[go: up one dir, main page]

WO2016174691A1 - Dispositif permettant d'attribuer le bon orifice d'un purgeur de vapeur d'eau d'un venturi-tuyère, sans le retirer du circuit dans lequel il est inséré - Google Patents

Dispositif permettant d'attribuer le bon orifice d'un purgeur de vapeur d'eau d'un venturi-tuyère, sans le retirer du circuit dans lequel il est inséré Download PDF

Info

Publication number
WO2016174691A1
WO2016174691A1 PCT/IT2016/000103 IT2016000103W WO2016174691A1 WO 2016174691 A1 WO2016174691 A1 WO 2016174691A1 IT 2016000103 W IT2016000103 W IT 2016000103W WO 2016174691 A1 WO2016174691 A1 WO 2016174691A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
orifice
condensate
steam
venturi nozzle
Prior art date
Application number
PCT/IT2016/000103
Other languages
English (en)
Inventor
Pierino Maurizio BAZZOLI
Daniele BERTINI
Original Assignee
Imat S.R.L. Unipersonale
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imat S.R.L. Unipersonale filed Critical Imat S.R.L. Unipersonale
Publication of WO2016174691A1 publication Critical patent/WO2016174691A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16TSTEAM TRAPS OR LIKE APPARATUS FOR DRAINING-OFF LIQUIDS FROM ENCLOSURES PREDOMINANTLY CONTAINING GASES OR VAPOURS
    • F16T1/00Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers
    • F16T1/34Steam traps or like apparatus for draining-off liquids from enclosures predominantly containing gases or vapours, e.g. gas lines, steam lines, containers without moving parts other than hand valves, e.g. labyrinth type

Definitions

  • the present invention subject of international patent application under the Patent Cooperation Treaty (PCT) - is a device that allows to assign the optimum orifice diameter of a Venturi nozzle steam trap in its operating conditions.
  • PCT Patent Cooperation Treaty
  • this device allows to not disconnect the Venturi nozzle steam trap from the circuit in which it is inserted.
  • the device can be connected to that circuit, by means of two bypass valves, so that the condensate flow is diverted inside the device where a rotating disk - provided with a series of orifices of different diameter - allows to choose the diameter in function of pressure and temperature by sensors properly positioned and, also, in function of the condensate level accumulated in a tank positioned upstream the rotating disk.
  • This rotating disk can be controlled manually or by means of a stepper motor.
  • thermodynamic thermodynamic
  • inverted bucket Venturi nozzle steam traps
  • Steam traps are installed where water steam is used in processes like: heating, sterilization, humidification and cooling; processes typically used in industries such as food, chemical, pharmaceutical, laundries or power plants, refiners, distilleries, and so on.
  • the correct functioning of a steam trap has to be always ensured in order to avoid undesirable steam leaks and harmful condensate accumulation.
  • Venturi nozzle steam traps have no mechanical moving parts and, usually, have the orifice with predetermined and fixed diameter. They can also have calibrated and interchangeable orifice.
  • D1 shows a Venturi nozzle steam trap that includes an interchangeable body with different size orifices.
  • D2 and D3 propose programmable steam traps according to temperature and pressure variations for which, however, are neither supplied Venturi nozzle or rotating disk.
  • the device that is going to be described proposes innovative solutions regarding those adopted by D1 , D2 and D3 and it is not obtainable from any combination of D1 and D2 or D3.
  • the device is characterized by the fact that it has systems that allow to insert it in the circuit where the steam trap operates and for which we have to calibrate the diameter of the orifice - by means of physical parameters that are characteristic of the operating conditions in progress - without removing the steam trap.
  • Another characteristic is due to the presence of sensors properly positioned; these lead to the determination of the suitable diameter of the orifice through the acquisition of temperature and pressure parameters giving the position of the fluid state in the condensate phase.
  • the JP2004218724 and JP200150486 anteriorities provide multiple orifices (specifically 3 orifices) that have predetermined diameters positionable by turning a switch without any relation to the values of temperature, pressure and of the real level of condensate of the steam trap; differently from the device that will be described where, for one of the innovative characteristics, the disk provided with orifices with differentiated diameter operates as a function of the detected data, in the dynamic state of the fluid, through the relative sensors and suitably processed.
  • the JP 2010281372 anteriority relates to a particular method of construction of the known "Labyrinth" steam trap.
  • This kind of steam trap is described in all the texts of heat engineering; It exploits the principle of repeated flash steam in expansion of the fluid after passing through predetermined orifices. It isn't diffused on the market for the construction complexity and limitations in the services offered. It is evident the absence of any connection with the constructive and functional characteristics with the object of the invention.
  • the EP 0426199 A2 anteriority relates to a data processing method to determine the operating diameter of a steam trap; this method provides a phase of DATA ENTRY, a second phase of Data Base searching, then an ordinary calculation with the application of well-known physical laws and, finally, an output on a monitor that makes available the processed data to the steam traps designer. No example is proposed.
  • the solutions adopted by the described steam traps are specific for this kind of devices and are not transferable to devices that have the purpose to evaluate steam circuits with steam traps for which we want to determine the orifice diameter in function of the operating physical parameters (Temperature and pressure) typical of complex systems for which these values need to be detected and processed.
  • the main feature of the subject of invention is the possibility to be inserted, through by-pass valves, in any facility or equipment in order to carry out the determination of the orifice diameter according to the actual operating conditions of the circuit under test. This is made possible by implementing a methodology that relates the orifices test with the flow dynamic conditions of the fluid represented by its physical parameters T and P (Temperature and Pressure) and by the condensate level L.
  • Pressure (P) and temperature (T) data are collected through the suitably positioned sensors and the level L is detected by a sensor in the auxiliary tank where the condensate accumulates.
  • the collected data of P, T and L are, finally, compared with the water phases diagram and processed to determine the optimal diameter of the orifice.
  • the invention is proposed as a steam trap innovated in the orifice interchangeability as a standalone component and replaceable without having to replace the entire steam trap or one of its complex components.
  • the optimal operation of a steam trap depends on the ability to perfectly retain the steam and, at the same time, to discharge fully and quickly the condensate without losing live steam.
  • the calculation operation of the orifice diameter must take into account the parameters measured in the real and specific condition in which the steam trap operates.
  • the orifice diameter of the device is sequentially varied, making a succession of tests until it is identified the value corresponding to the optimum operation of the plant system.
  • the change of the orifice diameter is obtained from a disk handling system, equipped with suitable holes, positioned - step by step - in correspondence of the Venturi nozzle of the device.
  • This feature allows the device to operate in a succession of different orifices and to evaluate the respective physical parameters (condensate Level, Temperature and Pressure) which define the state of the circuit operation.
  • Fig.2 - Page 1/3 shows the part of the circuit under test where the device is placed in operating conditions upstream and downstream of the Venturi nozzle steam trap SC to calibrate;
  • Page 2/3 shows the arrangement of the holes (orifices) on the disk
  • the device which operates according the sequences referred to Fig. 6, implemented by means of a HW/SW system for controlling and processing, is composed of the following main components (Refer to the attached drawings): 1.
  • Two valves (V1 and V2 in fig. 2); they allow to perform a by-pass by the C1- C2 circuit to the device and must be operated for the start or the interruption of the circulation of the fluid in the circuit, according to the requirements;
  • Pressure sensors (2 in Fig. 1) that detect the pressure upstream and downstream of the Venturi nozzle with the trial orifice diameter;
  • Temperature sensors (3 in Fig. 1), to verify the fluid temperature upstream and downstream of the Venturi nozzle.
  • a disk system (4 in Fig. 1 and Fig. 3) with a selection of trial orifices driven by a stepper motor controlled, for example, by a software that changes the orifice dimeter according to the collected data and in base to the above- mentioned criteria.
  • a computer (8 in Fig. 1) which processes the data collected through an acquisition card (7 in Fig. 1) and controls the stepper motor by means of a control card (7 in Fig. 1).
  • the two 3-way valves (V1 and V2 in Fig. 1) allow to exclude the steam trap in service, by diverting the fluid flow from the inlet of the steam trap SC towards the tank inlet of the device and, then, by directing the condensate in V2, downstream the trap SC towards the condensate drain line.
  • the characteristic of the invention - that operates in parallel to the steam trap that is in service - is particularly qualifying and innovative if we take into account that in complex systems is not always easy and/or appropriate the extraction of the steam trap to operate directly on it.
  • the invention operating in parallel with the steam trap, takes into account the characteristics of the steam trap which operates in the circuit under test. This special feature will be highlighted later when the role of individual components in the test procedure will be illustrated.
  • the condensate accumulation tank - which is a peculiar characteristic of innovation of the invention - is used to determine how the steam trap SC can work, in operating conditions, at correct scheme without live steam losses and, therefore, without lowering the heat exchange efficiency of the plant.
  • the level value L detected by the sensor (6 in Fig. 1) is a key parameter to determine the orifice diameter in the Venturi nozzle to act in accordance with that essential condition of operation.
  • the innovative feature of the present invention is represented by the introduction of said component 1 in combination with its probe 6 which allows to monitor whether the level of condensate to drain is positioned in the predetermined range as a constraint for a regular regimen of the condensate drainage in the specific circuit where it is inserted.
  • the condensate in output from the tank 1 , it is conveyed at the unit 4 where a disk is driven by the stepper motor (5 in Fig.1).
  • This group is represented in Fig. 3 where a Venturi nozzle operates.
  • the fluid enters in I and exits in a U through the orifice O.
  • Fig. 3 two plates (1 and 2) tightened with screws 3 and properly sealed are showed with, inside them, the disk 4 equipped with motorized axle and holes of different diameters (Fig.5).
  • the holes have a predetermined configuration according to predetermined values, as it will be explained later; they are circularly arranged so that with the rotation of the disk they follow each other allowing a verification cycle of the physical parameters at stake (P, T and condensate level) by comparing them with the values comprised in a predetermined range.
  • the evaluation procedure starts from a value of first approximation and ends when it results as the optimal orifice of the Venturi nozzle.
  • the first positioning is calculated using well-known formulas on the basis of the input values that describe the plant system concerned; Indeed, it is assumed that the restoration of the proper functioning or adaptation to any change that occurred in the system should fall within a predetermined range around the first approximation value.
  • the disk rotation for the positioning of the orifices is governed by the control unit of the input data processing and / or output cards (7 and 8 in Fig. 1).
  • Step 1 Data Entry - entry of the plant system data and computation of the first orifice diameter by applying the known formulas with said data;
  • Step 2 the first positioning of the orifice disk in correspondence with the calculated diameter, and circuit opening;
  • Step 2n new positioning as result of negative answer of step 4 or 6;
  • Step 3 acquisition of the condensate level in the tank (1 in Fig. 1);
  • Step 4 test if the acquired condensate level value falls within the predetermined range; it moves to Step 5 or to Step 2n according the test outcome;
  • Step 5 If the answer to the 4th step is affirmative, the device acquires Temperature and Pressure upstream and downstream of the orifice;
  • Step 6 test, in function of all acquired values, the absence of steam close to the Venturi nozzle, upstream and downstream. If the test is positive, the loop passes to the END final step; otherwise it goes to the step 2n;
  • Step END generation of calibration report.
  • a study that involves 1000 cases has allowed to prepare a reference table which has been implemented in the software.
  • the table can be accessed by the computer system for checks provided in steps 4 and 6.
  • the tables could be considered, not merely as theoretical data, but auxiliary instruments of enhanced technical information about the real conditions of operation of the adopted steam traps, and let them to become basic equipment that characterizes both methodology and instrumentation objects of the present disclosure.
  • the instrumentation may be provided of a logic of acquisition, and contextual evaluation, of the values of physical parameters to realize the "check- and-reposition" procedure that is necessary to achieve the objective of determining the value of the suitable diameter.
  • the next step at each re-positioning of the disk, which occurred through the Step 2n, is capturing, through a dedicated sensor, the condensate level in the tank 1. With the Step 3 it is verified if the level is or not in the "range" predetermined and fixed with the Data Entry.
  • the condensate to be discharged must be produced and, therefore, a minimum threshold of condensate must be respected for avoiding steam leaks.
  • a maximum threshold level must be provided in order to avoid an accumulation of condensate which, though it does not determine the stoppage of system, can nevertheless constitute an efficiency lowering of the plant.
  • step No. 4 If the outcome of the evaluation carried out (step No. 4) is negative, the next step to valuate other parameters is unnecessary and, therefore, it needs to pass to the step "2n", that is, to place the disk in correspondence the new diameter value to repeat steps 3 and 4.
  • step No. 6 the temperature and pressure parameters acquired in step No. 5 are valued in step No. 6. These valuations, made following the step No. 4, highlights the role of the presence of condensate in the tank detected by the level probe.
  • step n. 4 the positive assessment of the condensate level value performed in step n. 4 constitutes a necessary condition, but not sufficient, for the final determination of the orifice diameter.
  • a single negative test result leads, on the contrary, to the step "2n" to rotate the disk to a new value of the orifice diameter.
  • variation of the orifice can also be performed manually, excluding the action of the stepper motor; as well as the innovation of the measurability of the physical parameters at stake, in combination with the mode of determination of the diameter, can find different embodiments without departing from the same area of patent protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Cette invention concerne un dispositif de détermination du diamètre optimal de l'orifice d'un purgeur de vapeur d'eau d'un venturi-tuyère pendant le fonctionnement dans un circuit d'écoulement de vapeur. Le dispositif selon l'invention se distingue des dispositifs connus du fait qu'il est conçu de sorte à pouvoir être inséré dans le circuit où le purgeur de vapeur d'eau fonctionne et dont on doit vérifier et/ou restaurer l'évacuation correcte de condensat de sorte à éviter des fuites de vapeur vive dans la ligne de vidange de condensat, en tenant compte des paramètres physiques réels qui peuvent être affectés par divers facteurs tels que : des changements dans le système de circuit, des pertes au niveau des joints, l'encrassement qui s'est produit dans des pièces du circuit de vapeur, etc. En outre, ledit dispositif ne requiert pas l'extraction du purgeur de vapeur d'eau du circuit, opération pas toujours possible et souvent coûteuse, notamment dans les installations complexes du fait de leur taille ou en raison du nombre élevé de purgeurs de vapeur d'eau. Les Figures 1 et 2 représentent le dispositif apte à être inséré dans le circuit au moyen de soupapes de dérivation (V1 et V2) en parallèle avec le dispositif de décharge SC à calibrer. Le fluide dévié est dirigé vers le réservoir (1 sur la Figure 1) qui a la fonction d'accumuler le condensat dont le niveau est détectée par le capteur (6). Le condensat quittant l'accumulateur est dirigé vers le bloc (4) où se trouve un disque rotatif pourvu d'une série d'orifices de diamètres variables et dans une plage de tailles prédéterminée, ledit disque étant déplacé par un moteur pas-à-pas (5). Une succession de rotations positionne le disque de telle sorte que le fluide provenant du réservoir d'accumulation s'écoule à travers l'orifice et retourne vers le circuit en (C2). Pour chaque positionnement du disque, des valeurs de niveau de condensat (L), de température (T) et de pression (P) sont détectées au moyen de capteurs placés en amont et en aval du disque et sont transmises au processeur (8). Le traitement des données permet de vérifier, pour chaque diamètre d'orifice et chaque position de disque relative, l'état de phase du fluide en amont et en aval du disque. La séquence de rotation continue ou s'arrête sur la base de l'état détecté du fluide et en fonction du fonctionnement correct du circuit que l'on souhaite obtenir : évacuation adéquate de condensat pour la condition de fonctionnement du système, sans pertes de vapeur vive.
PCT/IT2016/000103 2015-04-29 2016-04-28 Dispositif permettant d'attribuer le bon orifice d'un purgeur de vapeur d'eau d'un venturi-tuyère, sans le retirer du circuit dans lequel il est inséré WO2016174691A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITRM2015A000183 2015-04-29
ITRM20150183 2015-04-29

Publications (1)

Publication Number Publication Date
WO2016174691A1 true WO2016174691A1 (fr) 2016-11-03

Family

ID=53385776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IT2016/000103 WO2016174691A1 (fr) 2015-04-29 2016-04-28 Dispositif permettant d'attribuer le bon orifice d'un purgeur de vapeur d'eau d'un venturi-tuyère, sans le retirer du circuit dans lequel il est inséré

Country Status (1)

Country Link
WO (1) WO2016174691A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122395A (zh) * 2019-12-04 2020-05-08 天津大学 一种移动式超音速喷嘴连续测量系统
EP4036453A1 (fr) 2021-01-28 2022-08-03 Eneon sp. z o.o. Procédé et système pour la sélection et la surveillance d'un purgeur de vapeur à l'aide d'un réseau de neurones artificiels profond

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426199A2 (fr) * 1989-11-02 1991-05-08 Tlv Co. Ltd. Utilisation d'un sélecteur de purgeur pour sélectionner un purgeur
JP2001050486A (ja) * 1999-08-10 2001-02-23 Tlv Co Ltd オリフィス式スチームトラップ
JP2004218724A (ja) * 2003-01-15 2004-08-05 Tlv Co Ltd オリフィス式スチームトラップ
JP2010281372A (ja) * 2009-06-04 2010-12-16 Tasu Corporation:Kk スチームトラップ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0426199A2 (fr) * 1989-11-02 1991-05-08 Tlv Co. Ltd. Utilisation d'un sélecteur de purgeur pour sélectionner un purgeur
JP2001050486A (ja) * 1999-08-10 2001-02-23 Tlv Co Ltd オリフィス式スチームトラップ
JP2004218724A (ja) * 2003-01-15 2004-08-05 Tlv Co Ltd オリフィス式スチームトラップ
JP2010281372A (ja) * 2009-06-04 2010-12-16 Tasu Corporation:Kk スチームトラップ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122395A (zh) * 2019-12-04 2020-05-08 天津大学 一种移动式超音速喷嘴连续测量系统
CN111122395B (zh) * 2019-12-04 2022-05-13 天津大学 一种移动式超音速喷嘴连续测量系统
EP4036453A1 (fr) 2021-01-28 2022-08-03 Eneon sp. z o.o. Procédé et système pour la sélection et la surveillance d'un purgeur de vapeur à l'aide d'un réseau de neurones artificiels profond
WO2022162578A1 (fr) 2021-01-28 2022-08-04 Eneon Sp. Z O.O. Procédé et système de sélection et de surveillance d'un purgeur de vapeur à l'aide d'un réseau neuronal profond

Similar Documents

Publication Publication Date Title
CN100504689C (zh) 检测连续过程中的系统部件的故障
US5794446A (en) Power plant performance management systems and methods
JP4881386B2 (ja) 蒸気トラップ監視装置
KR860007454A (ko) 급수 가열기의 운전보호장치 및 그 방법
KR860000851A (ko) 진 단 장 치
CA2639197A1 (fr) Approche de modelisation double permettant le calcul de la proprete de section de chaudiere
US5791147A (en) Power plant performance management systems and methods
CN111727352B (zh) 评估热交换器结垢的方法
US10215058B2 (en) Turbine power generation system having emergency operation means, and emergency operation method therefor
WO2016174691A1 (fr) Dispositif permettant d'attribuer le bon orifice d'un purgeur de vapeur d'eau d'un venturi-tuyère, sans le retirer du circuit dans lequel il est inséré
KR20160111494A (ko) 배관의 파손 검출 방법 및 장치
US4414858A (en) Steam turbine fluid sampling apparatus
US20110203535A1 (en) Method and System for Sootblower Flow Analyzer
CN106199241A (zh) 一种基于数据协调及假设检验的电站系统多故障诊断方法
JP6818495B2 (ja) ストレーナの洗浄装置及び方法
US20200240287A1 (en) Steam-Using Facility Monitoring System
CN110056849B (zh) 废热回收锅炉的供水方法及废热回收锅炉
JP5524906B2 (ja) 蒸気タービンシステムの保護装置
Zhang et al. Development of online validation and monitoring system for the thermal performance of nuclear power plant in service
US9334758B2 (en) Steam turbine moisture removal system
KR101393136B1 (ko) 탈기기 검사 시스템 및 방법
Cox et al. Improving shipboard maintenance practices using non-intrusive load monitoring
CN220418928U (zh) 一种高温水汽智能取样监控装置
KR100291486B1 (ko) 가스보일러의 난방관로 저항증가 검출방법
DK181524B1 (da) System til lækagesikring af varmeinstallationer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16734468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16734468

Country of ref document: EP

Kind code of ref document: A1