[go: up one dir, main page]

WO2016197684A1 - 便携式生理参数检测装置及生理参数检测方法 - Google Patents

便携式生理参数检测装置及生理参数检测方法 Download PDF

Info

Publication number
WO2016197684A1
WO2016197684A1 PCT/CN2016/078731 CN2016078731W WO2016197684A1 WO 2016197684 A1 WO2016197684 A1 WO 2016197684A1 CN 2016078731 W CN2016078731 W CN 2016078731W WO 2016197684 A1 WO2016197684 A1 WO 2016197684A1
Authority
WO
WIPO (PCT)
Prior art keywords
physiological parameter
layer
portable
module
parameter detecting
Prior art date
Application number
PCT/CN2016/078731
Other languages
English (en)
French (fr)
Inventor
王浩
毛德丰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/519,230 priority Critical patent/US20170231564A1/en
Publication of WO2016197684A1 publication Critical patent/WO2016197684A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
    • A61B5/024Measuring pulse rate or heart rate
    • A61B5/02438Measuring pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analogue processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply

Definitions

  • Embodiments of the present invention relate to a portable physiological parameter detecting device and a physiological parameter detecting method.
  • portable physiological parameter detecting devices for detecting physiological parameters (heart rate, blood pressure, blood oxygen content, etc.) of a user are increasingly popular, and such devices are usually integrated in clothes or wearing materials, and the human body is detected by a built-in sensor.
  • the physiological parameter data is obtained, and the data is exchanged with the terminal when needed, and the data is sorted and analyzed by the terminal to realize real-time monitoring of the user's health state.
  • the existing portable physiological parameter detecting device it is usually necessary to provide an energy storage device such as a battery to provide the portable physiological parameter detecting device with electric energy required for normal operation.
  • an energy storage device such as a battery
  • the battery life of the above energy storage device is usually insufficient, it is impossible to supply power to the portable physiological parameter detecting device for a long time, and the user has to frequently recharge the energy storage device (such as charging the battery) or replace the energy storage device. Causes inconvenience to users.
  • a portable physiological parameter detecting apparatus includes: a detecting module configured to detect a physiological parameter of a human body; and a power supply module electrically connected to the detecting module, configured to perform the detecting The module is powered, wherein the power supply module includes a power generating unit, the power generating unit includes two electrode layers disposed opposite to each other, and an insulating layer is disposed on each of opposite surfaces of the two electrode layers, and the two The insulation is in intimate contact.
  • the opposite surfaces of the two insulating layers are the same in shape and size, and the two insulating layers are correspondingly in close contact according to the shape of the opposite surfaces.
  • the insulating layer is a layer of piezoelectric material.
  • the insulating layer is a polyimide layer, an aniline formaldehyde layer, a polyacetal layer, an ethyl cellulose layer, a polyamide layer, a melamine formaldehyde layer, a polyethylene glycol succinate layer, a cellulose layer. Or at least one of the cellulose acetate layers.
  • the materials of the two insulating layers are different.
  • the electrode layer is at least one of an indium tin oxide layer, a graphene layer or a silver nanowire layer.
  • the power supply module further includes a voltage stabilizing unit electrically connected to the power generating unit, The voltage stabilizing unit is used for voltage regulation adjustment of the voltage generated by the power generating unit.
  • the detecting module comprises: a sensing unit configured to perform physiological parameter detection on the human body and generate the physiological parameter information represented by an analog signal.
  • the detecting module further includes: a converting unit connected to the sensing unit, configured to convert the physiological parameter information represented by the analog signal into physiological parameter information represented by a digital signal.
  • a converting unit connected to the sensing unit, configured to convert the physiological parameter information represented by the analog signal into physiological parameter information represented by a digital signal.
  • the device further includes a storage module electrically connected to the power supply module, configured to store the physiological parameter information of the human body.
  • the device further includes a transmission module connected to the storage module, wherein the portable physiological parameter detecting device is connected to a terminal by the transmission module, and the transmission module is configured to be stored in the The physiological parameter information in the storage module is transmitted to the terminal.
  • a physiological parameter detecting method which adopts the portable physiological parameter detecting device, wherein the physiological parameter detecting method comprises: performing physiological parameter detection on a human body, and generating physiological parameter information; The power generating unit of the power supply module generates power by friction to provide power for the portable physiological parameter detecting device during normal operation.
  • the physiological parameter detecting method further includes: storing the physiological parameter information.
  • the portable physiological parameter detecting device is capable of being connected to a terminal signal, the method further comprising: transmitting the physiological parameter information to the terminal.
  • the step of transmitting the physiological parameter information to the terminal includes: determining whether, in addition to the physiological parameter information obtained by the current detection, there is physiological parameter information that is not completely transmitted to the terminal in the previous transmission. Transmitting physiological parameter information that is not all transmitted to the terminal in the last transmission to the terminal when storing physiological parameter information that is not all transmitted to the terminal in the last transmission, and then The physiological parameter information obtained by the current detection is transmitted to the terminal.
  • FIG. 1 is a structural block diagram of a portable physiological parameter detecting apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a power generating unit according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of the power supply module shown in FIG. 1;
  • FIG. 4 is a block diagram showing the structure of the detecting module shown in FIG. 1;
  • FIG. 5a is another structural block diagram of a portable physiological parameter detecting apparatus according to an embodiment of the present invention.
  • FIG. 5b is a structural block diagram of a connection between a portable physiological parameter detecting apparatus and a terminal according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for detecting a physiological parameter according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for uploading physiological parameter information of a physiological parameter detecting method according to an embodiment of the present invention.
  • FIG. 9 is another flowchart of a method for detecting a physiological parameter according to an embodiment of the present invention.
  • the portable physiological parameter detecting apparatus includes: a detecting module 20 for detecting physiological parameter information of a human body; and a power supply module 10 electrically connected with the detecting module, for The detection module 20 is powered.
  • the portable physiological parameter detecting device may further include a storage module 30 coupled to the detecting module 20 for storing physiological parameter information of the human body to facilitate the user to view and analyze the detection result.
  • the storage module 30 and the detection module 20 are electrically connected to the power supply module 10, respectively.
  • the power supply module 10 may include a power generating unit 11 including two electrode layers 11a disposed opposite each other, and an insulating layer 11b is disposed on each of the opposite surfaces of the two electrode layers 11a, and the two insulating layers 11b are in close contact.
  • the power generating unit 11 may be, for example, a capacitor.
  • the two electrode layers 11a serve as the two electrodes of the capacitor, respectively, and the two insulating layers 11b serve as insulating dielectrics between the two electrodes in the capacitor.
  • the two insulating layers 11b rub against each other at an interface where the two are in close contact, so that the two insulating layers 11b each have an electrostatic charge opposite to each other.
  • the opposite static charges are respectively moved from the insulating layer 11b where it is located to the insulating layer 11b
  • the electrode layer 11a that is in contact i.e., the capacitor is charged
  • a potential difference is generated between the two electrode layers 11a, so that the capacitor is charged.
  • the laminated structure When the user stops pressing the power generating unit 11, the laminated structure returns from the pressed state to the normal state, and the two insulating layers 11b rub against each other to generate an electrostatically opposite electrostatic charge, and the opposite electrostatic charges are respectively from the insulating layer where they are located. 11b is moved to the electrode layer 11a which is in contact with the insulating layer 11b, so that a potential difference is again generated between the two electrode layers 11a.
  • the insulating layer may also be made of a piezoelectric material, and when the user presses the power generating unit 11, the piezoelectric material of the two insulating layers 11b is pressed to generate electric charges, so that between the two electrode layers 11a A potential difference is generated and the capacitor is thus charged.
  • the shape of the opposite surfaces of the two insulating layers is a preferred embodiment of the present invention. It is exactly the same size and the two insulating layers are in close contact with each other in the shape of the opposite surfaces.
  • the power generating unit 11 can be placed in a position in the portable physiological parameter detecting device that is convenient for the user to press, and it is further preferable to identify the position.
  • the portable physiological parameter detecting device provided by the embodiment of the present invention is integrated on the finger ring, one electrode layer 11a of the power generating unit 11 can be directly exposed outside the finger ring, and a trademark or the like is formed at the exposed electrode layer 11a. Special pattern. Or a special color is applied to the exposed electrode layer 11a, so that the user can find and press the power generating unit 11 simply and quickly, thereby enabling the power generating unit 11 to generate electric energy more efficiently.
  • the power generating unit 11 For the second method of generating electric energy, it is preferable to arrange the power generating unit 11 in a position where the portable physiological parameter detecting device is liable to generate pressing or rubbing with other objects.
  • the power generating unit 11 can be disposed at a position such as a squat, a neckline or a cuff of the clothing that is easy to generate pressing or rubbing (for the power generating unit)
  • the number is not limited, so that the power generation unit 11 can utilize the daily activities of the user as much as possible to maximize the generation of electric energy.
  • the insulating layer 11b is usually made of a polymer material, specifically, It may be a polyimide layer, an aniline formaldehyde layer, a polyformaldehyde layer, an ethyl cellulose layer, a polyamide layer, a melamine formaldehyde layer, a polyethylene glycol succinate layer, a cellulose layer or a cellulose acetate layer. . It can be understood that the insulating layer 11b is not limited to the above selection range. Under the premise that the power generation amount is sufficient, those skilled in the art can select other suitable materials according to actual conditions to prepare the insulating layer.
  • the electrode layer 11a is usually made of a material having good electrical conductivity and relatively stable physical and chemical properties.
  • the electrode layer 11a may be an indium tin oxide layer, a graphene layer, or a silver nanowire layer. It can be understood that the electrode layer 11a is not limited to the above selection range, and those skilled in the art can select other suitable materials according to actual conditions to prepare the electrode layer 11a.
  • the power supply module 10 further includes a voltage stabilizing unit 12 electrically connected to the power generating unit 11, and the voltage stabilizing unit 12 is configured to perform voltage regulation adjustment on the voltage generated by the power generating unit 11.
  • the voltage stabilizing unit 12 can be a miniature component used for voltage regulation and regulation of a voltage regulator, a Zener diode, a micro-regulator, and the like.
  • the voltage output from the power generating unit 11 is regulated by the voltage stabilizing unit 12, so that the power supply module 10 outputs a stable voltage, so that the detecting module 20 and the memory module 30 can operate under a stable voltage, thereby enabling the portable physiological parameter detecting device.
  • the service life is extended.
  • the physiological parameter information outputted by the sensing unit 21 is converted from an analog signal representation to a digital signal for storing and transmitting the physiological parameter information. It should be noted that, because the analog signal has high fidelity, in some application scenarios that require precise physiological parameters (such as high-risk disease-prone populations), it is still necessary to retain physiological parameter information represented by the analog signal. Based on the above reasons, those skilled in the art can set the signal type of the appropriate physiological parameter information according to the actual situation.
  • a portable physiological parameter detecting device can be coupled to at least one terminal via a communication link.
  • the terminal can be, for example, an electronic device such as a mobile terminal, a notebook computer, or a tablet computer.
  • the portable physiological parameter detecting apparatus further includes a transmission module 40 coupled to the storage module 30 for transmitting the physiological parameter information stored in the storage module 30 to the terminal.
  • the portable physiological parameter detecting device establishes a communication connection with the terminal through the transmission module 40 to upload the physiological parameter information to the terminal.
  • the above communication connection may be a wired connection or a wireless connection (the wireless connection includes a wireless compatibility authentication connection wifi, a Bluetooth connection, an infrared connection or an ultrasonic signal connection, etc.).
  • the wireless connection includes a wireless compatibility authentication connection wifi, a Bluetooth connection, an infrared connection or an ultrasonic signal connection, etc.
  • a special application software is set on the terminal, and the application software is used to make the terminal more convenient to obtain the physiological parameter information from the portable physiological parameter detecting device, and further analyze and compare the human health state. And forecasting.
  • the power required for the normal operation of the detecting module and the storage module is provided by the power generating unit, and the power provided by the power generating unit is derived from the user's pressing or pushing of the power generating unit, and the energy storage device of the battery or the like.
  • the user can continuously generate power according to the needs of the power generation unit, so that it is not necessary to recharge the energy storage device frequently or replace the energy storage device, thereby improving the convenience of use of the portable physiological parameter detecting device. .
  • the power generation unit of the present invention uses the physical power generation mode of friction power generation to supply the detection module and the storage module with the electric energy required for normal operation, and the chemical power generation method of the energy storage device such as the battery in the existing portable physiological parameter detection device.
  • the power generation unit of the present invention does not contain a pollutant such as heavy metals, and therefore, the portable physiological parameter detecting apparatus provided by the present invention generates less pollution at the time of disposal.
  • Step 100 The user causes the power generation unit of the power supply module to generate power by friction, and is a detection module and a storage module. Provides power during normal operation. Specifically, the user presses or pushes the power generating unit such that the two insulating layers in the power generating unit rub each other to generate electrostatic charges opposite to each other, and the electrostatic charges generated in the respective insulating layers are respectively moved to and The insulating layer contacts the electrode layer such that a potential difference is generated between the two electrode layers, thereby generating a current in an external circuit connected to the two electrode layers, and the generated current provides normal operation for the detecting module and the memory module. Electrical energy.
  • the user's pressing and pushing may be subjective actions performed by the user (for example, the user presses or pushes the position of the power generating unit with a finger), or may be an action unintentionally generated by the user during daily activities ( For example, pressing, friction, etc. generated between the power generating unit and the human body, clothing, and the like when the user is running.
  • Step 200 Perform a physiological parameter detection on the human body by using the detection module, and generate physiological parameter information.
  • the physiological parameter detecting device detects the human body through the sensing unit in the detecting module (the sensing unit may include a blood pressure sensor, a heartbeat sensor, etc.), obtains various physiological parameters, and performs various physiological parameters and physiological processes. Information such as the time of parameter detection is integrated into physiological parameter information.
  • the physiological parameter information obtained by the sensing unit is an analog signal, and the analog signal has the characteristics of large amount of information and high fidelity, and takes a long time in storage and transmission compared with the digital signal. Therefore, when the user has high requirements on the accuracy of the physiological parameters, the detection module can directly output the physiological parameter information represented by the analog signal.
  • the conversion unit may be set in the detection module, and the physiological parameter information represented by the analog signal is converted into the physiological parameter information represented by the digital signal by the conversion unit to reduce the storage thereof. And the time spent in the transmission process, thereby reducing the consumption of electrical energy during storage and transmission.
  • Step 300 The storage module receives and stores physiological parameter information.
  • the power is supplied to the detecting module and the storage module by the user pressing or pushing the power generating unit, compared with the limited energy storage of the power storage device such as the battery.
  • the user can continuously generate power according to the needs of the power generating unit, so that it is not necessary to recharge the energy storage device frequently or replace the energy storage device, thereby improving the convenience of use of the portable physiological parameter detecting device.
  • the physiological parameter detecting method provided by the embodiment of the present invention adopts a physical power generation mode of friction power generation to provide power required for normal operation to the detecting module and the storage module, compared with a chemical power generating method using an energy storage device such as a battery.
  • the power generation unit used in the physiological parameter detecting method provided by the embodiment of the present invention does not contain a pollutant such as heavy metal. Therefore, the physiological parameter detecting device used in the physiological parameter detecting method provided by the embodiment of the present invention generates less pollution when discarded.
  • Step 400 The transmission module transmits the physiological parameter information stored in the storage module to the terminal connected to the portable physiological parameter detecting device.
  • the transmission module establishes a communication connection between the physiological parameter detecting device and the terminal (including a wireless compatibility authentication connection wifi, an infrared connection or an ultrasonic signal connection or the like, or a wired connection), and then uploads the storage to the terminal in the storage module.
  • the physiological parameter information is further analyzed, compared and predicted by the terminal according to the physiological parameter information.
  • step 400 can include:
  • Step 410 The transmission module determines, in addition to the physiological parameter information obtained by the current detection, whether the physiological parameter information that is not completely transmitted to the terminal in the previous transmission is stored in the storage module;
  • Step 420 When the storage module stores the physiological parameter information that is not completely transmitted to the terminal in the previous transmission, the transmission module preferentially transmits the physiological parameter information that was not completely transmitted to the terminal in the previous transmission to the terminal, and then the current detection. The obtained physiological parameter information is transmitted to the terminal.
  • the transmission module determines whether the physiological parameter information of the last transmission not transmitted to the terminal is stored in the storage module, and the judgment result is When yes, the physiological parameter information of the last transmission not transmitted to the terminal is continuously transmitted to the terminal, thereby ensuring that the portable physiological parameter information detecting apparatus can completely upload the physiological parameter information obtained by each detection to the terminal, so that the terminal can be better.
  • the analysis, comparison and prediction of the user's health status in combination with step 410 and step 420, the transmission module determines whether the physiological parameter information of the last transmission not transmitted to the terminal is stored in the storage module, and the judgment result is When yes, the physiological parameter information of the last transmission not transmitted to the terminal is continuously transmitted to the terminal, thereby ensuring that the portable physiological parameter information detecting apparatus can completely upload the physiological parameter information obtained by each detection to the terminal, so that the terminal can be better.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Vascular Medicine (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种便携式生理参数检测装置,包括:检测模块(20),被配置为检测人体的生理参数;供电模块(10),被配置为为检测模块(20)供电,供电模块(10)包括发电单元(11),发电单元(11)包括相对设置的两个电极层(11a),在两个电极层(11a)的相对的表面上各设有一个绝缘层(11b),且两个绝缘层(11b)紧密接触。本检测装置在废弃时产生的污染较小。还提供了一种便携式生理参数检测方法。

Description

便携式生理参数检测装置及生理参数检测方法 技术领域
本发明的实施例涉及一种便携式生理参数检测装置以及生理参数检测方法。
背景技术
目前,用于检测用户的生理参数(心率、血压、血氧含量等)的便携式生理参数检测装置日益普及,这类装置通常整合在衣物或佩戴物上,通过自带的传感器对人体进行检测,获得生理参数数据,并在需要时与终端进行数据交互,由终端对数据进行整理分析,以实现对用户健康状态的实时监测。
然而,在现有的便携式生理参数检测装置中,通常需要设置电池等储能器件,为便携式生理参数检测装置提供正常工作时需要的电能。但由于上述储能器件的续航能力通常不够,无法长时间地为便携式生理参数检测装置提供电能,导致用户不得不频繁地对储能器件重新充能(如给电池充电)或更换储能器件,造成用户使用不便。
发明内容
根据本发明的一个实施例,提供了一种便携式生理参数检测装置,包括:检测模块,被配置为检测人体的生理参数;供电模块,与所述检测模块电连接,被配置为为所述检测模块供电,其中,所述供电模块包括发电单元,所述发电单元包括相对设置的两个电极层,在两个所述电极层的相对的表面上各设有一个绝缘层,且两个所述绝缘层紧密接触。
可选地,两个所述绝缘层相对的表面的形状和大小相同,且两个所述绝缘层按照所述相对的表面的形状对应地紧密接触。
可选地,所述绝缘层是压电材料层。
可选地,所述绝缘层为聚酰亚胺层、苯胺甲醛层、聚甲醛层、乙基纤维素层、聚酰胺层、三聚氰胺甲醛层、聚乙二醇丁二酸脂层、纤维素层或纤维素乙酸脂层中的至少一种。
可选地,两个所述绝缘层的材料不同。
可选地,所述电极层为铟锡氧化物层、石墨烯层或银纳米线层中的至少一种。
可选地,所述供电模块还包括与所述发电单元电连接的稳压单元,所述 稳压单元用于对所述发电单元产生的电压进行稳压调整。
可选地,所述检测模块包括:传感单元,被配置为对所述人体进行生理参数检测,并生成用模拟信号表示的所述生理参数信息。
可选地,所述检测模块还包括:转换单元,与所述传感单元连接,被配置为将所述用模拟信号表示的所述生理参数信息转换为用数字信号表示的生理参数信息。
可选地,该装置还包括与所述供电模块电连接的存储模块,被配置为存储所述人体的所述生理参数信息。
可选地,该装置还包括与所述存储模块连接的传输模块,其中,所述便携式生理参数检测装置通过所述传输模块与一终端信号连接,所述传输模块被配置为能够将存储在所述存储模块中的所述生理参数信息传输至所述终端。
根据本发明的另一个实施例,提供了一种生理参数检测方法,采用所述的便携式生理参数检测装置,所述生理参数检测方法包括:对人体进行生理参数检测,并生成生理参数信息;其中,所述供电模块的发电单元摩擦发电,为所述便携式生理参数检测装置提供正常工作时的电能。
可选地,所述生理参数检测方法还包括:存储所述生理参数信息。
可选地,使所述便携式生理参数检测装置能够与一终端信号连接,所述方法还包括:将所述生理参数信息传输至所述终端。
可选地,所述将所述生理参数信息传输至所述终端的步骤包括:判断除本次检测获得的生理参数信息以外,是否有上次传输中未全部传输至所述终端的生理参数信息;当存储有所述上次传输中未全部传输至所述终端的生理参数信息时,将所述上次传输中未全部传输至所述终端的生理参数信息传输至所述终端,然后将所述本次检测获得的生理参数信息传输至所述终端。
附图说明
图1为本发明实施例提供的便携式生理参数检测装置的结构框图;
图2为本发明实施例提供的发电单元的结构示意图;
图3为图1所示的供电模块的结构框图;
图4为图1所示的检测模块的结构框图;
图5a为本发明实施例提供的便携式生理参数检测装置的另一种结构框图;
图5b为本发明实施例提供的便携式生理参数检测装置与终端连接的结构框图;
图6为本发明实施例提供的生理参数检测方法的流程图;
图7为本发明实施例提供的生理参数检测方法的生理参数信息上传方法的流程图;
图8为图6中的步骤400的具体方法的流程图;
图9为本发明实施例提供的生理参数检测方法的另一流程图。
附图标记:
10-供电模块,                11-发电单元,
11a-电极层,                 11b-绝缘层,
12-稳压单元,                20-检测模块,
21-传感单元,                22-转换单元,
30-存储模块,                40-传输模块,
800-终端。
具体实施方式
为了进一步说明本发明提供的便携式生理参数检测装置及生理参数检测方法,下面结合说明书附图进行详细描述。
如图1及图2所示,本发明实施例提供的便携式生理参数检测装置包括:检测模块20,用于对人体的生理参数信息进行检测;供电模块10,与检测模块电连接,用于为检测模块20供电。可选地,该便携式生理参数检测装置还可以包括和与检测模块20信号连接的存储模块30,用于存储人体的生理参数信息,以方便用户查看和分析检测结果。存储模块30和检测模块20分别与供电模块10电连接。供电模块10可以包括发电单元11,发电单元11包括相对设置的两个电极层11a,在两个电极层11a的相对的表面上各设有一个绝缘层11b,且两个绝缘层11b紧密接触。
在本发明实施例中,发电单元11例如可以是一个电容。两个电极层11a分别作为该电容的两个电极,两个绝缘层11b则作为该电容中两个电极之间的绝缘电介质。
根据本发明的一个示例,在用户按压发电单元11时,两个绝缘层11b在两者紧密接触的界面上相互摩擦,使两个绝缘层11b各自带有电性相反的静电荷,该电性相反的静电荷分别从所在的绝缘层11b移动至与该绝缘层11b 接触的电极层11a上(即电容被充电),使得两个电极层11a之间产生电势差,从而电容被充电。在用户停止按压发电单元11时,叠层结构由挤压状态恢复至正常状态,两个绝缘层11b相互摩擦而产生电性相反的静电荷,该电性相反的静电荷分别从所在的绝缘层11b移动至与该绝缘层11b接触的电极层11a上,使得两个电极层11a之间再次产生电势差。
根据本发明的另一个示例,绝缘层还可以是压电材料制成,当用户按压发电单元11时,两个绝缘层11b的压电材料受压而产生电荷,使得两个电极层11a之间产生电势差,电容因此被充电。
由上述内容可知,在本发明实施例提供的便携式生理参数检测装置中,用户反复对发电单元11进行按压,在与发电单元11连接的外电路中产生电流,进而持续为便携式生理参数检测装置充电,从而该装置内部的检测模块20和存储模块30具有电能而工作。与采用的电池等储能有限的储能器件相比,在本发明实施例中,用户能够通过反复按压发电单元11而持续产生电能,而不需要频繁地对储能器件重新充能或更换储能器件,从而能够提高便携式生理参数检测装置的使用便利性。本领域技术人员能够理解,除对发电单元11进行按压外,对发电单元11进行力度适当的推压、摩擦等动作也能够使发电单元11产生电能。
进一步地,由于发电单元中两个绝缘层相互摩擦所能够产生的电量与两个绝缘层相对的接触面积有关,因此,作为本发明实施例的一个优选方案,两个绝缘层相对的表面的形状和大小完全相同,且两个绝缘层按照相对的表面的形状完全对应地紧密接触。通过上述设置,使得两个绝缘层相互接触的面积最大,从而增加两者在摩擦时产生的电量,进而提高便携式生理参数装置的续航能力,最终提高便携式生理参数装置的使用便利性。
此外,在本发明实施例中,由于发电单元11并非一次性储能器件,其能够利用用户活动多次重复地进行摩擦发电,以向检测模块20及存储模块30提供电能,因此,用户无需频繁地对发电单元11进行更换,从而不会因发电单元11的频繁废弃而产生较多的废弃物。且发电单元11通过摩擦发电的物理发电方式产生电能,其中的电极层11a以及绝缘层11b中均不含重金属等污染物质,从而在便携式生理参数检测装置废弃时产生的污染较小。本发明实施例,比之采用化学电池等储能器件更节能环保,因为在使用一次性的储能器件时,用户需要频繁地对该一次性储能器件进行更换,导致产生较多的 废弃物。并且,通常的化学电池等储能器件均含有重金属等多种污染物质,在废弃时产生将造成较大的污染。基于上述原因,本发明实施例提供的便携式生理参数检测装置不会因发电单元11的频繁废弃而产生较多的废弃物,且在便携式生理参数检测装置废弃时产生的污染也相对较小。
按照用户使用方式的不同,在本发明实施例中采用的发电单元11具有两种产生电能的方式。其中一种为:用户主动对发电单元11反复进行按压,使发电单元11产生电能。另一种为:利用用户的日常活动,使发电单元11与其他物体之间自发地产生按压或一定程度的摩擦,进而使发电单元11产生电能。
对于第一种产生电能的方式,可以将发电单元11设置在便携式生理参数检测装置中便于用户按压的位置,并进一步优选对该位置进行标识。例如在将本发明实施例所提供的便携式生理参数检测装置集成在指环上时,可直接使发电单元11的一个电极层11a暴露在指环外部,并在该暴露在外的电极层11a处形成商标等特殊图案。或在该暴露在外的电极层11a处涂装特殊的颜色,使得用户能够简单快捷地找到发电单元11并对其进行按压,进而使发电单元11更高效地产生电能。
而对于第二种产生电能的方式,优选将发电单元11设置在便携式生理参数检测装置中易于与其他物体产生按压或摩擦的位置。例如,在将本发明实施例所提供的便携式生理参数检测装置集成在衣物上时,可将发电单元11设置在衣物的腋下、领口或袖口等易产生按压或摩擦的位置(对于发电单元的个数不做限定),使发电单元11能够尽可能地利用用户的日常活动,最大限度地产生电能。
由于便携式生理参数检测装置具有便携式的特性,其应用环境通常接近人体,因此,基于便于使用及节约能源的理念,本发明实施例采用上述利用用户活动以使发电单元11产生电能的发电方式。另一方面,用户活动并没有精确的规律,这导致无法确保发电单元11利用用户活动产生的电能能够维持至生理参数信息保存完毕。因此,本发明实施例中的存储模块30可以在意外断电时不会产生数据丢失的存储器件,例如闪存存储器FLASH或相变存储器PCM等,但并不仅限于此,本领域技术人员可根据实际情况采用合适的存储器件作为存储模块30。
对于上述实施方式而言,绝缘层11b通常由高分子材料制成,具体地, 可为聚酰亚胺层、苯胺甲醛层、聚甲醛层、乙基纤维素层、聚酰胺层、三聚氰胺甲醛层、聚乙二醇丁二酸脂层、纤维素层或纤维素乙酸脂层等。可以理解的是,绝缘层11b不限于上述选择范围,在保证发电量足够的前提下,本领域技术人员可以根据实际情况选择其他合适的材料以制备绝缘层。
进一步地,由于相同材料相互摩擦所产生的电荷量小于不同材料相互摩擦所产生的电荷量,因此,根据本发明的一个示例,发电单元11中的两个绝缘层11b的材料不同,使得发电单元11能够输出较大的电量。
对于上述实施方式而言,电极层11a通常由导电性较好且物理性质和化学性质较为稳定的材料制成。例如,电极层11a可为铟锡氧化物层、石墨烯层或银纳米线层。可以理解的是,电极层11a不限于上述选择范围,本领域技术人员可以根据实际情况选择其他合适的材料以制备电极层11a。
如图3所示,根据本发明的一个示例,供电模块10还包括与发电单元11电连接的稳压单元12,稳压单元12用于对发电单元11产生的电压进行稳压调整。在本发明实施例中,稳压单元12可采用稳压电容、稳压二极管、微型稳压器等用于对电压进行稳压调整的微型元器件。通过稳压单元12对发电单元11输出的电压进行稳压调节,使供电模块10输出稳定的电压,使得检测模块20和存储模块30能够在稳定的电压下工作,进而使得便携式生理参数检测装置的使用寿命得到延长。
如图4所示,根据本发明的另一个示例,检测模块20包括:传感单元21,和转换单元22。传感单元21用于对人体进行生理参数检测,并生成用模拟信号表示的生理参数信息。转换单元22,与传感单元21信号连接,用于将用模拟信号表示的生理参数信息转换为用数字信号表示的生理参数信息。本发明所提供的传感单元21可以包括血压传感器、心跳传感器等常见的生理参数测量用传感器。由于这类传感器通常输出模拟信号,而模拟信号在存储和传输的过程中耗费的时间大于对应的数字信号在存储和传输的过程中耗费的时间,因此,在本发明实施例中,通过转换单元22将传感单元21输出的生理参数信息由用模拟信号表示转换为用数字信号表示,以便对生理参数信息进行存储和传输。需要说明的是,由于模拟信号具有较高的保真性,因此在某些需要精确生理参数的应用场景(如高危病易发人群)下,仍需要保留模拟信号表示的生理参数信息。基于上述原因,本领域技术人员可根据实际情况设置合适的生理参数信息的信号类型。
如图5a,图5b所示,根据本发明的一个示例,便携式生理参数检测装置可以通过通信链路与至少一个终端连接。终端例如可以是移动终端、笔记本电脑、平板电脑等电子设备。便携式生理参数检测装置还包括与存储模块30信号连接的传输模块40,传输模块40用于将存储在存储模块30中的生理参数信息传输至上述终端。在该实施例中,通过传输模块40使便携式生理参数检测装置与终端建立通信连接,以将生理参数信息上传至终端。上述通信连接可为有线连接或无线连接(无线连接包括无线相容性认证连接wifi、蓝牙连接、红外线连接或超声信号连接等)。此外,可对应便携式生理参数检测装置,在终端上设置专门的应用软件,利用该应用软件使终端更方便地从便携式生理参数检测装置中获取生理参数信息,并进一步对人体健康状态进行分析、比较和预测。
可以理解的是,在本发明实施例中,可在便携式生理参数检测装置的外部进行特殊设计,以告知用户当前生理参数检测的工作进度情况。例如,在将本发明实施例提供的生理参数检测装置集成在手环上时,可在该手环外部设置进度条窗口,进度条窗口的不同进度分别对应生理参数信息的检测、存储或传输等不同阶段,还可以显示当前电量,从而使用户能够自行判定是否需要继续使发电单元11产生电能,以维持检测模块20、存储模块30及传输模块40的正常工作。
在本发明实施例中,检测模块和存储模块正常工作时所需的电能由发电单元提供,而发电单元提供的电能来源于用户对发电单元的挤压或推压,与电池等储能器件的有限储能相比,在本发明中用户可根据需要使发电单元持续产生电能,因此不需要频繁地对储能器件重新充能或更换储能器件,从而提高便携式生理参数检测装置的使用便利性。此外,由于本发明的发电单元采用摩擦发电的物理发电方式向检测模块和存储模块提供正常工作时所需的电能,与现有的便携式生理参数检测装置中的电池等储能器件的化学发电方式相比,本发明的发电单元中不含有重金属等污染物质,因此,本发明所提供的便携式生理参数检测装置在废弃时产生的污染较小。
如图6所示,本发明还提供了一种生理参数检测方法,采用上述任一项技术方案所述的便携式生理参数检测装置,便携式生理参数检测装置包括检测模块、存储模块和供电模块,生理参数检测方法包括:
步骤100、用户使供电模块的发电单元摩擦发电,为检测模块和存储模块 提供正常工作时的电能。具体地,用户对发电单元进行按压或推压,使得发电单元中的两个绝缘层相互摩擦而各自产生电性相反的静电荷,各绝缘层中产生的电性相反的静电荷分别移动到与该绝缘层相接触的电极层上,使得两电极层之间产生电势差,进而使连接在两电极层上的外电路内产生电流,通过该产生的电流为检测模块和存储模块提供正常工作时的电能。在上述发电过程中,用户的按压和推压可以是用户主观进行的动作(例如用户用手指对发电单元位置进行按压或推压),也可以是用户在进行日常活动时无意识地产生的动作(例如在用户跑动时发电单元与人体、衣物等之间产生的按压、摩擦等)。
步骤200、利用检测模块对人体进行生理参数检测,并生成生理参数信息。在该步骤中,生理参数检测装置通过检测模块中的传感单元(传感单元可包括血压传感器、心跳传感器等)对人体进行检测,获得各项生理参数,将上述各项生理参数以及进行生理参数检测的时间等信息整合成生理参数信息。通常,通过传感单元获得的生理参数信息为模拟信号,而模拟信号具有信息量大、保真性高的特点,与数字信号相比在储存和传输过程中花费的时间较长。因此,在用户对生理参数的精确程度要求较高时,可使检测模块直接输出模拟信号表示的生理参数信息。而在用户对生理参数的精确程度要求较低时,可在检测模块中设置转换单元,通过转换单元将用模拟信号表示的生理参数信息转换为用数字信号表示的生理参数信息,减少其在储存和传输过程中耗费的时间,进而减少其在储存和传输过程中对电能的消耗。
步骤300、存储模块接收并存储生理参数信息。
在本发明实施例提供的生理参数检测方法中,通过用户对发电单元的挤压或推压,为检测模块和存储模块提供电能,与电池等储能器件供电器件的有限储能相比,在本发明实施例中用户可根据需要使发电单元持续产生电能,因此不需要频繁地对储能器件重新充能或更换储能器件,从而使得便携式生理参数检测装置的使用便利性得到提高。
此外,由于本发明实施例提供的生理参数检测方法采用摩擦发电的物理发电方式以向检测模块和存储模块提供正常工作时所需的电能,与使用电池等储能器件的化学发电方式相比,本发明实施例所提供的生理参数检测方法所采用的发电单元中不含有重金属等污染物质。因此,本发明实施例所提供的生理参数检测方法所采用的生理参数检测装置在废弃时产生的污染较小。
进一步地,在本发明实施例提供的生理参数检测方法中,仅在用户使便携式生理参数检测装置中的发电单元摩擦发电时使便携式生理参数检测装置启动并进行生理参数检测,而在平时使便携式生理参数检测装置处于待机或休眠等未工作状态,因此,与长时间不间断地维持运行的生理参数检测方法相比,本发明实施例提供的生理参数检测方法能够节省大量电能。
如图7所示,根据本发明的另一个示例,在步骤100后,所述方法还可以包括:
步骤400、传输模块将存储在存储模块中的生理参数信息传输至与便携式生理参数检测装置连接的终端。例如,传输模块在生理参数检测装置与终端之间建立通信连接(包括无线相容性认证连接wifi、红外线连接或超声信号连接等无线连接,或有线连接),进而向终端上传存储在存储模块中的生理参数信息,由终端根据该生理参数信息,对人体健康状态进行进一步的分析、比较和预测。
如图8所示,根据本发明的一个示例,步骤400可以包括:
步骤410、传输模块判断除本次检测获得的生理参数信息以外,存储模块内是否存储有上次传输中未全部传输至终端的生理参数信息;
步骤420、当存储模块内存储有上次传输中未全部传输至终端的生理参数信息时,传输模块优先将上次传输中未全部传输至终端的生理参数信息传输至终端,然后将本次检测获得的生理参数信息传输至终端。
由于在传输模块将生理参数信息上传至终端的过程中,若用户中断对发电单元的按压或推压而造成便携式生理参数检测装置意外断电,将导致生理参数信息上传不完整甚至上传错误,因此,在本发明实施例提供的生理参数检测方法中,结合步骤410和步骤420,通过传输模块判断存储模块中是否存储有上次传输中未全部传输至终端的生理参数信息,并在判断结果为是时,继续向终端传输上次传输中未全部传输至终端的生理参数信息,从而确保便携式生理参数信息检测装置能够完整地将每次检测得到的生理参数信息上传至终端,使得终端能够更好地对用户的健康状态进行分析、比较和预测。
参见图9,根据本发明的另一个示例,生理参数检测方法还可以包括如下步骤。在步骤901中,对人体进行生理参数检测,并生成生理参数信息。其中,所述供电模块的发电单元摩擦发电,为所述便携式生理参数检测装置提供正常工作时的电能。也就是说,在便携式生理参数检测装置没有电的情况 下,供电模块的发电单元可以发电来为便携式生理参数检测装置提供电能。另外,根据本发明的另一个示例,在对人体进行生理参数检测之后,还可以将生理参数信息进行存储,以方便用户查看和分析。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。
本申请要求于2015年6月10日递交的中国专利申请第201510316547.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (15)

  1. 一种便携式生理参数检测装置,包括:
    检测模块,被配置为检测人体的生理参数;
    供电模块,与所述检测模块电连接,被配置为为所述检测模块供电,其中,所述供电模块包括发电单元,所述发电单元包括相对设置的两个电极层,在两个所述电极层的相对的表面上各设有一个绝缘层,且两个所述绝缘层紧密接触。
  2. 根据权利要求1所述的便携式生理参数检测装置,其中,两个所述绝缘层相对的表面的形状和大小相同,且两个所述绝缘层按照所述相对的表面的形状对应地紧密接触。
  3. 根据权利要求1或2所述的便携式生理参数检测装置,其中,所述绝缘层是压电材料层。
  4. 根据权利要求1-3任一所述的便携式生理参数检测装置,其中,所述绝缘层为聚酰亚胺层、苯胺甲醛层、聚甲醛层、乙基纤维素层、聚酰胺层、三聚氰胺甲醛层、聚乙二醇丁二酸脂层、纤维素层或纤维素乙酸脂层中的至少一种。
  5. 根据权利要求1-4任一所述的便携式生理参数检测装置,其中,两个所述绝缘层的材料不同。
  6. 根据权利要求1-5所述的便携式生理参数检测装置,其中,所述电极层为铟锡氧化物层、石墨烯层或银纳米线层中的至少一种。
  7. 根据权利要求1-6任一项所述的便携式生理参数检测装置,其中,所述供电模块还包括与所述发电单元电连接的稳压单元,所述稳压单元用于对所述发电单元产生的电压进行稳压调整。
  8. 根据权利要求1-7任一所述的便携式生理参数检测装置,其中,所述检测模块包括:
    传感单元,被配置为对所述人体进行生理参数检测,并生成用模拟信号表示的所述生理参数信息。
  9. 根据权利要求8所述的便携式生理参数检测装置,其中,所述检测模块还包括:
    转换单元,与所述传感单元连接,被配置为将所述用模拟信号表示的所 述生理参数信息转换为用数字信号表示的生理参数信息。
  10. 根据权利要求1-9任一所述的便携式生理参数检测装置,还包括与所述供电模块电连接的存储模块,被配置为存储所述人体的所述生理参数信息。
  11. 根据权利要求10所述的便携式生理参数检测装置,还包括与所述存储模块连接的传输模块,
    其中,所述便携式生理参数检测装置通过所述传输模块与一终端信号连接,所述传输模块被配置为能够将存储在所述存储模块中的所述生理参数信息传输至所述终端。
  12. 一种生理参数检测方法,采用如权利要求1-11任一项所述的便携式生理参数检测装置,所述生理参数检测方法包括:
    对人体进行生理参数检测,并生成生理参数信息;
    其中,所述供电模块的发电单元摩擦发电,为所述便携式生理参数检测装置提供正常工作时的电能。
  13. 根据权利要求12所述的检测方法,所述生理参数检测方法还包括:
    存储所述生理参数信息。
  14. 根据权利要求12或13所述的生理参数检测方法,其中,使所述便携式生理参数检测装置能够与一终端信号连接,所述方法还包括:
    将所述生理参数信息传输至所述终端。
  15. 根据权利要求14所述的生理参数检测方法,其中,
    所述将所述生理参数信息传输至所述终端的步骤包括:
    判断除本次检测获得的生理参数信息以外,是否有上次传输中未全部传输至所述终端的生理参数信息;
    当存储有所述上次传输中未全部传输至所述终端的生理参数信息时,将所述上次传输中未全部传输至所述终端的生理参数信息传输至所述终端,然后将所述本次检测获得的生理参数信息传输至所述终端。
PCT/CN2016/078731 2015-06-10 2016-04-07 便携式生理参数检测装置及生理参数检测方法 WO2016197684A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/519,230 US20170231564A1 (en) 2015-06-10 2016-04-07 Portable physiological parameter detection device and physiological parameter detection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510316547.7A CN104856662A (zh) 2015-06-10 2015-06-10 便携式生理参数检测装置及生理参数检测方法
CN201510316547.7 2015-06-10

Publications (1)

Publication Number Publication Date
WO2016197684A1 true WO2016197684A1 (zh) 2016-12-15

Family

ID=53903176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078731 WO2016197684A1 (zh) 2015-06-10 2016-04-07 便携式生理参数检测装置及生理参数检测方法

Country Status (3)

Country Link
US (1) US20170231564A1 (zh)
CN (1) CN104856662A (zh)
WO (1) WO2016197684A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108042124A (zh) * 2017-12-08 2018-05-18 浙江海洋大学 一种穿戴式心率监测装置及穿戴式防护装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104856662A (zh) * 2015-06-10 2015-08-26 京东方科技集团股份有限公司 便携式生理参数检测装置及生理参数检测方法
CN109682873A (zh) 2019-01-25 2019-04-26 京东方科技集团股份有限公司 一种唾液检测装置及系统
CN111481169B (zh) * 2019-12-13 2023-03-07 重庆工商大学 一种基于自发电机构的儿童监护系统
CN110974184A (zh) * 2019-12-31 2020-04-10 湖南文理学院 一种定制运动监测穿戴设备及制造方法
CN114098648A (zh) * 2021-11-26 2022-03-01 江苏科技大学 基于压电和摩擦电的智能睡眠监测系统
TWI812425B (zh) * 2022-08-24 2023-08-11 友達光電股份有限公司 生理監測系統
CN115444375B (zh) * 2022-11-14 2023-03-24 深圳市心流科技有限公司 一种体征检测装置的电极伸缩时机确定方法及终端设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337985A (zh) * 2013-07-12 2013-10-02 北京大学 一种基于横向摩擦的单表面摩擦发电机及其制备方法
CN203554326U (zh) * 2013-07-12 2014-04-16 国家纳米科学中心 一种摩擦发电机
KR101416722B1 (ko) * 2013-07-16 2014-07-14 한국표준과학연구원 정전기력을 이용한 촉각 피드백 생성 장치, 그 제어방법 및 상기 촉각 피드백 생성 장치의 제조방법
CN203763070U (zh) * 2014-01-17 2014-08-13 纳米新能源(唐山)有限责任公司 脉搏监测装置及系统
CN204016268U (zh) * 2014-07-21 2014-12-17 纳米新能源(唐山)有限责任公司 自发电人体监测装置
CN204131203U (zh) * 2014-09-23 2015-01-28 重庆大学 一种无线传感器网络节点的自供电装置
CN104856662A (zh) * 2015-06-10 2015-08-26 京东方科技集团股份有限公司 便携式生理参数检测装置及生理参数检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8965681B2 (en) * 2008-09-03 2015-02-24 Global Relief Technologies, Inc. Field device communications
JP5724976B2 (ja) * 2012-09-20 2015-05-27 カシオ計算機株式会社 運動情報検出装置および運動情報検出方法、運動情報検出プログラム
US9743868B2 (en) * 2014-11-20 2017-08-29 Qualcomm Incorporated Circuitry to allow low current operation of a device capable of determining a blood property

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337985A (zh) * 2013-07-12 2013-10-02 北京大学 一种基于横向摩擦的单表面摩擦发电机及其制备方法
CN203554326U (zh) * 2013-07-12 2014-04-16 国家纳米科学中心 一种摩擦发电机
KR101416722B1 (ko) * 2013-07-16 2014-07-14 한국표준과학연구원 정전기력을 이용한 촉각 피드백 생성 장치, 그 제어방법 및 상기 촉각 피드백 생성 장치의 제조방법
CN203763070U (zh) * 2014-01-17 2014-08-13 纳米新能源(唐山)有限责任公司 脉搏监测装置及系统
CN204016268U (zh) * 2014-07-21 2014-12-17 纳米新能源(唐山)有限责任公司 自发电人体监测装置
CN204131203U (zh) * 2014-09-23 2015-01-28 重庆大学 一种无线传感器网络节点的自供电装置
CN104856662A (zh) * 2015-06-10 2015-08-26 京东方科技集团股份有限公司 便携式生理参数检测装置及生理参数检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108042124A (zh) * 2017-12-08 2018-05-18 浙江海洋大学 一种穿戴式心率监测装置及穿戴式防护装置

Also Published As

Publication number Publication date
US20170231564A1 (en) 2017-08-17
CN104856662A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2016197684A1 (zh) 便携式生理参数检测装置及生理参数检测方法
JP6257760B2 (ja) ペンポジション検出部を備えた電子ペン、ペンポジションを電子的に検出する装置及び方法
US9081569B2 (en) Active stylus force sensing mechanism for generating a wakeup interrupt to the controller
EP3432120B1 (en) Operating mode switching method, wireless sensor and system
RU2315437C2 (ru) Снижение потребляемой мощности в сетевом устройстве с батарейным питанием, использующим датчики
US10955940B2 (en) Method for detecting pressure of active pen, device and active pen
CN111670005B (zh) 用于感测生物特征信息的电子装置及其控制方法
CN103705305B (zh) 健康照护产品与其电源管理方法
CN105244964A (zh) 一种智能穿戴设备及其供电方法
CN111158512B (zh) 电子笔控制方法、装置、设备及可读存储介质
EP2642289A1 (en) Portable electronic device
US20140129233A1 (en) Apparatus and system for user interface
US20120042183A1 (en) Apparatus for adjusting computer power mode
Beniwal et al. Walk‐to‐charge technology: exploring efficient energy harvesting solutions for smart electronics
CN114995665A (zh) 触控笔的笔尖寿命提示方法、触控笔及电子设备
CN108832953B (zh) 一种监测肢体活动信息的智慧手环
CN104035580A (zh) 电子系统、输入装置及输入装置的充电方法
US20140100468A1 (en) Physiological signal detection device
CN110531874A (zh) 一种主动式电容笔及其省电控制方法
CN105380615A (zh) 一种连接智能手机使用的电子体温计
CN204833190U (zh) 一种可视化智能健康鼠标
EP2741170A1 (en) Active stylus force sensing mechanism for generating a wakeup interrupt to the stylus controller
CN209400979U (zh) 一种手势指环系统
CN221884277U (zh) 一种压力传感控制笔
CN112928793A (zh) 电子设备及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806582

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.06.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16806582

Country of ref document: EP

Kind code of ref document: A1