WO2016185936A1 - Thermally conductive composition and thermally conductive paste - Google Patents
Thermally conductive composition and thermally conductive paste Download PDFInfo
- Publication number
- WO2016185936A1 WO2016185936A1 PCT/JP2016/063789 JP2016063789W WO2016185936A1 WO 2016185936 A1 WO2016185936 A1 WO 2016185936A1 JP 2016063789 W JP2016063789 W JP 2016063789W WO 2016185936 A1 WO2016185936 A1 WO 2016185936A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parts
- conductive composition
- heat
- mass
- heat conductive
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/10—Esters; Ether-esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
- C08L91/06—Waxes
Definitions
- the present invention relates to a thermally conductive composition used by being disposed between a heat generator and a heat radiator. More specifically, the present invention relates to a heat conductive composition containing a phase change product having a predetermined melting point.
- a heat sink such as a heat sink is attached to dissipate heat generated from a heat generator such as a semiconductor element or a machine part.
- a heat conductive member is sandwiched between the radiator and the heat sink.
- heat conductive members such as a heat conductive sheet (solid), a heat conductive grease (liquid), and a curable heat conductive grease (from liquid to solid). The technique regarding heat conductive grease is described in, for example, Japanese Patent No. 4713161 (Patent Document 1).
- heat conductive grease is paste-like at room temperature, and it is difficult to apply when the gap between the heat generator and the heat radiator is narrow, and it is easy to accidentally adhere to areas other than the desired application site. Inconvenience may be pointed out. Since it is easy to handle if it is solid at room temperature in the work intervening between the heating element and the heat dissipation body, it is solid at room temperature, but after being incorporated in the heating element, it absorbs heat and softens. Development of a heat conductive member having a property of being in close contact with the adherend and capable of reducing the thermal resistance is in progress.
- thermoplastic silicone material as a substance exhibiting such properties has a problem of concern about the generation of low molecular siloxane.
- wax-based material has a problem in that it is difficult to increase the thermal conductivity because a highly conductive material cannot be filled.
- an object is to provide a thermally conductive composition that is free from concerns about low-molecular siloxane, can be highly filled with a thermally conductive filler, is easy to handle at room temperature, and softens at the use temperature.
- the present invention provides the following heat conductive composition and heat conductive paste.
- the present invention is a heat conductive composition
- a heat conductive composition comprising a phase change product having a melting point of 35 ° C. to 120 ° C., a binder comprising a nonionic surfactant and a non-volatile component, and a heat conductive filler
- the phase change product occupying 100 parts by mass of the binder is a thermally conductive composition having 10 parts by mass or more, a nonionic surfactant of 60 parts by mass or more, and a non-volatile component of 30 parts by mass or less.
- phase change product having a melting point of 35 ° C. to 120 ° C.
- it can be made into a heat conductive composition that is solid at normal temperature and takes away heat from the heating element and melts the phase change product.
- a nonionic surfactant is included, a phase change thing and a heat conductive filler can be disperse
- a non-volatile component is included, it can be set as the heat conductive composition arranged to the desired property.
- phase change product occupying 100 parts by mass of the binder is 10 parts by mass or more, the nonionic surfactant is 60 parts by mass or more, and the non-volatile component is 30 parts by mass or less, both the phase change product and the thermally conductive filler are suitable. It can be highly filled in the heat conductive composition in a dispersed state. That is, heat resistance can be made extremely low by including 60 mass parts or more of nonionic surfactants. In addition, by including 10 parts by mass or more of a predetermined phase change product in combination with this nonionic surfactant, high thermal conductivity and phase change properties can be expressed.
- the phase change product can be one or a combination selected from paraffin wax, ester wax, and polyolefin wax.
- the phase change material By making the phase change material one or a combination selected from paraffin wax, ester wax, and polyolefin wax, it is solid at room temperature but melts in actual use and adheres closely to the heating element and heat radiator Can be made. Thereby, it can be set as a heat conductive composition with high heat conductivity.
- the nonionic surfactant may be one or a combination selected from aliphatic carboxylic acid esters or aromatic carboxylic acid esters.
- the nonionic surfactant may be one or a combination selected from an aliphatic carboxylic acid ester or an aromatic carboxylic acid ester.
- a heat conductive composition having a heat conductive filler content of 50 to 90 parts by volume with respect to 100 parts by volume of the heat conductive composition can be obtained. Since the proportion of the heat conductive filler is 50 to 90% by volume, it is possible to obtain a heat conductive composition having a high amount of heat conductive filler and high heat conductivity. Further, a heat conductive composition having a thermal resistance value of 0.080 to 0.150 ° C./W at a thickness of 20 to 40 ⁇ m can be obtained. Since the thermal resistance value at a thickness of 20 to 40 ⁇ m is 0.080 to 0.150 ° C./W, the thermal conductive composition is excellent in thermal conductivity.
- a heat conductive paste containing any one of the above heat conductive compositions and a solvent, which is paste or liquid at room temperature, can be obtained. Since any one of the above heat-conductive compositions and a solvent is used to form a heat-conductive paste that is paste-like or liquid at room temperature, when the heat-conductive composition is interposed between the heat generator and the heat radiator Also, it is possible to deal with a case where it is inconvenient for a solid. That is, it can be used corresponding to a conventionally used coating apparatus, coating equipment, and coating method, such as a device for coating thermally conductive grease.
- a paste-like or liquid heat-conductive paste is preferable to the heat-conductive composition in that it can be easily adhered to an adherend.
- the solid heat conductive composition is in close contact with the room temperature. Since it is weak, it is easy to make it adhere to an adherend as long as it is a heat conductive paste, compared to being easily peeled off or displaced from the adherend.
- the heat conductive composition of the present invention there is no concern about low-molecular siloxane, it is a heat conductive composition having high heat conductivity and excellent handleability at room temperature.
- the thermally conductive composition of the present invention comprises a phase change product having a melting point of 35 ° C. to 120 ° C., a binder composed of a nonionic surfactant and an optional nonvolatile component, and a thermally conductive filler. ing.
- the components contained in the heat conductive composition will be described below.
- Phase change product is a substance having a melting point of 35 ° C to 120 ° C.
- the properties required for the thermally conductive composition are solid at room temperature and absorb or soften or melt the heat of electronic components that generate heat during actual use. It is the main part.
- the melting point is less than 35 ° C., it becomes excessively flexible even at room temperature, and the handleability may be deteriorated.
- the temperature exceeds 120 ° C., it can be used only for special applications that operate at high temperatures, and is inferior in versatility.
- the upper limit of the melting point is more preferably determined according to individual specifications, but it is required to be a temperature that does not hinder the operation of the device, and if it is a general application, it is preferably 80 ° C. or lower. .
- the temperature range from the melting start to the melting end is narrow. This is because the narrower the temperature range, the faster the phase changes and the adhesion to the adherend becomes.
- the material having a narrow temperature range include a substance having a narrow molecular weight distribution and a substance having crystallinity.
- the melting point is the temperature of the endothermic peak of the DSC curve measured by differential scanning calorimetry (DSC).
- DSC differential scanning calorimetry
- the temperature range of the melting point is the intersection of the DSC curve baseline and the tangent at the inflection point from the baseline to the endothermic peak and the tangent at the inflection point from the endothermic peak to the baseline. Temperature range.
- phase change product is preferably a non-silicone material, and more specifically, various wax-like materials such as paraffin wax, ester wax and polyolefin wax can be exemplified.
- the content of the phase change product is 10 parts by mass or more in 100 parts by mass of the binder composed of the phase change product, the nonionic surfactant, and the nonvolatile component. This is because the heat-conductive composition can have a phase change property if it is 10 parts by mass or more. Further, since the content of the nonionic surfactant is 60 parts by mass or more, the content of the phase change product is inevitably 40 parts by mass or less, so that it is included in the range of 10 to 40 parts by mass. . When the content of the phase change product exceeds 40 parts by mass, the content of the nonionic surfactant is relatively decreased and the thermal resistance may be deteriorated.
- Nonionic surfactant is a main component that enhances the filling property of the thermally conductive filler.
- nonionic surfactants include polyoxyethylene type, alkyl ether type, aliphatic carboxylic acid ester type, aromatic carboxylic acid ester type, special phenol type, amide type, and alkyl glucooxide type.
- aromatic carboxylic acid ester type or a polyoxyethylene type in that heat resistance can be improved.
- it is preferable to use an aliphatic carboxylic acid ester type in that the filling property of the heat conductive filler can be improved.
- aromatic carboxylic acid ester phthalic acid ester, trimethylitonic acid ester, pyromellitic acid ester and the like are suitable.
- polyoxyethylene type polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine and the like are suitable.
- Aliphatic carboxylic acid esters include sorbitan laurate, sorbitan trioleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monooleate, polyethylene glycol monolaurate, polyethylene glycol mono Palmitate, polyethylene glycol monostearate, polyethylene glycol monooleate, pentaerythritol monooleate, monoglyceryl oleate, decaglyceryl pentaoleate are preferred.
- the content of the nonionic surfactant is 60 parts by mass or more in 100 parts by mass of the binder.
- the content of the phase change product is 10 parts by mass or more, the content of the nonionic surfactant is inevitably 90 parts by mass or less, and is included in the range of 60 to 90 parts by mass.
- a preferred content is 75 to 85 parts by mass.
- the thermal resistance value may be deteriorated.
- the amount exceeds 90 parts by mass the phase change property is relatively less than 10 parts by mass, and thus the phase change property may not be exhibited. If it is 75-85 mass parts, a phase change can be shown notably and thermal resistance can also be made low.
- Nonionic surfactants are generally known to be used as dispersants together with anionic surfactants, cationic surfactants, amphoteric surfactants, fluorine compounds, polymer dispersants, and the like. However, addition of 10% by mass or less is recommended with respect to the total composition so as not to affect the properties of the main component, and it has hardly been used in excess of 30% by mass. However, as a result of intensive studies by the inventors, it has been found that the content of the heat conductive filler can be increased by increasing the content of the nonionic surfactant in relation to a predetermined phase change product.
- the reason why the amount of the thermally conductive filler can be increased by increasing the content of the nonionic surfactant with respect to 100 parts by mass of the binder to 60 to 90 parts by mass is as follows.
- heat conductive fillers such as metal oxide films, oxides, and hydroxides often have a hydrophilic surface, but the hydrophilic group portion of the nonionic surfactant is present on such a hydrophilic surface. Easy to adsorb. The other lipophilic part of the nonionic surfactant has good affinity with the phase change product. For this reason, the heat conductive filler and the phase change material are easily combined with each other through the nonionic surfactant.
- cationic surfactants and anionic surfactants have many solid salts and few options, and liquids also tend to have a low property of linking thermal conductive fillers as binders. If the heat conductive filler cannot be filled in a high amount or the viscosity becomes high, it is difficult to obtain physical properties required for the heat conductive composition.
- the nonionic surfactant preferably has a viscosity at normal temperature of 10 to 10,000 mPa ⁇ s for the purpose of enhancing the filling property. Moreover, since there is much relative content of nonionic surfactant, when the stability of a heat conductive composition is considered, it is preferable that it is non-reactive. If the viscosity is less than 10 mPa ⁇ s, the volatility may be high, and the characteristics may change over time from the start of use. In addition, the thermally conductive composition may become brittle due to the low molecular weight. On the other hand, when the viscosity exceeds 10,000 mPa ⁇ s, the heat-conductive filler cannot be highly filled, and the heat-conductive composition becomes hard and may not be sufficiently softened even when heated.
- the nonionic surfactant is preferably mixed uniformly with the phase change product, and the HLB value corresponding to the phase change product can be used as an index of ease of mixing.
- a nonionic surfactant having an HLB value of 1.7 to 16.7 can be uniformly mixed with paraffin wax or polyolefin wax, which is preferable.
- Nonvolatile components can be included as components other than phase change products and nonionic surfactants as binders.
- the non-volatile component include a liquid component such as a plasticizer having a melting point of less than 35 ° C. and a resin component having a melting point of more than 120 ° C.
- the liquid component having a melting point of less than 35 ° C. include paraffin oil and ester oil. By adding these oils, the flexibility of the thermally conductive composition at normal temperature and in a heated state can be increased. In addition, even if it is a liquid component whose melting
- Resin components having a melting point exceeding 120 ° C. include ethylene-propylene rubber (EPR, EPDM), ethylene-butylene copolymer, ethylene-butylene-styrene copolymer, ethylene-propylene-styrene copolymer, hydrogenated polyalkyl. Examples include diene monool, hydrogenated polyalkyldiene diol, hydrogenated polyisopre.
- EPR ethylene-propylene rubber
- EPDM ethylene-butylene copolymer
- ethylene-butylene-styrene copolymer ethylene-propylene-styrene copolymer
- hydrogenated polyalkyl examples include diene monool, hydrogenated polyalkyldiene diol, hydrogenated polyisopre.
- the content of the non-volatile component is 30 parts by mass or less, out of 100 parts by mass of the binder, and may not be included. That is, out of 100 parts by mass of the binder, the non-volatile component, which is a component remaining because the phase change product is 10 parts by mass or more and the nonionic surfactant is 60 parts by mass or more, is 30 parts by mass or less.
- the amount is preferably 5 parts by mass or less in 100 parts by mass of the binder.
- Non-volatile components can contain various additives for the purpose of enhancing various properties such as productivity, weather resistance, and heat resistance.
- additives include various functional improvers such as reinforcing materials, colorants, heat resistance improvers, coupling agents, flame retardants, and deterioration inhibitors.
- Thermally conductive filler is a substance that literally imparts thermal conductivity to the thermally conductive composition.
- thermally conductive filler include fine powder made of metal, carbon, metal oxide, metal nitride, metal carbide, metal hydroxide, and the like.
- metal include copper and aluminum.
- carbon include pitch-based carbon fibers, PAN-based carbon fibers, fibers obtained by carbonizing resin fibers, fibers obtained by graphitizing resin fibers, and graphite powder.
- voltage resistance it is preferable to use a thermally conductive filler other than metal or carbon.
- Examples of the metal oxide include aluminum oxide, magnesium oxide, zinc oxide, iron oxide, and quartz, and examples of the metal nitride include boron nitride and aluminum nitride.
- examples of the metal carbide include silicon carbide, and examples of the metal hydroxide include aluminum hydroxide.
- the shape of the thermally conductive filler may be spherical or non-spherical, but spherical particles are preferred because they are more easily filled, and thus are more likely to increase thermal conductivity.
- the average particle size of the thermally conductive filler is preferably 0.3 to 10 ⁇ m.
- the average particle size is less than 0.3 ⁇ m, it becomes difficult to highly fill the binder with the heat conductive filler.
- the average particle size exceeds 10 ⁇ m, the compressibility of the heat conductive composition is deteriorated even in a heated state, and it is difficult to lower the thermal resistance.
- the average particle diameter referred to in the present specification, claims and the like is a volume-based average particle diameter measured by a laser diffraction scattering method unless otherwise described.
- the heat conductive filler preferably contains a predetermined amount of 0.1 to 1 ⁇ m heat conductive filler or 5 to 20 ⁇ m heat conductive filler. This is because, when a plurality of thermally conductive fillers having different particle diameters are mixed, high filling can be achieved as a whole, and thermal conductivity can be improved.
- the filling amount of the heat conductive filler occupies 50 to 90 parts by volume with respect to 100 parts by volume of the heat conductive composition, and more preferably 60 to 90 parts by volume. If it is less than 50 volume parts, there exists a possibility that thermal conductivity may become low. On the other hand, if the volume exceeds 90 parts by volume, the viscosity is not sufficiently lowered even if the binder undergoes a phase change due to the small amount of the binder component, making it difficult to form a thin film and increasing the thermal resistance.
- Components other than the binder and the heat conductive filler can be added to the heat conductive composition.
- particles serving as a spacer can be blended so that the heat conductive composition maintains a certain thickness even in a heated state.
- the particles serving as the spacer include glass beads and ceramic particles.
- the particles can be contained in an amount of 5 parts by volume or less, preferably about 0.1 to 3 parts by volume with respect to 100 parts by volume of the heat conductive composition. . If it is less than 0.1 part by volume, it may not function as a spacer. If it exceeds 5 parts by volume, thermal conductivity may be deteriorated.
- a solvent can be added to the heat conductive composition if necessary.
- a solvent is added to the thermally conductive composition to form a thermally conductive paste, and after applying the thermally conductive paste, the solvent is volatilized to form a sheet-like thermally conductive composition. You can get things.
- a solvent which volatilizes at a predetermined temperature and is compatible with the phase change product and the nonionic surfactant can be used.
- a solvent which volatilizes at a predetermined temperature and is compatible with the phase change product and the nonionic surfactant can be used.
- paraffin waxes and polyolefin waxes hydrocarbon solvents, aromatic solvents, ketone solvents, and ester solvents can be used.
- the heat conductive paste preferably has a viscosity of 1.0 to 2,000 Pa ⁇ s by adjusting the amount of solvent added.
- phase change product is solid at room temperature, in order to mix uniformly, it is preferable to heat and knead, and it is preferable to mix using a kneader or a planetary mixer with a heater. Moreover, when adding a solvent, it can be made easy to mix at normal temperature by dissolving a phase change thing in a solvent.
- the heat conductive composition changes its phase at a predetermined temperature due to the nature of the phase change material it contains, so it has an appropriate hardness at room temperature while softening when heated to a predetermined temperature and adheres to the adherend. Can increase the sex.
- it since it has a hardness that is at least solid or non-fluid clay at room temperature, if it is in the form of a sheet, it is hard enough to maintain its shape, is easy to handle, and is not a sheet
- the adhesiveness is not excessively high, and it is easy to handle because it does not contaminate other members that come into contact. In this respect, it is different from grease that easily adheres when other members come into contact and has difficulty in handling.
- the heat conductive compositions or heat conductive pastes of Sample 1 to Sample 26 described below were prepared and subjected to various tests.
- ⁇ Sample 1> 15 parts by mass of crystalline polyolefin (melting point 42 ° C., melting point temperature range 39 to 45 ° C.) as phase change product 1, 85 parts by mass of sorbitan trioleate as nonionic surfactant A, heat conduction
- the heat conductive paste of Sample 1 was obtained by mixing 244 parts by mass of aluminum oxide (spherical, 1 ⁇ m) as a conductive filler, 400 parts by mass of aluminum oxide (spherical, 12 ⁇ m) and 40 parts by mass of isoparaffin as a solvent. The viscosity of this heat conductive paste at room temperature was 417 Pa ⁇ s and was a liquid.
- the heat conductive composition of Sample 1 was obtained by applying this heat conductive paste to an aluminum heat sink as a heat radiator by screen printing and then drying. This heat conductive composition was laminated
- Samples 2 to 10 were obtained by changing the blending amounts of the phase change product A and the nonionic surfactant A using the same material as that of the sample 1. Others were the same as Sample 1, and the thermal conductive pastes and thermal conductive compositions of Samples 2 to 10 were produced. Table 1 shows the composition of Sample 1 to Sample 10.
- Samples 11 to 13 are samples in which the type of the phase change object is changed compared to Sample 1. More specifically, sample 11 used phase change product 2, sample 12 used phase change product 3, and sample 13 used a mixture of phase change product 1 and phase change product 2. Others were made in the same manner as Sample 1, and a heat conductive paste and a heat conductive composition of each sample were prepared.
- phase change items 1 to 3 are as follows.
- Phase change product 1 crystalline polyolefin (melting point 42 ° C, melting point temperature range 39-45 ° C)
- Phase change product 2 paraffin wax (melting point 46 ° C, melting point temperature range 40-50 ° C)
- Phase change product 3 Ester wax (melting point 46 ° C, melting point temperature range 40-50 ° C)
- Samples 14 to 19 are samples obtained by changing the type of nonionic surfactant as compared with Sample 1. More specifically, sample 14 is nonionic surfactant 2, sample 15 is nonionic surfactant 3, sample 16 is nonionic surfactant 4, sample 17 is nonionic surfactant 5, and sample 18 is nonionic. As the surfactant 6, Sample 19 in which equal amounts of nonionic surfactant 1 and nonionic surfactant 2 were mixed was used. Others were made in the same manner as Sample 1, and a heat conductive paste and a heat conductive composition of each sample were prepared.
- Nonionic surfactant 1 sorbitan trioleate (HLB: 1.7, viscosity: 200 mPa ⁇ s)
- Nonionic surfactant 2 Decaglyceryl pentaoleate (HLB: 3.5, viscosity: 5,000mPa ⁇ s)
- Nonionic surfactant 3 Triisodecyl trimellitic acid (HLB: 12, viscosity: 300 mPa ⁇ s)
- Nonionic surfactant 4 Polyoxyethylene sorbitan monolaurate (HLB: 16.7, viscosity: 500 mPa ⁇ s)
- Nonionic surfactant 5 Polyoxyethylene oleyl ether (HLB: 13.3, viscosity: 100 mPa ⁇ s)
- Nonionic surfactant 6 Polyoxyethylene alkylamine (HLB: 15, viscosity: 450 mPa ⁇ s) Table 2 shows the composition of
- Samples 21 to 26 are samples obtained by changing the nonionic surfactants to plasticizers 1 to 6, respectively, as compared with sample 1. That is, plasticizer 1 in sample 21, plasticizer 2 in sample 22, plasticizer 3 in sample 23, plasticizer 4 in sample 24, plasticizer 5 in sample 25, plasticizer 6 in sample 26, respectively. Using. Others were made in the same manner as Sample 1, and a heat conductive paste and a heat conductive composition of each sample were prepared.
- plasticizers 1 to 6 are as follows.
- Plasticizer 1 Polybutene oil (viscosity: 400 mPa ⁇ s)
- Plasticizer 2 Polybutene oil (viscosity: 1,200 mPa ⁇ s)
- Plasticizer 3 Polybutene oil (viscosity: 50,000 mPa ⁇ s)
- Plasticizer 4 Paraffin oil (viscosity: 10 mPa ⁇ s)
- Plasticizer 5 Paraffin oil (viscosity: 3,000 mPa ⁇ s)
- Plasticizer 6 Paraffin oil (viscosity: 12,000 mPa ⁇ s) Table 3 shows the composition of Sample 21 to Sample 26.
- the thermal resistance was measured with a thermal resistance tester 10 as shown in FIG. First, the heat conductive composition 1 of each sample was installed on the copper block 3 whose surface placed on the heat insulating material 2 was 10 mm ⁇ 21 mm. And the heat conductive composition 1 was pinched
- phase change Regarding whether or not the thermally conductive composition has undergone a phase change, the two indicators “(1) thermal resistance” and “(2) handleability” are given, and “(1) heat “ ⁇ : Something is causing a phase change” when both indicators are compatible, such as “ ⁇ ” for “resistance” and “ ⁇ ” for “(2) Handling”. In either case, the case where “x” was present was judged as “ ⁇ : the case where no phase change occurred”. If the handleability is good in the handling test, the phase change product is considered to be solid at room temperature. On the other hand, if the sample thickness is 40 ⁇ m or less in the thermal resistance test, the phase change product is melted by heating the heater. It is possible.
- Viscosity The viscosity of the heat conductive paste of each sample was measured with a viscometer (rotary viscometer DV-E manufactured by BROOK FIELD) using a spindle no. The measurement was performed at a rotation speed of 10 rpm and a measurement temperature of 23 ° C. using 14 rotors.
- the thermal resistance values of Samples 1 to 5 are extremely low. The reason is that the compressibility was high and the thickness was reduced by softening with heating. It is done. Further, from the measurement result of the compressibility, it is considered that the greater the proportion of the nonionic surfactant, the more flexible and the thinner the thickness. On the other hand, Sample 6 and Sample 7 had a low thermal resistance, but Sample 8 had a considerably high thermal resistance. From this result, it was found that the heat resistance value was drastically reduced when the blend amount of the nonionic surfactant was 60 parts by mass or more, and extremely low when the compounding amount was 70 parts by mass or more.
- Samples 11 to 13 are samples in which the type of the phase change object is changed with respect to the sample 1. Even when the polyolefin wax was changed to paraffin wax or ester wax, the heat resistance value was less than 0.150 ° C./W, and the heat conductive composition had good handleability and good phase change. Comparing sample 11 and sample 12 with sample 1, the thickness of the thermally conductive composition at the time of measurement was slightly thicker, but phase change product 2 and phase change product 3 have a slightly wider melting point, and are softened by heating. It is thought that the degree to do was a little small.
- Samples 14 to 19 were obtained by changing the type of nonionic surfactant as compared with sample 1. However, the thermal resistance values of all samples 14 to 19 were less than 0.150 ° C./W. Among these nonionic surfactants, the samples 14 to 16 and 19 using the ester type have a relatively low thermal resistance value together with the sample 1, and among them, the sample 15 using the aromatic carboxylic acid ester type and the poly Samples 16 to 18 using the oxyethylene type were particularly excellent in heat resistance.
- Samples 21 to 23 using polybutene oil as a plasticizer having no surface-active action in place of the nonionic surfactant have a thickness of the heat conductive composition at the time of measurement other than that of sample 21 is larger than that of sample 1.
- the thermal resistance was also high. The reason is considered that when polybutene oil is used, the filling property of the heat conductive filler is poor and the hardness when heated is slightly hard.
- samples 24 to 26 using paraffin oil as a plasticizer also had a thicker thermal conductive composition and higher heat resistance than those of sample 1.
- the reason for this is considered to be that the heat-conductive filler is poorly filled as in the case of polybutene oil, and the hardness when heated is somewhat hard.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
The purpose of the present invention is to provide a thermally conductive composition which has none of the concerns of low molecular siloxanes, by which a thermally conductive filler can be filled at a high density, which exhibits a good handleability at ordinary temperatures and which softens at a usage temperature. Provided is a thermally conductive composition which contains a thermally conductive filler and a binder constituted from a phase change material having a melting point of 35-120ºC, a non-ionic surfactant and a non-volatile component, wherein the content of the phase change material is 10 parts by mass or higher, the content of the non-ionic surfactant is 60 parts by mass or higher and the content of the non-volatile component is 30 parts by mass or less, each relative to 100 parts by mass of the binder. This thermally conductive composition is a solid and exhibits excellent handleability at ordinary temperatures, softens, melts and binds tightly to an adherend when actually used, and thus can reduce thermal resistance.
Description
本発明は発熱体と放熱体の間に配置して用いられる熱伝導性組成物に関する。より詳しくは所定の融点を有するフェイズチェンジ物を含有する熱伝導性組成物に関する。
The present invention relates to a thermally conductive composition used by being disposed between a heat generator and a heat radiator. More specifically, the present invention relates to a heat conductive composition containing a phase change product having a predetermined melting point.
電子機器では、半導体素子や機械部品等の発熱体から生じる熱を放熱するために、ヒートシンクなどの放熱体が取り付けられるが、この放熱体への熱の伝達を効率よくする目的で、発熱体と放熱体との間に熱伝導性部材を挟んで用いている。この熱伝導性部材には、熱伝導性シート(固体)や熱伝導性グリス(液体)、硬化型熱伝導性グリス(液状から固体)などの種類があり用途に応じて使い分けられている。熱伝導性グリスに関する技術は、例えば特許第4713161号(特許文献1)に記載がある。
In an electronic device, a heat sink such as a heat sink is attached to dissipate heat generated from a heat generator such as a semiconductor element or a machine part. For the purpose of efficiently transferring heat to the heat sink, A heat conductive member is sandwiched between the radiator and the heat sink. There are various types of heat conductive members such as a heat conductive sheet (solid), a heat conductive grease (liquid), and a curable heat conductive grease (from liquid to solid). The technique regarding heat conductive grease is described in, for example, Japanese Patent No. 4713161 (Patent Document 1).
しかしながら熱伝導性グリスは常温でペースト状であり、発熱体と放熱体との間の隙間が狭いときなどは塗布作業が困難であり、また所望の塗布部位以外に誤って付着し易いといった取扱いに対する不都合が指摘される場合がある。発熱体と放熱体との間に介在させる作業において常温で固体であれば取扱いが容易であることから、常温では固体でありながら、発熱体に組み込まれた後は、吸熱し軟化することで被着体に密着し、熱抵抗を低くできる性質を有する熱伝導性部材の開発が進められている。
However, heat conductive grease is paste-like at room temperature, and it is difficult to apply when the gap between the heat generator and the heat radiator is narrow, and it is easy to accidentally adhere to areas other than the desired application site. Inconvenience may be pointed out. Since it is easy to handle if it is solid at room temperature in the work intervening between the heating element and the heat dissipation body, it is solid at room temperature, but after being incorporated in the heating element, it absorbs heat and softens. Development of a heat conductive member having a property of being in close contact with the adherend and capable of reducing the thermal resistance is in progress.
ところが、こうした性質を発現する物質として、熱可塑性シリコーン材料を用いることは低分子シロキサンの発生が懸念されるという問題がある。また、ワックス系材料を用いることは熱伝導性材料を高充填できずに熱伝導率を高め難いという問題がある。
However, the use of a thermoplastic silicone material as a substance exhibiting such properties has a problem of concern about the generation of low molecular siloxane. In addition, the use of a wax-based material has a problem in that it is difficult to increase the thermal conductivity because a highly conductive material cannot be filled.
そこで本発明は、こうした課題を解決するためになされたものである。すなわち、低分子シロキサンの懸念がなく、熱伝導性充填材を高充填でき、常温では取扱い性が良く、使用温度で軟化する熱伝導性組成物を提供することを目的とする。
Therefore, the present invention has been made to solve these problems. That is, an object is to provide a thermally conductive composition that is free from concerns about low-molecular siloxane, can be highly filled with a thermally conductive filler, is easy to handle at room temperature, and softens at the use temperature.
本発明は、上記目的を達成するために、次に記す熱伝導性組成物と熱伝導性ペーストを提供する。
In order to achieve the above object, the present invention provides the following heat conductive composition and heat conductive paste.
即ち、本発明は35℃~120℃の融点を有するフェイズチェンジ物とノニオン界面活性剤と不揮発成分とでなるバインダーと、熱伝導性充填材と、を含む熱伝導性組成物であって、前記バインダー100質量部に占めるフェイズチェンジ物が10質量部以上、ノニオン界面活性剤が60質量部以上、不揮発成分が30質量部以下である熱伝導性組成物である。
That is, the present invention is a heat conductive composition comprising a phase change product having a melting point of 35 ° C. to 120 ° C., a binder comprising a nonionic surfactant and a non-volatile component, and a heat conductive filler, The phase change product occupying 100 parts by mass of the binder is a thermally conductive composition having 10 parts by mass or more, a nonionic surfactant of 60 parts by mass or more, and a non-volatile component of 30 parts by mass or less.
35℃~120℃の融点を有するフェイズチェンジ物を含むため、常温で固体であり、発熱体からの熱を奪ってフェイズチェンジ物が溶融する熱伝導性組成物とすることができる。また、ノニオン界面活性剤を含むため、フェイズチェンジ物と熱伝導性充填材とを好適に分散させて混合することができる。加えて、不揮発成分を含むため、所望の性質にアレンジされた熱伝導性組成物とすることができる。
Since it includes a phase change product having a melting point of 35 ° C. to 120 ° C., it can be made into a heat conductive composition that is solid at normal temperature and takes away heat from the heating element and melts the phase change product. Moreover, since a nonionic surfactant is included, a phase change thing and a heat conductive filler can be disperse | distributed suitably and can be mixed. In addition, since a non-volatile component is included, it can be set as the heat conductive composition arranged to the desired property.
バインダー100質量部に占めるフェイズチェンジ物が10質量部以上、ノニオン界面活性剤が60質量部以上、不揮発成分が30質量部以下であるため、フェイズチェンジ物と熱伝導性充填材の双方を好適な分散状態で熱伝導性組成物中に高充填させることができる。即ち、ノニオン界面活性剤を60質量部以上含むことで、熱抵抗を極めて低くできる。また、このノニオン界面活性剤との組合せにおいて所定のフェイズチェンジ物を10質量部以上含むことで、高い熱伝導性と相変化の性質を発現することができる。
Since the phase change product occupying 100 parts by mass of the binder is 10 parts by mass or more, the nonionic surfactant is 60 parts by mass or more, and the non-volatile component is 30 parts by mass or less, both the phase change product and the thermally conductive filler are suitable. It can be highly filled in the heat conductive composition in a dispersed state. That is, heat resistance can be made extremely low by including 60 mass parts or more of nonionic surfactants. In addition, by including 10 parts by mass or more of a predetermined phase change product in combination with this nonionic surfactant, high thermal conductivity and phase change properties can be expressed.
フェイズチェンジ物は、パラフィン系ワックス、エステル系ワックス、ポリオレフィン系ワックスから選ばれる一種または組合せとすることができる。フェイズチェンジ物をパラフィン系ワックス、エステル系ワックス、ポリオレフィン系ワックスから選ばれる一種または組合せとすることで、常温で固体でありながら、実際の使用の際には溶融して発熱体や放熱体に密着させることができる。これにより熱伝導率の高い熱伝導性組成物とすることができる。
The phase change product can be one or a combination selected from paraffin wax, ester wax, and polyolefin wax. By making the phase change material one or a combination selected from paraffin wax, ester wax, and polyolefin wax, it is solid at room temperature but melts in actual use and adheres closely to the heating element and heat radiator Can be made. Thereby, it can be set as a heat conductive composition with high heat conductivity.
ノニオン界面活性剤が、脂肪族カルボン酸エステルまたは芳香族カルボン酸エステルから選ばれる一種または組合せとすることができる。ノニオン界面活性剤を脂肪族カルボン酸エステルまたは芳香族カルボン酸エステルから選ばれる一種または組合せとすることで、フェイズチェンジ物と熱伝導性充填材との親和性を高めることができる。
The nonionic surfactant may be one or a combination selected from aliphatic carboxylic acid esters or aromatic carboxylic acid esters. By making the nonionic surfactant one or a combination selected from an aliphatic carboxylic acid ester or an aromatic carboxylic acid ester, the affinity between the phase change product and the thermally conductive filler can be increased.
熱伝導性充填材の含有量が熱伝導性組成物100体積部に対して50~90体積部である熱伝導性組成物とすることができる。熱伝導性充填材の占める割合が50~90体積%であるため、熱伝導性充填剤の充填量が多く、熱伝導性が高い熱伝導性組成物とすることができる。また、厚さ20~40μmでの熱抵抗値が0.080~0.150℃/Wである熱伝導性組成物とすることができる。厚さ20~40μmでの熱抵抗値を0.080~0.150℃/Wとしたため、熱伝導性に優れた熱伝導性組成物である。
A heat conductive composition having a heat conductive filler content of 50 to 90 parts by volume with respect to 100 parts by volume of the heat conductive composition can be obtained. Since the proportion of the heat conductive filler is 50 to 90% by volume, it is possible to obtain a heat conductive composition having a high amount of heat conductive filler and high heat conductivity. Further, a heat conductive composition having a thermal resistance value of 0.080 to 0.150 ° C./W at a thickness of 20 to 40 μm can be obtained. Since the thermal resistance value at a thickness of 20 to 40 μm is 0.080 to 0.150 ° C./W, the thermal conductive composition is excellent in thermal conductivity.
上記何れかの熱伝導性組成物と、溶剤とを含み、常温でペースト状ないし液状である熱伝導性ペーストとすることができる。上記何れかの熱伝導性組成物と、溶剤とを含み、常温でペースト状ないし液状である熱伝導性ペーストとしたため、発熱体と放熱体との間に熱伝導性組成物を介在させる際に、固体では不都合な場合にも対応することができる。即ち、熱伝導性グリスを塗布する装置のような従来から用いられている塗布装置や塗布設備、塗布方法にも対応して使用することができる。
また、ペースト状ないし液状の熱伝導性ペーストは被着体に密着させやすい点で熱伝導性組成物よりも好ましい。予め発熱体や放熱体と一体にしておくような場合に、例えば放熱体と熱伝導性組成物を一体にしたものを発熱体に取り付ける場合には、常温で固体の熱伝導性組成物は密着性が弱いため、被着体から剥がれたり、ずれたりし易いのに比べて、熱伝導性ペーストであれば被着体に密着させやすい。 A heat conductive paste containing any one of the above heat conductive compositions and a solvent, which is paste or liquid at room temperature, can be obtained. Since any one of the above heat-conductive compositions and a solvent is used to form a heat-conductive paste that is paste-like or liquid at room temperature, when the heat-conductive composition is interposed between the heat generator and the heat radiator Also, it is possible to deal with a case where it is inconvenient for a solid. That is, it can be used corresponding to a conventionally used coating apparatus, coating equipment, and coating method, such as a device for coating thermally conductive grease.
A paste-like or liquid heat-conductive paste is preferable to the heat-conductive composition in that it can be easily adhered to an adherend. In the case where the heat generating body or the heat radiating body is integrated in advance, for example, when attaching the heat radiating body and the heat conductive composition to the heat generating body, the solid heat conductive composition is in close contact with the room temperature. Since it is weak, it is easy to make it adhere to an adherend as long as it is a heat conductive paste, compared to being easily peeled off or displaced from the adherend.
また、ペースト状ないし液状の熱伝導性ペーストは被着体に密着させやすい点で熱伝導性組成物よりも好ましい。予め発熱体や放熱体と一体にしておくような場合に、例えば放熱体と熱伝導性組成物を一体にしたものを発熱体に取り付ける場合には、常温で固体の熱伝導性組成物は密着性が弱いため、被着体から剥がれたり、ずれたりし易いのに比べて、熱伝導性ペーストであれば被着体に密着させやすい。 A heat conductive paste containing any one of the above heat conductive compositions and a solvent, which is paste or liquid at room temperature, can be obtained. Since any one of the above heat-conductive compositions and a solvent is used to form a heat-conductive paste that is paste-like or liquid at room temperature, when the heat-conductive composition is interposed between the heat generator and the heat radiator Also, it is possible to deal with a case where it is inconvenient for a solid. That is, it can be used corresponding to a conventionally used coating apparatus, coating equipment, and coating method, such as a device for coating thermally conductive grease.
A paste-like or liquid heat-conductive paste is preferable to the heat-conductive composition in that it can be easily adhered to an adherend. In the case where the heat generating body or the heat radiating body is integrated in advance, for example, when attaching the heat radiating body and the heat conductive composition to the heat generating body, the solid heat conductive composition is in close contact with the room temperature. Since it is weak, it is easy to make it adhere to an adherend as long as it is a heat conductive paste, compared to being easily peeled off or displaced from the adherend.
本発明の熱伝導性組成物によれば、低分子シロキサンの懸念がなく、熱伝導性が高く、常温での取扱い性に優れる熱伝導性組成物である。
According to the heat conductive composition of the present invention, there is no concern about low-molecular siloxane, it is a heat conductive composition having high heat conductivity and excellent handleability at room temperature.
以下、本発明の実施形態を説明する。本発明の熱伝導性組成物は、35℃~120℃の融点を有するフェイズチェンジ物とノニオン界面活性剤と任意の不揮発成分とでなるバインダーと、熱伝導性充填材と、を含んで構成している。以下に熱伝導性組成物に含まれる構成要素について説明する。
Hereinafter, embodiments of the present invention will be described. The thermally conductive composition of the present invention comprises a phase change product having a melting point of 35 ° C. to 120 ° C., a binder composed of a nonionic surfactant and an optional nonvolatile component, and a thermally conductive filler. ing. The components contained in the heat conductive composition will be described below.
フェイズチェンジ物: フェイズチェンジ物は、35℃~120℃の融点を有する物質である。熱伝導性組成物に要求される性質は、常温で固体であり、実利用の際には発熱する電子部品の熱を吸収して軟化または溶融するものであることから、この性質を満たすための主要部となるものである。
Phase change product: A phase change product is a substance having a melting point of 35 ° C to 120 ° C. The properties required for the thermally conductive composition are solid at room temperature and absorb or soften or melt the heat of electronic components that generate heat during actual use. It is the main part.
したがって、融点が35℃未満では、常温でも過度に柔軟になり、取扱い性が悪くなるおそれがある。一方、120℃を超える場合には、特に高温で動作する特殊な使用用途でのみ利用可能で、汎用性の点で劣ることになる。融点の上限については、より好ましくは個別の仕様に応じて決定されるが、機器の動作に支障のない温度とすることが求められ一般的な用途であれば、80℃以下とすることが好ましい。
Therefore, if the melting point is less than 35 ° C., it becomes excessively flexible even at room temperature, and the handleability may be deteriorated. On the other hand, when the temperature exceeds 120 ° C., it can be used only for special applications that operate at high temperatures, and is inferior in versatility. The upper limit of the melting point is more preferably determined according to individual specifications, but it is required to be a temperature that does not hinder the operation of the device, and if it is a general application, it is preferably 80 ° C. or lower. .
融点については、溶け始めから溶け終わりまでの温度範囲が狭いことが好ましい。この温度範囲が狭い方が速やかに相変化して被着体に密着するためである。この温度範囲が狭い材料としては、分子量分布が狭い物質や、結晶性を有する物質を挙げることができる。
なお、本発明において融点とは、示差走査熱量分析(DSC)で測定したDSC曲線の吸熱ピークの温度である。また、融点の温度範囲とは、DSC曲線のベースラインと、ベースラインから吸熱ピークへ向かう変曲点における接線との交点の温度と、吸熱ピークからベースラインへ向かう変曲点における接線との交点の温度の範囲である。 About melting | fusing point, it is preferable that the temperature range from the melting start to the melting end is narrow. This is because the narrower the temperature range, the faster the phase changes and the adhesion to the adherend becomes. Examples of the material having a narrow temperature range include a substance having a narrow molecular weight distribution and a substance having crystallinity.
In the present invention, the melting point is the temperature of the endothermic peak of the DSC curve measured by differential scanning calorimetry (DSC). The temperature range of the melting point is the intersection of the DSC curve baseline and the tangent at the inflection point from the baseline to the endothermic peak and the tangent at the inflection point from the endothermic peak to the baseline. Temperature range.
なお、本発明において融点とは、示差走査熱量分析(DSC)で測定したDSC曲線の吸熱ピークの温度である。また、融点の温度範囲とは、DSC曲線のベースラインと、ベースラインから吸熱ピークへ向かう変曲点における接線との交点の温度と、吸熱ピークからベースラインへ向かう変曲点における接線との交点の温度の範囲である。 About melting | fusing point, it is preferable that the temperature range from the melting start to the melting end is narrow. This is because the narrower the temperature range, the faster the phase changes and the adhesion to the adherend becomes. Examples of the material having a narrow temperature range include a substance having a narrow molecular weight distribution and a substance having crystallinity.
In the present invention, the melting point is the temperature of the endothermic peak of the DSC curve measured by differential scanning calorimetry (DSC). The temperature range of the melting point is the intersection of the DSC curve baseline and the tangent at the inflection point from the baseline to the endothermic peak and the tangent at the inflection point from the endothermic peak to the baseline. Temperature range.
こうしたフェイズチェンジ物としては、非シリコーン系物質が好ましく、より具体的には、パラフィン系ワックス、エステル系ワックス、ポリオレフィン系ワックスなどの種々のワックス状物質を挙げることができる。
Such a phase change product is preferably a non-silicone material, and more specifically, various wax-like materials such as paraffin wax, ester wax and polyolefin wax can be exemplified.
フェイズチェンジ物の含有量は、フェイズチェンジ物とノニオン界面活性剤、不揮発成分からなるバインダー100質量部において10質量部以上である。10質量部以上であれば、熱伝導性組成物において相変化の性質を備えることができるためである。また、ノニオン界面活性剤の含有量が60質量部以上であるため、必然的にフェイズチェンジ物の含有量は40質量部以下となることから、10~40質量部の範囲で含まれることとなる。フェイズチェンジ物の含有量は40質量部を超えると、相対的にノニオン界面活性剤の含有量が少なくなり熱抵抗が悪化するおそれがある。
The content of the phase change product is 10 parts by mass or more in 100 parts by mass of the binder composed of the phase change product, the nonionic surfactant, and the nonvolatile component. This is because the heat-conductive composition can have a phase change property if it is 10 parts by mass or more. Further, since the content of the nonionic surfactant is 60 parts by mass or more, the content of the phase change product is inevitably 40 parts by mass or less, so that it is included in the range of 10 to 40 parts by mass. . When the content of the phase change product exceeds 40 parts by mass, the content of the nonionic surfactant is relatively decreased and the thermal resistance may be deteriorated.
ノニオン界面活性剤: ノニオン界面活性剤は、熱伝導性充填材の充填性を高める主たる成分である。こうしたノニオン界面活性剤としては、ポリオキシチレン型、アルキルエーテル型、脂肪族カルボン酸エステル型、芳香族カルボン酸エステル型、特殊フェノール型、アミド型、アルキルグルコキシド型などを挙げることができる。これらの中では、芳香族カルボン酸エステル型またはポリオキシエチレン型を用いると、耐熱性を高めることができる点で好ましい。また、脂肪族カルボン酸エステル型を用いると、熱伝導性充填材の充填性を高めることができる点で好ましい。換言すれば、脂肪族カルボン酸エステル型を加えることで低粘度化が可能であるということであり、熱伝導性組成物を加熱して軟化したときの粘度を低くすることができる。したがって、一定荷重で厚みを薄くすることができることから、熱抵抗を低くすることができる。
Nonionic surfactant: Nonionic surfactant is a main component that enhances the filling property of the thermally conductive filler. Examples of such nonionic surfactants include polyoxyethylene type, alkyl ether type, aliphatic carboxylic acid ester type, aromatic carboxylic acid ester type, special phenol type, amide type, and alkyl glucooxide type. Among these, it is preferable to use an aromatic carboxylic acid ester type or a polyoxyethylene type in that heat resistance can be improved. Moreover, it is preferable to use an aliphatic carboxylic acid ester type in that the filling property of the heat conductive filler can be improved. In other words, it is possible to reduce the viscosity by adding the aliphatic carboxylic acid ester type, and the viscosity when the heat conductive composition is softened by heating can be lowered. Therefore, since the thickness can be reduced with a constant load, the thermal resistance can be lowered.
芳香族カルボン酸エステルとしては、フタル酸エステル、トリメチリット酸エステル、ピロメリット酸エステルなどが好適である。また、ポリオキシエチレン型としては、ポリオキシエチレンアルキルエーテルやポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミンなどが好適である。脂肪族カルボン酸エステルとしては、ラウリン酸ソルビタン、トリオレイン酸ソルビタン、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノオレエート、ポリエチレングリコールモノラウレート、ポリエチレングリコールモノパルミテート、ポリエチレングリコールモノステアレート、ポリエチレングリコールモノオレエート、ペンタエリストールモノオレエート、オレイン酸モノグリセリル、ペンタオレイン酸デカグリセリルが好適である。
As the aromatic carboxylic acid ester, phthalic acid ester, trimethylitonic acid ester, pyromellitic acid ester and the like are suitable. As the polyoxyethylene type, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine and the like are suitable. Aliphatic carboxylic acid esters include sorbitan laurate, sorbitan trioleate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monooleate, polyethylene glycol monolaurate, polyethylene glycol mono Palmitate, polyethylene glycol monostearate, polyethylene glycol monooleate, pentaerythritol monooleate, monoglyceryl oleate, decaglyceryl pentaoleate are preferred.
ノニオン界面活性剤の含有量は、バインダー100質量部中に60質量部以上である。一方、フェイズチェンジ物の含有量が10質量部以上であるから必然的にノニオン界面活性剤の含有量は90質量部以下となり、60~90質量部の範囲で含まれることとなる。好ましい含有量は75~85質量部である。含有量が60質量部未満になると、熱抵抗値が悪くなるおそれがある。一方、90質量部を超えると、相対的にフェイズチェンジ物の含有量が10質量部未満となるため、相変化の性質が発現しなくなるおそれがある。75~85質量部であれば相変化を顕著に示し、熱抵抗も低くすることができる。
The content of the nonionic surfactant is 60 parts by mass or more in 100 parts by mass of the binder. On the other hand, since the content of the phase change product is 10 parts by mass or more, the content of the nonionic surfactant is inevitably 90 parts by mass or less, and is included in the range of 60 to 90 parts by mass. A preferred content is 75 to 85 parts by mass. When the content is less than 60 parts by mass, the thermal resistance value may be deteriorated. On the other hand, when the amount exceeds 90 parts by mass, the phase change property is relatively less than 10 parts by mass, and thus the phase change property may not be exhibited. If it is 75-85 mass parts, a phase change can be shown notably and thermal resistance can also be made low.
ノニオン界面活性剤は、陰イオン系界面活性剤や陽イオン系界面活性剤、両性界面活性剤、フッ素系化合物、高分子系分散剤などとともに一般的に分散剤としての利用が知られている。しかしながら、主成分の性質に影響が出ないように全組成に対して10質量%以下の添加が推奨されており、30質量%を超えて用いられることはほとんどなかった。ところが、発明者らが鋭意検討したところ、所定のフェイズチェンジ物との関係ではノニオン界面活性剤の含有量を多くすることで熱伝導性充填材の含有量も多くできることを見い出したのである。
Nonionic surfactants are generally known to be used as dispersants together with anionic surfactants, cationic surfactants, amphoteric surfactants, fluorine compounds, polymer dispersants, and the like. However, addition of 10% by mass or less is recommended with respect to the total composition so as not to affect the properties of the main component, and it has hardly been used in excess of 30% by mass. However, as a result of intensive studies by the inventors, it has been found that the content of the heat conductive filler can be increased by increasing the content of the nonionic surfactant in relation to a predetermined phase change product.
ノニオン界面活性剤のバインダー100質量部に対する含有量を60~90質量部と高めることで、熱伝導性充填材の充填量を高めることができる理由は、以下のとおりであると考えられる。すなわち、金属の酸化被膜、酸化物、水酸化物のように熱伝導性充填材は親水性の表面を有することが多いが、こうした親水性の表面に対してノニオン界面活性剤の親水基部分が吸着しやすい。また、ノニオン界面活性剤のもう一方の親油性部分はフェイズチェンジ物との親和性が良い。そのため、ノニオン界面活性剤を介して熱伝導性充填材とフェイズチェンジ物とが結びつき易いからである。そうした一方で、陽イオン界面活性剤や陰イオン界面活性剤は固体の塩が多く選択肢が少ないことに加え、液状のものについてもバインダーとして熱伝導性充填材を繋ぎとめる性質が小さい傾向があり、熱伝導性充填材が高充填できなかったり、粘度が高くなったりと、熱伝導性組成物として要求される物性が得られにくい。
It is considered that the reason why the amount of the thermally conductive filler can be increased by increasing the content of the nonionic surfactant with respect to 100 parts by mass of the binder to 60 to 90 parts by mass is as follows. In other words, heat conductive fillers such as metal oxide films, oxides, and hydroxides often have a hydrophilic surface, but the hydrophilic group portion of the nonionic surfactant is present on such a hydrophilic surface. Easy to adsorb. The other lipophilic part of the nonionic surfactant has good affinity with the phase change product. For this reason, the heat conductive filler and the phase change material are easily combined with each other through the nonionic surfactant. On the other hand, cationic surfactants and anionic surfactants have many solid salts and few options, and liquids also tend to have a low property of linking thermal conductive fillers as binders. If the heat conductive filler cannot be filled in a high amount or the viscosity becomes high, it is difficult to obtain physical properties required for the heat conductive composition.
ノニオン界面活性剤は、充填性を高めるという目的のために、常温での粘度が10~10,000mPa・sであることが好ましい。また、ノニオン界面活性剤の相対的な含有量が多いため、熱伝導性組成物の安定性を考慮すると非反応性であることが好ましい。粘度が10mPa・s未満では、揮発性が高いおそれがあり、使用をはじめてから経時で特性が変化するおそれがある。また、分子量が小さいことに起因して、熱伝導性組成物が脆くなるおそれがある。一方、粘度が10,000mPa・sを超えると、熱伝導性充填材を高充填できなくなるとともに、熱伝導性組成物が硬くなり加熱しても十分に軟化しないおそれがある。
The nonionic surfactant preferably has a viscosity at normal temperature of 10 to 10,000 mPa · s for the purpose of enhancing the filling property. Moreover, since there is much relative content of nonionic surfactant, when the stability of a heat conductive composition is considered, it is preferable that it is non-reactive. If the viscosity is less than 10 mPa · s, the volatility may be high, and the characteristics may change over time from the start of use. In addition, the thermally conductive composition may become brittle due to the low molecular weight. On the other hand, when the viscosity exceeds 10,000 mPa · s, the heat-conductive filler cannot be highly filled, and the heat-conductive composition becomes hard and may not be sufficiently softened even when heated.
ノニオン界面活性剤は、フェイズチェンジ物と混合して均一に混ざるものであることが好ましく、フェイズチェンジ物に応じたHLB値を混ざりやすさの指標とすることができる。例えばパラフィン系ワックスやポリオレフィン系ワックスに対してはHLB値が1.7~16.7のノニオン界面活性剤が均一に混合することができ好ましい。
The nonionic surfactant is preferably mixed uniformly with the phase change product, and the HLB value corresponding to the phase change product can be used as an index of ease of mixing. For example, a nonionic surfactant having an HLB value of 1.7 to 16.7 can be uniformly mixed with paraffin wax or polyolefin wax, which is preferable.
不揮発成分: バインダーとしてフェイズチェンジ物とノニオン界面活性剤以外の成分として不揮発成分を含ませることができる。不揮発成分としては、融点が35℃未満の可塑剤等の液状成分や、融点が120℃を超える樹脂成分が挙げられる。融点が35℃未満の液状成分には、例えばパラフィン系オイルや、エステル系オイルを挙げることができる。これらのオイルを添加することで、熱伝導性組成物の常温および加熱状態での柔軟性を高めることができる。なお、融点が35℃未満の液状成分であっても、使用時に揮発して残存しない溶剤は不揮発成分には含まれない。
Nonvolatile component: Nonvolatile components can be included as components other than phase change products and nonionic surfactants as binders. Examples of the non-volatile component include a liquid component such as a plasticizer having a melting point of less than 35 ° C. and a resin component having a melting point of more than 120 ° C. Examples of the liquid component having a melting point of less than 35 ° C. include paraffin oil and ester oil. By adding these oils, the flexibility of the thermally conductive composition at normal temperature and in a heated state can be increased. In addition, even if it is a liquid component whose melting | fusing point is less than 35 degreeC, the solvent which volatilizes at the time of use and does not remain | survive is not contained in a non-volatile component.
融点が120℃を超える樹脂成分としては、エチレン-プロピレンゴム(EPR,EPDM)、エチレン-ブチレン共重合体、エチレン-ブチレン-スチレン共重合体、エチレン-プロピレン-スチレン共重合体、水素化ポリアルキルジエンモノオール、水素化ポリアルキルジエンジオール、水素化ポリイソプレなどを例示することができる。樹脂成分を添加することで、熱伝導性組成物の強度を高めることができる。この樹脂成分は、ノニオン界面活性剤や他の成分と相溶する事が好ましい。
Resin components having a melting point exceeding 120 ° C. include ethylene-propylene rubber (EPR, EPDM), ethylene-butylene copolymer, ethylene-butylene-styrene copolymer, ethylene-propylene-styrene copolymer, hydrogenated polyalkyl. Examples include diene monool, hydrogenated polyalkyldiene diol, hydrogenated polyisopre. By adding a resin component, the strength of the thermally conductive composition can be increased. This resin component is preferably compatible with the nonionic surfactant and other components.
不揮発成分の含有量は、バインダー100質量部のうち、30質量部以下であり、含ませないことも可能である。即ち、バインダー100質量部のうち、フェイズチェンジ物が10質量部以上で、かつノニオン界面活性剤が60質量部以上であることから残された成分である不揮発成分は30質量部以下となる。融点が120℃を超える樹脂成分の場合は、多量に含むと熱伝導性組成物が硬くなりすぎるおそれがあるため、バインダー100質量部中で5質量部以下とすることが好ましい。
The content of the non-volatile component is 30 parts by mass or less, out of 100 parts by mass of the binder, and may not be included. That is, out of 100 parts by mass of the binder, the non-volatile component, which is a component remaining because the phase change product is 10 parts by mass or more and the nonionic surfactant is 60 parts by mass or more, is 30 parts by mass or less. In the case of a resin component having a melting point exceeding 120 ° C., if it is contained in a large amount, the heat conductive composition may become too hard. Therefore, the amount is preferably 5 parts by mass or less in 100 parts by mass of the binder.
不揮発成分には、生産性、耐候性、耐熱性など種々の性質を高める目的で種々の添加材を含ませることができる。そうした添加材を例示すれば、補強材、着色剤、耐熱向上剤、カップリング剤、難燃剤、劣化防止剤など、種々の機能性向上剤が挙げられる。
Non-volatile components can contain various additives for the purpose of enhancing various properties such as productivity, weather resistance, and heat resistance. Examples of such additives include various functional improvers such as reinforcing materials, colorants, heat resistance improvers, coupling agents, flame retardants, and deterioration inhibitors.
熱伝導性充填材: 熱伝導性充填材は、文字どおり熱伝導性組成物に熱伝導性を付与する物質である。熱伝導性充填材には、例えば、金属や炭素、金属酸化物、金属窒化物、金属炭化物、金属水酸化物などからなる微細粉が挙げられる。金属としては、銅、アルミニウムなどが挙げられ、炭素としてはピッチ系炭素繊維、PAN系炭素繊維、樹脂繊維を炭化処理した繊維、樹脂繊維を黒鉛化処理した繊維や、グラファイト粉末などが挙げられる。耐電圧性が求められる場合には、金属や炭素以外の熱伝導性充填材を用いることが好ましい。
Thermally conductive filler: The thermally conductive filler is a substance that literally imparts thermal conductivity to the thermally conductive composition. Examples of the thermally conductive filler include fine powder made of metal, carbon, metal oxide, metal nitride, metal carbide, metal hydroxide, and the like. Examples of the metal include copper and aluminum. Examples of the carbon include pitch-based carbon fibers, PAN-based carbon fibers, fibers obtained by carbonizing resin fibers, fibers obtained by graphitizing resin fibers, and graphite powder. When voltage resistance is required, it is preferable to use a thermally conductive filler other than metal or carbon.
金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化鉄、石英などが挙げられ、金属窒化物としては、窒化ホウ素、及び窒化アルミニウムなどが挙げられる。また、金属炭化物としては、炭化ケイ素などが挙げられ、金属水酸化物としては、水酸化アルミニウムなどが挙げられる。熱伝導性充填材の形状としては、球状であっても球状以外の形状であっても良いが、球状の粒子の方が高充填させやすいため、熱伝導性を高めやすい点で好ましい。
Examples of the metal oxide include aluminum oxide, magnesium oxide, zinc oxide, iron oxide, and quartz, and examples of the metal nitride include boron nitride and aluminum nitride. In addition, examples of the metal carbide include silicon carbide, and examples of the metal hydroxide include aluminum hydroxide. The shape of the thermally conductive filler may be spherical or non-spherical, but spherical particles are preferred because they are more easily filled, and thus are more likely to increase thermal conductivity.
熱伝導性充填材の平均粒径としては、0.3~10μmとすることが好ましい。平均粒径が0.3μm未満では熱伝導性充填材をバインダー中に高充填し難くなる。一方、平均粒径が10μmを超える場合には、加熱状態においても熱伝導性組成物の圧縮性が悪くなり、熱抵抗を下げ難いおそれがある。なお、本明細書、特許請求の範囲等でいう平均粒径は、別途説明のない限りレーザー回折散乱法で測定した体積基準の平均粒径である。
The average particle size of the thermally conductive filler is preferably 0.3 to 10 μm. When the average particle size is less than 0.3 μm, it becomes difficult to highly fill the binder with the heat conductive filler. On the other hand, when the average particle size exceeds 10 μm, the compressibility of the heat conductive composition is deteriorated even in a heated state, and it is difficult to lower the thermal resistance. In addition, the average particle diameter referred to in the present specification, claims and the like is a volume-based average particle diameter measured by a laser diffraction scattering method unless otherwise described.
上記熱伝導性充填材には、0.1~1μmの熱伝導性充填材や、5~20μmの熱伝導性充填材を所定量含むことが好ましい。複数の粒径の異なる熱伝導性充填材を混合した方が全体としては高充填できるようになり、熱伝導性を高めることができるからである。
The heat conductive filler preferably contains a predetermined amount of 0.1 to 1 μm heat conductive filler or 5 to 20 μm heat conductive filler. This is because, when a plurality of thermally conductive fillers having different particle diameters are mixed, high filling can be achieved as a whole, and thermal conductivity can be improved.
熱伝導性充填材の充填量は、熱伝導性組成物100体積部に対して50~90体積部を占めるものとし、60~90体積部とすることがより好ましい。50体積部未満では、熱伝導性が低くなるおそれがある。一方、90体積部を超えると、バインダー成分が少ないことから加熱してバインダーが相変化を起こしても粘度が十分に下がらず、薄膜化しにくくなり、熱抵抗が上昇するおそれがある。
The filling amount of the heat conductive filler occupies 50 to 90 parts by volume with respect to 100 parts by volume of the heat conductive composition, and more preferably 60 to 90 parts by volume. If it is less than 50 volume parts, there exists a possibility that thermal conductivity may become low. On the other hand, if the volume exceeds 90 parts by volume, the viscosity is not sufficiently lowered even if the binder undergoes a phase change due to the small amount of the binder component, making it difficult to form a thin film and increasing the thermal resistance.
その他の成分: 熱伝導性組成物には、バインダーと熱伝導性充填材以外の成分を加えることができる。例えば、熱伝導性組成物を熱伝導性媒体として電子機器に組み付けた場合に、加熱状態でも熱伝導性組成物が一定の厚みを保持するために、スペーサーとなる粒子を配合させることができる。スペーサーとなる粒子には、例えば、ガラスビーズやセラミック粒子が挙げられ、熱伝導性組成物100体積部に対して5体積部以下、好ましくは0.1~3体積部程度を含ませることができる。0.1体積部未満では、スペーサーとして機能しないおそれがあり、5体積部を超えると、熱伝導性が悪くなるおそれがある。
Other components: Components other than the binder and the heat conductive filler can be added to the heat conductive composition. For example, when the heat conductive composition is assembled in an electronic device as a heat conductive medium, particles serving as a spacer can be blended so that the heat conductive composition maintains a certain thickness even in a heated state. Examples of the particles serving as the spacer include glass beads and ceramic particles. The particles can be contained in an amount of 5 parts by volume or less, preferably about 0.1 to 3 parts by volume with respect to 100 parts by volume of the heat conductive composition. . If it is less than 0.1 part by volume, it may not function as a spacer. If it exceeds 5 parts by volume, thermal conductivity may be deteriorated.
また、熱伝導性組成物には、必要なら溶剤を添加することができる。例えば、シートを形成する場合には、熱伝導性組成物に溶剤を添加して熱伝導性ペーストとし、その熱伝導性ペーストを塗布してから溶剤を揮発させることでシート状の熱伝導性組成物を得ることができる。
Also, a solvent can be added to the heat conductive composition if necessary. For example, when forming a sheet, a solvent is added to the thermally conductive composition to form a thermally conductive paste, and after applying the thermally conductive paste, the solvent is volatilized to form a sheet-like thermally conductive composition. You can get things.
溶剤としては、所定の温度で揮発し、フェイズチェンジ物とノニオン界面活性剤に対して相溶するものを使用することができる。例えばパラフィン系ワックスやポリオレフィン系ワックスに対しては、炭化水素系溶剤、芳香族系溶剤、ケトン系溶剤、エステル系溶剤を用いることができる。熱伝導性ペーストは溶剤の添加量を調整して、粘度を1.0~2,000Pa・sとすることが好ましい。
As the solvent, a solvent which volatilizes at a predetermined temperature and is compatible with the phase change product and the nonionic surfactant can be used. For example, for paraffin waxes and polyolefin waxes, hydrocarbon solvents, aromatic solvents, ketone solvents, and ester solvents can be used. The heat conductive paste preferably has a viscosity of 1.0 to 2,000 Pa · s by adjusting the amount of solvent added.
熱伝導性組成物を製造するには、バインダーと熱伝導性充填材に、必要な成分を加えて混合する。フェイズチェンジ物は常温では固体のため、均一に混合するためには、加熱して混練することが好ましく、ニーダーやヒーター付プラネタリーミキサーを用いて混合することが好ましい。また、溶剤を添加する場合には、フェイズチェンジ物を溶剤に溶解させることで、常温で混合し易くすることができる。
In order to produce a heat conductive composition, necessary components are added to and mixed with a binder and a heat conductive filler. Since the phase change product is solid at room temperature, in order to mix uniformly, it is preferable to heat and knead, and it is preferable to mix using a kneader or a planetary mixer with a heater. Moreover, when adding a solvent, it can be made easy to mix at normal temperature by dissolving a phase change thing in a solvent.
熱伝導性組成物は、含有するフェイズチェンジ物の性質から、所定の温度で相変化するため、常温では適度の硬さを有する一方で所定温度に加熱したときには軟化して被着体との密着性を高めることができる。即ち、常温で少なくとも固体、または流動性のない粘土状となる程度の硬さを有するため、シート状であればその形状を維持する程度の硬さがあって取扱い性が良く、シートとしない場合でも粘着性が過度に高くなく、接触する他の部材を汚染しないため取扱いがし易い。この点、他の部材が接触すると容易に付着して取扱い性に難があるグリスと相違する。
The heat conductive composition changes its phase at a predetermined temperature due to the nature of the phase change material it contains, so it has an appropriate hardness at room temperature while softening when heated to a predetermined temperature and adheres to the adherend. Can increase the sex. In other words, since it has a hardness that is at least solid or non-fluid clay at room temperature, if it is in the form of a sheet, it is hard enough to maintain its shape, is easy to handle, and is not a sheet However, the adhesiveness is not excessively high, and it is easy to handle because it does not contaminate other members that come into contact. In this respect, it is different from grease that easily adheres when other members come into contact and has difficulty in handling.
上記実施形態については、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。以下、実施例に基づいて本発明をさらに説明するが、本発明は実施例で示される範囲に限定されるものではない。
The above embodiment can be modified as appropriate without departing from the spirit of the present invention. EXAMPLES Hereinafter, although this invention is further demonstrated based on an Example, this invention is not limited to the range shown by an Example.
次に説明する試料1~試料26の熱伝導性組成物または熱伝導性ペーストを作製し、種々の試験を行った。
The heat conductive compositions or heat conductive pastes of Sample 1 to Sample 26 described below were prepared and subjected to various tests.
<試料1>: フェイズチェンジ物1として結晶性ポリオレフィン(融点42℃、融点の温度範囲39~45℃)15質量部と、ノニオン系界面活性剤Aとしてトリオレイン酸ソルビタン85質量部と、熱伝導性充填材として酸化アルミニウム(球状、1μm)244質量部と酸化アルミニウム(球状、12μm)400質量部と、溶剤としてイソパラフィン40質量部と、を混合して試料1の熱伝導性ペーストを得た。この熱伝導性ペーストの常温での粘度は417Pa・sであり液状であった。この熱伝導性ペーストをスクリーン印刷にて放熱体であるアルミニウム製のヒートシンクに塗布してから、乾燥することで、試料1の熱伝導性組成物を得た。この熱伝導性組成物は、放熱体に積層しており厚みが90μmであった。
<Sample 1>: 15 parts by mass of crystalline polyolefin (melting point 42 ° C., melting point temperature range 39 to 45 ° C.) as phase change product 1, 85 parts by mass of sorbitan trioleate as nonionic surfactant A, heat conduction The heat conductive paste of Sample 1 was obtained by mixing 244 parts by mass of aluminum oxide (spherical, 1 μm) as a conductive filler, 400 parts by mass of aluminum oxide (spherical, 12 μm) and 40 parts by mass of isoparaffin as a solvent. The viscosity of this heat conductive paste at room temperature was 417 Pa · s and was a liquid. The heat conductive composition of Sample 1 was obtained by applying this heat conductive paste to an aluminum heat sink as a heat radiator by screen printing and then drying. This heat conductive composition was laminated | stacked on the heat radiator, and thickness was 90 micrometers.
<試料2~10>: 試料2~10は、試料1と同じ材料を用いて、フェイズチェンジ物Aとノニオン界面活性剤Aの配合量を変化させたものである。その他は、試料1と同様にして試料2~10の熱伝導性ペーストと熱伝導性組成物を作製した。
こうした試料1~試料10の配合等を表1に示す。 <Samples 2 to 10> Samples 2 to 10 were obtained by changing the blending amounts of the phase change product A and the nonionic surfactant A using the same material as that of the sample 1. Others were the same as Sample 1, and the thermal conductive pastes and thermal conductive compositions of Samples 2 to 10 were produced.
Table 1 shows the composition ofSample 1 to Sample 10.
こうした試料1~試料10の配合等を表1に示す。 <
Table 1 shows the composition of
<試料11~13>: 試料11~13は、試料1と比較してフェイズチェンジ物の種類を変更した試料である。より具体的には、試料11ではフェイズチェンジ物2を、試料12ではフェイズチェンジ物3を、試料13では、フェイズチェンジ物1とフェイズチェンジ物2とを等量混合したものを用いた。その他は、試料1と同様にして各試料の熱伝導性ペーストと熱伝導性組成物を作製した。
<Samples 11 to 13>: Samples 11 to 13 are samples in which the type of the phase change object is changed compared to Sample 1. More specifically, sample 11 used phase change product 2, sample 12 used phase change product 3, and sample 13 used a mixture of phase change product 1 and phase change product 2. Others were made in the same manner as Sample 1, and a heat conductive paste and a heat conductive composition of each sample were prepared.
なおここで、フェイズチェンジ物1~3は次のとおりである。
フェイズチェンジ物1: 結晶性ポリオレフィン(融点42℃、融点の温度範囲39~45℃)
フェイズチェンジ物2: パラフィンワックス(融点46℃、融点の温度範囲40~50℃)
フェイズチェンジ物3: エステルワックス(融点46℃、融点の温度範囲40~50℃) Here, thephase change items 1 to 3 are as follows.
Phase change product 1: crystalline polyolefin (melting point 42 ° C, melting point temperature range 39-45 ° C)
Phase change product 2: paraffin wax (melting point 46 ° C, melting point temperature range 40-50 ° C)
Phase change product 3: Ester wax (melting point 46 ° C, melting point temperature range 40-50 ° C)
フェイズチェンジ物1: 結晶性ポリオレフィン(融点42℃、融点の温度範囲39~45℃)
フェイズチェンジ物2: パラフィンワックス(融点46℃、融点の温度範囲40~50℃)
フェイズチェンジ物3: エステルワックス(融点46℃、融点の温度範囲40~50℃) Here, the
Phase change product 1: crystalline polyolefin (melting point 42 ° C, melting point temperature range 39-45 ° C)
Phase change product 2: paraffin wax (melting point 46 ° C, melting point temperature range 40-50 ° C)
Phase change product 3: Ester wax (melting point 46 ° C, melting point temperature range 40-50 ° C)
<試料14~19>: 試料14~19は、試料1と比較してノニオン界面活性剤の種類を変更した試料である。より具体的には、試料14ではノニオン界面活性剤2を、試料15ではノニオン界面活性剤3を、試料16ではノニオン界面活性剤4を、試料17ではノニオン界面活性剤5を、試料18ではノニオン界面活性剤6を、試料19ではノニオン界面活性剤1とノニオン界面活性剤2とを等量混合したものを、それぞれ用いた。その他は、試料1と同様にして各試料の熱伝導性ペーストと熱伝導性組成物を作製した。
<Samples 14 to 19>: Samples 14 to 19 are samples obtained by changing the type of nonionic surfactant as compared with Sample 1. More specifically, sample 14 is nonionic surfactant 2, sample 15 is nonionic surfactant 3, sample 16 is nonionic surfactant 4, sample 17 is nonionic surfactant 5, and sample 18 is nonionic. As the surfactant 6, Sample 19 in which equal amounts of nonionic surfactant 1 and nonionic surfactant 2 were mixed was used. Others were made in the same manner as Sample 1, and a heat conductive paste and a heat conductive composition of each sample were prepared.
なおここで、ノニオン界面活性剤1~6は次のとおりである。
ノニオン界面活性剤1: トリオレイン酸ソルビタン(HLB:1.7、粘度:200mPa・s)
ノニオン界面活性剤2: ペンタオレイン酸デカグリセリル(HLB:3.5、粘度:5,000mPa・s)
ノニオン界面活性剤3: トリメリット酸トリイソデシル(HLB:12、粘度:300mPa・s)
ノニオン界面活性剤4: ポリオキシエチレンソルビタンモノラウレート(HLB:16.7、粘度:500mPa・s)
ノニオン界面活性剤5: ポリオキシエチレンオレイルエーテル(HLB:13.3、粘度:100mPa・s)
ノニオン界面活性剤6: ポリオキシエチレンアルキルアミン(HLB:15、粘度:450mPa・s)
こうした試料11~試料19の配合等を表2に示す。 Here, thenonionic surfactants 1 to 6 are as follows.
Nonionic surfactant 1: sorbitan trioleate (HLB: 1.7, viscosity: 200 mPa · s)
Nonionic surfactant 2: Decaglyceryl pentaoleate (HLB: 3.5, viscosity: 5,000mPa · s)
Nonionic surfactant 3: Triisodecyl trimellitic acid (HLB: 12, viscosity: 300 mPa · s)
Nonionic surfactant 4: Polyoxyethylene sorbitan monolaurate (HLB: 16.7, viscosity: 500 mPa · s)
Nonionic surfactant 5: Polyoxyethylene oleyl ether (HLB: 13.3, viscosity: 100 mPa · s)
Nonionic surfactant 6: Polyoxyethylene alkylamine (HLB: 15, viscosity: 450 mPa · s)
Table 2 shows the composition of Sample 11 to Sample 19.
ノニオン界面活性剤1: トリオレイン酸ソルビタン(HLB:1.7、粘度:200mPa・s)
ノニオン界面活性剤2: ペンタオレイン酸デカグリセリル(HLB:3.5、粘度:5,000mPa・s)
ノニオン界面活性剤3: トリメリット酸トリイソデシル(HLB:12、粘度:300mPa・s)
ノニオン界面活性剤4: ポリオキシエチレンソルビタンモノラウレート(HLB:16.7、粘度:500mPa・s)
ノニオン界面活性剤5: ポリオキシエチレンオレイルエーテル(HLB:13.3、粘度:100mPa・s)
ノニオン界面活性剤6: ポリオキシエチレンアルキルアミン(HLB:15、粘度:450mPa・s)
こうした試料11~試料19の配合等を表2に示す。 Here, the
Nonionic surfactant 1: sorbitan trioleate (HLB: 1.7, viscosity: 200 mPa · s)
Nonionic surfactant 2: Decaglyceryl pentaoleate (HLB: 3.5, viscosity: 5,000mPa · s)
Nonionic surfactant 3: Triisodecyl trimellitic acid (HLB: 12, viscosity: 300 mPa · s)
Nonionic surfactant 4: Polyoxyethylene sorbitan monolaurate (HLB: 16.7, viscosity: 500 mPa · s)
Nonionic surfactant 5: Polyoxyethylene oleyl ether (HLB: 13.3, viscosity: 100 mPa · s)
Nonionic surfactant 6: Polyoxyethylene alkylamine (HLB: 15, viscosity: 450 mPa · s)
Table 2 shows the composition of Sample 11 to Sample 19.
<試料21~26>: 試料21~26は、試料1と比較してノニオン界面活性剤を可塑剤1~6にそれぞれ変更した試料である。即ち、試料21では可塑剤1を、試料22では可塑剤2を、試料23では可塑剤3を、試料24では可塑剤4を、試料25では可塑剤5を、試料26では可塑剤6をそれぞれ用いた。その他は、試料1と同様にして各試料の熱伝導性ペーストと熱伝導性組成物を作製した。
<Samples 21 to 26> Samples 21 to 26 are samples obtained by changing the nonionic surfactants to plasticizers 1 to 6, respectively, as compared with sample 1. That is, plasticizer 1 in sample 21, plasticizer 2 in sample 22, plasticizer 3 in sample 23, plasticizer 4 in sample 24, plasticizer 5 in sample 25, plasticizer 6 in sample 26, respectively. Using. Others were made in the same manner as Sample 1, and a heat conductive paste and a heat conductive composition of each sample were prepared.
なおここで、可塑剤1~6は次のとおりである。
可塑剤1: ポリブテンオイル(粘度:400mPa・s)
可塑剤2: ポリブテンオイル(粘度:1,200mPa・s)
可塑剤3: ポリブテンオイル(粘度:50,000mPa・s)
可塑剤4: パラフィンオイル(粘度:10mPa・s)
可塑剤5: パラフィンオイル(粘度:3,000mPa・s)
可塑剤6: パラフィンオイル(粘度:12,000mPa・s)
こうした試料21~試料26の配合等を表3に示す。 Here, theplasticizers 1 to 6 are as follows.
Plasticizer 1: Polybutene oil (viscosity: 400 mPa · s)
Plasticizer 2: Polybutene oil (viscosity: 1,200 mPa · s)
Plasticizer 3: Polybutene oil (viscosity: 50,000 mPa · s)
Plasticizer 4: Paraffin oil (viscosity: 10 mPa · s)
Plasticizer 5: Paraffin oil (viscosity: 3,000 mPa · s)
Plasticizer 6: Paraffin oil (viscosity: 12,000 mPa · s)
Table 3 shows the composition of Sample 21 to Sample 26.
可塑剤1: ポリブテンオイル(粘度:400mPa・s)
可塑剤2: ポリブテンオイル(粘度:1,200mPa・s)
可塑剤3: ポリブテンオイル(粘度:50,000mPa・s)
可塑剤4: パラフィンオイル(粘度:10mPa・s)
可塑剤5: パラフィンオイル(粘度:3,000mPa・s)
可塑剤6: パラフィンオイル(粘度:12,000mPa・s)
こうした試料21~試料26の配合等を表3に示す。 Here, the
Plasticizer 1: Polybutene oil (viscosity: 400 mPa · s)
Plasticizer 2: Polybutene oil (viscosity: 1,200 mPa · s)
Plasticizer 3: Polybutene oil (viscosity: 50,000 mPa · s)
Plasticizer 4: Paraffin oil (viscosity: 10 mPa · s)
Plasticizer 5: Paraffin oil (viscosity: 3,000 mPa · s)
Plasticizer 6: Paraffin oil (viscosity: 12,000 mPa · s)
Table 3 shows the composition of Sample 21 to Sample 26.
上記試料1~19,21~26の熱伝導性組成物について、以下に説明する試験を行い種々の評価を行った。
The heat conductive compositions of Samples 1 to 19 and 21 to 26 were subjected to various evaluations by performing the tests described below.
(1)熱抵抗
熱抵抗は、図1に示すような熱抵抗試験機10にて測定した。まず、各試料の熱伝導性組成物1を、断熱材2上に置かれた表面が10mm×21mmの銅製ブロック3の上に設置した。そして、放熱体であるアルミニウム製のヒートシンク4と銅製ブロック3とで熱伝導性組成物1を挟み、ヒートシンク4上にはファン5を設置した。さらに重りでヒートシンクに7kgの荷重Fをかけた。銅製ブロック3内にはヒーター7(発熱量42W)が内蔵されている。7kgの荷重をかけながらヒーター7を発熱させ、温度が定常状態になった時点での銅製ブロック3とヒートシンク4の温度を測定し、次の式(1)から熱伝導性組成物の熱抵抗を求めた。 (1) Thermal resistance The thermal resistance was measured with athermal resistance tester 10 as shown in FIG. First, the heat conductive composition 1 of each sample was installed on the copper block 3 whose surface placed on the heat insulating material 2 was 10 mm × 21 mm. And the heat conductive composition 1 was pinched | interposed with the heat sink 4 made from aluminum which is a heat radiator, and the copper block 3, and the fan 5 was installed on the heat sink 4. FIG. Further, a load F of 7 kg was applied to the heat sink with a weight. A heater 7 (heat generation amount 42 W) is built in the copper block 3. Heating the heater 7 while applying a load of 7 kg, measuring the temperature of the copper block 3 and the heat sink 4 when the temperature reached a steady state, and calculating the thermal resistance of the thermally conductive composition from the following equation (1) Asked.
熱抵抗は、図1に示すような熱抵抗試験機10にて測定した。まず、各試料の熱伝導性組成物1を、断熱材2上に置かれた表面が10mm×21mmの銅製ブロック3の上に設置した。そして、放熱体であるアルミニウム製のヒートシンク4と銅製ブロック3とで熱伝導性組成物1を挟み、ヒートシンク4上にはファン5を設置した。さらに重りでヒートシンクに7kgの荷重Fをかけた。銅製ブロック3内にはヒーター7(発熱量42W)が内蔵されている。7kgの荷重をかけながらヒーター7を発熱させ、温度が定常状態になった時点での銅製ブロック3とヒートシンク4の温度を測定し、次の式(1)から熱伝導性組成物の熱抵抗を求めた。 (1) Thermal resistance The thermal resistance was measured with a
熱抵抗=(θj1-θj0)/ 発熱量Q ・・・・・・ 式(1)
式(1)において、θj1は銅製ブロック5の温度、θj0はヒートシンク4の温度、発熱量Qは42Wである。本試験では熱抵抗値の他に定常状態となった時点の試料厚み(μm)を記録した。測定結果に対し、熱抵抗値では0.150℃/W未満であるものを「○」、測定時の試料厚みでは40μm以下であるものを「○」とした。 Thermal resistance = (θj1-θj0) / Heat generation amount Q ··· Equation (1)
In equation (1), θj1 is the temperature of thecopper block 5, θj0 is the temperature of the heat sink 4, and the heat generation amount Q is 42W. In this test, the sample thickness (μm) at the time when the steady state was reached was recorded in addition to the thermal resistance value. With respect to the measurement result, a sample having a thermal resistance value of less than 0.150 ° C./W was designated as “◯”, and a sample thickness at the time of measurement was designated as “◯”.
式(1)において、θj1は銅製ブロック5の温度、θj0はヒートシンク4の温度、発熱量Qは42Wである。本試験では熱抵抗値の他に定常状態となった時点の試料厚み(μm)を記録した。測定結果に対し、熱抵抗値では0.150℃/W未満であるものを「○」、測定時の試料厚みでは40μm以下であるものを「○」とした。 Thermal resistance = (θj1-θj0) / Heat generation amount Q ··· Equation (1)
In equation (1), θj1 is the temperature of the
(2)取扱い性
23℃の雰囲気下で、ステンレス製重り(直径20mmの円柱、200g)を各試料の熱伝導性組成物に10秒間載せたとき、その表面に重りの跡が残るかどうかを評価した。跡が残らなかったものを「○」、微かに跡が残ったものを「△」、くっきりと跡が残ったものを「×」とした。 (2) Handling property When a stainless steel weight (20 mm diameter cylinder, 200 g) is placed on the thermally conductive composition of each sample for 10 seconds in an atmosphere at 23 ° C., whether or not a trace of the weight remains on the surface. evaluated. “◯” indicates that no trace was left, “Δ” indicates that a trace was slightly left, and “x” indicates that a trace was clearly left.
23℃の雰囲気下で、ステンレス製重り(直径20mmの円柱、200g)を各試料の熱伝導性組成物に10秒間載せたとき、その表面に重りの跡が残るかどうかを評価した。跡が残らなかったものを「○」、微かに跡が残ったものを「△」、くっきりと跡が残ったものを「×」とした。 (2) Handling property When a stainless steel weight (20 mm diameter cylinder, 200 g) is placed on the thermally conductive composition of each sample for 10 seconds in an atmosphere at 23 ° C., whether or not a trace of the weight remains on the surface. evaluated. “◯” indicates that no trace was left, “Δ” indicates that a trace was slightly left, and “x” indicates that a trace was clearly left.
(3)相変化
熱伝導性組成物が相変化を起こしているか否かについて、上記「(1)熱抵抗」と上記「(2)取扱い性」の2つの指標を挙げ、「(1)熱抵抗」での評価が「○」であり、かつ「(2)取扱い性」での評価も「○」であるような両指標が両立するものについて「○:相変化を起こしているもの」とし、何れか一方でも「×」があるものを「×:相変化を起こしていないもの」と判断した。取扱い性試験において取扱い性が良ければ常温でフェイズチェンジ物が固体となっていると考えられる一方で、熱抵抗試験において試料厚みが40μm以下になればヒーター加熱によりフェイズチェンジ物が溶融していると考えられるからである。 (3) Phase change Regarding whether or not the thermally conductive composition has undergone a phase change, the two indicators “(1) thermal resistance” and “(2) handleability” are given, and “(1) heat “○: Something is causing a phase change” when both indicators are compatible, such as “○” for “resistance” and “○” for “(2) Handling”. In either case, the case where “x” was present was judged as “×: the case where no phase change occurred”. If the handleability is good in the handling test, the phase change product is considered to be solid at room temperature. On the other hand, if the sample thickness is 40 μm or less in the thermal resistance test, the phase change product is melted by heating the heater. It is possible.
熱伝導性組成物が相変化を起こしているか否かについて、上記「(1)熱抵抗」と上記「(2)取扱い性」の2つの指標を挙げ、「(1)熱抵抗」での評価が「○」であり、かつ「(2)取扱い性」での評価も「○」であるような両指標が両立するものについて「○:相変化を起こしているもの」とし、何れか一方でも「×」があるものを「×:相変化を起こしていないもの」と判断した。取扱い性試験において取扱い性が良ければ常温でフェイズチェンジ物が固体となっていると考えられる一方で、熱抵抗試験において試料厚みが40μm以下になればヒーター加熱によりフェイズチェンジ物が溶融していると考えられるからである。 (3) Phase change Regarding whether or not the thermally conductive composition has undergone a phase change, the two indicators “(1) thermal resistance” and “(2) handleability” are given, and “(1) heat “○: Something is causing a phase change” when both indicators are compatible, such as “○” for “resistance” and “○” for “(2) Handling”. In either case, the case where “x” was present was judged as “×: the case where no phase change occurred”. If the handleability is good in the handling test, the phase change product is considered to be solid at room temperature. On the other hand, if the sample thickness is 40 μm or less in the thermal resistance test, the phase change product is melted by heating the heater. It is possible.
(4)耐熱性
各試料の熱伝導性組成物を、150℃で24時間放置した後に、上記「(1)熱抵抗」で示した試験と同様の試験を行って試料厚みを測定した。そして、試料厚みが40μmを超えたものを「×」、試料厚みが40μm以下であったが、耐熱性試験を行っていない試料と比較して試料厚みが20%以上厚いものを「△」、試料厚みが40μm以下で且つ耐熱性試験を行っていない試料と比較して試料厚みは厚いが、その厚みの程度が20%未満だったものを「○」とした。 (4) Heat resistance After leaving the heat conductive composition of each sample at 150 degreeC for 24 hours, the test similar to the test shown by said "(1) thermal resistance" was done, and sample thickness was measured. A sample thickness exceeding 40 μm is “x”, and the sample thickness is 40 μm or less, but a sample thickness of 20% or more compared to a sample that has not been subjected to a heat resistance test is “Δ”, The sample thickness was 40 μm or less and the sample thickness was thicker than that of the sample not subjected to the heat resistance test, but the thickness was less than 20%.
各試料の熱伝導性組成物を、150℃で24時間放置した後に、上記「(1)熱抵抗」で示した試験と同様の試験を行って試料厚みを測定した。そして、試料厚みが40μmを超えたものを「×」、試料厚みが40μm以下であったが、耐熱性試験を行っていない試料と比較して試料厚みが20%以上厚いものを「△」、試料厚みが40μm以下で且つ耐熱性試験を行っていない試料と比較して試料厚みは厚いが、その厚みの程度が20%未満だったものを「○」とした。 (4) Heat resistance After leaving the heat conductive composition of each sample at 150 degreeC for 24 hours, the test similar to the test shown by said "(1) thermal resistance" was done, and sample thickness was measured. A sample thickness exceeding 40 μm is “x”, and the sample thickness is 40 μm or less, but a sample thickness of 20% or more compared to a sample that has not been subjected to a heat resistance test is “Δ”, The sample thickness was 40 μm or less and the sample thickness was thicker than that of the sample not subjected to the heat resistance test, but the thickness was less than 20%.
(5)粘度
各試料の熱伝導性ペーストの粘度を、粘度計(BROOK FIELD製回転粘度計DV-E)にて、スピンドルNo.14の回転子を用い、回転速度10rpm、測定温度23℃で測定した。 (5) Viscosity The viscosity of the heat conductive paste of each sample was measured with a viscometer (rotary viscometer DV-E manufactured by BROOK FIELD) using a spindle no. The measurement was performed at a rotation speed of 10 rpm and a measurement temperature of 23 ° C. using 14 rotors.
各試料の熱伝導性ペーストの粘度を、粘度計(BROOK FIELD製回転粘度計DV-E)にて、スピンドルNo.14の回転子を用い、回転速度10rpm、測定温度23℃で測定した。 (5) Viscosity The viscosity of the heat conductive paste of each sample was measured with a viscometer (rotary viscometer DV-E manufactured by BROOK FIELD) using a spindle no. The measurement was performed at a rotation speed of 10 rpm and a measurement temperature of 23 ° C. using 14 rotors.
<試料1~10の評価>:
フェイズチェンジ物1の配合量が0~5質量部の試料2および試料3で取扱い性の評価が「×」であった。これは、フェイズチェンジ物の含有量が少なく物性を十分に高めることができなかったためと考えられる。一方、フェイズチェンジ物1の配合量が10質量部の試料3では「△」であり取扱い性が改善されている。そしてフェイズチェンジ物1の配合量が15質量部以上とした試料1、試料4~10では「○」となったことから、フェイズチェンジ物を10質量部以上含むと取扱い性が改善され、15質量部以上で特に良いことがわかった。 <Evaluation ofSamples 1 to 10>:
Thesample 2 and the sample 3 in which the amount of the phase change product 1 was 0 to 5 parts by mass were evaluated as “×”. This is thought to be because the physical properties could not be sufficiently enhanced because the content of the phase change product was small. On the other hand, in the sample 3 in which the blending amount of the phase change product 1 is 10 parts by mass, “Δ” is indicated, and the handleability is improved. In Sample 1 and Samples 4 to 10 in which the blending amount of Phase Change Product 1 was 15 parts by mass or more, “◯” was obtained. It turned out to be particularly good at more than part.
フェイズチェンジ物1の配合量が0~5質量部の試料2および試料3で取扱い性の評価が「×」であった。これは、フェイズチェンジ物の含有量が少なく物性を十分に高めることができなかったためと考えられる。一方、フェイズチェンジ物1の配合量が10質量部の試料3では「△」であり取扱い性が改善されている。そしてフェイズチェンジ物1の配合量が15質量部以上とした試料1、試料4~10では「○」となったことから、フェイズチェンジ物を10質量部以上含むと取扱い性が改善され、15質量部以上で特に良いことがわかった。 <Evaluation of
The
次に熱抵抗値を見ると、試料1~試料5で極めて熱抵抗値が低くなっているが、その理由は、圧縮率も高かったことから、加熱とともに軟化して厚みが薄くなったからと考えられる。また、圧縮率の測定結果から、ノニオン界面活性剤の割合が多いほど柔軟になり厚みが薄くなるものと思われる。一方、試料6や試料7では熱抵抗が低かったが、試料8では熱抵抗がかなり大きくなっていた。この結果より、ノニオン界面活性剤の配合量が60質量部以上で熱抵抗値が一気に低くなり、70質量部以上では極めて低くなることがわかった。
Next, looking at the thermal resistance values, the thermal resistance values of Samples 1 to 5 are extremely low. The reason is that the compressibility was high and the thickness was reduced by softening with heating. It is done. Further, from the measurement result of the compressibility, it is considered that the greater the proportion of the nonionic surfactant, the more flexible and the thinner the thickness. On the other hand, Sample 6 and Sample 7 had a low thermal resistance, but Sample 8 had a considerably high thermal resistance. From this result, it was found that the heat resistance value was drastically reduced when the blend amount of the nonionic surfactant was 60 parts by mass or more, and extremely low when the compounding amount was 70 parts by mass or more.
<試料11~13の評価>:
試料11~13は、試料1に対してフェイズチェンジ物の種類を変更した試料である。ポリオレフィンワックスをパラフィンワックスやエステルワックスに変更した場合であっても、熱抵抗値は、0.150℃/W未満となり、取扱い性が良く、相変化が良好な熱伝導性組成物となった。試料11と試料12を試料1と比較すると、測定時の熱伝導性組成物の厚みはやや厚かったが、フェイズチェンジ物2とフェイズチェンジ物3は融点の幅がやや広いことから、加熱により軟化する程度がやや小さかったものと考えられる。 <Evaluation of Samples 11 to 13>:
Samples 11 to 13 are samples in which the type of the phase change object is changed with respect to thesample 1. Even when the polyolefin wax was changed to paraffin wax or ester wax, the heat resistance value was less than 0.150 ° C./W, and the heat conductive composition had good handleability and good phase change. Comparing sample 11 and sample 12 with sample 1, the thickness of the thermally conductive composition at the time of measurement was slightly thicker, but phase change product 2 and phase change product 3 have a slightly wider melting point, and are softened by heating. It is thought that the degree to do was a little small.
試料11~13は、試料1に対してフェイズチェンジ物の種類を変更した試料である。ポリオレフィンワックスをパラフィンワックスやエステルワックスに変更した場合であっても、熱抵抗値は、0.150℃/W未満となり、取扱い性が良く、相変化が良好な熱伝導性組成物となった。試料11と試料12を試料1と比較すると、測定時の熱伝導性組成物の厚みはやや厚かったが、フェイズチェンジ物2とフェイズチェンジ物3は融点の幅がやや広いことから、加熱により軟化する程度がやや小さかったものと考えられる。 <Evaluation of Samples 11 to 13>:
Samples 11 to 13 are samples in which the type of the phase change object is changed with respect to the
<試料14~19の評価>:
試料14~19は試料1と比較してノニオン界面活性剤の種類を変更したものだが、全ての試料14~19の全てで熱抵抗値は0.150℃/W未満となった。これらのノニオン界面活性剤の中でも、エステル型を用いた試料14~16および試料19は試料1とともに熱抵抗値が比較的低く、また、その中でも芳香族カルボン酸エステル型を用いた試料15およびポリオキシエチレン型を用いた試料16~18は、特に耐熱性に優れていた。 <Evaluation of Samples 14 to 19>:
Samples 14 to 19 were obtained by changing the type of nonionic surfactant as compared withsample 1. However, the thermal resistance values of all samples 14 to 19 were less than 0.150 ° C./W. Among these nonionic surfactants, the samples 14 to 16 and 19 using the ester type have a relatively low thermal resistance value together with the sample 1, and among them, the sample 15 using the aromatic carboxylic acid ester type and the poly Samples 16 to 18 using the oxyethylene type were particularly excellent in heat resistance.
試料14~19は試料1と比較してノニオン界面活性剤の種類を変更したものだが、全ての試料14~19の全てで熱抵抗値は0.150℃/W未満となった。これらのノニオン界面活性剤の中でも、エステル型を用いた試料14~16および試料19は試料1とともに熱抵抗値が比較的低く、また、その中でも芳香族カルボン酸エステル型を用いた試料15およびポリオキシエチレン型を用いた試料16~18は、特に耐熱性に優れていた。 <Evaluation of Samples 14 to 19>:
Samples 14 to 19 were obtained by changing the type of nonionic surfactant as compared with
<試料21~26の評価>:
ノニオン界面活性剤に代えて界面活性作用のない可塑剤としてポリブテンオイルを用いた試料21~23は、試料1と比べると測定時の熱伝導性組成物の厚みが試料21以外は何れも厚く、熱抵抗も高い値となった。その理由は、ポリブテンオイルを用いた場合には熱伝導性充填材の充填性が悪く、また加熱した際の硬さがやや硬いからであると考えられる。 <Evaluation of Samples 21 to 26>:
Samples 21 to 23 using polybutene oil as a plasticizer having no surface-active action in place of the nonionic surfactant have a thickness of the heat conductive composition at the time of measurement other than that of sample 21 is larger than that ofsample 1. The thermal resistance was also high. The reason is considered that when polybutene oil is used, the filling property of the heat conductive filler is poor and the hardness when heated is slightly hard.
ノニオン界面活性剤に代えて界面活性作用のない可塑剤としてポリブテンオイルを用いた試料21~23は、試料1と比べると測定時の熱伝導性組成物の厚みが試料21以外は何れも厚く、熱抵抗も高い値となった。その理由は、ポリブテンオイルを用いた場合には熱伝導性充填材の充填性が悪く、また加熱した際の硬さがやや硬いからであると考えられる。 <Evaluation of Samples 21 to 26>:
Samples 21 to 23 using polybutene oil as a plasticizer having no surface-active action in place of the nonionic surfactant have a thickness of the heat conductive composition at the time of measurement other than that of sample 21 is larger than that of
また、可塑剤としてパラフィンオイルを用いた試料24~26も試料1と比べると測定時の熱伝導性組成物の厚みが厚く、熱抵抗も高い値となった。その理由は、ポリブテンオイルの場合と同様に熱伝導性充填材の充填性が悪く、加熱した際の硬さがやや硬いからであると考えられる。
In addition, samples 24 to 26 using paraffin oil as a plasticizer also had a thicker thermal conductive composition and higher heat resistance than those of sample 1. The reason for this is considered to be that the heat-conductive filler is poorly filled as in the case of polybutene oil, and the hardness when heated is somewhat hard.
1 熱伝導性組成物
2 断熱材
3 銅製ブロック
4 ヒートシンク
5 ファン
7 ヒーター
10 熱抵抗試験機
F 荷重 DESCRIPTION OFSYMBOLS 1 Thermal conductive composition 2 Heat insulating material 3 Copper block 4 Heat sink 5 Fan 7 Heater 10 Thermal resistance tester F Load
2 断熱材
3 銅製ブロック
4 ヒートシンク
5 ファン
7 ヒーター
10 熱抵抗試験機
F 荷重 DESCRIPTION OF
Claims (6)
- 35℃~120℃の融点を有するフェイズチェンジ物とノニオン界面活性剤と不揮発成分とでなるバインダーと、熱伝導性充填材と、を含む熱伝導性組成物であって、
前記バインダー100質量部に占めるフェイズチェンジ物が10質量部以上、ノニオン界面活性剤が60質量部以上、不揮発成分が30質量部以下である熱伝導性組成物。
A heat conductive composition comprising a phase change product having a melting point of 35 ° C. to 120 ° C., a binder comprising a nonionic surfactant and a nonvolatile component, and a heat conductive filler,
A thermally conductive composition in which a phase-change product occupying 100 parts by mass of the binder is 10 parts by mass or more, a nonionic surfactant is 60 parts by mass or more, and a non-volatile component is 30 parts by mass or less.
- フェイズチェンジ物が、パラフィン系ワックス、エステル系ワックス、ポリオレフィン系ワックスから選ばれる一種または組合せである請求項1記載の熱伝導性組成物。
The thermally conductive composition according to claim 1, wherein the phase change product is one or a combination selected from paraffin wax, ester wax, and polyolefin wax.
- ノニオン界面活性剤が、脂肪族カルボン酸エステルまたは芳香族カルボン酸エステルから選ばれる一種または組合せである請求項1または請求項2記載の熱伝導性組成物。
The thermally conductive composition according to claim 1 or 2, wherein the nonionic surfactant is one or a combination selected from aliphatic carboxylic acid esters and aromatic carboxylic acid esters.
- 熱伝導性充填材の含有量が熱伝導性組成物100体積部に対して50~90体積部である請求項1~請求項3何れか1項記載の熱伝導性組成物。
The heat conductive composition according to any one of claims 1 to 3, wherein a content of the heat conductive filler is 50 to 90 parts by volume with respect to 100 parts by volume of the heat conductive composition.
- 厚さ20~40μmでの熱抵抗値が0.080~0.150℃/Wである請求項1~請求項4何れか1項記載の熱伝導性組成物。
The heat conductive composition according to any one of claims 1 to 4, wherein the heat resistance value at a thickness of 20 to 40 µm is 0.080 to 0.150 ° C / W.
- 請求項1~請求項5何れか1項記載の熱伝導性組成物と、溶剤とを含み、常温でペースト状ないし液状である熱伝導性ペースト。 A heat conductive paste comprising the heat conductive composition according to any one of claims 1 to 5 and a solvent, which is paste-like or liquid at room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017519127A JP6979686B2 (en) | 2015-05-15 | 2016-05-09 | Thermally conductive compositions and thermally conductive pastes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-100566 | 2015-05-15 | ||
JP2015100566 | 2015-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016185936A1 true WO2016185936A1 (en) | 2016-11-24 |
Family
ID=57320017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/063789 WO2016185936A1 (en) | 2015-05-15 | 2016-05-09 | Thermally conductive composition and thermally conductive paste |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6979686B2 (en) |
WO (1) | WO2016185936A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190096593A (en) * | 2018-02-09 | 2019-08-20 | 삼성전자주식회사 | Heat radiating structure and electronic device with the same |
CN111777993A (en) * | 2020-07-14 | 2020-10-16 | 深圳市乐普泰科技股份有限公司 | Silicon-free heat-conducting paste and preparation method thereof |
WO2022133850A1 (en) | 2020-12-24 | 2022-06-30 | Dow Global Technologies Llc | Thermal interface material |
WO2024225395A1 (en) * | 2023-04-28 | 2024-10-31 | 積水化学工業株式会社 | Thermally conductive member, thermally conductive composition, structure, and method for reworking structure |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026928A (en) * | 2001-07-02 | 2003-01-29 | Three M Innovative Properties Co | Thermally conductive composition |
JP2004075760A (en) * | 2002-08-13 | 2004-03-11 | Denki Kagaku Kogyo Kk | Thermal conductive resin composition and phase change type heat radiation member |
JP2005539094A (en) * | 2001-12-20 | 2005-12-22 | コグニテク マネージメント システムズ インコーポレイテッド | Composition for increasing thermal conductivity of heat transfer medium and method of use thereof |
JP2008510878A (en) * | 2004-08-23 | 2008-04-10 | ゼネラル・エレクトリック・カンパニイ | Thermally conductive composition and production method thereof |
JP2009507106A (en) * | 2005-09-02 | 2009-02-19 | ハネウェル・インターナショナル・インコーポレーテッド | Thermal interface material, manufacturing method thereof, and application thereof |
-
2016
- 2016-05-09 JP JP2017519127A patent/JP6979686B2/en active Active
- 2016-05-09 WO PCT/JP2016/063789 patent/WO2016185936A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026928A (en) * | 2001-07-02 | 2003-01-29 | Three M Innovative Properties Co | Thermally conductive composition |
JP2005539094A (en) * | 2001-12-20 | 2005-12-22 | コグニテク マネージメント システムズ インコーポレイテッド | Composition for increasing thermal conductivity of heat transfer medium and method of use thereof |
JP2004075760A (en) * | 2002-08-13 | 2004-03-11 | Denki Kagaku Kogyo Kk | Thermal conductive resin composition and phase change type heat radiation member |
JP2008510878A (en) * | 2004-08-23 | 2008-04-10 | ゼネラル・エレクトリック・カンパニイ | Thermally conductive composition and production method thereof |
JP2009507106A (en) * | 2005-09-02 | 2009-02-19 | ハネウェル・インターナショナル・インコーポレーテッド | Thermal interface material, manufacturing method thereof, and application thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190096593A (en) * | 2018-02-09 | 2019-08-20 | 삼성전자주식회사 | Heat radiating structure and electronic device with the same |
KR102469449B1 (en) * | 2018-02-09 | 2022-11-22 | 삼성전자주식회사 | Heat radiating structure and electronic device with the same |
US12016158B2 (en) | 2018-02-09 | 2024-06-18 | Samsung Electronics Co., Ltd. | Heat radiating structure and electronic device including same |
CN111777993A (en) * | 2020-07-14 | 2020-10-16 | 深圳市乐普泰科技股份有限公司 | Silicon-free heat-conducting paste and preparation method thereof |
WO2022133850A1 (en) | 2020-12-24 | 2022-06-30 | Dow Global Technologies Llc | Thermal interface material |
KR20230126716A (en) | 2020-12-24 | 2023-08-30 | 다우 글로벌 테크놀로지스 엘엘씨 | thermal interface material |
WO2024225395A1 (en) * | 2023-04-28 | 2024-10-31 | 積水化学工業株式会社 | Thermally conductive member, thermally conductive composition, structure, and method for reworking structure |
Also Published As
Publication number | Publication date |
---|---|
JP6979686B2 (en) | 2021-12-15 |
JPWO2016185936A1 (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6542891B2 (en) | High performance thermal interface material with low thermal impedance | |
TWI457399B (en) | Thermally conductive silicone oxygen composition | |
CN109072051B (en) | Phase change material | |
WO2016185936A1 (en) | Thermally conductive composition and thermally conductive paste | |
TWI542641B (en) | Hardened organopolysiloxane composition and semiconductor device | |
TWI428395B (en) | A fine conductive silicone grease composition and a hardened product thereof | |
TW200305595A (en) | Curable silicone gum thermal interface material | |
JP2008222776A (en) | Heat-conductive silicone grease composition | |
WO2020050334A1 (en) | Heat conductive sheet | |
JP2003027080A (en) | Thermal conductive grease, mounting method thereof, cooling method of electronic component, electronic device and information processing device | |
WO2022163027A1 (en) | Thermally conductive adhesive agent composition, adhesive sheet, and production method therefor | |
JP7467017B2 (en) | Thermally conductive silicone composition and cured product thereof | |
KR20240004493A (en) | Curable organopolysiloxane compositions and semiconductor devices | |
JP4713161B2 (en) | Thermally conductive grease | |
WO2022163192A1 (en) | Heat-conductive sheet, method for installing same, and method for manufacturing same | |
WO2016121563A1 (en) | Thermally conductive composition | |
TW202403010A (en) | Thermal conductive polymer composition, thermal conductive polymer composition forming material, thermal conductive polymer | |
JP6771218B2 (en) | Thermally conductive compositions and members | |
JP2023142158A (en) | Thermally conductive polymer composition, thermally conductive polymer composition forming material, thermally conductive polymer, and method for producing thermally conductive polymer composition | |
TW202313807A (en) | Thermally Conductive Film | |
JP6561410B2 (en) | Thermally conductive composition and thermally conductive member | |
Kumaresan et al. | Synthesis of dispensable PDMS/Al2O3/GO thermal gap filler and performance comparison with commercial thermal gap fillers for electronics packaging applications | |
JP4312046B2 (en) | Thermally conductive resin composition, thermally conductive sheet, and thermally conductive composite sheet | |
TWI224123B (en) | Thermal interface material composition | |
TW202140744A (en) | Thermally conductive composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16796330 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017519127 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16796330 Country of ref document: EP Kind code of ref document: A1 |