 본 발명의 초저온탱크(100)는내부용기(110)와 외부용기(120)로 종래 저장탱크(200)와 동일하게 이중구조로 구성되어 있으며, 내외용기 사이 공간(130)에는 고진공과, 복사열 차단제가 적용되고, 외부용기(120)의 외부표면에 고체 단열재(140)가 가설된다. 이 고체단열재(140)의 외표면(150)에는 단열재의 고정 설치를 위하여 FRP 등 각종 자켓용 재료가 가설될 수 있다.1 is a representative low temperature tank 100 of the present invention according to an embodiment of the present invention, the inner container 110 and the outer container 120 is composed of a double structure as in the conventional storage tank 200, the inside and outside A high vacuum and a radiation heat shield are applied to the space between the containers, and a solid heat insulating material 140 is installed on the outer surface of the outer container 120. The outer surface 150 of the solid insulation 140 may be a variety of materials for the jacket, such as FRP for the fixed installation of the heat insulating material.
상기 내외용기 사이의 공간(130)은 고진공인 1x10-3~10-5Torr이 적용되어 전도열전달과 대류열전달을 차단하게 되고, 복사열차단은 알루미늄호일, Mylar와 같은 얇은 필름이 1~2cm 두께로 내부용기(110)의 벽체에 감겨져 가설된다. 외부용기(120)의 외벽체에 가설되는 고체단열재(140)로는 우레탄폼 블록이나 스치로폼(Polystylene foam) 단열재, 펄라이트 등이 적용될 수 있다.The space 130 between the inner and outer containers is applied with high vacuum 1x10 -3 ~ 10 -5 Torr to block conduction heat transfer and convective heat transfer, and radiant heat shielding is made of thin film such as aluminum foil and Mylar with a thickness of 1 ~ 2cm. It is hypothesized to be wound around the wall of the inner container 110. As the solid insulation material 140 installed on the outer wall of the outer container 120, a urethane foam block, a styrofoam insulation material, a pearlite, or the like may be applied.
살펴보면, 본 발명의 실시예에 따른 초저온 액체 저장탱크의 구성은, 내부용기(110)와 외부용기(120)를 갖는 이중용기로 구성된 초저온 액체를 저장하는 저장탱크에 있어서, 상기 내부용기(110)와 외부용기(120) 사이에는 전도열, 대류열의 전달을 차단하기 위해 고진공 상태가 형성되고, 복사열의 전달을 차단하기 위한 복사열 차단제가 구비될 수 있는 소정의 공간을 형성하는 열전달 차단부(130)가 구비되고; 상기 외부용기(120)의 외부표면에는 외부로부터의 열유입을 차단하는 우레탄폼 블록, 스치로품 단열재, 그래스울, 진공판넬, 베크라이트 그리고 펄라이트 소재중에서 어느 하나 이상이 선택적으로 적용되는 고체단열재(140)와; 상기 고체단열재(140)의 외표면에는 상기 고체단열재(140)의 고정 설치를 위한 FRP 소재의 재료를 이용한 고정가이드부(150);를 포함하여 구비되어, 열차단효과의 극대화를 통해서 단열성능을 향상시키는 것을 특징으로 하여 구비된다.Looking at, the configuration of the cryogenic liquid storage tank according to an embodiment of the present invention, in the storage tank for storing the cryogenic liquid consisting of a double container having an inner container 110 and the outer container 120, the inner container 110 Between the outer container 120 and a high vacuum state is formed to block the transfer of conductive heat, convective heat, the heat transfer block 130 forming a predetermined space that can be provided with a radiation heat shield for blocking the transfer of radiant heat is Provided; On the outer surface of the outer container 120 is a solid insulation material selectively applied to any one or more of urethane foam block, styro product insulation, glass wool, vacuum panel, bakelite and pearlite material to block heat flow from the outside ( 140); The outer surface of the solid insulating material 140, including a fixed guide portion 150 using a material of the FRP material for the fixed installation of the solid insulating material 140; is provided, including, to maximize the thermal insulation effect It is characterized by improving.
한편, 상기 열전달 차단부(130)는, 1x10-3~10-5Torr의 고진공 상태를 형성하여, 내부용기(110)와 외부용기(120) 사이에서 발생되는 전도열과 대류열의 전달을 차단하는 것을 특징으로 한다.On the other hand, the heat transfer blocking unit 130, by forming a high vacuum state of 1x10 -3 ~ 10 -5 Torr, to block the transmission of the conduction heat and convection heat generated between the inner container 110 and the outer container 120. It features.
그리고, 상기 열전달 차단부(130)는, 알루미늄 또는 Mylar 재질의 소재중에서 선택적으로 적용되는 복사열 차단제가 구비되어, 내부용기(110)와 외부용기(120) 사이에서 발생되는 복사열의 전달을 차단하는 것을 특징으로 한다.In addition, the heat transfer blocking unit 130 is provided with a radiation heat shield selectively applied from a material of aluminum or Mylar material, to block the transfer of radiant heat generated between the inner container 110 and the outer container 120. It features.
그리고, 상기 고체단열재(140)는, 상기 외부용기(120)의 외부표면에 구비되어, 외부로부터의 열유입을 차단하는 우레탄폼 블록, 스치로품 단열재, 그래스울, 진공판넬, 베크라이트 그리고 펄라이트 소재중에서 어느 하나 이상이 선택적으로 적용되어 상기 외부용기(120)로의 열유입을 차단하는 역할을 수행한다.In addition, the solid insulation material 140 is provided on the outer surface of the outer container 120 to block the heat inflow from the outside, urethane foam block, styro product insulation, glass wool, vacuum panel, bakelite and pearlite Any one or more of the materials are selectively applied to serve to block heat inflow to the outer container 120.
요약하면, 상기 외부용기(120)와 내부용기(110)사이에, 1x10-3~10-5Torr의 고진공 상태를 형성하여 열전달과 유도열의 전달을 차단하고, 복사열 차단제가 구비되어 내부용기(110)와 외부용기(120) 사이에서 발생되는 복사열의 전달을 차단하며, 상기 외부용기(120)의 외부표면에 고체단열재(140)를 구비하여 외부로부터 상기 외부용기(120)로의 열유입을 차단함으로써, 열차단효과의 극대화를 통해서 단열성능을 향상시키는 초저온 액체 저장탱크의 구성을 가지게 된다.In summary, between the outer container 120 and the inner container 110, by forming a high vacuum state of 1x10 -3 ~ 10 -5 Torr to block heat transfer and transfer of induction heat, the inner heat shield is provided with a radiation heat shielding agent ) And the transfer of radiant heat generated between the outer container 120 and a solid insulation material 140 on the outer surface of the outer container 120 to block heat inflow from the outside to the outer container 120. In addition, it has a configuration of cryogenic liquid storage tank that improves thermal insulation performance through maximization of thermal barrier effect.
도 2는 종래 진공펄라이트 단열 초저온 저장탱크(200)를 도시한 개요도로 내부용기(110)와 외부용기(120) 사이의 단열은 펄라이트분말(160)과 진공도 1x10-2 Torr로 두께는 총 24cm로 제작되고 있다.Figure 2 is a schematic diagram showing a conventional vacuum pearlite thermal insulation cryogenic storage tank 200, the insulation between the inner container 110 and the outer container 120 is a pearlite powder 160 and a vacuum degree of 1x10 -2 Torr with a total thickness of 24cm It is produced.
도 3은 본 발명 저장탱크(100)에 의한 벽체 단열구조에 따른 전열량을 해석한 일 실시예에 대한 결과로, 총 단열 두께는 24cm (내부용기(110) 두께 10mm + 수퍼단열 50mm + 외부용기(120)9mm + 우레탄폼 두께 171mm)로 하여 해석한 전열량은 0.768W/m2이 된다. 만약 초저온 액체 저장탱크의 용량이 10m3이라면 내부용기(110)의 면적이 31.68m2이 되어 내부용기(110)벽체의 총 열유입량은 24.33W가 된다. 이를 액체질소 저장탱크의 기화량으로 환산하면 배관과 지지부 열유입을 합하여 일 0.5% 정도가 되는 것을 확인할 수 있다.Figure 3 is a result of the embodiment for analyzing the heat transfer amount according to the wall insulation structure by the storage tank 100 of the present invention, the total insulation thickness is 24cm (inner vessel 110 thickness 10mm + super insulation 50mm + outer vessel (120) 9mm + urethane foam thickness 171mm), the heat transfer amount is 0.768W / m 2 . If the capacity of the cryogenic liquid storage tank is 10m 3 , the area of the inner container 110 is 31.68m 2 , and the total heat inflow of the wall of the inner container 110 is 24.33W. When converted into the amount of vaporization of the liquid nitrogen storage tank it can be seen that the combined heat inflow of the pipe and the support is about 0.5%.
도 4는 종래 저장탱크(200)의 벽체를 통한 전열량을 해석한 결과의 그림이다. 벽체의 두께는 동일한 24cm (내부용기 10mm + 펄라이트분말 221mm + 외부용기9mm)로 그 전열량 해석값은 11.3W/m2이 된다. 이도 동일하게 저장용량이 10m3이라면벽체의 총 열유입량은 358W가 된다.Figure 4 is a picture of the results of analyzing the heat transfer through the wall of the conventional storage tank 200. The thickness of the wall is the same 24cm (inner container 10mm + pearlite powder 221mm + outer container 9mm) and the heat transfer value is 11.3W / m 2 . Similarly, if the storage capacity is 10m 3, the total heat inflow of the wall is 358W.
따라서, 상기 본 발명의 일 실시예와 종래의 저장탱크의 구성에 대한 총 열유입량을 비교검토한 결과, 본 발명의 초저온 탱크의 단열 두께가 종래의 탱크와 동일한 두께로 하더라도 열유입량이 1/15로 감소하여 단열성능이 크게 향상된 매우 효율적인 탱크가 되며, 특히 LNG나 액체수소와 같은 폭발성 액체저장에는 매우 유용한 효과를 가지는 구성을 가진 발명임을 확인할 수 있다.Therefore, as a result of comparing and comparing the total heat inflow amount of the embodiment of the present invention with the configuration of the conventional storage tank, even if the thermal insulation thickness of the cryogenic tank of the present invention is the same thickness as the conventional tank, the heat inflow amount is 1/15. It can be confirmed that the invention has a configuration that has a very useful effect in the storage of explosive liquids such as LNG or liquid hydrogen, especially by reducing the thermal insulation performance greatly improved.
본 발명의 또 다른 실시 예로는 단열의 두께를 감소 혹은 증가, 진공도의 높고 낮음의 변경으로 단열 효과의 조절과 함께 저장탱크의 크기를 증감시키는 적용이 있을 수 있으며, 진공 복사열차단(130) 물질로 Mylar, 알루미늄호일 등 다양한 재료의 적용, 그리고 외부 고체단열재(140)로 상기 우레탄폼 외에 그래스울, 진공판넬, 베크라이크 등 다양한 단열재료의 적용이 가능할 것이다.Another embodiment of the present invention may be applied to increase or decrease the size of the storage tank with the control of the insulation effect by reducing or increasing the thickness of the insulation, the change of the high and low degree of vacuum, the vacuum radiation block 130 material Application of various materials, such as Mylar, aluminum foil, and various insulating materials such as glass wool, vacuum panel, and beike in addition to the urethane foam as the external solid insulation material 140 will be possible.
한편, 소요 재료의 절감 효과를 보면, 탱크용량 10m3을 기준하여 종래 탱크의 외부탱크용기의 철판소요량은 내부용기(110) 직경 140cm를 기준하면 외부용기(120)의 직경은 188cm로 총 면적은 46.75m2, 철판 무게로는 3.3Ton이 소요되는 반면, 본 발명에 의한 외부용기(120)는 직경이 150cm, 면적이 33.25m2, 무게 2.35Ton이 되어 약 1Ton의 투입되는 재료비가 절감되는 효과를 갖게 된다.On the other hand, when looking at the effect of reducing the required material, based on the tank capacity of 10m 3 , the iron plate requirement of the outer tank container of the conventional tank is based on 140cm diameter of the inner container 110, the diameter of the outer container 120 is 188cm and the total area is 46.75m 2 , the weight of the iron plate takes 3.3Ton, while the outer container 120 according to the present invention is 150cm in diameter, the area is 33.25m 2 , the weight is 2.35Ton to reduce the material cost of about 1Ton Will have
기타 재료의 차이점으로는 종래 탱크의 단열은 펄라이트 분말인 반면 본 발명은 우레탄블록과 복사열 차단제가 소요되며, 단열 효과가 크게 향상된 고효율 저장탱크가 된다.The difference between the other materials is that the conventional tank is insulated from pearlite powder, while the present invention requires a urethane block and a radiant heat shield, and a highly efficient storage tank with greatly improved thermal insulation effect.
이상 실시 예와 같이 비점이 낮은 초저온 액체의 내부용기(110)와 외부용기(120) 사이에 고진공 단열을 적용하고 외부용기(120) 외표면에 고체 단열재를 적용함으로써, 종래의 진공펄라이트 단열 초저온 액체 저장탱크와 두께는 동일하거나 감소하면서 단열효과는 크게 향상되는 발명이 된다.As described above, by applying high vacuum insulation between the inner vessel 110 and the outer vessel 120 of the cryogenic liquid having a low boiling point and applying a solid insulator to the outer surface of the outer vessel 120, the conventional vacuum pearlite thermal insulation cryogenic liquid It is an invention that the insulation effect is greatly improved while the thickness of the storage tank is the same or reduced.
또한 저장된 초저온 액체의 기화량이 감소함으로써 대기중으로 방출되는 손실을 줄이고 그 양만큼 생산에 소요되는 에너지가 절감되며 지구온난화물질의 방출 저감 효과도 제공하는 장점을 기대할 수 있다.In addition, by reducing the amount of vaporization of the stored cryogenic liquid, it is possible to reduce the loss to the atmosphere, the amount of energy required for the production is reduced, and can also be expected to provide the effect of reducing the emission of global warming materials.
이상, 본 발명의 실시 예에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것으로, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.As mentioned above, although embodiments of the present invention have been described, those skilled in the art may add, change, delete, or add components without departing from the spirit of the present invention described in the claims. The present invention may be modified and changed in various ways, which will also be included within the scope of the present invention.
Claims (4)
- 내부용기(110)와 외부용기(120)를 갖는 이중용기로 구성된 초저온 액체를 저장하는 저장탱크에 있어서,In the storage tank for storing the cryogenic liquid consisting of a double container having an inner container 110 and an outer container 120,상기 내부용기(110)와 외부용기(120) 사이에는 전도열, 대류열의 전달을 차단하기 위해 고진공 상태가 형성되고, 복사열의 전달을 차단하기 위한 복사열 차단제가 구비될 수 있는 소정의 공간을 형성하는 열전달 차단부(130)가 구비되고;A high vacuum state is formed between the inner container 110 and the outer container 120 to block the transfer of conduction heat and convective heat, and a heat transfer forming a predetermined space in which a radiation heat shield for blocking transfer of radiant heat may be provided. A blocking unit 130 is provided;상기 외부용기(120)의 외부표면에는 외부로부터의 열유입을 차단하는 우레탄폼 블록, 스치로품 단열재, 그래스울, 진공판넬, 베크라이트 그리고 펄라이트 소재중에서 어느 하나 이상이 선택적으로 적용되는 고체단열재(140)와;On the outer surface of the outer container 120 is a solid insulation material selectively applied to any one or more of urethane foam block, styro product insulation, glass wool, vacuum panel, bakelite and pearlite material to block heat flow from the outside ( 140);상기 고체단열재(140)의 외표면에는 상기 고체단열재(140)의 고정 설치를 위한 FRP 소재의 재료를 이용한 고정가이드부(150);를 포함하여 구비되어, 열차단효과의 극대화를 통해서 단열성능을 향상시키는 것을 특징으로 하는 초저온 액체 저장탱크.The outer surface of the solid insulating material 140, including a fixed guide portion 150 using a material of the FRP material for the fixed installation of the solid insulating material 140; is provided, including, to maximize the thermal insulation effect Cryogenic liquid storage tank, characterized in that to improve.
- 제 1 항에 있어서,The method of claim 1,상기 열전달 차단부(130)는,The heat transfer blocking unit 130,1x10-3~10-5Torr의 고진공 상태를 형성하여, 내부용기(110)와 외부용기(120) 사이에서 발생되는 전도열과 대류열의 전달을 차단하는 것을 특징으로 하는 초저온 액체 저장탱크.Cryogenic liquid storage tank, characterized by blocking the transmission of conduction heat and convection heat generated between the inner container 110 and the outer container 120 by forming a high vacuum state of 1x10 -3 to 10 -5 Torr.
- 제 1 항에 있어서,The method of claim 1,상기 열전달 차단부(130)는,The heat transfer blocking unit 130,알루미늄 또는 Mylar 재질의 소재중에서 선택적으로 적용되는 복사열 차단제가 구비되어, 내부용기(110)와 외부용기(120) 사이에서 발생되는 복사열의 전달을 차단하는 것을 특징으로 하는 초저온 액체 저장탱크.Ultra-low temperature liquid storage tank, characterized in that the radiant heat shield is applied selectively selected from the material of aluminum or Mylar material, to block the transfer of radiant heat generated between the inner container 110 and the outer container (120).
- 제 1 항에 있어서,The method of claim 1,상기 고체단열재(140)는,The solid insulation material 140,상기 외부용기(120)의 외부표면에 구비되어, 외부로부터의 열유입을 차단하는 우레탄폼 블록, 스치로품 단열재, 그래스울, 진공판넬, 베크라이트 그리고 펄라이트 소재중에서 어느 하나 이상이 선택적으로 적용되어 상기 외부용기(120)로의 열유입을 차단하는 것을 특징을 하는 초저온 액체 저장탱크.It is provided on the outer surface of the outer container 120, any one or more of urethane foam block, styro product insulation, glass wool, vacuum panel, bakelite and pearlite material to block the heat inflow from the outside is selectively applied Cryogenic liquid storage tank, characterized in that to block the heat flow into the outer container (120).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0105592 | 2015-07-27 | ||
KR20150105592 | 2015-07-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018699A1 true WO2017018699A1 (en) | 2017-02-02 |
Family
ID=57884770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/007622 WO2017018699A1 (en) | 2015-07-27 | 2016-07-13 | Cryogenic liquid storage tank |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017018699A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018231004A1 (en) * | 2017-06-16 | 2018-12-20 | (주)하나파워시스템서비스 | Large cryogenic storage tank having insulation layer formed thereon |
WO2023283400A1 (en) * | 2021-07-08 | 2023-01-12 | Preload Cryogenics, Llc | System and method for storage of liquid hydrogen at low pressure |
US12215827B2 (en) | 2021-09-28 | 2025-02-04 | Preload Cryogenics, Llc | Precast, prestressed concrete cryogenic tanks-sliding base insulation system and method for full and double containment systems |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10141595A (en) * | 1996-11-05 | 1998-05-29 | Ishikawajima Harima Heavy Ind Co Ltd | Low temperature liquefied gas storage tank |
KR20010097179A (en) * | 2000-04-20 | 2001-11-08 | 에이엔비 주식회사 | Vacuum adiabatic system for transporting and storage of liquified gas |
KR20100134173A (en) * | 2009-06-15 | 2010-12-23 | 한국해양대학교 산학협력단 | Clearance for Radiant Heat Insulation |
WO2014203530A1 (en) * | 2013-06-21 | 2014-12-24 | 川崎重工業株式会社 | Liquefied gas-storing tank and liquefied gas transport vessel |
KR20150059783A (en) * | 2012-12-19 | 2015-06-02 | 카와사키 주코교 카부시키 카이샤 | Transport container for liquefied gas |
-
2016
- 2016-07-13 WO PCT/KR2016/007622 patent/WO2017018699A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10141595A (en) * | 1996-11-05 | 1998-05-29 | Ishikawajima Harima Heavy Ind Co Ltd | Low temperature liquefied gas storage tank |
KR20010097179A (en) * | 2000-04-20 | 2001-11-08 | 에이엔비 주식회사 | Vacuum adiabatic system for transporting and storage of liquified gas |
KR20100134173A (en) * | 2009-06-15 | 2010-12-23 | 한국해양대학교 산학협력단 | Clearance for Radiant Heat Insulation |
KR20150059783A (en) * | 2012-12-19 | 2015-06-02 | 카와사키 주코교 카부시키 카이샤 | Transport container for liquefied gas |
WO2014203530A1 (en) * | 2013-06-21 | 2014-12-24 | 川崎重工業株式会社 | Liquefied gas-storing tank and liquefied gas transport vessel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018231004A1 (en) * | 2017-06-16 | 2018-12-20 | (주)하나파워시스템서비스 | Large cryogenic storage tank having insulation layer formed thereon |
WO2023283400A1 (en) * | 2021-07-08 | 2023-01-12 | Preload Cryogenics, Llc | System and method for storage of liquid hydrogen at low pressure |
US12111015B2 (en) | 2021-07-08 | 2024-10-08 | Preload Cryogenics, Llc | System and method for storage of liquid hydrogen at low pressure |
US12215827B2 (en) | 2021-09-28 | 2025-02-04 | Preload Cryogenics, Llc | Precast, prestressed concrete cryogenic tanks-sliding base insulation system and method for full and double containment systems |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3394498B1 (en) | Ship containment system for liquified gases | |
WO2017018699A1 (en) | Cryogenic liquid storage tank | |
US20200363013A1 (en) | Tank container for transport and storage of cryogenic liquefied gases | |
WO2020222419A1 (en) | Cryogenic liquid gas storage tank | |
FI66072C (en) | INSULATED BEARING FOR THE PURPOSE OF THE MEASURE | |
WO2018113406A1 (en) | Heat insulation system for type b liquefied natural gas liquid cargo tank for ship and construction method thereof | |
WO2017014426A1 (en) | Fixation apparatus of liquefied natural gas storage tank | |
CN114673925B (en) | A ordinary pressure storage tank for liquid hydrogen stores | |
US20140117021A1 (en) | Cryogenic Fluid Tank and Its Use | |
CN114877244A (en) | Land liquid hydrogen storage tank with liquid nitrogen cold wall | |
Edward et al. | Influence of vacuum level on insulation thermal performance for LNG cryogenic road tankers | |
CN217153800U (en) | Land film liquid hydrogen storage tank with high vacuum insulation box | |
RU2513152C2 (en) | Heat insulation of tank for transportation of liquefied natural gas | |
WO2018231004A1 (en) | Large cryogenic storage tank having insulation layer formed thereon | |
WO2017014389A1 (en) | Liquefied natural gas storage tank, and insulating wall of liquefied natural gas storage tank | |
KR20230048264A (en) | Hydrogen storage tank using absorption material as storage media | |
CN116353772A (en) | Low-temperature liquid storage cargo hold structure and ship | |
WO2023003240A1 (en) | Liquefied hydrogen storage tank | |
CN204805755U (en) | Prefabricated insulating tube of compound cryrogenic of PIR | |
KR20230040143A (en) | Marine transportation means including liquid hydrogen storage container | |
KR20230172631A (en) | Liquefied gas storage containers for intermodal transportation | |
CN115195943A (en) | Goods enclosure device for gas transport ship | |
GB1248419A (en) | Improvements in or relating to storage of liquefied gases | |
CN220152182U (en) | Vacuum composite heat insulation material | |
KR20230139943A (en) | Independent liquefied hydrogen storage tank and marine transportation means equipped therewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16830732 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16830732 Country of ref document: EP Kind code of ref document: A1 |