[go: up one dir, main page]

WO2017010356A1 - Glass substrate - Google Patents

Glass substrate Download PDF

Info

Publication number
WO2017010356A1
WO2017010356A1 PCT/JP2016/069915 JP2016069915W WO2017010356A1 WO 2017010356 A1 WO2017010356 A1 WO 2017010356A1 JP 2016069915 W JP2016069915 W JP 2016069915W WO 2017010356 A1 WO2017010356 A1 WO 2017010356A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
glass
less
film
sodium concentration
Prior art date
Application number
PCT/JP2016/069915
Other languages
French (fr)
Japanese (ja)
Inventor
朋美 安部
林 英明
小池 章夫
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201680041198.5A priority Critical patent/CN107835793B/en
Publication of WO2017010356A1 publication Critical patent/WO2017010356A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/245Oxides by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Definitions

  • the present invention relates to a glass substrate used for a flat panel display (FPD) such as a plasma display and a liquid crystal display, a touch panel, a solar cell and the like.
  • a flat panel display such as a plasma display and a liquid crystal display, a touch panel, a solar cell and the like.
  • Various glass plates such as a glass substrate for flat panel displays (FPD), such as a plasma display and a liquid crystal display, a glass substrate for touch panels, and a glass substrate for thin film solar cells, are manufactured by the float method as an example.
  • FPD flat panel displays
  • a plasma display and a liquid crystal display such as a plasma display and a liquid crystal display
  • a glass substrate for touch panels such as a touch panel
  • a glass substrate for thin film solar cells are manufactured by the float method as an example.
  • a transport path having a plurality of rollers is provided on the downstream side of the float bath in which the molten metal is stored, and a glass ribbon formed by the float bath by the rollers. Is gradually cooled while being continuously conveyed.
  • the glass ribbon formed by the float bath is gradually cooled and solidified while being continuously conveyed by a plurality of rollers constituting the conveyance path, and a glass substrate is obtained by being cut into a predetermined length. .
  • the white turbidity deposited on the glass surface can be eliminated by washing, but the number of processes increases and the production efficiency is poor.
  • an object of the present invention is to provide a glass substrate that can prevent the formation of white turbidity on the back surface of the film during film formation by sputtering.
  • the present inventors considered that the above-mentioned cloudiness is precipitation of some components, and conducted various studies.
  • the bottom surface which is the surface in contact with the surface, is subjected to dealkalization by spraying SO 2 gas and reacting with glass components to form a sulfate film (hereinafter also referred to as SO 2 treatment).
  • SO 2 treatment for example, Japanese Patent Laid-Open No. 02-14841
  • the present inventors have determined the sodium concentration in the top surface in a glass substrate having a bottom surface that is in contact with the molten metal during forming by the float method and a top surface that is the surface opposite to the bottom surface.
  • the inventors have found that by setting the specific range, it is possible to suppress the formation of white turbidity on the rear surface of the film when the film is formed by sputtering, and the present invention has been completed.
  • the present invention is as follows. 1. It has a bottom surface that is a surface in contact with the molten metal at the time of forming by the float method and a top surface that is the surface opposite to the bottom surface, and X obtained by the following formula is more than 0.15 and less than 0.38 Glass substrate.
  • the sodium concentration is measured by an X-ray photoelectron spectrometer.
  • X [(integrated value for 50 nm of sodium concentration in bulk) ⁇ (integrated value of sodium concentration from top surface to depth of 50 nm)] / (integrated value for 50 nm of sodium concentration in bulk) 2.
  • the glass substrate as described in 1 above, containing 3 to 6% of Al 2 O 3 in terms of mass percentage based on oxide. 3.
  • the glass substrate according to item 1 or 2 which is a glass substrate for forming an ITO film. 4). 4. The glass substrate according to any one of items 1 to 3, including a film formed by a sputtering method. 5). 5. The glass substrate according to item 4 above, wherein the film is an ITO film. 6). 6. A touch panel comprising the glass substrate according to any one of 1 to 5 above.
  • the glass substrate of the present invention can reduce the mobility of sodium ions on the glass surface by setting the sodium concentration on the top surface to a specific range, and NaCO 3 is deposited during film formation by sputtering. It can suppress cloudiness. Therefore, by using the glass substrate of the present invention as a glass substrate for film formation by sputtering, there is no need for a step of washing the cloudiness, and film formation on the glass substrate by sputtering is low cost and high productivity.
  • a flat panel display, a touch sensor, a thin film solar cell, or the like produced through the process can be provided.
  • FIGS. 1A to 1C show the concentration distribution of sodium in the surface layer of the glass substrate.
  • the glass substrate of the present invention has a bottom surface that is in contact with the molten metal at the time of forming by the float process, and a top surface that is the surface opposite to the bottom surface, and X determined by the following formula is 0.15. It is a glass substrate that is ultra-less than 0.38.
  • X [(integrated value for 50 nm of sodium concentration in bulk) ⁇ (integrated value of sodium concentration from top surface to depth of 50 nm)] / (integrated value for 50 nm of sodium concentration in bulk)
  • the sodium concentration in the above formula is obtained by measuring the Na atomic weight (atomic%) with an X-ray photoelectron spectrometer.
  • Examples of the X-ray photoelectron spectrometer include ESCA5500 manufactured by ULVAC-PHI.
  • the sodium concentration from the surface of the top surface of the glass substrate to 10 ⁇ m is obtained by grinding the glass substrate with cerium oxide water slurry to 8000 nm, and then sputter etching to 10 ⁇ m with a C 60 ion beam to obtain X-ray photoelectrons
  • the Na atomic weight (%) is measured by a spectroscopic device.
  • the integral amount of sodium concentration from the surface of the top surface of the glass substrate to a depth of 50 nm is obtained by sputter etching the glass substrate with a C 60 ion beam, and the amount of Na atoms every 1.5 nm or 3 nm by an X-ray photoelectron spectrometer. (%) Measure and calculate the integral.
  • “bulk” refers to a portion not affected by surface treatment such as dealkalization, and in the present invention, refers to a portion having a depth of 10 ⁇ m or more from the glass surface.
  • the “integrated value for 50 nm of the sodium concentration in the bulk” means a value obtained by calculating the integrated value of the sodium concentration for 50 nm depth from the sodium concentration at a depth of 10 ⁇ m from the surface of the top surface of the glass. .
  • the value of X is 0.38 or more
  • the electric field in the portion where the sputtered particles are turned on the top surface which is the film forming back surface, changes.
  • Sodium ions which have been dealkalized by SO 2 treatment and have a high mobility, are deposited on the glass surface, and NaCO 3 is formed and becomes cloudy.
  • the X is also preferably less than 0.35, and more preferably less than 0.33.
  • X is 0.15 or less, the surface layer Na concentration is high, and it becomes easy to burn, so that white turbidity tends to be generated.
  • X is preferably more than 0.18, and more preferably more than 0.20.
  • a glass raw material is melt
  • SO 2 gas sulfurous acid gas
  • An SO 2 treatment is performed to deposit sulfate on the glass surface for protection.
  • SO 2 treatment is usually one surface of the glass ribbon, in particular, by blowing SO 2 gas on the surface (bottom surface) of the glass ribbon on the side in contact with the transport roller, forming a protective film by sulfate In order to prevent the surface from being scratched by conveyance.
  • SO 2 treatment can be performed simultaneously in the slow cooling step.
  • the SO 2 gas is a mixed gas of SO 2 and air, N 2 , Ar, or He.
  • the sulfate include Na salt, K salt, Ca salt, Sr salt and Ba salt, and are usually precipitated as a composite of these salts.
  • the X By controlling the condition of the SO 2 treatment, the X can be controlled and adjusted to a predetermined range. Specifically, for example, a method of preventing SO 2 gas sprayed on the bottom surface of the glass ribbon from flowing around the top surface by the following methods (1) to (5) is effective.
  • the SO 2 gas concentration in the upper space on the top surface of the glass ribbon is preferably 1 to 200 ppm, more preferably 5 to 50 ppm.
  • the SO 2 gas sprayed on the bottom surface of the glass ribbon is prevented from flowing around the top surface.
  • the SO 2 gas concentration in the upper space on the top surface of the glass ribbon is preferably 1 to 200 ppm, more preferably 5 to 50 ppm.
  • the SO 2 gas concentration in the upper space on the top surface of the glass ribbon is preferably 1 to 200 ppm, more preferably 5 to 50 ppm.
  • the SO 2 gas is preferably sprayed from a distance close to the bottom surface, and the distance is preferably 1 mm to 200 mm, more preferably 5 mm to 50 mm.
  • the temperature of the glass substrate is preferably 400 to 700 ° C., more preferably 450 to 650 ° C., and still more preferably 500 to 600 ° C.
  • the processing time of blowing SO 2 gas to the bottom surface of the glass ribbon is adjusted by the speed of the glass ribbon.
  • the speed of the glass ribbon is preferably 1 to 30 m / min, more preferably 5 to 20 m / min.
  • the SO 2 treatment is preferably carried out in the molding process by the float method when it is slowly cooled to room temperature in a slow cooling furnace after being taken out from the molding furnace (float bath).
  • SO 2 gas can be sprayed before the glass ribbon enters the annealing furnace. It is also possible by blowing SO 2 gas continuously even after the glass ribbon enters the annealing furnace.
  • the SO 2 gas spray may be started after the glass ribbon has entered the slow cooling furnace. After slow cooling, the glass ribbon can be cut into a predetermined size and formed into a glass substrate.
  • the range (mass percentage display of an oxide basis) shown below is mentioned, for example.
  • SiO 2 63 to 75% Al 2 O 3 : 3 to 6%
  • CaO 0.5-10%
  • SrO 0 to 3%
  • BaO 0 to 3%
  • Na 2 O 10-18%
  • K 2 O 0 to 8%
  • ZrO 2 0 to 3% Fe 2 O 3 : 0.005 to 0.25%
  • a high-quality glass substrate can be easily obtained, and strengthening (chemical strengthening) by ion exchange can be performed.
  • this glass composition will be described.
  • SiO 2 is known as a component that forms a network structure in the glass microstructure, and is a main component constituting the glass.
  • the content of SiO 2 is preferably 63% or more, more preferably 64% or more, still more preferably 65% or more, and particularly preferably 67% or more. Further, the content of SiO 2 is preferably 75% or less, more preferably 73% or less, still more preferably 71% or less, and particularly preferably 70% or less.
  • the content of SiO 2 is 63% or more, it is advantageous in terms of stability and weather resistance as glass. Moreover, an increase in expansion can be suppressed by forming a network structure.
  • the content of SiO 2 is 75% or less, it is advantageous in terms of solubility and moldability.
  • Al 2 O 3 is known as a component that improves the weather resistance of glass. Moreover, there exists an effect
  • the content of Al 2 O 3 is preferably 3% or more, more preferably 4% or more, and further preferably 4.5% or more. Further, the content of Al 2 O 3 is preferably at most 6%, more preferably 5.5% or less, more preferably not more than 5%.
  • the Al 2 O 3 content is 3% or more, stability of the glass is obtained.
  • the content of Al 2 O 3 is 6% or less, the devitrification temperature does not increase greatly even when the viscosity of the glass is high, so melting and forming points in a general soda lime glass production line Is an advantage.
  • MgO is a component that can stabilize glass and improve solubility.
  • the content of MgO is preferably 3% or more, more preferably 3.5% or more, still more preferably 4% or more, and particularly preferably 4.5% or more. Further, the content of MgO is preferably 10% or less, more preferably 9% or less, further preferably 8% or less, more preferably 6% or less, still more preferably 5.5% or less, particularly Preferably it is 5% or less.
  • CaO is a component that stabilizes the glass, and has the effect of preventing devitrification due to the presence of MgO and improving the solubility.
  • the CaO content is preferably 0.5% or more, more preferably 1% or more, further preferably 3% or more, further preferably 4% or more, particularly preferably 5% or more, and most preferably 6%. That's it. Further, the CaO content is preferably 10% or less, more preferably 9% or less, and still more preferably 8% or less.
  • SrO is an effective component for lowering the viscosity and devitrification temperature of glass.
  • the SrO content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
  • BaO is an effective component for lowering the viscosity and devitrification temperature of glass.
  • the BaO content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
  • Na 2 O is a component that lowers the melting temperature and devitrification temperature of glass and improves the solubility and formability of glass. Moreover, when chemically strengthening, it is a component which forms a surface compressive-stress layer by ion exchange.
  • the content of Na 2 O is preferably 10% or more, more preferably 11% or more, and further preferably 13% or more. Further, the content of Na 2 O is preferably 18% or less, more preferably 17% or less, more preferably 16% or less.
  • K 2 O has an effect of lowering the melting temperature of the glass, it may be contained in a range of 8% or less. When it is 8% or less, the melting temperature can be lowered while suppressing the thermal expansion coefficient of the glass. Preferably 5% or less when they contain K 2 O, more preferably 4% or less, more preferably 2% or less.
  • K 2 O Since a small amount of K 2 O has an effect of suppressing intrusion of tin from the bottom surface at the time of molding by the float method, it is preferably contained when molding by the float method.
  • the content of K 2 O is preferably 0.01% or more, more preferably 0.1% or more.
  • ZrO 2 is not essential, but may be contained in a range of up to 3% in order to reduce the viscosity at high temperature or improve the acid resistance. If the inclusion of ZrO 2, ZrO 2 content is preferably at least 0.005%, more preferably at least 0.01%. If ZrO 2 is added excessively, the melting temperature is increased conversely, but by setting it to 3% or less, increase in viscosity and generation of devitrification can be suppressed. Preferably it is 2% or less, More preferably, it is 1% or less.
  • Fe 2 O 3 is a component that absorbs heat and improves solubility when glass is melted.
  • the content of Fe 2 O 3 is preferably 0.005% or more, more preferably 0.008% or more, and still more preferably 0.01% or more.
  • the content of Fe 2 O 3 is preferably at most 0.25%, more preferably 0.2% or less, more preferably not more than 0.15%.
  • the content of Fe 2 O 3 is preferably 0.06% or more.
  • the content of Fe 2 O 3 is not more than 0.25%, it is possible to suppress the coloring.
  • chloride or fluoride may be appropriately contained as a glass refining agent.
  • the glass of this embodiment consists essentially of the components described above, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably 5% or less, more preferably 3% or less, and typically 1% or less.
  • the other components will be described as an example.
  • TiO 2 is not essential, but is abundant in natural raw materials and is known to be a yellow coloring source. When containing TiO 2 is preferably 0.2% or less.
  • SO 3 is not essential, but is known as a glass fining refiner. When containing SO 3 is preferably 0.3% or less.
  • ZnO may be contained up to 2%, for example, in order to improve the melting property of the glass at a high temperature. However, when it is produced by the float process, it is preferably contained substantially because it is reduced by a float bath and becomes a product defect.
  • B 2 O 3 may be contained in a range of 4% or less in order to improve the melting property at high temperature or the glass strength. Preferably it is 3% or less, More preferably, it is 2% or less, More preferably, it is 1% or less. In general, when an alkali component of Na 2 O or K 2 O and B 2 O 3 are contained at the same time, volatilization becomes intense and the brick is remarkably eroded. Therefore, it is preferable that B 2 O 3 is not substantially contained.
  • Li 2 O is a component that lowers the strain point to facilitate stress relaxation, and as a result makes it impossible to obtain a stable surface compressive stress layer, so it is preferably not contained, and even if it is contained, its content Is preferably less than 1%, more preferably 0.05% or less, and particularly preferably less than 0.01%.
  • the glass substrate of the present invention has dimensions that can be formed by the float process, and is finally cut into a size suitable for the intended use.
  • the glass substrate of the present invention is generally cut into a rectangle, but other shapes such as a circle or a polygon can be used without any problem, and includes a glass subjected to drilling.
  • Examples of the film formed on the glass substrate of the present invention include, for example, SiO 2 film, ITO film, ZnO film, Al-doped ZnO film, Ga-doped ZnO film, B-doped ZnO film, In-doped ZnO film, and F-doped ZnO.
  • Examples thereof include a film, Ti-doped NbxO 2 , IZO film (Zn-added In film), SrTiO 3 film, SnO 2 film, F-doped SnO 2 film, Sb-doped SnO 2 film, TiO 2 film, and ZrO 2 film.
  • the material of the film is not particularly limited, and can be selected in consideration of required functions and productivity.
  • the present invention is more effective when a conductive film such as an ITO film is formed on an insulating film such as a SiO 2 film.
  • the film material examples include metal oxides such as silicon nitride, indium oxide, tin oxide, niobium oxide, titanium oxide, zirconium oxide, cerium oxide, tantalum oxide, aluminum oxide, and zinc oxide. Selected from the following: materials, silicon oxide (SiO 2 ), materials containing mixed oxides of Si and Sn, materials containing mixed oxides of Si and Zr, materials containing mixed oxides of Si and Al The above can be preferably utilized.
  • the thickness of the film formed on the glass substrate of the present invention is not particularly limited, but is preferably 5 nm or more when the film is an insulating film such as a SiO 2 film. Preferably it is 8 nm or more. Moreover, it is preferable that it is 50 nm or less, More preferably, it is 40 nm or less, Most preferably, it is 25 nm or less. On the other hand, when the film is a conductive film such as an ITO film, the thickness is preferably 50 nm or more, more preferably 100 nm or more, and further preferably 300 nm. Moreover, it is preferable that it is 600 nm or less, More preferably, it is 500 nm or less. By setting the thickness to 300 nm or more, the resistance value can be suppressed to be sufficiently small, and by setting the thickness to 500 nm or less, the decrease in transmittance can be sufficiently suppressed.
  • the sputtering method include a high frequency magnetron sputtering method, a direct current magnetron sputtering method, a pulse sputtering method, an AC sputtering method, and a digital sputtering method.
  • the present invention is more effective. Demonstrate the effect.
  • the thickness of the glass substrate of the present invention is not particularly limited, but is preferably 0.1 mm or more, more preferably 0.3 mm or more. Moreover, it is preferable that it is 4 mm or less, More preferably, it is 2 mm or less, More preferably, it is 1.3 mm or less.
  • glass substrate of the present invention is not particularly limited, and examples thereof include flat panel displays (FPD) such as plasma displays, liquid crystal displays and organic EL displays, touch panels, and solar cells.
  • FPD flat panel displays
  • plasma displays liquid crystal displays
  • organic EL displays touch panels, and solar cells.
  • the glass substrate of the present invention is particularly effective.
  • the raw material powder having the composition shown in Table 1 by mass percentage display based on oxide is melted at a predetermined temperature, and the thickness is 0.7 mm (Example 1, Example 3, Comparative Example 1 and Comparative Example 2) or 1 by the float process.
  • After forming into a plate shape of 1 mm (Example 2) it was cooled in a continuous slow cooling furnace.
  • SO 2 gas was sprayed on the bottom surface of the glass ribbon at a glass transition point of + 100 ° C. to a glass transition point of ⁇ 100 ° C. for dealkalization.
  • the integrated amount of the sodium concentration at a depth of 10 ⁇ m from the surface of the obtained glass substrate and the sodium concentration from the surface of the top surface or the bottom surface of the glass substrate to a depth of 50 nm was measured with a linear photoelectron spectrometer (ESCA5500, manufactured by ULVAC-PHI). It measured using.
  • a linear photoelectron spectrometer (ESCA5500, manufactured by ULVAC-PHI). It measured using.
  • the sodium concentration from the surface of the top surface of the glass substrate to 10 ⁇ m is that the glass substrate is ground to 8000 nm with an aqueous slurry of cerium oxide, then sputter etched to 10 ⁇ m with a C 60 ion beam, and the Na atomic weight is measured by an X-ray photoelectron spectrometer (%) Was measured.
  • the integral amount of sodium concentration from the top surface or the bottom surface of the glass substrate to a depth of 50 nm is obtained by sputter etching the glass substrate with a C 60 ion beam and every 1.5 nm or 3 nm by an X-ray photoelectron spectrometer. The amount of Na atom (%) was measured and the integral amount was calculated.
  • X and Y were calculated from the obtained measured values according to the following formula. The results are shown in Table 2.
  • X [(integrated value of 50 nm of sodium concentration in bulk) ⁇ (integrated value of sodium concentration from top surface to depth of 50 nm)] / (integrated value of 50 nm of sodium concentration in bulk)
  • Y [ (Integral value of 50 nm of sodium concentration in bulk)-(Integrated value of sodium concentration from bottom surface to depth of 50 nm)] / (Integrated value of 50 nm of sodium concentration in bulk)
  • a glass substrate is set in a sputtering apparatus, and a SiO 2 layer is formed to a thickness of 30 nm at 300 ° C. on the bottom surface of the glass substrate by a high-frequency magnetron sputtering method. Subsequently, with respect to the total amount of ITO (In 2 O 3 and SnO 2 An ITO layer having a thickness of 450 nm was formed at 350 ° C. by a direct current magnetron sputtering method using a SnO 2 ( containing 10% by mass) target to obtain a glass substrate with an ITO layer (also simply referred to as a substrate).
  • FIGS. 1 (a) to 1 (c) show the results of determining the sodium concentration distribution in the surface layer of the obtained glass substrate.
  • FIG. 1A shows Example 1
  • FIG. 1B shows a sample obtained by mirror polishing the glass of Example 1
  • FIG. 1C shows the result of Comparative Example 1.
  • FIG. 1A shows Example 1
  • FIG. 1B shows a sample obtained by mirror polishing the glass of Example 1
  • FIG. 1C shows the result of Comparative Example 1.
  • Example 3 a weather resistance is hold
  • the glass of Example 1 had a haze ratio of 0.1% before the test and a haze ratio of 14% after 14 days.
  • the glass of Example 3 had a haze ratio of 0.1% before the test, and a haze ratio of 14 days later was 3.9%. From this result, it was found that the weather resistance was improved by setting the content of Al 2 O 3 in the glass substrate to 3 to 6 mass%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The present invention relates to a glass substrate having a bottom face that is in contact with molten metal during molding using the float process, and a top face that is on the reverse side of the bottom face, wherein X as found in the following formula is more than 0.15 and less than 0.38. X=[(integral value corresponding to sodium concentration in bulk at 50nm)-(integral value of sodium concentration from surface of top face to depth of 50nm)]/(integral value corresponding to sodium concentration in bulk at 50nm)

Description

ガラス基板Glass substrate
 本発明は、プラズマディスプレイ、液晶ディスプレイ等のフラットパネルディスプレイ(FPD)、タッチパネルおよび太陽電池等に用いられるガラス基板に関する。 The present invention relates to a glass substrate used for a flat panel display (FPD) such as a plasma display and a liquid crystal display, a touch panel, a solar cell and the like.
 プラズマディスプレイ、液晶ディスプレイ等のフラットパネルディスプレイ(FPD)用のガラス基板、タッチパネル用ガラス基板および薄膜太陽電池用ガラス基板等の各種のガラス板は、その一例として、フロート法により製造される。 Various glass plates, such as a glass substrate for flat panel displays (FPD), such as a plasma display and a liquid crystal display, a glass substrate for touch panels, and a glass substrate for thin film solar cells, are manufactured by the float method as an example.
 フロート法を用いてガラス板を製造する際には、熔融金属が貯留されたフロートバスの下流側に、複数のローラを有する搬送経路を配備し、該ローラによって、フロートバスで成形されたガラスリボンを連続的に搬送しつつ徐々に冷却することが行われる。フロートバスで成形されたガラスリボンは、搬送経路を構成する複数のローラによって連続的に搬送されつつ徐々に冷却されて固化されていき、所定長さに切断されることにより、ガラス基板が得られる。 When manufacturing a glass plate using the float process, a transport path having a plurality of rollers is provided on the downstream side of the float bath in which the molten metal is stored, and a glass ribbon formed by the float bath by the rollers. Is gradually cooled while being continuously conveyed. The glass ribbon formed by the float bath is gradually cooled and solidified while being continuously conveyed by a plurality of rollers constituting the conveyance path, and a glass substrate is obtained by being cut into a predetermined length. .
 このようにして得られたガラス基板にスパッタリング法でITO(スズ添加酸化インジウム)、AZO(アルミニウム添加酸化亜鉛)等の膜を成膜すると、成膜裏面に白濁が生じるという問題がある。 When a film of ITO (tin-added indium oxide), AZO (aluminum-added zinc oxide) or the like is formed on the glass substrate thus obtained by a sputtering method, there is a problem that white turbidity occurs on the back surface of the film.
 ガラス表面に析出した白濁は洗浄することで解消することができるが、工程数が増え、生産効率が悪い。また、ガラス基板の両面にスパッタリング法で膜を成膜する際には、このような白濁が生じると洗浄できず、白濁の生成を防止できる技術の出現が望まれる。 The white turbidity deposited on the glass surface can be eliminated by washing, but the number of processes increases and the production efficiency is poor. In addition, when films are formed on both surfaces of a glass substrate by a sputtering method, it is desired to develop a technique that cannot be washed if such white turbidity occurs and can prevent the formation of white turbidity.
 したがって、本発明は、スパッタリング法で成膜時に成膜裏面における白濁の生成を防止することのできるガラス基板を提供することを目的とする。 Therefore, an object of the present invention is to provide a glass substrate that can prevent the formation of white turbidity on the back surface of the film during film formation by sputtering.
 本発明者らは、上記の白濁は何らかの成分の析出であると考え、種々検討を行った。フロート法によりガラスを製造する際に、搬送経路においては、ガラスリボンと複数のローラとの接触に起因してガラスリボンに傷が付くという問題があるため、傷防止のためにガラスリボンの熔融金属と接する面であるボトム面にSOガスを噴霧して脱アルカリし、ガラスの成分と反応させて硫酸塩の膜が形成された状態とする処理(以下SO処理ともいう)がなされることが知られているが(例えば、日本国特開平02-14841号公報)、かかるSO処理が上記の白濁生成に関与している可能性を検討した。 The present inventors considered that the above-mentioned cloudiness is precipitation of some components, and conducted various studies. When manufacturing glass by the float method, there is a problem that the glass ribbon is scratched due to the contact between the glass ribbon and a plurality of rollers in the conveyance path. The bottom surface, which is the surface in contact with the surface, is subjected to dealkalization by spraying SO 2 gas and reacting with glass components to form a sulfate film (hereinafter also referred to as SO 2 treatment). (For example, Japanese Patent Laid-Open No. 02-14841), the possibility that such SO 2 treatment is involved in the above-described cloudiness generation was examined.
 その結果、本発明者らは、フロート法による成形時に熔融金属と接する面であるボトム面と、該ボトム面の反対側の面であるトップ面とを有するガラス基板において、トップ面におけるナトリウム濃度を特定の範囲にすることにより、スパッタリング法による膜の成膜時に成膜裏面に白濁が生成するのを抑制できることを見出し、本発明を完成させた。 As a result, the present inventors have determined the sodium concentration in the top surface in a glass substrate having a bottom surface that is in contact with the molten metal during forming by the float method and a top surface that is the surface opposite to the bottom surface. The inventors have found that by setting the specific range, it is possible to suppress the formation of white turbidity on the rear surface of the film when the film is formed by sputtering, and the present invention has been completed.
 すなわち、本発明は以下の通りである。
1.フロート法による成形時に熔融金属と接する面であるボトム面と、該ボトム面の反対側の面であるトップ面とを有し、下記式により求められるXが0.15超0.38未満であるガラス基板。下記式においてナトリウム濃度は、X線光電子分光装置により測定される。
X=[(バルクにおけるナトリウム濃度の50nm分の積分値)-(トップ面の表面から深さ50nmまでのナトリウム濃度の積分値)]/(バルクにおけるナトリウム濃度の50nm分の積分値)
2.酸化物基準の質量百分率表示で、Alを3~6%含有する前項1に記載のガラス基板。
3.ITO膜成膜用のガラス基板である前項1または2に記載のガラス基板。
4.スパッタリング法により成膜された膜を含む前項1~3のいずれか1項に記載のガラス基板。
5.前記膜がITO膜である前項4に記載のガラス基板。
6.前項1~5のいずれか1項に記載のガラス基板を含むタッチパネル。
That is, the present invention is as follows.
1. It has a bottom surface that is a surface in contact with the molten metal at the time of forming by the float method and a top surface that is the surface opposite to the bottom surface, and X obtained by the following formula is more than 0.15 and less than 0.38 Glass substrate. In the following formula, the sodium concentration is measured by an X-ray photoelectron spectrometer.
X = [(integrated value for 50 nm of sodium concentration in bulk) − (integrated value of sodium concentration from top surface to depth of 50 nm)] / (integrated value for 50 nm of sodium concentration in bulk)
2. 2. The glass substrate as described in 1 above, containing 3 to 6% of Al 2 O 3 in terms of mass percentage based on oxide.
3. 3. The glass substrate according to item 1 or 2, which is a glass substrate for forming an ITO film.
4). 4. The glass substrate according to any one of items 1 to 3, including a film formed by a sputtering method.
5). 5. The glass substrate according to item 4 above, wherein the film is an ITO film.
6). 6. A touch panel comprising the glass substrate according to any one of 1 to 5 above.
 フロート法を用いてガラス板を製造する際にSO処理するためにガラスリボンのボトム面にSOガスを噴霧すると、トップ面にもSOガスが回り込み、そのSOガスによりナトリウムイオン濃度が減少し、トップ面におけるナトリウムイオンの移動度が高くなる。そのため、SO処理後に、スパッタリング法によりボトム面に成膜すると、スパッタ粒子がトップ面に裏回りした部分における電界が変化し、SO処理により移動度が高くなっているナトリウムイオンがガラス表面に析出し、NaCOが形成されて白濁が形成されるものと考えられる。 When spraying the SO 2 gas to the bottom surface of the glass ribbon to SO 2 treatment in producing a glass plate using a float process, wraparound SO 2 gas to the top surface, a sodium ion concentration by the SO 2 gas And the mobility of sodium ions on the top surface is increased. Therefore, when the film is formed on the bottom surface by the sputtering method after the SO 2 treatment, the electric field changes in the portion where the sputtered particles are behind the top surface, and sodium ions whose mobility is increased by the SO 2 treatment are formed on the glass surface. It is thought that it precipitates and NaCO 3 is formed and white turbidity is formed.
 本発明のガラス基板は、トップ面におけるナトリウム濃度を特定の範囲にすることにより、ガラス表面におけるナトリウムイオンの移動度を低くすることができ、スパッタリング法による膜の成膜時にNaCOが析出して白濁するのを抑制することができる。したがって、本発明のガラス基板をスパッタリング法による成膜用のガラス基材として用いることにより、該白濁を洗浄する工程が不要となり、低コストかつ高生産性で、スパッタリング法によるガラス基板への成膜工程を経て生産されるフラットパネルディスプレイ、タッチセンサーまたは薄膜太陽電池等を提供することができる。 The glass substrate of the present invention can reduce the mobility of sodium ions on the glass surface by setting the sodium concentration on the top surface to a specific range, and NaCO 3 is deposited during film formation by sputtering. It can suppress cloudiness. Therefore, by using the glass substrate of the present invention as a glass substrate for film formation by sputtering, there is no need for a step of washing the cloudiness, and film formation on the glass substrate by sputtering is low cost and high productivity. A flat panel display, a touch sensor, a thin film solar cell, or the like produced through the process can be provided.
図1(a)~(c)は、ガラス基板の表層におけるナトリウムの濃度分布を示す。FIGS. 1A to 1C show the concentration distribution of sodium in the surface layer of the glass substrate.
 本発明のガラス基板は、フロート法による成形時に熔融金属と接する面であるボトム面と、該ボトム面の反対側の面であるトップ面とを有し、下記式により求められるXが0.15超0.38未満であるガラス基板である。
X=[(バルクにおけるナトリウム濃度の50nm分の積分値)-(トップ面の表面から深さ50nmまでのナトリウム濃度の積分値)]/(バルクにおけるナトリウム濃度の50nm分の積分値)
The glass substrate of the present invention has a bottom surface that is in contact with the molten metal at the time of forming by the float process, and a top surface that is the surface opposite to the bottom surface, and X determined by the following formula is 0.15. It is a glass substrate that is ultra-less than 0.38.
X = [(integrated value for 50 nm of sodium concentration in bulk) − (integrated value of sodium concentration from top surface to depth of 50 nm)] / (integrated value for 50 nm of sodium concentration in bulk)
 上記式におけるナトリウム濃度は、Na原子量(原子%)をX線光電子分光装置により測定することにより得られる。X線光電子分光装置としては、アルバック・ファイ社製、ESCA5500が挙げられる。 The sodium concentration in the above formula is obtained by measuring the Na atomic weight (atomic%) with an X-ray photoelectron spectrometer. Examples of the X-ray photoelectron spectrometer include ESCA5500 manufactured by ULVAC-PHI.
 具体的には、ガラス基板のトップ面の表面から10μmまでのナトリウム濃度は、8000nmまで酸化セリウムの水スラリーでガラス基板を研削した後、C60イオンビームにより10μmまでスパッタエッチングして、X線光電子分光装置によりNa原子量(%)を測定する。 Specifically, the sodium concentration from the surface of the top surface of the glass substrate to 10 μm is obtained by grinding the glass substrate with cerium oxide water slurry to 8000 nm, and then sputter etching to 10 μm with a C 60 ion beam to obtain X-ray photoelectrons The Na atomic weight (%) is measured by a spectroscopic device.
 また、ガラス基板のトップ面の表面から深さ50nmまでのナトリウム濃度の積分量は、C60イオンビームによりガラス基板をスパッタエッチングして、X線光電子分光装置により1.5nmないしは3nmごとにNa原子量(%)測定し、積分量を算出する。 The integral amount of sodium concentration from the surface of the top surface of the glass substrate to a depth of 50 nm is obtained by sputter etching the glass substrate with a C 60 ion beam, and the amount of Na atoms every 1.5 nm or 3 nm by an X-ray photoelectron spectrometer. (%) Measure and calculate the integral.
 前記式において、「バルク」とは、脱アルカリ等の表面処理による影響がない部分をいい、本発明においては、ガラスの表面から深さ10μm以上の部分をいう。また、「バルクにおけるナトリウム濃度の50nm分の積分値」とは、ガラスのトップ面における表面から深さ10μmの位置におけるナトリウム濃度から、深さ50nm分のナトリウム濃度の積分値を算出した値をいう。 In the above formula, “bulk” refers to a portion not affected by surface treatment such as dealkalization, and in the present invention, refers to a portion having a depth of 10 μm or more from the glass surface. The “integrated value for 50 nm of the sodium concentration in the bulk” means a value obtained by calculating the integrated value of the sodium concentration for 50 nm depth from the sodium concentration at a depth of 10 μm from the surface of the top surface of the glass. .
 前記Xの値が0.38以上であると、スパッタリング法で膜をガラス基板のボトム面に成膜すると、成膜裏面であるトップ面において、スパッタ粒子が裏回りした部分における電界が変化し、SO処理により脱アルカリされて移動度が高くなっているナトリウムイオンがガラス表面に析出し、NaCOが形成されて白濁する。前記Xはまた、0.35未満であることが好ましく、0.33未満であることがより好ましい。 When the value of X is 0.38 or more, when the film is formed on the bottom surface of the glass substrate by the sputtering method, the electric field in the portion where the sputtered particles are turned on the top surface, which is the film forming back surface, changes. Sodium ions, which have been dealkalized by SO 2 treatment and have a high mobility, are deposited on the glass surface, and NaCO 3 is formed and becomes cloudy. The X is also preferably less than 0.35, and more preferably less than 0.33.
 また、前記Xが0.15以下であると表層Na濃度が高く、ヤケ易くなることにより、白濁が生成しやすくなる傾向がある。前記Xは、0.18超であることが好ましく、0.20超であることがより好ましい。 Further, when the X is 0.15 or less, the surface layer Na concentration is high, and it becomes easy to burn, so that white turbidity tends to be generated. X is preferably more than 0.18, and more preferably more than 0.20.
 本発明のガラス基板の製造方法としては、ガラス原料を溶解し、フロート法により成形する。フロート法においては、徐冷工程においてロール搬送する際、ロールによるキズを防止するために、温度の高いガラスリボンにSOガス(亜硫酸ガス)を大気中で吹き付けて、ガラスの成分と反応させてガラス表面に硫酸塩を析出させて保護するSO処理がなされる。 As a manufacturing method of the glass substrate of this invention, a glass raw material is melt | dissolved and it shape | molds by the float glass process. In the float method, when rolls are transported in the slow cooling process, SO 2 gas (sulfurous acid gas) is sprayed in the air on a glass ribbon having a high temperature to react with the glass components in order to prevent scratches caused by the rolls. An SO 2 treatment is performed to deposit sulfate on the glass surface for protection.
 SO処理は、通常は、ガラスリボンの片側の表面、具体的には、搬送用ローラと接する側のガラスリボンの表面(ボトム面)にSOガスを吹き付けて、硫酸塩による保護膜を形成し、搬送によって表面キズがつくのを防止するために行われる。フロート法では、徐冷工程において、SO処理を同時に行うことができる。 SO 2 treatment is usually one surface of the glass ribbon, in particular, by blowing SO 2 gas on the surface (bottom surface) of the glass ribbon on the side in contact with the transport roller, forming a protective film by sulfate In order to prevent the surface from being scratched by conveyance. In the float process, SO 2 treatment can be performed simultaneously in the slow cooling step.
 前記SOガスは、SOと、空気、N、ArまたはHe等との混合気体である。硫酸塩としては、例えば、Na塩、K塩、Ca塩、Sr塩およびBa塩等が挙げられ、通常、これらの塩の複合物として析出される。 The SO 2 gas is a mixed gas of SO 2 and air, N 2 , Ar, or He. Examples of the sulfate include Na salt, K salt, Ca salt, Sr salt and Ba salt, and are usually precipitated as a composite of these salts.
 前記SO処理の条件を制御することで、上記Xを制御して所定の範囲にする調整することができる。具体的には、例えば、以下の(1)~(5)の方法により、ガラスリボンのボトム面に噴霧するSOガスがトップ面に回り込むのを防ぐ方法が有効である。
(1)ガラスリボンのボトム面にSOガスを吹き付ける際に、換気をして徐冷炉の密閉性を下げ、ガラスリボンのトップ面にSOガスが回り込まないようにする。具体的には、徐冷炉内において、ガラスリボンのトップ面の上部空間で、SOガス濃度を1~200ppmとすることが好ましく、より好ましくは5~50ppmである。
(2)Nまたは乾燥空気等の代替ガスをトップ面に吹き付けることで、ガラスリボンのボトム面に吹き付けたSOガスがトップ面に回りこまないようにする。具体的には、徐冷炉内において、ガラスリボンのトップ面の上部空間で、SOガス濃度を1~200ppmとすることが好ましく、より好ましくは5~50ppmである。
(3)ガラスリボンのボトム面にSOガスを吹き付ける際に、局所的にボトム面にSOガスを噴霧する。具体的には、ボトム面に近い距離からSOガスを噴霧することが好ましく、その距離は1mm~200mmとすることが好ましく、より好ましくは5mm~50mmである。
(4)ガラスリボンのボトム面にSOガスを吹き付ける際のガラス基板の温度を調整する。具体的には、該ガラス基板の温度を400~700℃とすることが好ましく、より好ましくは450~650℃、さらに好ましくは500~600℃である。
(5)ガラスリボンのボトム面にSOガスを吹き付ける際の処理時間を、ガラスリボンの速度によって調整する。具体的には、ガラスリボンの速度を1~30m/minとすることが好ましく、より好ましくは5~20m/minである。
By controlling the condition of the SO 2 treatment, the X can be controlled and adjusted to a predetermined range. Specifically, for example, a method of preventing SO 2 gas sprayed on the bottom surface of the glass ribbon from flowing around the top surface by the following methods (1) to (5) is effective.
(1) When SO 2 gas is blown onto the bottom surface of the glass ribbon, ventilation is performed to lower the sealing property of the slow cooling furnace so that the SO 2 gas does not enter the top surface of the glass ribbon. Specifically, in the slow cooling furnace, the SO 2 gas concentration in the upper space on the top surface of the glass ribbon is preferably 1 to 200 ppm, more preferably 5 to 50 ppm.
(2) By blowing alternative gas such as N 2 or dry air on the top surface, the SO 2 gas sprayed on the bottom surface of the glass ribbon is prevented from flowing around the top surface. Specifically, in the slow cooling furnace, the SO 2 gas concentration in the upper space on the top surface of the glass ribbon is preferably 1 to 200 ppm, more preferably 5 to 50 ppm.
(3) when blowing a SO 2 gas to the bottom surface of the glass ribbon, spraying SO 2 gas locally bottom surface. Specifically, the SO 2 gas is preferably sprayed from a distance close to the bottom surface, and the distance is preferably 1 mm to 200 mm, more preferably 5 mm to 50 mm.
(4) adjusting the temperature of the glass substrate when spraying the SO 2 gas to the bottom surface of the glass ribbon. Specifically, the temperature of the glass substrate is preferably 400 to 700 ° C., more preferably 450 to 650 ° C., and still more preferably 500 to 600 ° C.
(5) the processing time of blowing SO 2 gas to the bottom surface of the glass ribbon is adjusted by the speed of the glass ribbon. Specifically, the speed of the glass ribbon is preferably 1 to 30 m / min, more preferably 5 to 20 m / min.
 SO処理は、フロート法による成形工程において、成形炉(フロートバス)から取り出した後に、徐冷炉において室温状態まで徐冷する際に行うことが好ましい。例えば、ガラスリボンが徐冷炉に入る前にSOガスを吹き付けることができる。また、ガラスリボンが徐冷炉に入った後も継続してSOガスを吹き付けてもよい。また、ガラスリボンが徐冷炉に入った後でSOガスの吹き付けを開始してもよい。徐冷後は、ガラスリボンを所定の大きさに切断して、ガラス基板に成形することができる。 The SO 2 treatment is preferably carried out in the molding process by the float method when it is slowly cooled to room temperature in a slow cooling furnace after being taken out from the molding furnace (float bath). For example, SO 2 gas can be sprayed before the glass ribbon enters the annealing furnace. It is also possible by blowing SO 2 gas continuously even after the glass ribbon enters the annealing furnace. Alternatively, the SO 2 gas spray may be started after the glass ribbon has entered the slow cooling furnace. After slow cooling, the glass ribbon can be cut into a predetermined size and formed into a glass substrate.
 本発明のガラス基板の組成としては、例えば、下記に示す範囲(酸化物基準の質量百分率表示)が挙げられる。
SiO:63~75%
Al:3~6%
MgO:3~10%
CaO:0.5~10%
SrO:0~3%
BaO:0~3%
NaO:10~18%
O:0~8%
ZrO:0~3%
Fe:0.005~0.25%
 このようなガラス組成であると、高品質のガラス基板が得られやすく、かつイオン交換による強化(化学強化)をすることができる。以下、このガラス組成について説明する。
As a composition of the glass substrate of this invention, the range (mass percentage display of an oxide basis) shown below is mentioned, for example.
SiO 2 : 63 to 75%
Al 2 O 3 : 3 to 6%
MgO: 3-10%
CaO: 0.5-10%
SrO: 0 to 3%
BaO: 0 to 3%
Na 2 O: 10-18%
K 2 O: 0 to 8%
ZrO 2 : 0 to 3%
Fe 2 O 3 : 0.005 to 0.25%
With such a glass composition, a high-quality glass substrate can be easily obtained, and strengthening (chemical strengthening) by ion exchange can be performed. Hereinafter, this glass composition will be described.
 SiOは、ガラス微細構造の中で網目構造を形成する成分として知られており、ガラスを構成する主要成分である。SiOの含有量は、63%以上であることが好ましく、より好ましくは64%以上、さらに好ましくは65%以上、特に好ましくは67%以上である。また、SiOの含有量は、75%以下であることが好ましく、より好ましくは73%以下、さらに好ましくは71%以下、特に好ましくは70%以下である。SiOの含有量が63%以上であるとガラスとしての安定性や耐候性の点で優位である。また、網目構造を形成することにより膨張の増大を抑制できる。一方、SiOの含有量が75%以下であると溶解性および成形性の点で優位である。 SiO 2 is known as a component that forms a network structure in the glass microstructure, and is a main component constituting the glass. The content of SiO 2 is preferably 63% or more, more preferably 64% or more, still more preferably 65% or more, and particularly preferably 67% or more. Further, the content of SiO 2 is preferably 75% or less, more preferably 73% or less, still more preferably 71% or less, and particularly preferably 70% or less. When the content of SiO 2 is 63% or more, it is advantageous in terms of stability and weather resistance as glass. Moreover, an increase in expansion can be suppressed by forming a network structure. On the other hand, when the content of SiO 2 is 75% or less, it is advantageous in terms of solubility and moldability.
 Alはガラスの耐候性を向上する成分として知られている。また、フロート法による成形時にボトム面からの錫の浸入を抑制する作用がある。さらに、SO処理を行った際に脱アルカリを促進させる作用がある。 Al 2 O 3 is known as a component that improves the weather resistance of glass. Moreover, there exists an effect | action which suppresses the penetration | invasion of the tin from a bottom surface at the time of shaping | molding by a float glass process. Furthermore, there is an effect of promoting dealkalization when the SO 2 treatment is performed.
 Alの含有量は、3%以上であることが好ましく、より好ましくは4%以上、さらに好ましくは4.5%以上である。また、Alの含有量は、6%以下であることが好ましく、より好ましくは5.5%以下、さらに好ましくは5%以下である。 The content of Al 2 O 3 is preferably 3% or more, more preferably 4% or more, and further preferably 4.5% or more. Further, the content of Al 2 O 3 is preferably at most 6%, more preferably 5.5% or less, more preferably not more than 5%.
 Alの含有量が3%以上であると、ガラスの安定性が得られる。一方、Alの含有量が6%以下であると、ガラスの粘性が高い場合でも失透温度が大きくは上昇しないため、一般的なソーダライムガラスの生産ラインでの溶解、成形の点で優位である。 If the Al 2 O 3 content is 3% or more, stability of the glass is obtained. On the other hand, if the content of Al 2 O 3 is 6% or less, the devitrification temperature does not increase greatly even when the viscosity of the glass is high, so melting and forming points in a general soda lime glass production line Is an advantage.
 MgOは、ガラスを安定化させ、溶解性を向上させることのできる成分である。 MgO is a component that can stabilize glass and improve solubility.
 MgOの含有量は、3%以上であることが好ましく、より好ましくは3.5%以上、さらに好ましくは4%以上であり、特に好ましくは4.5%以上である。また、MgOの含有量は、10%以下であることが好ましく、より好ましくは9%以下、さらに好ましくは8%以下であり、より好ましくは6%以下、さらに好ましくは5.5%以下、特に好ましくは5%以下である。 The content of MgO is preferably 3% or more, more preferably 3.5% or more, still more preferably 4% or more, and particularly preferably 4.5% or more. Further, the content of MgO is preferably 10% or less, more preferably 9% or less, further preferably 8% or less, more preferably 6% or less, still more preferably 5.5% or less, particularly Preferably it is 5% or less.
 MgOの含有量が10%以下であると、失透の起こりにくさが維持され、または、化学強化処理する場合に充分なイオン交換速度が得られる。 When the content of MgO is 10% or less, it is difficult to cause devitrification, or a sufficient ion exchange rate can be obtained when chemical strengthening treatment is performed.
 CaOは、ガラスを安定化させる成分であり、MgOの存在による失透を防止し、かつ溶解性を向上する効果を有する。CaOの含有量は、0.5%以上であることが好ましく、より好ましくは1%以上、さらに好ましくは3%以上、さらに好ましくは4%以上、特に好ましくは5%以上、最も好ましくは6%以上である。また、CaOの含有量は、10%以下であることが好ましく、より好ましくは9%以下、さらに好ましくは8%以下である。 CaO is a component that stabilizes the glass, and has the effect of preventing devitrification due to the presence of MgO and improving the solubility. The CaO content is preferably 0.5% or more, more preferably 1% or more, further preferably 3% or more, further preferably 4% or more, particularly preferably 5% or more, and most preferably 6%. That's it. Further, the CaO content is preferably 10% or less, more preferably 9% or less, and still more preferably 8% or less.
 CaOの含有量が0.5%以上であると、高温での溶解性が良好になり、失透が起こり難くなる。一方、CaOの含有量が10%以下であると、ガラスの熱膨張係数が増大するのを抑制することができる。 When the content of CaO is 0.5% or more, the solubility at high temperature becomes good and devitrification hardly occurs. On the other hand, it can suppress that the thermal expansion coefficient of glass increases that content of CaO is 10% or less.
 SrOは、ガラスの粘性および失透温度を下げるために有効な成分である。SrOの含有量は、3%以下であることが好ましく、より好ましくは2%以下、さらに好ましくは1%以下である。 SrO is an effective component for lowering the viscosity and devitrification temperature of glass. The SrO content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
 BaOは、ガラスの粘性および失透温度を下げるために有効な成分である。BaOの含有量は、3%以下であることが好ましく、より好ましくは2%以下、さらに好ましくは1%以下である。 BaO is an effective component for lowering the viscosity and devitrification temperature of glass. The BaO content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
 NaOはガラスの溶解温度と失透温度を下げ、ガラスの溶解性、成形性を向上させる成分である。また、化学強化する場合には、イオン交換により表面圧縮応力層を形成させる成分である。 Na 2 O is a component that lowers the melting temperature and devitrification temperature of glass and improves the solubility and formability of glass. Moreover, when chemically strengthening, it is a component which forms a surface compressive-stress layer by ion exchange.
 NaOの含有量は、10%以上であることが好ましく、より好ましくは11%以上、さらに好ましくは13%以上である。また、NaOの含有量は、18%以下であることが好ましく、より好ましくは17%以下、さらに好ましくは16%以下である。 The content of Na 2 O is preferably 10% or more, more preferably 11% or more, and further preferably 13% or more. Further, the content of Na 2 O is preferably 18% or less, more preferably 17% or less, more preferably 16% or less.
 NaOの含有量が10%以上であると、水分量変化に対する変動が抑えられる。一方、NaOの含有量が18%以下であると、充分な耐候性が得られ、フロート法による成形時にボトム面からの錫の浸入量が抑制できる。 When the content of Na 2 O is 10% or more, fluctuation due to moisture content change is suppressed. On the other hand, when the content of Na 2 O is 18% or less, sufficient weather resistance is obtained, and the amount of tin entering from the bottom surface can be suppressed during molding by the float process.
 KOはガラスの溶解温度を下げる効果があるため、8%以下の範囲で含有してもよい。8%以下であるとガラスの熱膨張係数を抑制しつつ溶解温度を下げることができる。KOを含有する場合は5%以下が好ましく、より好ましくは4%以下、さらに好ましくは2%以下である。 Since K 2 O has an effect of lowering the melting temperature of the glass, it may be contained in a range of 8% or less. When it is 8% or less, the melting temperature can be lowered while suppressing the thermal expansion coefficient of the glass. Preferably 5% or less when they contain K 2 O, more preferably 4% or less, more preferably 2% or less.
 少量のKOは、フロート法による成形時にボトム面からの錫の浸入を抑える効果があるため、フロート法により成形する際には含有することが好ましい。この場合、KOの含有量は0.01%以上が好ましく、より好ましくは0.1%以上である。 Since a small amount of K 2 O has an effect of suppressing intrusion of tin from the bottom surface at the time of molding by the float method, it is preferably contained when molding by the float method. In this case, the content of K 2 O is preferably 0.01% or more, more preferably 0.1% or more.
 ZrOは必須ではないが、高温での粘性を低下させ、または耐酸性を向上させるため、3%までの範囲で含有してもよい。ZrOを含有させる場合は、ZrOの含有量は0.005%以上が好ましく、より好ましくは0.01%以上である。ZrOを過剰に添加すると逆に溶解温度が上昇するが、3%以下とすることにより粘性の増加と失透の発生を抑制できる。好ましくは2%以下、より好ましくは1%以下である。 ZrO 2 is not essential, but may be contained in a range of up to 3% in order to reduce the viscosity at high temperature or improve the acid resistance. If the inclusion of ZrO 2, ZrO 2 content is preferably at least 0.005%, more preferably at least 0.01%. If ZrO 2 is added excessively, the melting temperature is increased conversely, but by setting it to 3% or less, increase in viscosity and generation of devitrification can be suppressed. Preferably it is 2% or less, More preferably, it is 1% or less.
 Feはガラスの溶解時に熱を吸収し溶解性を向上させる成分である。Feの含有量は、0.005%以上であることが好ましく、より好ましくは0.008%以上、さらに好ましくは0.01%以上である。またFeの含有量は、0.25%以下であることが好ましく、より好ましくは0.2%以下、さらに好ましくは0.15%以下である。窯の敷温度上昇を防ぐためには、Feの含有量が0.06%以上であるとよい。一方、Feの含有量が0.25%以下であると、着色を抑えることができる。 Fe 2 O 3 is a component that absorbs heat and improves solubility when glass is melted. The content of Fe 2 O 3 is preferably 0.005% or more, more preferably 0.008% or more, and still more preferably 0.01% or more. The content of Fe 2 O 3 is preferably at most 0.25%, more preferably 0.2% or less, more preferably not more than 0.15%. In order to prevent the kiln floor temperature from rising, the content of Fe 2 O 3 is preferably 0.06% or more. On the other hand, when the content of Fe 2 O 3 is not more than 0.25%, it is possible to suppress the coloring.
 この他、ガラスの溶融の清澄剤として、塩化物またはフッ化物などを適宜含有してもよい。本実施形態のガラスは本質的に以上で説明した成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は5%以下であることが好ましく、より好ましくは3%以下、典型的には1%以下である。以下、上記その他成分について例示的に説明する。 In addition, chloride or fluoride may be appropriately contained as a glass refining agent. The glass of this embodiment consists essentially of the components described above, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably 5% or less, more preferably 3% or less, and typically 1% or less. Hereinafter, the other components will be described as an example.
 TiOは必須ではないが、天然原料中に多く存在し、黄色の着色源となることが知られている。TiOを含有する場合は、0.2%以下であることが好ましい。 TiO 2 is not essential, but is abundant in natural raw materials and is known to be a yellow coloring source. When containing TiO 2 is preferably 0.2% or less.
 SOは必須ではないが、ガラスの溶融の清澄剤として知られている。SOを含有する場合は、0.3%以下であることが好ましい。 SO 3 is not essential, but is known as a glass fining refiner. When containing SO 3 is preferably 0.3% or less.
 ZnOはガラスの高温での溶融性を向上するために、たとえば2%まで含有してもよい。しかし、フロート法で製造する場合には、フロートバスで還元され製品欠点となるので実質的に含有しないことが好ましい。 ZnO may be contained up to 2%, for example, in order to improve the melting property of the glass at a high temperature. However, when it is produced by the float process, it is preferably contained substantially because it is reduced by a float bath and becomes a product defect.
 Bは高温での溶融性またはガラス強度の向上のために、4%以下の範囲で含有してもよい。好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1%以下である。一般的には、NaOまたはKOのアルカリ成分とBを同時に含有すると揮散が激しくなり、煉瓦を著しく浸食するので、Bは実質的に含有しないことが好ましい。 B 2 O 3 may be contained in a range of 4% or less in order to improve the melting property at high temperature or the glass strength. Preferably it is 3% or less, More preferably, it is 2% or less, More preferably, it is 1% or less. In general, when an alkali component of Na 2 O or K 2 O and B 2 O 3 are contained at the same time, volatilization becomes intense and the brick is remarkably eroded. Therefore, it is preferable that B 2 O 3 is not substantially contained.
 LiOは歪点を低くして応力緩和を起こりやすくし、その結果安定した表面圧縮応力層を得られなくする成分であるので含有しないことが好ましく、含有する場合であってもその含有量は1%未満であることが好ましく、より好ましくは0.05%以下、特に好ましくは0.01%未満である。 Li 2 O is a component that lowers the strain point to facilitate stress relaxation, and as a result makes it impossible to obtain a stable surface compressive stress layer, so it is preferably not contained, and even if it is contained, its content Is preferably less than 1%, more preferably 0.05% or less, and particularly preferably less than 0.01%.
 本発明のガラス基板は、フロート法で成形可能な寸法を有し、最終的には使用目的に適した大きさに切断される。本発明のガラス基板は、一般的には矩形に切断されるが、円形または多角形などの他の形状でも問題なく、穴あけ加工を施したガラスも含む。 The glass substrate of the present invention has dimensions that can be formed by the float process, and is finally cut into a size suitable for the intended use. The glass substrate of the present invention is generally cut into a rectangle, but other shapes such as a circle or a polygon can be used without any problem, and includes a glass subjected to drilling.
 本発明のガラス基材に成膜される膜としては、例えば、SiO膜、ITO膜、ZnO膜、AlドープZnO膜、GaドープZnO膜、BドープZnO膜、InドープZnO膜、FドープZnO膜、TiドープNbxO、IZO膜(Zn添加In膜)、SrTiO膜、SnO膜、FドープSnO膜、SbドープSnO膜、TiO膜およびZrO膜が挙げられる。膜の材料は特に限定されるものではなく、要求される機能および生産性等を考慮して選択できる。特にSiO膜などの絶縁性を有する膜上に、ITO膜などの導電性を有する膜が形成される場合に、本発明はより効果を発揮する。 Examples of the film formed on the glass substrate of the present invention include, for example, SiO 2 film, ITO film, ZnO film, Al-doped ZnO film, Ga-doped ZnO film, B-doped ZnO film, In-doped ZnO film, and F-doped ZnO. Examples thereof include a film, Ti-doped NbxO 2 , IZO film (Zn-added In film), SrTiO 3 film, SnO 2 film, F-doped SnO 2 film, Sb-doped SnO 2 film, TiO 2 film, and ZrO 2 film. The material of the film is not particularly limited, and can be selected in consideration of required functions and productivity. In particular, the present invention is more effective when a conductive film such as an ITO film is formed on an insulating film such as a SiO 2 film.
 膜の材料としては、例えば、窒化ケイ素、インジウム酸化物、スズ酸化物、ニオブ酸化物、チタン酸化物、ジルコニウム酸化物、セリウム酸化物、タンタル酸化物、アルミニウム酸化物、亜鉛酸化物等の金属酸化物、酸化ケイ素(SiO)、SiとSnとの混合酸化物を含む材料、SiとZrとの混合酸化物を含む材料、SiとAlとの混合酸化物を含む材料から選択された1種以上を好ましく利用できる。 Examples of the film material include metal oxides such as silicon nitride, indium oxide, tin oxide, niobium oxide, titanium oxide, zirconium oxide, cerium oxide, tantalum oxide, aluminum oxide, and zinc oxide. Selected from the following: materials, silicon oxide (SiO 2 ), materials containing mixed oxides of Si and Sn, materials containing mixed oxides of Si and Zr, materials containing mixed oxides of Si and Al The above can be preferably utilized.
 本発明のガラス基板に成膜される膜の厚みは、特に限定されるものではないが、膜がSiO膜などの絶縁性を有する膜である場合は、5nm以上であることが好ましく、より好ましくは8nm以上である。また、50nm以下であることが好ましく、より好ましくは40nm以下、特に好ましくは25nm以下である。一方、膜がITO膜などの導電性を有する膜である場合は、50nm以上であることが好ましく、より好ましくは100nm以上、さらに好ましくは300nmである。また、600nm以下であることが好ましく、より好ましくは500nm以下である。300nm以上とすることにより抵抗値を充分小さく抑えられ、500nm以下とすることにより透過率の低下を充分小さく抑えられる。 The thickness of the film formed on the glass substrate of the present invention is not particularly limited, but is preferably 5 nm or more when the film is an insulating film such as a SiO 2 film. Preferably it is 8 nm or more. Moreover, it is preferable that it is 50 nm or less, More preferably, it is 40 nm or less, Most preferably, it is 25 nm or less. On the other hand, when the film is a conductive film such as an ITO film, the thickness is preferably 50 nm or more, more preferably 100 nm or more, and further preferably 300 nm. Moreover, it is preferable that it is 600 nm or less, More preferably, it is 500 nm or less. By setting the thickness to 300 nm or more, the resistance value can be suppressed to be sufficiently small, and by setting the thickness to 500 nm or less, the decrease in transmittance can be sufficiently suppressed.
 本発明のガラス基材は、上記Xが上記所定の範囲となっていることから、スパッタリング法による膜の成膜後にNaCOが析出するのを抑制できる。スパッタリング法としては、例えば、高周波マグネトロンスパッタ法、直流マグネトロンスパッタ法、パルススパッタ法、ACスパッタ法およびデジタルスパッタリング法等が挙げられる。特に、SiO膜などの絶縁性を有する膜が高周波マグネトロンスパッタ法で形成され、その上に、ITO膜などの導電性を有する膜が直流マグネトロンスパッタ法で形成される場合に、本発明はより効果を発揮する。 In the glass substrate of the present invention, since X is in the predetermined range, it is possible to suppress the precipitation of NaCO 3 after the film is formed by the sputtering method. Examples of the sputtering method include a high frequency magnetron sputtering method, a direct current magnetron sputtering method, a pulse sputtering method, an AC sputtering method, and a digital sputtering method. In particular, when an insulating film such as a SiO 2 film is formed by a high frequency magnetron sputtering method, and a conductive film such as an ITO film is formed thereon by a direct current magnetron sputtering method, the present invention is more effective. Demonstrate the effect.
 本発明のガラス基板の厚みは、特に限定されるものではないが、0.1mm以上であることが好ましく、より好ましくは0.3mm以上である。また、4mm以下であることが好ましく、より好ましくは2mm以下、さらに好ましくは1.3mm以下である。 The thickness of the glass substrate of the present invention is not particularly limited, but is preferably 0.1 mm or more, more preferably 0.3 mm or more. Moreover, it is preferable that it is 4 mm or less, More preferably, it is 2 mm or less, More preferably, it is 1.3 mm or less.
 本発明のガラス基板の用途としては、特に限定されないが、例えば、プラズマディスプレイ、液晶ディスプレイおよび有機ELディスプレイ等のフラットパネルディスプレイ(FPD)、タッチパネル、並びに太陽電池が挙げられる。 The use of the glass substrate of the present invention is not particularly limited, and examples thereof include flat panel displays (FPD) such as plasma displays, liquid crystal displays and organic EL displays, touch panels, and solar cells.
 両面にITOを形成する場合、例えば、DITOタッチセンサーを搭載したタッチパネルでは、成膜裏面における白濁を洗浄で除去できないため、本発明のガラス基板が特に効果を発揮する。 When forming ITO on both surfaces, for example, in a touch panel equipped with a DITO touch sensor, the white turbidity on the back surface of the film cannot be removed by washing, so the glass substrate of the present invention is particularly effective.
 以下、本発明を実施例および比較例によりさらに詳しく説明するが、本発明は下記例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following examples.
 表1に酸化物基準の質量百分率表示で示す組成の原料粉末を所定温度で熔融し、フロート法により厚さ0.7mm(実施例1、実施例3、比較例1および比較例2)または1.1mm(実施例2)の板状に成形した後、連続式徐冷炉によって冷却した。徐冷炉内において、ガラス表面の傷防止のためにガラス転移点+100℃~ガラス転移点-100℃でガラスリボンのボトム面にSOガスを噴霧して脱アルカリした。 The raw material powder having the composition shown in Table 1 by mass percentage display based on oxide is melted at a predetermined temperature, and the thickness is 0.7 mm (Example 1, Example 3, Comparative Example 1 and Comparative Example 2) or 1 by the float process. After forming into a plate shape of 1 mm (Example 2), it was cooled in a continuous slow cooling furnace. In a slow cooling furnace, in order to prevent scratches on the glass surface, SO 2 gas was sprayed on the bottom surface of the glass ribbon at a glass transition point of + 100 ° C. to a glass transition point of −100 ° C. for dealkalization.
 得られたガラス基板の表面から深さ10μmにおけるナトリウム濃度、ガラス基板のトップ面またはボトム面の表面から深さ50nmまでのナトリウム濃度の積分量を線光電子分光装置(アルバック・ファイ社製、ESCA5500)を用いて測定した。 The integrated amount of the sodium concentration at a depth of 10 μm from the surface of the obtained glass substrate and the sodium concentration from the surface of the top surface or the bottom surface of the glass substrate to a depth of 50 nm was measured with a linear photoelectron spectrometer (ESCA5500, manufactured by ULVAC-PHI). It measured using.
 ガラス基板のトップ面の表面から10μmまでのナトリウム濃度は、8000nmまで酸化セリウムの水スラリーでガラス基板を研削した後、C60イオンビームにより10μmまでスパッタエッチングして、X線光電子分光装置によりNa原子量(%)を測定した。 The sodium concentration from the surface of the top surface of the glass substrate to 10 μm is that the glass substrate is ground to 8000 nm with an aqueous slurry of cerium oxide, then sputter etched to 10 μm with a C 60 ion beam, and the Na atomic weight is measured by an X-ray photoelectron spectrometer (%) Was measured.
 また、ガラス基板のトップ面またはボトム面の表面から深さ50nmまでのナトリウム濃度の積分量は、C60イオンビームによりガラス基板をスパッタエッチングして、X線光電子分光装置により1.5nmないしは3nmごとにNa原子量(%)測定し、積分量を算出した。 In addition, the integral amount of sodium concentration from the top surface or the bottom surface of the glass substrate to a depth of 50 nm is obtained by sputter etching the glass substrate with a C 60 ion beam and every 1.5 nm or 3 nm by an X-ray photoelectron spectrometer. The amount of Na atom (%) was measured and the integral amount was calculated.
 下記式により、得られた測定値からXおよびYを算出した。結果を表2に示す。
X=[(バルクにおけるナトリウム濃度の50nm分の積分値)-(トップ面の表面から深さ50nmまでのナトリウム濃度の積分値)]/(バルクにおけるナトリウム濃度の50nm分の積分値)Y=[(バルクにおけるナトリウム濃度の50nm分の積分値)-(ボトム面の表面から深さ50nmまでのナトリウム濃度の積分値)]/(バルクにおけるナトリウム濃度の50nm分の積分値)
X and Y were calculated from the obtained measured values according to the following formula. The results are shown in Table 2.
X = [(integrated value of 50 nm of sodium concentration in bulk) − (integrated value of sodium concentration from top surface to depth of 50 nm)] / (integrated value of 50 nm of sodium concentration in bulk) Y = [ (Integral value of 50 nm of sodium concentration in bulk)-(Integrated value of sodium concentration from bottom surface to depth of 50 nm)] / (Integrated value of 50 nm of sodium concentration in bulk)
 ガラス基板をスパッタ装置にセットし、ガラス基板のボトム面に高周波マグネトロンスパッタ法により、300℃にてSiO層を30nm形成し、続けてITO(InとSnOとの総量に対してSnO2 10質量%含有)ターゲットを用い、直流マグネトロンスパッタ法により、350℃にて厚さ450nmのITO層を形成して、ITO層付きガラス基板(単に基板とも称す)を得た。 A glass substrate is set in a sputtering apparatus, and a SiO 2 layer is formed to a thickness of 30 nm at 300 ° C. on the bottom surface of the glass substrate by a high-frequency magnetron sputtering method. Subsequently, with respect to the total amount of ITO (In 2 O 3 and SnO 2 An ITO layer having a thickness of 450 nm was formed at 350 ° C. by a direct current magnetron sputtering method using a SnO 2 ( containing 10% by mass) target to obtain a glass substrate with an ITO layer (also simply referred to as a substrate).
 ガラス基板にITO膜を成膜後、大気中で24時間放置し、成膜裏面(トップ面)における白濁の有無を観察した。成膜裏面における白濁の有無は、暗室にて蛍光灯下において目視で白濁が確認できた場合は白濁有り、白濁が確認できない場合は白濁無し、と評価した。結果を表2に示す。 After forming the ITO film on the glass substrate, it was left in the air for 24 hours, and the presence or absence of white turbidity on the back surface (top surface) was observed. The presence or absence of white turbidity on the back of the film was evaluated as white turbidity when white turbidity was confirmed visually under a fluorescent lamp in a dark room, and no white turbidity when white turbidity could not be confirmed. The results are shown in Table 2.
 次に得られたガラス基板の表層におけるナトリウムの濃度分布を求めた結果を図1(a)~(c)に示す。図1(a)に実施例1、図1(b)は実施例1のガラスを鏡面研磨したサンプル、図1(c)は比較例1の結果を示す。 Next, the results of determining the sodium concentration distribution in the surface layer of the obtained glass substrate are shown in FIGS. 1 (a) to 1 (c). FIG. 1A shows Example 1 and FIG. 1B shows a sample obtained by mirror polishing the glass of Example 1, and FIG. 1C shows the result of Comparative Example 1. FIG.
 また、実施例1および実施例3のガラス基板について、耐候性を温度60℃、相対湿度95%の恒温恒湿槽で14日間保持し、洗浄前の基板のC光源ヘーズ率をヘーズメータ(スガ試験機製HZ-2)により評価した。 Moreover, about the glass substrate of Example 1 and Example 3, a weather resistance is hold | maintained for 14 days in the constant temperature and humidity chamber of temperature 60 degreeC and relative humidity 95%, and the C light source haze rate of the board | substrate before washing | cleaning is a haze meter (Suga test). Evaluation was performed according to HZ-2).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、前記Xが0.38以上である比較例1は、スパッタリング法による成膜により成膜裏面に白濁が生じたが、該Xが0.38未満である実施例1~3は成膜裏面に白濁が生じなかった。一方、Xが0.15である比較例2は大気雰囲気でヤケによる白濁が発生した。この結果から、Xを0.15よりも大きく0.38未満とすることにより、スパッタリング法による膜の成膜時に成膜裏面にNaCOが析出して白濁するのを抑制できることがわかった。 As shown in Table 2, in Comparative Example 1 in which X is 0.38 or more, white turbidity was formed on the back surface of the film by film formation by sputtering, but Examples 1 to 3 in which X was less than 0.38. No cloudiness 3 occurred on the film forming back surface. On the other hand, in Comparative Example 2 where X is 0.15, white turbidity due to burns occurred in the air atmosphere. From this result, it was found that by setting X to be greater than 0.15 and less than 0.38, it is possible to suppress the precipitation of NaCO 3 on the back surface of the film during the film formation by the sputtering method and the cloudiness.
 また、耐候性を評価した結果、実施例1のガラスは、試験前のヘーズ率は0.1%であり、14日後のヘーズ率は24%であった。また、実施例3のガラスは試験前のヘーズ率は0.1%であり、14日後のヘーズ率は3.9%であった。この結果から、ガラス基板におけるAlの含有量を3~6質量%とすることにより、耐候性が向上することがわかった。 Moreover, as a result of evaluating weather resistance, the glass of Example 1 had a haze ratio of 0.1% before the test and a haze ratio of 14% after 14 days. The glass of Example 3 had a haze ratio of 0.1% before the test, and a haze ratio of 14 days later was 3.9%. From this result, it was found that the weather resistance was improved by setting the content of Al 2 O 3 in the glass substrate to 3 to 6 mass%.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2015年7月14日付けで出願された日本特許出願(特願2015-140555)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。 Although the present invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The present application is based on a Japanese patent application (Japanese Patent Application No. 2015-140555) filed on July 14, 2015, and is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (6)

  1.  フロート法による成形時に熔融金属と接する面であるボトム面と、該ボトム面の反対側の面であるトップ面とを有し、下記式により求められるXが0.15超0.38未満であるガラス基板。下記式においてナトリウム濃度は、X線光電子分光装置により測定される。
    X=[(バルクにおけるナトリウム濃度の50nm分の積分値)-(トップ面の表面から深さ50nmまでのナトリウム濃度の積分値)]/(バルクにおけるナトリウム濃度の50nm分の積分値)
    It has a bottom surface that is a surface in contact with the molten metal at the time of forming by the float method and a top surface that is the surface opposite to the bottom surface, and X obtained by the following formula is more than 0.15 and less than 0.38 Glass substrate. In the following formula, the sodium concentration is measured by an X-ray photoelectron spectrometer.
    X = [(integrated value for 50 nm of sodium concentration in bulk) − (integrated value of sodium concentration from top surface to depth of 50 nm)] / (integrated value for 50 nm of sodium concentration in bulk)
  2.  酸化物基準の質量百分率表示で、Alを3~6%含有する請求項1に記載のガラス基板。 The glass substrate according to claim 1, comprising 3 to 6% of Al 2 O 3 in terms of mass percentage based on oxide.
  3.  ITO膜成膜用のガラス基板である請求項1または2に記載のガラス基板。 The glass substrate according to claim 1, which is a glass substrate for forming an ITO film.
  4.  スパッタリング法により成膜された膜を含む請求項1~3のいずれか1項に記載のガラス基板。 The glass substrate according to any one of claims 1 to 3, comprising a film formed by a sputtering method.
  5.  前記膜がITO膜である請求項4に記載のガラス基板。 The glass substrate according to claim 4, wherein the film is an ITO film.
  6.  請求項1~5のいずれか1項に記載のガラス基板を含むタッチパネル。 A touch panel including the glass substrate according to any one of claims 1 to 5.
PCT/JP2016/069915 2015-07-14 2016-07-05 Glass substrate WO2017010356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680041198.5A CN107835793B (en) 2015-07-14 2016-07-05 Glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-140555 2015-07-14
JP2015140555 2015-07-14

Publications (1)

Publication Number Publication Date
WO2017010356A1 true WO2017010356A1 (en) 2017-01-19

Family

ID=57757351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069915 WO2017010356A1 (en) 2015-07-14 2016-07-05 Glass substrate

Country Status (2)

Country Link
CN (1) CN107835793B (en)
WO (1) WO2017010356A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2585401A (en) * 2019-01-08 2021-01-13 Schott Ag Element composed of glass displaying reduced electrostatic charging
CN112745017A (en) * 2019-10-29 2021-05-04 Agc株式会社 Method for producing cover glass, and cover glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
JP2012236737A (en) * 2011-05-11 2012-12-06 Asahi Glass Co Ltd Glass manufacturing method, and glass
WO2013011860A1 (en) * 2011-07-19 2013-01-24 日本電気硝子株式会社 Glass base
JP2013086989A (en) * 2011-10-14 2013-05-13 Nippon Electric Glass Co Ltd Glass plate, method for producing the same, and tempered glass plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245614B (en) * 2012-03-27 2017-02-22 日本板硝子株式会社 Glass sheet on which is formed coating suitable for preventing burning, and method for producing same
JP6044772B2 (en) * 2013-01-18 2016-12-14 日本電気硝子株式会社 Glass substrate with protective film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068225A1 (en) * 2009-12-04 2011-06-09 旭硝子株式会社 Glass plate and process for production thereof
JP2012236737A (en) * 2011-05-11 2012-12-06 Asahi Glass Co Ltd Glass manufacturing method, and glass
WO2013011860A1 (en) * 2011-07-19 2013-01-24 日本電気硝子株式会社 Glass base
JP2013086989A (en) * 2011-10-14 2013-05-13 Nippon Electric Glass Co Ltd Glass plate, method for producing the same, and tempered glass plate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2585401A (en) * 2019-01-08 2021-01-13 Schott Ag Element composed of glass displaying reduced electrostatic charging
GB2585401B (en) * 2019-01-08 2023-03-01 Schott Ag Element composed of glass displaying reduced electrostatic charging
US11932573B2 (en) 2019-01-08 2024-03-19 Schott Ag Element composed of glass displaying reduced electrostatic charging
CN112745017A (en) * 2019-10-29 2021-05-04 Agc株式会社 Method for producing cover glass, and cover glass
CN112745017B (en) * 2019-10-29 2023-08-15 Agc株式会社 Method for producing protective glass and protective glass

Also Published As

Publication number Publication date
CN107835793A (en) 2018-03-23
CN107835793B (en) 2020-08-11

Similar Documents

Publication Publication Date Title
US9090501B2 (en) Method for reducing warpage of glass substrate caused by chemical strengthening process, and method for producing chemically strengthened glass substrate
US9890073B2 (en) Glass for chemical strengthening, chemically strengthened glass, and method for producing chemically strengthened glass
JP7431872B2 (en) Thin glass with improved bendability and chemical strengthening
US20160355430A1 (en) Glass for chemical strengthening, chemically-strengthened glass, and method for producing chemically-strengthened glass
TWI538891B (en) High refractivity glass
JP6191786B2 (en) Glass for chemical strengthening, method for producing glass for chemically strengthened, chemically strengthened glass, and image display device including the same
US20160046519A1 (en) Glass plate and process for manufacturing glass plate
WO2014200097A1 (en) Method for reducing warpage of glass substrate by chemical strengthening treatment, and chemically strengthened glass and method for producing same
JP2018514494A (en) Glass plate that can have controlled warpage due to chemical strengthening
JP5964370B2 (en) Glass having excellent resistance to surface damage and method for producing the same
TW201638038A (en) Glass, chemically strengthened glass, and method for producing chemically strengthened glass
CN105073666A (en) Substrate for devices with organic light-emitting diodes
JPWO2013118897A1 (en) Glass substrate for forming transparent conductive film, and substrate with transparent conductive film
WO2016163199A1 (en) Glass sheet and method for manufacturing same
WO2017010356A1 (en) Glass substrate
JP2018518443A (en) Glass plate that can have controlled warpage due to chemical strengthening
JP6953944B2 (en) Borosilicate glass and its manufacturing method
WO2015194569A1 (en) Glass plate and method for manufacturing same
JP2014224011A (en) Glass plate, and manufacturing method of glass plate
KR20060012265A (en) Glass Plate for Display Board
JP2018505117A (en) Chemically temperable glass plate
JP2008044834A (en) Glass substrate for flat panel display, method of manufacturing the same and display panel using the same
JP2011157234A (en) Alkali-free glass substrate and manufacturing method therefor and manufacturing apparatus
US11358897B2 (en) Black b-spodumene glass ceramics with an optimized color package
CN104487390B (en) The manufacturing method and glass plate of glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16824336

Country of ref document: EP

Kind code of ref document: A1