WO2016197650A1 - 无掺杂剂的AlGaN基紫外发光二极管及制备方法 - Google Patents
无掺杂剂的AlGaN基紫外发光二极管及制备方法 Download PDFInfo
- Publication number
- WO2016197650A1 WO2016197650A1 PCT/CN2016/076851 CN2016076851W WO2016197650A1 WO 2016197650 A1 WO2016197650 A1 WO 2016197650A1 CN 2016076851 W CN2016076851 W CN 2016076851W WO 2016197650 A1 WO2016197650 A1 WO 2016197650A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dopant
- algan
- layer
- type
- emitting diode
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 239000002019 doping agent Substances 0.000 claims abstract description 48
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims description 28
- 230000010287 polarization Effects 0.000 claims description 24
- 230000005684 electric field Effects 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 23
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 10
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000013212 metal-organic material Substances 0.000 claims description 2
- 239000002994 raw material Substances 0.000 claims 1
- 239000012535 impurity Substances 0.000 description 7
- 230000007547 defect Effects 0.000 description 3
- 239000000969 carrier Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
- H10H20/8252—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
Definitions
- the invention belongs to the field of semiconductor technology and is applicable to AlGaN-based ultraviolet and deep ultraviolet light-emitting diodes, in particular to a non-dopant-based AlGaN-based ultraviolet light-emitting diode and a preparation method thereof, which can obtain n-type conductivity and p without doping any impurities.
- both the n-type and p-type conductive layers in the blue-green LED of the GaN/InGaN multiple quantum well and the AlGaN-based ultraviolet LED are implemented by introducing dopant impurities.
- the n-type GaN doping impurity is Si
- the p-type GaN doping impurity is Mg.
- Si or Mg atoms it is necessary to dope a large amount of Si or Mg atoms, which will affect the crystal quality of the GaN material and reduce the mobility of electrons or holes.
- the diffusion of Mg atoms will seriously affect the quality of the quantum well, resulting in a decrease in luminous efficiency.
- polarization doping utilizes the relationship between the polarization effect of the GaN-based compound and the composition, and obtains a uniformly distributed net-polarized negative charge or a net-polarized positive charge by gradualizing the composition, thereby inducing the generation of free holes or electrons, thereby realizing n Type or p type conductive.
- the polarization doping method does not rely on thermal ionization, but relies on the polarization electric field brought about by the composition gradient to ionize the electric field of some inherent defects or impurities in the epitaxial material. Therefore, using the method of polarization doping, high conductivity can be achieved without introducing any dopant.
- the concentration of electrons and holes in the n-type GaN-based material obtained by the polarization doping method is as high as 1E 18 /cm 3 . This concentration of electrons or holes is sufficient to achieve luminescence of the GaN-based LED.
- the invention provides a non-dopant AlGaN-based ultraviolet light emitting diode, comprising:
- n-type layer which is fabricated on a substrate
- a dopant-free p-type layer is formed over the active region.
- the invention also provides a method for growing a non-dopant AlGaN-based ultraviolet light-emitting diode, comprising:
- Step 1 take a substrate
- Step 2 growing a non-dopant n-type layer of a polar or semi-polar surface along the substrate, without introducing any active dopant during the growth process, and inputting the III-group metal organic source material of the growth reaction chamber
- the flow rate and the flow rate of the metal organic source material gallium are controlled, and the ratio of TMAl/(TMGa+TMAl) in the reaction chamber is controlled to form a composition-graded non-dopant n-type layer, wherein the Al composition gradually satisfies the direction along the polarization electric field. slowing shrieking;
- Step 3 growing an active region on the non-dopant n-type layer
- Step 4 growing a non-dopant p-type layer on the active region, without introducing any active dopant during the growth process, and flowing the flow of the group III metal organic source material Al into the growth reaction chamber and the metal organic source material gallium
- the flow rate is controlled to control the ratio of TMAl/(TMGa+TMAl) in the reaction chamber to form a p-type AlGaN layer with a gradual composition, wherein the gradual increase of the Al composition gradually increases along the direction of the polarization electric field, and the preparation is completed.
- the beneficial effect of the present invention is that it can improve the quality of the crystal material and simplify the growth step of the material without introducing any dopant.
- 1 is a cross-sectional view showing the structure of an AlGaN-based ultraviolet light emitting diode without a dopant.
- FIG. 2 is a flow chart showing the structural change of a non-dopant AlGaN-based ultraviolet light emitting diode structure during growth.
- FIG. 3 is a graph showing changes in TMAl and TMGa in a reaction chamber during growth of a non-dopant AlGaN-based ultraviolet light-emitting diode structure along a (0001) polar plane.
- the present invention provides a dopant-free AlGaN-based ultraviolet light emitting diode, comprising:
- a non-dopant n-type layer 2 is formed on the substrate 1.
- the material of the non-dopant n-type layer 2 is a compositionally graded n-type Al L Ga 1-L N having a thickness of 50-500 nm.
- the L value of the component decreases linearly along the direction of the polarization electric field, from L 1 to L 2 , where 0 ⁇ L 2 ⁇ L 1 ⁇ 1 to ensure linear increase of the polarization electric field, thereby utilizing the non-equilibrium pole
- the electric field ionizes impurities, defects, and the like to generate electrons, and the layer functions to provide electrons for composite light emission in the active region 3;
- the material of the well layer is AlGaN, wherein the composition of Al is x, 0 ⁇ x ⁇ 1, and the layer acts to limit carriers, so that carriers are combined to emit light in this region;
- the undoped p-type layer 4 is a compositionally graded p-type Al M Ga 1-M N having a thickness of 50 to 500 nm.
- the M value of the component increases linearly along the direction of the polarization electric field, from M 1 to M 2 , where 0 ⁇ M 1 ⁇ M 2 ⁇ 1 to ensure linear reduction of the polarization electric field, so that the non-equilibrium polarization electric field can be utilized
- Ionization impurities, defects, and the like generate holes which function to provide holes for composite light emission in the active region 3.
- the graded composition n-type dopant-free Al L Ga 1-L N layer 2 and the p-type dopant-free Al M Ga 1-M N Al composition layer 4 is greater than or equal to meet the minimum quantum active region 3
- the Al composition content of the potential well Al x Ga 1-x N in the well structure is 0 ⁇ x ⁇ L 2 ⁇ L 1 ⁇ 1 and 0 ⁇ x ⁇ M 1 ⁇ M 2 ⁇ 1, thereby securing the active region 3
- the emitted photons are not absorbed by the non-dopant n-type layer 2 and the non-dopant p-type layer 4.
- the present invention further provides a method for growing a dopant-free AlGaN-based ultraviolet light emitting diode, comprising:
- Step 1 Take a substrate 1;
- Step 2 growing a non-dopant n-type layer 2 of a polar or semi-polar plane along the substrate 1 without introducing any active dopant during the growth process, and a group III metal organic source material for the input growth reaction chamber
- the flow rate of Al and the flow rate of gallium metal organic material material are controlled, and the ratio of TMAl/(TMGa+TMAl) in the reaction chamber is controlled to form a composition-graded non-dopant n-type layer 2, wherein the Al composition gradient satisfies the edge
- the direction of the electric field is gradually reduced, and the material of the non-dopant n-type layer 2 is a compositionally graded n-type Al L Ga 1-L N having a thickness of 50-500 nm, and the L value of the component is polarized.
- the direction of the electric field decreases linearly from L 1 to L 2 , where 0 ⁇ L 2 ⁇ L 1 ⁇ 1;
- Step 3 growing an active region 3 on the dopant-free n-type layer 2, which is a double heterojunction structure, a single quantum well structure or a multiple quantum well structure, which provides energy to excite the ultraviolet light Radiation output of the diode, the single quantum well structure or the multiple quantum well structure active region 3, the number of quantum well structures is 1 to 15, the thickness of the well layer is 2 to 6 nm, and the thickness of the barrier layer is 5 to 12 nm.
- the material of the well layer is AlGaN, wherein the composition of Al is x, 0 ⁇ x ⁇ 1;
- Step 4 growing a non-dopant p-type layer 4 on the active region 3, without introducing any active dopant during the growth process, and flowing the flow rate of the group III metal organic source material Al into the growth reaction chamber and the metal organic source material
- the flow rate of gallium is controlled to control the ratio of TMAl/(TMGa+TMAl) in the reaction chamber to form a p-type AlGaN layer with a compositional gradation, wherein the gradual increase of the Al composition satisfies the direction of the polarization electric field, the undoped p
- the type layer 4 is a compositionally graded p-type Al M Ga 1-M N having a thickness of 50 to 500 nm, and the M value of the composition linearly increases along the direction of the polarization electric field, from M 1 to M 2 , wherein 0 ⁇ Preparation was completed by M 1 ⁇ M 2 ⁇ 1.
- the minimum composition of the non-dopant n-type AlLGa1-LN layer 2 and the non-dopant p-type AlMGa1-MN layer 4 satisfies the potential well Al x Ga 1-x N in the active region 3 quantum well structure.
- the Al component content is 0 ⁇ x ⁇ L 2 ⁇ L 1 ⁇ 1 and 0 ⁇ x ⁇ M 1 ⁇ M 2 ⁇ 1.
- Steps 2 and 4 can be exchanged in order, that is, the dopant-free p-type layer 4 is grown, then the active region 3 is grown, and then the long dopant-free n-type layer 2 is regrown.
- the polarization electric field of the AlGaN material grown in the MOCVD method is opposite to the growth direction. Then the ratio of TMAl/(TMGa+TMAl) gradually increases with the growth time (as shown in Fig. 3, 0 ⁇ t1), and the Al composition can be gradually reduced along the direction of the polarization electric field, and the composition is gradually changed.
- the active region 3 is grown on the non-dopant n-type layer 2, and the ratio of TMAl to TMGa in the corresponding reaction chamber is in the range of t1 to t2 as shown in FIG. 3;
- a dopant-free p-type layer 4 is grown on the active region 3, and when the preferred (0001) polar plane is grown, the polarization field of the AlGaN material in the MOCVD growth is opposite to the growth direction, then TMAl/(TMGa+ The ratio of TMAl) gradually decreases with the growth time (as shown in Fig. 3, t2 to t3), and the Al composition gradually increases in the direction of the polarization electric field, and a component-graded non-dopant p-type layer is grown. 4.
- Steps 1 and 3 can be exchanged in order, that is, a non-dopant p-type layer with a gradual composition of the gradual composition, followed by growth of an AlGaN/AlGaN double heterojunction structure or a quantum well structure, and then regrowth of the long-gradient undoped layer Agent n-type layer.
Landscapes
- Led Devices (AREA)
Abstract
Description
Claims (13)
- 一种无掺杂剂的AlGaN基紫外发光二极管,包括:一衬底;一无掺杂剂n型层,其制作在衬底上;一有源区,其制作在无掺杂剂n型层上;一无掺杂剂p型层,其制作在有源区上。
- 如权利要求1所述的无掺杂剂的AlGaN基紫外发光二极管,其中所述有源区是双异质结结构、单量子阱结构或者多量子阱结构,其提供能量以激发该紫外发光二极管的辐射输出。
- 如权利要求2所述的无掺杂剂的AlGaN基紫外发光二极管,其中所述单量子阱结构或者多量子阱结构有源区,量子阱结构的个数为1~15个,阱层的厚度为2~6nm,垒层厚度为5~12nm,该阱层的材料为AlGaN,其中Al的组分为x,0≤x≤1。
- 如权利要求1所述的无掺杂剂的AlGaN基紫外发光二极管,其中所述无掺杂剂n型层的材料为组分渐变的n型AlLGa1-LN,厚度为50~500nm,所述组分的L值沿极化电场方向线性减小,从L1变到L2,其中0≤L2<L1≤1。
- 如权利要求1所述的无掺杂剂的AlGaN基紫外发光二极管,其中所述无掺杂p型层为组分渐变的p型AlMGa1-MN,厚度为50~500nm,所述组分的M值沿极化电场方向线性增加,从M1变到M2,其中0≤M1<M2≤1。
- 如权利要求1所述的无掺杂剂的AlGaN基紫外发光二极管,其中组分渐变的n型AlLGa1-LN层和p型AlMGa1-MN层的Al组分最小值满足大于等于有源区量子阱结构中势阱AlxGa1-xN的Al组分含量,既是0≤x≤L2<L1≤1且0≤x≤M1<M2≤1。
- 一种无掺杂剂的AlGaN基紫外发光二极管的生长方法,其包括:步骤1:取一衬底;步骤2:沿衬底上生长极性面或半极性面的无掺杂剂n型层,生长过程中不引入任何主动掺杂剂,对输入生长反应室的III族金属有机源材 料Al的流量和金属有机源材料镓的流量进行控制,控制反应室中TMAl/(TMGa+TMAl)的比例,形成组分渐变的无掺杂剂n型层,其中Al组分渐变满足沿极化电场方向逐渐减小;步骤3:在无掺杂剂n型层上生长有源区;步骤4:在有源区上生长无掺杂剂p型层,生长过程中不引入任何主动掺杂剂,对输入生长反应室的III族金属有机源材料Al的流量和金属有机源材料镓的流量进行控制,控制反应室中TMAl/(TMGa+TMAl)的比例,形成组分渐变的p型AlGaN层,其中Al组分渐变满足沿极化电场方向逐渐增加,完成制备。
- 如权利要求7所述的无掺杂剂的AlGaN基紫外发光二极管的生长方法,其中所述有源区是双异质结结构、单量子阱结构或者多量子阱结构,其提供能量以激发该紫外发光二极管的辐射输出。
- 如权利要求8所述的无掺杂剂的AlGaN基紫外发光二极管的生长方法,其中所述单量子阱结构或者多量子阱结构有源区,量子阱结构的个数为1~15个,阱层的厚度为2~6nm,垒层厚度为5~12nm,该阱层的材料为AlGaN,其中Al的组分为x,0≤x≤1。
- 如权利要求7所述的无掺杂剂的AlGaN基紫外发光二极管的生长方法,其中所述无掺杂剂n型层的材料为组分渐变的n型AlLGa1-LN,厚度为50~500nm,所述组分的L值沿极化电场方向线性减小,从L1变到L2,其中0≤L2<L1≤1。
- 如权利要求7所述的无掺杂剂的AlGaN基紫外发光二极管的生长方法,其中所述无掺杂p型层为组分渐变的p型AlMGa1-MN,厚度为50~500nm,所述组分的M值沿极化电场方向线性增加,从M1变到M2,其中0≤M1<M2≤1。
- 如权利要求7所述的无掺杂剂的AlGaN基紫外发光二极管的生长方法,其中组分渐变的n型AlLGa1-LN层和p型AlMGa1-MN层的Al组分最小值满足大于等于有源区量子阱结构中势阱AlxGa1-xN的Al组分含量,既是0≤x≤L2<L1≤1且0≤x≤M1<M2≤1。
- 如权利要求7所述的无掺杂剂的AlGaN基紫外发光二极管的生 长方法,其中步骤2和步骤4可以交换顺序,及先生长无掺杂剂组分渐变p型AlGaN层,接着生长AlGaN/AlGaN双异质结结构或量子阱结构,然后再生长无掺杂剂组分渐变n型AlGaN层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510308850.2 | 2015-06-08 | ||
CN201510308850.2A CN104882522A (zh) | 2015-06-08 | 2015-06-08 | 无掺杂剂的AlGaN基紫外发光二极管及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016197650A1 true WO2016197650A1 (zh) | 2016-12-15 |
Family
ID=53949934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/076851 WO2016197650A1 (zh) | 2015-06-08 | 2016-03-21 | 无掺杂剂的AlGaN基紫外发光二极管及制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104882522A (zh) |
WO (1) | WO2016197650A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111129243A (zh) * | 2019-12-02 | 2020-05-08 | 晶能光电(江西)有限公司 | GaN基紫外LED外延结构 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104882522A (zh) * | 2015-06-08 | 2015-09-02 | 中国科学院半导体研究所 | 无掺杂剂的AlGaN基紫外发光二极管及制备方法 |
US10903395B2 (en) * | 2016-11-24 | 2021-01-26 | Lg Innotek Co., Ltd. | Semiconductor device having varying concentrations of aluminum |
CN106920739A (zh) * | 2017-04-14 | 2017-07-04 | 中国科学院宁波材料技术与工程研究所 | 一种基于梯度叠层缓冲层薄膜的外延生长AlmGa1‑mN的方法 |
CN108305907B (zh) * | 2018-01-26 | 2019-10-11 | 中国电子科技集团公司第三十八研究所 | 一种新型同质结pin紫外探测器 |
CN111146318A (zh) * | 2020-01-20 | 2020-05-12 | 江苏晶曌半导体有限公司 | 一种基于MoS2的薄层紫外发光二极管及其制作方法 |
CN111710762B (zh) * | 2020-06-28 | 2021-10-15 | 中国科学院半导体研究所 | 具有p型极化掺杂的III族氮化物光电子器件 |
CN111816740A (zh) * | 2020-08-28 | 2020-10-23 | 北京蓝海创芯智能科技有限公司 | 一种提高AlGaN基深紫外LED空穴注入效率的结构 |
CN114823998B (zh) * | 2022-05-18 | 2025-02-18 | 吉林大学 | 一种双极化诱导掺杂层的AlGaN基紫外LED芯片及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482665B1 (en) * | 1997-09-12 | 2002-11-19 | Electronics And Telecommunications Research Institute | Polarization switching surface-emitting laser and a method of manufacturing the same |
CN102185064A (zh) * | 2011-04-19 | 2011-09-14 | 武汉华炬光电有限公司 | 一种利用多量子阱电子阻挡层增加发光效率的AlGaN基深紫外LED器件及制作方法 |
CN103400864A (zh) * | 2013-07-31 | 2013-11-20 | 中国电子科技集团公司第十三研究所 | 基于极化掺杂的GaN横向肖特基二极管 |
CN104882522A (zh) * | 2015-06-08 | 2015-09-02 | 中国科学院半导体研究所 | 无掺杂剂的AlGaN基紫外发光二极管及制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100818457B1 (ko) * | 2004-03-15 | 2008-04-02 | 쇼와 덴코 가부시키가이샤 | 화합물 반도체 발광 다이오드 |
GB2425652A (en) * | 2005-04-28 | 2006-11-01 | Sharp Kk | A semiconductor light-emitting device |
EP2333635A1 (en) * | 2009-12-14 | 2011-06-15 | Mitsubishi Electric R&D Centre Europe B.V. | Method for obtaining information enabling the determination of a characteristic of a power source |
JP2011222804A (ja) * | 2010-04-12 | 2011-11-04 | Nippon Telegr & Teleph Corp <Ntt> | 半導体装置およびその製造方法 |
-
2015
- 2015-06-08 CN CN201510308850.2A patent/CN104882522A/zh active Pending
-
2016
- 2016-03-21 WO PCT/CN2016/076851 patent/WO2016197650A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6482665B1 (en) * | 1997-09-12 | 2002-11-19 | Electronics And Telecommunications Research Institute | Polarization switching surface-emitting laser and a method of manufacturing the same |
CN102185064A (zh) * | 2011-04-19 | 2011-09-14 | 武汉华炬光电有限公司 | 一种利用多量子阱电子阻挡层增加发光效率的AlGaN基深紫外LED器件及制作方法 |
CN103400864A (zh) * | 2013-07-31 | 2013-11-20 | 中国电子科技集团公司第十三研究所 | 基于极化掺杂的GaN横向肖特基二极管 |
CN104882522A (zh) * | 2015-06-08 | 2015-09-02 | 中国科学院半导体研究所 | 无掺杂剂的AlGaN基紫外发光二极管及制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111129243A (zh) * | 2019-12-02 | 2020-05-08 | 晶能光电(江西)有限公司 | GaN基紫外LED外延结构 |
CN111129243B (zh) * | 2019-12-02 | 2024-05-17 | 晶能光电股份有限公司 | GaN基紫外LED外延结构 |
Also Published As
Publication number | Publication date |
---|---|
CN104882522A (zh) | 2015-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102618238B1 (ko) | 질화물 반도체 발광소자 | |
WO2016197650A1 (zh) | 无掺杂剂的AlGaN基紫外发光二极管及制备方法 | |
CN109119515B (zh) | 一种发光二极管外延片及其制造方法 | |
CN103887378B (zh) | 一种高光效紫外led的外延生长方法 | |
JP5279006B2 (ja) | 窒化物半導体発光素子 | |
CN114512580B (zh) | 一种发光二极管 | |
CN109192825B (zh) | 一种发光二极管外延片及其制造方法 | |
CN104201260A (zh) | 一种可温控调节渐变量子垒层中In含量的LED外延结构 | |
CN105405939A (zh) | 一种发光二极管及其制造方法 | |
CN109786521B (zh) | 一种发光二极管的外延片及制备方法 | |
CN104300058B (zh) | 一种含掺杂宽势垒结构的黄绿光led | |
CN108682722A (zh) | 一种AlGaN基紫外LED外延片及其制备方法 | |
CN103441197B (zh) | 一种GaN基发光二极管外延片及其制作方法 | |
CN103872194A (zh) | 一种提高GaN基LED有源区发光效率的外延生长方法 | |
CN112366256B (zh) | 发光二极管外延片及其制造方法 | |
CN104377283B (zh) | 一种发光二极管外延片结构 | |
CN100530726C (zh) | Ⅲ-ⅴ族金属氧化物半导体发光场效应晶体管及其制备方法 | |
CN106229389A (zh) | 一种在金属氮化镓复合衬底上制备发光二极管的方法 | |
TWI528582B (zh) | 發光結構及包含其之半導體發光元件 | |
CN102142492A (zh) | 多量子阱结构及其制造方法、发光二极管 | |
CN108550676B (zh) | 一种发光二极管外延片及其制造方法 | |
CN114497304A (zh) | 一种半导体元件 | |
CN108231964B (zh) | 一种提高发光二极管内量子效率的方法 | |
CN103996766B (zh) | 氮化镓基发光二极管及其制备方法 | |
CN102148300A (zh) | 一种紫外led的制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16806548 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16806548 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16806548 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/01/2019) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16806548 Country of ref document: EP Kind code of ref document: A1 |