WO2016167063A1 - 撮像ユニットおよび撮像装置 - Google Patents
撮像ユニットおよび撮像装置 Download PDFInfo
- Publication number
- WO2016167063A1 WO2016167063A1 PCT/JP2016/057728 JP2016057728W WO2016167063A1 WO 2016167063 A1 WO2016167063 A1 WO 2016167063A1 JP 2016057728 W JP2016057728 W JP 2016057728W WO 2016167063 A1 WO2016167063 A1 WO 2016167063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- lens group
- imaging
- image
- imaging unit
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 221
- 230000003287 optical effect Effects 0.000 claims abstract description 64
- 230000014509 gene expression Effects 0.000 claims description 16
- 230000005499 meniscus Effects 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 230000004075 alteration Effects 0.000 description 96
- 238000010586 diagram Methods 0.000 description 28
- 230000006641 stabilisation Effects 0.000 description 28
- 238000011105 stabilization Methods 0.000 description 28
- 230000000007 visual effect Effects 0.000 description 27
- 101100013847 Spinacia oleracea PGIC gene Proteins 0.000 description 9
- 238000002955 isolation Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 210000001747 pupil Anatomy 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 201000009310 astigmatism Diseases 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001444 catalytic combustion detection Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/68—Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
- H04N23/682—Vibration or motion blur correction
- H04N23/685—Vibration or motion blur correction performed by mechanical compensation
- H04N23/687—Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/04—Reversed telephoto objectives
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/64—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
- G02B27/646—Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
- G02B7/04—Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B5/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B5/06—Swinging lens about normal to the optical axis
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2205/00—Adjustment of optical system relative to image or object surface other than for focusing
- G03B2205/0007—Movement of one or more optical elements for control of motion blur
- G03B2205/0023—Movement of one or more optical elements for control of motion blur by tilting or inclining one or more optical elements with respect to the optical axis
Definitions
- the present disclosure relates to an imaging unit and an imaging apparatus. Specifically, it is suitable for digital video cameras, digital still cameras, smartphones with cameras, in-vehicle cameras, medical endoscope cameras, etc. using solid-state image sensors such as CCD (Charge-Coupled Device) and CMOS (Complementary-Metal-Oxide-Semiconductor).
- CCD Charge-Coupled Device
- CMOS Complementary-Metal-Oxide-Semiconductor
- Imaging devices such as digital video cameras and digital still cameras using solid-state imaging devices such as CCDs and CMOSs are known.
- an imaging apparatus further downsizing, thinning, and low power consumption are required, while an optical image stabilization function for correcting blur at the time of shooting is required.
- image pickup devices of a category called wearable cameras and action cams have become widespread.
- Such an imaging apparatus is required to have an ultra-wide angle, a small size, and low power consumption, but also has an optical image stabilization function with a large correction angle that can cope with severe camera shake.
- an imaging lens for an imaging apparatus having such an image stabilization function for example, those described in Patent Literature 1 and Patent Literature 2 are known.
- Patent Document 1 includes a main lens system that forms an object image, a meniscus lens that is disposed between the main lens system and the image plane, and has a concave surface facing the image plane, and the meniscus lens with respect to the optical axis. It has been proposed to correct the tilt of the main lens system by rotating it.
- Patent Document 2 includes, in order from the object side, a first lens group having a negative refractive power and a second lens group having a positive refractive power, and has positive refractive power in the second lens group. It has been proposed to correct the tilt of the entire lens system by rotating some of the partial lens groups having the correction lens group with respect to the optical axis.
- an imaging unit and an imaging apparatus capable of realizing an optical image stabilization function with a large correction angle or a visual field variation function with a large variation angle while achieving downsizing and low power consumption.
- An imaging unit electrically captures an optical image formed by an imaging lens having a first lens group and a second lens group arranged in order from the object side to the image side, and the imaging lens.
- the second lens group and the image pickup device rotate together so that the second lens group and the image pickup device are inclined with respect to the optical axis of the first lens group. It is.
- An imaging apparatus electrically captures an optical image formed by an imaging lens having a first lens group and a second lens group that are sequentially arranged from the object side to the image side, and the imaging lens. And an arithmetic unit for correcting an image captured by the image sensor, and the second lens group and the image sensor are tilted with respect to the optical axis of the first lens group. The two lens group and the image sensor rotate together.
- the second lens group and the imaging element are integrated so that the second lens group and the imaging element are inclined with respect to the optical axis of the first lens group. Rotate and move.
- the first lens group and the second lens group are rotated only together with the imaging element in the first lens group and the second lens group. It is possible to realize an optical image stabilization function with a large correction angle or a field-of-view variation function with a large variation angle while achieving reduction in power consumption and power consumption. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
- FIG. 4 is an aberration diagram illustrating various aberrations in Numerical Example 1 in which specific numerical values are applied to the imaging lens illustrated in FIG. 3.
- FIG. 6 is an aberration diagram showing lateral aberration in Numerical Example 1.
- FIG. 6 is an aberration diagram illustrating lateral aberrations during vibration isolation or visual field fluctuation in Numerical Example 1.
- It is a lens sectional view showing the 2nd example of composition of the imaging lens applied to an imaging unit.
- FIG. 8 is an aberration diagram illustrating various aberrations in Numerical Example 2 in which specific numerical values are applied to the imaging lens illustrated in FIG. 7.
- FIG. 6 is an aberration diagram showing lateral aberration in Numerical Example 2.
- FIG. 6 is an aberration diagram showing lateral aberration during vibration isolation or visual field fluctuation in Numerical Example 2. It is lens sectional drawing which shows the 3rd structural example of the imaging lens applied to an imaging unit.
- FIG. 12 is an aberration diagram illustrating various aberrations in Numerical Example 3 in which specific numerical values are applied to the imaging lens illustrated in FIG. 11.
- FIG. 6 is an aberration diagram showing lateral aberration in Numerical Example 3.
- FIG. 9 is an aberration diagram showing lateral aberration during vibration isolation or visual field fluctuation in Numerical Example 3.
- FIG. 16 is an aberration diagram illustrating various aberrations in Numerical Example 4 in which specific numerical values are applied to the imaging lens illustrated in FIG. 15.
- FIG. 6 is an aberration diagram showing lateral aberration in Numerical Example 4.
- FIG. 10 is an aberration diagram showing lateral aberration during vibration isolation or visual field fluctuation in Numerical Example 4. It is lens sectional drawing which shows the 5th structural example of the imaging lens applied to an imaging unit.
- FIG. 20 is an aberration diagram illustrating various aberrations in Numerical Example 5 in which specific numerical values are applied to the imaging lens illustrated in FIG. 19.
- FIG. 10 is an aberration diagram showing lateral aberration in Numerical Example 5.
- FIG. 16 is an aberration diagram illustrating various aberrations in Numerical Example 4 in which specific numerical values are applied to the imaging lens illustrated in FIG. 15.
- FIG. 6 is an aberration diagram showing lateral aberration in Numerical Example 4.
- FIG. 10 is an aberration diagram showing lateral aberration during vibration isolation or visual field fluctuation in Numerical
- FIG. 10 is an aberration diagram showing lateral aberration during vibration isolation or field variation in Numerical Example 5. It is lens sectional drawing which shows the 6th structural example of the imaging lens applied to an imaging unit.
- FIG. 24 is an aberration diagram illustrating various aberrations in Numerical Example 6 in which specific numerical values are applied to the imaging lens illustrated in FIG. 23.
- 10 is an aberration diagram showing lateral aberration in Numerical Example 6.
- FIG. 10 is an aberration diagram showing lateral aberration during vibration isolation or visual field fluctuation in Numerical Example 6. It is explanatory drawing which shows typically the distortion aberration by an imaging lens. It is explanatory drawing which shows typically the distortion aberration by the imaging lens at the time of vibration proof.
- FIG. 1 shows a configuration example of an imaging unit 400 according to an embodiment of the present disclosure.
- FIG. 2 shows a configuration example of the imaging apparatus 401 according to an embodiment.
- the imaging unit 400 includes an imaging lens 300 and an imaging element 301 that converts an optical image formed by the imaging lens 300 into an electrical signal.
- the imaging apparatus 401 includes an imaging unit 400 and a calculator 302 that corrects an image captured by the imaging element 301.
- the eyelid calculator 302 includes an image acquisition unit 303, an aberration correction amount calculation unit 304, and an aberration correction unit 305.
- the image acquisition unit 303 acquires an electrical signal converted by the image sensor 301 as image data.
- the aberration correction amount calculation unit 304 calculates the aberration correction amount of the image based on the data acquired by the image acquisition unit 303.
- the aberration correction unit 305 performs image aberration correction based on the aberration correction amount calculated by the aberration correction amount calculation unit 304.
- the imaging lens 300 includes a first lens group GP1 and a second lens group GP2, which are arranged in order from the object side to the image side.
- the imaging lens 300 may further include an aperture stop St disposed between the first lens group GP1 and the second lens group GP2.
- the aperture stop St may be disposed in the vicinity of the lens surface closest to the object side of the second lens group GP2.
- optical members such as a sealing glass SG for protecting the imaging element and various optical filters may be disposed.
- Z1 represents the optical axis of the first lens group GP1.
- Z2 represents the optical axis of the second lens group GP2.
- the imaging unit 400 includes the second lens group GP2 and the imaging element 301 so that the second lens group GP2 and the imaging element 301 are inclined with respect to the optical axis Z1 of the first lens group GP1.
- GP2 and image sensor 301 rotate together.
- the imaging unit 400 performs shake correction of a captured image by integrally rotating the second lens group GP2 and the imaging element 301 as a shake correction group GPIS.
- the imaging unit 400 may change the field of view by rotating the second lens group GP2 and the image sensor 301 integrally with the shake correction group GPIS as the field fluctuation group.
- the middle row shows a state where the image stabilization angle (blur correction angle) or the visual field variation angle is 0 (deg).
- the optical axis Z1 of the first lens group GP1 and the optical axis Z2 of the second lens group GP2 are substantially aligned so that they are on the same straight line.
- the upper stage and the lower stage show a state where the shake correction group GPIS is rotated and shaken to prevent vibrations or a field of view is changed.
- the shake correction group GPIS rotates and moves with respect to the optical axis Z1 of the first lens group GP1 so as to incline in the clockwise direction (downward direction) in the drawing.
- the shake correction group GPIS is rotationally moved with respect to the optical axis Z1 of the first lens group GP1 so as to be inclined in the counterclockwise direction (upward direction) in the drawing.
- the shake correction group GPIS may be rotated in a direction different from that in the paper surface.
- the imaging unit 400, the imaging device 401, and the imaging lens 300 according to the present embodiment satisfy predetermined conditional expressions and the like described later.
- the imaging unit 400 and the imaging apparatus 401 only the second lens group GP2 of the first lens group GP1 and the second lens group GP2 in the imaging lens 300 rotates together with the imaging element 301. It is said that. Of the first lens group GP1 and the second lens group GP2, only the small and lightweight second lens group GP2 is rotated together with the image sensor 301, so that the size of the imaging unit 400 and the imaging device 401 is reduced. It is possible to correct the blur of the captured image and change the field of view while suppressing power consumption required for driving. Thereby, an optical image stabilization function with a large correction angle can be realized. Alternatively, it is possible to realize a visual field variation function with a large variation angle.
- the imaging unit 400 and the imaging apparatus 401 it is desirable to fix the first lens group GP1 when correcting the blur of the captured image or changing the field of view.
- the first lens group GP1 constituting the lens system is often composed of lenses having a large outer diameter.
- the first lens group GP1 not only increases in size but also significantly increases in weight. Therefore, a large driving mechanism and power consumption are required to drive such a lens group. Is required. Accordingly, by fixing the first lens group GP1, it is possible to reduce the size and power consumption of the imaging device 401.
- the first lens group GP1 by fixing the first lens group GP1, it becomes easy to make the lens periphery of the imaging lens 300 closest to the object side with a sealed structure with respect to the housing, and high waterproofing is required for some wearable cameras and action cams. It is also possible to possess performance and drip-proof performance.
- the outer diameter of the entire first lens group GP1 is larger than the outer diameter of the entire second lens group GP2, and it is desirable that the first lens group GP1 has a glass lens on the most object side.
- a glass lens is heavier than a plastic lens, it is desirable that the glass lens is disposed in the first lens group GP1, which is a fixed group.
- the second lens group GP2 is a moving group, it is desirable to make the outer diameter smaller than that of the first lens group GP1.
- the rotational movement when the second lens group GP2 and the imaging element 301 are rotationally moved together is preferably a point near the position where the aperture stop St is disposed on the optical axis of the first lens group GP1. Thereby, the rotational movement center P1 becomes a point near the entrance pupil. In this case, it is desirable that the aperture stop St is also rotationally moved together with the second lens group GP2 and the image sensor 301.
- the aperture stop St is disposed between the first lens group GP1 and the second lens group GP2, particularly in the vicinity of the lens surface closest to the object side of the second lens group GP2.
- the entrance pupil of the imaging lens 300 can be arranged on the object side.
- the outer diameter size of the lenses constituting the first lens group GP1 can be suppressed, and the entire imaging device 401 can be reduced in size.
- the imaging apparatus 401 includes an arithmetic unit 302 that corrects an image captured by the imaging element 301.
- the computing unit 302 corrects a photographic image having an asymmetric distortion with respect to the central axis of the imaging surface of the imaging element 301, which is generated by rotating the second lens group GP2 and the imaging element 301 together. can do.
- the calculator 302. may be corrected by the calculator 302. Thereby, a high-performance image can be acquired from the screen center to the screen periphery.
- a distortion aberration component that is asymmetric with respect to the central axis is generated.
- this asymmetric distortion component appears as image fluctuations at the periphery of the screen, which greatly impairs the quality of the acquired image.
- FIG. 27 schematically shows distortion aberration caused by the imaging lens 300 in a state where image stabilization (field of view fluctuation) is not performed.
- FIG. 28 schematically shows distortion aberration caused by the imaging lens 300 at the time of image stabilization (field of view fluctuation). Note that FIG. 28 schematically shows distortion aberration when the shake correction group GPIS is rotated so as to be inclined clockwise (downward direction) in the drawing.
- FIG. 27 in a state where no image stabilization is performed, distortion aberration that is substantially symmetric with respect to the central axis of the imaging surface occurs, and the width of the upper side and the width of the lower side of the image are substantially the same length L. It becomes.
- FIG. 27 shows distortion aberration caused by the imaging lens 300 in a state where image stabilization (field of view fluctuation) is not performed.
- FIG. 28 schematically shows distortion aberration caused by the imaging lens 300 at the time of image stabilization (field of view fluctuation). Note that FIG. 28 schematically shows distortion aberration when the shake correction group GPIS is
- asymmetric distortion occurs in the vertical direction, which is the rotational movement direction, with respect to the central axis of the imaging surface, and the width of the upper side and the lower side of the image. Are different lengths L and L ′.
- the imaging lens 300 satisfies the following conditional expression. f / f1 ⁇ 0.10 (1) f / f2 ⁇ 1.40 (2) However, f: focal length of the entire imaging lens 300 f1: focal length of the first lens group GP1 f2: focal length of the second lens group GP2.
- Conditional expression (1) defines the ratio between the focal length of the entire lens system and the focal length of the first lens group GP1. If this conditional expression is not satisfied, the positive refractive power of the first lens group GP1 becomes too strong, and aberrations at the time of rotational correction increase, making it difficult to ensure the required imaging performance.
- Conditional expression (2) defines the ratio between the focal length of the entire lens system and the focal length of the second lens group GP2. If the conditional expression is not satisfied, the rotation angle between the second lens group GP2 and the image sensor 301 when correcting the blur of the captured image or changing the field of view becomes large, which is not suitable for downsizing the image pickup apparatus 401. .
- the second lens group GP2 moves in the direction of the optical axis of the second lens group GP2, thereby focusing on objects with different subject distances, and the imaging unit 400 and the imaging unit.
- the device 401 is preferably configured. By adopting this configuration, it is possible to focus on photographing objects with different subject distances while realizing blur correction and visual field fluctuation, and it is possible to obtain a high-resolution photographed image.
- the imaging position fluctuates with changes in the environmental temperature when using the imaging apparatus 401. However, by adopting this configuration, it is possible to cope with fluctuations in the imaging position when the temperature changes. It becomes possible.
- the lens surface closest to the image side of the second lens group GP2 has a concave shape on the image side in the vicinity of the optical axis of the second lens group GP2, and a convex shape on the image side in the peripheral portion. It is desirable that the image pickup unit 400 and the image pickup apparatus 401 are configured. By adopting this configuration, it is possible to optimize the principal ray incident angle around the screen to the image pickup element 301 while shortening the exit pupil distance of the image pickup lens 300, so that the back focus is short. A lens configuration can be realized.
- the drive unit in which the second lens group GP2 and the image sensor 301 are integrated it is possible to reduce the size of the drive unit in which the second lens group GP2 and the image sensor 301 are integrated, and the drive mechanism for changing the blur and changing the field of view is also reduced. Miniaturization of the device 401 can be realized. In addition, since the size of the drive unit in which the second lens group GP2 and the image sensor 301 are integrated is reduced, the drive unit can be reduced in weight and power consumption can be suppressed.
- the imaging unit 400 and the imaging device 401 are configured so that at least the most image-side lens constituting the second lens group GP2 is a plastic lens.
- the most image side lens surface constituting the second lens group GP2 has a concave shape on the image side in the vicinity of the optical axis and a convex shape on the image side in the peripheral portion, thereby reducing the size and power consumption of the imaging device 401.
- plastic in order to realize such a lens shape with high accuracy, it is desirable to use plastic as the lens material. As a result, it is possible to obtain a high-resolution captured image.
- conditional expressions (1) and (2) are satisfied, but it is further preferable that the following conditional expressions are satisfied.
- Satisfying conditional expression (1) makes it possible to more appropriately suppress aberration fluctuations when the blur correction group GPIS is rotationally moved, and to ensure a large blur correction angle and visual field fluctuation angle.
- conditional expression (2) ′ it is possible to achieve downsizing of the imaging apparatus 401 while ensuring a relatively large blur correction angle and visual field fluctuation angle.
- the imaging lens 300 constituting the imaging unit 400 according to the present embodiment a wide-angle lens with a short focal length in the entire lens system is suitable.
- the first lens group GP1 has a convex surface directed toward the object side in order from the object side to the image side. It is desirable that the lens is composed of a meniscus first lens L1 having negative refractive power, a second lens L2 having negative refractive power, and a third lens L3 having positive refractive power.
- the second lens group GP2 has a negative refracting power and a fourth lens L4 having a positive refracting power in order from the object side to the image side, for example, like the imaging lens 1 shown in FIG.
- a fifth lens L5, a sixth lens L6 having a positive refractive power, a negative refractive power in the vicinity of the optical axis, and the image-side lens surface is concave on the image side in the vicinity of the optical axis, and at the periphery It is desirable that the lens is composed of a seventh lens L7 having a convex shape on the image side.
- the imaging apparatus 401 according to the present embodiment is the best mode in a digital video camera, a digital still camera, a smartphone with a camera, and the like that have an optical image stabilization function that is small in size, low in power consumption, and has a large correction angle.
- the present technology is not limited to the use of vibration isolation.
- In-vehicle cameras, surveillance cameras, medical endoscopic cameras, and the like using an image sensor 301 similar to the imaging device 401 are required to be further downsized, but in order to capture the subject more accurately, A change function is requested.
- the imaging apparatus 401 according to the present embodiment can have a preferable configuration even if such a visual field changing function is required.
- GPi indicates the i-th lens group counted from the object side to the image side.
- Si indicates the number of the i-th surface counted from the object side to the image side.
- Ri indicates a value (mm) of a paraxial radius of curvature of the i-th surface Si.
- Di indicates a value (mm) of an interval on the optical axis between the i-th surface and the (i + 1) -th surface.
- Ni represents the value of the refractive index at the d-line (wavelength 587.6 nm) of the lens or optical member having the i-th surface Si.
- ⁇ i indicates the value of the Abbe number at the d-line of the lens or optical member having the i-th surface Si.
- a portion where the value of “Ri” is “ ⁇ ” indicates a plane.
- a surface marked “STO” in “Ri” indicates the aperture stop St.
- F indicates the focal length of the entire lens system, “F” indicates the F number, and “2 ⁇ ” indicates the total angle of view in the diagonal direction.
- Some lenses used in each numerical example have an aspheric lens surface.
- the surface given “ASP” indicates an aspherical surface.
- the aspheric shape is defined by the following aspheric expression.
- E ⁇ i represents an exponential expression with a base of 10, that is, “10 ⁇ i ”.
- 0.12345E-05 represents “ 0.12345 ⁇ 10 ⁇ 5 ”.
- Z indicates the depth of the aspheric surface
- Y indicates the height from the optical axis.
- R is a paraxial radius of curvature
- K is a conic constant
- A3 to Ai are third-order to i-th order aspherical coefficients, respectively.
- each of the imaging lenses 1 to 6 includes the first lens group GP1 and the second lens group GP2, which are arranged in order from the object side to the image side.
- the aperture stop St is disposed between the first lens group GP1 and the second lens group GP2 and in the vicinity of the lens surface closest to the object side of the second lens group GP2.
- An image sensor protecting seal glass SG is disposed between the imaging lens 300 and the image plane IMG.
- the second lens group GP2 and the aperture stop St rotate together with the image sensor 301.
- the rotational movement center P1 when rotating integrally is a point near the position where the aperture stop St is disposed on the optical axis.
- Table 1 shows lens data of Numerical Example 1 in which specific numerical values are applied to the imaging lens 1 shown in FIG.
- the first lens group GP1 includes, in order from the object side to the image side, a meniscus first lens L1 having a negative refractive power with a convex surface facing the object side, and a negative lens
- the second lens L2 having a refractive power of 3
- the third lens L3 having a positive refractive power.
- the second lens group GP2 includes, in order from the object side to the image side, a fourth lens L4 having a positive refractive power, a fifth lens L5 having a negative refractive power, and a sixth lens having a positive refractive power.
- aspheric surfaces are formed on both surfaces of each of the third lens L3 to the seventh lens L7.
- the values of the aspheric coefficients A3 to A16 for these aspheric surfaces are shown in [Table 2] together with the value of the conic constant K.
- FIG. 4 shows various aberrations in Numerical Example 1.
- 4 shows spherical aberration, astigmatism (field curvature), and distortion (distortion aberration) as various aberrations.
- a solid line ( ⁇ S) indicates a value on a sagittal image plane
- a broken line ( ⁇ M) indicates a value on a meridional image plane.
- the spherical aberration diagram shows values for the d-line, C-line (656.3 nm), and g-line (435.8 nm). The same applies to aberration diagrams in other numerical examples.
- FIG. 5 and 6 show the lateral aberration in Numerical Example 1.
- FIG. 5 shows lateral aberration in a state where the image stabilization angle (blur correction angle) or the visual field fluctuation angle is 0 (deg).
- FIG. 6 shows the lateral aberration in the state of image stabilization or visual field fluctuation.
- the imaging lens 1 according to Numerical Example 1 has excellent imaging performance with each aberration corrected satisfactorily.
- Table 3 shows lens data of Numerical Example 2 in which specific numerical values are applied to the imaging lens 2 shown in FIG.
- the first lens group GP1 includes, in order from the object side to the image side, a first meniscus lens L1 having a negative refractive power with a convex surface facing the object side, and a negative lens
- the second lens L2 having a refractive power of 3 and the third lens L3 having a positive refractive power.
- the second lens group GP2 includes, in order from the object side to the image side, a fourth lens L4 having a positive refractive power, a fifth lens L5 having a negative refractive power, and an image-side lens surface near the optical axis.
- the sixth lens L6 has a concave shape on the image side and a convex shape on the image side at the periphery.
- aspherical surfaces are formed on both surfaces of each of the third lens L3 to the sixth lens L6.
- the values of the aspheric coefficients A3 to A20 for these aspheric surfaces are shown in [Table 4] together with the value of the conic constant K.
- FIG. 8 shows various aberrations in Numerical Example 2.
- 9 and 10 show lateral aberrations in Numerical Example 2.
- FIG. 9 shows lateral aberration in a state where the image stabilization angle (blur correction angle) or the visual field fluctuation angle is 0 (deg).
- FIG. 10 shows the lateral aberration in the state at the time of image stabilization or visual field fluctuation.
- the imaging lens 2 according to Numerical Example 2 has excellent imaging performance with each aberration corrected satisfactorily.
- Table 5 shows lens data of Numerical Example 3 in which specific numerical values are applied to the imaging lens 3 illustrated in FIG.
- the first lens group GP1 includes, in order from the object side to the image side, a meniscus first lens L1 having a negative refractive power with a convex surface facing the object side, and a positive lens And a second lens L2 having a refractive power of 2.
- the second lens group GP2 includes, in order from the object side to the image side, a third lens L3 having a positive refractive power, a fourth lens L4 having a negative refractive power, and a fifth lens having a positive refractive power.
- aspheric surfaces are formed on both surfaces of each of the second lens L2 to the sixth lens L6.
- the values of the aspheric coefficients A3 to A16 for these aspheric surfaces are shown in [Table 6] together with the value of the conic constant K.
- FIG. 12 shows various aberrations in Numerical Example 3.
- 13 and 14 show lateral aberrations in Numerical Example 3.
- FIG. 13 shows lateral aberration in a state where the image stabilization angle (blur correction angle) or the visual field fluctuation angle is 0 (deg).
- FIG. 14 shows the lateral aberration in the state at the time of image stabilization or visual field fluctuation.
- the imaging lens 3 according to Numerical Example 3 has excellent imaging performance with each aberration corrected well.
- Table 7 shows lens data of Numerical Example 4 in which specific numerical values are applied to the imaging lens 4 shown in FIG.
- the first lens group GP1 includes, in order from the object side to the image side, a meniscus first lens L1 having a negative refractive power with a convex surface facing the object side, and a positive lens And a second lens L2 having a refractive power of 2.
- the second lens group GP2 includes, in order from the object side to the image side, a third lens L3 having a positive refractive power, a fourth lens L4 having a negative refractive power, and a fifth lens having a positive refractive power.
- aspheric surfaces are formed on both surfaces of each of the second lens L2 to the sixth lens L6.
- the values of the aspheric coefficients A3 to A16 for these aspheric surfaces are shown in [Table 8] together with the value of the conic constant K.
- FIG. 16 shows various aberrations in Numerical Example 4.
- 17 and 18 show lateral aberrations in Numerical Example 4.
- FIG. 17 shows lateral aberration in a state where the image stabilization angle (blur correction angle) or the visual field fluctuation angle is 0 (deg).
- FIG. 18 shows the lateral aberration in the state at the time of image stabilization or visual field fluctuation.
- the imaging lens 4 according to Numerical Example 4 has excellent imaging performance with each aberration corrected satisfactorily.
- Table 9 shows lens data of Numerical Example 5 in which specific numerical values are applied to the imaging lens 5 shown in FIG.
- the first lens group GP1 includes a meniscus first lens L1 having a positive refractive power with a convex surface facing the object side in order from the object side to the image side, and a negative lens. And a second lens L2 having a refractive power of 2.
- the second lens group GP2 includes, in order from the object side to the image side, a third lens L3 having a positive refractive power, a fourth lens L4 having a negative refractive power, and a fifth lens having a positive refractive power.
- an aspheric surface is formed on both surfaces of each of the first lens L1 and the third lens L4 to the sixth lens L6.
- the values of the aspheric coefficients A3 to A16 for these aspheric surfaces are shown in [Table 10] together with the value of the conic constant K.
- FIG. 20 shows various aberrations in Numerical Example 5.
- 21 and 22 show lateral aberrations in Numerical Example 5.
- FIG. FIG. 21 shows lateral aberration in a state where the image stabilization angle (blur correction angle) or the visual field fluctuation angle is 0 (deg).
- FIG. 22 shows the lateral aberration in the state at the time of image stabilization or visual field fluctuation.
- the imaging lens 5 according to Numerical Example 5 has excellent imaging performance with each aberration corrected satisfactorily.
- Table 11 shows lens data of Numerical Example 5 in which specific numerical values are applied to the imaging lens 6 illustrated in FIG.
- the first lens group GP1 includes, in order from the object side to the image side, a meniscus first lens L1 having a negative refractive power with a convex surface facing the object side, and a negative lens
- the second lens L2 having a refractive power of 3 and the third lens L3 having a positive refractive power.
- the second lens group GP2 includes, in order from the object side to the image side, a cemented lens including a fourth lens L4 having a positive refractive power and a fifth lens L5 having a negative refractive power, and a meniscus sixth lens. And L6.
- aspheric surfaces are formed on the object-side surface of the fourth lens L4, the image-side surface of the fifth lens L5, and both surfaces of the sixth lens L6.
- the values of the aspheric coefficients A3 to A10 for these aspheric surfaces are shown in [Table 12] together with the value of the conic constant K.
- FIG. 24 shows various aberrations in Numerical Example 6.
- 25 and 26 show lateral aberrations in Numerical Example 6.
- FIG. FIG. 25 shows lateral aberration in a state where the image stabilization angle (blur correction angle) or the visual field fluctuation angle is 0 (deg).
- FIG. 26 shows the lateral aberration in the state at the time of image stabilization or visual field fluctuation.
- the imaging lens 6 according to Numerical Example 6 has excellent imaging performance with each aberration corrected satisfactorily.
- [Other numerical data of each example] [Table 13] shows a summary of values relating to the above-described conditional expressions for each numerical example. As can be seen from [Table 13], for each conditional expression, the value of each numerical example is within the numerical range.
- this technique can take the following composition.
- An imaging lens having a first lens group and a second lens group disposed in order from the object side to the image side; An image sensor that converts an optical image formed by the imaging lens into an electrical signal, and An imaging unit in which the second lens group and the image sensor rotate together so that the second lens group and the image sensor are inclined with respect to the optical axis of the first lens group.
- the imaging unit according to [1] or [2], wherein the imaging lens further includes an aperture stop disposed between the first lens group and the second lens group.
- the rotation center when the second lens group and the image sensor are integrally rotated is a point in the vicinity of the position where the aperture stop is disposed on the optical axis of the first lens group
- f focal length of the entire system of the imaging lens
- f1 focal length of the first lens group
- f2 focal length of the second lens group
- the imaging unit according to any one of [1] to [6], wherein the second lens group performs focusing by moving in the optical axis direction of the second lens group.
- [8] [1] to [7]
- the lens surface closest to the image side of the second lens group has a concave shape on the image side in the vicinity of the optical axis of the second lens group and a convex shape on the image side in the peripheral portion.
- the imaging unit according to any one of the above.
- An outer diameter of the entire first lens group is larger than an outer diameter of the entire second lens group;
- the first lens group includes, in order from the object side to the image side, a meniscus first lens having a negative refractive power with a convex surface facing the object side, a second lens having a negative refractive power, and a positive lens.
- a third lens having a refractive power of The second lens group includes a fourth lens having a positive refractive power, a fifth lens having a negative refractive power, a sixth lens having a positive refractive power, and a negative refractive power in the vicinity of the optical axis.
- the image-side lens surface is composed of a seventh lens having a concave shape on the image side in the vicinity of the optical axis and a convex shape on the image side in the peripheral portion.
- the image pickup unit according to any one of [1] to [11], wherein the second lens group and the image pickup device are rotated together to perform shake correction of a captured image or change a field of view. .
- An imaging lens having a first lens group and a second lens group disposed in order from the object side to the image side; An image sensor that converts an optical image formed by the imaging lens into an electrical signal; An arithmetic unit that corrects an image captured by the image sensor; An imaging apparatus in which the second lens group and the image sensor rotate together so that the second lens group and the image sensor are inclined with respect to the optical axis of the first lens group.
- the computing unit corrects a captured image having an asymmetric distortion with respect to a central axis of an image pickup surface of the image pickup device, which is generated by rotating the second lens group and the image pickup device together. 13].
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Lenses (AREA)
- Adjustment Of Camera Lenses (AREA)
- Studio Devices (AREA)
Abstract
Description
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
1.撮像ユニットおよび撮像装置の基本構成
2.作用・効果
3.撮像ユニットに適用される撮像レンズの数値実施例
4.その他の実施の形態
図1は、本開示の一実施の形態に係る撮像ユニット400の一構成例を示している。図2は、一実施の形態に係る撮像装置401の一構成例を示している。
次に、本実施の形態に係る撮像ユニット400および撮像装置401の作用および効果を説明する。併せて、本実施の形態に係る撮像ユニット400および撮像装置401における望ましい構成を説明する。
なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
f/f1<0.10 ……(1)
f/f2<1.40 ……(2)
ただし、
f:撮像レンズ300の全系の焦点距離
f1:第1レンズ群GP1の焦点距離
f2:第2レンズ群GP2の焦点距離
とする。
f/f1<-0.10 ……(1)’
f/f2<0.70 ……(2)’
次に、本実施の形態に係る撮像レンズ300の具体的な数値実施例について説明する。ここでは、図3、図7、図11、図15、図19、および図23に示した各構成例の撮像レンズ1~6に、具体的な数値を適用した数値実施例を説明する。
以下の各数値実施例が適用される撮像レンズ1~6はいずれも、上記した撮像ユニット400および撮像装置401における撮像レンズ300として適用可能なものであり、上記した撮像ユニット400および撮像装置401の基本構成を満足した構成となっている。すなわち、撮像レンズ1~6はいずれも、物体側から像側に向かって順に配置された、第1レンズ群GP1と、第2レンズ群GP2とを有している。開口絞りStは、第1レンズ群GP1と第2レンズ群GP2との間において、第2レンズ群GP2の最も物体側のレンズ面の近傍に配置されている。撮像レンズ300と像面IMGとの間には、撮像素子保護用のシールガラスSGが配置されている。第2レンズ群GP2と開口絞りStは、撮像素子301と共に一体に回転移動する。一体に回転移動する際の回転移動中心P1は、光軸上における開口絞りStが配置された位置近傍の点となっている。
[表1]に、図3に示した撮像レンズ1に具体的な数値を適用した数値実施例1のレンズデータを示す。
F=2.86
f=1.455
2ω=150.6°
[表3]に、図7に示した撮像レンズ2に具体的な数値を適用した数値実施例2のレンズデータを示す。
F=2.84
f=1.380
2ω=146.0°
[表5]に、図11に示した撮像レンズ3に具体的な数値を適用した数値実施例3のレンズデータを示す。
F=2.80
f=1.879
2ω=106.9°
[表7]に、図15に示した撮像レンズ4に具体的な数値を適用した数値実施例4のレンズデータを示す。
F=2.82
f=2.255
2ω=90.2°
[表9]に、図19に示した撮像レンズ5に具体的な数値を適用した数値実施例5のレンズデータを示す。
F=2.84
f=2.804
2ω=52.9°
[表11]に、図23に示した撮像レンズ6に具体的な数値を適用した数値実施例5のレンズデータを示す。
F=2.84
f=1.902
2ω=156.0°
[表13]には、上述の各条件式に関する値を、各数値実施例についてまとめたものを示す。[表13]から分かるように、各条件式について、各数値実施例の値がその数値範囲内となっている。
本開示による技術は、上記実施の形態および実施例の説明に限定されず種々の変形実施が可能である。
例えば、上記各数値実施例において示した各部の形状および数値は、いずれも本技術を実施するための具体化のほんの一例に過ぎず、これらによって本技術の技術的範囲が限定的に解釈されることがあってはならないものである。
[1]
物体側から像側に向かって順に配置された第1レンズ群および第2レンズ群を有する撮像レンズと、
前記撮像レンズによって形成された光学像を電気的な信号に変換する撮像素子と
を備え、
前記第1レンズ群の光軸に対して前記第2レンズ群と前記撮像素子とが傾くように、前記第2レンズ群と前記撮像素子とが一体に回転移動する
撮像ユニット。
[2]
前記第2レンズ群と前記撮像素子とを一体に回転移動させる際に、前記第1レンズ群は固定である
上記[1]に記載の撮像ユニット。
[3]
前記撮像レンズは、前記第1レンズ群と前記第2レンズ群との間に配置された開口絞りをさらに有する
上記[1]または[2]に記載の撮像ユニット。
[4]
前記第2レンズ群と前記撮像素子とを一体に回転移動させる際の回転移動中心が、前記第1レンズ群の光軸上における前記開口絞りが配置された位置近傍の点である
上記[3]に記載の撮像ユニット。
[5]
前記開口絞りが、前記第2レンズ群と前記撮像素子と共に一体に回転移動する
上記[3]または[4]に記載の撮像ユニット。
[6]
以下の条件式を満足する
上記[1]ないし[5]のいずれか1つに記載の撮像ユニット。
f/f1<0.10 ……(1)
f/f2<1.40 ……(2)
ただし、
f:前記撮像レンズの全系の焦点距離
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
とする。
[7]
前記第2レンズ群が、前記第2レンズ群の光軸方向に移動することによって合焦を行う
上記[1]ないし[6]のいずれか1つに記載の撮像ユニット。
[8]
前記第2レンズ群の最も像側のレンズ面が、前記第2レンズ群の光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状である
上記[1]ないし[7]のいずれか1つに記載の撮像ユニット。
[9]
前記第2レンズ群は、最も像側にプラスチックレンズを有する
上記[1]ないし[8]のいずれか1つに記載の撮像ユニット。
[10]
前記第1レンズ群全体の外径が、前記第2レンズ群全体の外径よりも大きく、
前記第1レンズ群は、最も物体側にガラスレンズを有する
上記[1]ないし[9]のいずれか1つに記載の撮像ユニット。
[11]
前記第1レンズ群は、物体側から像側に向かって順に、物体側に凸面を向けた負の屈折力を有するメニスカス形状の第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズとから構成され、
前記第2レンズ群は、正の屈折力を有する第4レンズと、負の屈折力を有する第5レンズと、正の屈折力を有する第6レンズと、光軸近傍で負の屈折力を有し像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる第7レンズとから構成される
上記[1]ないし[10]のいずれか1つに記載の撮像ユニット。
[12]
前記第2レンズ群と前記撮像素子とを一体に回転移動させることによって、撮影画像のぶれ補正を行う、または視野を変化させる
上記[1]ないし[11]のいずれか1つに記載の撮像ユニット。
[13]
物体側から像側に向かって順に配置された第1レンズ群および第2レンズ群を有する撮像レンズと、
前記撮像レンズによって形成された光学像を電気的な信号に変換する撮像素子と、
前記撮像素子によって撮像された画像を補正する演算器と
を備え、
前記第1レンズ群の光軸に対して前記第2レンズ群と前記撮像素子とが傾くように、前記第2レンズ群と前記撮像素子とが一体に回転移動する
撮像装置。
[14]
前記演算器は、前記第2レンズ群と前記撮像素子とを一体に回転移動させることによって発生した、前記撮像素子の撮像面の中心軸に対して非対称な歪曲を持つ撮影画像を補正する
上記[13]に記載の撮像装置。
Claims (14)
- 物体側から像側に向かって順に配置された第1レンズ群および第2レンズ群を有する撮像レンズと、
前記撮像レンズによって形成された光学像を電気的な信号に変換する撮像素子と
を備え、
前記第1レンズ群の光軸に対して前記第2レンズ群と前記撮像素子とが傾くように、前記第2レンズ群と前記撮像素子とが一体に回転移動する
撮像ユニット。 - 前記第2レンズ群と前記撮像素子とを一体に回転移動させる際に、前記第1レンズ群は固定である
請求項1に記載の撮像ユニット。 - 前記撮像レンズは、前記第1レンズ群と前記第2レンズ群との間に配置された開口絞りをさらに有する
請求項1に記載の撮像ユニット。 - 前記第2レンズ群と前記撮像素子とを一体に回転移動させる際の回転移動中心が、前記第1レンズ群の光軸上における前記開口絞りが配置された位置近傍の点である
請求項3に記載の撮像ユニット。 - 前記開口絞りが、前記第2レンズ群と前記撮像素子と共に一体に回転移動する
請求項3に記載の撮像ユニット。 - 以下の条件式を満足する
請求項1に記載の撮像ユニット。
f/f1<0.10 ……(1)
f/f2<1.40 ……(2)
ただし、
f:前記撮像レンズの全系の焦点距離
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
とする。 - 前記第2レンズ群が、前記第2レンズ群の光軸方向に移動することによって合焦を行う
請求項1に記載の撮像ユニット。 - 前記第2レンズ群の最も像側のレンズ面が、前記第2レンズ群の光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状である
請求項1に記載の撮像ユニット。 - 前記第2レンズ群は、最も像側にプラスチックレンズを有する
請求項1に記載の撮像ユニット。 - 前記第1レンズ群全体の外径が、前記第2レンズ群全体の外径よりも大きく、
前記第1レンズ群は、最も物体側にガラスレンズを有する
請求項1に記載の撮像ユニット。 - 前記第1レンズ群は、物体側から像側に向かって順に、物体側に凸面を向けた負の屈折力を有するメニスカス形状の第1レンズと、負の屈折力を有する第2レンズと、正の屈折力を有する第3レンズとから構成され、
前記第2レンズ群は、正の屈折力を有する第4レンズと、負の屈折力を有する第5レンズと、正の屈折力を有する第6レンズと、光軸近傍で負の屈折力を有し像側のレンズ面が光軸近傍で像側に凹形状で、かつ周辺部で像側に凸形状となる第7レンズとから構成される
請求項1に記載の撮像ユニット。 - 前記第2レンズ群と前記撮像素子とを一体に回転移動させることによって、撮影画像のぶれ補正を行う、または視野を変化させる
請求項1に記載の撮像ユニット。 - 物体側から像側に向かって順に配置された第1レンズ群および第2レンズ群を有する撮像レンズと、
前記撮像レンズによって形成された光学像を電気的な信号に変換する撮像素子と、
前記撮像素子によって撮像された画像を補正する演算器と
を備え、
前記第1レンズ群の光軸に対して前記第2レンズ群と前記撮像素子とが傾くように、前記第2レンズ群と前記撮像素子とが一体に回転移動する
撮像装置。 - 前記演算器は、前記第2レンズ群と前記撮像素子とを一体に回転移動させることによって発生した、前記撮像素子の撮像面の中心軸に対して非対称な歪曲を持つ撮影画像を補正する
請求項13に記載の撮像装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017512236A JP6648757B2 (ja) | 2015-04-15 | 2016-03-11 | 撮像ユニットおよび撮像装置 |
US15/564,234 US10491825B2 (en) | 2015-04-15 | 2016-03-11 | Imaging unit and imaging apparatus with rotatable lens group for optical vibration isolation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-083177 | 2015-04-15 | ||
JP2015083177 | 2015-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167063A1 true WO2016167063A1 (ja) | 2016-10-20 |
Family
ID=57125772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/057728 WO2016167063A1 (ja) | 2015-04-15 | 2016-03-11 | 撮像ユニットおよび撮像装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10491825B2 (ja) |
JP (1) | JP6648757B2 (ja) |
WO (1) | WO2016167063A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017199582A1 (ja) * | 2016-05-16 | 2017-11-23 | ソニー株式会社 | 撮像装置、像振れ補正方法 |
JP2019032462A (ja) * | 2017-08-09 | 2019-02-28 | カンタツ株式会社 | 撮像レンズ |
WO2019073744A1 (ja) * | 2017-10-13 | 2019-04-18 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
JP2021009329A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2022016016A (ja) * | 2020-07-10 | 2022-01-21 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
JP2022051647A (ja) * | 2020-09-19 | 2022-04-01 | レイテック オプティカル (ジョウシュウ) カンパニーリミテッド | 撮像光学レンズ |
JP2022542038A (ja) * | 2019-07-19 | 2022-09-29 | Hoya株式会社 | 広視野対物レンズ |
JP7455269B1 (ja) | 2023-06-08 | 2024-03-25 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI633357B (zh) * | 2017-09-15 | 2018-08-21 | 致伸科技股份有限公司 | 影像對焦方法以及應用該方法的影像擷取裝置與電子裝置 |
WO2020202965A1 (ja) * | 2019-03-29 | 2020-10-08 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
JP6653456B1 (ja) * | 2019-05-24 | 2020-02-26 | パナソニックIpマネジメント株式会社 | 撮像装置 |
CN110941079B (zh) * | 2019-12-26 | 2021-09-28 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111025572B (zh) * | 2019-12-26 | 2021-07-30 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111007641B (zh) * | 2019-12-26 | 2021-07-30 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111007643B (zh) * | 2019-12-26 | 2021-07-30 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111552063B (zh) | 2020-05-20 | 2021-07-30 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN113835201B (zh) * | 2021-11-29 | 2022-04-12 | 江西晶超光学有限公司 | 光学系统、摄像模组和电子设备 |
CN115145012B (zh) * | 2022-08-31 | 2023-01-24 | 江西联益光学有限公司 | 光学镜头 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005173372A (ja) * | 2003-12-12 | 2005-06-30 | Matsushita Electric Ind Co Ltd | 光学装置の手振れ補正装置 |
JP2010025995A (ja) * | 2008-07-15 | 2010-02-04 | Konica Minolta Opto Inc | 広角光学系および撮像装置 |
JP2012008264A (ja) * | 2010-06-23 | 2012-01-12 | Nikon Corp | 撮影レンズ、撮影レンズを備えた光学機器、撮影レンズの製造方法 |
JP2014191163A (ja) * | 2013-03-27 | 2014-10-06 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
WO2015016116A1 (ja) * | 2013-08-01 | 2015-02-05 | 富士フイルム株式会社 | 撮像モジュール及び電子機器並びに撮像モジュールの製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3860231B2 (ja) | 1994-06-07 | 2006-12-20 | オリンパス株式会社 | 防振光学系 |
JP2833483B2 (ja) * | 1994-07-27 | 1998-12-09 | 日本電気株式会社 | 液晶プロジェクタ用投写レンズ |
JP3472995B2 (ja) | 1995-02-10 | 2003-12-02 | 株式会社ニコン | 防振機能を備えた広角レンズ |
JP4189768B2 (ja) * | 2006-10-16 | 2008-12-03 | ソニー株式会社 | 撮像レンズ及び撮像装置 |
JP5601857B2 (ja) * | 2009-04-07 | 2014-10-08 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置、ならびに携帯端末機器 |
JP5284169B2 (ja) * | 2009-04-07 | 2013-09-11 | キヤノン株式会社 | 像振れ補正装置およびそれを具備する光学機器、撮像装置 |
JP2014026695A (ja) * | 2012-07-26 | 2014-02-06 | Toshiba Corp | 不揮発性半導体記憶装置 |
EP2990847A4 (en) * | 2013-04-22 | 2016-11-30 | Olympus Corp | OPTICAL WIDE-ANGLE LENS SYSTEM |
JP6576289B2 (ja) * | 2016-04-04 | 2019-09-18 | 富士フイルム株式会社 | 内視鏡用対物光学系および内視鏡 |
-
2016
- 2016-03-11 US US15/564,234 patent/US10491825B2/en active Active
- 2016-03-11 JP JP2017512236A patent/JP6648757B2/ja active Active
- 2016-03-11 WO PCT/JP2016/057728 patent/WO2016167063A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005173372A (ja) * | 2003-12-12 | 2005-06-30 | Matsushita Electric Ind Co Ltd | 光学装置の手振れ補正装置 |
JP2010025995A (ja) * | 2008-07-15 | 2010-02-04 | Konica Minolta Opto Inc | 広角光学系および撮像装置 |
JP2012008264A (ja) * | 2010-06-23 | 2012-01-12 | Nikon Corp | 撮影レンズ、撮影レンズを備えた光学機器、撮影レンズの製造方法 |
JP2014191163A (ja) * | 2013-03-27 | 2014-10-06 | Canon Inc | ズームレンズ及びそれを有する撮像装置 |
WO2015016116A1 (ja) * | 2013-08-01 | 2015-02-05 | 富士フイルム株式会社 | 撮像モジュール及び電子機器並びに撮像モジュールの製造方法 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10979641B2 (en) | 2016-05-16 | 2021-04-13 | Sony Corporation | Imaging device and image shake correcting method |
WO2017199582A1 (ja) * | 2016-05-16 | 2017-11-23 | ソニー株式会社 | 撮像装置、像振れ補正方法 |
JP2019032462A (ja) * | 2017-08-09 | 2019-02-28 | カンタツ株式会社 | 撮像レンズ |
CN111183386A (zh) * | 2017-10-13 | 2020-05-19 | 索尼公司 | 成像镜头和成像设备 |
JPWO2019073744A1 (ja) * | 2017-10-13 | 2020-10-22 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
WO2019073744A1 (ja) * | 2017-10-13 | 2019-04-18 | ソニー株式会社 | 撮像レンズおよび撮像装置 |
JP7140133B2 (ja) | 2017-10-13 | 2022-09-21 | ソニーグループ株式会社 | 撮像レンズおよび撮像装置 |
JP2021009329A (ja) * | 2019-06-30 | 2021-01-28 | エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド | 撮像光学レンズ |
JP2022542038A (ja) * | 2019-07-19 | 2022-09-29 | Hoya株式会社 | 広視野対物レンズ |
JP7559045B2 (ja) | 2019-07-19 | 2024-10-01 | Hoya株式会社 | 広視野対物レンズ |
US12066597B2 (en) | 2020-07-10 | 2024-08-20 | Fujifilm Corporation | Imaging lens and imaging apparatus |
JP2022016016A (ja) * | 2020-07-10 | 2022-01-21 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
JP7334137B2 (ja) | 2020-07-10 | 2023-08-28 | 富士フイルム株式会社 | 撮像レンズおよび撮像装置 |
JP2022051647A (ja) * | 2020-09-19 | 2022-04-01 | レイテック オプティカル (ジョウシュウ) カンパニーリミテッド | 撮像光学レンズ |
JP7455269B1 (ja) | 2023-06-08 | 2024-03-25 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
JP2024177036A (ja) * | 2023-06-08 | 2024-12-19 | エーエーシー オプティックス (ソシュウ) カンパニーリミテッド | 撮像光学レンズ |
Also Published As
Publication number | Publication date |
---|---|
US20180131874A1 (en) | 2018-05-10 |
JP6648757B2 (ja) | 2020-02-14 |
JPWO2016167063A1 (ja) | 2018-02-08 |
US10491825B2 (en) | 2019-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6648757B2 (ja) | 撮像ユニットおよび撮像装置 | |
JP4728321B2 (ja) | ズームレンズ系、撮像装置及びカメラ | |
JP6204676B2 (ja) | 撮像レンズ及びそれを有する撮像装置 | |
JP6128387B2 (ja) | ズームレンズおよび撮像装置 | |
JP6356622B2 (ja) | ズームレンズおよび撮像装置 | |
CN111344617B (zh) | 拍摄镜头、拍摄光学装置以及数码设备 | |
US8958007B2 (en) | Zoom lens and image pickup apparatus having the same | |
JP6204852B2 (ja) | ズームレンズおよび撮像装置 | |
US9678317B2 (en) | Zoom lens and image pickup apparatus including the same | |
JP6219183B2 (ja) | 撮像レンズおよび撮像装置 | |
JP6401420B2 (ja) | ズームレンズおよび撮像装置 | |
US20150316756A1 (en) | Zoom lens and image pickup apparatus including the same | |
JP2016012118A (ja) | ズームレンズおよび撮像装置 | |
JP6396271B2 (ja) | ズームレンズおよび撮像装置 | |
JP6437901B2 (ja) | ズームレンズおよび撮像装置 | |
KR101858645B1 (ko) | 광각 렌즈 및 이를 구비한 촬영 장치 | |
JP6745430B2 (ja) | ズームレンズ系、撮像装置 | |
JP2007058054A (ja) | ズームレンズおよびそれを有する撮像装置 | |
WO2017169583A1 (ja) | ズームレンズおよび撮像装置 | |
JP5718020B2 (ja) | ズームレンズ及び撮像装置 | |
JP6284893B2 (ja) | ズームレンズおよび撮像装置 | |
JP2016071141A (ja) | ズームレンズおよび撮像装置 | |
JP2018116210A (ja) | 撮像レンズおよび撮像装置 | |
JP6422836B2 (ja) | ズームレンズおよび撮像装置 | |
JP2011137875A (ja) | ズームレンズ及び撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16779855 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017512236 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15564234 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16779855 Country of ref document: EP Kind code of ref document: A1 |