[go: up one dir, main page]

WO2017004887A1 - 一种时差式超声波流量测量方法及装置 - Google Patents

一种时差式超声波流量测量方法及装置 Download PDF

Info

Publication number
WO2017004887A1
WO2017004887A1 PCT/CN2015/089218 CN2015089218W WO2017004887A1 WO 2017004887 A1 WO2017004887 A1 WO 2017004887A1 CN 2015089218 W CN2015089218 W CN 2015089218W WO 2017004887 A1 WO2017004887 A1 WO 2017004887A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
time difference
ultrasonic
flow rate
ultrasonic sensor
Prior art date
Application number
PCT/CN2015/089218
Other languages
English (en)
French (fr)
Inventor
郭楚文
王信用
王凤超
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to ZA2016/04937A priority Critical patent/ZA201604937B/en
Publication of WO2017004887A1 publication Critical patent/WO2017004887A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Definitions

  • the invention relates to a flow measuring method and device, in particular to a time difference ultrasonic flow measuring method and device.
  • the time difference method ultrasonic flowmeter determines the flow velocity of the measured fluid by measuring the difference of the propagation time of the ultrasonic wave with the countercurrent and the downstream flow.
  • the information of the fluid flow velocity is loaded, and the time difference of the ultrasonic wave received can be The flow rate of the fluid is detected and converted to flow.
  • the time difference method ultrasonic flowmeter assumes that the fluid flow velocity of the ultrasonic beam in the propagation path is uniform, and in fact the velocity distribution of the fluid is related to the flow state, and the velocity distribution on the cross section of the circular tube in the laminar flow is a paraboloid of rotation.
  • the turbulent flow the velocity distribution on the cross section of the circular tube is a boss type, which inevitably causes a large measurement error.
  • the object of the present invention is to provide a time difference type ultrasonic flow measuring method and device with simple device, convenient implementation and high measuring precision, and solve the problem that the current time difference ultrasonic flow meter does not consider the error caused by non-uniform velocity distribution.
  • the object of the invention is achieved in that the flow measurement method is as follows:
  • the propagation time difference of the ultrasonic beam along the forward and reverse flow is:
  • R is the radius of the pipe to be tested;
  • u m is the maximum flow velocity of the pipe axis;
  • is the angle between the ultrasonic beam and the direction of fluid flow;
  • c is the propagation velocity of the ultrasonic wave in the fluid to be measured;
  • the flow rate during laminar flow is:
  • the coefficient K is taken as 1, 2, 4 respectively;
  • the ultrasonic propagation time difference is calculated according to the average velocity, and the measured flow rate is:
  • n is the empirical index of the turbulent velocity distribution, which generally increases with the increase of the Reynolds number
  • the flow measuring device comprises: a measuring pipe segment, a main single chip microcomputer, a transmitting circuit, a downstream ultrasonic sensor, an upstream ultrasonic sensor, a first receiving processing circuit, a second receiving processing circuit, a time difference measuring, a clock, a memory, a keyboard and an LCD display; and a downstream ultrasonic sensor
  • the upstream ultrasonic sensors are respectively connected to the measured pipe section, and the output end of the downstream ultrasonic sensor is connected to the input end of the time difference measurement through the first receiving processing circuit, and the output end of the upstream ultrasonic sensor passes through the input end of the second receiving processing circuit and the time difference measuring.
  • the output of the time difference measurement is bidirectionally connected with the main MCU; the clock, the memory, the keyboard and the LCD display are all connected with the main MCU, the output end of the main MCU is connected with the input end of the transmitting circuit, and the output end of the transmitting circuit is respectively connected with the downstream ultrasonic wave.
  • the sensor is connected to the output of the upstream ultrasonic sensor.
  • the transmitting circuit After the main MCU issues the measurement command, the transmitting circuit generates a certain waveform, first clears the counter, then synchronously starts the transmitting circuit to trigger the ultrasonic transducer to transmit the ultrasonic pulse, and uses the downstream ultrasonic sensor, the upstream ultrasonic sensor, the first receiving processing circuit, and the first
  • the second receiving processing circuit and the time difference measurement can obtain the downstream propagation time and the reverse current propagation time of the ultrasonic wave; the main single chip microcomputer uses the digital filtering count to filter the time signals, and calculates the corresponding flow rate and flow rate according to the actual situation, and saves to the memory. Medium and sent to the LCD display for display.
  • the main microcontroller uses an integration algorithm to calculate the flow rate and flow rate.
  • the flow rate obtained by the method according to the present invention is much more accurate when assuming that the flow velocity on the ultrasonic propagation path is uniform will result in a large measurement error.
  • the correction coefficient for different flow states is obtained by theoretical derivation calculation. And design a set of devices to achieve time difference method ultrasonic flow measurement. The problem that the current time difference type ultrasonic flowmeter does not consider the unevenness of the speed distribution is solved.
  • the method is reliable in theory, simple in device, reliable in method, convenient in implementation, high in measurement accuracy, and can improve the measurement result by 5% to 33% compared with the existing time difference ultrasonic flow measurement result, suitable for all measurement based on propagation time difference Ultrasonic flow meter for flow.
  • Fig. 1 is a view showing the arrangement of an ultrasonic sensor according to the Z-shape of the present invention.
  • FIG. 2 is a view showing a structure of an ultrasonic sensor according to the present invention in a V-shaped arrangement.
  • Fig. 3 is a view showing the arrangement of the ultrasonic sensor according to the W type of the present invention.
  • Embodiment 1 The flow measurement method is as follows:
  • the propagation time difference of the ultrasonic beam along the forward and reverse flow is:
  • R is the radius of the pipe to be tested;
  • u m is the maximum flow velocity of the pipe axis;
  • is the angle between the ultrasonic beam and the direction of fluid flow;
  • c is the propagation velocity of the ultrasonic wave in the fluid to be measured;
  • the flow rate during laminar flow is:
  • the coefficient K is taken as 1, 2, 4 respectively;
  • the ultrasonic propagation time difference is calculated according to the average speed, and the measured flow rate is:
  • the laminar flow rate measured by the existing time difference type ultrasonic flowmeter is 1.33 times the flow rate measured by the method of the present invention, and the error is obvious.
  • n is the empirical index of the turbulent velocity distribution, which generally increases with the increase of the Reynolds number
  • the empirical index n of the turbulent velocity distribution is generally 4 to 10, and the turbulent flow rate measured by the existing time difference type ultrasonic flowmeter is 1.16 to 1.05 times the flow rate measured by the method of the present invention, and the error is obvious.
  • the flow measuring device comprises: a measured pipe segment 1, a main single chip 2, a transmitting circuit 3, a downstream ultrasonic sensor 4, an upstream ultrasonic sensor 5, a first receiving processing circuit 6, a second receiving processing circuit 7, a time difference measuring 8, a clock 9, a memory 10.
  • the keyboard 11 and the LCD display 12; the downstream ultrasonic sensor 4 and the upstream ultrasonic sensor 5 are respectively connected to the measured pipe section 1, and the output end of the downstream ultrasonic sensor 4 is connected to the input end of the time difference measurement 8 through the first receiving processing circuit 6.
  • the output end of the upstream ultrasonic sensor 5 is connected to the input end of the time difference measurement 8 through the second receiving processing circuit 7; the output end of the time difference measuring 8 is bidirectionally connected to the main MCU 2; the clock 9, the memory 10, the keyboard 11 and the LCD display 12 are both Connected to the main microcontroller 2, the output of the main microcontroller 2 is connected to the input of the transmitting circuit 3, and the output of the transmitting circuit 3 is connected to the output of the downstream ultrasonic sensor 4 and the upstream ultrasonic sensor 5, respectively.
  • the transmitting circuit 3 After the main MCU 2 issues a measurement command, the transmitting circuit 3 generates a certain waveform, first clears the counter, and then synchronously activates the transmitting circuit 3 to trigger the ultrasonic transducer to transmit an ultrasonic pulse, and uses the downstream ultrasonic sensor 4, the upstream ultrasonic sensor 5, and the first
  • the receiving processing circuit 6, the second receiving processing circuit 7 and the time difference measuring 8 can obtain the downstream propagation time and the reverse current propagation time of the ultrasonic wave; the main single chip microcomputer 2 filters the time signals by digital filtering, and calculates according to the actual situation.
  • the corresponding flow rate and flow rate are saved to memory 10 and sent to LCD display 12 for display.
  • the main microcontroller 2 uses an integration algorithm to calculate the flow rate and flow rate.
  • a Z-shaped arrangement will be described as an example.
  • the ultrasonic sensor is arranged in a Z-shape such that the downstream ultrasonic sensor 4 is located on the lower side, and the upstream ultrasonic sensor 5 is located on the upper side of the front end of the downstream ultrasonic sensor 4.
  • the flow measuring device includes: a measured pipe segment 1, a main single chip 2, a transmitting circuit 3, a downstream ultrasonic sensor 4, an upstream ultrasonic sensor 5, a first receiving processing circuit 6, a second receiving processing circuit 7, and a time difference measurement.
  • the clock 9, the memory 10, the keyboard 11 and the LCD display 12; the downstream ultrasonic sensor 4 and the upstream ultrasonic sensor 5 are respectively connected to the measured pipe section 1, and the output end of the downstream ultrasonic sensor 4 passes the first receiving processing circuit 6 and the time difference measurement.
  • the input end of the upstream ultrasonic sensor 5 is connected to the input end of the time difference measurement 8 through the second receiving processing circuit 7; the output end of the time difference measuring 8 is bidirectionally connected with the main single chip 2; the clock 9, the memory 10, the keyboard 11 and the LCD display 12 are both connected to the main single chip 2, the output end of the main single chip 2 is connected to the input end of the transmitting circuit 3, and the output end of the transmitting circuit 3 is connected to the output ends of the downstream ultrasonic sensor 4 and the upstream ultrasonic sensor 5, respectively.
  • the transmitting circuit 3 After the main MCU 2 issues a measurement command, the transmitting circuit 3 generates a certain waveform, first clears the counter, then synchronously starts the transmitting circuit 3 to trigger the ultrasonic transducer to transmit an ultrasonic pulse, and uses the downstream ultrasonic sensor 4, the upstream ultrasonic sensor 5, and the receiving process.
  • the circuit I 6, the reception processing circuit II 7 and the time difference measurement 8 can obtain the downstream propagation time and the counter current propagation time of the ultrasonic wave.
  • the main MCU 2 filters the time signals by digital filtering, and calculates the corresponding flow rate and flow rate according to the actual situation, saves them in the memory 10, and sends them to the LCD display 12 for display.
  • the main microcontroller 2 uses an integration algorithm to calculate the flow rate and flow rate.
  • the ultrasonic wave propagates in a forward or countercurrent flow, its propagation speed is equal to the hydrostatic sound velocity plus or minus the fluid flow velocity. Therefore, when an ultrasonic wave is emitted from a sensor, it will traverse a flow layer of different flow rates, that is, the speed of the ultrasonic wave during propagation varies. In order to accurately measure the downstream propagation time of the ultrasonic wave and the countercurrent propagation time difference, an integral method must be used. The propagation time difference of the ultrasonic beam along the forward and reverse flows is obtained by the following integration:
  • R is the radius of the pipe to be tested;
  • u is the flow velocity distribution inside the pipe;
  • is the angle between the ultrasonic beam and the direction of fluid flow;
  • c is the propagation velocity of the ultrasonic wave in the fluid to be measured.
  • the velocity profile across the cross section of the tube is:
  • u m is the maximum flow rate of the pipe axis.
  • the flow rate of the Z-type installation mode during laminar flow is:
  • the ultrasonic propagation time difference is calculated according to the average speed, and the measured flow rate is:
  • the laminar flow rate measured by the existing time difference type ultrasonic flowmeter is 1.16 to 0.39 times the flow rate measured by the method of the present invention, and the error is obvious.
  • n is the empirical index of the turbulent velocity distribution, which generally increases with the increase of the Reynolds number.
  • the empirical index n of the turbulent velocity distribution is generally 4 to 10, and the turbulent flow rate measured by the existing time difference type ultrasonic flowmeter is 1.16 to 1.05 times the flow rate measured by the method of the present invention, and the error is obvious.
  • Embodiment 2 In Fig. 2, the ultrasonic sensor is arranged in a V-shape, the downstream ultrasonic sensor 4 is on the same side as the upstream ultrasonic sensor 5, and the downstream ultrasonic sensor 4 is located on the lower side of the upstream ultrasonic sensor 5; the other is the same as in the first embodiment.
  • FIG. 3 is a structural diagram of a W-shaped arrangement of an ultrasonic sensor according to the present invention.
  • the downstream ultrasonic sensor 4 is on the same side as the upstream ultrasonic sensor 5, and the downstream ultrasonic sensor 4 is located on the lower two V-shaped distances of the upstream ultrasonic sensor 5; the other is the same as in the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种时差式超声波流量测量方法,包括:获得超声波束沿顺流和逆流的传播时间差;当被测流动为层流时,将层流速度分布代入公式,积分得到时间差,并得到层流时的流量;不考虑速度分布的非均匀性,按照平均速度计算超声波传播时间差,得到所测量的流量;当被测流动为紊流时,将紊流速度分布代入公式,积分得到时间差;得到紊流时的流量;得到不考虑速度分布的不均匀性流量。还提供了一种时差式超声波流量测量装置。

Description

一种时差式超声波流量测量方法及装置 技术领域
本发明涉及一种流量测量方法及装置,特别是一种时差式超声波流量测量方法及装置。
背景技术
时差法超声流量计是通过测量超声波随逆流与顺流的传播时间差来确定被测流体的流速,超声波在流动的流体中传播时就载上了流体流速的信息,通过接收到的超声波时间差就可以检测出流体的流速,并换算成流量。目前,时差法超声波流量计都假设超声波束在传播路径上的流体流动速度是均匀的,而实际上流体的速度分布与流态有关,层流时圆管横截面上的速度分布为旋转抛物型,紊流时圆管横截面上的速度分布为凸台型,因此必然造成较大的测量误差。
发明内容
本发明的目的是要提供一种装置简单,实现方便,测量精度高的时差式超声波流量测量方法及装置,解决目前时差式超声波流量计不考虑速度分布非均匀造成的误差问题。
本发明的目的是这样实现的:该流量测量方法如下:
超声波束沿顺流和逆流的传播时间差为:
Figure PCTCN2015089218-appb-000001
当被测流动为层流时,将层流速度分布代入(1)式,积分得时间差为:
Figure PCTCN2015089218-appb-000002
其中,R为被测管道的半径;um为管道轴线最大流速;θ为超声波束与流体流动方向的夹角;c为超声波在被测流体中的传播速度;
则层流时的流量为:
Figure PCTCN2015089218-appb-000003
其中,对Z型、V型、W型三种不同的安装方式,系数K分别取1、2、4;
不考虑速度分布的非均匀性,按照平均速度计算超声波传播时间差,则所测量的流量为:
Figure PCTCN2015089218-appb-000004
显然有:
Figure PCTCN2015089218-appb-000005
当被测流动为紊流时,将紊流速度分布代入(1)式,积分得时间差为:
Figure PCTCN2015089218-appb-000006
其中,n为紊流速度分布的经验指数,一般随雷诺数的增大而增大;
则紊流时的流量为
Figure PCTCN2015089218-appb-000007
而不考虑速度分布的不均匀性得到的流量为:
Figure PCTCN2015089218-appb-000008
则有
Figure PCTCN2015089218-appb-000009
流量测量装置包括:被测量管段、主单片机、发射电路、下游超声波传感器、上游超声波传感器、第一接收处理电路、第二接收处理电路、时差测量、时钟、存储器、键盘和LCD显示;下游超声波传感器、上游超声波传感器分别连接在被测量管段上、下游超声波传感器的输出端通过第一接收处理电路与时差测量的输入端连接,上游超声波传感器的输出端通过第二接收处理电路与时差测量的输入端连接;时差测量的输出端与主单片机双向通讯连接;时钟、存储器、键盘和LCD显示均与主单片机连接,主单片机的输出端与发射电路的输入端连接,发射电路的输出端分别与下游超声波传感器和上游超声波传感器的输出端连接。
主单片机发出测量命令后,发射电路产生一定的波形,先对计数器清零,接着同步启动发射电路触发超声波换能器发射超声波脉冲,利用下游超声波传感器、上游超声波传感器、第一接收处理电路、第二接收处理电路和时差测量,可以得到超声波的顺流传播时间和逆流传播时间;主单片机采用数字滤波计数对这些时间信号进行滤波处理,并根据实际情况计算出相应的流速和流量,保存到存储器中,并送到LCD显示上显示出来。
针对被测管道内的流动状态和横截面上的速度分布类型,主单片机采用积分算法计算出流速和流量。
有益效果,由于采用了上述方案,当将超声波传播路径上的流动速度假设为均匀的将产生较大的测量误差,按照本发明的方法得出的流量则精确得多。为了消除由于速度分布不均匀造成的测量误差,通过理论推导计算,得出针对不同流动状态的修正系数, 并设计一套装置,实现时差法超声流量测量。解决了目前时差式超声波流量计不考虑速度分布非均匀造成的误差问题。
优点:该方法理论可靠,装置简单,方法可靠,实现方便,测量精度高,与现有的时差式超声波流量测量结果相比,可使测量结果提高5%~33%,适合一切基于传播时间差测量流量的超声波流量计。
附图说明:
图1为本发明超声波传感器按Z型布置结构图。
图2为本发明超声波传感器按V型布置结构图。
图3为本发明超声波传感器按W型布置结构图。
具体实施方式
下面结合附图和具体实施对本发明作进一步说明。
实施例1:该流量测量方法如下:
超声波束沿顺流和逆流的传播时间差为:
Figure PCTCN2015089218-appb-000010
当被测流动为层流时,将层流速度分布代入(1)式,积分得时间差为:
Figure PCTCN2015089218-appb-000011
其中,R为被测管道的半径;um为管道轴线最大流速;θ为超声波束与流体流动方向的夹角;c为超声波在被测流体中的传播速度;
则层流时的流量为:
Figure PCTCN2015089218-appb-000012
其中,对Z型、V型、W型三种不同的安装方式,系数K分别取1、2、4;
不考虑速度分布的不均匀性,按照平均速度计算超声波传播时间差,则所测量的流量为:
Figure PCTCN2015089218-appb-000013
显然有:
Figure PCTCN2015089218-appb-000014
现有时差式超声波流量计所测得的层流流量为按本发明方法测量流量的1.33倍,其误差显而易见。
当被测流动为紊流时,将紊流速度分布代入(1)式,积分得时间差为:
Figure PCTCN2015089218-appb-000015
其中,n为紊流速度分布的经验指数,一般随雷诺数的增大而增大;
则紊流时的流量为
Figure PCTCN2015089218-appb-000016
而不考虑速度分布的不均匀性得到的流量为:
Figure PCTCN2015089218-appb-000017
则有
Figure PCTCN2015089218-appb-000018
紊流速度分布的经验指数n一般为4~10,则现有时差式超声波流量计所测得的紊流流量为按本发明方法测量流量的1.16~1.05倍,其误差显而易见。
流量测量装置包括:被测量管段1、主单片机2、发射电路3、下游超声波传感器4、上游超声波传感器5、第一接收处理电路6、第二接收处理电路7、时差测量8、时钟9、存储器10、键盘11和LCD显示12;下游超声波传感器4、上游超声波传感器5分别连接在被测量管段1上、下游超声波传感器4的输出端通过第一接收处理电路6与时差测量8的输入端连接,上游超声波传感器5的输出端通过第二接收处理电路7与时差测量8的输入端连接;时差测量8的输出端与主单片机2双向通讯连接;时钟9、存储器10、键盘11和LCD显示12均与主单片机2连接,主单片机2的输出端与发射电路3的输入端连接,发射电路3的输出端分别与下游超声波传感器4和上游超声波传感器5的输出端连接。
主单片机2发出测量命令后,发射电路3产生一定的波形,先对计数器清零,接着同步启动发射电路3触发超声波换能器发射超声波脉冲,利用下游超声波传感器4、上游超声波传感器5、第一接收处理电路6、第二接收处理电路7和时差测量8,可以得到超声波的顺流传播时间和逆流传播时间;主单片机2采用数字滤波计数对这些时间信号进行滤波处理,并根据实际情况计算出相应的流速和流量,保存到存储器10中,并送到LCD显示12上显示出来。
针对被测管道内的流动状态和横截面上的速度分布类型,主单片机2采用积分算法计算出流速和流量。
具体的:
图1中、以Z型布置为例进行说明。所述的超声波传感器按Z型布置结构为:下游超声波传感器4位于下侧,上游超声波传感器5位于下游超声波传感器4前端的上侧。
如图1所示,流量测量装置包括:被测量管段1、主单片机2、发射电路3、下游超声波传感器4、上游超声波传感器5、第一接收处理电路6、第二接收处理电路7、时差测量8、时钟9、存储器10、键盘11和LCD显示12;下游超声波传感器4、上游超声波传感器5分别连接在被测量管段1上、下游超声波传感器4的输出端通过第一接收处理电路6与时差测量8的输入端连接,上游超声波传感器5的输出端通过第二接收处理电路7与时差测量8的输入端连接;时差测量8的输出端与主单片机2双向通讯连接;时钟9、存储器10、键盘11和LCD显示12均与主单片机2连接,主单片机2的输出端与发射电路3的输入端连接,发射电路3的输出端分别与下游超声波传感器4和上游超声波传感器5的输出端连接。
主单片机2发出测量命令后,发射电路3产生一定的波形,先对计数器清零,接着同步启动发射电路3触发超声波换能器发射超声波脉冲,利用下游超声波传感器4、上游超声波传感器5、接收处理电路I 6、接收处理电路II 7和时差测量8,可以得到超声波的顺流传播时间和逆流传播时间。主单片机2采用数字滤波计数对这些时间信号进行滤波处理,并根据实际情况计算出相应的流速和流量,保存到存储器10中,并送到LCD显示12上显示出来。
针对被测管道内的流动状态和横截面上的速度分布类型,主单片机2采用积分算法计算出流速和流量。
由于超声波在顺流或逆流传播时,其传播速度等于静水声速加上或减去流体流动速度。因此,当超声波从一个传感器发射后,将穿越不同流速的流层,也即超声波在传播过程中的速度是变化的。为了精确测出超声波的顺流传播时间和逆流传播时间差,必须采用积分的方法。超声波束沿顺流和逆流的传播时间差由如下积分得出:
Figure PCTCN2015089218-appb-000019
其中,R为被测管道的半径;u为管内流速分布;θ为超声波束与流体流动方向的夹角;c为超声波在被测流体中的传播速度。
例如,对于层流,圆管横截面上的速度分布为:
Figure PCTCN2015089218-appb-000020
其中,um为管道轴线最大流速。
将层流速度分布代入(1)式,积分得时间差为:
Figure PCTCN2015089218-appb-000021
则层流时Z型安装方式的流量为:
Figure PCTCN2015089218-appb-000022
而如果不考虑速度分布的非均匀性,按照平均速度计算超声波传播时间差,则所测量的流量为:
Figure PCTCN2015089218-appb-000023
显然有:
Figure PCTCN2015089218-appb-000024
现有时差式超声波流量计所测得的层流流量为按本发明方法测得流量的1.16~0.39倍,其误差显而易见。
当被测流动为紊流时,将紊流速度分布代入(1)式,积分得时间差为:
Figure PCTCN2015089218-appb-000025
其中,n为紊流速度分布的经验指数,一般随雷诺数的增大而增大。
则紊流时的流量为
Figure PCTCN2015089218-appb-000026
而不考虑速度分布的不均匀性得到的流量为:
Figure PCTCN2015089218-appb-000027
则有
Figure PCTCN2015089218-appb-000028
紊流速度分布的经验指数n一般为4~10,则现有时差式超声波流量计所测得的紊流流量为按本发明方法测量流量的1.16~1.05倍,其误差显而易见。
实施例2:图2中,为超声波传感器按V型布置结构,下游超声波传感器4与上游超声波传感器5同一侧,下游超声波传感器4位于上游超声波传感器5的下侧;其它与实施例1同。
实施例3:图3为本发明超声波传感器按W型布置结构图。下游超声波传感器4与上游超声波传感器5同一侧,下游超声波传感器4位于上游超声波传感器5的下侧二个V形距离;其它与实施例1同。

Claims (3)

  1. 一种时差式超声波流量测量方法,其特征是:该流量测量方法如下:
    超声波束沿顺流和逆流的传播时间差为:
    Figure PCTCN2015089218-appb-100001
    当被测流动为层流时,将层流速度分布代入(1)式,积分得时间差为:
    Figure PCTCN2015089218-appb-100002
    其中,R为被测管道的半径;um为管道轴线最大流速;θ为超声波束与流体流动方向的夹角;c为超声波在被测流体中的传播速度;
    则层流时的流量为:
    Figure PCTCN2015089218-appb-100003
    其中,对Z型、V型、W型三种不同的安装方式,系数K分别取1、2、4;
    不考虑速度分布的非均匀性,按照平均速度计算超声波传播时间差,则所测量的流量为:
    Figure PCTCN2015089218-appb-100004
    显然有:
    Figure PCTCN2015089218-appb-100005
    当被测流动为紊流时,将紊流速度分布代入(1)式,积分得时间差为:
    Figure PCTCN2015089218-appb-100006
    其中,n为紊流速度分布的经验指数,一般随雷诺数的增大而增大;
    则紊流时的流量为
    Figure PCTCN2015089218-appb-100007
    而不考虑速度分布的不均匀性得到的流量为:
    Figure PCTCN2015089218-appb-100008
    则有
    Figure PCTCN2015089218-appb-100009
  2. 权利要求1所述的一种时差式超声波流量测量方法的装置,其特征是:流量测量装置包括:被测量管段、主单片机、发射电路、下游超声波传感器、上游超声波传感器、第一接收处理电路、第二接收处理电路、时差测量、时钟、存储器、键盘和LCD显示; 下游超声波传感器、上游超声波传感器分别连接在被测量管段上、下游超声波传感器的输出端通过第一接收处理电路与时差测量的输入端连接,上游超声波传感器的输出端通过第二接收处理电路与时差测量的输入端连接;时差测量的输出端与主单片机双向通讯连接;时钟、存储器、键盘和LCD显示均与主单片机连接,主单片机的输出端与发射电路的输入端连接,发射电路的输出端分别与下游超声波传感器和上游超声波传感器的输出端连接。
  3. 根据权利要求2所述的一种时差式超声波流量测量装置,其特征是:主单片机发出测量命令后,发射电路产生一定的波形,先对计数器清零,接着同步启动发射电路触发超声波换能器发射超声波脉冲,利用下游超声波传感器、上游超声波传感器、第一接收处理电路、第二接收处理电路和时差测量,可以得到超声波的顺流传播时间和逆流传播时间;主单片机采用数字滤波计数对这些时间信号进行滤波处理,并根据实际情况计算出相应的流速和流量,保存到存储器中,并送到LCD显示上显示出来;
    针对被测管道内的流动状态和横截面上的速度分布类型,主单片机采用积分算法计算出流速和流量。
PCT/CN2015/089218 2015-07-03 2015-09-09 一种时差式超声波流量测量方法及装置 WO2017004887A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2016/04937A ZA201604937B (en) 2015-07-03 2016-07-15 Time-difference ultrasonic flow measurement method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510387517.5A CN105157771B (zh) 2015-07-03 2015-07-03 一种时差式超声波流量测量方法及装置
CN201510387517.5 2015-07-03

Publications (1)

Publication Number Publication Date
WO2017004887A1 true WO2017004887A1 (zh) 2017-01-12

Family

ID=54798710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089218 WO2017004887A1 (zh) 2015-07-03 2015-09-09 一种时差式超声波流量测量方法及装置

Country Status (3)

Country Link
CN (1) CN105157771B (zh)
WO (1) WO2017004887A1 (zh)
ZA (1) ZA201604937B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506727A (zh) * 2018-12-24 2019-03-22 西安安森智能仪器股份有限公司 一种超声波流量测量方法及低功耗超声波流量计
CN110940386A (zh) * 2019-12-12 2020-03-31 煤炭科学技术研究院有限公司 一种管道式超声波瓦斯流量测定仪及测定方法
CN112484798A (zh) * 2020-11-27 2021-03-12 江西中科智慧水产业研究股份有限公司 一种基于改进卡尔曼滤波器的时差超声波流量测量方法
CN112945518A (zh) * 2021-02-04 2021-06-11 武汉大学 明渠恒定流能量损失确定方法
CN114019185A (zh) * 2021-09-28 2022-02-08 江苏启泰物联网科技有限公司 铁路用液体流速监测方法
CN114279509A (zh) * 2021-11-26 2022-04-05 山东华特智慧科技有限公司 一种互补式时差法超声波明渠计量装置及计量方法
CN115628786A (zh) * 2022-09-26 2023-01-20 浙江启尔机电技术有限公司 一种超声波流量测量方法及利用该方法的流量计
CN118482785A (zh) * 2024-07-16 2024-08-13 安徽汉威电子有限公司 一种大口径管道的流量测量方法及装置
CN118862662A (zh) * 2024-07-05 2024-10-29 长江水利委员会水文局汉江水文水资源勘测局(长江水利委员会水文局汉江水环境监测中心) 时差法流量在线监测动态计算模型生成方法、系统及介质

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108168630B (zh) * 2016-12-07 2019-11-01 辽宁思凯科技股份有限公司 一种超声波水表检测装置及测定方法
CN106996811A (zh) * 2017-03-30 2017-08-01 山东思达特测控设备有限公司 一种高准确度的智能液体超声波流量计的计量方法
EP3388794B2 (de) * 2017-04-13 2022-03-09 SICK Engineering GmbH Messvorrichtung zum messen einer durchflussgeschwindigkeit eines fluids
CN108120481B (zh) * 2017-11-10 2023-10-31 天津新科成套仪表有限公司 一种超声流量计量方法与计量处理装置
CN108414039B (zh) * 2018-05-18 2024-09-27 广东万家乐燃气具有限公司 一种水流量、水温检测方法及水流量传感器
CN110375818A (zh) * 2019-04-12 2019-10-25 宁夏隆基宁光仪表股份有限公司 全温度范围超声波流量计量高精度低功耗补偿方法
CN110296912B (zh) * 2019-06-19 2020-07-21 北京理工大学 基于超声的粉尘云团扩散动态湍流动能的检测系统及方法
CN110455360B (zh) * 2019-08-28 2021-08-06 杭州乾博科技有限公司 一种超声波水表
CN111473827B (zh) * 2020-05-28 2022-04-01 宁波大学 V形声道零飘消除方法
CN115614339A (zh) * 2022-10-20 2023-01-17 水利部产品质量标准研究所 一种液压启闭机在线健康监测和同步控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047790A1 (de) * 2005-10-05 2007-04-12 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung oder Überwachung des Volumen- oder Massedurchflusses eines Mediums durch eine Rohrleitung
US20070255514A1 (en) * 2006-04-28 2007-11-01 Tokyo Keiso Co., Ltd Ultrasonic flow meter
CN101118170A (zh) * 2007-08-28 2008-02-06 南京申瑞电气系统控制有限公司 多声路时差式超声波流量计
CN101907473A (zh) * 2010-07-05 2010-12-08 李俊国 一种超声波流量测量装置
CN103090916A (zh) * 2013-02-22 2013-05-08 呼和浩特市睿城科技有限责任公司 一种超声波流量测量装置及其测量方法
US20150260556A1 (en) * 2014-03-17 2015-09-17 Siemens Aktiengesellschaft Ultrasonic transit-time flowmeter and method for detecting a failure in an ultrasonic transit-time flowmeter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950768B2 (en) * 2003-09-08 2005-09-27 Daniel Industries, Inc. Self-tuning ultrasonic meter
CN100434875C (zh) * 2005-08-03 2008-11-19 侯安亮 一种超声波流量计测量流体流量的方法
CN1804557A (zh) * 2006-01-24 2006-07-19 天津大学 传播速度差式超声波流量计的信号处理方法
CN102207398B (zh) * 2011-04-07 2013-06-12 托肯恒山科技(广州)有限公司 用于燃油终端结算的超声波流量测量的装置和方法
CN102288235B (zh) * 2011-04-26 2014-09-24 广州昉时工业自动控制系统有限公司 一种双道混合型超声波流量计及测量方法
CN103528717A (zh) * 2013-10-21 2014-01-22 天津鸥翼科技发展有限公司 用于管段式小口径超声波热量表的低阻管段

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047790A1 (de) * 2005-10-05 2007-04-12 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung oder Überwachung des Volumen- oder Massedurchflusses eines Mediums durch eine Rohrleitung
US20070255514A1 (en) * 2006-04-28 2007-11-01 Tokyo Keiso Co., Ltd Ultrasonic flow meter
CN101118170A (zh) * 2007-08-28 2008-02-06 南京申瑞电气系统控制有限公司 多声路时差式超声波流量计
CN101907473A (zh) * 2010-07-05 2010-12-08 李俊国 一种超声波流量测量装置
CN103090916A (zh) * 2013-02-22 2013-05-08 呼和浩特市睿城科技有限责任公司 一种超声波流量测量装置及其测量方法
US20150260556A1 (en) * 2014-03-17 2015-09-17 Siemens Aktiengesellschaft Ultrasonic transit-time flowmeter and method for detecting a failure in an ultrasonic transit-time flowmeter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109506727A (zh) * 2018-12-24 2019-03-22 西安安森智能仪器股份有限公司 一种超声波流量测量方法及低功耗超声波流量计
CN109506727B (zh) * 2018-12-24 2023-12-26 西安安森智能仪器股份有限公司 一种超声波流量测量方法及低功耗超声波流量计
CN110940386A (zh) * 2019-12-12 2020-03-31 煤炭科学技术研究院有限公司 一种管道式超声波瓦斯流量测定仪及测定方法
CN112484798A (zh) * 2020-11-27 2021-03-12 江西中科智慧水产业研究股份有限公司 一种基于改进卡尔曼滤波器的时差超声波流量测量方法
CN112484798B (zh) * 2020-11-27 2024-03-19 中科水研(江西)科技股份有限公司 一种基于改进卡尔曼滤波器的时差超声波流量测量方法
CN112945518A (zh) * 2021-02-04 2021-06-11 武汉大学 明渠恒定流能量损失确定方法
CN112945518B (zh) * 2021-02-04 2023-05-05 武汉大学 明渠恒定流能量损失确定方法
CN114019185A (zh) * 2021-09-28 2022-02-08 江苏启泰物联网科技有限公司 铁路用液体流速监测方法
CN114279509A (zh) * 2021-11-26 2022-04-05 山东华特智慧科技有限公司 一种互补式时差法超声波明渠计量装置及计量方法
CN115628786A (zh) * 2022-09-26 2023-01-20 浙江启尔机电技术有限公司 一种超声波流量测量方法及利用该方法的流量计
CN118862662A (zh) * 2024-07-05 2024-10-29 长江水利委员会水文局汉江水文水资源勘测局(长江水利委员会水文局汉江水环境监测中心) 时差法流量在线监测动态计算模型生成方法、系统及介质
CN118482785A (zh) * 2024-07-16 2024-08-13 安徽汉威电子有限公司 一种大口径管道的流量测量方法及装置

Also Published As

Publication number Publication date
CN105157771A (zh) 2015-12-16
CN105157771B (zh) 2018-04-03
ZA201604937B (en) 2022-05-25

Similar Documents

Publication Publication Date Title
WO2017004887A1 (zh) 一种时差式超声波流量测量方法及装置
CA2702666C (en) A method and system for detecting deposit buildup within an ultrasonic flow meter
EP3268701B1 (en) Hybrid sensing ultrasonic flowmeter
CN103808381B (zh) 一种时差式超声波流量计的温度影响消除方法
CN101598580B (zh) 一种提高时差式超声波流量计精度的方法
US9140594B2 (en) Ultrasonic, flow measuring device
CN103868555A (zh) 一种用于超声波流量计的循环时差检测方法
CN106706056B (zh) 一种大口径超声波水表流量测量的补偿方法
CN106768103A (zh) 一种超声波流量计自动校准时间偏差的方法
WO2018045754A1 (zh) 一种流体速度测量方法及流体计量方法及流量计
CN104457871A (zh) 一种流量计及流体测量方法
CN106643937A (zh) 一种基于超声波流量计的流量测量方法及装置
CN105403265A (zh) 一种自动校正零点漂移的超声水表及其校正方法
CN104236648A (zh) 超声波流量计
JP2006078362A (ja) 同一軸型ドップラー超音波流速計
CN109324208A (zh) 一种基于超声波声速法的汽液两相流密度、质量流量及相含率一体化分析仪
CN102288265A (zh) 双通道法超声流量计时间差检测装置
CN202216742U (zh) 双通道法超声流量计时间差检测装置
CN106768104A (zh) 一种超声波质量流量计
CN114442078A (zh) 检测飞行时间的方法、超声波流量计及光学设备
CN206291930U (zh) 一种超声波质量流量计
JP5282955B2 (ja) 超音波流量計の補正方法、及び超音波流量計
CN110285861A (zh) 一种超声波流量计
JPH07260532A (ja) 超音波流量計
CN115096389B (zh) 基于零点实时补偿的管道流量测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897543

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897543

Country of ref document: EP

Kind code of ref document: A1