WO2016182085A1 - 磁気抵抗効果素子及び磁気メモリ装置 - Google Patents
磁気抵抗効果素子及び磁気メモリ装置 Download PDFInfo
- Publication number
- WO2016182085A1 WO2016182085A1 PCT/JP2016/064530 JP2016064530W WO2016182085A1 WO 2016182085 A1 WO2016182085 A1 WO 2016182085A1 JP 2016064530 W JP2016064530 W JP 2016064530W WO 2016182085 A1 WO2016182085 A1 WO 2016182085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetization
- layer
- recording layer
- region
- fixed region
- Prior art date
Links
- 230000000694 effects Effects 0.000 title claims abstract description 87
- 230000005291 magnetic effect Effects 0.000 title claims description 79
- 230000005415 magnetization Effects 0.000 claims abstract description 351
- 230000004888 barrier function Effects 0.000 claims abstract description 41
- 239000003302 ferromagnetic material Substances 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 9
- 229910052742 iron Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 230000005294 ferromagnetic effect Effects 0.000 abstract description 13
- 239000010408 film Substances 0.000 description 72
- 230000004048 modification Effects 0.000 description 32
- 238000012986 modification Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 31
- 239000000463 material Substances 0.000 description 26
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 13
- 238000004088 simulation Methods 0.000 description 13
- 230000005381 magnetic domain Effects 0.000 description 8
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 229910019236 CoFeB Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000005293 ferrimagnetic effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000005283 ground state Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910020630 Co Ni Inorganic materials 0.000 description 2
- 229910002440 Co–Ni Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005307 ferromagnetism Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 229910017061 Fe Co Inorganic materials 0.000 description 1
- 229910002551 Fe-Mn Inorganic materials 0.000 description 1
- 229910019041 PtMn Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 239000002885 antiferromagnetic material Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- -1 thickness 9 nm Inorganic materials 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/093—Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/09—Magnetoresistive devices
- G01R33/098—Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1659—Cell access
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1673—Reading or sensing circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/165—Auxiliary circuits
- G11C11/1675—Writing or programming circuits or methods
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0072—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
Definitions
- the present invention relates to a magnetoresistive effect element and a magnetic memory device.
- STT-MRAM Spin-Transfer Torque Magnetic Random Access Memory
- MTJ element Magnetic Tunneling Junction element
- STT spin transfer Torque Magnetic Random Access Memory
- the resistance state of the magnetic tunnel junction element is changed to a high resistance state or a low resistance state using a spin transfer torque (STT). Further, the stored data is read by detecting the resistance state of the magnetic tunnel junction element.
- STT-MRAM writing methods include a spin injection magnetization reversal method and a current-induced domain wall motion method.
- the spin injection magnetization reversal method changes the resistance state of the magnetoresistive effect element by introducing a current into the magnetoresistive effect element and applying a torque by spin-polarized electrons to the magnetization of the recording layer.
- the resistance state of the magnetoresistive element is changed by moving the domain wall introduced into the magnetic layer by current.
- Patent Document 1 discloses an element in which a domain wall is introduced into a magnetic layer having in-plane magnetization. Further, Patent Document 2 discloses that data writing is performed by moving a domain wall by introducing a domain wall into a magnetic layer having perpendicular magnetization.
- Patent Document 2 The invention described in Patent Document 2 is made to solve the problem of increase in threshold current density in Patent Document 1.
- the threshold current density increases when the line width of the thin wire is reduced. Specifically, the threshold current density exceeds 10 12 A / m 2 when the thin line width of the magnetic layer is about 20 nm or less. Therefore, a failure such as disconnection or narrowing of the metal wiring occurs in the element.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetoresistive effect element and a magnetic memory device capable of driving a domain wall at a low current density when the line width of a thin wire is small.
- the magnetoresistive element of the present invention comprises: A recording layer containing a ferromagnetic material; A barrier layer laminated on the recording layer; A reference layer stacked on the barrier layer and including a ferromagnetic material; Have The reference layer has a magnetization component substantially fixed in a substantially in-plane direction, The recording layer has a first magnetization fixed region having a magnetization component substantially fixed in a substantially in-plane direction, and a second magnetization component substantially fixed in a direction opposite to the magnetization component of the first magnetization fixed region.
- the line width of the fine lines constituting the recording layer is 40 nm or less,
- the thickness of the recording layer is 40 nm or less, and is 1 ⁇ 2 or more and twice or less of the line width.
- the recording layer includes Ni and Fe,
- the line width is 30 nm or less,
- the film thickness may be 30 nm or less, 2/3 or more of the line width, and 1.5 times or less.
- a domain wall is formed between the first magnetization fixed region and the magnetization free region, or between the second magnetization fixed region and the magnetization free region. Is done.
- the other magnetoresistive element of the present invention is A recording layer containing a ferromagnetic material; A barrier layer laminated on the recording layer; A reference layer stacked on the barrier layer and including a ferromagnetic material; Have The reference layer has a magnetization component substantially fixed in a substantially in-plane direction, The recording layer has a first magnetization fixed region having a magnetization component substantially fixed in a substantially in-plane direction, and a second magnetization component substantially fixed in a direction opposite to the magnetization component of the first magnetization fixed region.
- a domain wall is formed between the first magnetization fixed region and the second magnetization fixed region, The magnetization of the domain wall can take a Transverse structure both in the short side direction of the recording layer and in the direction perpendicular to the substrate.
- It may further include a magnetization fixed layer for fixing at least one of the magnetization component of the first magnetization fixed region and the magnetization component of the second magnetization fixed region.
- a pin site may be provided in at least one of the recording layer between the first magnetization fixed region and the magnetization free region and between the second magnetization fixed region and the magnetization free region.
- the magnetic memory device of the present invention includes: The above magnetoresistive element; Writing means for writing data to the magnetoresistive element by passing a write current through the magnetoresistive element; Reading means for reading data written in the magnetoresistive effect element by obtaining a tunnel resistance by flowing a current in a direction penetrating the barrier layer; Is provided.
- the present invention it is possible to drive a domain wall with a low current density when the line width of a thin wire is small, and to provide a highly integrated and high-performance magnetoresistive element and magnetic memory device.
- FIG. 1 It is a figure which shows the structure of the magnetoresistive effect element which concerns on Embodiment 1 of this invention, (a) is a front view, (b) is a side view, (c) is a top view (top view). (A), (b) is a figure for demonstrating the read-out operation which reads the memory
- FIG. 6 is a block diagram of a magnetic memory device in which a plurality of memory cell circuits shown in FIG. It is a figure for demonstrating a difficult-axis anisotropic magnetic field.
- (A-1) and (a-2) represent the magnetization states of the domain walls in the ground state and the high energy state in the conventional in-plane magnetization method.
- (B-1) and (b-2) represent the magnetization states of the domain walls in the ground state and the high energy state in the perpendicular magnetization method.
- (C-1) and (c-2) represent the magnetization states of the domain wall in the ground state and the high energy state in the in-plane magnetization method according to the embodiment.
- (A) to (d) show the thin line width and film thickness dependence in the conventional perpendicular magnetization method.
- (E) to (h) show the thin line width and film thickness dependence in the in-plane magnetization method according to the embodiment.
- (A) is a figure which shows the domain wall formed when the line
- (B) is a figure which shows the domain wall formed when the line
- FIG. (A), (b) is a figure which shows the structure of the magnetoresistive effect element which concerns on the modifications 6 and 7.
- FIG. (A), (b) is a figure which shows the structure of the magnetoresistive effect element which concerns on the modifications 8 and 9.
- FIG. It is a figure which shows the structure of the magnetoresistive effect element which concerns on (a)-(d) and the modifications 10-13.
- (A), (b) is a figure which shows the structure of the magnetoresistive effect element which concerns on the modification 14.
- the magnetoresistive effect element 100 includes a recording layer 10 and a barrier layer as shown in FIG. 1 (a) as a front view, (b) as a side view, and (c) as a plan view (top view). 20 and a reference layer 30 are stacked.
- the longitudinal (stretching) direction of the recording layer 10 (the right direction on the paper surface in FIG. 1A) is the X-axis direction
- the short side direction of the recording layer 10 (the depth direction on the paper surface in FIG. 1A) is the Y-axis direction.
- the height direction in which the layers of the magnetoresistive effect element 100 are stacked is taken as the Z-axis direction.
- the recording layer 10 is made of a ferromagnetic material containing elements such as Fe, Co, and Ni. Specifically, the recording layer 10 includes 3d transition metals such as Fe, Co, and Ni, Fe—Co, Fe—Ni, Co—Ni, Fe—Co—Ni, Co—Fe—B, Fe—B, and Co. It is made of an alloy containing a 3d transition metal such as -B. Further, in order to obtain desired electrical characteristics and structure, materials such as B, C, N, O, Al, Si, P, Ga, and Ge may be added as appropriate.
- the one end side and the other end side in the longitudinal direction (X-axis direction) of the recording layer 10 are regions (magnetic domains) in which magnetization is fixed.
- the magnetic domain on the left side of FIG. 1A is the first magnetization fixed region 11, and the magnetic domain on the right side of the paper is the second magnetization fixed region 12.
- the recording layer 10 is a layer having an easy axis of magnetization in the in-plane direction.
- the magnetization M11 of the first magnetization fixed region 11 and the magnetization M12 of the second magnetization fixed region 12 are substantially fixed.
- the magnetization M11 and the magnetization M12 are opposite to each other.
- the magnetization M13 of the magnetization free region 13 is variable and is reversed between the + X axis direction and the ⁇ X axis direction by a current introduced into the recording layer 10 at the time of writing.
- the direction of the magnetization M11 of the first magnetization fixed region 11 is the + X-axis direction
- the direction of the magnetization M12 of the second magnetization fixed region 12 is the ⁇ X-axis direction
- the direction of the magnetization M11 and the magnetization M12 may be opposite to each other. That is, the direction of the magnetization M11 of the first magnetization fixed region 11 may be the ⁇ X axis direction, and the direction of the magnetization M12 of the second magnetization fixed region 12 may be the + X axis direction. Further, the magnetizations of the first magnetization fixed region 11 and the second magnetization fixed region 12 do not have to be strictly in the ⁇ X-axis direction, and the directions may be shifted up to about ⁇ 20 °.
- the domain wall DW is formed between the first magnetization fixed region 11 and the second magnetization fixed region 12.
- the position where the domain wall DW is formed is determined by the magnetization M13 of the magnetization free region 13.
- the line width (length in the Y-axis direction) of the recording layer 10 is 40 nm or less.
- the line width of the recording layer 10 is 30 nm or less.
- the film thickness (thickness in the Z-axis direction) of the recording layer 10 is 40 nm or less, and is 1 ⁇ 2 times or more and 2 times or less of the line width.
- the film thickness is preferably 10 nm or more and 40 nm or less.
- the barrier layer 20 is a layer formed on the recording layer 10 and made of an insulator.
- the barrier layer 20 is made of an insulator such as MgO, Al 2 O 3 , or AlN.
- MgO the film thickness is formed to about 0.5 nm to 2.0 nm.
- the film thickness is about 0.8 nm to 1.5 nm.
- TMR tunnel magnetoresistance
- the recording layer 10 and the barrier layer 20 are preferably made of CoFeB / MgO and FeB / MgO.
- the recording layer 10 may have a laminated structure composed of two or more different ferromagnetic materials, and the layer adjacent to the barrier layer 20 may be CoFeB, FeB, or the like.
- the barrier layer 20 is formed on the recording layer 10, “upper” does not mean the upper and lower sides in the direction of gravity.
- the barrier layer 20 being formed on the recording layer 10 means that the recording layer 10 is formed adjacent to the barrier layer 20, for example. Moreover, not only adjacent but the proximity
- the reference layer 30 is a layer made of a ferromagnetic material formed on the barrier layer 20.
- the reference layer 30 is a layer whose magnetization M30 is substantially fixed.
- the reference layer 30 includes Fe, Co, Ni, and the like.
- the reference layer 30 may include an antiferromagnetic layer made of Ir—Mn, Pt—Mn, or the like.
- the magnetization M30 is fixed in the ⁇ X-axis direction.
- the reference layer 30 is depicted as being formed in the same shape as the barrier layer 20 in the XY plane, but may actually have a different shape.
- the barrier layer 20 may have the same shape as the recording layer 10 and the reference layer 30 may be formed smaller than them.
- the reference layer 30 needs to overlap at least part of the XY plane with the magnetization free region 13 of the recording layer 10 in order to read information by the tunnel magnetoresistive effect.
- the typical length of the recording layer 10 in the X-axis direction is about 50 to 400 nm. Among these, the typical length of the magnetization free region 13 in the X-axis direction is about 40 to 100 nm. The typical length of the first magnetization fixed region 11 and the second magnetization fixed region 12 in the X-axis direction is about 40 to 200 nm. A typical length in the X-axis direction of the reference layer 30 is 40 to 100 nm. In the first embodiment, the reference layer 30 is formed so as to fit in the recording layer 10 in the XY plane. Therefore, the length of the reference layer 30 in the Y-axis direction is 40 nm or less.
- the barrier layer 20, and the reference layer 30 For the production of the recording layer 10, the barrier layer 20, and the reference layer 30, first, the recording layer 10, the barrier layer 20, and the reference layer 30 are each deposited on a substrate (not shown) by an ultrahigh vacuum sputtering method or the like. Thereafter, the deposited film is patterned by a lithography technique or the like into an appropriate shape. Further, heat treatment in a magnetic field may be performed after thin film deposition or after element formation. In this case, the typical heat treatment temperature is about 250 to 400 degrees, and the magnetic field is 0.2T or more and 2T or less.
- each layer of the magnetoresistive effect element 100 is as follows. Recording layer 10: CoFeB, thickness 20 nm, barrier layer 20: MgO, thickness 1.2 nm, reference layer 30 (in order from the substrate side): C CincinnatiFeB, thickness 1.5 nm, C CincinnatiFe, thickness 1 nm, Ru, thickness 0.9 nm, C CincinnatiFe, thickness 2.5 nm, PtMn, thickness 20 nm.
- FIG. 10 Another example of the film configuration of the magnetoresistive effect element 100 is as follows.
- Recording layer 10 NiFe, thickness 9 nm, CoFeB, thickness 1 nm
- barrier layer 20 MgO, thickness 0.9 nm
- reference layer 30 (in order from the substrate side): C CincinnatiFeB, thickness 2 nm, CoFe, thickness 1 nm, Ru, thickness 0.9 nm, C CincinnatiFe, thickness 3 nm, IrMn, thickness 12 nm.
- a laminated ferrimagnetic structure is adopted as the reference layer, and Ru is used as a coupling layer in the laminated ferrimagnetic structure.
- a base layer Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, etc.
- a seed layer Cr, Fe, Ru, Rh, Pd, Ag, Cu, Ir, Pt, Au, etc.
- a cap layer Ti, Ru, Cu, etc.
- the underlayer, seed layer, and cap layer are layers provided as appropriate in order to improve substrate adhesion, crystal orientation, electrical conductivity, and corrosion resistance.
- the preferred ranges related to the film thickness and dimensions exemplified here are set in light of the technical level of the current semiconductor integrated circuit, and the effects of the present invention will be improved as future processing technology advances.
- the range of film thickness and dimensions obtained can be changed.
- the magnetization M13 of the magnetization free region 13 of the recording layer 10 is reversed between the + X axis direction and the ⁇ X axis direction.
- the resistance state of the recording layer 10 of the magnetoresistive effect element 100 to the reference layer 30 changes to either the high resistance state or the low resistance state.
- Data can be stored in the magnetoresistive effect element 100 by assigning 1-bit data of “0” and “1” to the resistance state and switching the resistance state.
- a read current Ir is passed between an electrode (not shown) provided on the reference layer 30 and the recording layer 10, and the resistance state ( Detect high resistance state and low resistance state). Thereby, the data recorded in the magnetoresistive effect element 100 is read.
- the direction of the magnetization M13 of the magnetization free region 13 of the recording layer 10 is the ⁇ X axis direction, which is the same as the direction of the magnetization M12 of the second magnetization fixed region 12.
- the domain wall DW is formed in the region P1 between the first magnetization fixed region 11 and the magnetization free region 13.
- the magnetization M13 of the magnetization free region 13 is aligned with the magnetization M30 of the reference layer 30 (parallel state).
- the magnetoresistive effect element 100 is in a low resistance state in which the resistance of the current path from the recording layer 10 to the reference layer 30 is relatively small.
- the magnetization M13 and the magnetization M30 may be substantially parallel to each other.
- the direction of the magnetization M13 of the magnetization free region 13 of the recording layer 10 is the + X-axis direction, which is the same as the magnetization M11 of the first magnetization fixed region. For this reason, the domain wall DW is formed in the region P2 between the magnetization free region 13 and the second magnetization fixed region 12. Further, the direction of the magnetization M13 of the magnetization free region 13 is opposite to the direction of the magnetization M30 of the reference layer 30 (anti-parallel state). At this time, the magnetoresistive effect element 100 is in a high resistance state in which the resistance of the current path from the recording layer 10 to the reference layer 30 is relatively large. Note that the magnetization M13 and the magnetization M30 may be substantially antiparallel to each other.
- the domain wall (DW) moves back and forth between the regions P1 and P2 according to the magnetization M13 of the magnetization free region 13.
- the magnetoresistive element 100 stores data according to the position of the domain wall DW.
- the low resistance state shown in FIG. 2A is defined as “0” and the high resistance state shown in FIG. 2B is defined as “1”.
- the allocation of stored data may be reversed.
- the read current Ir flowing in the + Z-axis direction is illustrated here, the direction of the read current Ir may be reversed.
- FIG. 2 shows a mode in which the read current Ir flows from the recording layer 10 toward the reference layer 30. Essentially, the read current Ir passes through the magnetic tunnel junction including the recording layer 10, the barrier layer 20, and the reference layer 30. As long as current flows in the direction, any other path may be used.
- the direction of the magnetization M13 of the magnetization free region 13 of the magnetoresistive effect element 100 storing the data “0” is the ⁇ X axis direction.
- the direction of the magnetization M13 and the direction of the magnetization M30 of the reference layer 30 are aligned with each other, and the domain wall DW is in the region P1 between the first magnetization fixed region 11 and the magnetization free region 13. That is, the magnetoresistive effect element 100 is in a low resistance state.
- the write current Iw is made to flow in a pulse shape.
- the write current Iw flows from the second magnetization fixed region 12 to the first magnetization fixed region 11 through the magnetization free region 13.
- electrons spin electrons
- the spin of the injected electrons affects the magnetic moment of the domain wall DW (spin transfer effect).
- the domain wall DW moves from the region P1 to the region P2, and the magnetization M13 of the magnetization free region 13 is reversed in the + X-axis direction. Therefore, the magnetoresistive effect element 100 transitions to the high resistance state. In this way, the stored data “0” of the magnetoresistive effect element 100 is rewritten to “1”. Even when the write current Iw becomes 0, the direction of the magnetization M13 in the magnetization free region 13 is maintained.
- the write current Iw is passed in pulses.
- the write current Iw flows from the first magnetization fixed region 11 to the second magnetization fixed region 12 through the magnetization free region 13.
- spin electrons are injected into the magnetization free region 13 from the second magnetization fixed region 12.
- the domain wall DW moves from the region P2 to the region P1, and the magnetization M13 of the magnetization free region 13 is reversed in the ⁇ X-axis direction. Therefore, the magnetoresistive effect element 100 transitions to the low resistance state.
- the storage data “1” of the magnetoresistive effect element 100 is rewritten to “0”. Even when the write current Iw becomes 0, the direction of the magnetization M13 in the magnetization free region 13 is maintained. In this way, data held by the magnetoresistive effect element 100 can be rewritten.
- the directions of the magnetization M11 of the first magnetization fixed region 11 and the magnetization M12 of the second magnetization fixed region 12 are fixed. Therefore, even when the write current Iw in the + X-axis direction is passed through the magnetoresistive effect element 100 storing the data “0” (when data “0” is written), the data based on the spin transfer torque Is not rewritten, and the domain wall DW does not move. Similarly, when the write current Iw in the ⁇ X-axis direction is supplied to the magnetoresistive effect element 100 storing the data “1”, the domain wall DW does not move.
- the current pulse width TW shown in FIGS. 3B and 4B is set between 0.5 and 20 ns. More preferably, it is set between 0.8 ns and 5 ns. 3B and 4B, the current pulse is shown as a rectangle, but in practice, the current pulse has a finite rise time (Fall time) and a fall time (Fall time). A pulse having a shape may be used. Typical values for the rise time and fall time are 0 to 2 ns. Further, the current pulse need not have a strict rectangular or trapezoidal waveform, and may have a triangular waveform. Furthermore, since the magnetoresistive effect element according to the present invention provides a large operation margin in writing, there may be relatively large overshoot, undershoot, and ringing.
- FIG. 5A shows a configuration of the magnetic memory cell circuit 200 for 1 bit.
- the magnetic memory cell circuit 200 includes a magnetoresistive effect element 100 constituting a memory cell for one bit, a pair of bit lines BL1 and BL2, a word line WL, a ground line GND, a first transistor Tr1, and a second transistor. Tr2.
- the magnetoresistive element 100 has a three-terminal structure in which the first terminal T1 is connected to one end of the recording layer 10, the second terminal T2 is connected to the other end, and the third terminal T3 is connected to the reference layer 30. More specifically, the first terminal T1 is connected to one end of the first magnetization fixed region 11, and the second terminal T2 is connected to one end of the second magnetization fixed region 12.
- the third terminal T3 is connected to the ground line GND.
- the first terminal T1 is connected to the drain of the first transistor Tr1, and the second terminal T2 is connected to the drain of the second transistor Tr2.
- the gate electrodes of the first transistor Tr1 and the second transistor Tr2 are connected to the word line WL.
- the source of the first transistor Tr1 is connected to the first bit line BL1, and the source of the second transistor Tr2 is connected to the second bit line BL2.
- the magnetoresistive effect element 100 does not necessarily have a three-terminal structure.
- a new magnetic layer (sensor layer 50) is provided under the barrier layer 20.
- An insulating layer 60 is provided between the sensor layer 50 and the recording layer 10 and is electrically insulated.
- the sensor layer 50 and the magnetization free region 13 in the recording layer 10 are magnetically coupled, and the magnetization M50 of the sensor layer 50 changes depending on the magnetization direction of the magnetization free region 13 in the recording layer 10.
- the first terminal T1 and the second terminal T2 are connected to both ends of the recording layer 10, and the third terminal T3 is connected to the reference layer 30.
- a four-terminal structure in which the fourth terminal is connected to the sensor layer 50 can also be adopted.
- the current path is electrically separated between writing and reading, which provides a new degree of freedom in circuit design.
- the insulating layer 60 is provided between the recording layer 10 and the sensor layer 50.
- the recording layer 10 and the sensor are interposed between the recording layer 10 and the sensor layer 50.
- a conductive layer using a material compatible with the material of the layer 50 may be provided.
- the magnetic coupling mode may be magnetostatic coupling or exchange interaction coupling.
- an active level signal for turning on the transistors Tr1 and Tr2 is applied to the word line WL.
- the transistors Tr1 and Tr2 are N-channel MOS transistors.
- the word line WL is set to a high level.
- the first transistor Tr1 and the second transistor Tr2 are turned on.
- one of the first bit line BL1 and the second bit line BL2 is set to the high level and the other is set to the ground level according to the data to be written.
- the first bit line BL1 is set to Low level and the second bit line BL2 is set to High level.
- the write current Iw flows in the direction from the second magnetization fixed region 12 toward the first magnetization fixed region 11 (hereinafter referred to as the forward direction), and FIG.
- data “1” is written.
- the first bit line BL1 is set to High level and the second bit line BL2 is set to Low level.
- the write current Iw flows in the direction from the first magnetization fixed region 11 to the second magnetization fixed region 12 (hereinafter referred to as the reverse direction), and in FIG. As shown, data “0” is written. In this way, bit data is written to the magnetoresistive effect element 100.
- the word line WL is set to the active level, and the first transistor Tr1 and the second transistor Tr2 are turned on. Further, both the first bit line BL1 and the second bit line BL2 are set to a high level, or one of the bit lines BL1 and BL2 is set to a high level and the other is set to an open state. From the high-level bit line, current flows through the recording layer 10, the barrier layer 20, the reference layer 30, the third terminal T3, and the ground line GND. By measuring the magnitude of this current, the magnitude of the resistance of the path from the recording layer 10 to the reference layer 30, that is, the stored data is obtained.
- the configuration and circuit operation of the magnetic memory cell circuit 200 are examples, and can be changed as appropriate.
- the first terminal T1 may be connected to the second magnetization fixed region 12, and the second terminal T2 may be connected to the first magnetization fixed region 11.
- the ground may be set to a reference voltage other than the ground voltage.
- the third terminal T3 may be connected to a third bit line (not shown) instead of the ground line GND.
- the word line WL is set to the high level
- the third bit line is set to the high level
- one or both of the first bit line and the second bit line are set to the ground level. In this state, the current flowing from the third bit line to the first bit line BL1 and the second bit line BL2 is measured.
- the magnetic memory device 300 includes a memory cell array 311, an X driver 312, a Y driver 313, and a controller 314 as shown in FIG.
- the memory cell array 311 has magnetic memory cell circuits 200 arranged in an array of N rows and M columns.
- the magnetic memory cell circuit 200 in each column is connected to the pair of the first bit line BL1 and the second bit line BL2 in the corresponding column.
- the magnetic memory cell circuit 200 in each row is connected to the word line WL and the ground line GND in the corresponding row.
- the X driver 312 is connected to the plurality of word lines WL, receives the row address, decodes the row address, and drives the word line WL of the row to be accessed to the active level (first transistor Tr1, second transistor).
- the transistor Tr2 is an N-channel MOS transistor, it is set to High level).
- the Y driver 313 functions as a writing unit that writes data to the magnetoresistive effect element 100 and a reading unit that reads data from the magnetoresistive effect element 100.
- the Y driver 313 is connected to the plurality of first bit lines BL1 and second bit lines BL2.
- the Y driver 313 receives the column address, decodes the column address, and connects the first bit line BL1 and the second bit line BL2 connected to the magnetic memory cell circuit 200 to be accessed. A desired data writing state or reading state is set.
- the Y driver 313 sets the first bit line BL1 connected to the write target magnetic memory cell circuit 200 to the low level and sets the second bit line BL2 to the high level.
- the first bit line BL1 is set to High level
- the second bit line BL2 is set to Low level.
- the Y driver 313 sets both the first bit line BL1 and the second bit line BL2 to the high level, or the bit line BL1 One of BL2 is set to a high level and the other is set to an open state.
- the current flowing through the bit lines BL1 and BL2 is compared with a reference value to determine the resistance state of the magnetic memory cell circuit 200 in each column, thereby reading the stored data.
- the controller 314 controls the X driver 312 and the Y driver 313 in accordance with data writing or data reading.
- ground line GND connected to the reference layer 30 of the magnetoresistive effect element 100 is connected to the X driver 312. This is replaced by the read bit line connected to the Y driver 313 as described above. It is also possible.
- the line width and film thickness of the recording layer 10 of the magnetoresistive effect element 100 are both 40 nm or less, and the film thickness is 1 ⁇ 2 times or more and 2 times or less of the line width of the thin line. Said to do.
- the reason why the domain wall motion can be realized with a low threshold current density by limiting the design value of the thin line of the recording layer 10 will be described.
- Threshold current density J c of the current-induced domain wall movement is represented by the following formula.
- e and h- are physical constants.
- M s and P are parameters depending on the material of the element.
- ⁇ and HK ⁇ are parameters related to the domain wall.
- a material having a small saturation magnetization M s has a low spin polarizability P. Therefore, the M s / P, it is difficult to reduce the threshold current density J c.
- the hard axis anisotropic magnetic field HK ⁇ is an amount of energy difference expressed by the magnitude of the magnetic field when the domain wall magnetization is directed in two directions other than the easy magnetization axis.
- the line width of the NiFe fine wire was on the order of 100 nm, and the film thickness was on the order of 10 nm.
- the domain wall width ⁇ w is about 100nm.
- the hard axis anisotropic magnetic field HK ⁇ is obtained when the domain wall magnetization shown in FIG. 7 (a-1) is in the Y-axis direction and the domain wall magnetization shown in FIG. 7 (a-2) is Z axis. This corresponds to the energy difference between the case of facing the direction.
- Patent Document 2 shows that the above problem can be solved by adopting a perpendicular magnetization method instead of an in-plane magnetization method.
- the domain wall width [delta] w is designed to be about 10 nm.
- the hard axis anisotropic magnetic field HK ⁇ has a magnetic domain wall magnetization when the domain wall magnetization is in the Y-axis direction and as shown in FIG. 7 (b-2). This corresponds to the energy difference when peeling in the X-axis direction.
- the hard-axis anisotropic magnetic field H K ⁇ has a state in which the magnetization appears in the ⁇ w ⁇ t plane (FIG. 7 (b-1)) and a state in which the magnetization appears in the w ⁇ t plane (FIG. 7 ( b-2)) and the difference.
- a state in which the magnetization appears in the ⁇ w ⁇ t plane (FIG. 7 ( b-1))
- a state in which the magnetization appears in the w ⁇ t plane (FIG. 7 ( b-2)
- FIGS. 8A to 8D show the results of micromagnetic simulation when the thin line width w is changed for each of the cases where the film thickness t is 2, 4, and 6 nm when the perpendicular magnetization method is employed. Show.
- FIG. 8A shows the dependency of the domain wall width parameter ⁇ on the line width w and the film thickness t of the thin line.
- the value of the domain wall width parameter ⁇ corresponding to the line width w and the film thickness t was obtained.
- the line width w was in the range from 10 nm to 100 nm, and the line width w was changed at a predetermined interval for simulation. The same applies to FIGS. 8B to 8D.
- FIG. 8B shows the dependence of the hard axis anisotropic magnetic field HK ⁇ on the line width w and film thickness t of the thin line.
- ⁇ 0 H K ⁇ was determined as a value indicating the hard axis anisotropic magnetic field according to the line width w and the film thickness t.
- ⁇ 0 is the permeability of vacuum.
- the threshold current density J c is determined by the product of the domain wall width parameter ⁇ and the hard axis anisotropic magnetic field HK ⁇ , and therefore, based on the values obtained in FIGS. It was determined threshold current density J c. Further, to determine the threshold current I th obtained by multiplying the cross-sectional area of the thin line in the threshold current density J c. In FIG. 8 (c), the threshold current density J c, in FIG. 8 (d), shows the threshold current I th.
- M s / P (parameter depending on the material of the element) in Equation 1 is a value determined from an evaluation value of a magnetization curve when a C Cincinnati / Ni laminated film is used as a thin line.
- the value of the domain wall width parameter ⁇ hardly increases or decreases with respect to changes in the line width w and the film thickness t. Therefore, it can be said that the domain wall width parameter ⁇ does not depend on the line width w and the film thickness t in the perpendicular magnetization method.
- ⁇ 0 H K ⁇ decreases as the line width w decreases, but increases again below about 30 nm. This tendency was the same regardless of whether the film thickness t was 2 nm, 4 nm, or 6 nm.
- the threshold current density J c is the line width w is 20nm or less, 1 ⁇ 10 12 a stable operation can be realized value without being affected by the Joule heating greater than a / m 2. That is, when the perpendicular magnetization method is employed, it can be said that stable operation cannot be realized when the line width w is about 20 nm or less.
- the threshold current density can be lowered by limiting the design values of the line width and film thickness of the thin lines as described in the first embodiment.
- Hard axis anisotropic magnetic field and if the magnetization of the magnetic wall appeared to [delta] w ⁇ t plane as shown in FIG. 7 (c-1), ⁇ w ⁇ w plane as shown in FIG. 7 (c-2) Is given by the difference when the domain wall magnetization appears.
- the thin line of the recording layer 10 having the size (line width and film thickness) within the above-described range is used.
- the result of the micromagnetic simulation in the case is shown.
- FIG. 8E shows the dependence of the domain wall width parameter ⁇ on the line width w and the film thickness t of the thin line.
- the value of the domain wall width parameter ⁇ corresponding to the line width w and the film thickness t was obtained.
- the film thickness t was set to four patterns of 10 nm, 14 nm, 20 nm, and 30 nm, and the line width w was in a range from 10 nm to 100 nm, and the line width w was changed at a predetermined interval for simulation.
- FIGS. 8F to 8H The same applies.
- FIG. 8 (f) shows the dependence of the hard axis anisotropic magnetic field HK ⁇ ⁇ ⁇ ⁇ on the line width w and film thickness t of the thin line.
- ⁇ 0 H K ⁇ was determined as a value indicating the hard axis anisotropic magnetic field according to the line width w and the film thickness t.
- ⁇ 0 is the permeability of vacuum.
- the threshold current density J c in FIG. 8 (g), shows the threshold current I th in FIG. 8 (h).
- M s / P the value determined from the evaluation value of the magnetization curve when NiFe is used as the fine line.
- simulation was performed using the physical constants of NiFe. Specifically, the saturation magnetization M s was 1.0 T, and the magnetic anisotropy constant in the easy axis direction (X-axis direction) was 0 J / m 3 .
- the hard axis anisotropic magnetic field H K ⁇ has a minimum value.
- the threshold current density J c is 1 ⁇ 10 12 A / m 2 or less, which satisfies the condition that can be introduced into the device.
- FIG. 8 shows the simulation result when NiFe is used as the material for the thin wire, but this calculation result is qualitatively universal for all in-plane magnetization films.
- the domain wall can have a Transverse type structure as shown in FIG. 9B, even in a stable state, while the domain wall is moving. Therefore, it was found from the simulation conducted by the inventor that the controllability is stable.
- the film thickness is thinner than the line width (t ⁇ w)
- the magnetization in the transversal (transverse) domain wall is oriented in the lateral direction of the thin line within the film surface.
- the film thickness is thicker than the line width (t> w)
- the magnetization in the Transverse type domain wall is oriented in the direction perpendicular to the film surface.
- the hard axis anisotropic magnetic field HK ⁇ takes a minimum value
- the line width w and the film thickness t are equal, but in reality, it occurs during processing. It is difficult to make the line width w and the film thickness t completely equal due to deviation from the ideal shape, fluctuation due to the location of the magnetic characteristics, and the like.
- the simulation result the line width w, thickness t is at 40nm or less, and, when the film thickness is in the range of 2 times half the line width, 1 ⁇ a threshold current density J c It was found that it could be 10 12 A / m 2 or less.
- the same effect can be obtained by making the film thickness t smaller (thinner) than the line width w.
- the film thickness t is changed from 1/4 times the line width to 3/4.
- the film thickness, a line width of 10nm or less, the threshold current I th is 5.7Myuei, such a small threshold current in the case of perpendicular magnetization scheme Can't get. Therefore, when the magnetoresistive effect element according to the present invention is applied to the magnetic memory, dynamic power consumption at the attoule level can be realized.
- FIG. 10 shows a suitable design range of the line width w and the film thickness t obtained based on the result of the micromagnetic simulation performed assuming the material parameters of NiFe.
- the domain wall takes a vortex structure (vortex structure) in a stable state or in the domain wall motion process.
- the Vortex domain wall Vortex domain wall
- the upper limit of the line width and the film thickness is 30 nm.
- the upper limit of the current density that can be introduced into the NiFe fine wire is approximately 3 ⁇ 10 12 A / m 2 .
- this condition is satisfied when the film thickness t is in the range of 2/3 to 1.5 times the line width w. Therefore, in the case of a NiFe thin wire, the lower limit value of the film thickness t at which the effect of the present invention is obtained is 2/3 of the line width w, and the upper limit value is 1.5 times the line width w (in FIG. 10, the inner hatch region). ).
- Suitable design assuming appropriate parameters for materials other than NiFe (for example, materials with small saturation magnetization, materials with high spin polarizability, materials with large exchange stiffness constant, and materials with large magnetic anisotropy in the longitudinal direction of thin wires)
- the magnetoresistive effect element 100 has a domain wall with a low threshold current density when the line width of the thin line is small, specifically, when the line width is 40 nm or less. Can be driven.
- the range of material selection is limited in the perpendicular magnetization method.
- the in-plane magnetization method when adopted, there is an advantage that a variety of materials can be selected.
- the lower limit of the line width of the thin line there is no physical restriction on the lower limit of the line width of the thin line, and the value is determined by the processing technology.
- the size of the crystal grain is a guide, so the lower limit of the line width is about 5 nm.
- the ultra-fine generation of about 10 nm or less thin lines are formed using a bottom-up method such as self-organization instead of using a top-down method such as lithography. May be. In this case, at least a line width that exhibits ferromagnetism is sufficient.
- the line width at which ferromagnetism develops strongly depends on the material used, but when a material having a large exchange interaction is used, the line width is about 3 nm.
- the lower limit of the line width of the thin line is the same in the following description.
- Embodiment 2 In the magnetoresistive effect element 100 according to Embodiment 1, in order to stably write and read stored data, it is necessary to stably fix the direction of the magnetization M30 of the reference layer 30. In order to stabilize the magnetization M30 of the reference layer 30, it is effective to configure the reference layer 30 from a laminated ferricouple layer.
- the reference layer 30 has a laminated structure in which a ferromagnetic layer 31, a coupling layer 32, and a ferromagnetic layer 33 are laminated and laminated by ferrimagnetic lamination.
- the ferromagnetic layer 31 and the ferromagnetic layer 33 are antiferromagnetically coupled by the coupling layer 32.
- the ferromagnetic layer 31 and the ferromagnetic layer 33 are preferably made of a ferromagnetic material containing Fe, Co, and Ni. Further, it is desirable to use Ru or the like for the bonding layer 32.
- Other configurations are the same as those in the first embodiment.
- the direction of the magnetization M13 of the magnetization free region 13 of the recording layer 10 and the magnetization M31 of the ferromagnetic layer 31 adjacent to the recording layer 10 among the ferromagnetic layers 31 and 33 constituting the reference layer 30 When the directions coincide with each other, the magnetoresistive element 101 is in a parallel state and in a low resistance state.
- the magnetoresistive effect element 101 is in an antiparallel state and is in a high resistance state. It becomes.
- the domain wall can be driven with a low threshold current density.
- the magnetoresistive effect element 100 may further include a layer for more firmly fixing the magnetizations of the first magnetization fixed region 11 and the second magnetization fixed region 12 of the recording layer 10.
- the first magnetization fixed layer 41 is provided below the first magnetization fixed region 11, and the magnetization M ⁇ b> 41 is the magnetization M ⁇ b> 11 of the first magnetization fixed region 11.
- the direction is aligned.
- a second magnetization fixed layer 42 is provided under the second magnetization fixed region 12, and the magnetization M 42 is aligned with the magnetization M 12 of the second magnetization fixed region 12.
- the first magnetization fixed layer 41 and the second magnetization fixed layer 42 may be provided on the recording layer 10.
- the first magnetization fixed layer 41 is provided on the first magnetization fixed region 11, and the second magnetization fixed layer 42 is provided on the second magnetization fixed region 12.
- the first magnetization fixed layer 41 fixes the magnetization M11 of the first magnetization fixed region 11 and the second magnetization fixed layer 42 fixes the magnetization M12 of the second magnetization fixed region 12 more firmly. Is done.
- the first magnetization fixed layer 41 and the second magnetization fixed layer 42 may be provided.
- the first magnetization fixed layer 41 is provided only on the first magnetization fixed region 11.
- the magnetoresistive effect element 100 does not have the second magnetization fixed layer 42 for fixing the magnetization M12 of the second magnetization fixed region 12.
- the arrangement position of the first magnetization fixed layer 41 may be below the first magnetization fixed region 11.
- the second magnetization fixed layer 42 is provided above or below the second magnetization fixed region 12 so that the first magnetization fixed layer 41 for fixing the magnetization M11 of the first magnetization fixed region 11 is not provided. Also good.
- the first magnetization fixed layer 41 and the second magnetization fixed layer 42 can be made of a ferromagnetic material including Fe, Co, Ni, or an antiferromagnetic material such as Ir—Mn, Pt—Mn, or Fe—Mn. Further, the magnetization directions of the first magnetization pinned layer 41 and the first magnetization pinned region 11 and the magnetization directions of the second magnetization pinned layer 42 and the second magnetization pinned region 12 do not necessarily have to be parallel, but are coupled in antiparallel directions. By doing so, the magnetization may be firmly fixed.
- the recording layer 10 has a quadrangular shape (shape in the XY plane) when viewed from above. Is not limited to this.
- the recording layer 10 is patterned so that the shape in the XY plane is concave. With this configuration, it is possible to introduce a single domain wall into the recording layer 10 using an external magnetic field in the in-plane direction.
- the barrier layer 20 and the reference layer 30 are stacked on the upper surface region of the magnetization free region 13 of the recording layer 10. This is because the reference layer 30 needs to overlap at least the magnetization free region 13 of the recording layer 10.
- the laminated structure is not limited to this, and the barrier layer 20 and the reference layer 30 may be laminated on the entire top surface of the recording layer 10 as shown in FIG. In this case, manufacture of a laminated body is easy.
- one magnetoresistive element 100 has only one reference layer 30, but a plurality of reference layers may be provided as shown in FIG. In this case, the area of the recording layer 10 adjacent to each reference layer 30 is a magnetization free area.
- the magnetoresistive effect element 100 can be a multi-value memory. Alternatively, the magnetoresistive element can be an analog memory.
- the recording layer 10 may include a plurality of magnetization free regions, and the reference layer 30 may be formed long in the longitudinal direction so as to cover the plurality of magnetization free regions.
- the magnetoresistive effect element 100 can be a multi-value memory or an analog memory.
- FIG. 15A shows an example in which pin sites of domain walls are formed in the recording layer 10.
- pin sites of domain walls are formed in the recording layer 10.
- the pin site can stop the movement of the domain wall DW. Note that the pin site may be provided only in any one place.
- the pin site formation position is not limited to the above example.
- the front surface (in the XZ plane) of the recording layer 10 between the first magnetization fixed region 11 and the magnetization free region 13 (14), and the second magnetization fixed region 12 and the magnetization. Between the free regions 13 (15), concave notches (pinsites) are formed respectively. Also in this case, the movement of the domain wall DW can be stopped at the position of the pin site. Note that the pin site may be provided only in any one place.
- Pinsites can also be formed by providing regions having different material properties.
- FIG. 15C shows an example of the shape of the magnetoresistive recording element 100 according to the modification 12.
- the colored portion is a region having different material characteristics. Note that the pin site may be provided only in any one place.
- modified examples 10, 11, and 12 having the pin site can be combined with modified examples 8 and 9 that can be implemented as a multi-value memory or an analog memory.
- pin sites are formed in the magnetization free region of the recording layer 10 and between the magnetization free regions.
- the plane shape and the cross-sectional shape of the first magnetization fixed region 11 and the second magnetization fixed region 12 are appropriately designed. It is also possible to pin the domain wall stably.
- the thin line width and film thickness are designed to be 40 nm or less, and the film thickness is set to 1/2 or more and 2 times or less of the line width to reduce the current.
- the domain wall can be moved at a high density. In other words, the domain wall movement can be made difficult to occur by removing this range.
- the film thickness of the first magnetization fixed region 11 and the second magnetization fixed region 12 is designed to be 1 ⁇ 2 or less of the line width, or more than twice, the first magnetization fixed region 11 and the second magnetization fixed region.
- the domain wall functions as an effective domain wall pin site because strong pinning acts in a portion having a difference in cross-sectional shape.
- the line width of the magnetization free region 13 is 15 nm and the film thickness is 15 nm
- the line width of the first magnetization fixed region 11 and the second magnetization fixed region 12 is 35 nm
- the film thickness is 15 nm.
- a domain wall pinning mechanism can be realized.
- the line width of the magnetization free region 13 is 20 nm and the film thickness is 20 nm
- the line width of the first magnetization fixed region 11 and the second magnetization fixed region 12 is 20 nm
- the film thickness is 9 nm.
- Such a domain wall pinning mechanism can be realized.
- the recording layer 10 has a shape extending in the longitudinal direction, but the shape of the recording layer 10 is not limited thereto.
- the recording layer 10 has an arch shape.
- the recording layer 10 can be formed in this way by forming the film formation surface in an arch before forming the recording layer 10.
- the recording layer 10 is formed in an arch shape by adjusting the CMP process or the like so that irregularities remain on the film surface of the magnetic film. be able to.
- a domain wall can be easily introduced into the recording layer 10 by an external magnetic field having a substrate vertical component.
- the recording layer 10 may be tapered.
- An example of the shape of the magnetoresistive effect element 100 according to Modification 14 is shown in FIG.
- the domain wall can be moved smoothly, and the threshold current density can be further reduced.
- Such a shape can be realized by adjusting the patterning process of the recording layer 10 (adjusting the angle of the incident ion beam, adjusting the shape of the hard mask, etc.).
- FIG. 16B shows another example in which the recording layer 10 is tapered.
- the area of the surface on the substrate side is smaller than the area of the surface on the upper side (the barrier layer 20 side).
- Such a shape can be realized by forming a groove on the film formation surface.
- a wet process such as a physical vapor deposition method or a plating method can be used.
- Magnetoresistive element 101 Magnetoresistive element 10 Recording layer 11 First magnetization fixed region 12 Second magnetization fixed region 13 Magnetization free region 14 Between first magnetization fixed region 11 and magnetization free region 13 Second magnetization fixed region 12 between the magnetic free region 13 and the barrier layer 30 Reference layer 31 Ferromagnetic layer 32 Coupling layer 33 Ferromagnetic layer 41 First magnetization fixed layer 42 Second magnetization fixed layer 50 Sensor layer 60 Insulating layer 200 Magnetic memory cell circuit 300 Magnetic memory device 311 Memory cell array 312 X driver 313 Y driver 314 Controller
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Abstract
磁気抵抗効果素子(100)は、強磁性体を含む記録層(10)と、記録層(10)の上に積層された障壁層(20)と、障壁層(20)の上に積層され、強磁性体を含む参照層(30)とを有する。参照層(30)は、略面内方向に実質固定された磁化成分を有する。記録層(10)は、略面内方向に実質固定された磁化成分を有する第1磁化固定領域(11)と、第1磁化固定領域(11)が有する磁化成分と反対の向きに実質固定された磁化成分を有する第2磁化固定領域(12)と、第1磁化固定領域(11)と第2磁化固定領域(12)との間に位置し、略面内方向において反転可能な磁化成分を有する磁化自由領域(13)とを含む。記録層(10)を構成する細線の線幅は40nm以下であり、記録層(10)の膜厚は、40nm以下であり、線幅の1/2以上、かつ、2倍以下である。
Description
この発明は、磁気抵抗効果素子及び磁気メモリ装置に関する。
高速性と高書き換え耐性が得られる次世代不揮発メモリとして、磁気トンネル接合素子(Magnetic Tunneling Junction素子:MTJ素子)を使用したSTT-MRAM(Spin-Transfer Torque Magnetic Random Access Memory)が注目されている。STT-MRAMにデータを書き込むためには、磁気トンネル接合素子の抵抗状態をスピントランスファートルク(Spin Transfer Torque:STT)を用いて高抵抗の状態あるいは低抵抗の状態に変化させる。また、磁気トンネル接合素子の抵抗状態を検出することで、記憶されているデータを読み出す。
STT-MRAMの書き込み方式には、スピン注入磁化反転方式、電流誘起磁壁移動方式等がある。スピン注入磁化反転方式は、電流を磁気抵抗効果素子に導入し、スピン偏極した電子によるトルクを記録層の磁化に作用させることで磁気抵抗効果素子の抵抗状態を変化させる。電流誘起磁壁移動方式は、電流により磁性体層内に導入された磁壁を移動させることで磁気抵抗効果素子の抵抗状態を変化させる。
電流誘起磁壁移動方式について、特許文献1には、面内磁化を有する磁性体層に磁壁を導入した素子が開示されている。また、特許文献2には、垂直磁化を有する磁性体層に磁壁を導入して、磁壁移動によるデータ書き込みを行うことが開示されている。
特許文献1の面内磁化を有する磁性体層を使用した場合、書き込みに要する電流密度(しきい電流密度)が上昇してしまい、ジュール発熱等による金属配線の断線や狭窄化により、素子を安定して動作させることが困難である。
特許文献2に記載の発明は、特許文献1のしきい電流密度の上昇の問題を解消すべくなされたものである。しかしながら、垂直磁化を有する磁性体層を使用した場合でも、細線の線幅を小さくすると、しきい電流密度が増大してしまうことがわかった。具体的には、磁性体層の細線幅が約20nm以下においては、しきい電流密度が1012A/m2を超える。よって、金属配線の断線や狭窄化等の故障が素子に発生してしまう。
本発明は、上記実情に鑑みてなされたものであり、細線の線幅が小さい場合に、低電流密度で磁壁を駆動することが可能な磁気抵抗効果素子及び磁気メモリ装置を提供することを目的とする。
上記目的を達成するために、本発明の磁気抵抗効果素子は、
強磁性体を含む記録層と、
前記記録層の上に積層された障壁層と、
前記障壁層の上に積層され、強磁性体を含む参照層と、
を有し、
前記参照層は、略面内方向に実質固定された磁化成分を有し、
前記記録層は、略面内方向に実質固定された磁化成分を有する第1磁化固定領域と、前記第1磁化固定領域が有する磁化成分と反対の向きに実質固定された磁化成分を有する第2磁化固定領域と、前記第1磁化固定領域と前記第2磁化固定領域との間に位置し、略面内方向において反転可能な磁化成分を有する磁化自由領域とを含み、
前記記録層を構成する細線の線幅は40nm以下であり、
前記記録層の膜厚は、40nm以下であり、前記線幅の1/2以上、かつ、2倍以下である。
強磁性体を含む記録層と、
前記記録層の上に積層された障壁層と、
前記障壁層の上に積層され、強磁性体を含む参照層と、
を有し、
前記参照層は、略面内方向に実質固定された磁化成分を有し、
前記記録層は、略面内方向に実質固定された磁化成分を有する第1磁化固定領域と、前記第1磁化固定領域が有する磁化成分と反対の向きに実質固定された磁化成分を有する第2磁化固定領域と、前記第1磁化固定領域と前記第2磁化固定領域との間に位置し、略面内方向において反転可能な磁化成分を有する磁化自由領域とを含み、
前記記録層を構成する細線の線幅は40nm以下であり、
前記記録層の膜厚は、40nm以下であり、前記線幅の1/2以上、かつ、2倍以下である。
前記記録層は、NiとFeとを含み、
前記線幅は30nm以下であり、
前記膜厚は30nm以下であり、前記線幅の2/3以上、かつ、1.5倍以下であってもよい。
前記線幅は30nm以下であり、
前記膜厚は30nm以下であり、前記線幅の2/3以上、かつ、1.5倍以下であってもよい。
前記記録層の長手方向に沿って電流を導入することで、前記磁化自由領域が有する磁化成分の向きが反転する。
前記磁化自由領域が有する磁化成分の向きに応じて、前記第1磁化固定領域と前記磁化自由領域との間、又は、前記第2磁化固定領域と前記磁化自由領域との間に、磁壁が形成される。
また、本発明の他の磁気抵抗効果素子は、
強磁性体を含む記録層と、
前記記録層の上に積層された障壁層と、
前記障壁層の上に積層され、強磁性体を含む参照層と、
を有し、
前記参照層は、略面内方向に実質固定された磁化成分を有し、
前記記録層は、略面内方向に実質固定された磁化成分を有する第1磁化固定領域と、前記第1磁化固定領域が有する磁化成分と反対の向きに実質固定された磁化成分を有する第2磁化固定領域と、前記第1磁化固定領域と前記第2磁化固定領域との間に位置し、略面内方向において反転可能な磁化成分を有する磁化自由領域とを含み、
前記第1磁化固定領域と前記第2磁化固定領域との間に磁壁が形成され、
前記磁壁の磁化は、前記記録層の短辺方向、及び、基板垂直方向の両方にTransverse構造をとることができる。
強磁性体を含む記録層と、
前記記録層の上に積層された障壁層と、
前記障壁層の上に積層され、強磁性体を含む参照層と、
を有し、
前記参照層は、略面内方向に実質固定された磁化成分を有し、
前記記録層は、略面内方向に実質固定された磁化成分を有する第1磁化固定領域と、前記第1磁化固定領域が有する磁化成分と反対の向きに実質固定された磁化成分を有する第2磁化固定領域と、前記第1磁化固定領域と前記第2磁化固定領域との間に位置し、略面内方向において反転可能な磁化成分を有する磁化自由領域とを含み、
前記第1磁化固定領域と前記第2磁化固定領域との間に磁壁が形成され、
前記磁壁の磁化は、前記記録層の短辺方向、及び、基板垂直方向の両方にTransverse構造をとることができる。
前記第1磁化固定領域の磁化成分、前記第2磁化固定領域の磁化成分のうち少なくともいずれかを固定するための磁化固定層を、さらに有してもよい。
前記記録層の、前記第1磁化固定領域と前記磁化自由領域との間、前記第2磁化固定領域と前記磁化自由領域との間、のうち少なくともいずれかにピンサイトが設けられていてもよい。
本発明の磁気メモリ装置は、
上記の磁気抵抗効果素子と、
前記磁気抵抗効果素子に、書き込み電流を流すことにより、前記磁気抵抗効果素子にデータを書き込む書き込み手段と、
前記障壁層を貫通する方向に電流を流してトンネル抵抗を求めることにより、前記磁気抵抗効果素子に書き込まれているデータを読み出す読み出し手段と、
を備える。
上記の磁気抵抗効果素子と、
前記磁気抵抗効果素子に、書き込み電流を流すことにより、前記磁気抵抗効果素子にデータを書き込む書き込み手段と、
前記障壁層を貫通する方向に電流を流してトンネル抵抗を求めることにより、前記磁気抵抗効果素子に書き込まれているデータを読み出す読み出し手段と、
を備える。
本発明によれば、細線の線幅が小さい場合に、低電流密度で磁壁を駆動することが可能であり、高集積で高性能な磁気抵抗効果素子及び磁気メモリ装置を提供することができる。
以下、図面を参照しながら本発明の実施の形態に係る磁気抵抗効果素子及び該磁気抵抗効果素子を用いた磁気メモリ装置を説明する。
(実施の形態1)
以下、図1~図4を参照して、実施の形態1に係る磁気抵抗効果素子を説明する。
以下、図1~図4を参照して、実施の形態1に係る磁気抵抗効果素子を説明する。
実施の形態1に係る磁気抵抗効果素子100は、図1(a)に正面図、(b)に側面図、(c)に平面図(上面図)で示すように、記録層10、障壁層20、参照層30が積層された構成を有する。ここでは、記録層10の長手(延伸)方向(図1(a)の紙面右方向)をX軸方向、記録層10の短手方向(図1(a)の紙面奥行方向)をY軸方向、磁気抵抗効果素子100の各層が積層された高さ方向(図1(a)の紙面上方向)をZ軸方向とする。
記録層10は、Fe、Co、Ni等の元素を含む強磁性体からなる。具体的には、記録層10は、Fe、Co、Ni等の3d遷移金属、Fe-Co、Fe-Ni、Co-Ni、Fe-Co-Ni、Co-Fe-B、Fe-B、Co-B等の3d遷移金属を含む合金からなる。また、所望の電気特性や構造を得るため、B、C、N、O、Al、Si、P、Ga、Ge等の材料を適宜添加してもよい。
記録層10の長手方向(X軸方向)の一方の端部側と他方の端部側とはそれぞれ磁化が固定された領域(磁区)である。図1(a)の紙面左側の磁区を第1磁化固定領域11とし、紙面右側の磁区を第2磁化固定領域12とする。第1磁化固定領域11と第2磁化固定領域12との間は、磁化の方向が反転可能な磁化自由領域13である。
記録層10は、面内方向の磁化容易軸を有する層である。第1磁化固定領域11の磁化M11、第2磁化固定領域12の磁化M12は実質的に固定されている。磁化M11と磁化M12は互い逆向きである。一方、磁化自由領域13の磁化M13は、可変であり、書き込みの際に記録層10に導入される電流により、+X軸方向と-X軸方向とで反転する。
図示する例では、第1磁化固定領域11の磁化M11の向きは+X軸方向であり、第2磁化固定領域12の磁化M12の向きは-X軸方向であるが、磁化M11の向きと磁化M12の向きは、それぞれ逆向きであってもよい。すなわち、第1磁化固定領域11の磁化M11の向きが-X軸方向であり、第2磁化固定領域12の磁化M12の向きが+X軸方向であってもよい。また、第1磁化固定領域11、第2磁化固定領域12の磁化は厳密に±X軸方向である必要はなく、最大±20°程度まではその方向がずれていてもよい。
上記のような構成により、第1磁化固定領域11と第2磁化固定領域12との間に磁壁DWが形成される。磁壁DWが形成される位置は、磁化自由領域13の磁化M13により決まる。
記録層10の線幅(Y軸方向の長さ)は、40nm以下とする。好ましくは、記録層10の線幅は、30nm以下である。また、記録層10の膜厚(Z軸方向の厚さ)は、40nm以下であり、線幅の1/2倍以上、かつ、2倍以下である。例えば、細線幅が20nmである場合、膜厚は、10nm以上、40nm以下とすることが好ましい。
障壁層20は、記録層10の上に形成された、絶縁体から構成された層である。障壁層20は、MgO、Al2O3、AlN等の絶縁体から構成される。障壁層20が、例えば、MgOを使用する場合、その膜厚は0.5nm~2.0nm程度に形成される。好ましくは、その膜厚は0.8nm~1.5nm程度に形成される。また、記録層10と障壁層20の材料を適切に選択することによって、大きなトンネル磁気抵抗(Tunnel Magneto Resistance:TMR)比が得られる。この点からは、記録層10と障壁層20とを、CoFeB/MgO、FeB/MgOとすることが好適である。あるいは、記録層10は2つ以上の異なる強磁性体からなる積層構造であり、障壁層20と隣接する層がCoFeB、FeBなどであってもよい。
なお、障壁層20は記録層10上に形成されるとしたが、ここで「上」とは、重力方向の上下を意味するのではない。ここで、障壁層20が記録層10の上に形成されているとは、例えば、障壁層20に隣接するよう記録層10が形成されていることをいう。また、隣接に限らず、例えば、近接であってもよい。また、他の層、空間等を介して、障壁層20と記録層10とが配置されてもよい。障壁層20と参照層30との関係においても、同様とする。
参照層30は、障壁層20の上に形成された強磁性体から構成された層である。参照層30は、その磁化M30が実質的に固定された層である。参照層30は、Fe、Co、Ni等を含む。また、より強固に磁化を固定するため、参照層30はIr-Mn、Pt-Mn等からなる反強磁性層を含んでいてもよい。読み出しの際には、参照層30と記録層10の磁化方向に基づいて記録された情報が読み出される。ここでは、磁化M30は、-X軸方向に固定されている。
また、図では、X-Y面内において参照層30は障壁層20と同じ形状に形成されるものとして描かれているが、実際には異なる形状であっても構わない。例えば、障壁層20は記録層10と同じ形状を有し、参照層30はそれらよりも小さく形成されていてもよい。参照層30は、トンネル磁気抵抗効果により情報の読み出しを行うために、記録層10の磁化自由領域13と、少なくともX-Y面内の一部においてオーバーラップしている必要がある。
記録層10のX軸方向の典型的な長さは50~400nm程度である。このうち、磁化自由領域13のX軸方向の典型的な長さは40~100nm程度である。また、第1磁化固定領域11、第2磁化固定領域12のX軸方向の典型的な長さは40~200nm程度である。参照層30のX軸方向の典型的な長さは40~100nmである。また、実施の形態1においては、参照層30はX-Y面内において記録層10に収まるように形成されている。従って、参照層30のY軸方向の長さは40nm以下である。
記録層10、障壁層20、参照層30の作製は、まず、図示せぬ基板上に、記録層10、障壁層20、参照層30をそれぞれ超高真空スパッタリング法等により堆積する。その後、堆積された膜を、リソグラフィー技術などにより適当な形状にパターニングすることにより行われる。また、薄膜堆積後、または、素子形成後に磁場中での熱処理を行ってもよい。この場合、典型的な熱処理温度は250度から400度程度であり、磁場は0.2T以上2T以下である。
磁気抵抗効果素子100の各層の構成(膜構成)の一例を示すと、以下のようになる。記録層10:CoFeB、厚さ20nm、障壁層20:MgO、厚さ1.2nm、参照層30(基板側から順に):CоFeB、厚さ1.5nm、CоFe、厚さ1nm、Ru、厚さ0.9nm、CоFe、厚さ2.5nm、PtMn、厚さ20nm。
また、磁気抵抗効果素子100の膜構成の他の例を示すと、以下のようになる。記録層10:NiFe、厚さ9nm、CoFeB、厚さ1nm、障壁層20:MgO、厚さ0.9nm、参照層30(基板側から順に):CоFeB、厚さ2nm、CoFe、厚さ1nm、Ru、厚さ0.9nm、CоFe、厚さ3nm、IrMn、厚さ12nm。なお、例示した構成では、参照層として積層フェリ構造を採用しており、積層フェリ構造における結合層としてRuを使用している。
さらに、記録層10の下に下地層(Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W等)、シード層(Cr、Fe、Ru、Rh、Pd、Ag、Cu、Ir、Pt、Au等)を設けてもよい。また、参照層30の上にキャップ層(Ta、Ru、Cu等)を設けてもよい。下地層、シード層、キャップ層は基板密着性や結晶配向性、電気伝導性、耐腐食性を向上するために適宜設けられる層である。
なお、ここで例示された膜厚や寸法に関する好適な範囲は、現在の半導体集積回路の技術水準に照らし合わせて設定されたものであり、将来の加工技術の進歩に伴い、本発明の効果が得られる膜厚や寸法の範囲は変更されうる。
記録層10の磁化自由領域13の磁化M13は+X軸方向と-X軸方向とで反転する。これにより、磁気抵抗効果素子100の記録層10から参照層30の抵抗状態が、高抵抗状態あるいは低抵抗状態のいずれかに変化する。抵抗状態に“0”と“1”の1ビットデータを割り当て、その抵抗状態を切り替えることで、磁気抵抗効果素子100にデータを記憶させることができる。磁気抵抗効果素子100からデータを読み出す際には、参照層30上に設けられた電極(図示せず)と記録層10との間に読み出し電流Irを流し、磁気抵抗効果素子100の抵抗状態(高抵抗状態と低抵抗状態の別)を検出する。これにより、磁気抵抗効果素子100に記録されたデータを読み出す。
以下、読み出し動作と書き込み動作を詳細に説明する。
まず、図2を参照して、読み出し動作を説明する。図2(a)の状態においては、記録層10の磁化自由領域13の磁化M13の向きは-X軸方向であり、第2磁化固定領域12の磁化M12の向きと同じである。このため、第1磁化固定領域11と磁化自由領域13との間の領域P1に磁壁DWが形成されている。また、磁化自由領域13の磁化M13は、参照層30の磁化M30と向きが揃っている(平行状態)。このとき、磁気抵抗効果素子100は、記録層10から参照層30に至る電流路の抵抗が相対的に小さい低抵抗状態である。なお、磁化M13と磁化M30とは互いに略平行であればよい。
一方、図2(b)の状態においては、記録層10の磁化自由領域13の磁化M13の向きは+X軸方向であり、第1磁化固定領域の磁化M11と向きが同じである。このため、磁化自由領域13と第2磁化固定領域12との間の領域P2に磁壁DWが形成されている。また、磁化自由領域13の磁化M13の向きは、参照層30の磁化M30の向きと反対である(反平行状態)。このとき、磁気抵抗効果素子100は、記録層10から参照層30に至る電流路の抵抗が相対的に大きい高抵抗状態である。なお、磁化M13と磁化M30とは互いに略反平行であればよい。
磁壁(Domain wall:DW)は、磁化自由領域13の磁化M13に応じて、領域P1とP2との間を行き来する。言い換えると、磁気抵抗効果素子100は磁壁DWの位置によってデータを記憶しているとも言える。
本実施の形態では、図2(a)に示す低抵抗状態を“0”とし、(b)に示す高抵抗状態を“1”と定義しているが、記憶データの割り当ては逆でもよい。ここでは+Z軸方向に流れる読み出し電流Irを図示したが、読み出し電流Irの向きは逆向きでも構わない。また、図2では読み出し電流Irが記録層10から参照層30に向かって流れる形態を示しているが、本質的には記録層10、障壁層20、参照層30からなる磁気トンネル接合を貫通する方向に電流が流れさえすれば、それ以外の経路はいかようであっても構わない。
次に、図3、図4を参照して、書き込み動作を説明する。ここでは、データ“0”を記憶している磁気抵抗効果素子100の磁化自由領域13の磁化M13の向きは-X軸方向である。磁化M13の向きと、参照層30の磁化M30の向きとは互いに揃っており、磁壁DWは、第1磁化固定領域11と磁化自由領域13の間の領域P1にある。つまり、磁気抵抗効果素子100は低抵抗状態にある。
データ“0”を記録している磁気抵抗効果素子100にデータ“1”を書き込む際には、図3(a)に示すように、-X軸方向に、且つ、図3(b)に示すように、書き込み電流Iwをパルス状に流す。書き込み電流Iwは、第2磁化固定領域12から磁化自由領域13を通って第1磁化固定領域11に流れる。この場合、磁化自由領域13には、第1磁化固定領域11から電子(スピン電子)が注入される。注入された電子のスピンは、磁壁DWの磁気モーメントに影響を及ぼす(スピントランスファー効果)。その結果、図3(c)に示すように、磁壁DWは、領域P1から領域P2に移動し、磁化自由領域13の磁化M13は、+X軸方向に反転する。よって、磁気抵抗効果素子100は、高抵抗状態に遷移する。このようにして、磁気抵抗効果素子100の記憶データ“0”が“1”に書き換えられる。書き込み電流Iwが0になっても、磁化自由領域13の磁化M13の向きは維持される。
一方、データ“1”を記憶している磁気抵抗効果素子100にデータ“0”を書き込む際には、図4(a)に示すように、+X軸方向に、且つ、図4(b)に示すように、書き込み電流Iwをパルス状に流す。書き込み電流Iwは、第1磁化固定領域11から磁化自由領域13を通って第2磁化固定領域12に流れる。この場合、磁化自由領域13には、第2磁化固定領域12からスピン電子が注入される。スピントランスファー効果により、図4(c)に示すように、磁壁DWは、領域P2から領域P1に移動し、磁化自由領域13の磁化M13は、-X軸方向に反転する。よって、磁気抵抗効果素子100は、低抵抗状態に遷移する。このようにして、磁気抵抗効果素子100の記憶データ“1”が“0”に書き換えられる。書き込み電流Iwが0になっても、磁化自由領域13の磁化M13の向きは維持される。このようにして、磁気抵抗効果素子100が保持するデータを書き換えることが可能になる。
また、第1磁化固定領域11の磁化M11、第2磁化固定領域12の磁化M12は、それぞれその向きが固定されている。このため、データ“0”を記憶している磁気抵抗効果素子100に、+X軸方向の書き込み電流Iwを流した場合(データ“0”を書き込んだ場合)であっても、スピントランスファートルクによるデータの書き換えは起こらず、磁壁DWは移動しない。データ“1”を記憶している磁気抵抗効果素子100に、-X軸方向の書き込み電流Iwを流した場合も、同様に、磁壁DWの移動は起こらない。
なお、書き込み電流Iwの向きと磁壁DWの移動方向との関係は、記録層10に使用する材料により変化する。
図3(b)、図4(b)に示す電流パルスの幅TWは0.5~20nsの間に設定される。より好ましくは0.8ns~5nsの間に設定される。また、図3(b)、図4(b)では電流パルスは矩形であるものとして示されているが、実際には有限の立ち上がり時間(Rise time)、立ち下がり時間(Fall time)を有する台形状のパルスであっても構わない。立ち上がり時間、立ち下がり時間の典型値は0~2nsである。また、電流パルスは厳密な矩形、台形状の波形を有する必要はなく、三角状の波形であっても構わない。さらに、本発明に係る磁気抵抗効果素子では書き込みに際して大きな動作マージンが得られるため、比較的大きなオーバーシュート、アンダーシュート、リンギングがあっても構わない。
次に、上記構成を有する磁気抵抗効果素子100を記憶素子として使用するメモリセル回路の構成例を、図5(a)を参照して説明する。
図5(a)は、1ビット分の磁気メモリセル回路200の構成を示している。この磁気メモリセル回路200は、1ビット分のメモリセルを構成する磁気抵抗効果素子100と、一対のビット線BL1とBL2、ワード線WLと、グラウンド線GNDと、第1トランジスタTr1と第2トランジスタTr2とを備える。
磁気抵抗効果素子100は、記録層10の一端部に第1端子T1、他端部に第2端子T2が接続され、参照層30に第3端子T3が接続された3端子構造を有する。さらに具体的には、第1端子T1は第1磁化固定領域11の一端部に、第2端子T2は第2磁化固定領域12の一端部に接続されている。
第3端子T3はグラウンド線GNDに接続されている。第1端子T1は第1トランジスタTr1のドレインに接続され、第2端子T2は第2トランジスタTr2のドレインに接続されている。第1トランジスタTr1と第2トランジスタTr2のゲート電極はワード線WLに接続されている。また、第1トランジスタTr1のソースは第1ビット線BL1に接続され、第2トランジスタTr2のソースは第2ビット線BL2に接続されている。
ただし、磁気抵抗効果素子100は必ずしも3端子型構造を有する必要はない。例えば、図5(b)に示すように、4端子構造を有していてもよい。ここでは、障壁層20の下に新たな磁性層(センサー層50)を設けている。また、センサー層50と記録層10の間には絶縁層60が設けられ、電気的に絶縁されている。センサー層50と記録層10中の磁化自由領域13は磁気的に結合しており、センサー層50の磁化M50は、記録層10中の磁化自由領域13の磁化方向に依存して変化する。センサー層50、障壁層20、参照層30によって磁気トンネル接合が形成される場合、記録層10の両端部に第1端子T1、第2端子T2が接続され、参照層30に第3端子T3が接続され、センサー層50に第4端子が接続された4端子構造を取ることもできる。4端子構造の場合には、書き込みと読み出しで電流経路が電気的に隔たることになり、回路設計に新たな自由度がもたらされる。なお、図5(b)の例では、記録層10とセンサー層50との間には絶縁層60が設けられていたが、記録層10とセンサー層50との間に、記録層10やセンサー層50の材料と相性のよい材料を使用した導電層を設けてもよい。またその磁気結合の様式も、静磁気的な結合であってもよいし、交換相互作用的な結合であってもよい。
磁気抵抗効果素子100に情報を書き込む際には、まず、磁気抵抗効果素子100を選択するため、ワード線WLにトランジスタTr1、Tr2をオンさせるアクティブレベルの信号を印加する。ここでは、トランジスタTr1とTr2がNチャネルMOSトランジスタから構成することとする。この場合、ワードラインWLはHighレベルに設定される。これにより、第1トランジスタTr1と第2トランジスタTr2はオン状態になる。一方、書き込み対象のデータに応じて、第1ビット線BL1と第2ビット線BL2の一方をHighレベルに設定し、他方をグランドレベルに設定する。
具体的には、データ“1”を書き込む場合は、第1ビット線BL1をLowレベルとし、第2ビット線BL2をHighレベルとする。これにより、図3(a)に示すように、第2磁化固定領域12から第1磁化固定領域11に向かう方向(以下、順方向とする)に書き込み電流Iwが流れ、図3(b)に示すように、データ“1”が書き込まれる。一方、データ“0”を書き込む場合は、第1ビット線BL1をHighレベルとし、第2ビット線BL2をLowレベルとする。これにより、図4(a)に示すように、第1磁化固定領域11から第2磁化固定領域12に向かう方向(以下、逆方向とする)に書き込み電流Iwが流れ、図4(b)に示すように、データ“0”が書き込まれる。このようにして、磁気抵抗効果素子100へのビットデータの書き込みが行われる。
一方、磁気抵抗効果素子100に記憶されている情報を読み出す際には、ワード線WLをアクティブレベルに設定し、第1トランジスタTr1と第2トランジスタTr2とをオン状態とする。また、第1ビット線BL1と第2ビット線BL2の両方をHighレベルに設定する、或いは、ビット線BL1とBL2の一方をHighレベルに、他方を開放状態に設定する。Highレベルとなったビット線から記録層10→障壁層20→参照層30→第3端子T3→グラウンド線GNDと電流が流れる。この電流の大きさを測定することにより、記録層10から参照層30に至る経路の抵抗の大きさ、即ち、記憶データが求められる。
なお、磁気メモリセル回路200の構成や回路動作は一例であって、適宜変更されうる。例えば、第1端子T1を第2磁化固定領域12に、第2端子T2を第1磁化固定領域11に接続してもよい。また、グラウンドをグラウンド電圧以外の基準電圧に設定してもよい。また、第3端子T3をグラウンド線GNDではなく、第3ビット線(図示せず)に接続するように構成してもよい。この場合読み出しの際は、ワード線WLをHighレベルに設定するとともに、第3ビット線をHighレベルにし、第1ビット線と第2ビット線の一方又は両方をグラウンドレベルとする。この状態で、第3ビット線から第1ビット線BL1、第2ビット線BL2に流れる電流を測定する。
次に、図5(a)に例示した磁気メモリセル回路200を複数備える磁気メモリ装置300の構成を図6を参照して説明する。
磁気メモリ装置300は、図6に示すように、メモリセルアレイ311、Xドライバ312、Yドライバ313、コントローラ314を備えている。メモリセルアレイ311はN行M列のアレイ状に配置された磁気メモリセル回路200を有している。各列の磁気メモリセル回路200は対応する列の第1ビット線BL1と第2ビット線BL2の対に接続されている。また、各行の磁気メモリセル回路200は、対応する行のワード線WLとグラウンド線GNDに接続されている。
Xドライバ312は、複数のワード線WLに接続されており、ローアドレスを受け、ローアドレスをデコードして、アクセス対象の行のワード線WLをアクティブレベルに駆動する(第1トランジスタTr1、第2トランジスタTr2がNチャネルMOSトランジスタの場合、Highレベルとする)。
Yドライバ313は、磁気抵抗効果素子100にデータを書き込む書き込み手段及び磁気抵抗効果素子100からデータを読み出す読み出し手段として機能するものである。Yドライバ313は、複数の第1ビット線BL1と第2ビット線BL2に接続されている。データの書き込み或いは読み出しの時に、Yドライバ313は、カラムアドレスを受け、カラムアドレスをデコードして、アクセス対象の磁気メモリセル回路200に接続されている第1ビット線BL1と第2ビット線BL2を所望のデータ書き込み状態或いは読み出し状態に設定する。
即ち、Yドライバ313は、データ“1”を書き込む場合は、書き込み対象の磁気メモリセル回路200に接続された第1ビット線BL1をLowレベルとし、第2ビット線BL2をHighレベルとする。また、データ“0”を書き込む場合は、第1ビット線BL1をHighレベルとし、第2ビット線BL2をLowレベルとする。
さらに、磁気メモリセル回路200に記憶されている情報を読み出す際には、Yドライバ313は、第1ビット線BL1と第2ビット線BL2の両方をHighレベルに設定し、或いは、ビット線BL1とBL2の一方をHighレベルに、他方を開放状態に設定する。ビット線BL1、BL2を流れる電流と基準値とを比較して、各列の磁気メモリセル回路200の抵抗状態を判別し、これにより、記憶データを読み出す。
コントローラ314は、データ書き込み、あるいはデータ読み出しに応じて、Xドライバ312とYドライバ313のそれぞれを制御する。
なお、磁気抵抗効果素子100の参照層30に接続されるグラウンド線GNDはXドライバ312に接続されているが、これは、前述のように、Yドライバ313に接続される読み出しビット線によって代用することも可能である。
上記実施の形態においては、磁気抵抗効果素子100の記録層10の細線の線幅、膜厚をともに40nm以下とし、膜厚を細線の線幅の1/2倍以上、かつ、2倍以下とすることを述べた。以下、記録層10の細線の設計値を限定することにより、低いしきい電流密度で磁壁移動を実現できる理由を説明する。
まず、電流誘起磁壁移動デバイスを低電流で安定して動作させるためには、低いしきい電流密度を実現することが有効である。電流誘起磁壁移動のしきい電流密度Jcは、次の式で表される。
e、h-(以下、ディラック定数をh-と表現する場合がある)は物理定数である。Ms、Pは素子の材料に依存するパラメータである。Δ、HK⊥は磁壁に関するパラメータである。一般に、飽和磁化Msが小さい材料はスピン分極率Pも小さい。このため、Ms/Pにより、しきい電流密度Jcを小さくすることは難しい。
よって、しきい電流密度Jcを小さくするためには、磁壁幅パラメータΔと困難軸異方性磁場HK⊥の値を小さくすることができる材料を用いることが有効である。
磁壁幅パラメータΔについては、磁壁幅δwとの間にδw=πΔとなる関係がある。また、磁壁幅パラメータΔは、交換スティフネス定数Aと容易軸方向の有効磁気異方性定数Keffとにより次の式のように表される。
困難軸異方性磁場HK⊥とは、磁化容易軸以外の2つの方向に磁壁の磁化が向いた場合のエネルギーの差を磁場の大きさで表した量である。
電流誘起磁壁移動の初期の研究では、面内方向に磁化容易軸を有するNiFe合金が用いられることが多かった。当時の研究では、NiFe細線の線幅は100nmオーダーであり、膜厚は10nmオーダーであった。この場合、磁壁幅δwは100nm程度となる。また、困難軸異方性磁場HK⊥は、図7(a-1)に示す磁壁の磁化がY軸方向を向いた場合と、図7(a-2)に示す磁壁の磁化がZ軸方向を向いた場合と、のエネルギー差に相当する。言い換えると、困難軸異方性磁場HK⊥は、磁化がδw×t面に現れた状態(図7(a-1))と、磁化がδw×w面に現れた状態(図7(a-2))の差で表される。この場合、理論的なしきい電流密度Jcを計算により求めると、1013~1014A/m2のオーダーとなる。しかし、このような大きな電流密度の電流を素子に流すことは事実上不可能である。これよりも小さな電流密度においてジュール発熱により、素子の動作が不安定になり、充分な制御性が得られないことが問題となっていた。
特許文献2では、面内磁化方式ではなく、垂直磁化方式を採用することにより、上述の問題が解決されることが示されている。垂直磁化方式の場合、膜厚は数nm程度、磁壁幅δwは10nm程度に設計されている。図7(b-1)に示すように困難軸異方性磁場HK⊥は、磁壁の磁化がY軸方向を向いた場合と、図7(b-2)に示すように磁壁の磁化がX軸方向をむいた場合のエネルギー差に相当する。言い換えると、困難軸異方性磁場HK⊥は、磁化がδw×t面に現れた状態(図7(b-1))と、磁化がw×t面に現れた状態(図7(b-2))との差で表される。この場合、理論的なしきい電流密度Jcを計算により求めると、1011A/m2のオーダーとなる。よって、ジュール発熱の問題は深刻ではなくなり、良好な磁壁移動特性が維持されることが確認されている。
しかしながら、垂直磁化方式においても、細線の線幅を更に小さくすると、低い電流密度での磁壁移動が実現されなくなることが見いだされた。これは、線幅wが磁壁幅δwより大きい場合、図7(b-1)に示すようにブロッホ磁壁が形成されるが、線幅wが磁壁幅δwより小さくなると、図7(b-2)に示すようにネール磁壁が形成され、線幅wと磁壁幅δwとの差が大きくなるに従って、困難軸異方性磁場HK⊥が大きくなるためである。
図8(a)~(d)に、垂直磁化方式を採用した場合において、膜厚tが2、4、6nmのそれぞれの場合について、細線幅wを変化させた場合のマイクロマグネティックシミュレーションの結果を示す。
具体的には、図8(a)は、磁壁幅パラメータΔの、細線の線幅wと膜厚tとに対する依存性を示す。ここでは、線幅wと膜厚tに応じた磁壁幅パラメータΔの値を求めた。線幅wは、10nmから100nmまでの範囲で、所定の間隔で線幅wを変え、シミュレーションを行った。以下、図8(b)~(d)についても同様である。
図8(b)は、困難軸異方性磁場HK⊥の、細線の線幅wと膜厚tに対する依存性を示す。ここでは、線幅wと膜厚tに応じた困難軸異方性磁場を示す値としてμ0HK⊥を求めた。なお、μ0は真空の透磁率である。
上述したように、しきい電流密度Jcは、磁壁幅パラメータΔと困難軸異方性磁場HK⊥の積により決まるため、図8(a)、(b)で求めた値に基づいて、しきい電流密度Jcを求めた。また、しきい電流密度Jcに細線の断面積を乗算したしきい電流Ithを求めた。図8(c)に、しきい電流密度Jcを、図8(d)に、しきい電流Ithを示す。なお、数式1におけるMs/P(素子の材料に依存するパラメータ)は、細線としてCо/Ni積層膜を使用した場合の磁化曲線の評価値から決定した値を使用した。また、磁壁幅パラメータΔ、および困難軸異方性磁場Hk⊥を計算する際にも、Co/Ni積層膜の物理定数を用いてシミュレーションを行った。具体的には、飽和磁化Msは0.96Tとし、容易軸方向(Z軸方向)の磁気異方性定数は6.1×105J/m3とした。
図8(a)に示すように、磁壁幅パラメータΔの値は、線幅w、膜厚tの変化に対して、増減がほとんどない。よって、磁壁幅パラメータΔは、垂直磁化方式の場合、線幅w、膜厚tに依存しないといえる。
一方で、図8(b)に示すように、μ0HK⊥は、線幅wが小さくなるにつれて減少しているものの、約30nm以下では、再び大きくなっている。この傾向は、膜厚tが、2nm、4nm、6nmのいずれの場合でも同様であった。
このため、図8(c)に示すように、しきい電流密度Jcは、線幅wが20nm以下において、ジュール発熱の影響を受けることなく安定した動作を実現できる値である1×1012A/m2を上回る。つまり、垂直磁化方式を採用した場合、線幅wが約20nm以下となると安定した動作を実現することができないといえる。
一方、面内磁化方式において、実施の形態1で説明したように細線の線幅と膜厚の設計値を限定することで、しきい電流密度を低くすることが可能である。困難軸異方性磁場は、図7(c-1)に示すようにδw×t面に磁壁の磁化が現れた場合と、図7(c-2)に示すようにδw×w面に磁壁の磁化が現れた場合の差で与えられる。ここで、線幅wと膜厚tが等しい場合、つまり、t=wとすると、困難軸異方性磁場がゼロに近くなることが予測される。また、線幅wを小さくすると、磁壁の左右(両側)における磁区の部分の形状磁気異方性が大きくなることから、数式2に示した、磁壁幅パラメータΔに影響する有効磁気異方性定数Keffが大きくなり、磁壁幅パラメータΔが小さくなる。
図8(e)~(h)に、実施の形態1で説明したように、面内磁化方式において、サイズ(線幅と膜厚)を上述した範囲内とした記録層10の細線を使用した場合の、マイクロマグネティックシミュレーションの結果を示す。
具体的には、図8(e)は、磁壁幅パラメータΔの、細線の線幅wと膜厚tとに対する依存性を示す。ここでは、線幅wと膜厚tに応じた磁壁幅パラメータΔの値を求めた。膜厚tは、10nm、14nm、20nm、30nmの4パターンとし、線幅wは、10nmから100nmまでの範囲で、所定の間隔で線幅wを変えてシミュレーションを行った。以下、図8(f)~(h)についても同様である。
図8(f)は、困難軸異方性磁場HK⊥の、細線の線幅wと膜厚tに対する依存性を示す。ここでは、線幅wと膜厚tに応じた困難軸異方性磁場を示す値としてμ0HK⊥を求めた。なお、μ0は真空の透磁率である。
図8(g)にしきい電流密度Jcを、図8(h)にしきい電流Ithを示す。なお、数式1におけるMs/P(素子の材料に依存するパラメータ)は、細線としてNiFeを使用した場合の磁化曲線の評価値から決定した値を使用した。また、磁壁幅パラメータΔ、および困難軸異方性磁場Hk⊥を計算する際にも、NiFeの物理定数を用いてシミュレーションを行った。具体的には、飽和磁化Msは1.0Tとし、容易軸方向(X軸方向)の磁気異方性定数は0J/m3とした。
図8(f)に示すように、線幅wの値が所定の値以下(ここでは、20nm以下)であり、線幅wと膜厚tがほぼ等しいときに、困難軸異方性磁場HK⊥に極小値を取っている。このとき、図8(g)に示すように、しきい電流密度Jcは、1×1012A/m2以下となり、素子に導入可能な条件を満たす。
また、面内磁化膜の場合、磁壁幅パラメータΔや困難軸異方性磁場HK⊥は細線の幅や膜厚により決定され、定性的な傾向として材料定数にはほとんど依存しない。従って、図8には、細線の材料としてNiFeを使用した場合のシミュレーション結果を示したが、あらゆる面内磁化膜に対してこの計算結果は定性的には普遍である。
なお、シミュレーションの結果、線幅wと膜厚tとをほぼ等しくすることで、困難軸異方性磁場HK⊥を極小とできる線幅wには上限があることが分かった。線幅wが40nm以上となると、線幅wと膜厚tとをほぼ等しくしたとしても、困難軸異方性磁場HK⊥は極小値をとらない。これは、図9(a)に示すように、線幅wがある程度大きくなると(細線の材料としてNiFeを使用した場合、40nm以上)、磁壁がVоrtex型(ヴォルテックス型)の構造を取る。Vоrtex型(ヴォルテックス型)の磁壁を電流で駆動(移動)する場合には、磁壁が確率的に振る舞うことが知られている(Physical Review Letters, vol. 95, 026601 (2005)等)。つまり、磁壁移動の制御性が不安定になってしまう。
一方、線幅wが40nm以下の場合、磁壁は図9(b)に示すようなTransverse型(トランスヴァース型)の構造を、安定状態においても、磁壁の移動中においてもとることができる。従って、制御性は安定したものとなることが発明者の行ったシミュレーションからわかった。なお、膜厚が線幅よりも薄い場合(t<w)には、Transverse型(トランスヴァース型)磁壁中の磁化は膜面内で細線短手方向を向く。一方で膜厚が線幅よりも厚い場合(t>w)には、Transverse型(トランスヴァース型)磁壁中の磁化は膜面垂直方向を向く。
なお、上述の効果(困難軸異方性磁場HK⊥が最小値を取る)は、理想的には線幅wと膜厚tとが等しいときに得られるが、実際には、加工時に発生する理想形状からのずれ、磁気特性の場所による揺らぎ等により、線幅wと膜厚tとを完全に等しくすることは難しい。しかしながら、シミュレーションにより、線幅w、膜厚tが40nm以下であり、かつ、膜厚が線幅の1/2倍から2倍の範囲内にある場合に、しきい電流密度Jcを1×1012A/m2以下にできることが分かった。
また、界面に垂直磁気異方性が発現される場合には、膜厚tを線幅wより小さく(薄く)することで同様の効果が得られる。例えば、記録層にCоFeBあるいはFeBを用い、障壁層にMgOを用いると、界面に垂直磁気異方性が発現されるが、この場合、膜厚tを線幅の1/4倍~3/4倍の範囲とすることで、本発明の効果が最大限に得られる。
なお、図8(h)に示すように、膜厚、線幅が10nm以下では、しきい電流Ithは5.7μAであり、このような小さなしきい電流は、垂直磁化方式の場合には得ることができない。よって、本発明に係る磁気抵抗効果素子を磁気メモリに適用した場合には、アトジュールレベルの動的消費電力を実現できる。
図10に、NiFeの材料パラメータを仮定して行ったマイクロマグネティックシミュレーションの結果に基づいて求めた線幅wと膜厚tの好適な設計範囲を示す。NiFeの場合、線幅、膜厚が30nmを超えると安定状態、あるいは磁壁移動過程において磁壁がVоrtex構造(ヴォルテックス構造)をとることが確認された。前述したように、Vоrtex磁壁(ヴォルテックス磁壁)は不安定動作の原因となることから、線幅、膜厚の上限は30nmである。図8(g)に示すように、膜厚tと線幅wとが等しいとき(t=w)に最小のしきい電流密度が得られている。従って、本発明の効果は膜厚tと線幅wとが等しいときに最も高くなるといえる。
また、NiFe細線に導入できる電流密度の上限値はほぼ3×1012A/m2である。図8(g)では、ほぼ膜厚tが線幅wの2/3倍から1.5倍の範囲にあるとき、この条件を満たしている。従って、NiFe細線の場合、本発明の効果が得られる膜厚tの下限値は線幅wの2/3、上限値は線幅wの1.5倍である(図10において内側のハッチ領域)。NiFe以外の材料(例えば飽和磁化の小さい材料、スピン分極率の高い材料、交換スティフネス定数の大きい材料、細線長手方向の磁気異方性が大きい材料)で適当なパラメータを仮定した場合では好適な設計範囲は緩和され、図10において縦横方向に網掛けを施された領域(t=w/2より上、t=40より下、t=2wより右、w=40より左)となる。つまり、線幅w、膜厚tが40nm以下であり、かつ、膜厚が線幅の1/2倍から2倍の範囲内となる。
以上説明したように、本実施の形態に係る磁気抵抗効果素子100は、細線の線幅が小さい場合に、具体的には、線幅が40nm以下である場合に、低いしきい電流密度で磁壁を駆動することが可能である。
また、垂直磁化を有する材料は少ないため、垂直磁化方式においては材料選択の幅が限定されるが、面内磁化方式を採用した場合、選択可能な材料が多岐にわたるという利点もある。
また、垂直磁化を有する材料は少ないため、垂直磁化方式においては材料選択の幅が限定されるが、面内磁化方式を採用した場合、選択可能な材料が多岐にわたるという利点もある。
なお、細線の線幅の下限値については物理的な制約はなく、その値は加工技術で決まる。ばらつくことなくスムーズな細線を作る上では、結晶粒のサイズが目安となるため、線幅の下限値は5nm程度となる。また、10nm程度かそれを下回るような超極微細世代においては、リソグラフィー技術等のトップダウン的な手法を用いるのではなく、自己組織化等のボトムアップ的な手法を用いて、細線を形成してもよい。この場合、少なくとも強磁性が発現する線幅があればよい。強磁性が発現する線幅は用いる材料に強く依存するが、交換相互作用が大きい材料を用いる場合、線幅は3nm程度となる。また、細線の線幅の下限値については、以下の説明においても同様である。
(実施の形態2)
実施の形態1に係る磁気抵抗効果素子100において、記憶データを安定して書き込み且つ読み出すためには、参照層30の磁化M30の方向を安定的に固定する必要がある。参照層30の磁化M30を安定させるため、参照層30を積層フェリ結合層から構成することが有効である。
実施の形態1に係る磁気抵抗効果素子100において、記憶データを安定して書き込み且つ読み出すためには、参照層30の磁化M30の方向を安定的に固定する必要がある。参照層30の磁化M30を安定させるため、参照層30を積層フェリ結合層から構成することが有効である。
以下、図11を参照して、参照層30を積層フェリ結合層から構成した磁気抵抗効果素子101の実施の形態を説明する。
実施の形態2において、参照層30は、強磁性層31と結合層32と強磁性層33とが積層され、積層フェリ結合した積層構造を有する。強磁性層31と強磁性層33とは、結合層32により反強磁的に結合している。強磁性層31と強磁性層33は、Fe、Co、Niを含む強磁性材料を使用することが望ましい。また、結合層32は、Ru等を使用することが望ましい。その他の構成については、実施の形態1と同様である。
実施の形態2において、参照層30は、強磁性層31と結合層32と強磁性層33とが積層され、積層フェリ結合した積層構造を有する。強磁性層31と強磁性層33とは、結合層32により反強磁的に結合している。強磁性層31と強磁性層33は、Fe、Co、Niを含む強磁性材料を使用することが望ましい。また、結合層32は、Ru等を使用することが望ましい。その他の構成については、実施の形態1と同様である。
この構成によれば、記録層10の磁化自由領域13の磁化M13の向きと、参照層30を構成する強磁性層31、33のうちで、記録層10に近接する強磁性層31の磁化M31の向きとが一致したときに、磁気抵抗効果素子101は、平行状態となり、低抵抗状態となる。一方、記録層10の磁化自由領域13の磁化M13の向きと、強磁性層31の磁化M31の向きが反対方向となったときに、磁気抵抗効果素子101は、反平行状態となり、高抵抗状態となる。
実施の形態2においても、実施の形態1と同様に、低いしきい電流密度で磁壁を駆動することが可能である。
この発明は、上記実施の形態に限定されず、種々の変形が可能である。以下変形例・応用例について説明する。
(変形例1)
磁気抵抗効果素子の抵抗とデータの割り当ては任意であり、低抵抗状態にデータ“1”、高抵抗状態にデータ“0”を割り当てても良い。
磁気抵抗効果素子の抵抗とデータの割り当ては任意であり、低抵抗状態にデータ“1”、高抵抗状態にデータ“0”を割り当てても良い。
(変形例2)
磁気抵抗効果素子100は、記録層10の第1磁化固定領域11、第2磁化固定領域12の磁化をより強固に固定するための層をさらに有してもよい。図12(a)に示すように、変形例2では、第1磁化固定領域11の下に第1磁化固定層41が設けられており、その磁化M41は、第1磁化固定領域11の磁化M11と向きが揃っている。第2磁化固定領域12の下に第2磁化固定層42が設けられており、その磁化M42は、第2磁化固定領域12の磁化M12と向きが揃っている。
磁気抵抗効果素子100は、記録層10の第1磁化固定領域11、第2磁化固定領域12の磁化をより強固に固定するための層をさらに有してもよい。図12(a)に示すように、変形例2では、第1磁化固定領域11の下に第1磁化固定層41が設けられており、その磁化M41は、第1磁化固定領域11の磁化M11と向きが揃っている。第2磁化固定領域12の下に第2磁化固定層42が設けられており、その磁化M42は、第2磁化固定領域12の磁化M12と向きが揃っている。
(変形例3)
あるいは、図12(b)に示すように、第1磁化固定層41、第2磁化固定層42は、記録層10の上に設けられてもよい。ここでは、第1磁化固定層41は第1磁化固定領域11の上に、第2磁化固定層42は第2磁化固定領域12の上に設けられている。変形例2と同様に、第1磁化固定層41により、第1磁化固定領域11の磁化M11が、第2磁化固定層42により、第2磁化固定領域12の磁化M12が、それぞれより強固に固定される。
あるいは、図12(b)に示すように、第1磁化固定層41、第2磁化固定層42は、記録層10の上に設けられてもよい。ここでは、第1磁化固定層41は第1磁化固定領域11の上に、第2磁化固定層42は第2磁化固定領域12の上に設けられている。変形例2と同様に、第1磁化固定層41により、第1磁化固定領域11の磁化M11が、第2磁化固定層42により、第2磁化固定領域12の磁化M12が、それぞれより強固に固定される。
(変形例4)
また、あるいは、第1磁化固定層41、第2磁化固定層42の一方のみを設けてもよい。図12(c)に示す例では、第1磁化固定領域11の上にだけ、第1磁化固定層41が設けられている。磁気抵抗効果素子100は、第2磁化固定領域12の磁化M12の固定のための第2磁化固定層42を有しない。第1磁化固定層41の配置位置は、第1磁化固定領域11の下であってもよい。あるいは、第2磁化固定領域12の上又は下に、第2磁化固定層42を設けて、第1磁化固定領域11の磁化M11の固定のための第1磁化固定層41を設けないようにしてもよい。
また、あるいは、第1磁化固定層41、第2磁化固定層42の一方のみを設けてもよい。図12(c)に示す例では、第1磁化固定領域11の上にだけ、第1磁化固定層41が設けられている。磁気抵抗効果素子100は、第2磁化固定領域12の磁化M12の固定のための第2磁化固定層42を有しない。第1磁化固定層41の配置位置は、第1磁化固定領域11の下であってもよい。あるいは、第2磁化固定領域12の上又は下に、第2磁化固定層42を設けて、第1磁化固定領域11の磁化M11の固定のための第1磁化固定層41を設けないようにしてもよい。
第1磁化固定層41、第2磁化固定層42にはFe,Co,Niを含む強磁性体や、Ir-Mn、Pt-Mn、Fe-Mnなどの反強磁性体を用いることができる。また、第1磁化固定層41と第1磁化固定領域11の磁化方向、第2磁化固定層42と第2磁化固定領域12の磁化方向は必ずしも平行方向である必要はなく、反平行方向に結合することで磁化を強固に固定してもよい。
(変形例5)
上記の実施の形態1では、図1(c)に示すように、記録層10は、上から見た場合の形状(X-Y平面における形状)が四角形であったが、記録層10の形状はこれに限られない。図12(d)に示す例では、記録層10は、X-Y平面における形状が凹型となるようパターニングされている。このように構成することにより、面内方向の外部磁場を用いて記録層10に単一の磁壁を導入することが可能である。
上記の実施の形態1では、図1(c)に示すように、記録層10は、上から見た場合の形状(X-Y平面における形状)が四角形であったが、記録層10の形状はこれに限られない。図12(d)に示す例では、記録層10は、X-Y平面における形状が凹型となるようパターニングされている。このように構成することにより、面内方向の外部磁場を用いて記録層10に単一の磁壁を導入することが可能である。
(変形例6)
また、実施の形態1では、障壁層20、参照層30は、記録層10の磁化自由領域13の上面の領域に積層されていた。これは、参照層30は、少なくとも記録層10の磁化自由領域13をオーバーラップする必要があるからである。しかしながら、積層構造はこれに限られず、図13(a)に示すように、記録層10の上面全体に、障壁層20、参照層30を積層してもよい。この場合、積層体の製造が容易である。
また、実施の形態1では、障壁層20、参照層30は、記録層10の磁化自由領域13の上面の領域に積層されていた。これは、参照層30は、少なくとも記録層10の磁化自由領域13をオーバーラップする必要があるからである。しかしながら、積層構造はこれに限られず、図13(a)に示すように、記録層10の上面全体に、障壁層20、参照層30を積層してもよい。この場合、積層体の製造が容易である。
(変形例7)
また、必ずしも、記録層10を一番下に積層する必要はなく、図13(b)に示すように、下から、つまり、基板側から、参照層30、障壁層20、記録層10の順に積層してもよい。この場合には参照層30は記録層と同等か、それ以上の面積を有する形状にパターニングされる。
また、必ずしも、記録層10を一番下に積層する必要はなく、図13(b)に示すように、下から、つまり、基板側から、参照層30、障壁層20、記録層10の順に積層してもよい。この場合には参照層30は記録層と同等か、それ以上の面積を有する形状にパターニングされる。
(変形例8)
上述した例では、1つの磁気抵抗効果素子100は、1つの参照層30のみを有していたが、図14(a)に示すように、参照層を複数設けてもよい。この場合、各参照層30に隣接する記録層10の領域がそれぞれ磁化自由領域となる。このような構成により、磁気抵抗効果素子100を多値メモリとすることができる。あるいは、磁気抵抗効果素子をアナログメモリとすることができる。
上述した例では、1つの磁気抵抗効果素子100は、1つの参照層30のみを有していたが、図14(a)に示すように、参照層を複数設けてもよい。この場合、各参照層30に隣接する記録層10の領域がそれぞれ磁化自由領域となる。このような構成により、磁気抵抗効果素子100を多値メモリとすることができる。あるいは、磁気抵抗効果素子をアナログメモリとすることができる。
(変形例9)
図14(b)に示すように、記録層10が複数の磁化自由領域を含み、これら複数の磁化自由領域を覆うように、参照層30を長手方向に長く形成してもよい。この場合も、変形例8と同様に、磁気抵抗効果素子100を多値メモリ、あるいは、アナログメモリとすることができる。
図14(b)に示すように、記録層10が複数の磁化自由領域を含み、これら複数の磁化自由領域を覆うように、参照層30を長手方向に長く形成してもよい。この場合も、変形例8と同様に、磁気抵抗効果素子100を多値メモリ、あるいは、アナログメモリとすることができる。
(変形例10)
図15(a)に、記録層10に磁壁のピンサイトを形成する例を示す。ここでは、記録層10の上面(XY面内)であって、第1磁化固定領域11と磁化自由領域13との間(14)、第2磁化固定領域12と磁化自由領域13との間(15)、それぞれに凹型の切り欠き(ピンサイト)を形成している。ピンサイトにより、磁壁DWの移動を止めることができる。なお、ピンサイトは、何れか一カ所のみに設けられてもよい。
図15(a)に、記録層10に磁壁のピンサイトを形成する例を示す。ここでは、記録層10の上面(XY面内)であって、第1磁化固定領域11と磁化自由領域13との間(14)、第2磁化固定領域12と磁化自由領域13との間(15)、それぞれに凹型の切り欠き(ピンサイト)を形成している。ピンサイトにより、磁壁DWの移動を止めることができる。なお、ピンサイトは、何れか一カ所のみに設けられてもよい。
(変形例11)
ピンサイトの形成位置は,上述の例に限られない。図15(b)に示す例では、記録層10の前面(XZ面内)であって、第1磁化固定領域11と磁化自由領域13との間(14)、第2磁化固定領域12と磁化自由領域13との間(15)、それぞれに凹型の切り欠き(ピンサイト)を形成している。この場合も、ピンサイトの位置で磁壁DWの移動を止めることができる。なお、ピンサイトは、何れか一カ所のみに設けられてもよい。
ピンサイトの形成位置は,上述の例に限られない。図15(b)に示す例では、記録層10の前面(XZ面内)であって、第1磁化固定領域11と磁化自由領域13との間(14)、第2磁化固定領域12と磁化自由領域13との間(15)、それぞれに凹型の切り欠き(ピンサイト)を形成している。この場合も、ピンサイトの位置で磁壁DWの移動を止めることができる。なお、ピンサイトは、何れか一カ所のみに設けられてもよい。
(変形例12)
あるいは、記録層10に切り欠きの形成することなく、第1磁化固定領域11と磁化自由領域13との間(14)、第2磁化固定領域12と磁化自由領域13との間(15)、それぞれに材料特性の異なる領域を設けることによっても、ピンサイトを形成することができる。図15(c)に変形例12に係る磁気抵抗記録素子100の形状の例を示す。ここでは、着色部が材料特性の異なる領域である。なお、ピンサイトは、何れか一カ所のみに設けられてもよい。
あるいは、記録層10に切り欠きの形成することなく、第1磁化固定領域11と磁化自由領域13との間(14)、第2磁化固定領域12と磁化自由領域13との間(15)、それぞれに材料特性の異なる領域を設けることによっても、ピンサイトを形成することができる。図15(c)に変形例12に係る磁気抵抗記録素子100の形状の例を示す。ここでは、着色部が材料特性の異なる領域である。なお、ピンサイトは、何れか一カ所のみに設けられてもよい。
またピンサイトを有する変形例10、11、12は、多値メモリ、アナログメモリとしての実施が可能な変形例8、9と組み合わせることもできる。この場合には記録層10の磁化自由領域内、磁化自由領域間にピンサイトを形成することになる。
さらに、情報保持状態において磁壁を安定してピン止めするためにはピンサイトを形成するほかに、第1磁化固定領域11、第2磁化固定領域12の平面形状、断面形状を適宜設計することによって磁壁を安定してピン止めすることも可能である。例えば、図8に示したシミュレーション結果から明らかになったように、細線幅と膜厚を40nm以下に設計し、かつ膜厚を線幅の1/2以上、2倍以下とすることによって低電流密度での磁壁移動が可能である。これは逆に言えば、この範囲を外すことによって、磁壁移動が起こりにくくすることができるということである。従って、第1磁化固定領域11、第2磁化固定領域12の膜厚が線幅の1/2以下、または2倍以上となるように設計すれば、第1磁化固定領域11、第2磁化固定領域12においては、磁壁移動は起こらない。また、このような実施の形態においては、磁化自由領域13と、第1磁化固定領域11及び第2磁化固定領域12との間でy-z断面において形状の差が生じることになる。一般に磁壁は断面形状の差がある部分において強いピニングが働くことから、実効的な磁壁のピンサイトとして機能することになる。
一例として、磁化自由領域13の線幅を15nm、膜厚を15nmとし、第1磁化固定領域11、第2磁化固定領域12の線幅を35nm、膜厚を15nmとすることにより上述のような磁壁のピン止め機構を実現することができる。他の例として、磁化自由領域13の線幅を20nm、膜厚を20nmとし、第1磁化固定領域11、第2磁化固定領域12の線幅を20nm、膜厚を9nmとすることにより上述のような磁壁のピン止め機構を実現することができる。
(変形例13)
上述の実施の形態、変形例では、記録層10は長手方向に延伸した形状を有していたが、記録層10の形状はこれに限られない。図15(d)に示す例では、記録層10はアーチ状の形状を有する。記録層10の成膜前に、成膜面をアーチ状に形成することにより、記録層10をこのように形成することができる。あるいは、記録層10の形成工程の前に実施されるVia作製工程において、CMPプロセス等を調整して、磁性膜成膜面に凹凸が残るようすることで、記録層10をアーチ状に形成することができる。記録層10をアーチ状に形成することにより、基板垂直成分を有する外部磁場によって記録層10へ容易に磁壁を導入することができる。
上述の実施の形態、変形例では、記録層10は長手方向に延伸した形状を有していたが、記録層10の形状はこれに限られない。図15(d)に示す例では、記録層10はアーチ状の形状を有する。記録層10の成膜前に、成膜面をアーチ状に形成することにより、記録層10をこのように形成することができる。あるいは、記録層10の形成工程の前に実施されるVia作製工程において、CMPプロセス等を調整して、磁性膜成膜面に凹凸が残るようすることで、記録層10をアーチ状に形成することができる。記録層10をアーチ状に形成することにより、基板垂直成分を有する外部磁場によって記録層10へ容易に磁壁を導入することができる。
(変形例14)
上述の実施の形態、変形例においては、記録層10のY-Z断面は正方形あるいは長方形である例を説明したが、記録層10にテーパーを設けてもよい。変形例14に係る磁気抵抗効果素子100の形状の例を図16(a)に示す。記録層10をテーパー状に形成することで、磁壁の移動をスムーズにし、しきい電流密度をより低減することができる。このような形状は、記録層10のパターニングプロセスの調整(入射イオンビームの角度、ハードマスクの形状の調整等)により実現できる。
上述の実施の形態、変形例においては、記録層10のY-Z断面は正方形あるいは長方形である例を説明したが、記録層10にテーパーを設けてもよい。変形例14に係る磁気抵抗効果素子100の形状の例を図16(a)に示す。記録層10をテーパー状に形成することで、磁壁の移動をスムーズにし、しきい電流密度をより低減することができる。このような形状は、記録層10のパターニングプロセスの調整(入射イオンビームの角度、ハードマスクの形状の調整等)により実現できる。
また、図16(b)には、記録層10にテーパーを設けた他の例を示す。ここでは、基板側の面の面積の方が、上側(障壁層20側)の面の面積より小さい。このような形状は、成膜面に溝を形成して成膜することで実現できる。成膜には、物理気相堆積(Physical Vapor Deposition)法、メッキ法等のウェットプロセスを使用することができる。
(変形例15)
また、変形例2~14のいずれにおいても、実施の形態2で説明した積層フェリ構造を参照層30に採用することができる。
また、変形例2~14のいずれにおいても、実施の形態2で説明した積層フェリ構造を参照層30に採用することができる。
また、上記はすべて3(または4)端子型のSTT-MRAMを想定した実施の形態であるが、この他に本発明の技術思想は大容量ストレージとしての応用が可能なレーストラックメモリに適用することもできる。すなわち、強磁性体から構成され、複数の記録磁区を有するトラック(記録層)を有し、該トラックは細線長手方向に磁化容易軸を有し、線幅は40nm以下であり、その膜厚は線幅の1/2以上、かつ、2倍以下であるような磁気メモリ装置を提供することもできる。
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内およびそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
本出願は、2015年5月14日に出願された日本国特許出願2015-98976号に基づくものであり、その明細書、特許請求の範囲、図面および要約書を含むものである。上記日本国特許出願における開示は、その全体が本明細書中に参照として含まれる。
100 磁気抵抗効果素子
101 磁気抵抗効果素子
10 記録層
11 第1磁化固定領域
12 第2磁化固定領域
13 磁化自由領域
14 第1磁化固定領域11と磁化自由領域13との間
15 第2磁化固定領域12と磁化自由領域13との間
20 障壁層
30 参照層
31 強磁性層
32 結合層
33 強磁性層
41 第1磁化固定層
42 第2磁化固定層
50 センサー層
60 絶縁層
200 磁気メモリセル回路
300 磁気メモリ装置
311 メモリセルアレイ
312 Xドライバ
313 Yドライバ
314 コントローラ
101 磁気抵抗効果素子
10 記録層
11 第1磁化固定領域
12 第2磁化固定領域
13 磁化自由領域
14 第1磁化固定領域11と磁化自由領域13との間
15 第2磁化固定領域12と磁化自由領域13との間
20 障壁層
30 参照層
31 強磁性層
32 結合層
33 強磁性層
41 第1磁化固定層
42 第2磁化固定層
50 センサー層
60 絶縁層
200 磁気メモリセル回路
300 磁気メモリ装置
311 メモリセルアレイ
312 Xドライバ
313 Yドライバ
314 コントローラ
Claims (8)
- 強磁性体を含む記録層と、
前記記録層の上に積層された障壁層と、
前記障壁層の上に積層され、強磁性体を含む参照層と、
を有し、
前記参照層は、略面内方向に実質固定された磁化成分を有し、
前記記録層は、略面内方向に実質固定された磁化成分を有する第1磁化固定領域と、前記第1磁化固定領域が有する磁化成分と反対の向きに実質固定された磁化成分を有する第2磁化固定領域と、前記第1磁化固定領域と前記第2磁化固定領域との間に位置し、略面内方向において反転可能な磁化成分を有する磁化自由領域とを含み、
前記記録層を構成する細線の線幅は40nm以下であり、
前記記録層の膜厚は、40nm以下であり、前記線幅の1/2以上、かつ、2倍以下である、
磁気抵抗効果素子。 - 前記記録層は、NiとFeとを含み、
前記線幅は30nm以下であり、
前記膜厚は30nm以下であり、前記線幅の2/3以上、かつ、1.5倍以下である、
請求項1に記載の磁気抵抗効果素子。 - 前記記録層の長手方向に沿って電流を導入することで、前記磁化自由領域が有する磁化成分の向きが反転する、
請求項1又は2に記載の磁気抵抗効果素子。 - 前記磁化自由領域が有する磁化成分の向きに応じて、前記第1磁化固定領域と前記磁化自由領域との間、又は、前記第2磁化固定領域と前記磁化自由領域との間に、磁壁が形成される、
請求項1から3のいずれか1項に記載の磁気抵抗効果素子。 - 強磁性体を含む記録層と、
前記記録層の上に積層された障壁層と、
前記障壁層の上に積層され、強磁性体を含む参照層と、
を有し、
前記参照層は、略面内方向に実質固定された磁化成分を有し、
前記記録層は、略面内方向に実質固定された磁化成分を有する第1磁化固定領域と、前記第1磁化固定領域が有する磁化成分と反対の向きに実質固定された磁化成分を有する第2磁化固定領域と、前記第1磁化固定領域と前記第2磁化固定領域との間に位置し、略面内方向において反転可能な磁化成分を有する磁化自由領域とを含み、
前記第1磁化固定領域と前記第2磁化固定領域との間に磁壁が形成され、
前記磁壁の磁化は、前記記録層の短辺方向、及び、基板垂直方向の両方にTransverse構造をとることができる、
磁気抵抗効果素子。 - 前記第1磁化固定領域の磁化成分、前記第2磁化固定領域の磁化成分のうち少なくともいずれかを固定するための磁化固定層を、さらに有する、
請求項1から5のいずれか1項に記載の磁気抵抗効果素子。 - 前記記録層の、前記第1磁化固定領域と前記磁化自由領域との間、前記第2磁化固定領域と前記磁化自由領域との間、のうち少なくともいずれかにピンサイトが設けられている、
請求項1から6のいずれか1項に記載の磁気抵抗効果素子。 - 請求項1から7の何れか1項に記載の磁気抵抗効果素子と、
前記磁気抵抗効果素子に、書き込み電流を流すことにより、前記磁気抵抗効果素子にデータを書き込む書き込み手段と、
前記障壁層を貫通する方向に電流を流してトンネル抵抗を求めることにより、前記磁気抵抗効果素子に書き込まれているデータを読み出す読み出し手段と、
を備える、
磁気メモリ装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017518016A JP6861996B2 (ja) | 2015-05-14 | 2016-05-16 | 磁気抵抗効果素子及び磁気メモリ装置 |
US15/810,896 US10410703B2 (en) | 2015-05-14 | 2017-11-13 | Magnetoresistance effect element and magnetic memory device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-098976 | 2015-05-14 | ||
JP2015098976 | 2015-05-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/810,896 Continuation US10410703B2 (en) | 2015-05-14 | 2017-11-13 | Magnetoresistance effect element and magnetic memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016182085A1 true WO2016182085A1 (ja) | 2016-11-17 |
Family
ID=57249035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/064530 WO2016182085A1 (ja) | 2015-05-14 | 2016-05-16 | 磁気抵抗効果素子及び磁気メモリ装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10410703B2 (ja) |
JP (1) | JP6861996B2 (ja) |
WO (1) | WO2016182085A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018182291A (ja) * | 2017-04-14 | 2018-11-15 | Tdk株式会社 | 磁壁利用型アナログメモリ素子、磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子 |
JP6462191B1 (ja) * | 2018-02-01 | 2019-01-30 | Tdk株式会社 | データの書き込み方法、検査方法、スピン素子の製造方法及び磁気抵抗効果素子 |
WO2019082323A1 (ja) * | 2017-10-26 | 2019-05-02 | Tdk株式会社 | 磁壁移動型磁気記録素子及び磁気記録アレイ |
CN109786544A (zh) * | 2017-11-14 | 2019-05-21 | Tdk株式会社 | 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件和磁存储器 |
WO2019139029A1 (ja) * | 2018-01-11 | 2019-07-18 | Tdk株式会社 | 磁壁移動型磁気記録素子 |
WO2022185410A1 (ja) * | 2021-03-02 | 2022-09-09 | Tdk株式会社 | 磁壁移動素子、磁気アレイ及び磁壁移動素子の製造方法 |
JP7470599B2 (ja) | 2020-08-19 | 2024-04-18 | Tdk株式会社 | 配線層、磁壁移動素子および磁気アレイ |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108666339B (zh) * | 2017-03-28 | 2020-11-13 | 中芯国际集成电路制造(上海)有限公司 | 磁性随机存储器及其存储单元的制造方法 |
US10468432B1 (en) * | 2018-05-30 | 2019-11-05 | International Business Machines Corporation | BEOL cross-bar array ferroelectric synapse units for domain wall movement |
US10614902B1 (en) * | 2018-10-04 | 2020-04-07 | Universität Duisburg-Essen | Tubular nanosized magnetic wires with 360° magnetic domain walls |
US10692927B1 (en) | 2019-02-15 | 2020-06-23 | International Business Machines Corporation | Double MTJ stack with synthetic anti-ferromagnetic free layer and AlN bottom barrier layer |
KR20220052392A (ko) * | 2020-10-20 | 2022-04-28 | 삼성전자주식회사 | 자기 메모리 장치 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191032A (ja) * | 2003-12-24 | 2005-07-14 | Toshiba Corp | 磁気記憶装置及び磁気情報の書込み方法 |
JP2007273495A (ja) * | 2006-03-30 | 2007-10-18 | Fujitsu Ltd | 磁気メモリ装置及びその駆動方法 |
JP2008147488A (ja) * | 2006-12-12 | 2008-06-26 | Nec Corp | 磁気抵抗効果素子及びmram |
WO2009133744A1 (ja) * | 2008-04-28 | 2009-11-05 | 日本電気株式会社 | 磁気記憶素子、及び磁気メモリ |
JP2010080496A (ja) * | 2008-09-24 | 2010-04-08 | Fujitsu Ltd | トンネル磁気抵抗素子、磁気メモリ装置及びその製造方法 |
JP2010141340A (ja) * | 2008-12-15 | 2010-06-24 | Samsung Electronics Co Ltd | 磁気トラック、磁気トラックを備える情報保存装置及び該情報保存装置の動作方法 |
WO2010095589A1 (ja) * | 2009-02-17 | 2010-08-26 | 日本電気株式会社 | 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ |
WO2011152281A1 (ja) * | 2010-06-03 | 2011-12-08 | 株式会社日立製作所 | 磁気抵抗効果素子及び磁気メモリ |
JP2012028489A (ja) * | 2010-07-22 | 2012-02-09 | Nec Corp | 磁気記憶装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006303159A (ja) * | 2005-04-20 | 2006-11-02 | Fuji Electric Holdings Co Ltd | スピン注入磁区移動素子およびこれを用いた装置 |
JP5598697B2 (ja) | 2007-06-25 | 2014-10-01 | 日本電気株式会社 | 磁気抵抗効果素子、および磁気ランダムアクセスメモリ |
US8120127B2 (en) * | 2007-08-03 | 2012-02-21 | Nec Corporation | Magnetic random access memory and method of manufacturing the same |
JP5441005B2 (ja) * | 2008-02-13 | 2014-03-12 | 日本電気株式会社 | 磁壁移動素子及び磁気ランダムアクセスメモリ |
WO2014107140A1 (en) * | 2013-01-02 | 2014-07-10 | Nanyang Technological University | A memory device |
-
2016
- 2016-05-16 JP JP2017518016A patent/JP6861996B2/ja active Active
- 2016-05-16 WO PCT/JP2016/064530 patent/WO2016182085A1/ja active Application Filing
-
2017
- 2017-11-13 US US15/810,896 patent/US10410703B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005191032A (ja) * | 2003-12-24 | 2005-07-14 | Toshiba Corp | 磁気記憶装置及び磁気情報の書込み方法 |
JP2007273495A (ja) * | 2006-03-30 | 2007-10-18 | Fujitsu Ltd | 磁気メモリ装置及びその駆動方法 |
JP2008147488A (ja) * | 2006-12-12 | 2008-06-26 | Nec Corp | 磁気抵抗効果素子及びmram |
WO2009133744A1 (ja) * | 2008-04-28 | 2009-11-05 | 日本電気株式会社 | 磁気記憶素子、及び磁気メモリ |
JP2010080496A (ja) * | 2008-09-24 | 2010-04-08 | Fujitsu Ltd | トンネル磁気抵抗素子、磁気メモリ装置及びその製造方法 |
JP2010141340A (ja) * | 2008-12-15 | 2010-06-24 | Samsung Electronics Co Ltd | 磁気トラック、磁気トラックを備える情報保存装置及び該情報保存装置の動作方法 |
WO2010095589A1 (ja) * | 2009-02-17 | 2010-08-26 | 日本電気株式会社 | 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ |
WO2011152281A1 (ja) * | 2010-06-03 | 2011-12-08 | 株式会社日立製作所 | 磁気抵抗効果素子及び磁気メモリ |
JP2012028489A (ja) * | 2010-07-22 | 2012-02-09 | Nec Corp | 磁気記憶装置 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018182291A (ja) * | 2017-04-14 | 2018-11-15 | Tdk株式会社 | 磁壁利用型アナログメモリ素子、磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子 |
JP7013839B2 (ja) | 2017-04-14 | 2022-02-01 | Tdk株式会社 | 磁壁利用型アナログメモリ、不揮発性ロジック回路及び磁気ニューロ素子 |
WO2019082323A1 (ja) * | 2017-10-26 | 2019-05-02 | Tdk株式会社 | 磁壁移動型磁気記録素子及び磁気記録アレイ |
CN111052349B (zh) * | 2017-10-26 | 2023-06-20 | Tdk株式会社 | 磁畴壁移动型磁记录元件和磁记录阵列 |
JP6551620B1 (ja) * | 2017-10-26 | 2019-07-31 | Tdk株式会社 | 磁壁移動型磁気記録素子及び磁気記録アレイ |
CN111052349A (zh) * | 2017-10-26 | 2020-04-21 | Tdk株式会社 | 磁畴壁移动型磁记录元件和磁记录阵列 |
US11271148B2 (en) | 2017-10-26 | 2022-03-08 | Tdk Corporation | Domain wall type magnetic recording element and magnetic recording array |
JP7098914B2 (ja) | 2017-11-14 | 2022-07-12 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
CN109786544B (zh) * | 2017-11-14 | 2024-04-30 | Tdk株式会社 | 自旋轨道转矩型磁化旋转元件、磁阻效应元件和磁存储器 |
CN109786544A (zh) * | 2017-11-14 | 2019-05-21 | Tdk株式会社 | 自旋轨道转矩型磁化旋转元件、自旋轨道转矩型磁阻效应元件和磁存储器 |
JP2019091791A (ja) * | 2017-11-14 | 2019-06-13 | Tdk株式会社 | スピン軌道トルク型磁化回転素子、スピン軌道トルク型磁気抵抗効果素子及び磁気メモリ |
JPWO2019139029A1 (ja) * | 2018-01-11 | 2020-07-16 | Tdk株式会社 | 磁壁移動型磁気記録素子 |
WO2019139029A1 (ja) * | 2018-01-11 | 2019-07-18 | Tdk株式会社 | 磁壁移動型磁気記録素子 |
JP6462191B1 (ja) * | 2018-02-01 | 2019-01-30 | Tdk株式会社 | データの書き込み方法、検査方法、スピン素子の製造方法及び磁気抵抗効果素子 |
JP7470599B2 (ja) | 2020-08-19 | 2024-04-18 | Tdk株式会社 | 配線層、磁壁移動素子および磁気アレイ |
WO2022185410A1 (ja) * | 2021-03-02 | 2022-09-09 | Tdk株式会社 | 磁壁移動素子、磁気アレイ及び磁壁移動素子の製造方法 |
JP7211564B1 (ja) * | 2021-03-02 | 2023-01-24 | Tdk株式会社 | 磁壁移動素子、磁気アレイ及び磁壁移動素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US10410703B2 (en) | 2019-09-10 |
JPWO2016182085A1 (ja) | 2018-04-12 |
JP6861996B2 (ja) | 2021-04-21 |
US20180108390A1 (en) | 2018-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6861996B2 (ja) | 磁気抵抗効果素子及び磁気メモリ装置 | |
CN106875969B (zh) | 磁存储器 | |
CN101689600B (zh) | 磁阻效应元件及磁性随机存取存储器 | |
JP4371781B2 (ja) | 磁気セル及び磁気メモリ | |
JP5338666B2 (ja) | 磁壁ランダムアクセスメモリ | |
US11776726B2 (en) | Dipole-coupled spin-orbit torque structure | |
JP5146836B2 (ja) | 磁気ランダムアクセスメモリ及びその製造方法 | |
US7613036B2 (en) | Memory element utilizing magnetization switching caused by spin accumulation and spin RAM device using the memory element | |
WO2016159017A1 (ja) | 磁気抵抗効果素子、磁気メモリ装置、製造方法、動作方法、及び集積回路 | |
JP5505312B2 (ja) | 磁気メモリ素子及び磁気ランダムアクセスメモリ | |
JP5201539B2 (ja) | 磁気ランダムアクセスメモリ | |
JP2007273495A (ja) | 磁気メモリ装置及びその駆動方法 | |
JP2006303159A (ja) | スピン注入磁区移動素子およびこれを用いた装置 | |
JP2009521807A (ja) | スピントランスファー方式により電流書き込みを行ない、かつスピントランスファートルクによる書き込み電流密度を小さくした磁性素子 | |
JP5488465B2 (ja) | 磁気ランダムアクセスメモリ、並びに磁気ランダムアクセスメモリの初期化方法及び書き込み方法 | |
JP5664556B2 (ja) | 磁気抵抗効果素子及びそれを用いた磁気ランダムアクセスメモリ | |
KR101983077B1 (ko) | 기억 소자의 제조 방법 | |
JPWO2017183574A1 (ja) | 磁壁利用型スピンmosfetおよび磁壁利用型アナログメモリ | |
JP7267623B2 (ja) | 磁気抵抗効果素子及び磁気メモリ | |
JPWO2007119446A1 (ja) | Mram、及びmramのデータ読み書き方法 | |
US20140301135A1 (en) | Mram having novelself-referenced read method | |
WO2010007893A1 (ja) | 磁気ランダムアクセスメモリ及びその初期化方法 | |
JP2008187048A (ja) | 磁気抵抗効果素子 | |
JP7347799B2 (ja) | 磁気抵抗効果素子及び磁気メモリ | |
JP2008153527A (ja) | 記憶素子及びメモリ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16792809 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017518016 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16792809 Country of ref document: EP Kind code of ref document: A1 |