WO2016208884A1 - Method and apparatus for preparing high-quality graphene using shear flow - Google Patents
Method and apparatus for preparing high-quality graphene using shear flow Download PDFInfo
- Publication number
- WO2016208884A1 WO2016208884A1 PCT/KR2016/005777 KR2016005777W WO2016208884A1 WO 2016208884 A1 WO2016208884 A1 WO 2016208884A1 KR 2016005777 W KR2016005777 W KR 2016005777W WO 2016208884 A1 WO2016208884 A1 WO 2016208884A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphite
- graphene
- fluid
- inner body
- based material
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 155
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims abstract description 32
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 67
- 239000010439 graphite Substances 0.000 claims abstract description 67
- 239000012530 fluid Substances 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 33
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 239000002904 solvent Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims description 47
- 230000002687 intercalation Effects 0.000 claims description 16
- 238000009830 intercalation Methods 0.000 claims description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 14
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 11
- 239000002608 ionic liquid Substances 0.000 claims description 9
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical group OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 claims description 6
- 229920001467 poly(styrenesulfonates) Polymers 0.000 claims description 6
- 239000011970 polystyrene sulfonate Substances 0.000 claims description 6
- 229960002796 polystyrene sulfonate Drugs 0.000 claims description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 6
- 229940068984 polyvinyl alcohol Drugs 0.000 claims description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- NRHMKIHPTBHXPF-TUJRSCDTSA-M sodium cholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 NRHMKIHPTBHXPF-TUJRSCDTSA-M 0.000 claims description 6
- 239000002270 dispersing agent Substances 0.000 claims description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical group O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 3
- 150000001340 alkali metals Chemical group 0.000 claims description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 3
- 150000001342 alkaline earth metals Chemical group 0.000 claims description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 150000007524 organic acids Chemical group 0.000 claims description 3
- 239000007770 graphite material Substances 0.000 claims 2
- 230000032798 delamination Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- 229940074439 potassium sodium tartrate Drugs 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
Definitions
- the present invention relates to a graphene manufacturing method, and more particularly to a high quality graphene manufacturing method using a shear flow.
- the present invention also relates to a manufacturing apparatus suitable for achieving the graphene manufacturing method.
- Graphene is generally defined as a single layer of carbon in a hexagonal crystal structure with a two-dimensional planar structure.
- Graphene is an carbon material that is expected to be applied to various fields, such as semiconductors and displays, because it has an advantage of showing excellent electrical conductivity, thermal conductivity, and mechanical strength compared to conventional carbon materials.
- Such graphene is prepared by various methods.
- Figure 1 schematically shows a graphene manufacturing method using the oxidation / reduction method.
- graphite is oxidized to form graphite oxide, and the graphene oxide is peeled off to obtain graphene oxide, followed by reduction.
- Graphene is prepared through.
- Figure 2 schematically shows a graphene manufacturing method using ultrasonic waves.
- graphene is manufactured by directly peeling graphite in a solvent to which ultrasonic waves are applied.
- this method since it does not involve an oxidation / reduction process, graphene with few defects can be produced, and excellent electrical characteristics can be ensured.
- this method has a disadvantage in that the graphene production rate is low due to the limitation of the exfoliation efficiency of graphite.
- this method has a limitation in that it is difficult to continuously mass-produce graphene due to technical limitations of ultrasonic equipment.
- Another method of preparing graphene is a method of synthesizing graphene at a high temperature using chemical vapor deposition (CVD).
- CVD chemical vapor deposition
- Another object of the present invention to provide a graphene manufacturing apparatus that can be applied to the graphene manufacturing method.
- Graphene manufacturing method for achieving the above object is a step of injecting a graphite-based material in a fluid containing a solvent, stored in the reaction space of the reactor; And rotating the fluid into which the graphite-based material is injected, to release the graphite-based material with a shear force generated by the rotational flow of the fluid, thereby producing graphene.
- the reactor may include an inner body extending in a horizontal direction, and a cylindrical outer body to form a reaction space inside the inner body wrapped in the state spaced apart from the inner body.
- a graphite-based material may be injected from one side of the cylindrical outer body, and graphene may be discharged from the other side of the cylindrical outer body.
- the solvent may include one or more of N-methyl-2-pyrrolidinone (NMP) and N, N-dimethylformamide (DMF).
- NMP N-methyl-2-pyrrolidinone
- DMF N, N-dimethylformamide
- the fluid may include at least one of sodium cholate (NaC) poly vinyl alcohol (PVA), poly vinyl pyrrolidone (PVP), polystyrenesulfonate (PSS), dodecylbenzene sulfonic acid (DBSA), and an ionic liquid (Ionic liquid). It may further include a dispersant.
- NaC sodium cholate
- PVA poly vinyl alcohol
- PVP poly vinyl pyrrolidone
- PSS polystyrenesulfonate
- DBSA dodecylbenzene sulfonic acid
- Ionic liquid ionic liquid
- the fluid can be rotated in a heated state.
- the rotational speed of the inner body can be adjusted to 500 rpm or more.
- non-expandable graphite or expandable graphite in a compressed state may be used as the graphite-based material.
- a graphite intercalation compound in which an intercalant is inserted between the layers of graphite may be used as the graphite-based material.
- the intercalation species may include at least one of compounds including at least one alkali metal and alkaline earth metal, sulfuric acid, nitric acid, phosphoric acid and organic acid, and an ionic liquid.
- Graphene manufacturing apparatus for achieving the above object is a cylindrical outer body to form a reaction space inside the inner body extending in the horizontal direction, the inner body in a state spaced apart from the inner body Reactor comprising a; An inlet formed on one side of the cylindrical outer body and into which a graphite-based material is injected; A discharge port formed at the other side of the cylindrical outer body and discharging graphene obtained by peeling graphite by a shear force generated by a rotational flow of a fluid stored in the reaction space; And a driving unit for rotating the inner body.
- the graphene manufacturing method according to the present invention it is possible to effectively exfoliate graphite by using the shear flow of the fluid, it is possible to continuously and mass production of graphene.
- the intercalation species that can act to weaken the attraction between the graphene layer of the graphite is included, so that the graphite peeling efficiency, that is, the graphene production efficiency
- the graphite peeling efficiency that is, the graphene production efficiency
- Figure 1 schematically shows a graphene manufacturing method using the oxidation / reduction method.
- Figure 2 schematically shows a graphene manufacturing method using ultrasonic waves.
- Figure 3 schematically shows a graphene manufacturing method using a shear flow in accordance with the present invention.
- Figure 4 is a perspective view schematically showing an example of a reactor that can be applied to the graphene manufacturing method according to the present invention.
- FIG. 5 is a cross-sectional view schematically showing an example of a reactor that can be applied to the graphene manufacturing method according to the present invention.
- Figure 6 schematically shows a graphene manufacturing apparatus according to an embodiment of the present invention.
- Figure 3 schematically shows a graphene manufacturing method using a shear flow in accordance with the present invention.
- the graphene manufacturing method according to the present invention uses a shear flow (shear flow). More specifically, in the present invention, graphene is manufactured by rotating a fluid to form a Taylor fluid flow and peeling the graphite-based material with a shear force generated by the rotational flow of the fluid. In this case, the shear force applied to the graphite-based material should be sufficient to overcome the strong van der Waals attractive force between the graphene layers of the graphite, which is a factor that affects the rotational flow characteristics of the fluid and increases the reactor rotation speed. , By raising the fluid temperature, or by adding an additive (interlayer species, dispersant, etc.).
- the present invention uses a reactor such as the example shown in FIGS. 4 and 5.
- the reactor using the taylor fluid includes an inner body 410 extending in the horizontal direction and a cylindrical outer body 420 surrounding the inner body spaced apart from the inner body.
- the reaction space 430 is formed between the inner body 410 and the cylindrical outer body 420.
- the inner body 410 and the cylindrical outer body 420 is sealed at both ends.
- the inner body 410 is rotated about the horizontal axis by the rotation shaft 405, and the cylindrical outer body 420 is fixed.
- the length of the reactor may be about 10 cm to about 1 m, and the volume of the reaction space may be about 10 mL to about 10 L.
- the length of the reactor and the volume of the reaction space are not necessarily limited thereto.
- the taylor fluid flow of the present invention is an external cylinder, i.e., the outer body is fixed and when the inner cylinder, i.e. the inner body is rotated, the fluid flows in the rotational direction of the inner cylinder, the force flowing from the inner cylinder side to the outer cylinder direction by centrifugal force
- the fluid becomes unstable, and it refers to the vortex of the ring pair array that rotates in a regular and opposite direction along the axial direction.
- Taylor fluid flow can be formed according to the rotational speed of the fluid and the radius and separation distance of the inner body and the outer body, the viscosity of the fluid, etc., the shear flow force is greatly increased as the Taylor fluid is formed.
- the graphite-based material is added to the fluid containing the solvent, which is stored in the reaction space 430 of the reactor, and the graphite-based material is rotated to form the Taylor fluid and shear force generated by the Taylor flow.
- Graphene is prepared by peeling the graphite-based material with a shear force.
- the graphite-based material may be injected from one side of the cylindrical outer body 420, and the graphene may be discharged from the other side of the cylindrical outer body 420.
- the graphite-based material used in the present invention may be general non-expandable graphite, expanded graphite in a compressed state, and the like, and these may be added alone or in combination.
- the graphite-based material may be a graphite intercalation compound.
- the graphite intercalation compound it is a graphite-based material in which an intercalant, which is a heterogeneous material, is inserted between layers of graphite, that is, between layers of graphene. Since intercalation species may act to lower the interlayer energy of graphite by weakening the attraction between each layer of graphene of graphite, in the case of the graphite intercalation compound, the exfoliation efficiency of graphene may be greatly improved during shear flow.
- intercalation species of the graphite intercalation compound compounds containing at least one alkali metal and alkaline earth metal, for example, potassium sodium tartrate, can be given.
- organic acids including sulfuric acid, nitric acid and phosphoric acid may be used.
- ionic liquids such as ammonium or imidazolium may also be used as intercalation species. These intercalation species can be used alone or in combination of two or more.
- the solvent contained in the fluid may include one or more of N-methyl-2-pyrrolidinone (NMP) and N, N-dimethylformamide (DMF).
- NMP N-methyl-2-pyrrolidinone
- DMF N, N-dimethylformamide
- the fluid may further include a dispersant to improve the peeling efficiency of the graphite-based material.
- the dispersant may include at least one of sodium cholate (NaC) poly vinyl alcohol (PVA), poly vinyl pyrrolidone (PVP), polystyrenesulfonate (PSS), dodecylbenzene sulfonic acid (DBSA), and an ionic liquid.
- a method of further improving the fluidity of the fluid is a method of adjusting the rotational speed of the inner body 410 to 500 rpm or more, more specifically 500 rpm or more and 5,000 rpm.
- the rotational speed is less than 500 rpm, the formation of the Taylor fluidized bed is limited and the shear efficiency of the fluidized bed may be deteriorated.
- Figure 6 schematically shows a graphene manufacturing apparatus according to an embodiment of the present invention.
- the graphene manufacturing apparatus includes the reactor, the inlet 601, the outlet 602, and the driving unit 610.
- the reactor includes an inner body 410 extending in the horizontal direction and a cylindrical outer body 420 surrounding the inner body while being spaced apart from the inner body.
- the reaction space 430 is formed between the inner body 410 and the cylindrical outer body 420, and the fluid is stored in the reaction space.
- the inner body 410 is rotated by the rotating shaft 405 and the cylindrical outer body 420 is fixed.
- the inlet 601 is formed on one side of the cylindrical outer body 420, the graphite-based material is injected. Only the graphite-based material may be added, the graphite-based material and the fluid may be added together, and the adding may be performed continuously or periodically.
- the discharge port 602 is formed on the other side of the cylindrical outer body 420, and discharges the graphene obtained by the graphite is peeled off by the shear force generated by the rotational flow of the fluid stored in the reaction space 430.
- the discharged product may be separated into graphene, other graphite-based materials, solvents, and the like having a layer number of less than about 10 layers, that is, 1 to 9 layers, by centrifugation.
- layer number of less than about 10 layers, that is, 1 to 9 layers, by centrifugation.
- more than 10 layers of graphite-based materials, solvents, and the like may be introduced back into the reactor through the inlet 601.
- the driving unit 610 rotates the inner body 410 and the cylindrical outer body 420 through the rotation shaft 405.
- the heater 620 and the support 630 may be included.
- the heater 620 may contribute to facilitate the rotational flow by heating the fluid, and may be formed to surround the cylindrical outer body 420.
- the support 630 serves to enable the reactor including the rotating shaft 405 to rotate about the horizontal axis.
- the graphene manufacturing method according to the present invention which does not involve oxidation / reduction, can produce high quality graphene, and corresponds to an economical and eco-friendly method without generating strong acid or acid waste in the manufacturing process. do.
- the graphene to be manufactured may be utilized in various fields such as electrode material fields of energy storage devices such as conductive graphene ink and supercapacitors for manufacturing printed electronic devices, heat dissipation, and composite materials.
- energy storage devices such as conductive graphene ink and supercapacitors for manufacturing printed electronic devices, heat dissipation, and composite materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Disclosed is a method and apparatus for preparing high-quality graphene using shear flow. The method for preparing graphene according to the present invention comprises the steps of: putting a graphite-based material into a fluid containing a solvent, stored in a reaction space of a reactor; and rotating the fluid, into which the graphite-based material has been put, to perform the delamination of the graphite-based material by shear force occurring by the rotational flow of the fluid, thereby preparing graphene.
Description
본 발명은 그래핀 제조 방법에 관한 것으로, 보다 상세하게는 전단 유동을 이용한 고품질 그래핀 제조 방법에 관한 것이다. The present invention relates to a graphene manufacturing method, and more particularly to a high quality graphene manufacturing method using a shear flow.
또한, 본 발명은 상기 그래핀 제조 방법을 달성하는 데 적합한 제조 장치에 관한 것이다.The present invention also relates to a manufacturing apparatus suitable for achieving the graphene manufacturing method.
그래핀은 일반적으로 2차원 평면구조를 가지는 육각형 결정구조의 탄소단일층으로 정의된다.Graphene is generally defined as a single layer of carbon in a hexagonal crystal structure with a two-dimensional planar structure.
그래핀은 기존의 탄소 소재와 비교하여 우수한 전기전도성, 열전도성 및 기계적 강도를 나타내는 장점이 있어, 반도체, 디스플레이 등 다양한 분야에 응용될 것으로 기대되는 탄소 소재이다.Graphene is an carbon material that is expected to be applied to various fields, such as semiconductors and displays, because it has an advantage of showing excellent electrical conductivity, thermal conductivity, and mechanical strength compared to conventional carbon materials.
이러한 그래핀은 다양한 방법으로 제조된다.Such graphene is prepared by various methods.
도 1은 산화/환원 방법을 이용한 그래핀 제조 방법을 개략적으로 나타낸 것이다.Figure 1 schematically shows a graphene manufacturing method using the oxidation / reduction method.
도 1을 참조하면, 산화/환원 방법을 이용한 그래핀 제조 방법은 그라파이트(graphite)를 산화시켜 그라파이트 옥사이드(graphite oxide)를 형성하고, 이를 박리하여 그래핀 옥사이드(graphene oxide)를 얻은 후, 환원을 통하여 그래핀을 제조한다. Referring to FIG. 1, in the graphene manufacturing method using an oxidation / reduction method, graphite is oxidized to form graphite oxide, and the graphene oxide is peeled off to obtain graphene oxide, followed by reduction. Graphene is prepared through.
산화/환원 방법을 이용한 그래핀 제조 방법의 경우, 저가의 그라파이트를 원료물질로 하여 그래핀을 대량으로 제조하는 것이 가능하고, 그래핀 분산액을 이용한 용액 공정이 가능하다는 장점을 가지고 있다. 그러나, 이 방법의 경우, 그라파이트의 산화 과정 중에 탄소 결정이 파괴되면서 제조되는 그래핀에 화학적, 구조적 결함이 다수 존재하여 그래핀 성능이 좋지 못한 문제점이 있다.In the case of the graphene manufacturing method using the oxidation / reduction method, it is possible to manufacture a large amount of graphene using low-cost graphite as a raw material, and has the advantage that a solution process using a graphene dispersion is possible. However, this method, there is a problem in that the graphene performance is poor because a large number of chemical and structural defects in the graphene produced as the carbon crystal is destroyed during the oxidation of graphite.
도 2는 초음파을 이용한 그래핀 제조 방법을 개략적으로 나타낸 것이다.Figure 2 schematically shows a graphene manufacturing method using ultrasonic waves.
도 2를 참조하면, 초음파를 이용한 그래핀 제조 방법은 초음파가 인가되는 용매 내에서 그라파이트를 직접 박리하여 그래핀을 제조한다. 이 방법의 경우, 산화/환원 공정을 수반하지 않기 때문에, 결함이 적은 그래핀을 제조할 수 있고, 우수한 전기적 특성을 확보할 수 있다. 그러나, 이 방법의 경우 그라파이트의 박리 효율의 한계 때문에, 이에 따라 그래핀의 생산 속도가 낮은 단점이 있다. 또한 이 방법의 경우 초음파 장비의 기술적 한계로 인해 그래핀을 연속적으로 대량 생산하기 어려운 한계점이 있다. Referring to FIG. 2, in the graphene manufacturing method using ultrasonic waves, graphene is manufactured by directly peeling graphite in a solvent to which ultrasonic waves are applied. In the case of this method, since it does not involve an oxidation / reduction process, graphene with few defects can be produced, and excellent electrical characteristics can be ensured. However, this method has a disadvantage in that the graphene production rate is low due to the limitation of the exfoliation efficiency of graphite. In addition, this method has a limitation in that it is difficult to continuously mass-produce graphene due to technical limitations of ultrasonic equipment.
그래핀을 제조하는 또 다른 방법으로는 화학기상증착법(CVD) 등을 이용하여 고온에서 그래핀을 합성하는 방법이 있다. 이 방법의 경우 기판 상에 직접 그래핀을 형성할 수 있는 장점이 있으나, 고온 공정에 따라 그래핀 제조에 고가의 비용이 드는 단점이 있다. Another method of preparing graphene is a method of synthesizing graphene at a high temperature using chemical vapor deposition (CVD). This method has an advantage in that it is possible to form graphene directly on the substrate, but there is a disadvantage that an expensive cost is required for graphene manufacture according to a high temperature process.
본 발명에 관련된 배경기술로는 대한민국 공개특허공보 제10-2011-0077606호(2011.07.07. 공개)가 있으며, 상기 문헌에는 1-프로판올에 그라파이트를 첨가한 후 초음파 분해를 통하여 그래핀을 제조하는 방법이 개시되어 있다.Background art related to the present invention is Republic of Korea Patent Publication No. 10-2011-0077606 (2011.07.07. Pub.), The document is added to graphite in 1-propanol and then producing graphene by ultrasonic decomposition A method is disclosed.
본 발명의 목적은 전단 유동을 이용한 고품질 그래핀 제조 방법을 제공하는 것이다. It is an object of the present invention to provide a high quality graphene production method using shear flow.
본 발명의 다른 목적은 상기 그래핀 제조 방법에 적용될 수 있는 그래핀 제조 장치를 제공하는 것이다.Another object of the present invention to provide a graphene manufacturing apparatus that can be applied to the graphene manufacturing method.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 그래핀 제조 방법은 반응기의 반응 공간에 저장된, 용매를 포함하는 유체에 그라파이트계 물질을 투입하는 단계; 및 상기 그라파이트계 물질이 투입된 유체를 회전시켜, 유체의 회전 유동에 의해 발생하는 전단력(shear force)으로 그라파이트계 물질을 박리하여 그래핀을 제조하는 단계;를 포함하는 것을 특징으로 한다. Graphene manufacturing method according to an embodiment of the present invention for achieving the above object is a step of injecting a graphite-based material in a fluid containing a solvent, stored in the reaction space of the reactor; And rotating the fluid into which the graphite-based material is injected, to release the graphite-based material with a shear force generated by the rotational flow of the fluid, thereby producing graphene.
이때, 상기 반응기는 수평 방향으로 뻗어있는 내측 바디와, 상기 내측 바디에 이격된 상태로 상기 내측 바디를 감싸 내부에 반응 공간을 형성하는 원통형 외측 바디를 포함할 수 있다. In this case, the reactor may include an inner body extending in a horizontal direction, and a cylindrical outer body to form a reaction space inside the inner body wrapped in the state spaced apart from the inner body.
또한, 상기 원통형 외측 바디의 일측에서 그라파이트계 물질을 투입하고, 상기 원통형 외측 바디의 타측에서 그래핀을 토출할 수 있다. In addition, a graphite-based material may be injected from one side of the cylindrical outer body, and graphene may be discharged from the other side of the cylindrical outer body.
또한, 상기 용매는 NMP(N-methyl-2-pyrrolidinone) 및 DMF(N,N- dimethylformamide) 중 1종 이상을 포함할 수 있다. In addition, the solvent may include one or more of N-methyl-2-pyrrolidinone (NMP) and N, N-dimethylformamide (DMF).
또한, 상기 유체는 NaC(Sodium Cholate) PVA(poly vinyl alcohol), PVP(poly vinyl pyrrolidone), PSS (polystyrenesulfonate), DBSA(dodecylbenzene sulfonic acid) 및 이온성 액체(Ionic liquid)에서 1종 이상을 포함하는 분산제를 더 포함할 수 있다. In addition, the fluid may include at least one of sodium cholate (NaC) poly vinyl alcohol (PVA), poly vinyl pyrrolidone (PVP), polystyrenesulfonate (PSS), dodecylbenzene sulfonic acid (DBSA), and an ionic liquid (Ionic liquid). It may further include a dispersant.
또한, 상기 유체를 가열한 상태에서 회전 유동시킬 수 있다. In addition, the fluid can be rotated in a heated state.
또한, 상기 내측 바디의 회전 속도를 500 rpm 이상으로 조절할 수 있다. In addition, the rotational speed of the inner body can be adjusted to 500 rpm or more.
또한, 상기 그라파이트계 물질로 비팽창성 그라파이트 또는 압축된 상태의 팽창성 그라파이트를 이용할 수 있다. In addition, as the graphite-based material, non-expandable graphite or expandable graphite in a compressed state may be used.
다른 예로, 상기 그라파이트계 물질로 그라파이트의 각 층 사이에 층간삽입종(intercalant)이 삽입되어 있는 그라파이트층간삽입화합물(Graphite Intercalation Compound)을 이용할 수 있다. 이 경우, 상기 층간삽입종은 알칼리금속 및 알칼리 토금속을 1종 이상 포함한 화합물, 황산, 질산, 인산 및 유기산, 이온성 액체(ionic liquid) 중에서 1종 이상을 포함할 수 있다. As another example, a graphite intercalation compound in which an intercalant is inserted between the layers of graphite may be used as the graphite-based material. In this case, the intercalation species may include at least one of compounds including at least one alkali metal and alkaline earth metal, sulfuric acid, nitric acid, phosphoric acid and organic acid, and an ionic liquid.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 그래핀 제조 장치는 수평 방향으로 뻗어있는 내측 바디와, 상기 내측 바디에 이격된 상태로 상기 내측 바디를 감싸 내부에 반응 공간을 형성하는 원통형 외측 바디를 포함하는 반응기; 상기 원통형 외측 바디의 일측에 형성되며, 그라파이트계 물질이 투입되는 투입구; 상기 원통형 외측 바디의 타측에 형성되며, 상기 반응 공간에 저장되는 유체의 회전유동에 의해 발생하는 전단력에 의해 그라파이트가 박리되어 얻어지는 그래핀을 토출하는 토출구; 및 상기 내측 바디를 회전시키는 구동부;를 포함하는 것을 특징으로 한다.Graphene manufacturing apparatus according to an embodiment of the present invention for achieving the above object is a cylindrical outer body to form a reaction space inside the inner body extending in the horizontal direction, the inner body in a state spaced apart from the inner body Reactor comprising a; An inlet formed on one side of the cylindrical outer body and into which a graphite-based material is injected; A discharge port formed at the other side of the cylindrical outer body and discharging graphene obtained by peeling graphite by a shear force generated by a rotational flow of a fluid stored in the reaction space; And a driving unit for rotating the inner body.
본 발명에 따른 그래핀 제조 방법에 의하면, 유체의 전단 유동을 이용하여 그라파이트를 효과적으로 박리할 수 있으며, 그래핀을 연속적으로 그리고 대량 제조할 수 있다. According to the graphene manufacturing method according to the present invention, it is possible to effectively exfoliate graphite by using the shear flow of the fluid, it is possible to continuously and mass production of graphene.
아울러, 본 발명에 따른 그래핀 제조 방법의 경우, 산화/환원을 수반하지 않는 바, 고품질의 그래핀을 제조할 수 있다.In addition, in the case of the graphene manufacturing method according to the present invention, it is not accompanied by oxidation / reduction, it is possible to produce high quality graphene.
또한, 그라파이트계 물질을 그라파이트층간삽입화합물을 이용하는 예의 경우, 그라파이트의 그래핀 각 층간의 인력을 약화시키는 작용을 할 수 있는 층간삽입종이 포함되어 있음으로써, 그라파이트의 박리 효율, 즉 그래핀의 제조 효율을 보다 향상시킬 수 있는 추가의 장점이 있다.In addition, in the case of using the graphite-based intercalation compound of the graphite-based material, the intercalation species that can act to weaken the attraction between the graphene layer of the graphite is included, so that the graphite peeling efficiency, that is, the graphene production efficiency There is an additional advantage that can be further improved.
도 1은 산화/환원 방법을 이용한 그래핀 제조 방법을 개략적으로 나타낸 것이다.Figure 1 schematically shows a graphene manufacturing method using the oxidation / reduction method.
도 2는 초음파을 이용한 그래핀 제조 방법을 개략적으로 나타낸 것이다.Figure 2 schematically shows a graphene manufacturing method using ultrasonic waves.
도 3은 본 발명에 따른 전단 유동을 이용한 그래핀 제조 방법을 개략적으로 나타낸 것이다.Figure 3 schematically shows a graphene manufacturing method using a shear flow in accordance with the present invention.
도 4는 본 발명에 따른 그래핀 제조 방법에 적용될 수 있는 반응기의 예를 개략적으로 나타낸 사시도이다. Figure 4 is a perspective view schematically showing an example of a reactor that can be applied to the graphene manufacturing method according to the present invention.
도 5는 본 발명에 따른 그래핀 제조 방법에 적용될 수 있는 반응기의 예를 개략적으로 나타낸 단면도이다.5 is a cross-sectional view schematically showing an example of a reactor that can be applied to the graphene manufacturing method according to the present invention.
도 6은 본 발명의 실시예에 따른 그래핀 제조 장치를 개략적으로 나타낸 것이다.Figure 6 schematically shows a graphene manufacturing apparatus according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들 및 도면을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments and drawings described below in detail. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only the embodiments are to make the disclosure of the present invention complete, it is common in the art It is provided to fully inform those skilled in the art of the scope of the invention, which is to be defined only by the scope of the claims.
이하에서는, 첨부된 도면을 참조하여 본 발명에 따른 전단 유동을 이용한 고품질 그래핀 제조 방법 및 장치에 대하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a method and apparatus for producing high quality graphene using a shear flow according to the present invention.
도 3은 본 발명에 따른 전단 유동을 이용한 그래핀 제조 방법을 개략적으로 나타낸 것이다.Figure 3 schematically shows a graphene manufacturing method using a shear flow in accordance with the present invention.
도 3을 참조하면, 본 발명에 따른 그래핀 제조 방법은 전단 유동(shear flow)을 이용한다. 보다 구체적으로, 본 발명에서는 유체를 회전시켜, 테일러 (Taylor) 유체흐름을 형성하고 상기 유체의 회전 유동에 의해 발생하는 전단력(shear force)으로 그라파이트계 물질을 박리하여 그래핀을 제조한다. 이때, 그라파이트계 물질에 인가되는 전단력은 그라파이트의 각 그래핀 층간의 강한 반데르발스(Van der Waals) 인력을 극복할 수 있도록 충분하여야 하며, 이는 유체의 회전 유동 특성에 미치는 인자들인 반응기 회전 속도 상향, 유체 온도 상승, 첨가제(층간삽입종, 분산제 등) 투입을 통하여 달성할 수 있다. 3, the graphene manufacturing method according to the present invention uses a shear flow (shear flow). More specifically, in the present invention, graphene is manufactured by rotating a fluid to form a Taylor fluid flow and peeling the graphite-based material with a shear force generated by the rotational flow of the fluid. In this case, the shear force applied to the graphite-based material should be sufficient to overcome the strong van der Waals attractive force between the graphene layers of the graphite, which is a factor that affects the rotational flow characteristics of the fluid and increases the reactor rotation speed. , By raising the fluid temperature, or by adding an additive (interlayer species, dispersant, etc.).
전단 유동을 이용하여 그래핀을 제조하기 위해, 본 발명에서는 도 4 및 도 5에 도시된 예와 같은 반응기를 이용한다. In order to produce graphene using shear flow, the present invention uses a reactor such as the example shown in FIGS. 4 and 5.
도 4 및 도 5를 참조하면, 테일러 유체를 이용한 반응기는 수평 방향으로 뻗어있는 내측 바디(410) 및 내측 바디에 이격된 상태로 상기 내측 바디를 감싸는 원통형 외측 바디(420)를 포함한다. 내측 바디(410)와 원통형 외측 바디(420) 사이에는 반응 공간(430)이 형성된다. 또한, 내측 바디(410)와 원통형 외측 바디(420)는 양 끝단에는 밀봉재가 형성된다. 그리고, 내측 바디(410)는 회전축(405)에 의해 수평축을 기준으로 하여 회전하고, 원통형 외측 바디(420)는 고정되어 있다. 4 and 5, the reactor using the taylor fluid includes an inner body 410 extending in the horizontal direction and a cylindrical outer body 420 surrounding the inner body spaced apart from the inner body. The reaction space 430 is formed between the inner body 410 and the cylindrical outer body 420. In addition, the inner body 410 and the cylindrical outer body 420 is sealed at both ends. The inner body 410 is rotated about the horizontal axis by the rotation shaft 405, and the cylindrical outer body 420 is fixed.
반응기의 길이는 대략 10cm~1m 정도가 될 수 있고, 반응 공간의 부피는 10mL~10L 정도 될 수 있다. 그러나, 반응기의 길이 및 반응 공간의 부피가 반드시 이에 제한되는 것은 아니다. The length of the reactor may be about 10 cm to about 1 m, and the volume of the reaction space may be about 10 mL to about 10 L. However, the length of the reactor and the volume of the reaction space are not necessarily limited thereto.
본 발명의 테일러 유체 흐름이란 외부 원통, 즉 외측 바디는 고정되어 있고 내부 원통, 즉 내측 바디가 회전을 할 때, 유체는 내부 원통의 회전방향으로 흐르면서 원심력에 의해 내부 원통 쪽에서 외부 원통 방향으로 흐르는 힘이 생기는데, 이 때 내부 원통의 회전속도가 올라갈수록 유체가 불안정해 지면서 축 방향에 따라 규칙적이며 서로 반대방향으로 회전하는 고리쌍 배열의 와류를 말한다. 유체의 회전속도 및 내측 바디 및 외측 바디의 반경 및 이격거리, 유체의 점도 등에 따라 테일러 유체 흐름이 형성될 수 있으며, 테일러 유체가 형성됨에 따라 전단유동력이 크게 증가하게 되는 원리를 가진다.The taylor fluid flow of the present invention is an external cylinder, i.e., the outer body is fixed and when the inner cylinder, i.e. the inner body is rotated, the fluid flows in the rotational direction of the inner cylinder, the force flowing from the inner cylinder side to the outer cylinder direction by centrifugal force In this case, as the rotation speed of the inner cylinder increases, the fluid becomes unstable, and it refers to the vortex of the ring pair array that rotates in a regular and opposite direction along the axial direction. Taylor fluid flow can be formed according to the rotational speed of the fluid and the radius and separation distance of the inner body and the outer body, the viscosity of the fluid, etc., the shear flow force is greatly increased as the Taylor fluid is formed.
즉, 본 발명은 반응기의 반응 공간(430)에 저장된, 용매를 포함하는 유체에 그라파이트계 물질을 투입하고, 그라파이트계 물질이 투입된 유체를 회전시켜, 테일러 유체를 형성하고 테일러 유동에 의해 발생하는 전단력(shear force)으로 그라파이트계 물질을 박리하여 그래핀을 제조한다. That is, according to the present invention, the graphite-based material is added to the fluid containing the solvent, which is stored in the reaction space 430 of the reactor, and the graphite-based material is rotated to form the Taylor fluid and shear force generated by the Taylor flow. Graphene is prepared by peeling the graphite-based material with a shear force.
아울러, 본 발명의 경우 도 6에 도시된 예와 같이, 원통형 외측 바디(420)의 일측에서 그라파이트계 물질을 투입하고, 원통형 외측 바디(420)의 타측에서 그래핀을 토출할 수 있다. In addition, in the case of the present invention, as shown in FIG. 6, the graphite-based material may be injected from one side of the cylindrical outer body 420, and the graphene may be discharged from the other side of the cylindrical outer body 420.
본 발명에서 이용되는 그라파이트계 물질은 일반적인 비팽창성 그라파이트, 압축된 상태의 팽창성 그라파이트 등이 될 수 있으며, 이들이 단독으로 혹은 2종 이상 혼용되어 투입될 수 있다. The graphite-based material used in the present invention may be general non-expandable graphite, expanded graphite in a compressed state, and the like, and these may be added alone or in combination.
다른 예로, 그라파이트계 물질은 그라파이트층간삽입화합물(Graphite Intercalation Compound)이 될 수 있다. 그라파이트층간삽입화합물의 경우, 그라파이트의 층간, 즉 그래핀 각 층 사이에 이종의 물질인 층간삽입종(intercalant)을 삽입한 그라파이트계 물질이다. 층간삽입종은 그라파이트의 그래핀 각 층간의 인력을 약화시켜 그라파이트의 층간 에너지를 낮추는 작용을 할 수 있으므로, 그라파이트층간삽입화합물의 경우 전단 유동시 그래핀의 박리 효율이 크게 향상될 수 있다. As another example, the graphite-based material may be a graphite intercalation compound. In the case of the graphite intercalation compound, it is a graphite-based material in which an intercalant, which is a heterogeneous material, is inserted between layers of graphite, that is, between layers of graphene. Since intercalation species may act to lower the interlayer energy of graphite by weakening the attraction between each layer of graphene of graphite, in the case of the graphite intercalation compound, the exfoliation efficiency of graphene may be greatly improved during shear flow.
그라파이트층간삽입화합물의 층간삽입종으로는 알칼리금속 및 알칼리 토금속을 1종 이상 포함한 화합물, 예를 들어 주석산나트륨칼륨(potassium sodium tartrate)을 제시할 수 있다. 이외에도 층간삽입종으로는 황산, 질산, 인산을 비롯한 유기산이 이용될 수 있다. 또한, 암모늄계 또는 이미다졸리움계 등의 이온성 액체(ionic liquid)도 층간삽입종으로 이용될 수 있다. 이들 층간삽입종들은 단독으로 혹은 2종 이상 혼합하여 사용 가능하다.As the intercalation species of the graphite intercalation compound, compounds containing at least one alkali metal and alkaline earth metal, for example, potassium sodium tartrate, can be given. In addition, as the intercalation species, organic acids including sulfuric acid, nitric acid and phosphoric acid may be used. In addition, ionic liquids such as ammonium or imidazolium may also be used as intercalation species. These intercalation species can be used alone or in combination of two or more.
유체에 포함되는 용매는 NMP(N-methyl-2-pyrrolidinone) 및 DMF(N,N- dimethylformamide) 중 1종 이상을 포함할 수 있다. 이들 NMP 및 DMF의 경우, 그래핀과 유사한 표면에너지를 갖는 특징이 있다. The solvent contained in the fluid may include one or more of N-methyl-2-pyrrolidinone (NMP) and N, N-dimethylformamide (DMF). In the case of these NMP and DMF, it is characterized by having a surface energy similar to graphene.
또한, 유체에는, 그라파이트계 물질의 박리 효율을 향상시키기 위하여 분산제를 더 포함할 수 있다. 분산제는 NaC(Sodium Cholate) PVA(poly vinyl alcohol), PVP(poly vinyl pyrrolidone), PSS (polystyrenesulfonate), DBSA(dodecylbenzene sulfonic acid) 및 이온성 액체(Ionic liquid) 중에서 1종 이상을 포함할 수 있다. In addition, the fluid may further include a dispersant to improve the peeling efficiency of the graphite-based material. The dispersant may include at least one of sodium cholate (NaC) poly vinyl alcohol (PVA), poly vinyl pyrrolidone (PVP), polystyrenesulfonate (PSS), dodecylbenzene sulfonic acid (DBSA), and an ionic liquid.
한편, 유체의 유동성을 보다 향상시키는 방법으로는 내측 바디(410)의 회전 속도를 500 rpm 이상, 보다 구체적으로는 500 rpm 이상 5,000 rpm사이로 조절하는 방법이 있다. 내측 바디(410)의 회전 속도가 빠를수록 유체의 회전 유동도 더 빠르게 나타나고, 그에 따라 그라파이트계 물질에 인가되는 전단력 역시 향상될 수 있다. 회전속도가 500 rpm 미만인 경우 테일러 유동층의 형성이 제한되며 유동층의 전단효율이 저하될 수 있어 불리하다. On the other hand, a method of further improving the fluidity of the fluid is a method of adjusting the rotational speed of the inner body 410 to 500 rpm or more, more specifically 500 rpm or more and 5,000 rpm. The faster the rotational speed of the inner body 410 is, the faster the rotational flow of the fluid appears, so that the shear force applied to the graphite-based material may also be improved. When the rotational speed is less than 500 rpm, the formation of the Taylor fluidized bed is limited and the shear efficiency of the fluidized bed may be deteriorated.
도 6은 본 발명의 실시예에 따른 그래핀 제조 장치를 개략적으로 나타낸 것이다.Figure 6 schematically shows a graphene manufacturing apparatus according to an embodiment of the present invention.
도 6을 참조하면, 본 발명에 따른 그래핀 제조 장치는 전술한 반응기, 투입구(601), 토출구(602) 및 구동부(610)를 포함한다. Referring to FIG. 6, the graphene manufacturing apparatus according to the present invention includes the reactor, the inlet 601, the outlet 602, and the driving unit 610.
반응기는 수평 방향으로 뻗어있는 내측 바디(410)와, 내측 바디에 이격된 상태로 내측 바디를 감싸는 원통형 외측 바디(420)를 포함한다. 내측 바디(410)와 원통형 외측 바디(420) 사이에는 반응 공간(430)이 형성되고, 반응 공간에 유체가 저장된다. 아울러 회전축(405)에 의해 내측 바디(410)는 회전하고 원통형 외측 바디(420)는 고정되어 있다. The reactor includes an inner body 410 extending in the horizontal direction and a cylindrical outer body 420 surrounding the inner body while being spaced apart from the inner body. The reaction space 430 is formed between the inner body 410 and the cylindrical outer body 420, and the fluid is stored in the reaction space. In addition, the inner body 410 is rotated by the rotating shaft 405 and the cylindrical outer body 420 is fixed.
투입구(601)는 원통형 외측 바디(420)의 일측에 형성되며, 그라파이트계 물질이 투입된다. 그라파이트계 물질만 투입될 수 있고, 그라파이트계 물질과 유체가 함께 투입될 수 있으며, 투입은 연속적으로 혹은 주기적으로 수행될 수 있다. The inlet 601 is formed on one side of the cylindrical outer body 420, the graphite-based material is injected. Only the graphite-based material may be added, the graphite-based material and the fluid may be added together, and the adding may be performed continuously or periodically.
토출구(602)는 원통형 외측 바디(420)의 타측에 형성되며, 반응 공간(430)에 저장되는 유체의 회전유동에 의해 발생하는 전단력에 의해 그라파이트가 박리되어 얻어지는 그래핀을 토출한다. The discharge port 602 is formed on the other side of the cylindrical outer body 420, and discharges the graphene obtained by the graphite is peeled off by the shear force generated by the rotational flow of the fluid stored in the reaction space 430.
토출된 결과물은 원심분리 등을 통하여 층수가 대략 10층 미만, 즉 1~9층인 그래핀과 그외 그라파이트계 물질, 용매 등으로 분리될 수 있다. 10층까지를 그래핀으로 정할 때, 10층 이상의 그라파이트계 물질, 용매 등은 투입구(601)를 통하여 다시 반응기로 투입될 수 있다. The discharged product may be separated into graphene, other graphite-based materials, solvents, and the like having a layer number of less than about 10 layers, that is, 1 to 9 layers, by centrifugation. When up to 10 layers are defined as graphene, more than 10 layers of graphite-based materials, solvents, and the like may be introduced back into the reactor through the inlet 601.
구동부(610)는 회전축(405)을 통하여 내측 바디(410) 및 원통형 외측 바디(420)를 회전시킨다. The driving unit 610 rotates the inner body 410 and the cylindrical outer body 420 through the rotation shaft 405.
이외에, 히터(620) 및 지지대(630)가 포함될 수 있다. In addition, the heater 620 and the support 630 may be included.
히터(620)는 유체를 가열하여 회전 유동을 보다 용이하게 하는데 기여할 수 있으며, 원통형 외측 바디(420)를 감싸는 형태로 형성될 수 있다. The heater 620 may contribute to facilitate the rotational flow by heating the fluid, and may be formed to surround the cylindrical outer body 420.
지지대(630)는 회전축(405)를 비롯한 반응기가 수평축을 기준으로 회전이 가능하도록 하는 역할을 한다. The support 630 serves to enable the reactor including the rotating shaft 405 to rotate about the horizontal axis.
상술한 바와 같이, 본 발명에 따른 그래핀 제조 방법에 의하면, 유체의 전단 유동을 이용하여 그라파이트를 효과적으로 박리할 수 있으며, 그래핀을 연속적으로 그리고 대량 제조할 수 있다. As described above, according to the graphene manufacturing method according to the present invention, it is possible to effectively exfoliate graphite using the shear flow of the fluid, it is possible to continuously and mass production of graphene.
아울러, 본 발명에 따른 그래핀 제조 방법의 경우, 산화/환원을 수반하지 않는 바, 고품질의 그래핀을 제조할 수 있으며, 제조 과정에서 강산이나 산폐액의 발생이 없는 경제적이고 친환경적인 방법에 해당한다.In addition, the graphene manufacturing method according to the present invention, which does not involve oxidation / reduction, can produce high quality graphene, and corresponds to an economical and eco-friendly method without generating strong acid or acid waste in the manufacturing process. do.
제조되는 그래핀은 인쇄형 전자 소자 제조를 위한 전도성 그래핀 잉크, 수퍼커패시터 등의 에너지 저장장치의 전극소재 분야, 방열 및 복합소재 등 다양한 분야에 활용될 수 있다. The graphene to be manufactured may be utilized in various fields such as electrode material fields of energy storage devices such as conductive graphene ink and supercapacitors for manufacturing printed electronic devices, heat dissipation, and composite materials.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 변형될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiments and can be modified in various forms, and having ordinary skill in the art to which the present invention pertains. It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
Claims (11)
- 반응기의 반응 공간에 저장된, 용매를 포함하는 유체에 그라파이트계 물질을 투입하는 단계; 및Injecting a graphite-based material into a fluid containing a solvent, which is stored in the reaction space of the reactor; And상기 그라파이트계 물질이 투입된 유체를 회전시켜, 유체의 회전 유동에 의해 발생하는 전단력(shear force)으로 그라파이트계 물질을 박리하여 그래핀을 제조하는 단계;를 포함하는 것을 특징으로 하는 그래핀 제조 방법. Rotating the fluid in which the graphite-based material is injected, the step of producing a graphene by peeling the graphite-based material with a shear force (shear force) generated by the rotational flow of the fluid; Graphene manufacturing method comprising a.
- 제1항에 있어서,The method of claim 1,상기 반응기는 The reactor is수평 방향으로 뻗어있는 내측 바디와, An inner body extending in the horizontal direction,상기 내측 바디에 이격된 상태로 상기 내측 바디를 감싸 내부에 반응 공간을 형성하는 원통형 외측 바디를 포함하는 것을 특징으로 하는 그래핀 제조 방법. Graphene manufacturing method comprising a cylindrical outer body surrounding the inner body in a state spaced apart from the inner body to form a reaction space therein.
- 제2항에 있어서,The method of claim 2,상기 원통형 외측 바디의 일측에서 그라파이트계 물질을 투입하고, Into the graphite-based material from one side of the cylindrical outer body,상기 원통형 외측 바디의 타측에서 그래핀을 토출하는 것을 특징으로 하는 그래핀 제조 방법. Graphene manufacturing method characterized in that for discharging graphene from the other side of the cylindrical outer body.
- 제1항에 있어서,The method of claim 1,상기 용매는 NMP(N-methyl-2-pyrrolidinone) 및 DMF(N,N- dimethylformamide) 중 1종 이상을 포함하는 것을 특징으로 하는 그래핀 제조 방법.The solvent is graphene manufacturing method characterized in that it comprises one or more of NMP (N-methyl-2-pyrrolidinone) and DMF (N, N- dimethylformamide).
- 제1항에 있어서,The method of claim 1,상기 유체는The fluid isNaC(Sodium Cholate) PVA(poly vinyl alcohol), PVP(poly vinyl pyrrolidone), PSS (polystyrenesulfonate), DBSA(dodecylbenzene sulfonic acid) 및 이온성 액체(Ionic liquid) 중에서 1종 이상을 포함하는 분산제를 더 포함하는 것을 특징으로 하는 그래핀 제조 방법. Further comprising a dispersant comprising at least one of sodium cholate (NaC) polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polystyrenesulfonate (PSS), dodecylbenzene sulfonic acid (DBSA) and ionic liquid (Ionic liquid) Graphene manufacturing method characterized in that.
- 제1항에 있어서,The method of claim 1,상기 유체를 가열한 상태에서 회전 유동시키는 것을 특징으로 하는 그래핀 제조 방법.Graphene manufacturing method, characterized in that for rotating the fluid in a heated state.
- 제2항에 있어서,The method of claim 2,상기 내측 바디의 회전 속도를 500 rpm 이상으로 조절하는 것을 특징으로 하는 그래핀 제조 방법. Graphene manufacturing method, characterized in that for adjusting the rotational speed of the inner body to 500 rpm or more.
- 제1항에 있어서, The method of claim 1,상기 그라파이트계 물질로 비팽창성 그라파이트 또는 압축된 상태의 팽창성 그라파이트를 이용하는 것을 특징으로 하는 그래핀 제조 방법. Graphite manufacturing method using a non-expandable graphite or expanded graphite in a compressed state as the graphite material.
- 제1항에 있어서, The method of claim 1,상기 그라파이트계 물질로 그라파이트의 각 층 사이에 층간삽입종(intercalant)이 삽입되어 있는 그라파이트층간삽입화합물(Graphite Intercalation Compound)을 이용하는 것을 특징으로 하는 그래핀 제조 방법. Graphite manufacturing method, characterized in that using a graphite intercalation compound (intercalant intercalation compound) is inserted between the layers of graphite as the graphite material.
- 제9항에 있어서,The method of claim 9,상기 층간삽입종은 알칼리금속 및 알칼리 토금속을 1종 이상 포함한 화합물, 황산, 질산, 인산 및 유기산, 이온성 액체(ionic liquid) 중에서 1종 이상을 포함하는 것을 특징으로 하는 그래핀 제조 방법.The intercalation species is graphene manufacturing method comprising at least one of compounds containing at least one alkali metal and alkaline earth metal, sulfuric acid, nitric acid, phosphoric acid and organic acid, ionic liquid (ionic liquid).
- 수평 방향으로 뻗어있는 내측 바디와, 상기 내측 바디에 이격된 상태로 상기 내측 바디를 감싸 내부에 반응 공간을 형성하는 원통형 외측 바디를 포함하는 반응기; A reactor including an inner body extending in a horizontal direction and a cylindrical outer body surrounding the inner body while being spaced apart from the inner body to form a reaction space therein;상기 원통형 외측 바디의 일측에 형성되며, 그라파이트계 물질이 투입되는 투입구;An inlet formed on one side of the cylindrical outer body and into which a graphite-based material is injected;상기 원통형 외측 바디의 타측에 형성되며, 상기 반응 공간에 저장되는 유체의 회전유동에 의해 발생하는 전단력에 의해 그라파이트가 박리되어 얻어지는 그래핀을 토출하는 토출구; 및A discharge port formed at the other side of the cylindrical outer body and discharging graphene obtained by peeling graphite by a shear force generated by a rotational flow of a fluid stored in the reaction space; And상기 내측 바디를 회전시키는 구동부;를 포함하는 것을 특징으로 하는 그래핀 제조 장치.Graphene manufacturing apparatus comprising a; drive unit for rotating the inner body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680028333.2A CN107624105B (en) | 2015-06-24 | 2016-05-31 | Preparation method and preparation device of high-quality graphene by utilizing shear flow |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150089523A KR101775610B1 (en) | 2015-06-24 | 2015-06-24 | Method of manufacturing graphene with high quality from graphite intercalation compound using shear flow |
KR10-2015-0089523 | 2015-06-24 | ||
KR10-2015-0089522 | 2015-06-24 | ||
KR1020150089522A KR101775609B1 (en) | 2015-06-24 | 2015-06-24 | Method of manufacturing graphene with high quality using shear flow and apparatus for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016208884A1 true WO2016208884A1 (en) | 2016-12-29 |
Family
ID=57585227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/005777 WO2016208884A1 (en) | 2015-06-24 | 2016-05-31 | Method and apparatus for preparing high-quality graphene using shear flow |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107624105B (en) |
WO (1) | WO2016208884A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106976870A (en) * | 2017-03-29 | 2017-07-25 | 天津工业大学 | Efficiently peel off the method that graphite powder prepares big size graphene |
CN107265445A (en) * | 2017-07-06 | 2017-10-20 | 东南大学 | A kind of green high-efficient of high-quality graphene prepares method |
CN110540193A (en) * | 2019-09-20 | 2019-12-06 | 上海大学 | Preparation method of press graphitized graphene film |
WO2020022839A1 (en) * | 2018-07-27 | 2020-01-30 | 주식회사 하윤 | Method for producing chemically modified graphene |
WO2020077004A1 (en) * | 2018-10-10 | 2020-04-16 | Cornell University | Continuous manufacture of graphenic compounds |
US10953380B1 (en) * | 2019-10-21 | 2021-03-23 | Global Graphene Group, Inc. | Continuous production of 2D inorganic compound platelets |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109205601A (en) * | 2018-10-20 | 2019-01-15 | 安徽省彤歌碳纳米材料有限公司 | A kind of method and device thereof preparing few uniform graphene of layer by zero distance shearing |
CN110042284A (en) * | 2019-05-08 | 2019-07-23 | 东南大学 | A kind of preparation method of high-strength aluminum alloy |
CN111484005A (en) * | 2020-01-17 | 2020-08-04 | 北京清烯科技有限公司 | A device for high-efficient manufacturing large tracts of land graphite alkene |
CN111484006A (en) * | 2020-01-17 | 2020-08-04 | 北京清烯科技有限公司 | Preparation method of large-area graphene |
CN111807354A (en) * | 2020-01-17 | 2020-10-23 | 北京清烯科技有限公司 | Efficient preparation method of large-area graphene |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120049679A (en) * | 2010-11-09 | 2012-05-17 | 한국전기연구원 | Manufacturing method of single-layered reduced graphene oxide dispersion solution using shear stress and the single-layered reduced graphene oxide dispersion solution thereby |
KR20130083128A (en) * | 2012-01-12 | 2013-07-22 | 주식회사 엔켐 | Method for producing graphene dispersed solution and powder thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104003375B (en) * | 2014-05-05 | 2015-11-25 | 北京航空航天大学 | A kind of preparation method of small size Graphene |
CN104477882B (en) * | 2014-10-23 | 2016-06-29 | 江阴碳谷科技有限公司 | A kind of eddy current type Graphene stripping off device, Graphene production system and production method |
CN104401970B (en) * | 2014-10-23 | 2016-06-29 | 江阴碳谷科技有限公司 | A kind of Clothoid type Graphene stripping off device, Graphene production system and production method |
-
2016
- 2016-05-31 WO PCT/KR2016/005777 patent/WO2016208884A1/en active Application Filing
- 2016-05-31 CN CN201680028333.2A patent/CN107624105B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120049679A (en) * | 2010-11-09 | 2012-05-17 | 한국전기연구원 | Manufacturing method of single-layered reduced graphene oxide dispersion solution using shear stress and the single-layered reduced graphene oxide dispersion solution thereby |
KR20130083128A (en) * | 2012-01-12 | 2013-07-22 | 주식회사 엔켐 | Method for producing graphene dispersed solution and powder thereof |
Non-Patent Citations (3)
Title |
---|
CHEN, XIANJUE ET AL.: "Vortex Fluidic Exfoliation of Graphite and Boron Nitride", CHEMICAL COMMUNICATIONS, vol. 48, no. 31, 2012, pages 3703 - 3705, XP055341038 * |
PARK, WON KYU ET AL.: "Facile Synthesis of Graphene Oxide in a Couette-Taylor Flow Reactor", CARBON, vol. 83, 20 November 2014 (2014-11-20), pages 217 - 223, XP029115880 * |
WAHID, M. HANIFF ET AL.: "Functional Multi-layer Graphene-algae Hybrid Material Formed Using Vortex Fluidics", GREEN CHEMISTRY, vol. 15, no. 3, 2013, pages 650 - 655, XP055326245 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106976870A (en) * | 2017-03-29 | 2017-07-25 | 天津工业大学 | Efficiently peel off the method that graphite powder prepares big size graphene |
CN106976870B (en) * | 2017-03-29 | 2018-12-25 | 天津工业大学 | The efficiently method that removing graphite powder prepares big size graphene |
CN107265445A (en) * | 2017-07-06 | 2017-10-20 | 东南大学 | A kind of green high-efficient of high-quality graphene prepares method |
WO2020022839A1 (en) * | 2018-07-27 | 2020-01-30 | 주식회사 하윤 | Method for producing chemically modified graphene |
KR20200012621A (en) * | 2018-07-27 | 2020-02-05 | 주식회사 하윤 | Method for Preparing Chemically Modified Graphene |
KR102277797B1 (en) * | 2018-07-27 | 2021-07-15 | 주식회사 하윤 | Method for Preparing Chemically Modified Graphene |
WO2020077004A1 (en) * | 2018-10-10 | 2020-04-16 | Cornell University | Continuous manufacture of graphenic compounds |
US12281015B2 (en) | 2018-10-10 | 2025-04-22 | Cornell University | Continuous manufacture of graphenic compounds |
CN110540193A (en) * | 2019-09-20 | 2019-12-06 | 上海大学 | Preparation method of press graphitized graphene film |
US10953380B1 (en) * | 2019-10-21 | 2021-03-23 | Global Graphene Group, Inc. | Continuous production of 2D inorganic compound platelets |
Also Published As
Publication number | Publication date |
---|---|
CN107624105A (en) | 2018-01-23 |
CN107624105B (en) | 2021-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016208884A1 (en) | Method and apparatus for preparing high-quality graphene using shear flow | |
KR101785374B1 (en) | Method of manufacturing non-oxidized graphene using shear flow exfoliation and electrochemical pretreatment and apparatus for manufacturing the same | |
KR101775610B1 (en) | Method of manufacturing graphene with high quality from graphite intercalation compound using shear flow | |
Usman et al. | Ti 3 C 2 T x MXene: from dispersions to multifunctional architectures for diverse applications | |
WO2017188564A1 (en) | Method for manufacturing graphene oxide fiber, graphene fiber, and graphene or graphene (oxide) composite fiber by using electric field-induced wet spinning process | |
CN104961113B (en) | A kind of method for preparing phosphorus alkene | |
CN104973591B (en) | High-quality graphene and preparation method thereof | |
CN104495810B (en) | Prepare the green method of Graphene on a large scale | |
WO2010090343A1 (en) | Fluid dispersion of graphitized carbon fragments and method of manufacturing the same | |
WO2010090480A2 (en) | Method for preparing carbon particles / copper composite materials | |
EP2570462B1 (en) | Method of producing graphene layers and paste comprising graphene nanoplatelets | |
US9745477B2 (en) | Method for uniform dispersion of single-wall carbon nanotubes | |
EP2920833A1 (en) | Film forming composition comprising graphene material and conducting polymer | |
CN107151002B (en) | A method of single layer or few layer boron nitride nanosheet are prepared by intercalator of the concentrated sulfuric acid | |
Wang et al. | Boosting ion diffusion kinetics of mxene inks with water‐in‐salt electrolyte for screen‐printed micro‐supercapacitors | |
CN104692363B (en) | Method for preparing graphene through hypergravity technology | |
CN114314574B (en) | A kind of preparation method of riboflavin sodium phosphate assisted large-scale graphene aqueous phase | |
WO2011055961A2 (en) | Method for manufacturing a composite carbon sheet by coating a mixed dispersion solution onto an expanded graphite sheet | |
JP2025087733A (en) | Improved lithium-ion batteries using high surface area nanotubes | |
US20210179880A1 (en) | Dispersions comprising high surface area nanotubes and discrete carbon nanotubes | |
CN113066673B (en) | Ti3C2Tx-TiO2 nanotube array self-supporting film electrode material and preparation method and application thereof | |
KR101775609B1 (en) | Method of manufacturing graphene with high quality using shear flow and apparatus for manufacturing the same | |
US20210047185A1 (en) | Lithium ion battery using high surface area nanotubes | |
CN105788874B (en) | A kind of composite graphite alkene paper and preparation method thereof | |
KR101992466B1 (en) | Method of manufacturing graphene from ternary graphite intercalation compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16814597 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16814597 Country of ref document: EP Kind code of ref document: A1 |