WO2016194861A1 - Glass - Google Patents
Glass Download PDFInfo
- Publication number
- WO2016194861A1 WO2016194861A1 PCT/JP2016/065858 JP2016065858W WO2016194861A1 WO 2016194861 A1 WO2016194861 A1 WO 2016194861A1 JP 2016065858 W JP2016065858 W JP 2016065858W WO 2016194861 A1 WO2016194861 A1 WO 2016194861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- cte
- cao
- content
- sro
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 143
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims description 57
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 13
- 238000007500 overflow downdraw method Methods 0.000 claims description 9
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 8
- 239000006059 cover glass Substances 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 238000003280 down draw process Methods 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 13
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 229910006404 SnO 2 Inorganic materials 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 238000004031 devitrification Methods 0.000 description 7
- 239000006060 molten glass Substances 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005352 clarification Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000006025 fining agent Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000006066 glass batch Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000009774 resonance method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000006124 Pilkington process Methods 0.000 description 1
- 229910018967 Pt—Rh Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000008395 clarifying agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000006125 continuous glass melting process Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007372 rollout process Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
Definitions
- the present invention relates to glass, and more particularly to glass suitable for a substrate of a chip size package (CSP).
- CSP chip size package
- image sensors such as CSP are becoming smaller, thinner and lighter.
- these sensor units have been protected by a resin package, but recently, in order to further reduce the size and the like, a method of protecting by attaching a glass substrate on a Si chip is being adopted.
- glass substrate further thinning is required in order to reduce the size of the device, and thin glass substrates (for example, glass substrates having a thickness of 0.7 mm or less) are being adopted.
- non-alkali glass is usually used for this glass substrate in order to prevent a situation where alkali ions are diffused into the semiconductor film in the heat treatment step (see Patent Document 1).
- the glass substrate and the Si chip are directly attached.
- the linear thermal expansion coefficient (CTE) between the glass substrate and Si is mismatched, the glass substrate is warped due to the difference in linear thermal expansion coefficient between the two.
- the smaller the plate thickness of the glass substrate the easier it is to warp the glass substrate.
- image sensors such as CSP contain millions of pixels of information in a Si chip of about 2 mm, so there are extremely small defects that cannot be compared with pixels such as liquid crystal displays and organic EL displays. Can be a problem. Furthermore, since the process of bonding the image sensor and the glass substrate is a substantially final process, if the yield of the device is reduced due to a defect of the glass substrate, the productivity of the device is significantly reduced.
- the present invention has been made in view of the above circumstances, and is to provide a glass having a linear thermal expansion coefficient matching Si and having good meltability and formability.
- the glass composition of the present invention has a glass composition of mol%, SiO 2 65-70%, Al 2 O 3 10-13%, B 2 O 3 5-10%, MgO + CaO + SrO + BaO + ZnO 10-13%, P 2 O 5 0 contains 1-3%, and the molar ratio (MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 is 0.9-1.3, the molar ratio CaO / (MgO + CaO + SrO + BaO + ZnO) is 0.4-0.8, and 30
- the linear thermal expansion coefficient at -260 ° C is CTE 30-260 ° C and the linear thermal expansion coefficient at 30-380 ° C is CTE 30-380 ° C , 32 ⁇ 10 -7 / ° C ⁇ CTE 30-260 ° C ⁇
- MgO + CaO + SrO + BaO + ZnO refers to the total amount of MgO, CaO, SrO, BaO and ZnO.
- (MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 refers to a value obtained by dividing the total amount of MgO, CaO, SrO, BaO and ZnO by the content of Al 2 O 3 .
- CaO / (MgO + CaO + SrO + BaO + ZnO) refers to a value obtained by dividing the content of CaO by the total amount of MgO, CaO, SrO, BaO and ZnO.
- Linear thermal expansion coefficient at 30 to 260 ° C.” refers to a value measured with a dilatometer, and refers to an average value in a temperature range of 30 to 260 ° C.
- Linear thermal expansion coefficient at 30 to 380 ° C.” indicates a value measured by a dilatometer, and indicates an average value in a temperature range of 30 to 380 ° C.
- CTE 30-380 ° C./CTE 30-260 ° C. refers to a value obtained by dividing the linear thermal expansion coefficient at 30 to 380 ° C. by the linear thermal expansion coefficient at 30 to 260 ° C.
- the glass of the present invention it is preferable that the content of Li 2 O + Na 2 O + K 2 O in the glass composition is less than 0.5 mol%.
- Li 2 O + Na 2 O + K 2 O refers to the total amount of Li 2 O, Na 2 O and K 2 O.
- the glass of the present invention preferably has a Young's modulus of 70 GPa or more.
- the “Young's modulus” can be measured by a known resonance method.
- the glass of the present invention preferably has a specific Young's modulus of 30 GPa / (g / cm 3 ) or more.
- specific Young's modulus refers to a value obtained by dividing Young's modulus by density.
- Density refers to a value measured by the well-known Archimedes method.
- the glass of the present invention is preferably formed by an overflow downdraw method or a slotdown draw method. In this way, the surface quality of the glass substrate can be improved.
- the glass of the present invention preferably has a flat plate shape.
- the glass of the present invention is preferably used for a chip size package.
- the glass of the present invention is preferably used for an organic EL display. Since the glass of the present invention is excellent in heat resistance, it is difficult to thermally shrink in the manufacturing process of p-Si • TFT, etc., and is suitable for this application.
- the glass of the present invention is preferably used for a cover glass of a display device.
- the laminate of the present invention is a laminate in which a Si chip is attached on a glass substrate, and the glass substrate is preferably made of the above glass. Note that the Si chip and the glass substrate can be attached using a known adhesive.
- the content of SiO 2 is 65 to 70%, preferably 66 to 70%, more preferably 67 to 69.5%, and still more preferably 68 to 69%.
- the content of SiO 2 is small, it is difficult to reduce the density of the glass.
- the content of SiO 2 is large, the high-temperature viscosity becomes high and the meltability is lowered.
- defects such as devitrified crystals (cristobalite) are likely to occur in the glass.
- the lower limit range of Al 2 O 3 is 10% or more, preferably 10.5% or more, more preferably 10.7% or more, and particularly preferably 11% or more.
- the upper limit range of Al 2 O 3 is 13% or less, preferably 12.7% or less, particularly preferably 12.5% or less.
- B 2 O 3 is a component that acts as a flux, lowers the viscosity at high temperature, and increases the meltability, and its content is 5 to 10%.
- a preferable lower limit range of B 2 O 3 is 5.5% or more, 6% or more, 6.5% or more, particularly 7% or more.
- a preferable upper limit range of B 2 O 3 is 9% or less, particularly 8% or less.
- MgO, CaO, SrO, BaO, and ZnO are components that lower the liquidus temperature and make it difficult to generate crystalline foreign matter in the glass, and are components that increase meltability and formability.
- the content of MgO + CaO + SrO + BaO + ZnO is 10 to 13%, preferably 10.5 to 12.5%, more preferably 11 to 12.5%, and particularly preferably 11.5 to 12.5%. If the content of MgO + CaO + SrO + BaO + ZnO is small, the function as a flux cannot be sufficiently exhibited, and in addition to the decrease in meltability, the linear thermal expansion coefficient becomes too low and it is difficult to match the linear thermal expansion coefficient of Si. Become.
- the MgO content is preferably 0 to 10%, more preferably 0.1 to 7%, and particularly preferably 0.5 to 4%.
- the CaO content is preferably 0 to 12%, more preferably 4 to 10%, and particularly preferably 5 to 9%.
- the SrO content is preferably 0 to 6%, more preferably 0.1 to 4%, and particularly preferably more than 1 to 3%.
- the content of BaO is preferably 0 to 6%, more preferably 0.1 to 4%, and particularly preferably more than 1 to 3%.
- the content of ZnO is preferably 0 to 3%, more preferably 0 to 1%, and particularly preferably 0 to 0.2%.
- the molar ratio (MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 is 0.9 to 1.3, preferably 0.95 to 1.2, more preferably more than 1.00 to 1.15, and particularly preferably 1.02 to 1.12.
- the molar ratio CaO / (MgO + CaO + SrO + BaO + ZnO) is 0.4 to 0.8, preferably 0.44 to 0.76, more preferably 0.6 to 0.75, and particularly preferably 0.65 to 0.73. is there.
- CTE 30-380 ° C./CTE 30-260 ° C. CTE 30-260 ° C. and CTE 30-380 ° C. are desired. It becomes difficult to regulate to the range of.
- P 2 O 5 is a component that enhances devitrification resistance.
- the content of P 2 O 5 is preferably 0 to 3%, more preferably 0 to 2%, and particularly preferably 0.1 to 0.9%.
- SnO 2 is a component having a good clarification action in a high temperature region and a component that lowers the high temperature viscosity.
- the SnO 2 content is preferably 0 to 1%, more preferably 0.001 to 1%, still more preferably 0.01 to 0.5%, and particularly preferably 0.05 to 0.2%.
- the content of SnO 2 is larger, the devitrification crystal SnO 2 is likely to precipitate in the glass.
- the content of SnO 2 is less than 0.001%, it becomes difficult to enjoy the effect of the above.
- ZrO 2 is a component that increases the Young's modulus.
- the content of ZrO 2 is preferably 10 to 2000 ppm (mass), more preferably 20 to 1000 ppm (mass), and particularly preferably 50 to 500 ppm (mass).
- the content of ZrO 2 is large, the liquidus temperature rises and zircon devitrification crystals are likely to precipitate.
- TiO 2 is a component that lowers the viscosity at high temperature and improves the meltability, and is a component that suppresses solarization. However, when it is contained in the glass composition in a large amount, the glass is colored and the transmittance tends to decrease. Therefore, the content of TiO 2 is preferably 10 to 2000 ppm (mass), more preferably 30 to 1000 ppm (mass), and particularly preferably 50 to 300 ppm (mass).
- Li 2 O, Na 2 O, and K 2 O are components that deteriorate the semiconductor film in the heat treatment step.
- the content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 1%, more preferably 0 to 0.5%, particularly preferably 0.01 to 0.2%.
- the content of Li 2 O is preferably 0 to 100 ppm (mass), more preferably 1 to 50 ppm (mass), and particularly preferably 5 to 20 ppm (mass).
- the content of Na 2 O is preferably 10 to 500 ppm (mass), more preferably 50 to 300 ppm (mass), and particularly preferably 100 to 200 ppm (mass).
- the content of K 2 O is preferably 0 to 100 ppm (mass), more preferably 5 to 50 ppm (mass), and particularly preferably 10 to 30 ppm (mass).
- the content of Na 2 O and K 2 O in too small, it is necessary to use a high purity material, the raw material cost is likely to rise.
- Fe 2 O 3 is a component that colors the glass.
- the content of Fe 2 O 3 is preferably 10 to 500 ppm (mass), more preferably 30 to 200 ppm (mass), and particularly preferably 50 to 100 ppm (mass).
- the raw material cost is likely to rise.
- Cr 2 O 3 is a component that colors the glass.
- the content of Cr 2 O 3 is preferably 0 to 5 ppm (mass), more preferably 0.01 to 2 ppm (mass), and particularly preferably 0.05 to 3 ppm (mass).
- the raw material cost is likely to rise.
- Rh 2 O 3 is a component that generates Rh bumps.
- the content of Rh 2 O 3 is preferably 0 to 5 ppm (mass), more preferably 0.01 to 2 ppm (mass), and particularly preferably 0.05 to 3 ppm (mass).
- the content of Rh 2 O 3 is made too small, it becomes difficult to use a Pt-Rh container for the clarification container, the supply container, etc. In this case, it is difficult to ensure the strength of the clarification container, the supply container, etc. .
- SO 3 is a component that generates reboil bubbles.
- the content of SO 3 is preferably 0 to 100 ppm (mass), more preferably 0.1 to 10 ppm (mass), and particularly preferably 0.5 to 5 ppm (mass).
- the raw material cost is likely to rise.
- the glass of the present invention as described above, although the addition of SnO 2 as a fining agent is preferred, so long as the glass properties are not impaired, in place of the SnO 2, or in combination with SnO 2, CeO 2, C, Metal powder (eg, Al, Si, etc.) can be added up to 1%.
- SnO 2 as a fining agent
- Metal powder eg, Al, Si, etc.
- the glass of the present invention does not completely exclude the inclusion of these components, but from an environmental point of view, the content of these components Is preferably less than 0.1%, particularly preferably less than 0.05%.
- halogens such as F and Cl have the effect of lowering the melting temperature and promoting the action of the clarifying agent. As a result, the lifetime of the glass manufacturing kiln is increased while lowering the melting cost of the glass. be able to.
- the contents of F and Cl are preferably 1% or less, 0.5% or less, less than 0.1%, less than 0.05%, particularly preferably 0.01% or less, respectively.
- the glass of the present invention preferably has the following characteristics.
- CTE 30-260 ° C. is 32 ⁇ 10 ⁇ 7 to 34 ⁇ 10 ⁇ 7 / ° C., preferably 32.5 ⁇ 10 ⁇ 7 to 33.5 ⁇ 10 ⁇ 7 / ° C.
- CTE 30-260 ° C. is outside the above range, the amount of warpage of the glass substrate tends to increase when the glass substrate and the Si chip are bonded together. In particular, the warp amount of the glass substrate tends to increase as the thickness of the glass substrate decreases.
- CTE 30-380 ° C. is 33 ⁇ 10 ⁇ 7 to 35 ⁇ 10 ⁇ 7 / ° C., preferably 33.5 ⁇ 10 ⁇ 7 to 34.5 ⁇ 10 ⁇ 7 / ° C.
- CTE 30-380 ° C. is outside the above range, the amount of warpage of the glass substrate tends to increase when the glass substrate and the Si chip are bonded together. In particular, the warp amount of the glass substrate tends to increase as the thickness of the glass substrate decreases.
- CTE 30-380 ° C./CTE 30-260 ° C. is 0.95 to 1.05, preferably 1.001 to 1.050, more preferably 1.020 to 1.045, and particularly preferably 1.025 to 1.040.
- CTE 30-380 ° C./CTE 30-260 ° C. is outside the above range, the amount of warpage of the glass substrate tends to increase when the glass substrate and the Si chip are bonded together. In particular, the warp amount of the glass substrate tends to increase as the thickness of the glass substrate decreases.
- the Young's modulus is preferably 70 GPa or more, more preferably 73 GPa or more, and particularly preferably 75 GPa or more.
- the specific modulus is preferably 30GPa / (g / cm 3) or more, particularly preferably 31GPa / (g / cm 3) or more. If the Young's modulus or specific Young's modulus is low, the rigidity of the resulting laminate is likely to decrease after the Si chip is attached to the glass substrate. Further, when the adhesive is spin-coated on the glass substrate, the glass substrate is easily displaced.
- the strain point is preferably 600 ° C or higher, 620 ° C or higher, 630 ° C or higher, 640 ° C or higher, 650 ° C or higher, particularly 660 ° C or higher. If the strain point is low, the glass quality may be impaired when the glass substrate and the Si chip are bonded together with a resin. Further, the glass is easily heat-shrinked in the heat treatment process.
- strain point refers to a value measured based on the method of ASTM C336.
- High temperature melting increases the burden on the glass melting furnace.
- refractories such as alumina and zirconia used in glass melting kilns are eroded violently by molten glass as the temperature rises.
- the life cycle of the glass melting furnace is shortened, and as a result, the manufacturing cost of the glass increases.
- high-temperature melting requires that the interior of the glass melting furnace be kept at a high temperature, so that the running cost is higher than that at low-temperature melting.
- the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is preferably 1650 ° C. or lower, 1640 ° C. or lower, 1630 ° C. or lower, 1620 ° C. or lower, particularly 1610 ° C. or lower. If the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is too high, low-temperature melting becomes difficult, and the glass production cost tends to increase. In addition, the bubble quality tends to be lowered.
- “temperature at high temperature viscosity of 10 2.5 dPa ⁇ s” refers to a value measured by a platinum ball pulling method.
- the liquid phase viscosity is 10 4.5 dPa ⁇ s or more, 10 4.7 dPa ⁇ s or more, 10 4.9 dPa ⁇ s or more, 10 5.0 dPa ⁇ s or more, particularly 10 5.2 dPa ⁇ s or more. preferable. In this way, since devitrification crystals are less likely to occur during molding, it becomes easy to mold a glass substrate by the overflow down draw method or the like.
- the liquid phase viscosity is an index of moldability, and the liquid phase viscosity is The higher the value, the better the moldability.
- liquid phase viscosity refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
- Liquid phase temperature refers to the temperature at which crystals precipitate by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining in 50 mesh (300 ⁇ m) into a platinum boat and holding it in a temperature gradient furnace for 24 hours. Refers to the measured value.
- ⁇ -OH value is preferably less than 0.40 / mm, 0.35 / mm or less, 0.3 / mm or less, 0.25 / mm or less, 0.2 / mm or less, especially 0.15 / mm or less It is. If the ⁇ -OH value is too large, the strain point and foam quality tend to decrease. If the ⁇ -OH value is too small, the meltability tends to be lowered. Therefore, the ⁇ -OH value is preferably 0.01 / mm or more, particularly 0.05 / mm or more.
- the “ ⁇ -OH value” refers to a value obtained by measuring transmittance using FT-IR and calculating using Equation 1 below.
- beta-OH value (1 / X) log ( T 1 / T 2)
- X Plate thickness (mm)
- T 1 Transmittance (%) at a reference wavelength of 3846 cm ⁇ 1
- T 2 Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm ⁇ 1
- a glass raw material prepared so as to have a predetermined glass composition is put into a continuous glass melting furnace, the glass raw material is heated and melted, and the obtained molten glass is clarified and then supplied to a molding apparatus. Then, it can be produced by forming into a flat plate shape or the like.
- the glass of the present invention is preferably formed by an overflow down draw method.
- the overflow down draw method is a method in which molten glass is overflowed from both sides of a heat-resistant bowl-shaped structure, and the overflowed molten glass is stretched and formed downward while joining at the lower end of the bowl-shaped structure. This is a method of molding.
- the surface to be the surface of the glass substrate is not in contact with the bowl-like refractory and is molded in a free surface state, so that the surface quality of the glass substrate can be improved. Since the glass of the present invention is excellent in resistance to devitrification, a glass substrate can be efficiently formed by an overflow down draw method.
- the glass of the present invention can employ various forming methods other than the overflow downdraw method.
- a molding method such as a slot down draw method, a float method, or a rollout method can be employed.
- a thin glass substrate can be shape
- the glass of the present invention preferably has a flat plate shape, that is, a glass substrate. If it does in this way, it can apply to glass substrates for flat displays, such as CSP, a liquid crystal display, and an organic EL display, and glass substrates for image sensors, such as CCD and CIS.
- the plate thickness of the glass substrate is preferably 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, particularly 0.4 mm or less. As the plate thickness is smaller, the glass substrate can be reduced in weight, and as a result, the device is also easily reduced in weight. Since the glass of the present invention has a high liquidus viscosity, it is easy to increase the size and thickness by an overflow down draw method or the like, and to easily improve the surface quality.
- Table 1 shows examples (sample Nos. 1 to 8) and comparative examples (sample No. 9) of the present invention. Note that RO in the table represents MgO + CaO + SrO + BaO + ZnO.
- Sample no. 1 to 9 were produced. First, glass raw materials prepared so as to have the glass composition shown in the table were put in a platinum crucible and melted at 1600 ° C. for 24 hours, and then poured onto a carbon plate to form a flat plate. Next, for each sample obtained, the density, 30-380 linear thermal expansion coefficient CTE 30-380 °C at ° C. for 30 to 260 linear thermal expansion coefficient CTE 30-260 °C at °C, CTE 30-380 °C / CTE 30 The temperature and ⁇ -OH value at ⁇ 260 ° C. , Young's modulus, specific Young's modulus, strain point, high temperature viscosity of 10 2.5 dPa ⁇ s were evaluated.
- the density is a value measured by the well-known Archimedes method.
- the linear thermal expansion coefficient CTE 30-260 ° C. at 30-260 ° C. and the linear thermal expansion coefficient CTE 30-380 ° C. at 30-380 ° C. are average values measured with a dilatometer in the indicated temperature range.
- the strain point Ps is a value measured based on the method of ASTM C336.
- the Young's modulus is a value measured by the resonance method.
- the temperature at a high temperature viscosity of 10 2.5 dPa ⁇ s is a value measured by a platinum ball pulling method.
- the ⁇ -OH value is a value measured by the above method.
- the density is 2.39 to 2.48 g / cm 3
- the linear thermal expansion coefficient CTE at 30 to 260 ° C. 30 to 260 ° C. is 32.2 ⁇ 10 ⁇ 7 to 33.9 ⁇ 10 ⁇ 7 / ° C.
- linear thermal expansion coefficient at 30 ⁇ 380 °C CTE 30-380 °C is 33.4 ⁇ 10 -7 ⁇ 35.2 ⁇ 10 -7 / °C, CTE 30-380 °C / CTE 30-260 °C 1.03 ⁇ 1.04, Young's modulus is 72 to 77 GPa, specific Young's modulus is 30 to 31 GPa / (g / cm 3 ), strain point is 663 to 705 ° C., and high temperature viscosity is 10 2.5 dPa ⁇ s, temperature is 1567 to 1602 ° C. The ⁇ -OH value was 0.15 to 0.30 / mm.
- sample No. 9 has a large content of MgO + CaO + SrO + BaO + ZnO, so that the linear thermal expansion coefficient CTE at 30 to 260 ° C. 30-260 ° C. is 37.6 ⁇ 10 ⁇ 7 / ° C., and the linear thermal expansion coefficient CTE at 30 to 380 ° C. 30 to 380 ° C. was 38.8 ⁇ 10 ⁇ 7 / ° C.
- the glass of the present invention is used for glass substrates for flat displays such as liquid crystal displays and organic EL displays, glass substrates for image sensors such as charge-coupled devices (CCD) and equal-magnification proximity solid-state imaging devices (CIS). It can be suitably used.
- CCD charge-coupled devices
- CIS equal-magnification proximity solid-state imaging devices
- the glass of the present invention can be suitably used for a display device for projection use, for example, a cover glass or a spacer of DMD (Digital Micromirror Device), LCOS (Liquid Crystal ON Silicon).
- a display device for projection use for example, a cover glass or a spacer of DMD (Digital Micromirror Device), LCOS (Liquid Crystal ON Silicon).
- an electronic circuit for driving a display or the like is formed on the Si wafer, and a cover glass, a spacer, or the like is bonded to the Si wafer by an ultraviolet curable resin, a thermosetting resin, a glass frit, or the like.
- an ultraviolet curable resin a thermosetting resin, a glass frit, or the like.
- the linear thermal expansion coefficient of the cover glass or the like closely matches the thermal expansion coefficient of the Si wafer in order to reduce warpage and distortion.
- the glass of the present invention is suitable for this application because it closely matches the thermal expansion coefficient of the Si wafer.
- the glass of the present invention can be suitably used for a quantum dot silicon type solar cell, a thin film silicon type solar cell substrate or a cover glass.
- a Si film layer is formed on a substrate.
- the linear thermal expansion coefficient of the glass substrate or the like closely matches the thermal expansion coefficient of the Si film layer in order to reduce warpage and distortion.
- the glass of the present invention is suitable for this application because it closely matches the thermal expansion coefficient of the Si film layer.
- the spectral transmittance of a glass substrate or the like is also required to be very high including the ultraviolet region.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Glass Compositions (AREA)
- Laminated Bodies (AREA)
Abstract
This glass is characterized in that: said glass has a glass composition comprising, in mol%, 65-70% of SiO2, 10-13% of Al2O3, 5-10% of B2O3, 10-13% of MgO+CaO+SrO+BaO+ZnO, and 0-3% of P2O5; the molar ratio (MgO+CaO+SrO+BaO+ZnO)/Al2O3 is 0.9-1.3; the molar ratio CaO/(MgO+CaO+SrO+BaO+ZnO) is 0.4-0.8; and said glass satisfies the conditions 32×10-7/°C ≤ CTE30-260 °C ≤ 34×10-7/°C, 33×10-7/°C ≤ CTE30-380 °C ≤ 35×10-7/°C, and 0.95 ≤ CTE30-380 °C/CTE30-260 °C ≤ 1.05 when the linear thermal expansion coefficient at 30-260 °C is denoted by CTE30-260 °C and the linear thermal expansion coefficient at 30-380 °C is denoted by CTE30-380 °C.
Description
本発明はガラスに関し、特にチップサイズパッケージ(CSP)の基板に好適なガラスに関する。
The present invention relates to glass, and more particularly to glass suitable for a substrate of a chip size package (CSP).
近年、CSP等のイメージセンサーは、小型化、薄型化、軽量化が進んでいる。従来、これらのセンサー部は樹脂のパッケージで保護されていたが、近年、更なる小型化等を進めるために、Siチップ上にガラス基板を貼り付けて保護する方式が採用されつつある。
In recent years, image sensors such as CSP are becoming smaller, thinner and lighter. Conventionally, these sensor units have been protected by a resin package, but recently, in order to further reduce the size and the like, a method of protecting by attaching a glass substrate on a Si chip is being adopted.
このガラス基板についても、デバイスの小型化等を図るために、更なる薄肉化が求められており、薄肉のガラス基板(例えば、板厚0.7mm以下のガラス基板)が採用されつつある。
Also for this glass substrate, further thinning is required in order to reduce the size of the device, and thin glass substrates (for example, glass substrates having a thickness of 0.7 mm or less) are being adopted.
更に、このガラス基板には、熱処理工程でアルカリイオンが半導体膜中に拡散する事態を防止するため、通常、無アルカリガラスが用いられる(特許文献1参照)。
Furthermore, non-alkali glass is usually used for this glass substrate in order to prevent a situation where alkali ions are diffused into the semiconductor film in the heat treatment step (see Patent Document 1).
上述の通り、CSP等の用途の場合、ガラス基板とSiチップが直接貼り付けられる。しかし、ガラス基板とSiの線熱膨張係数(CTE)が不整合であると、両者の線熱膨張係数差によって、ガラス基板に反りが発生してしまう。特に、ガラス基板の板厚が小さい程、ガラス基板に反りが発生し易くなる。
As described above, in the case of CSP or the like, the glass substrate and the Si chip are directly attached. However, if the linear thermal expansion coefficient (CTE) between the glass substrate and Si is mismatched, the glass substrate is warped due to the difference in linear thermal expansion coefficient between the two. In particular, the smaller the plate thickness of the glass substrate, the easier it is to warp the glass substrate.
しかし、Siの線熱膨張係数に整合するように、ガラス基板の線熱膨張係を低下させると、ガラス基板の表面欠陥が発生し易くなる。すなわち、ガラス基板の線熱膨張係を低下させるためにガラス組成を設計すると、溶融ガラスの高温粘性が高くなり、また成形性が低下するため、発泡、失透ブツ等の表面欠陥が発生し易くなる。
However, if the coefficient of linear thermal expansion of the glass substrate is reduced so as to match the linear thermal expansion coefficient of Si, surface defects of the glass substrate are likely to occur. That is, if the glass composition is designed to reduce the coefficient of linear thermal expansion of the glass substrate, the high-temperature viscosity of the molten glass increases, and the moldability decreases, so surface defects such as foaming and devitrification are likely to occur. Become.
また、CSP等のイメージセンサーは、約2mm程度のSiチップの中に数百万画素分の情報が盛り込まれるため、液晶ディスプレイ、有機ELディスプレイ等の画素とは比較にならない程、極微小な欠点が問題となり得る。更に、イメージセンサーとガラス基板を貼り合わせる工程は、略最終工程であるため、ガラス基板の欠点によりデバイスの歩留まりが低下すると、デバイスの生産性が著しく低下してしまう。
Also, image sensors such as CSP contain millions of pixels of information in a Si chip of about 2 mm, so there are extremely small defects that cannot be compared with pixels such as liquid crystal displays and organic EL displays. Can be a problem. Furthermore, since the process of bonding the image sensor and the glass substrate is a substantially final process, if the yield of the device is reduced due to a defect of the glass substrate, the productivity of the device is significantly reduced.
そこで、本発明は、上記事情に鑑みなされたものであり、Siに整合する線熱膨張係数を有し、且つ溶融性と成形性が良好なガラスを提供することである。
Therefore, the present invention has been made in view of the above circumstances, and is to provide a glass having a linear thermal expansion coefficient matching Si and having good meltability and formability.
本発明者は、種々の実験を繰り返した結果、ガラス組成範囲と線熱膨張係数を厳密に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明のガラスは、ガラス組成として、モル%で、SiO2 65~70%、Al2O3 10~13%、B2O3 5~10%、MgO+CaO+SrO+BaO+ZnO 10~13%、P2O5 0~3%を含有し、モル比(MgO+CaO+SrO+BaO+ZnO)/Al2O3が0.9~1.3であり、モル比CaO/(MgO+CaO+SrO+BaO+ZnO)が0.4~0.8であり、且つ30~260℃における線熱膨張係数をCTE30-260℃、30~380℃における線熱膨張係数をCTE30-380℃とした時に、32×10-7/℃≦CTE30-260℃≦34×10-7/℃、33×10-7/℃≦CTE30-380℃≦35×10-7/℃、0.95≦CTE30-380℃/CTE30-260℃≦1.05の条件を満たすことを特徴とする。ここで、「MgO+CaO+SrO+BaO+ZnO」は、MgO、CaO、SrO、BaO及びZnOの合量を指す。「(MgO+CaO+SrO+BaO+ZnO)/Al2O3」は、MgO、CaO、SrO、BaO及びZnOの合量をAl2O3の含有量で割った値を指す。「CaO/(MgO+CaO+SrO+BaO+ZnO)」は、CaOの含有量をMgO、CaO、SrO、BaO及びZnOの合量で割った値を指す。「30~260℃における線熱膨張係数」は、ディラトメーターで測定した値を指し、30~260℃の温度範囲における平均値を指す。「30~380℃における線熱膨張係数」は、ディラトメーターで測定した値を指し、30~380℃の温度範囲における平均値を指す。「CTE30-380℃/CTE30-260℃」は、30~380℃における線熱膨張係数を30~260℃における線熱膨張係数で割った値を指す。
As a result of repeating various experiments, the present inventors have found that the above technical problem can be solved by strictly regulating the glass composition range and the linear thermal expansion coefficient, and propose the present invention. That is, the glass composition of the present invention has a glass composition of mol%, SiO 2 65-70%, Al 2 O 3 10-13%, B 2 O 3 5-10%, MgO + CaO + SrO + BaO + ZnO 10-13%, P 2 O 5 0 contains 1-3%, and the molar ratio (MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 is 0.9-1.3, the molar ratio CaO / (MgO + CaO + SrO + BaO + ZnO) is 0.4-0.8, and 30 When the linear thermal expansion coefficient at -260 ° C is CTE 30-260 ° C and the linear thermal expansion coefficient at 30-380 ° C is CTE 30-380 ° C , 32 × 10 -7 / ° C≤CTE 30-260 ° C≤34x 10 -7 / ℃, 33 × 10 -7 / ℃ ≦ CTE 30-380 ℃ ≦ 35 × 10 -7 /℃,0.95≦CTE 30-380 / CTE 30-260, wherein the condition is satisfied in ° C. ≦ 1.05. Here, “MgO + CaO + SrO + BaO + ZnO” refers to the total amount of MgO, CaO, SrO, BaO and ZnO. “(MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 ” refers to a value obtained by dividing the total amount of MgO, CaO, SrO, BaO and ZnO by the content of Al 2 O 3 . “CaO / (MgO + CaO + SrO + BaO + ZnO)” refers to a value obtained by dividing the content of CaO by the total amount of MgO, CaO, SrO, BaO and ZnO. “Linear thermal expansion coefficient at 30 to 260 ° C.” refers to a value measured with a dilatometer, and refers to an average value in a temperature range of 30 to 260 ° C. “Linear thermal expansion coefficient at 30 to 380 ° C.” indicates a value measured by a dilatometer, and indicates an average value in a temperature range of 30 to 380 ° C. “CTE 30-380 ° C./CTE 30-260 ° C. ” refers to a value obtained by dividing the linear thermal expansion coefficient at 30 to 380 ° C. by the linear thermal expansion coefficient at 30 to 260 ° C.
第二に、本発明のガラスは、ガラス組成中のLi2O+Na2O+K2Oの含有量が0.5モル%以下であることが好ましい。ここで、「Li2O+Na2O+K2O」は、Li2O、Na2O及びK2Oの合量を指す。
Second, the glass of the present invention, it is preferable that the content of Li 2 O + Na 2 O + K 2 O in the glass composition is less than 0.5 mol%. Here, “Li 2 O + Na 2 O + K 2 O” refers to the total amount of Li 2 O, Na 2 O and K 2 O.
第三に、本発明のガラスは、ヤング率が70GPa以上であることが好ましい。ここで、「ヤング率」は、周知の共振法で測定可能である。
Third, the glass of the present invention preferably has a Young's modulus of 70 GPa or more. Here, the “Young's modulus” can be measured by a known resonance method.
第四に、本発明のガラスは、比ヤング率が30GPa/(g/cm3)以上であることが好ましい。ここで、「比ヤング率」は、ヤング率を密度で割った値を指す。「密度」は、周知のアルキメデス法で測定した値を指す。
Fourth, the glass of the present invention preferably has a specific Young's modulus of 30 GPa / (g / cm 3 ) or more. Here, “specific Young's modulus” refers to a value obtained by dividing Young's modulus by density. “Density” refers to a value measured by the well-known Archimedes method.
第五に、本発明のガラスは、オーバーフローダウンドロー法又はスロットダウンドロー法で成形されてなることが好ましい。このようにすれば、ガラス基板の表面品位を高めることができる。
Fifth, the glass of the present invention is preferably formed by an overflow downdraw method or a slotdown draw method. In this way, the surface quality of the glass substrate can be improved.
第六に、本発明のガラスは、平板形状であることが好ましい。
Sixth, the glass of the present invention preferably has a flat plate shape.
第七に、本発明のガラスは、チップサイズパッケージに用いることが好ましい。
Seventh, the glass of the present invention is preferably used for a chip size package.
第八に、本発明のガラスは、有機ELディスプレイに用いることが好ましい。本発明のガラスは、耐熱性に優れるため、p-Si・TFTの製造工程等で熱収縮し難く、本用途にも好適である。
Eighth, the glass of the present invention is preferably used for an organic EL display. Since the glass of the present invention is excellent in heat resistance, it is difficult to thermally shrink in the manufacturing process of p-Si • TFT, etc., and is suitable for this application.
第九に、本発明のガラスは、ディスプレイデバイスのカバーガラスに用いることが好ましい。
Ninth, the glass of the present invention is preferably used for a cover glass of a display device.
第十に、本発明の積層体は、Siチップがガラス基板上に貼り付けられた積層体であって、ガラス基板が、上記のガラスからなることが好ましい。なお、Siチップとガラス基板は、公知の接着剤を用いて、貼り付けることが可能である。
Tenthly, the laminate of the present invention is a laminate in which a Si chip is attached on a glass substrate, and the glass substrate is preferably made of the above glass. Note that the Si chip and the glass substrate can be attached using a known adhesive.
本発明のガラスにおいて、ガラス組成中の各成分の含有量を上記のように限定した理由を以下に示す。なお、以下の%表示は、特に断りがある場合を除き、モル%を指す。
In the glass of the present invention, the reason why the content of each component in the glass composition is limited as described above will be described below. In addition, the following% display points out mol% unless there is particular notice.
SiO2の含有量は65~70%であり、好ましくは66~70%、より好ましくは67~69.5%、更に好ましくは68~69%である。SiO2の含有量が少ないと、ガラスの低密度化を図り難くなる。一方、SiO2の含有量が多いと、高温粘度が高くなって、溶融性が低下することに加えて、ガラス中に失透結晶(クリストバライト)等の欠陥が生じ易くなる。
The content of SiO 2 is 65 to 70%, preferably 66 to 70%, more preferably 67 to 69.5%, and still more preferably 68 to 69%. When the content of SiO 2 is small, it is difficult to reduce the density of the glass. On the other hand, when the content of SiO 2 is large, the high-temperature viscosity becomes high and the meltability is lowered. In addition, defects such as devitrified crystals (cristobalite) are likely to occur in the glass.
Al2O3の含有量が少ないと、耐熱性を高め難くなったり、高温粘性が高くなって、溶融性が低下し易くなる。またヤング率が低下し易くなる。よって、Al2O3の下限範囲は10%以上であり、好ましくは10.5%以上、より好ましくは10.7%以上、特に好ましくは11%以上である。一方、Al2O3の含有量が多いと、液相温度が高くなり、耐失透性が低下し易くなる。よって、Al2O3の上限範囲は13%以下であり、好ましくは12.7%以下、特に好ましくは12.5%以下である。
When the content of Al 2 O 3 is less or hardly increased heat resistance, higher high temperature viscosity, the meltability tends to decrease. Also, the Young's modulus tends to decrease. Therefore, the lower limit range of Al 2 O 3 is 10% or more, preferably 10.5% or more, more preferably 10.7% or more, and particularly preferably 11% or more. On the other hand, when the content of Al 2 O 3 is large, the liquidus temperature increases, devitrification resistance is liable to decrease. Therefore, the upper limit range of Al 2 O 3 is 13% or less, preferably 12.7% or less, particularly preferably 12.5% or less.
B2O3は、融剤として働き、高温粘性を下げ、溶融性を高める成分であり、その含有量は5~10%である。B2O3の含有量が少ないと、融剤としての働きが不十分になって、高温粘性が高くなる。またガラスの低密度化を図り難くなる。B2O3の好適な下限範囲は5.5%以上、6%以上、6.5%以上、特に7%以上である。一方、B2O3の含有量が多いと、耐熱性やヤング率が低下し易くなる。B2O3の好適な上限範囲は9%以下、特に8%以下である。
B 2 O 3 is a component that acts as a flux, lowers the viscosity at high temperature, and increases the meltability, and its content is 5 to 10%. When the content of B 2 O 3 is small, works as a flux becomes insufficient, high-temperature viscosity becomes higher. Moreover, it becomes difficult to reduce the density of the glass. A preferable lower limit range of B 2 O 3 is 5.5% or more, 6% or more, 6.5% or more, particularly 7% or more. On the other hand, if the content of B 2 O 3 is large, the heat resistance and the Young's modulus tends to decrease. A preferable upper limit range of B 2 O 3 is 9% or less, particularly 8% or less.
MgO、CaO、SrO、BaO及びZnOは、液相温度を下げて、ガラス中に結晶異物を発生させ難くする成分であり、また溶融性や成形性を高める成分である。MgO+CaO+SrO+BaO+ZnOの含有量は10~13%であり、好ましくは10.5~12.5%、より好ましくは11~12.5%、特に好ましくは11.5~12.5%である。MgO+CaO+SrO+BaO+ZnOの含有量が少ないと、融剤としての働きを十分に発揮できず、溶融性が低下することに加えて、線熱膨張係数が低くなり過ぎて、Siの線熱膨張係数に整合し難くなる。一方、MgO+CaO+SrO+BaO+ZnOの含有量が多いと、密度が上昇し、ガラスの軽量化を図り難くなり、また比ヤング率が低下し易くなり、更に線熱膨張係数が高くなり過ぎる。なお、MgOの含有量は、好ましくは0~10%、より好ましくは0.1~7%、特に好ましくは0.5~4%である。CaOの含有量は、好ましくは0~12%、より好ましくは4~10%、特に好ましくは5~9%である。SrOの含有量は、好ましくは0~6%、より好ましくは0.1~4%、特に好ましくは1超~3%である。BaOの含有量は、好ましくは0~6%、より好ましくは0.1~4%、特に好ましくは1超~3%である。ZnOの含有量は、好ましくは0~3%、より好ましくは0~1%、特に好ましくは0~0.2%である。
MgO, CaO, SrO, BaO, and ZnO are components that lower the liquidus temperature and make it difficult to generate crystalline foreign matter in the glass, and are components that increase meltability and formability. The content of MgO + CaO + SrO + BaO + ZnO is 10 to 13%, preferably 10.5 to 12.5%, more preferably 11 to 12.5%, and particularly preferably 11.5 to 12.5%. If the content of MgO + CaO + SrO + BaO + ZnO is small, the function as a flux cannot be sufficiently exhibited, and in addition to the decrease in meltability, the linear thermal expansion coefficient becomes too low and it is difficult to match the linear thermal expansion coefficient of Si. Become. On the other hand, if the content of MgO + CaO + SrO + BaO + ZnO is large, the density increases, it becomes difficult to reduce the weight of the glass, the specific Young's modulus tends to decrease, and the linear thermal expansion coefficient becomes too high. The MgO content is preferably 0 to 10%, more preferably 0.1 to 7%, and particularly preferably 0.5 to 4%. The CaO content is preferably 0 to 12%, more preferably 4 to 10%, and particularly preferably 5 to 9%. The SrO content is preferably 0 to 6%, more preferably 0.1 to 4%, and particularly preferably more than 1 to 3%. The content of BaO is preferably 0 to 6%, more preferably 0.1 to 4%, and particularly preferably more than 1 to 3%. The content of ZnO is preferably 0 to 3%, more preferably 0 to 1%, and particularly preferably 0 to 0.2%.
モル比(MgO+CaO+SrO+BaO+ZnO)/Al2O3とモル比CaO/(MgO+CaO+SrO+BaO+ZnO)は、CTE30-380℃/CTE30-260℃、CTE30-260℃及びCTE30-380℃を所望の範囲に規制するために重要な成分比率である。モル比(MgO+CaO+SrO+BaO+ZnO)/Al2O3は0.9~1.3であり、好ましくは0.95~1.2、より好ましくは1.00超~1.15、特に好ましくは1.02~1.12である。モル比CaO/(MgO+CaO+SrO+BaO+ZnO)は0.4~0.8であり、好ましくは0.44~0.76、より好ましくは0.6~0.75、特に好ましくは0.65~0.73である。モル比(MgO+CaO+SrO+BaO+ZnO)/Al2O3とモル比CaO/(MgO+CaO+SrO+BaO+ZnO)が上記範囲外になると、CTE30-380℃/CTE30-260℃、CTE30-260℃及びCTE30-380℃を所望の範囲に規制し難くなる。
Molar ratio (MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 molar ratio CaO / (MgO + CaO + SrO + BaO + ZnO) regulates CTE 30-380 ℃ / CTE 30-260 ℃, the CTE 30-260 ℃ and CTE 30-380 ℃ the desired range Therefore, it is an important component ratio. The molar ratio (MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 is 0.9 to 1.3, preferably 0.95 to 1.2, more preferably more than 1.00 to 1.15, and particularly preferably 1.02 to 1.12. The molar ratio CaO / (MgO + CaO + SrO + BaO + ZnO) is 0.4 to 0.8, preferably 0.44 to 0.76, more preferably 0.6 to 0.75, and particularly preferably 0.65 to 0.73. is there. When the molar ratio (MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 and the molar ratio CaO / (MgO + CaO + SrO + BaO + ZnO) are out of the above ranges, CTE 30-380 ° C./CTE 30-260 ° C. , CTE 30-260 ° C. and CTE 30-380 ° C. are desired. It becomes difficult to regulate to the range of.
P2O5は、耐失透性を高める成分であるが、ガラス組成中に多く含有させると、ガラス中に分相、乳白が生じることに加えて、耐水性が顕著に低下する。よって、P2O5の含有量は、好ましくは0~3%、より好ましくは0~2%、特に好ましくは0.1~0.9%である。
P 2 O 5 is a component that enhances devitrification resistance. However, when a large amount of P 2 O 5 is contained in the glass composition, in addition to the occurrence of phase separation and milk white in the glass, the water resistance is significantly reduced. Therefore, the content of P 2 O 5 is preferably 0 to 3%, more preferably 0 to 2%, and particularly preferably 0.1 to 0.9%.
SnO2は、高温域で良好な清澄作用を有する成分であると共に、高温粘性を低下させる成分である。SnO2の含有量は、好ましくは0~1%、より好ましくは0.001~1%、更に好ましくは0.01~0.5%、特に好ましくは0.05~0.2%である。SnO2の含有量が多いと、SnO2の失透結晶がガラス中に析出し易くなる。なお、SnO2の含有量が0.001%より少ないと、上記の効果を享受し難くなる。
SnO 2 is a component having a good clarification action in a high temperature region and a component that lowers the high temperature viscosity. The SnO 2 content is preferably 0 to 1%, more preferably 0.001 to 1%, still more preferably 0.01 to 0.5%, and particularly preferably 0.05 to 0.2%. When the content of SnO 2 is larger, the devitrification crystal SnO 2 is likely to precipitate in the glass. Incidentally, when the content of SnO 2 is less than 0.001%, it becomes difficult to enjoy the effect of the above.
ZrO2は、ヤング率を高める成分である。ZrO2の含有量は、好ましくは10~2000ppm(質量)、より好ましくは20~1000ppm(質量)、特に好ましくは50~500ppm(質量)である。ZrO2の含有量が多いと、液相温度が上昇し、ジルコンの失透結晶が析出し易くなる。
ZrO 2 is a component that increases the Young's modulus. The content of ZrO 2 is preferably 10 to 2000 ppm (mass), more preferably 20 to 1000 ppm (mass), and particularly preferably 50 to 500 ppm (mass). When the content of ZrO 2 is large, the liquidus temperature rises and zircon devitrification crystals are likely to precipitate.
TiO2は、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分であるが、ガラス組成中に多く含有させると、ガラスが着色し、透過率が低下し易くなる。よって、TiO2の含有量は、好ましくは10~2000ppm(質量)、より好ましくは30~1000ppm(質量)、特に好ましくは50~300ppm(質量)である。
TiO 2 is a component that lowers the viscosity at high temperature and improves the meltability, and is a component that suppresses solarization. However, when it is contained in the glass composition in a large amount, the glass is colored and the transmittance tends to decrease. Therefore, the content of TiO 2 is preferably 10 to 2000 ppm (mass), more preferably 30 to 1000 ppm (mass), and particularly preferably 50 to 300 ppm (mass).
Li2O、Na2O及びK2Oは、熱処理工程で半導体膜を劣化させる成分である。Li2O+Na2O+K2Oの含有量は、好ましくは0~1%、より好ましくは0~0.5%、特に好ましくは0.01~0.2%である。Li2Oの含有量は、好ましくは0~100ppm(質量)、より好ましくは1~50ppm(質量)、特に好ましくは5~20ppm(質量)である。Na2Oの含有量は、好ましくは10~500ppm(質量)、より好ましくは50~300ppm(質量)、特に好ましくは100~200ppm(質量)である。K2Oの含有量は、好ましくは0~100ppm(質量)、より好ましくは5~50ppm(質量)、特に好ましくは10~30ppm(質量)である。なお、Li2O、Na2O及びK2Oの含有量を過少にする場合は、高純度原料を使用しなければならず、原料コストが高騰し易くなる。
Li 2 O, Na 2 O, and K 2 O are components that deteriorate the semiconductor film in the heat treatment step. The content of Li 2 O + Na 2 O + K 2 O is preferably 0 to 1%, more preferably 0 to 0.5%, particularly preferably 0.01 to 0.2%. The content of Li 2 O is preferably 0 to 100 ppm (mass), more preferably 1 to 50 ppm (mass), and particularly preferably 5 to 20 ppm (mass). The content of Na 2 O is preferably 10 to 500 ppm (mass), more preferably 50 to 300 ppm (mass), and particularly preferably 100 to 200 ppm (mass). The content of K 2 O is preferably 0 to 100 ppm (mass), more preferably 5 to 50 ppm (mass), and particularly preferably 10 to 30 ppm (mass). In the case of Li 2 O, the content of Na 2 O and K 2 O in too small, it is necessary to use a high purity material, the raw material cost is likely to rise.
Fe2O3は、ガラスを着色させる成分である。Fe2O3の含有量は、好ましくは10~500ppm(質量)、より好ましくは30~200ppm(質量)、特に好ましくは50~100ppm(質量)である。なお、Fe2O3の含有量を過少にする場合は、高純度原料を使用しなければならず、原料コストが高騰し易くなる。
Fe 2 O 3 is a component that colors the glass. The content of Fe 2 O 3 is preferably 10 to 500 ppm (mass), more preferably 30 to 200 ppm (mass), and particularly preferably 50 to 100 ppm (mass). In the case of the under-the content of Fe 2 O 3 has to use a high purity material, the raw material cost is likely to rise.
Cr2O3は、ガラスを着色させる成分である。Cr2O3の含有量は、好ましくは0~5ppm(質量)、より好ましくは0.01~2ppm(質量)、特に好ましくは0.05~3ppm(質量)である。なお、Cr2O3の含有量を過少にする場合は、高純度原料を使用しなければならず、原料コストが高騰し易くなる。
Cr 2 O 3 is a component that colors the glass. The content of Cr 2 O 3 is preferably 0 to 5 ppm (mass), more preferably 0.01 to 2 ppm (mass), and particularly preferably 0.05 to 3 ppm (mass). In the case of the under-the content of Cr 2 O 3 has to use a high purity material, the raw material cost is likely to rise.
Rh2O3は、Rhブツを発生させる成分である。Rh2O3の含有量は、好ましくは0~5ppm(質量)、より好ましくは0.01~2ppm(質量)、特に好ましくは0.05~3ppm(質量)である。なお、Rh2O3の含有量を過少にする場合、清澄容器、供給容器等にPt-Rh製容器を使用し難くなるが、この場合、清澄容器、供給容器等の強度を確保し難くなる。
Rh 2 O 3 is a component that generates Rh bumps. The content of Rh 2 O 3 is preferably 0 to 5 ppm (mass), more preferably 0.01 to 2 ppm (mass), and particularly preferably 0.05 to 3 ppm (mass). When the content of Rh 2 O 3 is made too small, it becomes difficult to use a Pt-Rh container for the clarification container, the supply container, etc. In this case, it is difficult to ensure the strength of the clarification container, the supply container, etc. .
SO3は、リボイル泡を発生させる成分である。SO3の含有量は、好ましくは0~100ppm(質量)、より好ましくは0.1~10ppm(質量)、特に好ましくは0.5~5ppm(質量)である。なお、SO3の含有量を過少にする場合は、高純度原料を使用しなければならず、原料コストが高騰し易くなる。
SO 3 is a component that generates reboil bubbles. The content of SO 3 is preferably 0 to 100 ppm (mass), more preferably 0.1 to 10 ppm (mass), and particularly preferably 0.5 to 5 ppm (mass). In the case of the under-the content of SO 3 has to use a high purity material, the raw material cost is likely to rise.
本発明のガラスは、上記の通り、清澄剤としてSnO2の添加が好適であるが、ガラス特性が損なわれない限り、SnO2に代えて、或いはSnO2と併用して、CeO2、C、金属粉末(例えばAl、Si等)を1%まで添加することができる。
The glass of the present invention, as described above, although the addition of SnO 2 as a fining agent is preferred, so long as the glass properties are not impaired, in place of the SnO 2, or in combination with SnO 2, CeO 2, C, Metal powder (eg, Al, Si, etc.) can be added up to 1%.
As2O3、Sb2O3も清澄剤として有効に作用し、本発明のガラスは、これらの成分の含有を完全に排除するものではないが、環境的観点から、これらの成分の含有量はそれぞれ0.1%未満、特に0.05%未満が好ましい。また、F、Cl等のハロゲンは、溶融温度を低温化すると共に、清澄剤の作用を促進させる効果があり、結果として、ガラスの溶融コストを低廉化しつつ、ガラス製造窯の長寿命化を図ることができる。しかし、F、Clの含有量が多過ぎると、CSP等の用途において、ガラス基板上に形成される金属の配線パターンを腐食させる場合がある。よって、F、Clの含有量は、それぞれ1%以下、0.5%以下、0.1%未満、0.05%未満、特に0.01%以下が好ましい。
As 2 O 3 and Sb 2 O 3 also act effectively as fining agents, and the glass of the present invention does not completely exclude the inclusion of these components, but from an environmental point of view, the content of these components Is preferably less than 0.1%, particularly preferably less than 0.05%. In addition, halogens such as F and Cl have the effect of lowering the melting temperature and promoting the action of the clarifying agent. As a result, the lifetime of the glass manufacturing kiln is increased while lowering the melting cost of the glass. be able to. However, if the content of F or Cl is too large, the metal wiring pattern formed on the glass substrate may be corroded in applications such as CSP. Therefore, the contents of F and Cl are preferably 1% or less, 0.5% or less, less than 0.1%, less than 0.05%, particularly preferably 0.01% or less, respectively.
本発明のガラスは、以下の特性を有することが好ましい。
The glass of the present invention preferably has the following characteristics.
密度は2.50g/cm3未満、2.49g/cm3未満、特に2.48g/cm3未満が好ましい。密度が高くなると、ガラスの軽量化を図り難くなり、またガラス基板が自重で撓み易くなる。
Less density 2.50 g / cm 3, less than 2.49 g / cm 3, especially less than 2.48 g / cm 3 are preferred. When the density increases, it becomes difficult to reduce the weight of the glass, and the glass substrate is easily bent by its own weight.
CTE30-260℃は32×10-7~34×10-7/℃であり、好ましくは32.5×10-7~33.5×10-7/℃である。CTE30-260℃が上記の範囲外となると、ガラス基板とSiチップを貼り合わる際に、ガラス基板の反り量が大きくなり易い。特に、ガラス基板の板厚が小さい程、ガラス基板の反り量が大きくなり易い。
CTE 30-260 ° C. is 32 × 10 −7 to 34 × 10 −7 / ° C., preferably 32.5 × 10 −7 to 33.5 × 10 −7 / ° C. When CTE 30-260 ° C. is outside the above range, the amount of warpage of the glass substrate tends to increase when the glass substrate and the Si chip are bonded together. In particular, the warp amount of the glass substrate tends to increase as the thickness of the glass substrate decreases.
CTE30-380℃は33×10-7~35×10-7/℃であり、好ましくは33.5×10-7~34.5×10-7/℃である。CTE30-380℃が上記の範囲外となると、ガラス基板とSiチップを貼り合わる際に、ガラス基板の反り量が大きくなり易い。特に、ガラス基板の板厚が小さい程、ガラス基板の反り量が大きくなり易い。
CTE 30-380 ° C. is 33 × 10 −7 to 35 × 10 −7 / ° C., preferably 33.5 × 10 −7 to 34.5 × 10 −7 / ° C. When CTE 30-380 ° C. is outside the above range, the amount of warpage of the glass substrate tends to increase when the glass substrate and the Si chip are bonded together. In particular, the warp amount of the glass substrate tends to increase as the thickness of the glass substrate decreases.
CTE30-380℃/CTE30-260℃は0.95~1.05であり、好ましくは1.001~1.050、より好ましくは1.020~1.045、特に好ましくは1.025~1.040である。CTE30-380℃/CTE30-260℃が上記の範囲外となると、ガラス基板とSiチップを貼り合わる際に、ガラス基板の反り量が大きくなり易い。特に、ガラス基板の板厚が小さい程、ガラス基板の反り量が大きくなり易い。
CTE 30-380 ° C./CTE 30-260 ° C. is 0.95 to 1.05, preferably 1.001 to 1.050, more preferably 1.020 to 1.045, and particularly preferably 1.025 to 1.040. When CTE 30-380 ° C./CTE 30-260 ° C. is outside the above range, the amount of warpage of the glass substrate tends to increase when the glass substrate and the Si chip are bonded together. In particular, the warp amount of the glass substrate tends to increase as the thickness of the glass substrate decreases.
ヤング率は、好ましくは70GPa以上、より好ましくは73GPa以上、特に好ましくは75GPa以上である。また比ヤング率は、好ましくは30GPa/(g/cm3)以上、特に好ましくは31GPa/(g/cm3)以上である。ヤング率や比ヤング率が低いと、Siチップをガラス基板上に貼り付けた後に、得られる積層体の剛性が低下し易くなる。またガラス基板上に接着剤をスピンコートする場合に、ガラス基板が位置ズレし易くなる。
The Young's modulus is preferably 70 GPa or more, more preferably 73 GPa or more, and particularly preferably 75 GPa or more. The specific modulus is preferably 30GPa / (g / cm 3) or more, particularly preferably 31GPa / (g / cm 3) or more. If the Young's modulus or specific Young's modulus is low, the rigidity of the resulting laminate is likely to decrease after the Si chip is attached to the glass substrate. Further, when the adhesive is spin-coated on the glass substrate, the glass substrate is easily displaced.
歪点は600℃以上、620℃以上、630℃以上、640℃以上、650℃以上、特に660℃以上が好ましい。歪点が低いと、ガラス基板とSiチップを樹脂で貼り合せる際に、ガラス品位が損なわれる虞がある。また熱処理工程でガラスが熱収縮し易くなる。ここで、「歪点」は、ASTM C336の方法に基づいて測定した値を指す。
The strain point is preferably 600 ° C or higher, 620 ° C or higher, 630 ° C or higher, 640 ° C or higher, 650 ° C or higher, particularly 660 ° C or higher. If the strain point is low, the glass quality may be impaired when the glass substrate and the Si chip are bonded together with a resin. Further, the glass is easily heat-shrinked in the heat treatment process. Here, “strain point” refers to a value measured based on the method of ASTM C336.
高温溶融は、ガラス溶融窯の負担を増加させる。例えば、ガラス溶融窯に使用されるアルミナやジルコニア等の耐火物は、高温になる程、溶融ガラスに激しく浸食される。この耐火物の浸食量が多くなると、ガラス溶融窯のライフサイクルが短くなり、結果として、ガラスの製造コストが高騰する。また、高温溶融を行う場合、ガラス溶融窯の構成部材に高耐熱性の構成部材を使用する必要があるため、ガラス溶融窯の構成部材が割高になり、結果として、ガラスの溶融コストが高騰する。更に、高温溶融は、ガラス溶融窯の内部を高温に保持する必要があるため、低温溶融に比べて、ランニングコストが高騰する。そこで、高温粘性102.5dPa・sにおける温度は1650℃以下、1640℃以下、1630℃以下、1620℃以下、特に1610℃以下が好ましい。高温粘性102.5dPa・sにおける温度が高過ぎると、低温溶融が困難になるため、ガラスの製造コストが高騰し易くなる。また泡品位が低下し易くなる。ここで、「高温粘性102.5dPa・sにおける温度」は、白金球引き上げ法で測定した値を指す。
High temperature melting increases the burden on the glass melting furnace. For example, refractories such as alumina and zirconia used in glass melting kilns are eroded violently by molten glass as the temperature rises. When the erosion amount of the refractory increases, the life cycle of the glass melting furnace is shortened, and as a result, the manufacturing cost of the glass increases. In addition, when performing high temperature melting, it is necessary to use a high heat resistance component for the glass melting kiln, so the glass melting kiln becomes expensive, resulting in a high glass melting cost. . Furthermore, high-temperature melting requires that the interior of the glass melting furnace be kept at a high temperature, so that the running cost is higher than that at low-temperature melting. Therefore, the temperature at a high temperature viscosity of 10 2.5 dPa · s is preferably 1650 ° C. or lower, 1640 ° C. or lower, 1630 ° C. or lower, 1620 ° C. or lower, particularly 1610 ° C. or lower. If the temperature at a high temperature viscosity of 10 2.5 dPa · s is too high, low-temperature melting becomes difficult, and the glass production cost tends to increase. In addition, the bubble quality tends to be lowered. Here, “temperature at high temperature viscosity of 10 2.5 dPa · s” refers to a value measured by a platinum ball pulling method.
液相粘度は104.5dPa・s以上、104.7dPa・s以上、104.9dPa・s以上、105.0dPa・s以上、特に105.2dPa・s以上が好ましい。このようにすれば、成形時に失透結晶が発生し難くなるため、オーバーフローダウンドロー法等でガラス基板を成形し易くなる、なお、液相粘度は、成形性の指標であり、液相粘度が高い程、成形性に優れる。ここで、「液相粘度」は、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値を指す。「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値を指す。
The liquid phase viscosity is 10 4.5 dPa · s or more, 10 4.7 dPa · s or more, 10 4.9 dPa · s or more, 10 5.0 dPa · s or more, particularly 10 5.2 dPa · s or more. preferable. In this way, since devitrification crystals are less likely to occur during molding, it becomes easy to mold a glass substrate by the overflow down draw method or the like. The liquid phase viscosity is an index of moldability, and the liquid phase viscosity is The higher the value, the better the moldability. Here, “liquid phase viscosity” refers to a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method. “Liquid phase temperature” refers to the temperature at which crystals precipitate by passing the standard sieve 30 mesh (500 μm) and putting the glass powder remaining in 50 mesh (300 μm) into a platinum boat and holding it in a temperature gradient furnace for 24 hours. Refers to the measured value.
β-OH値を低下させると、ガラス組成を変えなくても、歪点と泡品位を高めることができる。β-OH値は、好ましくは0.40/mm未満、0.35/mm以下、0.3/mm以下、0.25/mm以下、0.2/mm以下、特に0.15/mm以下である。β-OH値が大き過ぎると、歪点や泡品位が低下し易くなる。なお、β-OH値が小さ過ぎると、溶融性が低下し易くなる。よって、β-OH値は、好ましくは0.01/mm以上、特に0.05/mm以上である。なお、「β-OH値」は、FT-IRを用いて透過率を測定し、下記数式1により算出した値を指す。
When the β-OH value is lowered, the strain point and foam quality can be improved without changing the glass composition. β-OH value is preferably less than 0.40 / mm, 0.35 / mm or less, 0.3 / mm or less, 0.25 / mm or less, 0.2 / mm or less, especially 0.15 / mm or less It is. If the β-OH value is too large, the strain point and foam quality tend to decrease. If the β-OH value is too small, the meltability tends to be lowered. Therefore, the β-OH value is preferably 0.01 / mm or more, particularly 0.05 / mm or more. The “β-OH value” refers to a value obtained by measuring transmittance using FT-IR and calculating using Equation 1 below.
〔数1〕
β-OH値 = (1/X)log(T1/T2)
X:板厚(mm)
T1:参照波長3846cm-1における透過率(%)
T2:水酸基吸収波長3600cm-1付近における最小透過率(%) [Equation 1]
beta-OH value = (1 / X) log ( T 1 / T 2)
X: Plate thickness (mm)
T 1 : Transmittance (%) at a reference wavelength of 3846 cm −1
T 2 : Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm −1
β-OH値 = (1/X)log(T1/T2)
X:板厚(mm)
T1:参照波長3846cm-1における透過率(%)
T2:水酸基吸収波長3600cm-1付近における最小透過率(%) [Equation 1]
beta-OH value = (1 / X) log ( T 1 / T 2)
X: Plate thickness (mm)
T 1 : Transmittance (%) at a reference wavelength of 3846 cm −1
T 2 : Minimum transmittance (%) in the vicinity of a hydroxyl group absorption wavelength of 3600 cm −1
β-OH値を低下させる方法として、以下の方法がある。(1)低水分量の原料を選択する。(2)ガラスバッチ中にCl、SO3等の乾燥剤を添加する。(3)炉内雰囲気中の水分量を低下させる。(4)溶融ガラス中でN2バブリングを行う。(5)小型溶融炉を採用する。(6)溶融ガラスの流量を多くする。(7)加熱電極による通電加熱を行う。
There are the following methods for reducing the β-OH value. (1) Select a raw material having a low moisture content. (2) Add a desiccant such as Cl or SO 3 into the glass batch. (3) Reduce the amount of moisture in the furnace atmosphere. (4) N 2 bubbling is performed in molten glass. (5) Adopt a small melting furnace. (6) Increase the flow rate of the molten glass. (7) Conducting heating with a heating electrode.
その中でも、β-OH値を低下させるために、調合したガラスバッチをバーナーの燃焼炎による加熱を行わず、加熱電極による通電加熱を行うことにより溶融する方法が有効である。
Among them, in order to lower the β-OH value, it is effective to melt the prepared glass batch by conducting current heating with a heating electrode without heating with a burner combustion flame.
本発明のガラスは、所定のガラス組成となるように調合したガラス原料を連続式ガラス溶融窯に投入し、このガラス原料を加熱溶融し、得られた溶融ガラスを清澄した後、成形装置に供給した上で平板形状等に成形することにより作製することができる。
In the glass of the present invention, a glass raw material prepared so as to have a predetermined glass composition is put into a continuous glass melting furnace, the glass raw material is heated and melted, and the obtained molten glass is clarified and then supplied to a molding apparatus. Then, it can be produced by forming into a flat plate shape or the like.
本発明のガラスは、オーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラス基板を得ることができる。ここで、オーバーフローダウンドロー法は、溶融ガラスを耐熱性の樋状構造物の両側から溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス基板を成形する方法である。オーバーフローダウンドロー法の場合、ガラス基板の表面となるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるため、ガラス基板の表面品位を高めることができる。本発明のガラスは、耐失透性に優れるため、オーバーフローダウンドロー法でガラス基板を効率良く成形することができる。
The glass of the present invention is preferably formed by an overflow down draw method. In this way, it is possible to obtain a glass substrate that is unpolished and has good surface quality. Here, the overflow down draw method is a method in which molten glass is overflowed from both sides of a heat-resistant bowl-shaped structure, and the overflowed molten glass is stretched and formed downward while joining at the lower end of the bowl-shaped structure. This is a method of molding. In the case of the overflow downdraw method, the surface to be the surface of the glass substrate is not in contact with the bowl-like refractory and is molded in a free surface state, so that the surface quality of the glass substrate can be improved. Since the glass of the present invention is excellent in resistance to devitrification, a glass substrate can be efficiently formed by an overflow down draw method.
本発明のガラスは、オーバーフローダウンドロー法以外にも、種々の成形方法を採用することができる。例えば、スロットダウンドロー法、フロート法、ロールアウト法等の成形方法を採用することができる。なお、スロットダウンドロー法であれば、薄いガラス基板を効率良く成形することができる。
The glass of the present invention can employ various forming methods other than the overflow downdraw method. For example, a molding method such as a slot down draw method, a float method, or a rollout method can be employed. In addition, if it is a slot down draw method, a thin glass substrate can be shape | molded efficiently.
本発明のガラスは、平板形状を有すること、つまりガラス基板であることが好ましい。このようにすれば、CSP、液晶ディスプレイ、有機ELディスプレイ等のフラットディスプレイ用ガラス基板、CCD、CIS等のイメージセンサー用ガラス基板に適用することができる。また、ガラス基板の板厚は0.7mm以下、0.6mm以下、0.5mm以下、特に0.4mm以下が好ましい。板厚が小さい程、ガラス基板を軽量化することができ、結果として、デバイスも軽量化し易くなる。なお、本発明のガラスは、液相粘度が高いため、オーバーフローダウンドロー法等により大型化、薄型化を図り易く、表面品位を高め易い。
The glass of the present invention preferably has a flat plate shape, that is, a glass substrate. If it does in this way, it can apply to glass substrates for flat displays, such as CSP, a liquid crystal display, and an organic EL display, and glass substrates for image sensors, such as CCD and CIS. The plate thickness of the glass substrate is preferably 0.7 mm or less, 0.6 mm or less, 0.5 mm or less, particularly 0.4 mm or less. As the plate thickness is smaller, the glass substrate can be reduced in weight, and as a result, the device is also easily reduced in weight. Since the glass of the present invention has a high liquidus viscosity, it is easy to increase the size and thickness by an overflow down draw method or the like, and to easily improve the surface quality.
以下、実施例に基づいて、本発明を詳細に説明する。但し、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。
Hereinafter, the present invention will be described in detail based on examples. However, the following examples are merely illustrative. The present invention is not limited to the following examples.
表1は、本発明の実施例(試料No.1~8)及び比較例(試料No.9)を示している。なお、表中のROは、MgO+CaO+SrO+BaO+ZnOを表している。
Table 1 shows examples (sample Nos. 1 to 8) and comparative examples (sample No. 9) of the present invention. Note that RO in the table represents MgO + CaO + SrO + BaO + ZnO.
次のようにして、試料No.1~9を作製した。まず表中のガラス組成になるように調合したガラス原料を白金坩堝に入れ、1600℃で24時間溶融した後、カーボン板上に流し出して平形板状に成形した。次に、得られた各試料について、密度、30~380℃における線熱膨張係数CTE30-380℃、30~260℃における線熱膨張係数CTE30-260℃、CTE30-380℃/CTE30-260℃、ヤング率、比ヤング率、歪点、高温粘度102.5dPa・sにおける温度及びβ-OH値を評価した。
Sample no. 1 to 9 were produced. First, glass raw materials prepared so as to have the glass composition shown in the table were put in a platinum crucible and melted at 1600 ° C. for 24 hours, and then poured onto a carbon plate to form a flat plate. Next, for each sample obtained, the density, 30-380 linear thermal expansion coefficient CTE 30-380 ℃ at ° C. for 30 to 260 linear thermal expansion coefficient CTE 30-260 ℃ at ℃, CTE 30-380 ℃ / CTE 30 The temperature and β-OH value at −260 ° C. , Young's modulus, specific Young's modulus, strain point, high temperature viscosity of 10 2.5 dPa · s were evaluated.
密度は、周知のアルキメデス法で測定した値である。
The density is a value measured by the well-known Archimedes method.
30~260℃における線熱膨張係数CTE30-260℃と30~380℃における線熱膨張係数CTE30-380℃は、表記の温度範囲において、ディラトメーターで測定した平均値である。
The linear thermal expansion coefficient CTE 30-260 ° C. at 30-260 ° C. and the linear thermal expansion coefficient CTE 30-380 ° C. at 30-380 ° C. are average values measured with a dilatometer in the indicated temperature range.
歪点Psは、ASTM C336の方法に基づいて測定した値である。
The strain point Ps is a value measured based on the method of ASTM C336.
ヤング率は、共振法で測定した値である。
The Young's modulus is a value measured by the resonance method.
高温粘度102.5dPa・sにおける温度は、白金球引き上げ法で測定した値である。
The temperature at a high temperature viscosity of 10 2.5 dPa · s is a value measured by a platinum ball pulling method.
β-OH値は、上記方法で測定した値である。
The β-OH value is a value measured by the above method.
表1から明らかなように、試料No.1~8は、密度が2.39~2.48g/cm3、30~260℃における線熱膨張係数CTE30-260℃が32.2×10-7~33.9×10-7/℃、30~380℃における線熱膨張係数CTE30-380℃が33.4×10-7~35.2×10-7/℃、CTE30-380℃/CTE30-260℃が1.03~1.04、ヤング率が72~77GPa、比ヤング率が30~31GPa/(g/cm3)、歪点が663~705℃、高温粘度102.5dPa・sにおける温度が1567~1602℃、β-OH値が0.15~0.30/mmであった。
As is clear from Table 1, sample No. 1 to 8, the density is 2.39 to 2.48 g / cm 3 , and the linear thermal expansion coefficient CTE at 30 to 260 ° C. 30 to 260 ° C. is 32.2 × 10 −7 to 33.9 × 10 −7 / ° C. linear thermal expansion coefficient at 30 ~ 380 ℃ CTE 30-380 ℃ is 33.4 × 10 -7 ~ 35.2 × 10 -7 / ℃, CTE 30-380 ℃ / CTE 30-260 ℃ 1.03 ~ 1.04, Young's modulus is 72 to 77 GPa, specific Young's modulus is 30 to 31 GPa / (g / cm 3 ), strain point is 663 to 705 ° C., and high temperature viscosity is 10 2.5 dPa · s, temperature is 1567 to 1602 ° C. The β-OH value was 0.15 to 0.30 / mm.
一方、試料No.9は、MgO+CaO+SrO+BaO+ZnOの含有量が多いため、30~260℃における線熱膨張係数CTE30-260℃が37.6×10-7/℃、30~380℃における線熱膨張係数CTE30-380℃が38.8×10-7/℃であった。
On the other hand, sample No. 9 has a large content of MgO + CaO + SrO + BaO + ZnO, so that the linear thermal expansion coefficient CTE at 30 to 260 ° C. 30-260 ° C. is 37.6 × 10 −7 / ° C., and the linear thermal expansion coefficient CTE at 30 to 380 ° C. 30 to 380 ° C. Was 38.8 × 10 −7 / ° C.
本発明のガラスは、CSP以外にも、液晶ディスプレイ、有機ELディスプレイ等のフラットディスプレイ用ガラス基板、電荷結合素子(CCD)、等倍近接型固体撮像素子(CIS)等のイメージセンサー用ガラス基板に好適に使用可能である。
In addition to CSP, the glass of the present invention is used for glass substrates for flat displays such as liquid crystal displays and organic EL displays, glass substrates for image sensors such as charge-coupled devices (CCD) and equal-magnification proximity solid-state imaging devices (CIS). It can be suitably used.
また、本発明のガラスは、プロジェクション用途のディスプレイデバイス、例えばDMD(デジタル・マイクロミラー・デバイス)、LCOS(Liquid Crystyal ON Silicon)のカバーガラス又はスペーサに好適に使用可能である。これらのデバイスは、ディスプレイ等を駆動する電子回路がSiウエハ上に形成されると共に、カバーガラス、スペーサ等が紫外線硬化樹脂、熱硬化樹脂、ガラスフリット等によりSiウエハに接着される。これらの用途に適用する場合、カバーガラス等の線熱膨張係数は、反りや歪を低減するために、Siウエハの熱望膨張係数に厳密にマッチングしていることが望ましい。本発明のガラスは、Siウエハの熱望膨張係数に厳密にマッチングしているため、本用途に好適である。
Further, the glass of the present invention can be suitably used for a display device for projection use, for example, a cover glass or a spacer of DMD (Digital Micromirror Device), LCOS (Liquid Crystal ON Silicon). In these devices, an electronic circuit for driving a display or the like is formed on the Si wafer, and a cover glass, a spacer, or the like is bonded to the Si wafer by an ultraviolet curable resin, a thermosetting resin, a glass frit, or the like. When applied to these uses, it is desirable that the linear thermal expansion coefficient of the cover glass or the like closely matches the thermal expansion coefficient of the Si wafer in order to reduce warpage and distortion. The glass of the present invention is suitable for this application because it closely matches the thermal expansion coefficient of the Si wafer.
更に、本発明のガラスは、量子ドットシリコンタイプの太陽電池、薄膜シリコンタイプの太陽電池基板又はカバーガラスに好適に使用可能である。これらのデバイスは、基板上にSi膜層が形成される。これらの用途に適用する場合、ガラス基板等の線熱膨張係数は、反りや歪を低減するために、Si膜層の熱望膨張係数に厳密にマッチングしていることが望ましい。本発明のガラスは、Si膜層の熱望膨張係数に厳密にマッチングしているため、本用途に好適である。なお、これらの用途に適用する場合、ガラス基板等の分光透過率は、紫外域を含めて非常に高いことも要求される。
Furthermore, the glass of the present invention can be suitably used for a quantum dot silicon type solar cell, a thin film silicon type solar cell substrate or a cover glass. In these devices, a Si film layer is formed on a substrate. When applied to these uses, it is desirable that the linear thermal expansion coefficient of the glass substrate or the like closely matches the thermal expansion coefficient of the Si film layer in order to reduce warpage and distortion. The glass of the present invention is suitable for this application because it closely matches the thermal expansion coefficient of the Si film layer. In addition, when applying to these uses, the spectral transmittance of a glass substrate or the like is also required to be very high including the ultraviolet region.
Claims (10)
- ガラス組成として、モル%で、SiO2 65~70%、Al2O3 10~13%、B2O3 5~10%、MgO+CaO+SrO+BaO+ZnO 10~13%、P2O5 0~3%を含有し、モル比(MgO+CaO+SrO+BaO+ZnO)/Al2O3が0.9~1.3であり、モル比CaO/(MgO+CaO+SrO+BaO+ZnO)が0.4~0.8であり、且つ30~260℃における線熱膨張係数をCTE30-260℃、30~380℃における線熱膨張係数をCTE30-380℃とした時に、32×10-7/℃≦CTE30-260℃≦34×10-7/℃、33×10-7/℃≦CTE30-380℃≦35×10-7/℃、0.95≦CTE30-380℃/CTE30-260℃≦1.05の条件を満たすことを特徴とするガラス。 As a glass composition, it contains SiO 2 65 to 70%, Al 2 O 3 10 to 13%, B 2 O 3 5 to 10%, MgO + CaO + SrO + BaO + ZnO 10 to 13%, P 2 O 5 0 to 3% in mol%. The molar ratio (MgO + CaO + SrO + BaO + ZnO) / Al 2 O 3 is 0.9 to 1.3, the molar ratio CaO / (MgO + CaO + SrO + BaO + ZnO) is 0.4 to 0.8, and the linear thermal expansion coefficient at 30 to 260 ° C. Is CTE 30-260 ° C. and the coefficient of linear thermal expansion at 30 to 380 ° C. is CTE 30-380 ° C. , 32 × 10 −7 / ° C. ≦ CTE 30-260 ° C. ≦ 34 × 10 −7 / ° C., 33 × 10 -7 / ℃ ≦ CTE 30-380 ℃ ≦ 35 × 10 -7 /℃,0.95≦CTE 30-380 ℃ / CTE 30-260 ℃ ≦ Glass, wherein the condition is satisfied that the .05.
- ガラス組成中のLi2O+Na2O+K2Oの含有量が0.5モル%以下であることを特徴とする請求項1に記載のガラス。 The glass according to claim 1, wherein the content of Li 2 O + Na 2 O + K 2 O in the glass composition is 0.5 mol% or less.
- ヤング率が70GPa以上であることを特徴とする請求項1又は2に記載のガラス。 The glass according to claim 1 or 2, wherein Young's modulus is 70 GPa or more.
- 比ヤング率が30GPa/(g/cm3)以上であることを特徴とする請求項1~3の何れか一項に記載のガラス。 The glass according to any one of claims 1 to 3, wherein the specific Young's modulus is 30 GPa / (g / cm 3 ) or more.
- オーバーフローダウンドロー法又はスロットダウンドロー法で成形されてなることを特徴とする請求項1~4の何れか一項に記載のガラス。 The glass according to any one of claims 1 to 4, wherein the glass is formed by an overflow down draw method or a slot down draw method.
- 平板形状であることを特徴とする請求項1~5の何れか一項に記載のガラス。 The glass according to any one of claims 1 to 5, which has a flat plate shape.
- チップサイズパッケージに用いることを特徴とする請求項1~6の何れか一項に記載のガラス。 The glass according to any one of claims 1 to 6, which is used for a chip size package.
- 有機ELディスプレイに用いることを特徴とする請求項1~6の何れか一項に記載のガラス。 The glass according to any one of claims 1 to 6, which is used for an organic EL display.
- ディスプレイデバイスのカバーガラスに用いることを特徴とする請求項1~6の何れか一項に記載のガラス。 The glass according to any one of claims 1 to 6, which is used for a cover glass of a display device.
- Siチップがガラス基板上に貼り付けられた積層体であって、
ガラス基板が、請求項1~7の何れか一項に記載のガラスからなることを特徴とする積層体。 A laminated body in which a Si chip is attached on a glass substrate,
A laminate comprising a glass substrate made of the glass according to any one of claims 1 to 7.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015112003A JP6852962B2 (en) | 2015-06-02 | 2015-06-02 | Glass |
JP2015-112003 | 2015-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016194861A1 true WO2016194861A1 (en) | 2016-12-08 |
Family
ID=57441982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/065858 WO2016194861A1 (en) | 2015-06-02 | 2016-05-30 | Glass |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6852962B2 (en) |
TW (1) | TW201704170A (en) |
WO (1) | WO2016194861A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018025727A1 (en) * | 2016-08-05 | 2018-02-08 | 旭硝子株式会社 | Alkali-free glass substrate, laminated substrate, and glass substrate production method |
CN110494402A (en) * | 2017-04-27 | 2019-11-22 | 日本电气硝子株式会社 | Glass substrate |
CN111225883A (en) * | 2017-10-25 | 2020-06-02 | 日本板硝子株式会社 | Glass composition |
CN113165949A (en) * | 2018-12-10 | 2021-07-23 | 日本电气硝子株式会社 | Alkali-free glass |
CN114080369A (en) * | 2019-08-14 | 2022-02-22 | 日本电气硝子株式会社 | Glass substrate |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7418947B2 (en) * | 2018-01-31 | 2024-01-22 | 日本電気硝子株式会社 | glass |
CN111606560B (en) * | 2020-06-05 | 2022-03-11 | 中建材蚌埠玻璃工业设计研究院有限公司 | An alkali-free aluminoborosilicate glass |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091244A (en) * | 2002-08-30 | 2004-03-25 | Nippon Electric Glass Co Ltd | Alkali-free glass substrate and method for manufacturing the same |
US20040127342A1 (en) * | 2002-12-27 | 2004-07-01 | China Optoelectronics Technology Corp. | Glass composition of a substrate for display |
JP2005060215A (en) * | 2003-07-29 | 2005-03-10 | Nippon Electric Glass Co Ltd | Glass substrate for display, and its manufacturing method |
JP2005097090A (en) * | 2003-09-02 | 2005-04-14 | Nippon Electric Glass Co Ltd | Alkali-free glass substrate |
JP2006213595A (en) * | 2005-02-06 | 2006-08-17 | Henan Ancai High-Tech Co Ltd | Glass composition free from alkali metal, and its preparation method and application |
JP2006347796A (en) * | 2005-06-15 | 2006-12-28 | Hoya Corp | Glass member, product using the same, and method for production of the product |
JP2010006649A (en) * | 2008-06-27 | 2010-01-14 | Nippon Electric Glass Co Ltd | Alkali-free glass |
JP2014118313A (en) * | 2012-12-14 | 2014-06-30 | Nippon Electric Glass Co Ltd | Glass and glass substrate |
-
2015
- 2015-06-02 JP JP2015112003A patent/JP6852962B2/en active Active
-
2016
- 2016-05-30 WO PCT/JP2016/065858 patent/WO2016194861A1/en active Application Filing
- 2016-05-31 TW TW105116946A patent/TW201704170A/en unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091244A (en) * | 2002-08-30 | 2004-03-25 | Nippon Electric Glass Co Ltd | Alkali-free glass substrate and method for manufacturing the same |
US20040127342A1 (en) * | 2002-12-27 | 2004-07-01 | China Optoelectronics Technology Corp. | Glass composition of a substrate for display |
JP2005060215A (en) * | 2003-07-29 | 2005-03-10 | Nippon Electric Glass Co Ltd | Glass substrate for display, and its manufacturing method |
JP2005097090A (en) * | 2003-09-02 | 2005-04-14 | Nippon Electric Glass Co Ltd | Alkali-free glass substrate |
JP2006213595A (en) * | 2005-02-06 | 2006-08-17 | Henan Ancai High-Tech Co Ltd | Glass composition free from alkali metal, and its preparation method and application |
JP2006347796A (en) * | 2005-06-15 | 2006-12-28 | Hoya Corp | Glass member, product using the same, and method for production of the product |
JP2010006649A (en) * | 2008-06-27 | 2010-01-14 | Nippon Electric Glass Co Ltd | Alkali-free glass |
JP2014118313A (en) * | 2012-12-14 | 2014-06-30 | Nippon Electric Glass Co Ltd | Glass and glass substrate |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018025727A1 (en) * | 2016-08-05 | 2018-02-08 | 旭硝子株式会社 | Alkali-free glass substrate, laminated substrate, and glass substrate production method |
JPWO2018025727A1 (en) * | 2016-08-05 | 2019-05-30 | Agc株式会社 | Alkali-free glass substrate, laminated substrate, and method of manufacturing glass substrate |
US11247933B2 (en) | 2016-08-05 | 2022-02-15 | AGC Inc. | Alkali-free glass substrate, laminated substrate, and glass substrate production method |
JP7044064B2 (en) | 2016-08-05 | 2022-03-30 | Agc株式会社 | Alkaline-free glass substrate, laminated substrate, and manufacturing method of glass substrate |
CN110494402A (en) * | 2017-04-27 | 2019-11-22 | 日本电气硝子株式会社 | Glass substrate |
CN110494402B (en) * | 2017-04-27 | 2022-09-06 | 日本电气硝子株式会社 | Glass substrate |
CN111225883A (en) * | 2017-10-25 | 2020-06-02 | 日本板硝子株式会社 | Glass composition |
CN113165949A (en) * | 2018-12-10 | 2021-07-23 | 日本电气硝子株式会社 | Alkali-free glass |
CN114080369A (en) * | 2019-08-14 | 2022-02-22 | 日本电气硝子株式会社 | Glass substrate |
CN114080369B (en) * | 2019-08-14 | 2024-01-05 | 日本电气硝子株式会社 | Glass substrate |
Also Published As
Publication number | Publication date |
---|---|
JP6852962B2 (en) | 2021-03-31 |
TW201704170A (en) | 2017-02-01 |
JP2016222510A (en) | 2016-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5748087B2 (en) | Alkali-free glass | |
JP7177412B2 (en) | Alkali-free glass substrate | |
JP6852962B2 (en) | Glass | |
JP5874304B2 (en) | Alkali-free glass | |
JP5751439B2 (en) | Alkali-free glass | |
JP5874316B2 (en) | Alkali-free glass | |
WO2012121283A1 (en) | Non-alkali glass | |
WO2012063643A1 (en) | Alkali-free glass | |
WO2015056645A1 (en) | Non-alkali glass | |
JP5729673B2 (en) | Alkali-free glass | |
CN110088053A (en) | Glass | |
JP5418971B2 (en) | Glass film | |
JP2018158852A (en) | Glass plate and manufacturing method thereof | |
WO2020080163A1 (en) | Alkali-free glass plate | |
TWI820543B (en) | Carrier glass, glass resin laminated body, and method for manufacturing carrier glass | |
TWI853844B (en) | Alkali-free glass plate | |
CN110494402B (en) | Glass substrate | |
JP5988059B2 (en) | Alkali-free glass | |
WO2025009444A1 (en) | Glass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16803296 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16803296 Country of ref document: EP Kind code of ref document: A1 |