[go: up one dir, main page]

WO2016204411A1 - Ingot growing apparatus and growing method therefor - Google Patents

Ingot growing apparatus and growing method therefor Download PDF

Info

Publication number
WO2016204411A1
WO2016204411A1 PCT/KR2016/005045 KR2016005045W WO2016204411A1 WO 2016204411 A1 WO2016204411 A1 WO 2016204411A1 KR 2016005045 W KR2016005045 W KR 2016005045W WO 2016204411 A1 WO2016204411 A1 WO 2016204411A1
Authority
WO
WIPO (PCT)
Prior art keywords
ingot
diameter
silicon melt
measured
reference position
Prior art date
Application number
PCT/KR2016/005045
Other languages
French (fr)
Korean (ko)
Inventor
김윤구
Original Assignee
주식회사 엘지실트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지실트론 filed Critical 주식회사 엘지실트론
Publication of WO2016204411A1 publication Critical patent/WO2016204411A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/28Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using weight changes of the crystal or the melt, e.g. flotation methods
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to an ingot growth apparatus and a method for growing the same, which can accurately measure the diameter and position of the ingot at the silicon melt interface even when the seed cable is shaken.
  • CZ Czochralski
  • an inert gas is flowed into the chamber, a crucible provided in the chamber is heated to form a silicon melt, and a seed crystal, which is a seed crystal suspended on the end of the seed cable, is formed.
  • Single crystal silicon is grown in the silicon melt in the radial direction, and when the diameter of the ingot grows to the target diameter, the ingot suspended on the seed cable is grown in the longitudinal direction while maintaining the target diameter while the seed cable is wound up.
  • the diameter of the ingot is measured by a diameter measuring sensor in order to control the diameter of the ingot, and the pulling speed of the seed cable is controlled according to the measured value.
  • the diameter of the ingot is not only easy to control, but in order to maintain the quality uniformly, the ingot growth process in the silicon melt interface to control the position of the ingot to the center of the crucible.
  • FIG. 1 is a diagram illustrating an example in which a diameter sensor applied to a general ingot growth apparatus detects the diameter of an ingot.
  • the diameter sensor 1 detects a meniscus formed between the silicon melt surface and the ingot, from the meniscus through the central portion c of the diameter sensor 1. The intensity of the light is detected.
  • the diameter measuring sensor 1 is movable in the horizontal direction.
  • the central portion c of the diameter measuring sensor 1 moves from the meniscus as the diameter measuring sensor 1 moves.
  • the strength may be recognized, and the diameter of the ingot may be measured according to the moving distance of the diameter measuring sensor 1.
  • the seed cable may be shaken due to various factors, which is a limitation in accurately measuring the diameter of the ingot using a diameter measuring sensor.
  • Japanese Patent Laid-Open No. 2004-256340 discloses a pair of vibration preventing means disposed on both sides of the seed cable to prevent shaking of the seed cable, and the vibration preventing means mechanically pushes the seed cable in a lateral direction. Note is composed of forms.
  • the metal foreign matter dropped from the seed cable or the vibration damping means may contaminate the silicon melt, and further, the seed cable may be broken during the process. There is this.
  • the vibration preventing means can be moved to prevent the shaking of the seed cable at that point, but since the ingot is suspended from the seed cable, the position of the ingot at the actual silicon melt interface is equal to the distance of the seed cable. It is hard to see that it moved.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and provides an ingot growth apparatus and a method for growing the same, which can accurately measure the diameter and position of the ingot at the silicon melt interface even when the seed cable shakes. There is a purpose.
  • the present invention is a crucible containing a silicon melt; A seed cable provided at an upper side of the crucible and growing an ingot as the seed is immersed in the silicon melt; A diameter measuring sensor measuring a specific brightness of light at a boundary line between the silicon melt and the ingot while moving in a horizontal direction during the growth process of the ingot to measure the diameter of the ingot; An image sensor provided in a direction different from the diameter measuring sensor and measuring a predetermined reference position on an upper surface of the silicon melt; And a controller configured to correct the diameter of the ingot measured by the diameter sensor during the growth process of the ingot according to the change of the reference position measured by the image sensor.
  • the present invention is an ingot growth method of immersing a seed suspended in a seed cable in a silicon melt, and growing the ingot as it is slowly pulled, the light in the boundary between the silicon melt and the ingot while moving horizontally during the growth process of the ingot
  • a first step of measuring the diameter of the ingot by measuring a specific brightness of the A second step of measuring a predetermined reference position on the silicon melt upper surface in a direction different from the measurement position in the first step;
  • Ingot growth apparatus and growth method by providing an image sensor in a direction different from the ingot measuring sensor, by correcting the diameter of the ingot measured by the diameter measuring sensor according to the change of the reference position measured by the image sensor, accurate ingot The diameter of can be calculated.
  • the diameter and position of the ingot can be accurately calculated at the silicon melt interface.
  • FIG. 1 is a view illustrating an example in which a diameter measuring sensor applied to a general ingot growth apparatus detects the diameter of an ingot.
  • FIG. 2 is a view showing an example of an ingot growth apparatus according to the present invention.
  • FIG 3 is a view showing a reference position photographed in the image sensor applied to the present invention.
  • Figure 4 is a block diagram showing an example of the diameter control device in the present invention.
  • FIG. 5 is a flowchart illustrating an example of an ingot growth method according to the present invention.
  • An embodiment of the ingot growth apparatus the crucible containing the silicon melt; A seed cable provided at an upper side of the crucible and growing an ingot as the seed is immersed in the silicon melt; A diameter measuring sensor measuring a specific brightness of light at a boundary line between the silicon melt and the ingot while moving in a horizontal direction during the growth process of the ingot to measure the diameter of the ingot; An image sensor provided in a direction different from the diameter measuring sensor and measuring a predetermined reference position on an upper surface of the silicon melt; And a controller configured to correct the diameter of the ingot measured by the diameter sensor during the growth process of the ingot according to the change of the reference position measured by the image sensor.
  • the image sensor is composed of a camera fixed to a specific position to take an image, and is located in the opposite direction to the diameter measuring sensor.
  • the image sensor selects an arc of a specific length from an image of a portion of the circumference of the ingot on the silicon melt upper surface, and coordinates indicating the centers of two straight lines perpendicular to each other based on the arc. Measure to the reference position.
  • control unit selects an arc of a specific length from an image of a portion of the circumference of the ingot from the upper surface of the silicon melt when the diameter of the ingot becomes the target diameter, and orthogonal to each other based on the arc.
  • an input unit configured to receive coordinates representing centers of two straight lines as a reference value, and a calculation unit calculating a moving distance of the reference position by comparing the reference position measured by the image sensor with the reference value.
  • control unit the diameter D 0 of the ingot measured by the diameter measuring sensor, the moving distance R of the reference position measured by the image sensor, the image sensor from the diameter measuring sensor based on the center of the ingot
  • it includes a calculation unit for calculating the diameter correction value D 1 of the ingot by the following equation.
  • an embodiment of the ingot growth method in the ingot growth method of immersing the seed suspended in the seed cable in the silicon melt, and growing the ingot by gradually pulling, the silicon while moving horizontally in the growth process of the ingot A first step of measuring a diameter of an ingot by measuring a specific brightness of light at a boundary between the melt and the ingot; A second step of measuring a predetermined reference position on the silicon melt upper surface in a direction different from the measurement position in the first step; And a third step of correcting the diameter of the ingot measured in the first step according to the change of the reference position measured in the second step.
  • the third step at a time when the diameter of the ingot becomes the target diameter, two arcs orthogonal to each other based on the arc are selected from the upper surface of the silicon melt, the arc having a specific length that is a part of the circumference of the ingot.
  • the ingot diameter D 0 measured in the first step, the moving distance R of the reference position measured in the second step, and the diameter of the ingot based on the center of the ingot may be calculated by the following equation.
  • FIG. 2 is a view showing an example of an ingot growth apparatus according to the present invention
  • Figure 3 is a view showing a reference position photographed in the image sensor applied to the present invention.
  • the crucible 120, the heater 130, the cooling member 140 and the seed to grow the ingot (IG) inside the chamber 110 as shown in Figures 2 and 3
  • the cable 160 and the pulling speed controller 170 are provided, and the diameter measuring sensor 210 and the image sensor 220 and the control unit 230 to accurately measure the diameter of the ingot IG outside the chamber 110. Is provided.
  • the chamber 110 provides a predetermined closed space in which the ingot IG is grown, and an inlet 150 is provided at one upper side to allow an inert gas such as Ar to flow from the upper side to the lower side, and various components are provided. It is mounted inside / outside.
  • first and second view ports W1 and W2 are provided at both upper portions of the chamber 110 to observe the inside thereof, and the diameter measuring sensor 210 and the image sensor 220 to be described below. Is provided outside the first and second view ports W1 and W2.
  • the crucible 120 is a container containing the silicon melt, and is rotatably installed inside the chamber 110. At this time, the crucible 120 is configured in a form that overlaps the quartz crucible and the graphite crucible so as to withstand the inflow of impurities and at the same time withstand high temperature.
  • the heater 130 is provided around the crucible 120, and as the crucible 120 is heated, the raw material of the poly form contained in the crucible 120 is liquefied into a silicon melt.
  • the cooling member 140 is provided to directly cool the ingot IG grown from the high temperature silicon melt, and is installed to hang above the crucible 120 and is grown from the silicon melt contained in the crucible 120. It is installed to surround the ingot IG at a predetermined interval.
  • the seed cable 160 is composed of a plurality of wires twisted, and has a strength and elasticity to lift a heavy ingot.
  • a seed chuck on the bottom of the seed cable 160 is provided with a seed that is a seed crystal.
  • the pulling speed controller 170 is configured to control the pulling speed of the seed cable 160.
  • the seed cable 160 is a cylindrical drum which can be wound and released and a motor for rotating the drum. It may include, and may be an ADC (auto diameter controller) sensor unit to adjust the pulling speed in accordance with the diameter correction value of the ingot in conjunction with the control unit 230 to be described below, it is not limited.
  • ADC auto diameter controller
  • the diameter measuring sensor 210 is installed to be movable in a horizontal direction outside the first view port W1 and is configured to measure a specific brightness of light emitted from the meniscus. That is, the diameter of the ingot may be measured according to the moving distance of the diameter measuring sensor 210.
  • the diameter measuring sensor 210 detects that the measured diameter of the ingot is changed.
  • the image sensor 220 is installed in a fixed form outside the second view port W2 and has a camera shape capable of capturing a predetermined reference position.
  • the image sensor 220 is provided in a different direction from the diameter measuring sensor 210, it is limited to the reference provided in the opposite direction in the embodiment.
  • the reference position of the image sensor 220 selects an arc A of a specific length from an image of a portion of the circumference of the ingot on the upper surface of the silicon melt, as shown in FIG. It is measured by the coordinates (X, Y) representing the centers of two straight lines perpendicular to each other.
  • the image sensor 220 may detect that the position of the ingot is changed by shaking the seed cable 160 by measuring a reference position, and calculating the diameter correction value D 1 of the ingot below. Applicable
  • the control unit 230 is provided to control the factors affecting the ingot growth process, in the embodiment corrects the diameter measurement value (D 0 ) of the ingot according to the change (R) of the reference position, the diameter of the ingot It is limited to controlling the pulling speed P / S according to the value D 1 , which will be described in detail below.
  • Figure 4 is a block diagram showing an example of the diameter control device applied to the ingot growth apparatus according to the present invention.
  • the diameter control device applied to the present invention includes a diameter measuring sensor 210, an image sensor 220, a control unit 230 including an input unit 231 and a calculation unit 232, and a pulling speed. It is configured to include a controller 170.
  • a user inputs a reference value (X 0 , Y 0 ) through the input unit 231, and selects an arc of a specific length, which is a part of the circumference of the ingot, from the upper surface of the silicon melt at the time when the ingot becomes the target diameter, Coordinates representing the centers of two straight lines perpendicular to each other based on the arc are input as reference values (X 0 , Y 0 ).
  • the diameter sensor 210 and the image sensor 220 measures the diameter (D 0 ) and the reference position (X 1 , Y 1 ) of the ingot in the opposite direction, respectively.
  • the calculator 232 compares the reference values (X 0 , Y 0 ) with the measured reference positions (X 1 , Y 1 ) to calculate the movement distance (R) of the reference position, and then the following [Equation 1] ] Can calculate the diameter correction value (D 1 ) of the ingot, a correction factor can be added according to the process conditions.
  • D 0 is the diameter of the ingot measured by the diameter measuring sensor 210
  • R is the moving distance of the reference position measured by the image sensor 220
  • is the diameter measurement based on the center of the ingot
  • the image sensor 220 is positioned at an angle from the sensor 210.
  • the diameter correction value D 1 becomes a value obtained by subtracting the moving distance from the diameter measuring value D 0 .
  • (R) may be +, 0,-.
  • the pulling speed controller 170 pulls speed according to the diameter correction value D 1 of the ingot. ), So that the diameter of the ingot can be controlled to exactly match the target diameter.
  • FIG. 5 is a flowchart illustrating an example of an ingot growth method according to the present invention.
  • Ingot growth method of the present invention proceeds the ingot body growth process at the set pulling speed (P / S) as shown in Figure 5, the operator inputs a reference value (see S1, S2).
  • the operator selects an arc (A) of a specific length, which is a part of the circumference of the ingot, when the diameter (D) of the ingot becomes the target diameter (D T ), and the two straight lines perpendicular to each other based on the arc (A) are selected.
  • reference values X 0 , Y 0 .
  • the diameter (D 0 ) of the ingot is measured in a predetermined direction, and the reference position (X 1 , Y 1 ) of the ingot is measured in the opposite direction (see S3 and S4).
  • the diameter (D 0 ) of the ingot and the reference position (X 1 , Y 1 ) of the ingot are measured in different directions with respect to the circumference of the ingot.
  • the diameter as the measuring sensor is moved by measuring the specific brightness of the meniscus, by measuring a point on the other hand for measuring the diameter (D 0) of the ingot, the meniscus in the image sensor is fixed, the ingot Measure the reference position of (X 1 , Y 1 ).
  • the relative position angle ⁇ of the diameter sensor and the image sensor is also set in advance, which is applied in the following to calculate the diameter correction value D 1 of the ingot.
  • the moving distance R is calculated from the reference values X 0 and Y 0 and the reference positions X 1 and Y 1 of the ingot (see S5).
  • the movement distance R may be +, 0,-, and when the movement distance R is +,-, as described above, the seed cable may be shaken to determine that the position of the ingot is changed.
  • the diameter correction value D 1 of the ingot is calculated according to the movement distance R and the measurement position ⁇ (see S6).
  • the diameter correction value D 1 of the ingot may be calculated by Equation 1 described above, and the diameter measurement value D 0 is corrected in consideration of the moving distance R and the measurement position ⁇ . .
  • the pulling speed P / S of the ingot is controlled according to the diameter correction value D 1 of the ingot (see S7).
  • the diameter and position of the ingot can be accurately calculated at the silicon melt interface.
  • the present invention can be applied to an ingot growth apparatus for growing a single crystal ingot by the Czochralski method and its growth method, whereby the quality of the single crystal ingot can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The present invention relates to an ingot growing apparatus and a growing method therefor, which can accurately measure the diameter and position of an ingot at the surface of molten silicon even when shaking of a seed cable occurs. In the ingot growing apparatus and the growing method therefor according to the present invention, an image sensor is provided in a different direction from the direction of an ingot measurement sensor, so that the diameter of an ingot can be accurately calculated by correcting the diameter of the ingot, measured by a diameter measurement sensor, depending on a change in the reference position, measured by the image sensor.

Description

잉곳 성장장치 및 그 성장방법Ingot growth apparatus and its growth method
본 발명은 시드 케이블의 흔들림이 발생되더라도 실리콘 융액 계면에서 잉곳의 직경 및 위치를 정확하게 측정할 수 있는 잉곳 성장장치 및 그 성장방법에 관한 것이다.The present invention relates to an ingot growth apparatus and a method for growing the same, which can accurately measure the diameter and position of the ingot at the silicon melt interface even when the seed cable is shaken.
일반적으로 웨이퍼를 제조하기 위하여 단결정 실리콘을 잉곳 형태로 성장시키는 초크랄스키(CZ)법이 많이 사용되고 있다.In general, the Czochralski (CZ) method of growing single crystal silicon in an ingot form is widely used to manufacture a wafer.
초크랄스키법에 의한 잉곳 성장 공정을 살펴보면, 챔버 내부에 불활성 기체를 유동시키고, 챔버 내부에 구비된 도가니를 가열하여 실리콘 융액을 만든 다음, 시드 케이블의 끝단에 매달린 종자결정인 시드(seed)를 실리콘 융액에 넣어 단결정 실리콘을 직경 방향으로 성장시키고, 타겟 직경까지 잉곳의 직경이 성장하면, 시드 케이블을 감아 올리면서 시드 케이블에 매달린 잉곳을 타겟 직경을 유지하면서 길이 방향으로 성장시킨다.In the growth process of the ingot by the Czochralski method, an inert gas is flowed into the chamber, a crucible provided in the chamber is heated to form a silicon melt, and a seed crystal, which is a seed crystal suspended on the end of the seed cable, is formed. Single crystal silicon is grown in the silicon melt in the radial direction, and when the diameter of the ingot grows to the target diameter, the ingot suspended on the seed cable is grown in the longitudinal direction while maintaining the target diameter while the seed cable is wound up.
이때, 잉곳의 직경을 제어하기 위하여 직경측정센서에 의해 잉곳의 직경을 측정하고, 그 측정값에 따라 시드 케이블의 인상속도를 제어한다.At this time, the diameter of the ingot is measured by a diameter measuring sensor in order to control the diameter of the ingot, and the pulling speed of the seed cable is controlled according to the measured value.
또한, 잉곳의 직경 제어가 용이할 뿐 아니라 품질을 균일하게 유지하기 위하여 잉곳 성장 공정 시 실리콘 융액 계면에서 잉곳의 위치를 도가니 중심에 맞추도록 제어한다.In addition, the diameter of the ingot is not only easy to control, but in order to maintain the quality uniformly, the ingot growth process in the silicon melt interface to control the position of the ingot to the center of the crucible.
도 1은 일반적인 잉곳 성장장치에 적용된 직경측정센서가 잉곳의 직경을 감지하는 일예가 도시된 도면이다.1 is a diagram illustrating an example in which a diameter sensor applied to a general ingot growth apparatus detects the diameter of an ingot.
도 1에 도시된 바와 같이 직경측정센서(1)는 실리콘 융액면과 잉곳 사이에 형성된 메니스커스(maniscus)를 감지하는데, 상기 직경측정센서(1)의 중심부(c)를 통하여 메니스커스로부터 빛의 세기를 감지하게 된다.As shown in FIG. 1, the diameter sensor 1 detects a meniscus formed between the silicon melt surface and the ingot, from the meniscus through the central portion c of the diameter sensor 1. The intensity of the light is detected.
물론, 상기 직경측정센서(1)는 수평 방향으로 이동 가능하다.Of course, the diameter measuring sensor 1 is movable in the horizontal direction.
따라서, 직경이 작아짐에 따라 메니스커스의 위치가 P1에서 P3로 이동하면, 상기 직경측정센서(1)가 이동함에 따라 상기 직경측정센서(1)의 중심부(c)가 메니스커스로부터 빛의 세기를 인식하게 되고, 상기 직경측정센서(1)의 이동 거리에 따라 잉곳의 직경을 측정할 수 있다.Therefore, when the position of the meniscus moves from P1 to P3 as the diameter decreases, the central portion c of the diameter measuring sensor 1 moves from the meniscus as the diameter measuring sensor 1 moves. The strength may be recognized, and the diameter of the ingot may be measured according to the moving distance of the diameter measuring sensor 1.
그런데, 시드 케이블에 중량이 큰 잉곳이 매달린 형태로 바디 성장 공정이 진행되기 때문에 여러 가지 요인으로 시드 케이블의 흔들림이 발생될 수 있으며, 이로 인하여 직경측정센서를 이용하여 잉곳의 직경을 정확하게 측정하는데 한계가 있으며, 나아가 잉곳의 직경을 제어하거나, 잉곳의 위치를 도가니의 중심에 맞추도록 제어하기 어려운 문제점이 있다.However, since the body growth process proceeds in the form of a heavy ingot suspended on the seed cable, the seed cable may be shaken due to various factors, which is a limitation in accurately measuring the diameter of the ingot using a diameter measuring sensor. In addition, there is a problem that it is difficult to control the diameter of the ingot, or to control the position of the ingot to the center of the crucible.
일본공개특허 제2004-256340호에는 시드 케이블의 흔들림을 방지하기 위하여 시드 케이블의 양측에 배치된 한 쌍의 진동방지수단이 개시되고 있으며, 상기 진동방지수단은 상기 시드 케이블을 측면 방향에서 기계적으로 밀어주는 형태로 구성된다.Japanese Patent Laid-Open No. 2004-256340 discloses a pair of vibration preventing means disposed on both sides of the seed cable to prevent shaking of the seed cable, and the vibration preventing means mechanically pushes the seed cable in a lateral direction. Note is composed of forms.
그러나, 종래 기술에 따르면, 시드 케이블과 진동방지수단이 직접적으로 마찰되기 때문에 시드 케이블 또는 진동방지수단에서 떨어져 나온 메탈 이물질이 실리콘 융액을 오염시킬 수 있고, 나아가 공정 중에 시드 케이블이 끊어질 수 있는 문제점이 있다. However, according to the prior art, since the seed cable and the vibration damping means are directly rubbed, the metal foreign matter dropped from the seed cable or the vibration damping means may contaminate the silicon melt, and further, the seed cable may be broken during the process. There is this.
또한, 종래 기술에 따르면, 진동방지수단을 이동시켜 그 지점에서 시드 케이블의 흔들림을 방지할 수 있지만, 잉곳이 시드 케이블에 매달린 상태이기 때문에 실제 실리콘 융액 계면에서 잉곳의 위치가 시드 케이블의 이동 거리 만큼 움직인 것으로 보기 어렵다.Further, according to the prior art, the vibration preventing means can be moved to prevent the shaking of the seed cable at that point, but since the ingot is suspended from the seed cable, the position of the ingot at the actual silicon melt interface is equal to the distance of the seed cable. It is hard to see that it moved.
따라서, 종래의 진동방지수단이 이동한 거리를 이용하여 실리콘 융액 계면에서 잉곳의 직경 및 위치를 정확하게 파악하기 어렵고, 이로 인하여 잉곳의 직경을 제어하거나, 잉곳의 위치를 도가니의 중심에 맞추도록 제어하기 어려운 문제점이 있다.Therefore, it is difficult to accurately determine the diameter and position of the ingot at the silicon melt interface by using the distance traveled by the conventional vibration preventing means, thereby controlling the diameter of the ingot or controlling the position of the ingot to the center of the crucible. There is a difficult problem.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 시드 케이블의 흔들림이 발생되더라도 실리콘 융액 계면에서 잉곳의 직경 및 위치를 정확하게 측정할 수 있는 잉곳 성장장치 및 그 성장방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems of the prior art, and provides an ingot growth apparatus and a method for growing the same, which can accurately measure the diameter and position of the ingot at the silicon melt interface even when the seed cable shakes. There is a purpose.
본 발명은 실리콘 융액이 담기는 도가니; 상기 도가니 상측에 구비되고, 상기 실리콘 융액에 잠긴 시드를 인상함에 따라 잉곳을 성장시키는 시드 케이블; 상기 잉곳의 성장 공정 중 수평 방향으로 이동하면서 상기 실리콘 융액과 잉곳 사이의 경계선에서 빛의 특정 밝기를 측정하여 잉곳의 직경을 측정하는 직경측정센서; 상기 직경측정센서와 다른 방향에 구비되고, 상기 실리콘 융액 상면에서 소정의 기준 위치를 측정하는 이미지 센서; 및 상기 잉곳의 성장 공정 중 상기 직경측정센서에서 측정된 잉곳의 직경을 상기 이미지 센서에서 측정된 기준 위치의 변화에 따라 보정하는 제어부;를 포함하는 잉곳 성장장치를 제공한다.The present invention is a crucible containing a silicon melt; A seed cable provided at an upper side of the crucible and growing an ingot as the seed is immersed in the silicon melt; A diameter measuring sensor measuring a specific brightness of light at a boundary line between the silicon melt and the ingot while moving in a horizontal direction during the growth process of the ingot to measure the diameter of the ingot; An image sensor provided in a direction different from the diameter measuring sensor and measuring a predetermined reference position on an upper surface of the silicon melt; And a controller configured to correct the diameter of the ingot measured by the diameter sensor during the growth process of the ingot according to the change of the reference position measured by the image sensor.
한편, 본 발명은 시드 케이블에 매달린 시드를 실리콘 융액에 담그고, 서서히 인상함에 따라 잉곳을 성장시키는 잉곳 성장방법에 있어서, 상기 잉곳의 성장 공정 중 수평 이동하면서 상기 실리콘 융액과 상기 잉곳 사이의 경계선에서 빛의 특정 밝기를 측정하여 잉곳의 직경을 측정하는 제1단계; 상기 제1단계에서 측정 위치와 다른 방향에서 상기 실리콘 융액 상면에서 소정의 기준 위치를 측정하는 제2단계; 및 상기 제1단계에서 측정된 잉곳의 직경을 상기 제2단계에서 측정된 기준 위치의 변화에 따라 보정하는 제3단계;를 포함하는 잉곳 성장방법을 제공한다.On the other hand, the present invention is an ingot growth method of immersing a seed suspended in a seed cable in a silicon melt, and growing the ingot as it is slowly pulled, the light in the boundary between the silicon melt and the ingot while moving horizontally during the growth process of the ingot A first step of measuring the diameter of the ingot by measuring a specific brightness of the; A second step of measuring a predetermined reference position on the silicon melt upper surface in a direction different from the measurement position in the first step; And a third step of correcting the diameter of the ingot measured in the first step according to the change of the reference position measured in the second step.
본 발명에 따른 잉곳 성장장치 및 그 성장방법은 잉곳측정센서와 다른 방향에 이미지 센서를 구비함으로써, 직경측정센서에서 측정된 잉곳의 직경을 이미지 센서에서 측정된 기준 위치의 변화에 따라 보정하여 정확한 잉곳의 직경을 산출할 수 있다.Ingot growth apparatus and growth method according to the present invention by providing an image sensor in a direction different from the ingot measuring sensor, by correcting the diameter of the ingot measured by the diameter measuring sensor according to the change of the reference position measured by the image sensor, accurate ingot The diameter of can be calculated.
따라서, 시드 케이블의 흔들림이 발생되더라도 실리콘 융액 계면에서 잉곳의 직경 및 위치를 정확하게 산출할 수 있다.Therefore, even if shaking of the seed cable occurs, the diameter and position of the ingot can be accurately calculated at the silicon melt interface.
나아가, 잉곳의 직경을 타겟 직경에 맞추어 정밀하게 제어함으로써, 웨이퍼의 직경 편차를 줄일 수 있는 이점이 있다.Further, by precisely controlling the diameter of the ingot in accordance with the target diameter, there is an advantage that can reduce the diameter deviation of the wafer.
또한, 실리콘 융액 계면에서 잉곳의 위치를 도가니의 중심에 맞추어 제어함으로써, 잉곳의 반경 방향 또는 길이 방향으로 웨이퍼의 품질을 균일하게 유지시킬 수 있는 이점이 있다.In addition, by controlling the position of the ingot at the silicon melt interface in accordance with the center of the crucible, there is an advantage that the quality of the wafer can be maintained uniformly in the radial or longitudinal direction of the ingot.
도 1은 일반적인 잉곳 성장장치에 적용된 직경측정센서가 잉곳의 직경을 감지하는 일예가 도시된 도면.1 is a view illustrating an example in which a diameter measuring sensor applied to a general ingot growth apparatus detects the diameter of an ingot.
도 2는 본 발명에 따른 잉곳 성장장치 일예가 도시된 도면.2 is a view showing an example of an ingot growth apparatus according to the present invention.
도 3은 본 발명에 적용된 이미지 센서에서 촬영된 기준 위치가 도시된 도면.3 is a view showing a reference position photographed in the image sensor applied to the present invention.
도 4는 본 발명에 직경제어장치 일예가 도시된 블럭도.Figure 4 is a block diagram showing an example of the diameter control device in the present invention.
도 5는 본 발명에 따른 잉곳 성장방법 일예가 도시된 순서도.5 is a flowchart illustrating an example of an ingot growth method according to the present invention.
본 발명에 따른 잉곳 성장장치의 실시예는, 실리콘 융액이 담기는 도가니; 상기 도가니 상측에 구비되고, 상기 실리콘 융액에 잠긴 시드를 인상함에 따라 잉곳을 성장시키는 시드 케이블; 상기 잉곳의 성장 공정 중 수평 방향으로 이동하면서 상기 실리콘 융액과 잉곳 사이의 경계선에서 빛의 특정 밝기를 측정하여 잉곳의 직경을 측정하는 직경측정센서; 상기 직경측정센서와 다른 방향에 구비되고, 상기 실리콘 융액 상면에서 소정의 기준 위치를 측정하는 이미지 센서; 및 상기 잉곳의 성장 공정 중 상기 직경측정센서에서 측정된 잉곳의 직경을 상기 이미지 센서에서 측정된 기준 위치의 변화에 따라 보정하는 제어부;를 포함한다.An embodiment of the ingot growth apparatus according to the present invention, the crucible containing the silicon melt; A seed cable provided at an upper side of the crucible and growing an ingot as the seed is immersed in the silicon melt; A diameter measuring sensor measuring a specific brightness of light at a boundary line between the silicon melt and the ingot while moving in a horizontal direction during the growth process of the ingot to measure the diameter of the ingot; An image sensor provided in a direction different from the diameter measuring sensor and measuring a predetermined reference position on an upper surface of the silicon melt; And a controller configured to correct the diameter of the ingot measured by the diameter sensor during the growth process of the ingot according to the change of the reference position measured by the image sensor.
바람직하게는, 상기 이미지 센서는, 특정 위치에 고정되어 영상을 촬영하는 카메라로 구성되고, 상기 직경측정센서와 반대 방향에 위치된다.Preferably, the image sensor is composed of a camera fixed to a specific position to take an image, and is located in the opposite direction to the diameter measuring sensor.
더욱 바람직하게는, 상기 이미지 센서는, 상기 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간을 촬영한 이미지로부터 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준 위치로 측정한다.More preferably, the image sensor selects an arc of a specific length from an image of a portion of the circumference of the ingot on the silicon melt upper surface, and coordinates indicating the centers of two straight lines perpendicular to each other based on the arc. Measure to the reference position.
바람직하게는, 상기 제어부는, 상기 잉곳의 직경이 타겟 직경이 되는 시점에 상기 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간을 촬영한 이미지로부터 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준값으로 입력받는 입력부와, 상기 이미지 센서에서 측정된 기준 위치를 상기 기준값과 비교하여 기준 위치의 이동 거리를 산출하는 연산부를 포함한다.Preferably, the control unit selects an arc of a specific length from an image of a portion of the circumference of the ingot from the upper surface of the silicon melt when the diameter of the ingot becomes the target diameter, and orthogonal to each other based on the arc. And an input unit configured to receive coordinates representing centers of two straight lines as a reference value, and a calculation unit calculating a moving distance of the reference position by comparing the reference position measured by the image sensor with the reference value.
더욱 바람직하게는, 상기 제어부는, 상기 직경측정센서에서 측정된 잉곳의 직경 D0, 상기 이미지 센서에서 측정된 기준 위치의 이동 거리 R, 상기 잉곳의 중심을 기준으로 상기 직경측정센서로부터 상기 이미지 센서가 위치한 각도 θ 인 경우, 상기 잉곳의 직경 보정값 D1 을 하기의 수학식에 의해 산출하는 연산부를 포함한다.More preferably, the control unit, the diameter D 0 of the ingot measured by the diameter measuring sensor, the moving distance R of the reference position measured by the image sensor, the image sensor from the diameter measuring sensor based on the center of the ingot In the case where is located θ, it includes a calculation unit for calculating the diameter correction value D 1 of the ingot by the following equation.
Figure PCTKR2016005045-appb-I000001
Figure PCTKR2016005045-appb-I000001
한편, 본 발명에 따른 잉곳 성장방법의 실시예는, 시드 케이블에 매달린 시드를 실리콘 융액에 담그고, 서서히 인상함에 따라 잉곳을 성장시키는 잉곳 성장방법에 있어서, 상기 잉곳의 성장 공정 중 수평 이동하면서 상기 실리콘 융액과 상기 잉곳 사이의 경계선에서 빛의 특정 밝기를 측정하여 잉곳의 직경을 측정하는 제1단계; 상기 제1단계에서 측정 위치와 다른 방향에서 상기 실리콘 융액 상면에서 소정의 기준 위치를 측정하는 제2단계; 및 상기 제1단계에서 측정된 잉곳의 직경을 상기 제2단계에서 측정된 기준 위치의 변화에 따라 보정하는 제3단계;를 포함한다.On the other hand, an embodiment of the ingot growth method according to the present invention, in the ingot growth method of immersing the seed suspended in the seed cable in the silicon melt, and growing the ingot by gradually pulling, the silicon while moving horizontally in the growth process of the ingot A first step of measuring a diameter of an ingot by measuring a specific brightness of light at a boundary between the melt and the ingot; A second step of measuring a predetermined reference position on the silicon melt upper surface in a direction different from the measurement position in the first step; And a third step of correcting the diameter of the ingot measured in the first step according to the change of the reference position measured in the second step.
바람직하게는, 상기 제2단계는, 상기 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간을 이미지로 촬영하는 제1과정과, 상기 제1과정에서 촬영한 이미지로부터 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준 위치로 측정하는 제2과정을 포함한다.Preferably, in the second step, a first process of photographing a portion of the circumference of the ingot as an image on the upper surface of the silicon melt, and selecting an arc of a specific length from the image photographed in the first process, And a second process of measuring coordinates representing the centers of two straight lines perpendicular to each other as a reference position.
바람직하게는, 상기 제3단계는, 상기 잉곳의 직경이 타겟 직경이 되는 시점에 상기 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간인 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준값으로 입력받는 제1과정과, 상기 제2단계에서 측정된 기준 위치를 상기 기준값과 비교하여 기준 위치의 이동 거리를 산출하는 제2과정을 포함한다.Preferably, in the third step, at a time when the diameter of the ingot becomes the target diameter, two arcs orthogonal to each other based on the arc are selected from the upper surface of the silicon melt, the arc having a specific length that is a part of the circumference of the ingot. A first step of receiving a coordinate representing the center of the straight line as a reference value, and a second step of calculating the moving distance of the reference position by comparing the reference position measured in the second step with the reference value.
더욱 바람직하게는, 상기 제3단계는, 상기 제1단계에서 측정된 잉곳의 직경 D0, 상기 제2단계에서 측정된 기준 위치의 이동 거리 R, 상기 잉곳의 중심을 기준으로 상기 잉곳의 직경을 측정한 지점과 상기 기준 위치를 측정한 지점 사이의 각도 θ 인 경우, 상기 잉곳의 직경 보정값 D1 을 하기의 수학식에 의해 산출하는 과정을 포함한다.More preferably, in the third step, the ingot diameter D 0 measured in the first step, the moving distance R of the reference position measured in the second step, and the diameter of the ingot based on the center of the ingot. In the case of an angle θ between the measured point and the measured point of the reference position, the diameter correction value D 1 of the ingot may be calculated by the following equation.
Figure PCTKR2016005045-appb-I000002
Figure PCTKR2016005045-appb-I000002
이하에서는, 본 실시예에 대하여 첨부되는 도면을 참조하여 상세하게 살펴보도록 한다. 다만, 본 실시예가 개시하는 사항으로부터 본 실시예가 갖는 발명의 사상의 범위가 정해질 수 있을 것이며, 본 실시예가 갖는 발명의 사상은 제안되는 실시예에 대하여 구성요소의 추가, 삭제, 변경 등의 실시변형을 포함한다고 할 것이다. Hereinafter, with reference to the accompanying drawings for the present embodiment will be described in detail. However, the scope of the inventive idea of the present embodiment may be determined from the matters disclosed by the present embodiment, and the inventive idea of the present embodiment may be implemented by adding, deleting, or modifying components to the proposed embodiment. It will be said to include variations.
도 2는 본 발명에 따른 잉곳 성장장치 일예가 도시된 도면이고, 도 3은 본 발명에 적용된 이미지 센서에서 촬영된 기준 위치가 도시된 도면이다.2 is a view showing an example of an ingot growth apparatus according to the present invention, Figure 3 is a view showing a reference position photographed in the image sensor applied to the present invention.
본 발명에 따른 잉곳 성장장치는 도 2 및 도 3에 도시된 비와 같이 챔버(110) 내측에 잉곳(IG)을 성장시키기 위하여 도가니(120)와 히터(130)와 냉각부재(140)와 시드 케이블(160) 및 인상속도 제어기(170)가 구비되고, 상기 챔버(110) 외측에 잉곳(IG)의 직경을 정확하게 측정하기 위하여 직경측정센서(210)와 이미지센서(220) 및 제어부(230)가 구비된다.Ingot growth apparatus according to the present invention, the crucible 120, the heater 130, the cooling member 140 and the seed to grow the ingot (IG) inside the chamber 110, as shown in Figures 2 and 3 The cable 160 and the pulling speed controller 170 are provided, and the diameter measuring sensor 210 and the image sensor 220 and the control unit 230 to accurately measure the diameter of the ingot IG outside the chamber 110. Is provided.
상기 챔버(110)는 잉곳(IG)이 성장되는 소정의 밀폐 공간을 제공하며, 상측에서 하측 방향으로 Ar 등과 같은 불활성 기체가 유동시키기 위하여 상부 일측에 흡입구(150)가 구비되고, 각종 구성 요소가 내/외측에 장착된다.The chamber 110 provides a predetermined closed space in which the ingot IG is grown, and an inlet 150 is provided at one upper side to allow an inert gas such as Ar to flow from the upper side to the lower side, and various components are provided. It is mounted inside / outside.
실시예에서, 상기 챔버(110)의 양측 상부에는 내부를 관찰할 수 있는 제1,2뷰 포트(W1,W2)가 구비되고, 하기에서 설명될 직경측정센서(210) 및 이미지 센서(220)가 상기 제1,2뷰 포트(W1,W2) 외측에 구비된다.In an embodiment, first and second view ports W1 and W2 are provided at both upper portions of the chamber 110 to observe the inside thereof, and the diameter measuring sensor 210 and the image sensor 220 to be described below. Is provided outside the first and second view ports W1 and W2.
상기 도가니(120)는 실리콘 융액이 담기는 용기로써, 상기 챔버(110) 내측에 회전 가능하게 설치된다. 이때, 상기 도가니(120)는 불순물의 유입을 유입을 차단하는 동시에 고온 하에서도 견딜 수 있도록 석영 도가니와 흑연 도가니가 겹쳐진 형태로 구성된다.The crucible 120 is a container containing the silicon melt, and is rotatably installed inside the chamber 110. At this time, the crucible 120 is configured in a form that overlaps the quartz crucible and the graphite crucible so as to withstand the inflow of impurities and at the same time withstand high temperature.
상기 히터(130)는 상기 도가니(120) 둘레에 구비되고, 상기 도가니(120)를 가열함에 따라 상기 도가니(120)에 담긴 폴리 형태의 원료를 실리콘 융액으로 액화시킨다.The heater 130 is provided around the crucible 120, and as the crucible 120 is heated, the raw material of the poly form contained in the crucible 120 is liquefied into a silicon melt.
상기 냉각부재(140)는 고온의 실리콘 융액으로부터 성장되는 잉곳(IG)을 바로 냉각시키기 위하여 구비되는데, 상기 도가니(120) 상측에 매달리도록 설치되고, 상기 도가니(120)에 담긴 실리콘 융액으로부터 성장되는 잉곳(IG) 둘레에 소정 간격을 두고 감싸도록 설치된다.The cooling member 140 is provided to directly cool the ingot IG grown from the high temperature silicon melt, and is installed to hang above the crucible 120 and is grown from the silicon melt contained in the crucible 120. It is installed to surround the ingot IG at a predetermined interval.
상기 시드 케이블(160)은 여러 개의 와이어가 꼬임 형태로 구성되며, 무거운 잉곳을 들어올릴 수 있는 강도와 탄성을 가진다. 물론, 상기 시드 케이블(160)의 하단에는 종자 결정인 시드(seed)가 장착되는 시드 척(seed chuck)이 구비된다.The seed cable 160 is composed of a plurality of wires twisted, and has a strength and elasticity to lift a heavy ingot. Of course, a seed chuck on the bottom of the seed cable 160 is provided with a seed that is a seed crystal.
상기 인상속도 제어기(170)는 상기 시드 케이블(160)의 인상 속도를 제어하도록 구성되는데, 실시예에서 상기 시드 케이블(160)이 감겼다가 풀릴 수 있는 원통형 드럼과, 상기 드럼을 회전시키는 모터를 포함하며, 하기에서 설명될 제어부(230)와 연동되어 잉곳의 직경 보정값에 따라 인상속도를 조절하는 ADC(auto diameter controller) 센서부가 될 수 있으며, 한정되지 아니한다.The pulling speed controller 170 is configured to control the pulling speed of the seed cable 160. In the embodiment, the seed cable 160 is a cylindrical drum which can be wound and released and a motor for rotating the drum. It may include, and may be an ADC (auto diameter controller) sensor unit to adjust the pulling speed in accordance with the diameter correction value of the ingot in conjunction with the control unit 230 to be described below, it is not limited.
상기 직경측정센서(210)는 상기 제1뷰 포트(W1) 외측에 수평 방향으로 이동 가능하게 설치되며, 메니스커스에서 나오는 빛의 특정 밝기를 측정하도록 구성된다. 즉, 상기 직경측정센서(210)의 이동 거리에 따라 잉곳의 직경을 측정할 수 있다.The diameter measuring sensor 210 is installed to be movable in a horizontal direction outside the first view port W1 and is configured to measure a specific brightness of light emitted from the meniscus. That is, the diameter of the ingot may be measured according to the moving distance of the diameter measuring sensor 210.
물론, 잉곳의 직경이 실제로 가변되거나, 상기 시드 케이블(160)이 흔들려 잉곳이 이동된 경우에 모두 상기 직경측정센서(210)는 잉곳의 직경 측정값을 변화된 것으로 감지한다.Of course, in the case where the diameter of the ingot is actually varied or the seed cable 160 is shaken to move the ingot, the diameter measuring sensor 210 detects that the measured diameter of the ingot is changed.
상기 이미지 센서(220)는 상기 제2뷰 포트(W2) 외측에 고정된 형태로 설치되며, 소정의 기준 위치를 촬영할 수 있는 카메라 형태로 구성된다.The image sensor 220 is installed in a fixed form outside the second view port W2 and has a camera shape capable of capturing a predetermined reference position.
이때, 상기 이미지 센서(220)는 상기 직경측정센서(210)와 다른 방향에 구비되며, 실시예에서 서로 반대 방향에 구비된 것을 기준으로 한정한다.In this case, the image sensor 220 is provided in a different direction from the diameter measuring sensor 210, it is limited to the reference provided in the opposite direction in the embodiment.
실시예에서, 상기 이미지 센서(220)의 기준 위치는 도 3에 도시된 바와 같이 실리콘 융액 상면에서 잉곳의 원주 일부 구간을 촬영한 이미지로부터 특정 길이의 호(A)를 선택하고, 상기 호(A)를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표(X,Y)로 측정된다.In an exemplary embodiment, the reference position of the image sensor 220 selects an arc A of a specific length from an image of a portion of the circumference of the ingot on the upper surface of the silicon melt, as shown in FIG. It is measured by the coordinates (X, Y) representing the centers of two straight lines perpendicular to each other.
따라서, 상기 이미지 센서(220)는 기준 위치를 측정하여 상기 시드 케이블(160)의 흔들림에 의해 잉곳의 위치가 가변된 것을 감지할 수 있으며, 하기에서 잉곳의 직경 보정값(D1)을 산출하는데 적용할 수 있다.Accordingly, the image sensor 220 may detect that the position of the ingot is changed by shaking the seed cable 160 by measuring a reference position, and calculating the diameter correction value D 1 of the ingot below. Applicable
상기 제어부(230)는 잉곳 성장 공정에 영향을 미치는 요인을 제어하기 위하여 구비되는데, 실시예에서 잉곳의 직경 측정값(D0)을 기준 위치의 변화(R)에 따라 보정하고, 잉곳의 직경 보정값(D1)에 따라 인상속도(P/S)를 제어하는 것에 한정하며, 하기에서 상세하게 설명하기로 한다.The control unit 230 is provided to control the factors affecting the ingot growth process, in the embodiment corrects the diameter measurement value (D 0 ) of the ingot according to the change (R) of the reference position, the diameter of the ingot It is limited to controlling the pulling speed P / S according to the value D 1 , which will be described in detail below.
도 4는 본 발명에 따른 잉곳 성장장치에 적용된 직경제어장치 일예가 도시된 블럭도이다.Figure 4 is a block diagram showing an example of the diameter control device applied to the ingot growth apparatus according to the present invention.
본 발명에 적용된 직경제어장치는 도 3에 도시된 바와 같이 직경측정센서(210)와, 이미지 센서(220)와, 입력부(231) 및 연산부(232)를 포함하는 제어부(230)와, 인상속도 제어기(170)를 포함하도록 구성된다.As shown in FIG. 3, the diameter control device applied to the present invention includes a diameter measuring sensor 210, an image sensor 220, a control unit 230 including an input unit 231 and a calculation unit 232, and a pulling speed. It is configured to include a controller 170.
먼저, 사용자는 상기 입력부(231)를 통하여 기준값(X0,Y0)을 입력하는데, 잉곳이 타겟 직경이 되는 시점에 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간인 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준값(X0,Y0)으로 입력한다.First, a user inputs a reference value (X 0 , Y 0 ) through the input unit 231, and selects an arc of a specific length, which is a part of the circumference of the ingot, from the upper surface of the silicon melt at the time when the ingot becomes the target diameter, Coordinates representing the centers of two straight lines perpendicular to each other based on the arc are input as reference values (X 0 , Y 0 ).
또한, 상기 직경측정센서(210)과 이미지 센서(220)는 서로 반대 방향에서 각각 잉곳의 직경(D0)과 잉곳의 기준 위치(X1,Y1)를 측정한다.In addition, the diameter sensor 210 and the image sensor 220 measures the diameter (D 0 ) and the reference position (X 1 , Y 1 ) of the ingot in the opposite direction, respectively.
이후, 상기 연산부(232)는 기준값(X0,Y0)과 측정된 기준 위치(X1,Y1)를 비교하여 기준 위치의 이동거리(R)를 산출한 다음, 하기의 [수학식 1]에 의해 잉곳의 직경 보정값(D1)을 산출할 수 있으며, 공정 조건에 따라 보정 인자가 추가될 수 있다.Thereafter, the calculator 232 compares the reference values (X 0 , Y 0 ) with the measured reference positions (X 1 , Y 1 ) to calculate the movement distance (R) of the reference position, and then the following [Equation 1] ] Can calculate the diameter correction value (D 1 ) of the ingot, a correction factor can be added according to the process conditions.
Figure PCTKR2016005045-appb-M000001
Figure PCTKR2016005045-appb-M000001
이때, D0는 상기 직경측정센서(210)에서 측정된 잉곳의 직경이고, R은 상기 이미지 센서(220)에서 측정된 기준 위치의 이동거리이며, θ는 상기 잉곳의 중심을 기준으로 상기 직경측정센서(210)로부터 상기 이미지 센서(220)가 위치한 각도이다.At this time, D 0 is the diameter of the ingot measured by the diameter measuring sensor 210, R is the moving distance of the reference position measured by the image sensor 220, θ is the diameter measurement based on the center of the ingot The image sensor 220 is positioned at an angle from the sensor 210.
예를 들어, 직경측정센서(210)와 이미지 센서(220)가 서로 반대 방향에 위치하면, 직경 보정값(D1)은 직경 측정값(D0)에서 이동거리를 뺀 값이 되며, 이동거리(R)는 +, 0, - 가 될 수 있다.For example, when the diameter measuring sensor 210 and the image sensor 220 are located in opposite directions, the diameter correction value D 1 becomes a value obtained by subtracting the moving distance from the diameter measuring value D 0 . (R) may be +, 0,-.
이와 같이, 상기 연산부(232)에서 잉곳의 직경 보정값(D1)이 산출되면, 상기 인상속도 제어기(170)는 잉곳의 직경 보정값(D1)에 따라 인상속도(Pulling speed : P/S)를 조절하고, 그에 따라 잉곳의 직경을 타겟 직경에 정확하게 맞추도록 제어할 수 있다.As such, when the diameter correction value D 1 of the ingot is calculated by the calculating unit 232, the pulling speed controller 170 pulls speed according to the diameter correction value D 1 of the ingot. ), So that the diameter of the ingot can be controlled to exactly match the target diameter.
도 5는 본 발명에 따른 잉곳 성장방법 일예가 도시된 순서도이다.5 is a flowchart illustrating an example of an ingot growth method according to the present invention.
본 발명의 잉곳 성장방법은 도 5에 도시된 바와 같이 설정된 인상속도(P/S)로 잉곳 바디 성장 공정을 진행하고, 작업자가 기준값을 입력한다.(S1,S2 참조)Ingot growth method of the present invention proceeds the ingot body growth process at the set pulling speed (P / S) as shown in Figure 5, the operator inputs a reference value (see S1, S2).
작업자는 잉곳의 직경(D)이 타겟 직경(DT)이 되는 시점에서 잉곳의 원주 일부 구간인 특정 길이의 호(A)를 선택하고, 상기 호(A)를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준값(X0,Y0)으로 입력한다. 물론, 공정마다 기준이 되는 호의 위치가 달라질 수 있기 때문에 매번 공정마다 작업자가 확인하여 기준값(X0,Y0)을 입력하는 것이 바람직하다.The operator selects an arc (A) of a specific length, which is a part of the circumference of the ingot, when the diameter (D) of the ingot becomes the target diameter (D T ), and the two straight lines perpendicular to each other based on the arc (A) are selected. Enter the coordinates representing the center as reference values (X 0 , Y 0 ). Of course, since the position of the reference arc for each process may vary, it is preferable that the operator checks each process and inputs the reference values (X 0 , Y 0 ).
다음, 일정 방향에서 잉곳의 직경(D0)을 측정하고, 반대 방향에서 잉곳의 기준 위치(X1,Y1)를 측정한다.(S3,S4 참조)Next, the diameter (D 0 ) of the ingot is measured in a predetermined direction, and the reference position (X 1 , Y 1 ) of the ingot is measured in the opposite direction (see S3 and S4).
잉곳의 원주를 기준으로 서로 다른 방향에서 잉곳의 직경(D0)과 잉곳의 기준 위치(X1,Y1)가 측정된다.The diameter (D 0 ) of the ingot and the reference position (X 1 , Y 1 ) of the ingot are measured in different directions with respect to the circumference of the ingot.
실시예에서, 직경측정센서가 이동되면서 메니스커스의 특정 밝기를 측정함으로써, 잉곳의 직경(D0)을 측정하는 반면, 이미지 센서가 고정된 상태에서 메니스커스의 특정 지점을 측정함으로써, 잉곳의 기준 위치(X1,Y1)를 측정한다.In an embodiment, the diameter as the measuring sensor is moved by measuring the specific brightness of the meniscus, by measuring a point on the other hand for measuring the diameter (D 0) of the ingot, the meniscus in the image sensor is fixed, the ingot Measure the reference position of (X 1 , Y 1 ).
물론, 직경측정센서와 이미지 센서의 상대적으로 위치한 각도(θ)도 미리 세팅되는데, 하기에서 잉곳의 직경 보정값(D1)을 산출하기 위하여 적용된다.Of course, the relative position angle θ of the diameter sensor and the image sensor is also set in advance, which is applied in the following to calculate the diameter correction value D 1 of the ingot.
다음, 기준값(X0,Y0)과 잉곳의 기준 위치(X1,Y1)로부터 이동거리(R)를 산출한다.(S5 참조)Next, the moving distance R is calculated from the reference values X 0 and Y 0 and the reference positions X 1 and Y 1 of the ingot (see S5).
이동거리(R)가 +,0,-가 될 수 있으며, 이동거리(R)가 +,- 인 경우 상기에서 언급한 바와 같이 시드 케이블이 흔들려서 잉곳의 위치가 변동된 것으로 판단할 수 있다.The movement distance R may be +, 0,-, and when the movement distance R is +,-, as described above, the seed cable may be shaken to determine that the position of the ingot is changed.
다음, 이동거리(R)와 측정 위치(θ)에 따라 잉곳의 직경 보정값(D1)을 산출한다.(S6 참조)Next, the diameter correction value D 1 of the ingot is calculated according to the movement distance R and the measurement position θ (see S6).
잉곳의 직경 보정값(D1)은 상기에서 설명한 [수학식 1]에 의해 산출될 수 있으며, 이동거리(R)와 측정 위치(θ)를 고려하여 직경 측정값(D0)을 보정한 것이다.The diameter correction value D 1 of the ingot may be calculated by Equation 1 described above, and the diameter measurement value D 0 is corrected in consideration of the moving distance R and the measurement position θ. .
다음, 잉곳의 직경 보정값(D1)에 따라 잉곳의 인상속도(P/S)를 제어한다.(S7 참조)Next, the pulling speed P / S of the ingot is controlled according to the diameter correction value D 1 of the ingot (see S7).
따라서, 시드 케이블의 흔들림 또는 다른 요인에 의해 잉곳의 위치가 가변되더라도 실리콘 융액 계면에서 잉곳의 직경과 위치를 정확하게 산출할 수 있다.Therefore, even if the position of the ingot varies due to the shaking of the seed cable or other factors, the diameter and position of the ingot can be accurately calculated at the silicon melt interface.
나아가, 잉곳의 직경을 정밀하게 타겟 직경에 맞추어 제어함으로써, 웨이퍼의 직경 편차를 줄일 수 있거나, 실리콘 융액 계면에서 잉곳의 위치를 도가니의 중심에 맞추어 제어함으로써, 잉곳의 반경 방향 또는 길이 방향으로 웨이퍼의 품질을 균일하게 유지시킬 수 있다.Furthermore, by precisely controlling the diameter of the ingot to the target diameter, it is possible to reduce the diameter deviation of the wafer, or by controlling the position of the ingot at the center of the crucible by controlling the position of the ingot at the silicon melt interface, so that The quality can be kept uniform.
본 발명은 쵸크랄스키법에 의한 단결정 잉곳을 성장시키는 잉곳 성장장치 및 그 성장방법에 적용함으로써, 단결정 잉곳의 품질을 향상시킬 수 있다.The present invention can be applied to an ingot growth apparatus for growing a single crystal ingot by the Czochralski method and its growth method, whereby the quality of the single crystal ingot can be improved.

Claims (10)

  1. 실리콘 융액이 담기는 도가니;Crucible containing silicon melt;
    상기 도가니 상측에 구비되고, 상기 실리콘 융액에 잠긴 시드를 인상함에 따라 잉곳을 성장시키는 시드 케이블;A seed cable provided at an upper side of the crucible and growing an ingot as the seed is immersed in the silicon melt;
    상기 잉곳의 성장 공정 중 수평 방향으로 이동하면서 상기 실리콘 융액과 잉곳 사이의 경계선에서 빛의 특정 밝기를 측정하여 잉곳의 직경을 측정하는 직경측정센서;A diameter measuring sensor measuring a specific brightness of light at a boundary line between the silicon melt and the ingot while moving in a horizontal direction during the growth process of the ingot to measure the diameter of the ingot;
    상기 직경측정센서와 다른 방향에 구비되고, 상기 실리콘 융액 상면에서 소정의 기준 위치를 측정하는 이미지 센서; 및An image sensor provided in a direction different from the diameter measuring sensor and measuring a predetermined reference position on an upper surface of the silicon melt; And
    상기 잉곳의 성장 공정 중 상기 직경측정센서에서 측정된 잉곳의 직경을 상기 이미지 센서에서 측정된 기준 위치의 변화에 따라 보정하는 제어부;를 포함하는 잉곳 성장장치.And a control unit for correcting the diameter of the ingot measured by the diameter measuring sensor during the growth process of the ingot according to the change of the reference position measured by the image sensor.
  2. 제1항에 있어서,The method of claim 1,
    상기 이미지 센서는,The image sensor,
    특정 위치에 고정되어 영상을 촬영하는 카메라로 구성되는 잉곳 성장장치.Ingot growth device consisting of a camera that is fixed to a specific position to take an image.
  3. 제1항에 있어서,The method of claim 1,
    상기 이미지 센서는, The image sensor,
    상기 직경측정센서와 반대 방향에 위치되는 잉곳 성장장치.Ingot growth apparatus is located in the opposite direction to the diameter measuring sensor.
  4. 제1항에 있어서,The method of claim 1,
    상기 이미지 센서는,The image sensor,
    상기 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간을 촬영한 이미지로부터 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준 위치로 측정하는 잉곳 성장장치.An ingot growth apparatus for selecting an arc of a specific length from an image of a portion of the circumference of the ingot on the upper surface of the silicon melt, and measuring coordinates representing centers of two straight lines perpendicular to each other based on the arc as a reference position.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제어부는,The control unit,
    상기 잉곳의 직경이 타겟 직경이 되는 시점에 상기 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간을 촬영한 이미지로부터 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준값으로 입력받는 입력부와, When the diameter of the ingot becomes the target diameter, the arc of a specific length is selected from an image of a portion of the circumference of the ingot on the upper surface of the silicon melt, and coordinates representing the centers of two straight lines perpendicular to each other based on the arc An input unit for inputting a reference value,
    상기 이미지 센서에서 측정된 기준 위치를 상기 기준값과 비교하여 기준 위치의 이동 거리를 산출하는 연산부를 포함하는 잉곳 성장장치.And an operation unit configured to calculate a moving distance of the reference position by comparing the reference position measured by the image sensor with the reference value.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 5,
    상기 제어부는,The control unit,
    상기 직경측정센서에서 측정된 잉곳의 직경 D0, 상기 이미지 센서에서 측정된 기준 위치의 이동 거리 R, 상기 잉곳의 중심을 기준으로 상기 직경측정센서로부터 상기 이미지 센서가 위치한 각도 θ 인 경우, 상기 잉곳의 직경 보정값 D1 을 하기의 수학식에 의해 산출하는 연산부를 포함하는 잉곳 성장장치.The ingot when the diameter D 0 of the ingot measured by the diameter sensor, the moving distance R of the reference position measured by the image sensor, and the angle θ where the image sensor is located from the diameter measuring sensor with respect to the center of the ingot, An ingot growth apparatus comprising an operation unit for calculating the diameter correction value of D 1 by the following equation.
    Figure PCTKR2016005045-appb-I000003
    Figure PCTKR2016005045-appb-I000003
  7. 시드 케이블에 매달린 시드를 실리콘 융액에 담그고, 서서히 인상함에 따라 잉곳을 성장시키는 잉곳 성장방법에 있어서,In the ingot growth method of soaking a seed suspended in a seed cable in a silicon melt and growing the ingot as it is slowly pulled up,
    상기 잉곳의 성장 공정 중 수평 이동하면서 상기 실리콘 융액과 상기 잉곳 사이의 경계선에서 빛의 특정 밝기를 측정하여 잉곳의 직경을 측정하는 제1단계;A first step of measuring a diameter of an ingot by measuring a specific brightness of light at a boundary between the silicon melt and the ingot while moving horizontally during the growth of the ingot;
    상기 제1단계에서 측정 위치와 다른 방향에서 상기 실리콘 융액 상면에서 소정의 기준 위치를 측정하는 제2단계; 및A second step of measuring a predetermined reference position on the silicon melt upper surface in a direction different from the measurement position in the first step; And
    상기 제1단계에서 측정된 잉곳의 직경을 상기 제2단계에서 측정된 기준 위치의 변화에 따라 보정하는 제3단계;를 포함하는 잉곳 성장방법.And a third step of correcting the diameter of the ingot measured in the first step according to the change of the reference position measured in the second step.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 제2단계는,The second step,
    상기 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간을 이미지로 촬영하는 제1과정과,A first process of photographing a portion of the circumference of the ingot as an image on the upper surface of the silicon melt;
    상기 제1과정에서 촬영한 이미지로부터 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준 위치로 측정하는 제2과정을 포함하는 잉곳 성장방법.And a second process of selecting an arc having a specific length from the image photographed in the first process, and measuring a coordinate representing the center of two straight lines perpendicular to each other based on the arc as a reference position.
  9. 제8항에 있어서,The method of claim 8,
    상기 제3단계는,The third step,
    상기 잉곳의 직경이 타겟 직경이 되는 시점에 상기 실리콘 융액 상면에서 상기 잉곳의 원주 일부 구간인 특정 길이의 호를 선택하고, 상기 호를 기준으로 서로 직교하는 두 직선의 중심을 나타내는 좌표를 기준값으로 입력받는 제1과정과,When the diameter of the ingot becomes the target diameter, an arc of a specific length, which is a part of the circumference of the ingot, is selected from the upper surface of the silicon melt, and a coordinate representing the center of two straight lines perpendicular to each other based on the arc is input as a reference value. Receiving the first course,
    상기 제2단계에서 측정된 기준 위치를 상기 기준값과 비교하여 기준 위치의 이동 거리를 산출하는 제2과정을 포함하는 잉곳 성장방법.And a second process of calculating a moving distance of the reference position by comparing the reference position measured in the second step with the reference value.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서,The method according to any one of claims 7 to 9,
    상기 제3단계는,The third step,
    상기 제1단계에서 측정된 잉곳의 직경 D0, 상기 제2단계에서 측정된 기준 위치의 이동 거리 R, 상기 잉곳의 중심을 기준으로 상기 잉곳의 직경을 측정한 지점과 상기 기준 위치를 측정한 지점 사이의 각도 θ 인 경우, 상기 잉곳의 직경 보정값 D1 을 하기의 수학식에 의해 산출하는 과정을 포함하는 잉곳 성장방법.The diameter D 0 of the ingot measured in the first step, the moving distance R of the reference position measured in the second step, the point where the diameter of the ingot was measured based on the center of the ingot and the reference point were measured. Ingot growth method comprising the step of calculating the diameter correction value D 1 of the ingot by the following equation.
    Figure PCTKR2016005045-appb-I000004
    Figure PCTKR2016005045-appb-I000004
PCT/KR2016/005045 2015-06-16 2016-05-12 Ingot growing apparatus and growing method therefor WO2016204411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0085450 2015-06-16
KR1020150085450A KR101758980B1 (en) 2015-06-16 2015-06-16 Ingot growing apparatus and growing method by it

Publications (1)

Publication Number Publication Date
WO2016204411A1 true WO2016204411A1 (en) 2016-12-22

Family

ID=57546499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005045 WO2016204411A1 (en) 2015-06-16 2016-05-12 Ingot growing apparatus and growing method therefor

Country Status (2)

Country Link
KR (1) KR101758980B1 (en)
WO (1) WO2016204411A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638041A (en) * 2021-08-18 2021-11-12 西安奕斯伟材料科技有限公司 Method, device and equipment for controlling crystal growth diameter and computer storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064670B1 (en) * 2018-05-15 2020-01-09 에스케이실트론 주식회사 Single crystal growth apparatus
CN113049082B (en) * 2021-02-08 2022-03-08 杭州富加镓业科技有限公司 Detection method of seed crystal rod jitter detection device and crystal growth method
CN113026090B (en) * 2021-02-08 2022-03-08 杭州富加镓业科技有限公司 Detection method of seed crystal rod jitter detection device and crystal growth method
KR102759012B1 (en) 2024-04-15 2025-01-23 주식회사 에네스 Moisture Handkerchief for Fire Escape

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100194A (en) * 1995-10-03 1997-04-15 Sumitomo Metal Ind Ltd Crystal diameter measurement method
JP2004035352A (en) * 2002-07-05 2004-02-05 Sumitomo Mitsubishi Silicon Corp Pull-up device for silicon single crystal
KR100426419B1 (en) * 1995-06-02 2004-06-16 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 Method for controlling growth of a silicon crystal
KR20090070551A (en) * 2007-12-27 2009-07-01 주식회사 실트론 Ingot Diameter Control Device and Ingot Growth Method
KR20110064002A (en) * 2009-12-07 2011-06-15 주식회사 엘지실트론 Coagulation Interface Image Analysis System and Coagulation Interface Image Analysis Method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100426419B1 (en) * 1995-06-02 2004-06-16 엠이엠씨 일렉트로닉 머티리얼즈 인코포레이티드 Method for controlling growth of a silicon crystal
JPH09100194A (en) * 1995-10-03 1997-04-15 Sumitomo Metal Ind Ltd Crystal diameter measurement method
JP2004035352A (en) * 2002-07-05 2004-02-05 Sumitomo Mitsubishi Silicon Corp Pull-up device for silicon single crystal
KR20090070551A (en) * 2007-12-27 2009-07-01 주식회사 실트론 Ingot Diameter Control Device and Ingot Growth Method
KR20110064002A (en) * 2009-12-07 2011-06-15 주식회사 엘지실트론 Coagulation Interface Image Analysis System and Coagulation Interface Image Analysis Method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113638041A (en) * 2021-08-18 2021-11-12 西安奕斯伟材料科技有限公司 Method, device and equipment for controlling crystal growth diameter and computer storage medium
CN113638041B (en) * 2021-08-18 2022-08-02 西安奕斯伟材料科技有限公司 Method, device and equipment for controlling crystal growth diameter and computer storage medium

Also Published As

Publication number Publication date
KR20160148413A (en) 2016-12-26
KR101758980B1 (en) 2017-07-17

Similar Documents

Publication Publication Date Title
WO2016204411A1 (en) Ingot growing apparatus and growing method therefor
WO2016108381A1 (en) Monocrystal growth system and method capable of controlling shape of ingot interface
TWI588304B (en) Single crystal manufacturing method
WO2014204119A1 (en) Silicon single crystal growing device and method of growing same
WO2018105827A1 (en) Ingot growth control device and control method thereof
WO2014115935A1 (en) Single-crystal ingot, apparatus and method for manufacturing the same
WO2017111227A1 (en) Growth device and growth method of silicon monocrystalline ingot
US8936679B2 (en) Single crystal pulling-up apparatus of pulling-up silicon single crystal and single crystal pulling-up method of pulling-up silicon single crystal
JP6627739B2 (en) Single crystal manufacturing method
JP2017057097A (en) Production method and apparatus of single crystal
WO2013005975A2 (en) Method of evaluating quality of wafer or single crystal ingot and method of controlling quality of single crystal ingot by using the same
JP6477356B2 (en) Single crystal manufacturing method and manufacturing apparatus
WO2015093706A1 (en) View port for observing ingot growth process and ingot growth apparatus including same
WO2014014224A1 (en) Device for growing monocrystalline silicon and method for manufacturing same
WO2018097499A1 (en) Device and method for measuring surface level of molten metal
JP6645406B2 (en) Single crystal manufacturing method
JP5924090B2 (en) Single crystal pulling method
WO2017030275A1 (en) Apparatus for growing single crystalline ingot and method for growing same
WO2013176396A1 (en) Single crystal silicon ingot and wafer, and apparatus and method for growing said ingot
JP2019214486A (en) Method of measuring interval between melt level and seed crystal, method of preheating seed crystal, and method of manufacturing single crystal
WO2018088633A1 (en) Monocrystalline siliocn ingot manufacturing method and device
CN112857297B (en) Single crystal rod diameter measuring device, single crystal rod growth system and method
WO2019143175A1 (en) Silicon single crystal growth method and apparatus
WO2011099680A9 (en) Single crystal cooler and single crystal grower including the same
WO2022265449A1 (en) Method for controlling supply of solid silicon to preliminary crucible of ingot growth apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16811824

Country of ref document: EP

Kind code of ref document: A1