[go: up one dir, main page]

WO2016159634A1 - 무선 베어러 재구성 방법 및 그 장치 - Google Patents

무선 베어러 재구성 방법 및 그 장치 Download PDF

Info

Publication number
WO2016159634A1
WO2016159634A1 PCT/KR2016/003203 KR2016003203W WO2016159634A1 WO 2016159634 A1 WO2016159634 A1 WO 2016159634A1 KR 2016003203 W KR2016003203 W KR 2016003203W WO 2016159634 A1 WO2016159634 A1 WO 2016159634A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcp
radio bearer
data
wlan
bearer
Prior art date
Application number
PCT/KR2016/003203
Other languages
English (en)
French (fr)
Inventor
홍성표
최우진
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to US15/562,463 priority Critical patent/US10485042B2/en
Priority to CN201680007805.6A priority patent/CN107211475B/zh
Priority claimed from KR1020160037352A external-priority patent/KR101870022B1/ko
Publication of WO2016159634A1 publication Critical patent/WO2016159634A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections

Definitions

  • the present invention relates to a technique for transmitting user plane data by adding a WLAN connection to a terminal where a base station establishes a wireless connection at a radio access network (RAN) level.
  • RAN radio access network
  • the present invention relates to a method and apparatus for configuring or reconfiguring a radio data bearer for transmitting user plane data.
  • LTE Long Term Evolution
  • LTE-Advanced of the current 3GPP series are high-speed and large-capacity communication systems that can transmit and receive various data such as video and wireless data beyond voice-oriented services.
  • the development of technology capable of transferring large amounts of data is required.
  • As a method for transmitting a large amount of data data can be efficiently transmitted using a plurality of cells.
  • the unlicensed frequency band that can not be used exclusively by a specific operator or a specific communication system can be shared by multiple operators or communication systems.
  • WLAN technology represented by Wi-Fi provides data transmission / reception services using frequency resources of the unlicensed band.
  • the mobile communication system also requires a study on the technology for transmitting and receiving data with the terminal using a corresponding Wi-Fi access point (AP).
  • AP Wi-Fi access point
  • the present invention devised in this background provides a specific method and apparatus for a base station to add / modify / release / change a radio bearer using at least one of a WLAN radio resource and a base station radio resource.
  • the present invention provides a method for a UE to reconfigure a radio bearer, the terminal comprising: data for a specific radio bearer configured to receive downlink data using only a wireless local area network (WLAN) radio resource from a base station; A PDCP data recovery procedure is performed in a Packet Data Convergence Protocol (PDCP) entity based on receiving a higher layer signaling including information for changing a radio bearer type and information for changing a data radio bearer type for a specific radio bearer. And performing a reordering procedure for the specific radio bearer in a PDCP entity.
  • PDCP Packet Data Convergence Protocol
  • the present invention provides a method for a terminal reconfiguring a radio bearer, the higher layer signaling including information for changing the data radio bearer type for a specific radio bearer configured to receive downlink data using only the base station radio resources from the base station Initiating a reordering procedure for the particular radio bearer in the Packet Data Convergence Protocol (PDCP) entity based on the receiving and information for changing the data radio bearer type for the particular radio bearer.
  • PDCP Packet Data Convergence Protocol
  • the present invention provides a method for a base station to reconfigure a radio bearer of the terminal, information for changing the data radio bearer type for a specific radio bearer configured to receive downlink data using only a wireless local area network (WLAN) radio resource; PDCP SDUs / PDUs (PDCP Service) that have not been verified to be successfully delivered from the PDCP entity based on the step of transmitting higher layer signaling, including a packet data convergence protocol (PDCP) status report from the terminal, and a PDCP status report from the terminal; Data Unit / Protocol Data Unit) provides a method comprising the step of retransmitting.
  • WLAN wireless local area network
  • the present invention also provides information for changing a data radio bearer type for a specific radio bearer configured to receive downlink data using only a wireless local area network (WLAN) radio resource from a base station in a terminal for reconfiguring a radio bearer.
  • a PDCP data recovery procedure is performed in a Packet Data Convergence Protocol (PDCP) entity based on information of changing a data radio bearer type for a specific radio bearer and a receiver that receives higher layer signaling.
  • PDCP Packet Data Convergence Protocol
  • a terminal device including a control unit for performing a reordering procedure for a bearer.
  • the present invention is a terminal for reconfiguring a radio bearer, receiving a higher layer signaling including information for changing the data radio bearer type for a specific radio bearer configured to receive the downlink data using only the base station radio resources from the base station It provides a terminal device including a receiver and a control unit for initiating a reordering procedure for the specific radio bearer in the Packet Data Convergence Protocol (PDCP) entity based on information for changing the data radio bearer type for the specific radio bearer.
  • PDCP Packet Data Convergence Protocol
  • the present invention also provides a base station for reconfiguring a radio bearer of a terminal, comprising information for changing a data radio bearer type for a specific radio bearer configured to receive downlink data using only a wireless local area network (WLAN) radio resource.
  • PDCP SDUs / PDUs PDCP Service Data Units
  • PDCP Packet Data Convergence Protocol
  • the base station can dynamically transmit and receive data with the terminal using the WLAN radio resources.
  • the present invention provides a specific method for reconfiguring a terminal and a radio bearer in transmitting user plane data by adding a WLAN radio resource in addition to the base station radio resource to reduce the lossless data transmission effect of the radio bearer mapped to the AM RLC. to provide.
  • 1 is a diagram illustrating a 2C solution structure in a dual connectivity situation.
  • 3 exemplarily illustrates a 1A solution structure in a dual connectivity situation.
  • FIG. 4 is a view for explaining the operation of the terminal according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining the operation of the base station according to another embodiment of the present invention.
  • FIG. 6 is a view for explaining the operation of the terminal according to another embodiment of the present invention.
  • FIG. 7 is a view for explaining a terminal configuration according to another embodiment of the present invention.
  • FIG. 8 is a view for explaining the configuration of a base station according to another embodiment of the present invention.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement.
  • the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
  • the MTC terminal may mean a newly defined 3GPP Release 13 low cost (or low complexity) UE category / type for performing LTE-based MTC related operations.
  • the MTC terminal supports an enhanced coverage compared to the existing LTE coverage, or UE category / type defined in the existing 3GPP Release 12 or less that supports low power consumption, or newly defined Release-13 low cost (or low). complexity) can mean UE category / type.
  • the wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB).
  • a user terminal is a generic concept meaning a terminal in wireless communication.
  • user equipment (UE) in WCDMA, LTE, and HSPA, as well as mobile station (MS) in GSM, user terminal (UT), and SS It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
  • a base station or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS.
  • Other terms such as a base transceiver system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and a small cell may be called.
  • RRH remote radio head
  • RU radio unit
  • a base station or a cell is a generic meaning indicating some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or a sector (site) in LTE, and the like. It should be interpreted as, and it is meant to cover all the various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, small cell communication range.
  • BSC base station controller
  • the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station.
  • the base station may indicate the radio area itself to receive or transmit a signal from the viewpoint of the user terminal or the position of a neighboring base station.
  • megacells macrocells, microcells, picocells, femtocells, small cells, RRHs, antennas, RUs, low power nodes (LPNs), points, eNBs, transmit / receive points, transmit points, and receive points are collectively referred to as base stations. do.
  • the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to.
  • the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal
  • the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers.
  • the uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like.
  • Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
  • EPDCCH enhanced PDCCH
  • extended PDCCH extended PDCCH
  • a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
  • a wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal.
  • antenna transmission system a cooperative multi-cell communication system.
  • the CoMP system may include at least two multiple transmission / reception points and terminals.
  • the multiple transmit / receive point is at least one having a base station or a macro cell (hereinafter referred to as an eNB) and a high transmission power or a low transmission power in a macro cell region, which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • an eNB a base station or a macro cell
  • a high transmission power or a low transmission power in a macro cell region which is wired controlled by an optical cable or an optical fiber to the eNB. May be RRH.
  • downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal
  • uplink refers to a communication or communication path from a terminal to multiple transmission / reception points.
  • a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
  • a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be expressed in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.
  • a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting or receiving a signal through the EPDCCH.
  • the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
  • the EPDCCH which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the EPDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
  • RRC signaling for transmitting RRC information including an RRC parameter.
  • the eNB performs downlink transmission to the terminals.
  • the eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH.
  • a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted.
  • PUSCH physical uplink shared channel
  • the WLAN carrier in the present specification refers to a radio resource of a WLAN and may be described in various terms as necessary, such as a WLAN radio link, a WLAN radio, a WLAN radio resource, or a WLAN radio network.
  • a WLAN radio link, a WLAN radio, a WLAN carrier, or a WLAN radio network will be described as WLAN radio resources
  • a bearer using WLAN radio resources will be described as WLAN bearers.
  • the WLAN termination herein refers to a logical WLAN network node. For example, it may be a WLAN AP or a WLAN AC.
  • the WLAN termination may be a WLAN network node, such as an existing WLAN AP or an existing WLAN AC, or may be a WLAN network node with additional functionality for WLAN merge transmission to an existing WLAN AP or an existing WLAN AC.
  • the WLAN termination may be implemented as an independent entity or as a functional entity included in another entity.
  • the WLAN network node will be described as WLAN end point or WLAN AP as necessary.
  • radio resources provided by the base station eNB are described as base station radio resources, base station carriers, or E-UTRAN carriers, and a bearer using the base station radio resources is described as base station bearers.
  • 3GPP / WLAN interworking technology provides RAN assisted WLAN interworking functionality.
  • the E-UTRAN may help terminal-based two-way traffic steering between the E-UTRAN and the WLAN for terminals in the RRC_IDLE and RRC_CONNECTED states.
  • the E-UTRAN provides the assistance parameter to the terminal through broadcast signaling or dedicated RRC signaling.
  • the RAN help parameters include at least one of an E-UTRAN signal strength threshold, a WLAN channel utilization threshold, a WLAN backhaul data rate threshold, a WLAN signal strength (or WLAN signal strength threshold, eg BeaconRSSI threshold) and an offload preference indicator. It may include one.
  • the E-UTRAN may provide a list of WLAN identifiers to the terminal through broadcast signaling.
  • the terminal selects an access network selection and traffic control rule defined in TS 36.304.
  • RAN assistance parameters may be used to evaluate the traffic steering rules or ANDSF policies defined in the TS 24.312 document.
  • the terminal may indicate this to an upper layer of an access stratum (AS).
  • AS access stratum
  • the terminal When the terminal applies the access network selection and traffic control rules, the terminal performs traffic control in APN granularity between the E-UTRAN and the WLAN.
  • the RAN assisted WLAN interworking function provides only a method in which the E-UTRAN and the WLAN are built and stand alone.
  • the need for LTE WLAN integration capabilities to allow for tighter integration at the RAN level has also increased.
  • Rel-12 RAN assisted WLAN interworking was only possible for E-UTRAN and WLAN to operate independently in APN units. Accordingly, in transmitting UE user plane data, the E-UTRAN adds a WLAN carrier as one carrier in the E-UTRAN at the RAN level in consideration of the radio state and mobility of the UE, and thus the E-UTRAN carrier and / or WLAN.
  • the carrier could not be configured to be used simultaneously.
  • the E-UTRAN transmits a WLAN carrier to the UE at the RAN level in consideration of the radio state and mobility of the UE while maintaining the E-UTRAN carrier. Configured to add like one carrier and could not transmit over E-UTRAN carrier and / or WLAN carrier.
  • the E-UTRAN adds a WLAN carrier as one carrier in the E-UTRAN at the RAN level to transmit user plane data over the E-UTRAN carrier and / or WLAN carrier on the E-UTRAN layer 2.
  • a method of splitting (or splitting or routing) user plane data and a method of interworking user plane data may be considered.
  • a method of interworking with the user plane data separation method based on 2C and 3C of the dual connectivity solution may be applied.
  • Dual Connectivity Solutions 2C and 3C are the solutions presented in the 3GPP Dual Connectivity section, described in more detail below.
  • 1 is a diagram illustrating a 2C solution structure in a dual connectivity situation.
  • a structure for adding and configuring a WLAN radio resource in the terminal is similar to the dual connectivity 2C solution, and transmits data to be transmitted through a WLAN carrier in conjunction with a WLAN AP in a PDCP entity in association with a WLAN AP and peers the PDCP entity. Can be configured to receive.
  • the PDCP entity of the master base station (MeNB) is connected with the RLC entity of the secondary base station (SeNB).
  • a structure for adding and configuring a WLAN radio resource in a terminal is similar to a dual connectivity 3C solution, and separates and transmits data to be transmitted through an E-UTRAN carrier and / or data to be transmitted through a WLAN carrier in a PDCP entity, and peering.
  • the received PDCP entity can receive (or merge) it.
  • the PDCP entity of the master base station (MeNB) is connected to the RLC entity of the master base station and the RLC entity of the secondary base station, and performs routing functions in the PDCP entity.
  • 3 exemplarily illustrates a 1A solution structure in a dual connectivity situation.
  • the base station needs an operation for adding, modifying, or releasing a terminal and a radio bearer (or a data radio bearer (hereinafter, referred to as a radio bearer)) by adding a WLAN carrier, but a specific method is not described. Did.
  • configuration / reconfiguration operations such as adding, modifying, changing, and releasing a radio bearer involve detailed operations of each layer 2 entity to which they are associated. Therefore, it is necessary to define the efficient operation of each layer2 object. However, no specific method has been disclosed.
  • An object of the present invention is to provide a radio bearer configuration or reconfiguration method for the base station to add / modify / release / change the terminal and the radio bearer by adding a WLAN carrier.
  • an object of the present invention is to provide efficient operation of each layer 2 entity associated with an operation such as adding, modifying, changing, or releasing a radio bearer.
  • the present invention may be provided in a scenario where a base station and a WLAN AP are non-co-located.
  • the base station and the WLAN AP may be connected or established through a non-ideal backhaul or near-ideal backhaul or an ideal backhaul.
  • the present invention may be provided in a scenario in which a base station and a WLAN AP are co-located.
  • an E-UTRAN In order for an E-UTRAN to add WLAN radio resources to a terminal at the RAN level as one carrier and to transmit and receive user plane data using the E-UTRAN carrier and the WLAN carrier, a protocol structure and operation of each detailed layer must be provided. .
  • E-UTRAN adds a WLAN radio resource or WLAN carrier as one carrier logically or conceptually configured by the UE and the base station adding functions / objects for data transmission through the WLAN carrier in addition to the existing E-UTRAN cell. It shows.
  • the E-UTRAN is indicated for convenience of description and may mean LTE / LTE-Advanced / arbitrary 3GPP radio access or base station.
  • User plane data may be split (or split or routing) or interworked on the sublayer.
  • the PDCP entity may transmit data to be transmitted through the WLAN carrier in association with the WLAN AP and allow the peered PDCP entity to receive it.
  • the PDCP entity transmits data to be transmitted through the WLAN carrier in association with the WLAN AP and marks the bearer receiving the peered PDCP entity as the WLAN bearer. This is for convenience of description and other terms meaning the concept may be used.
  • the WLAN bearer may be used for uplink data transmission and downlink data transmission.
  • the WLAN bearer may be used for downlink data transmission.
  • uplink data may be transmitted through an E-UTRAN carrier.
  • the WLAN bearer may be used for uplink data transmission, and the downlink data may be transmitted on the E-UTRAN carrier.
  • the aforementioned E-UTRAN carrier may mean a bearer using only radio resources of a base station in LTE-WLAN aggregation
  • a WLAN bearer may mean bearer using only WLAN radio resources in LTE-WLAN aggregation.
  • the WLAN bearer may change by switching radio resources to be used. That is, the switched WLAN bearer may be switched to use only base station radio resources by using only WLAN radio resources and reconfigured through an upper layer message, or may be switched to use only WLAN radio resources by using only base station radio resources and then reconfigured through an upper layer message. have. That is, the WLAN bearer will be described below using only WLAN radio resources. However, the WLAN bearer is assumed to be a switch bearer that may be changed to use only base station radio resources according to bearer reconfiguration.
  • the PDCP entity separates and transmits data to be transmitted through the E-UTRAN carrier and / or data to be transmitted through the WLAN carrier, and receives (or merges and receives) the peered PDCP entity. can do.
  • the PDCP entity similar to the dual connectivity 3C solution, the PDCP entity separates the data to be transmitted through the E-UTRAN carrier and / or the data to be transmitted via the WLAN carrier and transmits the bearer to receive it at the peered PDCP object. It is represented by a bearer (Integration bearer, aggregation bearer, WLAN split bearer). This is for convenience of description and other terms meaning the concept may be used.
  • the merge bearer may be used for uplink data transmission and downlink data transmission.
  • the downlink data may be configured to be transmitted through the E-UTRAN carrier and the WLAN carrier.
  • the uplink data may be configured to be transmitted through the E-UTRAN carrier and the WLAN carrier.
  • the merge bearer may be used for downlink data transmission.
  • the downlink data may be transmitted through the E-UTRAN carrier and the WLAN carrier.
  • uplink data may be transmitted through an E-UTRAN carrier.
  • the merge bearer may allow downlink data to be transmitted on the E-UTRAN carrier and the WLAN carrier. In this case, uplink data may be transmitted through a WLAN carrier.
  • the merge bearer may be used for uplink data transmission.
  • uplink data may be transmitted through an E-UTRAN carrier and a WLAN carrier.
  • downlink data may be transmitted through an E-UTRAN carrier.
  • uplink data may be transmitted through an E-UTRAN carrier and a WLAN carrier.
  • downlink data may be transmitted through a WLAN carrier.
  • the base station may add or configure a WLAN bearer by adding a WLAN carrier.
  • the terminal that has established the RRC connection may add a new radio bearer as a WLAN bearer through core network signaling.
  • the UE that has established the RRC connection may add a new radio bearer as a merge bearer through core network signaling.
  • a radio bearer (E-UTRAN bearer) configured in the terminal that has established the RRC connection may be reconfigured / modified / changed into a WLAN bearer.
  • a radio bearer (E-UTRAN bearer) configured in the terminal which has established the RRC connection may be reconfigured / modified / modified as a merge bearer.
  • the radio bearer (DRB) configured to transmit through the E-UTRAN carrier or the radio bearer (DRB) transmitted only through the E-UTRAN carrier to the terminal that has established the RRC connection with the base station described above
  • D Denotes a UTRAN bearer or a base station bearer. This is for convenience of description and other terms meaning the concept may be used.
  • the terminal may perform the following operation.
  • the terminal configures a PDCP entity.
  • the PDCP entity is configured according to the PDCP configuration information (PDCP-Config).
  • the terminal establishes an entity for transmitting user plane data through the WLAN carrier.
  • the object is configured according to the information for configuring the set object.
  • an entity for transmitting user plane data through a WLAN carrier in a terminal is described as a WLAN entity. This is for convenience of description and other terms meaning the concept may be used.
  • the terminal may perform the following operation.
  • the terminal sets the PDCP entity.
  • the PDCP entity is configured according to the PDCP configuration information (PDCP-Config).
  • the terminal sets the RLC entity.
  • the RLC entity is configured according to the RLC configuration information (RLC-Config).
  • the terminal establishes a WLAN entity.
  • the WLAN entity is configured according to the WLAN entity configuration information.
  • the present invention will be described by dividing a specific radio bearer configured in the terminal and the base station from the E-UTRAN bearer to the WLAN bearer or from the WLAN bearer to the E-UTRAN bearer for each embodiment.
  • FIG. 4 is a view for explaining the operation of the terminal according to an embodiment of the present invention.
  • a terminal In a method for reconfiguring a radio bearer, a terminal according to an embodiment of the present invention provides a data radio bearer type for a specific radio bearer configured to receive downlink data using only a wireless local area network (WLAN) radio resource from a base station.
  • WLAN wireless local area network
  • PDCP Packet Data Convergence Protocol
  • the terminal includes receiving higher layer signaling including information for changing a data radio bearer type for a specific radio bearer configured to receive downlink data using only WLAN radio resources from a base station (see FIG. S410).
  • the terminal may configure a radio bearer with a base station or a WLAN AP using the WLAN bearer addition or merge bearer addition method described above.
  • the specific radio bearer further configured in the terminal may be a WLAN bearer using only WLAN radio resources.
  • the WLAN bearer according to the present invention may be reconfigured after being changed to the E-UTRAN bearer by higher layer signaling as described above. Meanwhile, the UE may separately configure an E-UTRAN bearer using only base station radio resources.
  • the terminal may receive data radio bearer type information for a specific radio bearer (for example, a WLAN bearer) configured to receive downlink data using only WLAN radio resources from the base station through higher layer signaling.
  • radio bearer type information about a radio bearer may be included in an information element of an RRC connection reconfiguration message. That is, when the WLAN bearer is configured in the terminal, the radio bearer type information may include information indicating that the corresponding WLAN bearer is a bearer using only WLAN radio resources.
  • the terminal may receive information for changing the radio bearer type for the specific radio bearer from the base station.
  • the terminal may receive information for changing the information on the radio bearer type of the existing WLAN bearer into information on the radio bearer type indicating the E-UTRAN bearer from the base station. That is, when the radio bearer type information for the specific radio bearer is changed from the existing radio bearer type information, the terminal may recognize that the type of the specific radio bearer is changed.
  • the terminal includes performing a PDCP data recovery procedure on a Packet Data Convergence Protocol (PDCP) entity based on information for changing a data radio bearer type for a specific radio bearer (S420).
  • PDCP Packet Data Convergence Protocol
  • the terminal may perform a PDCP data recovery procedure in the PDCP entity.
  • the terminal needs to reconfigure the specific radio bearer in order to change the radio bearer type of the specific radio bearer from the WLAN bearer to the E-UTRAN bearer.
  • the PDCP entity in order to prevent data loss or omission of downlink data that has been received using only conventional WLAN radio resources, the PDCP entity must perform a PDCP data recovery procedure.
  • the PDCP entity may generate a PDCP status report and include the PDCP status report in a PDCP PDU (PDCP Protocol Data Unit) to deliver to the lower layer. That is, the PDCP entity may generate a PDCP status report in the PDCP layer and deliver the PDCP status report, which is created to transmit it to the base station, to a lower layer (eg, an RLC layer or a MAC layer).
  • a lower layer eg, an RLC layer or a MAC layer.
  • the terminal transmits a PDCP status report to the base station to help the base station retransmit the PDCP data when the specific radio bearer is reconfigured.
  • a specific PDCP data recovery operation will be described in more detail with reference to the following embodiments.
  • the terminal includes a step of performing a reordering procedure for a specific radio bearer in the PDCP entity (S430).
  • a specific radio bearer receiving downlink data is changed in type from a WLAN bearer to an E-UTRAN bearer
  • the UE performs a reordering procedure for the specific radio bearer in the PDCP entity. That is, in transmitting downlink data transmitted from the base station to the terminal using the WLAN radio resource to the terminal using the base station radio resource, in order to transmit data in order, to prevent data loss or loss. In order to do this, the terminal performs a reordering procedure for the received downlink data.
  • the terminal may additionally receive information for configuring the reordering timer from the base station, the information for configuring the reordering timer may be received through higher layer signaling.
  • the terminal transmits all PDCP SDUs stored for reordering to the upper layer in the ascending order of the associated COUNT value when the reordering timer expires. That is, similar to the RLC Unacknowledged Mode, when the reordering timer expires periodically, all PDCP SDUs received and stored out of the order are delivered to the upper layer, and downlink data is delivered to the upper layer in order.
  • the terminal may additionally perform a reordering procedure of the 3GPP TS 36.323 document.
  • the terminal may reconfigure a radio bearer configured to receive downlink data using only WLAN radio resources into a radio bearer configured to receive downlink data using only base station radio resources.
  • the PDCP entity in order to transmit data in sequence in this process, in order to prevent the loss or loss of downlink data, the PDCP entity reorders downlink data for a specific radio bearer, and reconstructs PDCP data of the base station. To help retransmission, a PDCP status report can be generated and sent to the base station.
  • FIG. 5 a method of reconfiguring a specific radio bearer carrying downlink data into a base station bearer will be described again from the base station perspective.
  • FIG. 5 is a view for explaining the operation of the base station according to another embodiment of the present invention.
  • a base station In a method for reconfiguring a radio bearer of a terminal, a base station according to an embodiment of the present invention provides a data radio bearer type for a specific radio bearer configured to receive downlink data using only a wireless local area network (WLAN) radio resource.
  • WLAN wireless local area network
  • PDCP SDUs for which delivery success is not confirmed in the PDCP entity on the basis of transmitting a higher layer signaling including information to be changed, receiving a Packet Data Convergence Protocol (PDCP) status report from the terminal, and a PDCP status report.
  • PDCP Packet Data Convergence Protocol
  • PDCP Service Data Unit
  • PDU PDCP Protocol Data Unit
  • a base station of the present invention provides higher layer signaling including information for changing a data radio bearer type for a specific radio bearer configured to receive downlink data using only a wireless local area network (WLAN) radio resource. It includes the step of transmitting (S610). As described above, the base station may generate and transmit information for changing the data radio bearer type for a specific radio bearer (eg, WLAN bearer) to change the WLAN bearer into an E-UTRAN bearer. For example, the base station may transmit information for changing the data radio bearer type through higher layer signaling, and the higher layer signaling may be an RRC connection reconfiguration message.
  • the base station may generate and transmit information for changing the data radio bearer type for a specific radio bearer (eg, WLAN bearer) to change the WLAN bearer into an E-UTRAN bearer.
  • the base station may transmit information for changing the data radio bearer type through higher layer signaling, and the higher layer signaling may be an RRC connection reconfiguration message.
  • the information for changing the data radio bearer type for a specific radio bearer may further include information for configuring a reordering timer used to perform the reordering procedure of the terminal.
  • the terminal receives the information for configuring the reordering timer to configure the reordering timer, and performs a reordering procedure using the reordering timer when a specific radio bearer is reconfigured.
  • the base station includes a step of receiving a Packet Data Convergence Protocol (PDCP) status report from the terminal (S520).
  • PDCP Packet Data Convergence Protocol
  • the base station changes the data radio bearer type for a specific radio bearer
  • the base station receives a PDCP status report of the specific radio bearer from the terminal.
  • the terminal receives information for changing the data radio bearer type of a specific radio bearer, the terminal generates a PDCP status report as a first PDCP PDU to be transmitted to a lower layer and transmits it to the base station.
  • the base station includes the step of retransmitting the PDCP SDU or PDCP PDU that is not confirmed whether the successful delivery in the PDCP entity based on the PDCP status report (S530).
  • the base station performs PDCP data recovery using the PDCP status report and retransmits downlink data to the terminal using only the base station radio resources.
  • the base station retransmits the PDCP PDU transmitted to the terminal using the WLAN radio resource to the terminal using the base station radio resource. That is, as a specific radio bearer is reconfigured, the PDCP PDU whose delivery success is not confirmed to the AM RLC entity is retransmitted to the terminal according to the PDCP data recovery procedure.
  • the terminal may perform the following operations.
  • the terminal resets the PDCP entity.
  • the WLAN entity may perform one or more of the following operations.
  • the UE transmits or retransmits PDCP SDUs whose successful transmission is not confirmed according to the PDCP reset, for data lost during the radio bearer change process, thereby performing lossless transmission.
  • this method must handle complex detailed operations such as header compression protocol reset and security key change, PDCP SDUs transmission or retransmission even for bearer change without change of PDCP entity, which can increase complexity and delay. have. Therefore, in the present invention, as described above, a method of reconfiguring a specific radio bearer without resetting the PDCP entity has been described.
  • the present invention describes a method of performing a PDCP data recovery procedure without resetting a PDCP entity.
  • the PDCP entity may be reconfigured or maintained.
  • the terminal may perform the following operations.
  • the RRC Connection Reconfiguration message for reconfiguring / modifying / changing a WLAN bearer into an E-UTRAN bearer includes information for changing the data radio bearer type.
  • the RRC connection reconfiguration message may include a DRB type in "drb-ToAddModList". If the DRB type of the specific radio bearer is received after being changed from the current type, the terminal may reconfigure the specific radio bearer.
  • the terminal performs PDCP data recovery previously submitted to the WLAN entity.
  • the WLAN entity may perform one or more of the following operations.
  • PDCP data recovery performs retransmission for all PDCP PDUs previously submitted to the reset AM RLC entity. Therefore, when changing a WLAN bearer into a WLAN bearer, retransmission must be performed for PDCP PDUs submitted to the WLAN entity before receiving a bearer change message (or before performing PDCP data recovery).
  • the radio bearer is configured to send a PDCP status report by the upper layer on the uplink, generate a PDCP status report and submit it to the first PDCP PDU for transmission to the lower layer.
  • the base station When PDCP data recovery for uplink is performed in the terminal, the base station should perform a reordering function for the corresponding PDCP data. Alternatively, when PDCP data recovery for downlink is performed in the base station, the terminal should perform a reordering function for the corresponding PDCP data.
  • PDCP data recovery can be performed when a bearer change occurs for a split split bearer in Rel-12 dual connectivity (e.g., when a split bearer changes to a split bearer without a PDCP reset or when a split bearer becomes a MCG without a PDCP reset). Only when changed to bearer).
  • the reordering function was performed when the split bearer is configured in the terminal.
  • the UE has a reordering function when the PDCP entity is associated with two AM RLC entities in a dual connectivity situation.
  • the reordering function was performed when the split bearer changed to the split bearer without PDCP resetting.
  • the PDCP entity is associated with one AM RLC entity after it was, according to the most recent reconfiguration, associated with two AM RLC entities without performing PDCP re reordering function was used.
  • the PDCP immediately started the reordering function upon receiving the dual connectivity split bearer configuration message, and applied a reordering method such as RLC UM through the set reordering timer (t-Reordering-r12). That is, all stored PDCP SDU (s) is transferred to the upper layer for reordering.
  • a reordering method such as RLC UM through the set reordering timer (t-Reordering-r12). That is, all stored PDCP SDU (s) is transferred to the upper layer for reordering.
  • the present invention may be set to perform a reordering procedure if PDCP data recovery is used in case of reconfiguring / modifying / modifying a WLAN bearer into an E-UTRAN bearer.
  • the base station may include information (or information for indicating this) for configuring the reordering timer for this to include in the RRC message to the terminal.
  • the base station may perform a reordering function for this.
  • the downlink data reception procedure provided by the PDCP may be used.
  • the PDCP SDU / PDU received by PDCP is immediately forwarded to the upper layer. That is, when the reordering function is not used, data transmitted through a single radio link can be directly transmitted to the upper layer without reordering the PDCP since the RLC guarantees in-sequence transmission.
  • the UE provides downlink data provided by the conventional PDCP when the aforementioned reordering function is not used.
  • Reordering can be improved to allow for reordering. For example, if the PDCP PDU received by the PDCP entity is due to an E-UTRAN bearer change in the WLAN bearer (or if it is due to the release of the WLAN entity or due to a specific operation of the WLAN entity), then reordering: You can do
  • Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers
  • reordering is performed as follows. You can do that.
  • Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers
  • the receiving side when the bearer type is changed from the WLAN bearer to the E-UTRAN bearer, the receiving side (for example, the UE in the downlink) performs the PDCP data recovery procedure without resetting the PDCP.
  • the reordering procedure may be performed using the reordering timer on the entity.
  • the specific radio bearer described above includes a switching function so that the E-UTRAN bearer may be reconfigured as a WLAN bearer. Therefore, a procedure according to the present invention when a specific radio bearer is configured to use only base station radio resources and is reconfigured to use only WLAN radio resources will be described below.
  • FIG. 6 is a view for explaining the operation of the terminal according to another embodiment of the present invention.
  • the terminal of the present invention receives higher layer signaling including information for changing data radio bearer type for a specific radio bearer configured to receive downlink data from a base station using only base station radio resources. And initiating a reordering procedure for the specific radio bearer in the Packet Data Convergence Protocol (PDCP) entity based on the information for changing the data radio bearer type for the specific radio bearer.
  • PDCP Packet Data Convergence Protocol
  • the terminal includes receiving higher layer signaling including information for changing a data radio bearer type for a specific radio bearer configured to receive downlink data using only base station radio resources from the base station (S610). ).
  • the terminal may receive information for changing a data radio bearer type for a specific radio bearer configured to receive downlink data.
  • information for changing the data radio bearer type uses only WLAN radio resources in the radio bearer type for receiving downlink data using the radio bearer using only the base station radio resources. It includes information to change to a radio bearer type for receiving downlink data.
  • the information for changing the data radio bearer type may be included in the RRC connection reconfiguration message.
  • the terminal checks the information for changing the data radio bearer type included in the higher layer signaling, and when the type information of the specific radio bearer is changed, performs a procedure for reconfiguring the specific radio bearer.
  • the terminal includes the step of initiating a reordering procedure for a specific radio bearer in the Packet Data Convergence Protocol (PDCP) entity based on the information for changing the data radio bearer type for the specific radio bearer (S620).
  • PDCP Packet Data Convergence Protocol
  • S620 the information for changing the data radio bearer type for the specific radio bearer
  • the terminal initiates a reordering procedure for the specific radio bearer in the PDCP entity. For example, the terminal counts the PDCP SDU using the reordering timer in the PDCP entity, and when the reordering timer expires, delivers the PDCP SDU to the higher layer.
  • the PDCP entity of the UE may initiate a reordering procedure without performing a PDCP data recovery procedure.
  • the UE may reconfigure the E-UTRAN bearer configured to receive the downlink data into the WLAN bearer without unnecessary delay and data loss.
  • the E-UTRAN bearer configured in the terminal may be reconfigured / modified / changed into the WLAN bearer through the RRC connection reconfiguration message.
  • the base station may transmit information to change the data radio bearer type of the E-UTRAN bearer in the RRC connection reconfiguration message to the terminal.
  • the conventional WLAN did not provide the same function as the RLC entity of the E-UTRAN. Therefore, when the E-UTRAN bearer is reconfigured / modified / modified to the WLAN bearer, loss may occur in the process of switching the corresponding user plane data from transmission through the E-UTRAN carrier to transmission through the WLAN carrier.
  • Radio Link Control For radio bearers mapped to AM Acknowledgment mode Radio Link Control (RLC), lossless data transmission should be guaranteed even when the E-UTRAN bearer configured in the terminal is reconfigured / modified / modified into a WLAN bearer through an RRC connection reconfiguration message. . To this end, the following embodiments can be used.
  • RLC Radio Link Control
  • the terminal may perform the following operations.
  • the terminal resets the PDCP entity.
  • the terminal resets the RLC entity.
  • the terminal establishes a WLAN entity.
  • the WLAN entity is configured or reconfigured according to the WLAN entity configuration information.
  • the UE performs one or more of the following operations for a radio bearer mapped to AM RLC.
  • a higher layer eg, RRC
  • the lower layer e.g. RLC
  • the AM RLC entity (or the terminal or the AM RLC entity of the terminal) performs one or more of the following operations.
  • RLC SDUs are derived from any byte segment of AMD PDUs whose SN is less than the maximum acceptable receive state variable (VR (MR)).
  • MR receive state variable
  • VR maximum acceptable receive state variable
  • the PDCP reset and the RLC reset are performed as described above, even if the UE discards all RLC SDUs and AMD PDUs that the transmitter did not transmit according to the RLC reset, the PDCP SDUs whose successful delivery is not confirmed according to the PDCP reset or Retransmission allows lossless transmission.
  • this method must handle complex detailed operations such as header compression protocol reset and security key change, PDCP SDUs transmission or retransmission even for bearer change without change of PDCP entity, which can increase complexity and delay. have.
  • a reconfiguration method for a specific radio bearer can be performed as follows without resetting PDCP.
  • the terminal when reconfiguring / modifying / changing an E-UTRAN bearer configured in a terminal through an RRC connection reconfiguration message to a WLAN bearer, the terminal may perform the following operation.
  • the PDCP entity may be reconfigured or maintained.
  • the terminal performs PDCP data recovery.
  • the terminal resets the RLC entity. Or, the terminal reconfigures the RLC entity.
  • the terminal configures the WLAN entity and configures or reconfigures the WLAN entity according to the WLAN entity configuration information.
  • the terminal when reconfiguring / modifying / changing an E-UTRAN bearer configured in a terminal through an RRC connection reconfiguration message to a WLAN bearer, the terminal may perform the following operation.
  • the PDCP entity is reconfigured according to the PDCP configuration information.
  • the terminal resets the RLC entity. Or, the terminal reconfigures the RLC entity.
  • the terminal configures the WLAN entity and configures or reconfigures the WLAN entity according to the WLAN entity configuration information.
  • the AM RLC entity (or the terminal or the AM RLC entity of the terminal) performs the above-described operation. Therefore, a loss may occur depending on the discarded data (SDUs or PDUs) due to the RLC reset.
  • the UE may perform PDCP data recovery.
  • the terminal (or PDCP entity or PDCP entity of the terminal) may perform one or more of the following operations.
  • the radio bearer is configured to send a PDCP status report on the uplink by the upper layer, generate a status report and submit it to the first PDCP PDU for transmission to the lower layer (if the radio bearer is configured by upper layers to send a PDCP status report in the uplink (statusReportRequired), compile a status report, and submit it to lower layers as the first PDCP PDU for the transmission).
  • the base station When PDCP data recovery for uplink is performed in the terminal, the base station should perform a reordering function for the corresponding PDCP data. When PDCP data recovery for downlink is performed at the base station, the terminal should perform a reordering function for the corresponding PDCP data.
  • PDCP data recovery can be performed when a bearer change occurs for a split split bearer in Rel-12 dual connectivity (e.g., when a split bearer changes to a split bearer without a PDCP reset or when a split bearer becomes a MCG without a PDCP reset). Only when changed to bearer).
  • the reordering function was performed when the split bearer is configured in the terminal.
  • the UE has a reordering function when the PDCP entity is associated with two AM RLC entities in a dual connectivity situation.
  • the reordering function was performed when the split bearer changed to the split bearer without PDCP resetting.
  • the PDCP entity is associated with one AM RLC entity after it was, according to the most recent reconfiguration, associated with two AM RLC entities without performing PDCP re reordering function was used.
  • the PDCP immediately started the reordering function upon receiving the dual connectivity split bearer configuration message, and applied a reordering method such as RLC UM through the set reordering timer (t-Reordering-r12). That is, all stored PDCP SDU (s) is transferred to the upper layer for reordering.
  • a reordering method such as RLC UM through the set reordering timer (t-Reordering-r12). That is, all stored PDCP SDU (s) is transferred to the upper layer for reordering.
  • the present invention may be set to perform a reordering procedure if PDCP data recovery is used in case of reconfiguring / modifying / modifying a WLAN bearer into an E-UTRAN bearer.
  • the base station may include information (or information for indicating this) for configuring the reordering timer for this to include in the RRC message to the terminal.
  • the base station may perform a reordering function for this.
  • the downlink data reception procedure provided by the PDCP may be used.
  • the PDCP PDU received by PDCP is immediately forwarded to the higher layer. That is, when the reordering function is not used, data transmitted through a single radio link can be directly transmitted to the upper layer without reordering the PDCP since the RLC guarantees in-sequence transmission.
  • reordering may be performed as follows.
  • Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers
  • the reordering may be performed as follows.
  • Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers
  • the terminal when reconfiguring / modifying / changing an E-UTRAN bearer configured in a terminal through an RRC connection reconfiguration message to a WLAN bearer, the terminal may perform the following operation.
  • the PDCP entity is reconfigured according to the PDCP configuration information.
  • the RLC entity is reconfigured according to the RLC configuration information.
  • the terminal configures the WLAN entity and configures or reconfigures the WLAN entity according to the WLAN entity configuration information.
  • the terminal when reconfiguring / modifying / changing an E-UTRAN bearer configured in a terminal through an RRC connection reconfiguration message to a WLAN bearer, the terminal may perform the following operation.
  • PDCP For PDCP data (eg PDUs or SDUs) sent on the uplink, PDCP does not trigger retransmission. Or PDCP does not trigger retransmission for PDCU PDUs submitted by the PDCP to the RLC entity.
  • the RLC entity completes the transmission or retransmission of all pending RLC SDUs or RLC PDUs.
  • the terminal establishes a WLAN entity.
  • the WLAN entity is configured or reconfigured according to the WLAN entity configuration information.
  • the RLC entity may be configured to complete transmission or retransmission without releasing the RLC entity.
  • the base station assumes that configuring / reconfiguring a WLAN bearer by adding a WLAN carrier is under E-UTRAN coverage. Accordingly, even though the E-UTRAN bearer configured in the terminal through the RRC connection reconfiguration message is reconfigured / modified / changed into the WLAN bearer, the terminal is in an environment capable of transmitting and receiving data with the base station through the E-UTRAN carrier / cell.
  • the UE may transmit or retransmit the radio bearer mapped to the AM RLC providing for lossless transmission through the RLC entity.
  • the RLC entity For uplink, the RLC entity performs transmission or retransmission for PDCP SDUs / PDUs received from the PDCP entity prior to bearer reconfiguration / modification / change. Alternatively, for the uplink, the RLC entity performs transmission or retransmission for RLC SDUs or RLC PUDs received from the PDCP entity prior to bearer reconfiguration / modification / change. Or, for uplink, the RLC entity performs transmission or retransmission for PDCP PDUs submitted by the PDCP entity before bearer reconfiguration / modification / change.
  • the PDCP entity transmits through the WLAN entity starting from the next PDCP PDU of the PDCP PDUs submitted by the PDCP entity before bearer reconfiguration / modification / modification. Or submit PDCP PDUs to the WLAN entity. Or deliver PDCP PDUs via a WLAN entity.
  • the RLC entity processes the RLC data received from the lower layer.
  • the PDCP entity For downlink, the PDCP entity processes the PDCP data received from the lower layer.
  • the RLC entity may be maintained until the WLAN bearer is reconfigured / modified / changed or released.
  • the RLC entity may be maintained until the transmission or retransmission of all PDCP PDUs (or RLC SDUs or RLC PDUs) received from the PDCP entity prior to bearer reconfiguration / modification / modification is completed successfully.
  • the RLC entity may maintain a certain time (timer) so that the transmission or retransmission of all PDCP PDUs received from the PDCP entity can be completed successfully before bearer reconfiguration / modification / change.
  • the RLC entity may be reconfigured or maintained for a fast switch from WLAN bearer to E-UTRAN bearer, or for uplink data transmission of WLAN bearer, or for temporary uplink data transmission.
  • information for instructing the performance of the aforementioned operation and / or related information may be included in the RRC message.
  • the above-described operation may be preconfigured to be performed.
  • the terminal when reconfiguring / modifying / changing an E-UTRAN bearer configured in a terminal through an RRC connection reconfiguration message to a WLAN bearer, the terminal may perform the following operation.
  • the PDCP entity is reconfigured according to the PDCP configuration information.
  • the RLC entity is reconfigured according to the RLC configuration information.
  • the terminal configures the WLAN entity and configures or reconfigures the WLAN entity according to the WLAN entity configuration information.
  • the terminal when reconfiguring / modifying / changing an E-UTRAN bearer configured in a terminal through an RRC connection reconfiguration message to a WLAN bearer, the terminal may perform the following operation.
  • the PDCP entity is reconfigured according to the PDCP configuration information.
  • the terminal may perform the following operation.
  • PDCP does not trigger retransmission for uplink PDCP data (eg, PDUs or SDUs). Or PDCP does not trigger retransmission for PDCU PDUs submitted by the PDCP to the RLC entity.
  • uplink PDCP data eg, PDUs or SDUs.
  • PDCP does not trigger retransmission for PDCU PDUs submitted by the PDCP to the RLC entity.
  • the RLC entity or WLAN entity completes the transmission or retransmission of all pending RLC SDUs or RLC PDUs.
  • the RLC entity or WLAN entity may complete the transmission or retransmission of all pending RLC SDUs or RLC PDUs on the WLAN carrier.
  • the RLC entity or WLAN entity may complete the transmission or retransmission of all pending PDCP PDUs on the WLAN carrier.
  • the RLC entity or WLAN entity performs transmission or retransmission for PDCP PDUs received from PDCP entity prior to bearer reconfiguration / modification / change.
  • the RLC entity or WLAN entity performs transmission or retransmission for RLC SDUs or RLC PUDs received from the PDCP entity prior to bearer reconfiguration / modification / change.
  • RLC entity or WLAN entity performs transmission or retransmission for PDCP PDUs submitted by PDCP entity before bearer reconfiguration / modification / change.
  • WLAN Bearer ⁇ Reconfigure / Modify / Change WLAN Bearer
  • the WLAN bearer can be changed to another WLAN AP / Network / SSID / BSSID / HESSID / through a specific WLAN AP / Network / SSID / BSSID / HESSID / Domain Name List.
  • a specific WLAN AP / Network / SSID / BSSID / HESSID / Domain Name List There may be a case in which it is necessary to reconfigure / modify / change the WLAN bearer through the Domain Name List. In this case, data transferred from the PDCP entity to the corresponding WLAN entity may be lost due to a change of WLAN AP / network / SSID / BSSID / HESSID / Domain Name List.
  • Radio Link Control For radio bearers mapped to AM Acknowledgment mode Radio Link Control (RLC), lossless data transmission should be ensured even when a WLAN bearer configured in a terminal is reconfigured / modified / modified into a WLAN bearer through an RRC connection reconfiguration message.
  • RLC Radio Link Control
  • the terminal may perform the following operations.
  • the terminal resets the PDCP entity.
  • the WLAN entity may perform one or more of the following operations.
  • the UE transmits or retransmits PDCP SDUs whose successful transmission is not confirmed according to the PDCP resetting for the data lost during the bearer change process, thereby performing lossless transmission.
  • this method must handle complex detailed operations such as header compression protocol reset and security key change, PDCP SDUs transmission or retransmission even for bearer change without change of PDCP entity, which can increase complexity and delay. have.
  • the PDCP data recovery operation may be performed while maintaining the PDCP entity reconfiguration or PDCP entity without the PDCP reset described above.
  • the terminal when reconfiguring / modifying / changing a WLAN bearer configured in a terminal through an RRC connection reconfiguration message, the terminal may perform the following operation.
  • the terminal performs a PDCP data recovery procedure previously submitted to the WLAN entity.
  • the WLAN entity may perform one or more of the following operations.
  • the PDCP data recovery procedure retransmits all PDCP PDUs previously submitted to the reset AM RLC entity. Therefore, when changing a WLAN bearer into a WLAN bearer, it is necessary to perform retransmission over the new WLAN network for PDCP PDUs submitted to the previous WLAN network before receiving the bearer change message (or before performing PDCP data recovery).
  • the radio bearer is configured to send a PDCP status report by the upper layer in the uplink, generate a PDCP status report and submit it to the first PDCP PDU for transmission to the lower layer.
  • the base station When PDCP data recovery for uplink is performed in the terminal, the base station should perform a reordering function for the corresponding PDCP data. When PDCP data recovery for downlink is performed at the base station, the terminal should perform a reordering function for the corresponding PDCP data.
  • PDCP data recovery can be performed when a bearer change occurs for a split split bearer in Rel-12 dual connectivity (e.g., when a split bearer changes to a split bearer without a PDCP reset or when a split bearer becomes a MCG without a PDCP reset). Only when changed to bearer).
  • the reordering function was performed when the split bearer is configured in the terminal.
  • the UE has a reordering function when the PDCP entity is associated with two AM RLC entities in a dual connectivity situation.
  • the reordering function was performed when the split bearer changed to the split bearer without PDCP resetting.
  • the PDCP entity is associated with one AM RLC entity after it was, according to the most recent reconfiguration, associated with two AM RLC entities without performing PDCP re reordering function was used.
  • the PDCP immediately started the reordering function upon receiving the dual connectivity split bearer configuration message, and applied a reordering method such as RLC UM through the set reordering timer (t-Reordering-r12). That is, all stored PDCP SDU (s) is transferred to the upper layer for reordering.
  • the base station may instruct the terminal by including information (or information for indicating this) to configure the reordering timer for this in the RRC message.
  • the base station may perform a reordering function for this.
  • the downlink data reception procedure provided by the PDCP may be used.
  • the PDCP PDU received by PDCP is immediately forwarded to the higher layer. That is, when the above-described reordering function is not used, since RLC guarantees in-sequence delivery, the PDCP can be delivered directly to a higher layer without reordering.
  • the terminal may improve the downlink data reception procedure provided by the conventional PDCP when the reordering function is not used. You may want to reorder.
  • Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers
  • the PDCP SDU or PDCP PDU received by PDCP is due to a WLAN bearer change in the WLAN bearer (or due to the release of a WLAN entity or due to a specific operation of the WLAN entity), then reordering: You can do
  • Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers
  • a terminal and a base station transmit and receive data through a specific radio bearer
  • it is performed without PDCP resetting to provide an effect of suppressing unnecessary delay and data retransmission.
  • lossless data transmission and reception are possible when reconfiguring a specific radio bearer.
  • a terminal and a base station apparatus capable of performing all the above-described operations of the present invention will be briefly described again with reference to the drawings.
  • FIG. 7 is a view for explaining a terminal configuration according to another embodiment of the present invention.
  • a terminal 700 reconfiguring a radio bearer may change a data radio bearer type for a specific radio bearer configured to receive downlink data using only a wireless local area network (WLAN) radio resource from a base station.
  • the PDCP data recovery procedure is performed in the PDCP entity based on the receiver 730 that receives higher layer signaling including the information and the information for changing the data radio bearer type for the specific radio bearer.
  • the controller 710 performs a reordering procedure for the specific radio bearer in the entity.
  • the receiver 730 may receive an RRC connection reconfiguration message from the base station including information for changing the data radio bearer type.
  • Information for changing the data radio bearer type for a specific radio bearer is from a radio bearer type for receiving downlink data using only WLAN radio resources to a radio bearer type for receiving downlink data using only base station radio resources. It may contain information to change. or,
  • the receiver 730 may receive higher layer signaling including information for changing a data radio bearer type for a specific radio bearer configured to receive downlink data using only base station radio resources.
  • information for changing the data radio bearer type for a specific radio bearer is downlinked using only a wireless local area network (WLAN) radio resource in a radio bearer type that receives downlink data using a base station radio resource only. It may also include information for changing to a radio bearer type for receiving link data.
  • WLAN wireless local area network
  • the receiver 730 may further receive information for configuring a reordering timer used to perform a reordering procedure in a PDCP entity, and may receive information for configuring a timer through higher layer signaling. have.
  • the controller 710 may transfer all PDCP SDUs stored for reordering to an upper layer in ascending order of the associated COUNT value when the reordering timer expires.
  • the controller 710 may generate a PDCP status report and include the PDCP status report in a PDCP PDU (PDCP Protocol Data Unit) to deliver it to a lower layer.
  • PDCP PDU PDCP Protocol Data Unit
  • controller 710 performs both the above-described PDCP data recovery procedure and reordering procedure when reconfiguring the WLAN bearer into the E-UTRAN bearer, and the above-described PDCP data when reconfiguring the E-UTRAN bearer into the WLAN bearer. It is also possible to perform only a reordering procedure without a recovery procedure.
  • the receiver 730 receives downlink control information, data, and a message from a base station through a corresponding channel.
  • the controller 710 controls the overall operation of the terminal according to the configuration / reconfiguration for the base station to add / modify / release / change the terminal and the radio bearer by the base station required to perform the present invention described above.
  • the transmitter 720 transmits uplink control information, data, and a message to a base station through a corresponding channel.
  • FIG. 8 is a view for explaining the configuration of a base station according to another embodiment of the present invention.
  • the base station 800 transmits higher layer signaling including information for changing data radio bearer type for a specific radio bearer configured to receive downlink data using only WLAN radio resources.
  • PDCP Protocol Data Unit PDCP PDU
  • PDCP SDU PDCP SDU
  • PDCP status report that receive a PDCP (Packet Data Convergence Protocol) status report from the terminal
  • a control unit 810 for retransmitting the data unit.
  • the transmitter 820 includes information for changing a data radio bearer type for a specific radio bearer.
  • the information for changing the data radio bearer type for a specific radio bearer is a radio bearer that receives downlink data using only base station radio resources in a radio bearer type that receives downlink data using a WLAN radio resource only. It may include information for changing to a type.
  • the information for changing the data radio bearer type for a specific radio bearer is a radio bearer that receives downlink data using only WLAN radio resources in a radio bearer type that receives downlink data using a base station radio resource only. It may include information for changing to a type.
  • the transmitter 820 may transmit information for configuring a reordering timer used for the terminal to perform the reordering procedure to the terminal.
  • information for configuring the reordering timer may be transmitted through higher layer signaling (eg, an RRC message).
  • control unit 810 controls the overall operation of the base station according to the configuration / reconfiguration for the base station to add / modify / release / change the terminal and the radio bearer by the base station required to perform the present invention described above .
  • the transmitter 820 and the receiver 830 are used to transmit and receive signals, messages, and data necessary for carrying out the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 RAN(Radio Access Network) 레벨에서 기지국이 무선 연결을 설정한 단말에 WLAN 연결을 추가하여 사용자 플레인 데이터를 전송하는 기술에 관한 것이다. 특히, 본 발명은 사용자 플레인 데이터를 전송하기 위한 무선 데이터 베어러를 구성 또는 재구성하는 방법 및 장치에 관한 것이다. 특히, 본 발명은 단말이 무선 베어러를 재구성하는 방법에 있어서, 기지국으로부터 WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 수신하는 단계와 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 PDCP 데이터 복구 절차를 수행하는 단계 및 PDCP 개체에서 특정 무선 베어러에 대한 리오더링 절차를 수행하는 단계를 포함하는 방법 및 장치를 제공한다.

Description

무선 베어러 재구성 방법 및 그 장치
본 발명은 RAN(Radio Access Network) 레벨에서 기지국이 무선 연결을 설정한 단말에 WLAN 연결을 추가하여 사용자 플레인 데이터를 전송하는 기술에 관한 것이다. 특히, 본 발명은 사용자 플레인 데이터를 전송하기 위한 무선 데이터 베어러를 구성 또는 재구성하는 방법 및 장치에 관한 것이다.
통신 시스템이 발전해나감에 따라 사업체들 및 개인들과 같은 소비자들은 매우 다양한 무선 단말기들을 사용하게 되었다. 현재의 3GPP 계열의 LTE(Long Term Evolution), LTE-Advanced 등의 이동 통신 시스템에서는 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 데이터를 송수신 할 수 있는 고속 대용량의 통신 시스템으로서, 유선 통신 네트워크에 준하는 대용량 데이터를 전송할 수 있는 기술 개발이 요구되고 있다. 대용량의 데이터를 전송하기 위한 방식으로 다수의 셀(cell)을 이용하여 데이터를 효율적으로 전송할 수 있다.
그러나, 기지국이 한정적 주파수 자원을 이용하여 대용량 데이터를 전송하는 다수의 단말에 제공하는 것은 한계가 있다. 즉, 특정 사업자가 독점적으로 사용할 수 있는 주파수 자원을 확보하는 것은 많은 비용이 발생하는 문제점이 있다.
한편, 특정 사업자 또는 특정 통신시스템이 독점적으로 사용하지 못하는 비면허 주파수 대역은 다수의 사업자 또는 통신시스템이 공유할 수 있다. 예를 들어, 와이파이로 대표되는 WLAN 기술은 비면허대역의 주파수 자원을 사용하여 데이터 송수신 서비스를 제공한다.
따라서, 이동통신 시스템도 해당 와이파이 AP(Access Point) 등을 사용하여 단말과 데이터를 송수신하는 기술에 대한 연구가 요구되는 실정이다. 특히, 기지국이 WLAN의 무선자원과 기지국 무선자원을 이용하여 단말과 데이터를 송수신하는 경우, 이에 대한 구체적인 절차 및 방법에 대한 연구가 요구되고 있다.
이러한 배경에서 안출된 본 발명은 WLAN 무선자원 및 기지국 무선자원 중 적어도 하나를 이용하는 무선 베어러를 기지국이 추가/수정/해제/변경하는 구체적인 방법 및 장치를 제공하고자 한다.
또한, 본 발명은 WLAN 무선자원을 이용하는 무선 베어러를 기지국 무선자원을 이용하는 무선 베어러로 변경하여 재구성하는 구체적인 방법 및 장치를 제공하고자 한다. 또한, 본 발명은 기지국 무선자원을 이용하는 무선 베어러를 WLAN 무선자원을 이용하는 무선 베어러로 변경하여 재구성하는 구체적인 방법 및 장치를 제공하고자 한다.
전술한 과제를 해결하기 위해서 안출된 본 발명은 단말이 무선 베어러를 재구성하는 방법에 있어서, 기지국으로부터 WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 수신하는 단계와 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 PDCP 데이터 복구 절차를 수행하는 단계 및 PDCP 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 수행하는 단계를 포함하는 방법을 제공한다.
또한, 본 발명은 단말이 무선 베어러를 재구성하는 방법에 있어서, 기지국으로부터 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링 수신하는 단계 및 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, 상기 PDCP(Packet Data Convergence Protocol) 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 개시하는 단계를 포함하는 방법을 제공한다.
또한, 본 발명은 기지국이 단말의 무선 베어러를 재구성하는 방법에 있어서, WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 전송하는 단계와 단말로부터 PDCP(Packet Data Convergence Protocol) 상태 리포트를 수신하는 단계 및 PDCP 상태 리포트에 기초하여 PDCP 개체에서 전달 성공 여부가 확인되지 않은 PDCP SDU/PDU(PDCP Service Data Unit/Protocol Data Unit)를 재전송하는 단계를 포함하는 방법을 제공한다.
또한, 본 발명은 무선 베어러를 재구성하는 단말에 있어서, 기지국으로부터 WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 수신하는 수신부 및 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 PDCP 데이터 복구 절차를 수행하고, 상기 PDCP 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 수행하는 제어부를 포함하는 단말 장치를 제공한다.
또한, 본 발명은 무선 베어러를 재구성하는 단말에 있어서, 기지국으로부터 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링 수신하는 수신부 및 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, 상기 PDCP(Packet Data Convergence Protocol) 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 개시하는 제어부를 포함하는 단말 장치를 제공한다.
또한, 본 발명은 단말의 무선 베어러를 재구성하는 기지국에 있어서, WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 전송하는 송신부와 단말로부터 PDCP(Packet Data Convergence Protocol) 상태 리포트를 수신하는 수신부 및 PDCP 상태 리포트에 기초하여 PDCP 개체에서 전달 성공 여부가 확인되지 않은 PDCP SDU/PDU(PDCP Service Data Unit/Protocol Data Unit)를 재전송하는 제어부를 포함하는 기지국 장치를 제공한다.
이상에서 설명한 본 발명에 따르면, 기지국이 WLAN 무선자원을 동적으로 이용하여 단말과 데이터를 송수신할 수 있는 효과를 제공한다.
또한, 본 발명에 따르면 기지국 무선자원에 더해 WLAN 무선자원을 추가하여 사용자 플레인 데이터를 전송함에 있어서 단말과 무선 베어러를 재구성하는 구체적인 방법을 제공하여 AM RLC에 매핑되는 무선 베어러의 손실 없는 데이터 전송 효과를 제공한다.
도 1은 듀얼 커넥티비티 상황에서의 2C 솔루션 구조를 예시적으로 도시한 도면이다.
도 2는 듀얼 커넥티비티 상황에서의 3C 솔루션 구조를 예시적으로 도시한 도면이다.
도 3은 듀얼 커넥티비티 상황에서의 1A 솔루션 구조를 예시적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 단말 동작을 설명하기 위한 도면이다.
도 5는 본 발명의 다른 실시예에 따른 기지국 동작을 설명하기 위한 도면이다.
도 6은 본 발명의 또 다른 실시예에 따른 단말 동작을 설명하기 위한 도면이다.
도 7은 본 발명의 또 다른 실시예에 따른 단말 구성을 설명하기 위한 도면이다.
도 8은 본 발명의 또 다른 실시예에 따른 기지국 구성을 설명하기 위한 도면이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release 13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release 12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 Node-B, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, 송수신포인트, 송신 포인트, 수신포인트를 통칭하여 기지국으로 지칭한다.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-Advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
또한, LTE, LTE-Advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀 영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 EPDCCH를 적용할 수 있다.
한편, 이하에서 기재하는 상위계층 시그널링(Higher Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC시그널링을 포함한다.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.
본 명세서에서의 WLAN 캐리어는 WLAN의 무선자원을 의미하는 것으로 WLAN 무선링크, WLAN 무선, WLAN 무선자원 또는 WLAN 무선네트워크 등 필요에 따라 다양한 용어로 기재될 수 있다. 다만, 이하에서는 이해의 편의를 위하여 WLAN 무선링크, WLAN 무선, WLAN 캐리어 또는 WLAN 무선네트워크 등을 WLAN 무선자원으로 기재하여 설명하고, WLAN 무선자원을 이용하는 베어러를 WLAN 베어러로 기재하여 설명한다. 또한, 본 명세서에서의 WLAN 종단은 논리적인 WLAN 네트워크 노드를 나타낸다. 예를 들어, WLAN AP 또는 WLAN AC가 될 수 있다. WLAN 종단은 기존 WLAN AP 또는 기존 WLAN AC와 같은 WLAN 네트워크 노드일 수도 있고, 기존 WLAN AP 또는 기존 WLAN AC에 WLAN 병합 전송을 위한 추가 기능을 포함한 WLAN 네트워크 노드일 수도 있다. WLAN 종단은 독립적인 개체로 구현될 수도 있고 또 다른 개체에 포함되는 기능적인 개체로 구현될 수도 있다. 이하 본 명세서에서는 WLAN 네트워크 노드를 필요에 따라 WLAN 종단 또는 WLAN AP로 기재하여 설명한다. 또한, 본 명세서에서는 필요에 따라 기지국(eNB)이 제공하는 무선자원을 기지국 무선자원, 기지국 캐리어 또는 E-UTRAN 캐리어로 기재하여 설명하고, 기지국 무선자원을 이용하는 베어러를 기지국 베어러로 기재하여 설명한다.
3GPP/WLAN 인터워킹 기술은 RAN assisted WLAN 인터워킹 기능을 제공한다. E-UTRAN은 RRC_IDLE 그리고 RRC_CONNECTED 상태의 단말들에 대해 E-UTRAN과 WLAN 간에 단말 기반의 양방향 트래픽 제어(traffic steering)을 도울 수 있다.
E-UTRAN은 단말에 브로드캐스트 시그널링 또는 전용 RRC 시그널링을 통해 도움 파라미터를 제공한다. RAN 도움 파라미터들은 E-UTRAN 시그널 강도 임계치, WLAN 채널 이용 임계치, WLAN 백홀 데이터 전송율 임계치, WLAN 신호 강도(또는 WLAN 신호강도 임계치, 예를 들어 BeaconRSSI 임계치) 및 오프로드 선호도 지시자(Offload Preference Indicator) 중 적어도 하나를 포함할 수 있다. 또한, E-UTRAN은 단말에 브로드캐스트 시그널링을 통해 WLAN 식별자 리스트(a list of WLAN identifiers)를 제공할 수 있다.
단말은 3GPP TS 23.402 Architecture enhancements for non-3GPP accesses 문서에 규격화된 E-UTRAN과 WLAN 간의 트래픽 스티어링(traffic steering) 결정을 위해, TS 36.304 문서에 정의된 접속 네트워크 선택 및 트래픽 제어 룰(access network selection and traffic steering rules) 또는 TS 24.312 문서에 정의된 ANDSF policies을 평가하는데 RAN 도움 파라미터들을 사용할 수 있다.
TS 36.304 문서에 정의된 접속 네트워크 선택 및 트래픽 제어 룰(access network selection and traffic steering rules)이 만족(fulfilled) 될 때, 단말은 AS(access stratum) 상위 계층에 이를 표시(indicate)할 수 있다.
단말이 접속 네트워크 선택 및 트래픽 제어 룰을 적용할 때, 단말은 E-UTRAN과 WLAN 간에 APN 단위(granularity)로 트래픽 제어를 수행한다. 이와 같이, RAN assisted WLAN 인터워킹 기능은 E-UTRAN과 WLAN이 독립적(standalone)으로 구축되어 연동하는 방법만을 제공한다.
Rel-12 RAN assisted WLAN 인터워킹에 비해 RAN 레벨에서 좀 더 타이트한 통합을 고려하는 LTE WLAN 인터그래이션(integration) 기능의 필요성도 높아졌다. 전술한 바와 같이 Rel-12 RAN assisted WLAN 인터워킹은 APN 단위로 E-UTRAN과 WLAN이 독립적으로 작동하는 것만이 가능했었다. 따라서, 단말이 사용자 플레인 데이터를 전송하는데 있어서, 단말의 무선상태와 이동성 등을 고려하여 E-UTRAN이 RAN 레벨에서 WLAN 캐리어를 E-UTRAN 내의 하나의 캐리어로 추가하여 E-UTRAN 캐리어 및/또는 WLAN 캐리어를 동시에 사용하도록 구성할 수 없었다. 또는 단말이 특정 베어러에 속한 사용자 플레인 데이터를 전송하는데 있어서, E-UTRAN 캐리어를 유지한 상태에서 단말의 무선 상태와 이동성 등을 고려하여 E-UTRAN이 RAN 레벨에서 단말에 WLAN 캐리어를 E-UTRAN 내의 하나의 캐리어처럼 추가하도록 구성하고 E-UTRAN 캐리어 및/또는 WLAN 캐리어를 통해 전송할 수 없었다.
이를 해결하기 위해서는, E-UTRAN이 RAN 레벨에서 WLAN 캐리어를 E-UTRAN 내의 하나의 캐리어로 추가하여 E-UTRAN 캐리어 및/또는 WLAN 캐리어를 통해 사용자 플레인 데이터를 전송하기 위해서는, E-UTRAN 레이어 2 상에서 사용자 플레인 데이터를 분리(또는 split 또는 routing)하는 방법과 사용자 플레인 데이터를 연동하는 방법이 고려될 수 있다. 일 예로, 듀얼 커넥티비티 솔루션 중 2C와 3C를 기반으로 사용자 플레인 데이터 분리 방법과 연동하는 방법이 적용될 수 있다. 듀얼 커넥티비티 솔루션 2C와 3C는 3GPP 듀얼 커넥티비티 섹션에 제시된 솔루션으로 이하에서 보다 상세하게 설명한다.
도 1은 듀얼 커넥티비티 상황에서의 2C 솔루션 구조를 예시적으로 도시한 도면이다.
일 예로, 단말에 WLAN 무선자원을 추가하여 구성하기 위한 구조는 듀얼 커넥티비티 2C 솔루션과 유사하게 PDCP 개체(entity)에서 WLAN 캐리어를 통해 전송할 데이터를 WLAN AP와 연동하여 전송하고, 피어링된 PDCP 개체에서 이를 수신하도록 구성할 수 있다. 2C 솔루션 구조에서 마스터기지국(MeNB)의 PDCP 개체는 세컨더리 기지국(SeNB)의 RLC 개체와 연결된다.
도 2는 듀얼 커넥티비티 상황에서의 3C 솔루션 구조를 예시적으로 도시한 도면이다.
다른 예로, 단말에 WLAN 무선자원을 추가하여 구성하기 위한 구조는 듀얼 커넥티비티 3C 솔루션과 유사하게 PDCP 개체에서 E-UTRAN 캐리어를 통해 전송할 데이터 및/또는 WLAN 캐리어를 통해 전송할 데이터를 분리하여 전송하고, 피어링 된 PDCP 개체에서 이를 수신(또는 병합수신)하도록 할 수 있다. 3C 솔루션 구조에서 마스터기지국(MeNB)의 PDCP 개체는 마스터 기지국의 RLC 개체와 세컨더리 기지국의 RLC 개체에 연결되며, PDCP 개체에서 라우팅 기능을 수행한다.
도 3은 듀얼 커넥티비티 상황에서의 1A 솔루션 구조를 예시적으로 도시한 도면이다.
또 다른 예로, 듀얼 커넥티비티 상황에서의 1A 솔루션 구조도 고려해 볼 수 있다. 1A 구조에서는 각 기지국의 PDCP 개체가 해당 기지국 내 RLC 개체와 연결된다.
그러나, E-UTRAN이 단말에 E-UTRAN 캐리어와 무선 연결(예를 들어 RRC Connection)을 설정한 상태에서 RAN 레벨에서 WLAN 캐리어를 추가하여 사용하기 위해서는 WLAN AP와의 상호동작(interaction)이 필요하다. 이는 동일한 E-UTRAN 기술을 사용하는 세컨더리 기지국과의 듀얼 커넥티비티 동작과는 상당한 차이가 있을 수 있다. 예를 들어, WLAN 캐리어에는 종래 듀얼 커넥티비티에서 제공하는 RLC 기능이 제공되지 않는다. 이에 따라 기지국이 WLAN 캐리어를 추가하여 단말과 무선 베어러(또는 데이터 무선 베어러, 이하에서는 무선 베어러로 기재함)를 추가하거나, 수정하거나, 해제하는데 있어서 이를 위한 동작이 필요하지만 이에 대해서는 구체적인 방법이 제시되지 않았다. 즉 무선 베어러의 추가, 수정, 변경, 해제 등의 구성/재구성 동작은 연계된 각 레이어 2 개체의 세부 동작을 수반한다. 따라서 이에 대한 각 레이어2 개체들의 효율적인 동작에 대한 정의가 필요하다. 하지만 이에 대해 구체적인 방법이 전혀 개시되고 있지 않은 상황이다.
이러한 문제점을 해결하기 위해 안출된 본 발명은 기지국이 WLAN 캐리어를 추가하여 단말과 무선 베어러를 추가/수정/해제/변경 등을 하기 위한 무선 베어러 구성 또는 재구성 방법을 제공하는 것을 목적으로 한다. 또한 무선 베어러의 추가, 수정, 변경, 해제 등의 동작에 연계된 각 레이어 2 개체들의 효율적인 동작을 제공하는 것을 목적으로 한다.
본 발명은 기지국과 WLAN AP가 non-co-located 된 시나리오에서 제공될 수 있다. 기지국과 WLAN AP가 non-co-located 된 시나리오에서 기지국과 WLAN AP는 비이상적인 백홀(non-ideal backhaul) 또는 near-ideal 백홀 또는 ideal 백홀을 통해 연결 또는 구축될 수 있다. 또한, 본 발명은 기지국과 WLAN AP가 co-located 된 시나리오에서도 제공될 수도 있다.
E-UTRAN이 RAN 레벨에서 단말에 WLAN 무선자원을 하나의 캐리어로 추가하고 E-UTRAN 캐리어와 WLAN 캐리어를 사용하여 사용자 플레인 데이터를 송수신하기 위해서는 이를 위한 프로토콜 구조와 각 세부 레이어의 동작이 제공되어야 한다.
E-UTRAN이 WLAN 무선자원 또는 WLAN 캐리어를 하나의 캐리어로 추가하는 것은 논리적으로 또는 개념적으로 단말과 기지국이 기존 E-UTRAN 셀에 추가로 WLAN 캐리어를 통한 데이터 전송을 위한 기능/개체를 추가하여 구성하는 것을 나타낸다.
본 발명에서 E-UTRAN은 설명의 편의를 위해 표기한 것으로 LTE/LTE-Advanced/임의의 3GPP 무선 액세스 또는 기지국을 의미할 수 있다.
E-UTRAN이 RAN 레벨에서 단말에 WLAN 무선자원을 E-UTRAN 내의 하나의 캐리어로 추가하여 E-UTRAN 캐리어 또는 WLAN 캐리어를 통해 무선 베어러 단위로 사용자 플레인 데이터를 전송하기 위해서, E-UTRAN 레이어 2의 서브 레이어 상에서 사용자 플레인 데이터를 분리(또는 split 또는 routing) 또는 연동할 수 있다.
예를 들어 전술한 듀얼 커넥티비티 2C 솔루션과 유사하게 PDCP 개체에서 WLAN 캐리어를 통해 전송할 데이터를 WLAN AP와 연동하여 전송하고, 피어링된 PDCP 개체에서 이를 수신하도록 할 수 있다. 이하에서 설명의 편의를 위해 듀얼 커넥티비티 2C 솔루션과 유사하게 PDCP 개체에서 WLAN 캐리어를 통해 전송할 데이터를 WLAN AP와 연동하여 전송하고 피어링된 PDCP 개체에서 이를 수신하는 베어러를 WLAN 베어러로 표시한다. 이는 설명의 편의를 위한 것으로 해당 개념을 의미하는 다른 용어가 사용될 수 있다.
WLAN 베어러는 상향링크 데이터 전송 및 하향링크 데이터 전송을 위해 사용될 수 있다. 다른 방법으로 WLAN 베어러는 하향링크 데이터 전송을 위해 사용될 수 있다. 이 경우, 상향링크 데이터는 E-UTRAN 캐리어를 통해 전송되도록 할 수 있다. 또 다른 방법으로 WLAN 베어러는 상향링크 데이터 전송을 위해 사용될 수 있고, 하향링크 데이터는 E-UTRAN 캐리어를 통해 전송되도록 할 수 있다.
전술한 E-UTRAN 캐리어는 LTE-WLAN Aggregation 상황에서 기지국의 무선자원만을 사용하는 베어러를 의미할 수 있고, WLAN 베어러는 LTE-WLAN Aggregation 상황에서 WLAN 무선자원만을 사용하는 베어러를 의미할 수 있다. WLAN 베어러는 사용하는 무선자원을 스위칭하여 변경할 수 있다. 즉, 스위치 WLAN 베어러는 WLAN 무선자원만을 사용하다가 상위 계층 메시지를 통해 재구성됨으로써 기지국 무선자원만을 사용하도록 스위칭 되거나, 기지국 무선자원만을 사용하다가 상위 계층 메시지를 통해 재구성됨으로써 WLAN 무선자원만을 사용하도록 스위칭 될 수도 있다. 즉, 이하에서는 WLAN 베어러가 WLAN 무선자원만을 이용하는 것으로 설명하나, 베어러 재구성 등에 따라 기지국 무선자원만을 이용하도록 변경될 수도 있는 스위치 베어러로 가정하여 설명한다.
한편, 전술한 듀얼 커넥티비티 3C 솔루션과 유사하게 PDCP 개체에서 E-UTRAN 캐리어를 통해 전송할 데이터 및/또는 WLAN 캐리어를 통해 전송할 데이터를 분리하여 전송하고, 피어링 된 PDCP 개체에서 이를 수신(또는 병합수신)하도록 할 수 있다. 이하에서 설명의 편의를 위해 듀얼 커넥티비티 3C 솔루션과 유사하게 PDCP 개체에서 E-UTRAN 캐리어를 통해 전송할 데이터 및/또는 WLAN 캐리어를 통해 전송할 데이터를 분리하여 전송하고 피어링된 PDCP 개체에서 이를 수신하는 베어러를 병합 베어러(Integration bearer, aggregation bearer, WLAN split bearer)로 표시한다. 이는 설명의 편의를 위한 것으로 해당 개념을 의미하는 다른 용어가 사용될 수 있다.
병합 베어러는 상향링크 데이터 전송 그리고 하향링크 데이터 전송을 위해 사용될 수 있다. 일 예로 하향링크 데이터를 E-UTRAN 캐리어와 WLAN 캐리어를 통해 전송되도록 구성할 수 있다. 그리고 상향링크 데이터를 E-UTRAN 캐리어와 WLAN 캐리어를 통해 전송되도록 구성할 수 있다.
다른 방법으로 병합 베어러는 하향링크 데이터 전송을 위해 사용될 수 있다. 일 예로 하향링크 데이터를 E-UTRAN 캐리어와 WLAN 캐리어를 통해 전송되도록 할 수 있다. 이 경우, 상향링크 데이터를 E-UTRAN 캐리어를 통해 전송되도록 할 수 있다. 또는 병합 베어러는 하향링크 데이터를 E-UTRAN 캐리어와 WLAN 캐리어를 통해 전송되도록 할 수 있다. 이 경우, 상향링크 데이터를 WLAN 캐리어를 통해 전송되도록 할 수 있다.
또 다른 방법으로 병합 베어러는 상향링크 데이터 전송을 위해 사용될 수 있다. 일 예로 상향링크 데이터를 E-UTRAN 캐리어와 WLAN 캐리어를 통해 전송되도록 할 수 있다. 이 경우, 하향링크 데이터를 E-UTRAN 캐리어를 통해 전송되도록 할 수 있다. 다른 예로, 상향링크 데이터를 E-UTRAN 캐리어와 WLAN 캐리어를 통해 전송되도록 할 수 있다. 이 경우, 하향링크 데이터를 WLAN 캐리어를 통해 전송되도록 할 수 있다.
한편, 기지국과 RRC 연결(Connection)을 설정한 단말에 대해, 기지국은 WLAN 캐리어를 추가하여 WLAN 베어러를 추가 구성 또는 재구성할 수 있다.
일 예로, RRC 연결을 설정한 단말은 코어망 시그널링을 통해 새로운 무선 베어러를 WLAN 베어러로 추가할 수 있다. RRC 연결을 설정한 단말은 코어망 시그널링을 통해 새로운 무선 베어러를 병합 베어러로 추가할 수도 있다.
다른 예로, RRC 연결을 설정한 단말에 이미 구성된 무선 베어러(E-UTRAN 베어러)를 WLAN 베어러로 재구성/수정/변경할 수 있다.
또 다른 예로, RRC 연결을 설정한 단말에 이미 구성된 무선 베어러(E-UTRAN 베어러)를 병합 베어러로 재구성/수정/변경할 수 있다. 이하에서 설명의 편의를 위해, 전술한 기지국과 RRC 연결을 설정한 단말에 E-UTRAN 캐리어를 통해 전송하도록 구성된 무선 베어러(DRB), 또는 E-UTRAN 캐리어를 통해서만 전송되는 무선베어러(DRB)를 E-UTRAN 베어러 또는 기지국 베어러로 표시한다. 이는 설명의 편의를 위한 것으로 해당 개념을 의미하는 다른 용어가 사용될 수 있다.
WLAN 베어러 추가(addition)
RRC 연결 재구성(RRC Connection Reconfiguration) 메시지를 통해 단말에 WLAN 베어러를 추가하는 경우, 단말은 다음과 같은 동작을 수행할 수 있다.
단말은 PDCP 개체(PDCP entity)를 설정한다. 그리고 PDCP 구성정보(PDCP-Config)에 따라 PDCP 개체를 구성한다.
단말은 WLAN 캐리어를 통해 사용자 플레인 데이터를 전송하기 위한 개체를 설정한다. 그리고 설정된 개체를 구성하기 위한 정보에 따라 해당 개체를 구성한다. 이하에서 설명의 편의를 위하여 단말에서 WLAN 캐리어를 통해 사용자 플레인 데이터를 전송하기 위한 개체를 WLAN 개체로 기재한다. 이는 설명의 편의를 위한 것으로 해당 개념을 의미하는 다른 용어가 사용될 수 있다.
병합 베어러 추가(addition)
RRC 연결 재구성(RRC Connection Reconfiguration) 메시지를 통해 단말에 병합 베어러를 추가하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
단말은 PDCP 개체를 설정한다. 그리고 PDCP 구성정보(PDCP-Config)에 따라 PDCP 개체를 구성한다.
단말은 RLC 개체를 설정한다. 그리고 RLC 구성정보(RLC-Config)에 따라 RLC 개체를 구성한다.
단말은 WLAN 개체를 설정한다. 그리고 WLAN 개체 구성정보에 따라 WLAN 개체를 구성한다.
이하에서는, 본 발명에 따른 단말 및 기지국의 동작을 도면을 참조하여 설명한다. 특히, 본 발명은 단말과 기지국에 구성된 특정 무선 베어러를 E-UTRAN 베어러에서 WLAN 베어러로 또는 WLAN 베어러에서 E-UTRAN 베어러로 변경하는 방법에 대해서 각 실시예 별로 나누어 설명한다.
도 4는 본 발명의 일 실시예에 따른 단말 동작을 설명하기 위한 도면이다.
본 발명의 일 실시예에 따른 단말은 무선 베어러를 재구성하는 방법에 있어서, 기지국으로부터 WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 수신하는 단계와 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 PDCP 데이터 복구 절차를 수행하는 단계 및 PDCP 개체에서 특정 무선 베어러에 대한 리오더링(reodering) 절차를 수행하는 단계를 포함한다.
도 4를 참조하면, 단말은 기지국으로부터 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 수신하는 단계를 포함한다(S410). 단말은 전술한 WLAN 베어러 추가 또는 병합 베어러 추가 방법을 이용하여 기지국 또는 WLAN AP와 무선 베어러를 구성할 수 있다. 또한, 단말에 추가 구성된 특정 무선 베어러는 WLAN 무선자원만을 이용하는 WLAN 베어러일 수 있다. 다만, 본 발명에서의 WLAN 베어러는 전술한 바와 같이, 이후 상위계층 시그널링에 의해서 E-UTRAN 베어러로 변경되어 재구성될 수 있다. 한편, 단말은 기지국 무선자원만을 이용하는 E-UTRAN 베어러도 별도로 구성할 수 있다.
단말은 WLAN 무선자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러(예를 들어, WLAN 베어러)에 대한 데이터 무선 베어러 타입 정보를 기지국으로부터 상위계층 시그널링을 통해서 수신할 수 있다. 일 예로, 무선 베어러에 대한 무선 베어러 타입 정보는 RRC 연결 재구성 메시지의 정보 요소(Information element)에 포함될 수 있다. 즉, 단말에 WLAN 베어러가 구성된 경우에 무선 베어러 타입 정보는 해당 WLAN 베어러가 WLAN 무선자원만을 사용하는 베어러임을 나타내는 정보를 포함할 수 있다. 다만, 본 발명과 같이 WLAN 베어러를 E-UTRAN 베어러로 변경하여 재구성하기 위해서, 단말은 해당 특정 무선 베어러에 대한 무선 베어러 타입을 변경하는 정보를 기지국으로부터 수신할 수 있다.
예를 들어, 단말은 기존 WLAN 베어러의 무선 베어러 타입에 대한 정보를 E-UTRAN 베어러를 나타내는 무선 베어러 타입에 대한 정보로 변경하는 정보를 기지국으로부터 수신할 수 있다. 즉, 단말은 특정 무선 베어러에 대한 무선 베어러 타입 정보가 기존 무선 베어러 타입 정보와 변경되는 경우, 해당 특정 무선 베어러의 타입이 변경됨을 인지할 수 있다.
한편, 단말은 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 PDCP 데이터 복구 절차를 수행하는 단계를 포함한다(S420). WLAN 무선자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 무선 베어러 타입 정보가 변경되는 경우, 단말은 PDCP 개체에서 PDCP 데이터 복구 절차를 수행할 수 있다. 예를 들어, 단말은 해당 특정 무선 베어러의 무선 베어러 타입을 WLAN 베어러에서 E-UTRAN 베어러로 변경하기 위해서, 특정 무선 베어러를 재구성할 필요가 있다. 이 때, 종래 WLAN 무선자원만을 이용하여 수신하던 하향링크 데이터에 대한 데이터 손실 또는 누락을 방지하기 위해서, PDCP 개체는 PDCP 데이터 복구 절차를 수행해야 한다.
예를 들어, PDCP 개체는 PDCP 상태 리포트를 생성하고, PDCP 상태 리포트를 PDCP PDU(PDCP Protocol Data Unit)에 포함하여 하위계층으로 전달할 수 있다. 즉, PDCP 개체는 PDCP 계층에서의 PDCP 상태 리포트를 생성하고, 이를 기지국으로 전송하기 위해서 작성된 PDCP 상태 리포트를 하위계층(예를 들어, RLC 계층 또는 MAC 계층)으로 전달할 수 있다. 이를 통해서, 단말은 PDCP 데이터 복구 절차가 개시되면, PDCP 상태 리포트를 기지국으로 전송하여, 기지국이 해당 특정 무선 베어러가 재구성되는 경우에 PDCP 데이터를 재전송하는데에 도움을 준다. 구체적인 PDCP 데이터 복구 동작은 아래의 실시예 별로 보다 상세하게 설명한다.
또한, 단말은 PDCP 개체에서 특정 무선 베어러에 대한 리오더링 절차를 수행하는 단계를 포함한다(S430). 단말은 하향링크 데이터를 수신하는 특정 무선 베어러가 WLAN 베어러에서 E-UTRAN 베어러로 타입이 변경되면, PDCP 개체에서 해당 특정 무선 베어러에 대한 리오더링 절차를 수행한다. 즉, 기지국이 WLAN 무선자원을 이용하여 단말로 전송하던 하향링크 데이터를 기지국 무선자원을 이용하여 단말로 전송함에 있어서, 순서대로 데이터를 전송하기 위해서(in sequence transmission), 데이터 누락 또는 손실을 방지하기 위해서 단말은 수신되는 하향링크 데이터에 대한 리오더링 절차를 수행한다.
이를 위해서, 단말은 기지국으로부터 리오더링 타이머를 구성하기 위한 정보를 추가적으로 수신할 수 있으며, 리오더링 타이머를 구성하기 위한 정보는 상위계층 시그널링을 통해서 수신될 수 있다.
또한, 단말은 리오더링 절차를 수행함에 있어서, 리오더링 타이머가 만료되면 리오더링을 위해 저장된 모든 PDCP SDU를 연계된 COUNT 값의 올림차순으로 상위계층으로 전달한다. 즉, RLC UM 방식(RLC Unacknowledged Mode)과 유사하게 주기적으로 리오더링 타이머가 만료되면, 순서를 벗어나 수신되어 저장된 모든 PDCP SDU를 상위계층으로 전달하여 하향링크 데이터를 순서대로 상위계층으로 전달한다. 또한, 단말은 3GPP TS 36.323 문서의 리오더링 절차를 추가적으로 수행할 수도 있다.
이상에서 설명한 바와 같이, 단말은 WLAN 무선자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 무선 베어러를 기지국 무선자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 무선 베어러로 재구성할 수 있다. 또한, 이 과정에서 순서대로 데이터를 전송하기 위해서(in sequence transmission), 하향링크 데이터의 누락 또는 손실을 방지하기 위해서, PDCP 개체에서 특정 무선 베어러에 대한 하향링크 데이터를 리오더링하고, 기지국의 PDCP 데이터 재전송을 돕기 위해서 PDCP 상태 리포트를 생성하여 기지국으로 전송할 수 있다.
도 5에서는 하향링크 데이터를 전달하는 특정 무선 베어러를 기지국 베어러로 재구성하는 방법을 기지국 관점에서 재차 설명한다.
도 5는 본 발명의 다른 실시예에 따른 기지국 동작을 설명하기 위한 도면이다.
본 발명의 일 실시예에 따른 기지국은 단말의 무선 베어러를 재구성하는 방법에 있어서, WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 전송하는 단계와 단말로부터 PDCP(Packet Data Convergence Protocol) 상태 리포트를 수신하는 단계 및 PDCP 상태 리포트에 기초하여 PDCP 개체에서 전달 성공 여부가 확인되지 않은 PDCP SDU (PDCP Service Data Unit) 또는 PDCP PDU(PDCP Protocol Data Unit)를 재전송하는 단계를 포함한다.
도 5를 참조하면, 본 발명의 기지국은 WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 전송하는 단계를 포함한다(S610). 전술한 바와 같이, 기지국은 WLAN 베어러를 E-UTRAN 베어러로 변경하기 위해서 특정 무선 베어러(예를 들어, WLAN 베어러)에 대한 데이터 무선 베어러 타입을 변경하는 정보를 생성하여 단말로 전송할 수 있다. 예를 들어, 기지국은 데이터 무선 베어러 타입을 변경하는 정보를 상위계층 시그널링을 통해서 전송할 수 있으며, 상위계층 시그널링은 RRC 연결 재구성 메시지일 수 있다.
한편, 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는 단말의 리오더링 절차 수행에 사용되는 리오더링 타이머를 구성하기 위한 정보를 더 포함할 수 있다. 단말은 리오더링 타이머를 구성하기 위한 정보를 수신하여 리오더링 타이머를 구성하고, 특정 무선 베어러가 재구성되는 경우 리오더링 타이머를 이용하여 리오더링 절차를 수행한다.
또한, 기지국은 단말로부터 PDCP(Packet Data Convergence Protocol) 상태 리포트를 수신하는 단계를 포함한다(S520). 기지국은 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 경우, 단말로부터 해당 특정 무선 베어러의 PDCP 상태 리포트를 수신한다. 단말이 특정 무선 베어러의 데이터 무선 베어러 타입을 변경하는 정보를 수신하는 경우, 단말은 PDCP 상태 리포트를 하위 계층으로 전송할 첫번째 PDCP PDU로 생성하여 기지국으로 전송한다.
또한, 기지국은 PDCP 상태 리포트에 기초하여 PDCP 개체에서 전달 성공 여부가 확인되지 않은 PDCP SDU 또는 PDCP PDU를 재전송하는 단계를 포함한다(S530). 기지국은 PDCP 상태 리포트를 이용하여 PDCP 데이터 복구를 수행하여, 기지국 무선자원만을 이용하여 단말로 하향링크 데이터를 재전송한다. 예를 들어, 기지국은 WLAN 무선자원을 이용하여 단말로 전달하던 PDCP PDU에 대해서 기지국 무선자원을 이용하여 단말로 재전송한다. 즉, 특정 무선 베어러를 재구성함에 따라 AM RLC 개체로 전달 성공 여부가 확인되지 않은 PDCP PDU를 PDCP 데이터 복구 절차에 따라 단말로 재전송한다.
이하에서는, 전술한 WLAN 무선자원만을 이용하는 특정 무선 베어러(WLAN 베어러)를 기지국 무선자원만을 이용하는 특정 무선 베어러(E-UTRAN 베어러)로 재구성하는 실시예에 대해서 다시 한 번 구체적으로 설명한다.
WLAN 베어러 → E-UTRAN 베어러 재구성/수정/변경
1) PDCP 재설정(re-establishment)
RRC 연결 재구성 메시지를 통해 단말에 구성된 WLAN 베어러를 E-UTRAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
단말은 PDCP 개체를 재설정한다.
WLAN 개체는 다음의 동작 중 하나 이상의 동작을 수행할 수 있다.
- 가능할 때, 수신측에서 PDCP 개체로 전달할 수 있는 PDCP PDUs를 상위계층으로 전달한다.
- 수신 측에서 남은 데이터를 버린다.
- 송신 측에서 데이터를 버린다.
- 제어 데이터를 버린다.
전술한 바와 같이 PDCP 재설정을 수행하면, 단말이 무선 베어러 변경과정에서 손실된 데이터에 대해, PDCP 재설정에 따라 성공적인 전달이 확인되지 않은 PDCP SDUs를 전송 또는 재전송하므로 손실없는 전송을 수행할 수 있다. 그러나, 이 방법은 PDCP 개체의 변동이 없는 베어러 변경에 대해서도 헤더 압축 프로토콜 리셋과 시큐리티 키 변경, PDCP SDUs 전송 또는 재전송 등의 복잡한 세부 동작을 처리해야 하며, 이에 따라 복잡성이 증가되고 지연이 유발될 수 있다. 따라서, 본 발명에서는 전술한 바와 같이, PDCP 개체를 재설정하지 않고, 특정 무선 베어러를 재구성하는 방법에 대해서 설명하였다.
2) PDCP 데이터 복구
전술한 1)의 실시예와 같이, PDCP 개체를 재설정하는 경우, 불필요한 동작이 수행되어 복잡성이 증가되고, 지연이 유발될 수 있다. 따라서, 본 발명에서는 PDCP 개체의 재설정없이 PDCP 데이터 복구 절차를 수행하는 방법을 설명한다. 이 경우, PDCP 개체는 재구성되거나, 유지될 수 있다.
RRC 연결 재구성 메시지를 통해 단말에 구성된 WLAN 베어러를 E-UTRAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다. WLAN 베어러를 E-UTRAN 베어러로 재구성/수정/변경하기 위한 RRC 연결 재구성 메시지는 데이터 무선 베어러 타입을 변경하는 정보를 포함한다. 예를 들어, RRC 연결 재구성 메시지는 "drb-ToAddModList"에 DRB 타입을 포함할 수 있다. 해당 특정 무선 베어러의 DRB 타입이 현재 타입에서 변경되어 수신되는 경우, 단말은 해당 특정 무선 베어러를 재구성할 수 있다.
단말은 WLAN 개체로 이전에 제출된 PDCP 데이터 복구(data recovery)를 수행한다.
WLAN 개체는 다음의 동작 중 하나 이상의 동작을 수행할 수 있다.
- 가능할 때, 수신측에서 PDCP 개체로 전달할 수 있는 PDCP PDUs를 상위계층으로 전달한다.
- 수신 측에서 남은 데이터를 버린다.
- 송신 측에서 데이터를 버린다.
- 제어 데이터를 버린다.
종래 기술에서 PDCP 데이터 복구는 재설정된 AM RLC 개체로 이전에 제출된 모든 PDCP PDUs에 대해 재전송을 수행한다. 따라서, WLAN 베어러를 WLAN 베어러로 변경하는 경우에는 베어러 변경 메시지를 수신하기 전에(또는 PDCP 데이터 복구를 수행하기 전에) WLAN 개체로 제출된 PDCP PDUs에 대해 재전송을 수행해야 한다.
PDCP 데이터 복구에 따라 만약 무선 베어러가 상위 계층에 의해 업링크로 PDCP 상태 리포트를 보내도록 구성되었다면, PDCP 상태 리포트를 생성하여 이를 하위 계층에 전송을 위한 첫번째 PDCP PDU로 제출한다.
단말에서 상향링크에 대한 PDCP 데이터 복구가 수행되면, 기지국에서는 해당 PDCP 데이터에 대한 리오더링 기능을 수행해야 한다. 또는 기지국에서 하향링크에 대한 PDCP 데이터 복구가 수행되면, 단말은 해당 PDCP 데이터에 대한 리오더링 기능(reordering function)을 수행해야 한다.
종래 기술에서 PDCP 데이터 복구는 Rel-12 듀얼 커넥티비티에서 규격화된 스플릿 베어러에 대한 베어러 변경이 발생될 때(예를 들어, PDCP 재설정 없이 스플릿 베어러가 스플릿 베어러로 변경될 때 또는 PDCP 재설정 없이 스플릿 베어러가 MCG 베어러로 변경될 때)만 수행된다.
또한 종래기술에서 단말에 스플릿 베어러가 구성될 때 리오더링 기능이 수행되었다. 일 예를 들어, 단말은 듀얼 커넥티비티 상황에서 PDCP 개체가 두 개의 AM RLC 개체와 연관되어 구성되는 경우(the PDCP entity is associated with two AM RLC entities)에 리오더링 기능이 수행되었다. 다른 예를 들어, PDCP 재설정 없이 스플릿 베어러가 스플릿 베어러로 변경될 때에 리오더링 기능이 수행되었다. 또한, 종래에는 단말에 PDCP 재설정 없이 스플릿 베어러가 MCG 베어러로 변경될 때(the PDCP entity is associated with one AM RLC entity after it was, according to the most recent reconfiguration, associated with two AM RLC entities without performing PDCP re-establishment)에 리오더링 기능이 사용되었다.
이에 따라, PDCP는 듀얼 커넥티비 분리 베어러 구성 메시지를 수신하면 바로 리오더링 기능을 시작했으며, 설정된 리오더링 타이머(t-Reordering-r12)를 통해 RLC UM과 같은 리오더링 방법을 적용했다. 즉 리오더링을 위해 모든 저장된 PDCP SDU(s)를 상위계층으로 전달한다. TS 36.323에 규격화된 세부 절차는 다음과 같다.
순서대로 PDCU 데이터를 수신하지 못해 리오더링을 트리거될 때 리오더링 타이머가 완료되면 리오더링을 위해 저장된 모든 PDCP SDU를 연계된 COUNT 값의 오름차순으로 상위 계층으로 전달했다.( When t-Reordering expires, the UE shall:
- deliver to upper layers in ascending order of the associated COUNT value:
- all stored PDCP SDU(s) with associated COUNT value(s) less than Reordering_PDCP_RX_COUNT;
- all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from Reordering_PDCP_RX_COUNT;)
이와 달리, 본 발명은 WLAN 베어러를 E-UTRAN 베어러로 재구성/수정/변경하는 경우에 PDCP 데이터 복구를 사용한다면, 리오더링 절차를 수행하도록 설정될 수 있다. 특정 무선 베어러가 하향링크인 경우, 기지국은 이를 위한 리오더링 타이머를 구성하기 위한 정보(또는 이를 지시하기 위한 정보)를 RRC 메시지에 포함하여 단말에 전달할 수 있다. 특정 무선 베어러가 상향링크인 경우, 기지국은 이를 위한 리오더링 기능을 수행할 수도 있다.
다른 방법으로 전술한 리오더링 기능을 사용하지 않을 때 PDCP에서 제공하는 하향링크 데이터 수신 절차를 이용할 수 있다. 전술한 리오더링 기능을 사용하지 않을 때, AM RLC에 매핑되는 무선 베어러에 대해서는, 만약 하위 계층 재설정이 아니라면, PDCP에 의해 수신된 PDCP SDU/PDU는 곧바로 상위 계층으로 전달된다. 즉, 전술한 리오더링 기능을 사용하지 않을 때는 단일 무선링크를 통해 전달되는 데이터는 RLC가 in-sequence 전달을 보장하기 때문에 PDCP를 리오더링하지 않고 바로 상위 계층으로 전달할 수 있다. 하지만, 전술한 리오더링 기능을 사용하지 않을 때, AM RLC에 매핑되는 무선 베어러에 대해서, 만약 하위 계층 재설정이 발생하면, 핸드오버 등과 같이 PDCP 재설정에 연관되기 때문에 PDCP에서 리오더링을 수행하여 상위 계층으로 전달할 수 있다.
따라서, 전술한 WLAN 베어러를 E-UTRAN 베어러로 재구성/수정/변경하는 경우에 PDCP 데이터 복구를 사용한다면, 단말은 전술한 종래의 리오더링 기능을 사용하지 않을 때 종래의 PDCP에서 제공하는 하향링크 데이터 수신 절차를 개선하여 리오더링을 하도록 할 수 있다. 일 예를 들어, 만약 PDCP 개체에 의해 수신된 PDCP PDU가 WLAN 베어러에서 E-UTRAN 베어러 변경으로 인한 것이라면(또는 WLAN 개체의 해제로 인한 것이라면 또는 WLAN 개체의 특정 동작으로 인한 것이라면) 다음과 같이 리오더링을 하도록 할 수 있다.
- elseif received PDCP SN = Last_Submitted_PDCP_RX_SN + 1 or received PDCP SN = Last_Submitted_PDCP_RX_SN ― Maximum_PDCP_SN:
-- deliver to upper layers in ascending order of the associated COUNT value:
--- all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP PDU;
- set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;
다른 예를 들어, 만약 PDCP에 의해 수신된 PDCP PDU가 WLAN 베어러에서 E-UTRAN 베어러 변경으로 인한 것이라면(또는 WLAN 개체의 해제로 인한 것이라면 또는 WLAN 개체의 특정 동작으로 인한 것이라면) 다음과 같이 리오더링을 하도록 할 수 있다.
- deliver to upper layers in ascending order of the associated COUNT value:
-- all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP PDU;
- set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;
이상에서 설명한 바와 같이, 특정 무선 베어러가 WLAN 베어러에서 E-UTRAN 베어러로 베어러 타입이 변경되는 경우, 수신측(예를 들어, 하향링크에서 단말)은 PDCP 재설정없이 PDCP 데이터 복구 절차를 수행하고, PDCP 개체에서 리오더링 타이머를 이용하여 리오더링 절차를 수행할 수 있다.
위에서는 WLAN 베어러를 E-UTRAN 베어러로 재구성하는 경우에 대해서 설명하였다. 그러나, 전술한 특정 무선 베어러는 스위칭 기능을 포함하는 것으로 E-UTRAN 베어러가 WLAN 베어러로 재구성될 수도 있다. 따라서, 특정 무선 베어러가 기지국 무선자원만을 이용하는 것으로 구성된 경우, WLAN 무선자원만을 이용하도록 재구성되는 경우의 본 발명에 따른 절차를 이하에서 설명한다.
도 6은 본 발명의 또 다른 실시예에 따른 단말 동작을 설명하기 위한 도면이다.
본 발명의 단말은 무선 베어러를 재구성하는 방법에 있어서, 기지국으로부터 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링 수신하는 단계 및 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, 상기 PDCP(Packet Data Convergence Protocol) 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 개시하는 단계를 포함한다.
도 6을 참조하면, 단말은 기지국으로부터 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링 수신하는 단계를 포함한다(S610). 도45에서 설명한 바와 같이, 단말은 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 수신할 수 있다. 다만, 이 경우, E-UTRAN 베어러를 WLAN 베어러로 재구성하기 위해서, 데이터 무선 베어러 타입을 변경하는 정보는 무선 베어러를 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함한다. 또한, 데이터 무선 베어러 타입을 변경하는 정보는 RRC 연결 재구성 메시지에 포함될 수 있다.
단말은 상위계층 시그널링에 포함된 데이터 무선 베어러 타입을 변경하는 정보를 확인하여, 해당 특정 무선 베어러의 타입 정보가 변경되는 경우, 특정 무선 베어러를 재구성하는 절차를 수행한다.
또한, 단말은 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 특정 무선 베어러에 대한 리오더링 절차를 개시하는 단계를 포함한다(S620). 특정 무선 베어러를 E-UTRAN 베어러에서 WLAN 베어러로 재구성하기 위해서, 단말은 PDCP 개체에서 특정 무선 베어러에 대한 리오더링 절차를 개시한다. 예를 들어, 단말은 PDCP 개체에서 리오더링 타이머를 이용하여 PDCP SDU를 카운팅하고, 리오더링 타이머가 만료되면, PDCP SDU를 상위계층으로 전달한다.
다만, E-UTRAN 베어러를 WLAN 베어러로 재구성하는 경우, 도 4와 달리 단말의 PDCP 개체는 PDCP 데이터 복구 절차를 수행하지 않고, 리오더링 절차를 개시할 수 있다.
이를 통해서, 단말은 하향링크 데이터를 수신하도록 구성된 E-UTRAN 베어러를 불필요한 지연 및 데이터 손실없이 WLAN 베어러로 재구성할 수 있다.
이하, E-UTRAN 베어러를 WLAN 베어러로 재구성하는 구체적인 실시예를 아래에서 설명한다.
E-UTRAN 베어러 → WLAN 베어러 재구성/수정/변경
RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경할 수 있다. 이를 위해서, 기지국은 단말로 E-UTRAN 베어러의 데이터 무선 베어러 타입을 변경하는 정보를 RRC 연결 재구성 메시지에 포함하여 전송할 수 있다.
전술한 바와 같이 종래 WLAN에서는 E-UTRAN의 RLC 개체와 동일한 기능을 제공하지 않았다. 따라서 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 해당 사용자 플레인 데이터를 E-UTRAN 캐리어를 통한 전송에서 WLAN 캐리어를 통한 전송으로 스위치하는 과정에서 손실이 발생할 수 있다.
AM RLC(Acknowledged mode Radio Link Control)에 매핑되는 무선 베어러들에 대해서는 RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경할 때도 손실 없는 데이터 전송을 보장할 수 있어야 한다. 이를 위해 다음과 같은 실시예를 사용할 수 있다.
1) PDCP 재설정(re-establishment)
RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
단말은 PDCP 개체를 재설정한다.
단말은 RLC 개체를 재설정한다.
단말은 WLAN 개체를 설정한다. 그리고 WLAN 개체 구성정보에 따라 WLAN 개체를 구성 또는 재구성한다.
상위 계층(예를 들어, RRC)에 의해 PDCP 재설정이 요청되면, AM RLC에 매핑되는 무선 베어러에 대해 단말은 다음의 동작 중 하나 이상의 동작을 수행한다.
- 업링크에 대한 헤더 압축 프로토콜을 리셋한다(reset the header compression protocol for uplink and start with an IR state in U-mode (if configured).
- 다운링크에 대한 헤더 압축 프로토콜을 리셋한다(reset the header compression protocol for downlink and start with NC state in U-mode (if configured)).
- 상위 계층에 의해 제공되는 암호화 알고리즘과 키를 적용한다(apply the ciphering algorithm and key provided by higher layers during the re-establishment procedure).
- 다운링크에 대해, 하위 계층(RLC)의 재설정에 의해, 하위 계층으로부터 수신된 PDCP 데이터를 처리한다(process the PDCP Data PDUs that are received from lower layers due to the re-establishment of the lower layers).
- 업링크에 대해, 하위 계층(예를 들어, RLC)에 의해 해당 PDCP PDU의 성공적인 전달이 확인되지 않은 첫 번째 PDCP SDU로부터, PDCP 재설정 이전에 PDCP SDU에 연계된 COUNT 값의 오름차순으로 이미 PDCP SNs(Sequence Numbers)를 가지고 연계된 모든 PDCP SDUs의 전송 또는 재전송을 아래와 같이 수행한다(from the first PDCP SDU for which the successful delivery of the corresponding PDCP PDU has not been confirmed by lower layers, perform retransmission or transmission of all the PDCP SDUs already associated with PDCP SNs in ascending order of the COUNT values associated to the PDCP SDU prior to the PDCP re-establishment as specified below)
-- PDCP SDU의 헤더 압축 수행.
-- PDCP SDU에 연계된 COUNT 값을 통해 PDCP SDU의 암호화를 수행.
-- PDCP 데이터 PDU를 하위 계층으로 제출.
상위 계층에 의해 RLC 재설정이 요청되면, AM RLC 개체(또는 단말 또는 단말의 AM RLC 개체)는 다음의 동작 중 하나 이상의 동작을 수행한다.
- 가능할 때, SN(Serial Number)가 수신 측에서 최대 받아들일 수 있는 수신상태 변수(VR(MR): Maximum acceptable receive state variable)보다 작은 값을 가진 AMD PDUs의 임의의 바이트 세그멘트로부터, RLC SDUs를 재조립하고, RLC 헤더들을 제거하고 그리고 모든 재조립된 RLC SDUs를 RLC SN의 오름차순으로 상위계층으로 전달한다(when possible, reassemble RLC SDUs from any byte segments of AMD PDUs with SN < VR(MR) in the receiving side, remove RLC headers when doing so and deliver all reassembled RLC SDUs to upper layer in ascending order of the RLC SN, if not delivered before).
- 수신 측에서 남은 AMD PDUs와 AMD PDUs의 바이트 세그멘트를 버린다(discard the remaining AMD PDUs and byte segments of AMD PDUs in the receiving side).
- 송신 측에서 모든 RLC SDUs와 AMD PDUs를 버린다(discard all RLC SDUs and AMD PDUs in the transmitting side).
- 모든 RLC 제어 PDUs를 버린다(discard all RLC control PDUs).
전술한 바와 같이 PDCP 재설정과 RLC 재설정을 수행하면, 단말이 RLC 재설정에 따라 송신 측에서 전송하지 못한 모든 RLC SDUs와 AMD PDUs를 버리더라도, PDCP 재설정에 따라 성공적인 전달이 확인되지 않은 PDCP SDUs를 전송 또는 재전송하므로 손실없는 전송을 수행할 수 있다. 그러나, 이 방법은 PDCP 개체의 변동이 없는 베어러 변경에 대해서도 헤더 압축 프로토콜 리셋과 시큐리티 키 변경, PDCP SDUs 전송 또는 재전송 등의 복잡한 세부 동작을 처리해야 하며, 이에 따라 복잡성이 증가되고 지연이 유발될 수 있다.
따라서, 본 발명에서는 PDCP 재설정 없이 특정 무선 베어러에 대한 재구성 방법을 아래와 같이 수행할 수 있다.
2) PDCP 데이터 복구
일 예로, RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다. 이 경우, PDCP 개체는 재구성되거나 유지될 수 있다.
단말은 PDCP 데이터 복구(data recovery)를 수행한다.
단말은 RLC 개체를 재설정한다. 또는 단말은 RLC 개체를 재구성한다.
단말은 WLAN 개체를 설정한다 그리고 WLAN 개체 구성정보에 따라 WLAN 개체를 구성 또는 재구성 한다.
다른 예로, RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
만약 DRB 추가수정구성정보에 PDCP 구성정보가 포함되었다면, PDCP 구성정보에 따라 PDCP 개체를 재구성한다.
단말은 RLC 개체를 재설정한다. 또는 단말은 RLC 개체를 재구성한다.
단말은 WLAN 개체를 설정한다 그리고 WLAN 개체 구성정보에 따라 WLAN 개체를 구성 또는 재구성한다.
상위 계층에 의해 RLC 개체에 재설정이 요청되면, AM RLC 개체(또는 단말 또는 단말의 AM RLC 개체)는 전술한 동작을 수행한다. 따라서, RLC 재설정에 따른 버려지는 데이터(SDUs 또는 PDUs)에 따라 손실이 발생할 수 있다.
손실없는 전송을 보장하기 위해 단말은 PDCP 데이터 복구를 수행할 수 있다. PDCP 데이터 복구를 위해 AM RLC에 매핑되는 무선베어러에 대해 단말(또는 단말의 PDCP 개체 또는 PDCP 개체)은 다음의 동작 중 하나 이상의 동작을 수행할 수 있다.
- 하위 계층(예를 들어, RLC 계층)에 의해 성공적인 전달이 확인되지 않은 첫 번째 PDCP PDU로부터, 연계된 COUNT 값의 오름차순으로 재설정된 AM RLC 개체로, 이전에 제출된 모든 PDCP PDUs의 재전송을 수행한다(perform retransmission of all the PDCP PDUs previously submitted to re-established AM RLC entity in ascending order of the associated COUNT values from the first PDCP PDU for which the successful delivery has not been confirmed by lower layers).
- 만약 무선 베어러가 상위 계층에 의해 업링크로 PDCP 상태 리포트를 보내도록 구성되었다면, 상태 리포트를 생성하여 이를 하위 계층에 전송을 위한 첫번째 PDCP PDU로 제출한다(if the radio bearer is configured by upper layers to send a PDCP status report in the uplink (statusReportRequired), compile a status report, and submit it to lower layers as the first PDCP PDU for the transmission).
단말에서 상향링크에 대한 PDCP 데이터 복구가 수행되면, 기지국에서는 해당 PDCP 데이터에 대한 리오더링 기능을 수행해야 한다. 기지국에서 하향링크에 대한 PDCP 데이터 복구가 수행되면, 단말은 해당 PDCP 데이터에 대한 리오더링 기능(reordering function)을 수행해야 한다.
종래 기술에서 PDCP 데이터 복구는 Rel-12 듀얼 커넥티비티에서 규격화된 스플릿 베어러에 대한 베어러 변경이 발생될 때(예를 들어, PDCP 재설정 없이 스플릿 베어러가 스플릿 베어러로 변경될 때 또는 PDCP 재설정 없이 스플릿 베어러가 MCG 베어러로 변경될 때)만 수행된다.
또한 종래기술에서 단말에 스플릿 베어러가 구성될 때 리오더링 기능이 수행되었다. 일 예를 들어, 단말은 듀얼 커넥티비티 상황에서 PDCP 개체가 두 개의 AM RLC 개체와 연관되어 구성되는 경우(the PDCP entity is associated with two AM RLC entities)에 리오더링 기능이 수행되었다. 다른 예를 들어, PDCP 재설정 없이 스플릿 베어러가 스플릿 베어러로 변경될 때에 리오더링 기능이 수행되었다. 또한, 종래에는 단말에 PDCP 재설정 없이 스플릿 베어러가 MCG 베어러로 변경될 때(the PDCP entity is associated with one AM RLC entity after it was, according to the most recent reconfiguration, associated with two AM RLC entities without performing PDCP re-establishment)에 리오더링 기능이 사용되었다.
이에 따라, PDCP는 듀얼 커넥티비 분리 베어러 구성 메시지를 수신하면 바로 리오더링 기능을 시작했으며, 설정된 리오더링 타이머(t-Reordering-r12)를 통해 RLC UM과 같은 리오더링 방법을 적용했다. 즉 리오더링을 위해 모든 저장된 PDCP SDU(s)를 상위계층으로 전달한다. TS 36.323에 규격화된 세부 절차는 다음과 같다.
순서대로 PDCU 데이터를 수신하지 못해 리오더링을 트리거될 때 리오더링 타이머가 완료되면 리오더링을 위해 저장된 모든 PDCP SDU를 연계된 COUNT 값의 오름차순으로 상위 계층으로 전달했다.( When t-Reordering expires, the UE shall:
- deliver to upper layers in ascending order of the associated COUNT value:
- all stored PDCP SDU(s) with associated COUNT value(s) less than Reordering_PDCP_RX_COUNT;
- all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from Reordering_PDCP_RX_COUNT;)
이와 달리, 본 발명은 WLAN 베어러를 E-UTRAN 베어러로 재구성/수정/변경하는 경우에 PDCP 데이터 복구를 사용한다면, 리오더링 절차를 수행하도록 설정될 수 있다. 특정 무선 베어러가 하향링크인 경우, 기지국은 이를 위한 리오더링 타이머를 구성하기 위한 정보(또는 이를 지시하기 위한 정보)를 RRC 메시지에 포함하여 단말에 전달할 수 있다. 특정 무선 베어러가 상향링크인 경우, 기지국은 이를 위한 리오더링 기능을 수행할 수도 있다.
다른 방법으로 전술한 리오더링 기능을 사용하지 않을 때 PDCP에서 제공하는 하향링크 데이터 수신 절차를 이용할 수 있다. 전술한 리오더링 기능을 사용하지 않을 때, AM RLC에 매핑되는 무선 베어러에 대해서는, 만약 하위 계층 재설정이 아니라면, PDCP에 의해 수신된 PDCP PDU는 곧바로 상위 계층으로 전달된다. 즉, 전술한 리오더링 기능을 사용하지 않을 때는 단일 무선링크를 통해 전달되는 데이터는 RLC가 in-sequence 전달을 보장하기 때문에 PDCP를 리오더링하지 않고 바로 상위 계층으로 전달할 수 있다. 하지만, 전술한 리오더링 기능을 사용하지 않을 때, AM RLC에 매핑되는 무선 베어러에 대해서, 만약 하위 계층 재설정이 발생하면, 핸드오버 등과 같이 PDCP 재설정에 연관되기 때문에 PDCP에서 리오더링을 수행하여 상위 계층으로 전달할 수 있다.
따라서, 전술한 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우에 PDCP 데이터 복구를 사용한다면, 단말은 전술한 종래의 리오더링 기능을 사용하지 않을 때, PDCP에서 제공하는 하향링크 데이터 수신 절차를 개선하여 리오더링을 하도록 할 수도 있다.
일 예를 들어, 만약 PDCP에 의해 수신된 PDCP SDU 또는 PDCP PDU가 하위 계층의 재설정으로 인한 것이라면(또는 E-UTRAN 베어러에서 WLAN 베어러 변경으로 인한 것이라면) 다음과 같이 리오더링을 하도록 할 수 있다.
- elseif received PDCP SN = Last_Submitted_PDCP_RX_SN + 1 or received PDCP SN = Last_Submitted_PDCP_RX_SN ― Maximum_PDCP_SN:
-- deliver to upper layers in ascending order of the associated COUNT value:
--- all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP PDU;
- set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;
다른 예를 들어, 만약 PDCP에 의해 수신된 PDCP SDU 또는 PDCP PDU가 하위 계층의 재설정으로 인한 것이라면(또는 E-UTRAN베어러에서 WLAN 베어러 변경으로 인한 것이라면) 다음과 같이 리오더링을 하도록 할 수 있다.
- deliver to upper layers in ascending order of the associated COUNT value:
-- all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP PDU;
- set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;
3) RLC 개체에서 전송 또는 재전송 수행
일 예로, RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
만약, DRB 추가수정구성정보에 PDCP 구성정보가 포함되었다면, PDCP 구성정보에 따라 PDCP 개체를 재구성한다.
만약 DRB추가수정구성정보에 RLC 구성정보가 포함되었다면, RLC 구성정보에 따라 RLC 개체를 재구성한다.
단말은 WLAN 개체를 설정한다 그리고 WLAN 개체 구성정보에 따라 WLAN 개체를 구성 또는 재구성 한다.
다른 예로, RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
업링크로 전송된 PDCP 데이터(예를 들어, PDUs 또는 SDUs)에 대해 PDCP는 재전송을 트리거 하지 않는다. 또는 PDCP가 RLC 개체로 제출한 PDCU PDUs에 대해 PDCP는 재전송을 트리거 하지 않는다.
RLC 개체는 모든 펜딩(pending)된 RLC SDUs 또는 RLC PDUs의 전송 또는 재전송을 완료한다.
단말은 WLAN 개체를 설정한다. 그리고 WLAN 개체 구성정보에 따라 WLAN 개체를 구성 또는 재구성한다.
즉 E-UTRAN 베어러를 WLAN 베어러로 재구성하는 경우 RLC 개체를 해제하지 않고 RLC 개체에서 전송 또는 재전송을 완료하도록 할 수 있다.
한편, 기지국과 RRC 연결을 설정한 단말에 대해, 기지국은 WLAN 캐리어를 추가하여 WLAN 베어러를 구성/재구성하는 것은 E-UTRAN 커버리지 하에 있는 것을 가정한다. 이에 따라 RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하더라도, 단말은 E-UTRAN 캐리어/셀을 통해 기지국과 데이터를 송수신할 수 있는 환경에 있다.
따라서, 단말은 E-UTRAN 베어러를 WLAN 베어러로 전환할 때, 손실없는 전송을 위해 제공하는 AM RLC에 매핑되는 무선 베어러에 대해 RLC 개체를 통해 전송 또는 재전송을 하도록 할 수 있다.
예를 들어, E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 다음과 같은 동작 중의 하나 이상의 동작을 수행할 수 있다.
- 상향링크에 대해, RLC 개체는 베어러 재구성/수정/변경 이전에 PDCP 개체로부터 수신한 PDCP SDUs/PDUs에 대하여 전송 또는 재전송을 수행한다. 또는, 상향링크에 대해 RLC 개체는 베어러 재구성/수정/변경 이전에 PDCP 개체로부터 수신한 RLC SDUs 또는 RLC PUDs에 대해 전송 또는 재전송을 수행한다. 또는, 상향링크에 대해, 베어러 재구성/수정/변경 이전에 PDCP 개체가 제출한 PDCP PDUs에 대해서는 RLC 개체가 전송 또는 재전송을 수행한다.
- 상향링크에 대해, PDCP 개체는 베어러 재구성/수정/변경되면, 베어러 재구성/수정/변경 이전에 PDCP 개체가 제출한 PDCP PDUs의 다음 PDCP PDU부터, WLAN 개체를 통해 전송한다. 또는 WLAN 개체에 PDCP PDUs를 제출한다. 또는 WLAN 개체를 통해 PDCP PDUs를 전달한다.
- 하향링크에 대해, RLC 개체는 하위 계층으로부터 수신된 RLC 데이터를 처리한다.
- 하향링크에 대해, PDCP 개체는 하위 계층으로부터 수신된 PDCP 데이터를 처리한다.
이 때, 해당 WLAN 베어러가 재구성/수정/변경 또는 해제 될 때까지 RLC 개체는 유지될 수 있다. 다른 방법으로 RLC 개체는 베어러 재구성/수정/변경 이전에 PDCP 개체로부터 수신한 모든 PDCP PDUs(또는 RLC SDUs 또는 RLC PDUs)의 전송 또는 재전송이 성공적으로 완료될 때까지 유지될 수 있다. 또 다른 방법으로 RLC 개체는 베어러 재구성/수정/변경 이전에 PDCP 개체로부터 수신한 모든 PDCP PDUs의 전송 또는 재전송이 성공적으로 완료될 수 있도록 일정 시간(타이머)을 유지할 수 있다. 또 다른 방법으로 WLAN 베어러에서 E-UTRAN 베어러로의 빠른 스위치을 위해, 또는 WLAN 베어러의 상향링크 데이터 전송을 위해, 또는 일시적인 상향링크 데이터 전송을 위해, RLC 개체는 재구성 또는 유지될 수도 있다.
E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 전술한 동작의 수행을 지시하기 위한 정보 및/또는 이와 관련된 정보(예를 들어, 리오더링 타이머 구성 정보)가 RRC 메시지에 포함될 수 있다. 또는 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 전술한 동작이 수행되도록 사전 구성되어 있을 수 있다.
4) RLC 개체에서 WLAN 개체를 통해 전송 또는 재전송 수행
일 예로, RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
만약, DRB 추가수정구성정보에 PDCP 구성정보가 포함되었다면, PDCP 구성정보에 따라 PDCP 개체를 재구성한다.
만약 DRB추가수정구성정보에 RLC 구성정보가 포함되었다면, RLC 구성정보에 따라 RLC 개체를 재구성한다.
단말은 WLAN 개체를 설정한다 그리고 WLAN 개체 구성정보에 따라 WLAN 개체를 구성 또는 재구성한다.
다른 예로, RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
만약, DRB 추가수정구성정보에 PDCP 구성정보가 포함되었다면, PDCP 구성정보에 따라 PDCP 개체를 재구성한다.
만약 RLC 개체(또는 RLC 개체의 일부 기능, 예를 들어 ARQ 또는 재전송 기능)를 WLAN 개체(또는 WLAN 개체의 일부 기능, 예를 들어 ARQ 또는 재전송 기능)으로 재구성한다.
또 다른 예로, RRC 연결 재구성 메시지를 통해 단말에 구성된 E-UTRAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
상향링크로 전송된 PDCP 데이터(예를 들어, PDUs 또는 SDUs)에 대해 PDCP는 재전송을 트리거 하지 않는다. 또는 PDCP가 RLC 개체로 제출한 PDCU PDUs에 대해 PDCP는 재전송을 트리거 하지 않는다.
RLC 개체 또는 WLAN 개체는 모든 펜딩(pending)된 RLC SDUs 또는 RLC PDUs의 전송 또는 재전송을 완료한다.
예를 들어, RLC 개체 또는 WLAN 개체는 WLAN 캐리어를 통해 모든 펜딩(pending)된 RLC SDUs 또는 RLC PDUs의 전송 또는 재전송을 완료할 수 있다. 다른 예를 들어, RLC 개체 또는 WLAN 개체는 WLAN 캐리어를 통해 모든 펜딩(pending)된 PDCP PDUs의 전송 또는 재전송을 완료할 수 있다. 또 다른 예를 들어 상향링크에 대해, RLC 개체 또는 WLAN 개체는 베어러 재구성/수정/변경 이전에 PDCP 개체로부터 수신한 PDCP PDUs에 대하여 전송 또는 재전송을 수행한다. 또는, 상향링크에 대해 RLC 개체 또는 WLAN 개체는 베어러 재구성/수정/변경 이전에 PDCP 개체로부터 수신한 RLC SDUs 또는 RLC PUDs에 대해 전송 또는 재전송을 수행한다. 또는, 상향링크에 대해, 베어러 재구성/수정/변경 이전에 PDCP 개체가 제출한 PDCP PDUs에 대해서는 RLC 개체 또는 WLAN 개체가 전송 또는 재전송을 수행한다.
한편, 특정 무선베어러가 WLAN 베어러에서 WLAN 베어러로 데이터 무선 베어러 타입의 변경없이 재구성되는 경우도 고려할 필요가 있다. 이 경우에 단말 및 기지국이 동작에 대해서 아래에서 설명한다.
WLAN 베어러 → WLAN 베어러 재구성/수정/변경
WLAN AP/네트워크/SSID/BSSID/HESSID/Domain Name List 등의 변경으로 특정 WLAN AP/네트워크/SSID/BSSID/HESSID/Domain Name List를 통한 WLAN 베어러를 다른 WLAN AP/네트워크/SSID/BSSID/HESSID/Domain Name List를 통한 WLAN 베어러로 재구성/수정/변경해야 할 경우가 발생될 수 있다. 이 경우, WLAN AP/네트워크/SSID/BSSID/HESSID/Domain Name List 등의 변경으로 PDCP 개체에서 해당 WLAN 개체로 전달한 데이터가 손실될 수 있다. AM RLC(Acknowledged mode Radio Link Control)에 매핑되는 무선 베어러들에 대해서는 RRC 연결 재구성 메시지를 통해 단말에 구성된 WLAN 베어러를 WLAN 베어러로 재구성/수정/변경할 때도 손실 없는 데이터 전송을 보장할 수 있어야 한다.
이를 위해 다음과 같은 방법을 사용할 수 있다.
1) PDCP 재설정(re-establishment)
RRC 연결 재구성 메시지를 통해 단말에 구성된 WLAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
단말은 PDCP 개체를 재설정한다.
WLAN 개체는 다음의 동작 중 하나 이상의 동작을 수행할 수 있다.
- 가능할 때, 수신측에서 PDCP 개체로 전달할 수 있는 PDCP PDUs를 상위계층으로 전달한다.
- 수신 측에서 남은 데이터를 버린다.
- 송신 측에서 데이터를 버린다.
- 제어 데이터를 버린다.
전술한 바와 같이 PDCP 재설정을 수행하면, 단말이 베어러 변경과정에서 손실된 데이터에 대해, PDCP 재설정에 따라 성공적인 전달이 확인되지 않은 PDCP SDUs를 전송 또는 재전송하므로 손실없는 전송을 수행할 수 있다. 그러나, 이 방법은 PDCP 개체의 변동이 없는 베어러 변경에 대해서도 헤더 압축 프로토콜 리셋과 시큐리티 키 변경, PDCP SDUs 전송 또는 재전송 등의 복잡한 세부 동작을 처리해야 하며, 이에 따라 복잡성이 증가되고 지연이 유발될 수 있다.
2) PDCP 데이터 복구
위에서 설명한 PDCP 재설정 없이 PDCP 개체 재구성 또는 PDCP 개체를 유지하면서, PDCP 데이터 복구 동작을 수행할 수도 있다.
일 예로, RRC 연결 재구성 메시지를 통해 단말에 구성된 WLAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우, 단말은 다음과 같은 동작을 할 수 있다.
단말은 WLAN 개체로 이전에 제출된 PDCP 데이터 복구(data recovery) 절차를 수행한다.
WLAN 개체는 다음의 동작 중 하나 이상의 동작을 수행할 수 있다.
- 가능할 때, 수신측에서 PDCP 개체로 전달할 수 있는 PDCP PDUs를 상위계층으로 전달한다.
- 수신 측에서 남은 데이터를 버린다.
- 송신 측에서 데이터를 버린다.
- 제어 데이터를 버린다.
종래 기술에서 PDCP 데이터 복구 절차에서는 재설정된 AM RLC 개체로 이전에 제출된 모든 PDCP PDUs에 대해 재전송을 수행한다. 따라서, WLAN 베어러를 WLAN 베어러로 변경하는 경우에는 베어러 변경 메시지를 수신하기 전에(또는 PDCP 데이터 복구를 수행하기 전에) 이전 WLAN 네트워크로 제출된 PDCP PDUs에 대해 새로운 WLAN 네트워크를 통해 재전송을 수행해야 한다.
PDCP 데이터 복구 절차에 따라 만약 무선 베어러가 상위 계층에 의해 상향링크로 PDCP 상태 리포트를 보내도록 구성되었다면, PDCP 상태 리포트를 생성하여 이를 하위 계층에 전송을 위한 첫번째 PDCP PDU로 제출한다.
단말에서 상향링크에 대한 PDCP 데이터 복구가 수행되면, 기지국에서는 해당 PDCP 데이터에 대한 리오더링 기능을 수행해야 한다. 기지국에서 하향링크에 대한 PDCP 데이터 복구가 수행되면, 단말은 해당 PDCP 데이터에 대한 리오더링 기능(reordering function)을 수행해야 한다.
종래 기술에서 PDCP 데이터 복구는 Rel-12 듀얼 커넥티비티에서 규격화된 스플릿 베어러에 대한 베어러 변경이 발생될 때(예를 들어, PDCP 재설정 없이 스플릿 베어러가 스플릿 베어러로 변경될 때 또는 PDCP 재설정 없이 스플릿 베어러가 MCG 베어러로 변경될 때)만 수행된다.
또한 종래기술에서 단말에 스플릿 베어러가 구성될 때 리오더링 기능이 수행되었다. 일 예를 들어, 단말은 듀얼 커넥티비티 상황에서 PDCP 개체가 두 개의 AM RLC 개체와 연관되어 구성되는 경우(the PDCP entity is associated with two AM RLC entities)에 리오더링 기능이 수행되었다. 다른 예를 들어, PDCP 재설정 없이 스플릿 베어러가 스플릿 베어러로 변경될 때에 리오더링 기능이 수행되었다. 또한, 종래에는 단말에 PDCP 재설정 없이 스플릿 베어러가 MCG 베어러로 변경될 때(the PDCP entity is associated with one AM RLC entity after it was, according to the most recent reconfiguration, associated with two AM RLC entities without performing PDCP re-establishment)에 리오더링 기능이 사용되었다.
이에 따라, PDCP는 듀얼 커넥티비 분리 베어러 구성 메시지를 수신하면 바로 리오더링 기능을 시작했으며, 설정된 리오더링 타이머(t-Reordering-r12)를 통해 RLC UM과 같은 리오더링 방법을 적용했다. 즉 리오더링을 위해 모든 저장된 PDCP SDU(s)를 상위계층으로 전달한다.
따라서, 전술한 WLAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우에 PDCP 데이터 복구를 사용한다면, 리오더링 기능을 함께 동작시킬 수 있다. 기지국은 이를 위한 리오더링 타이머를 구성하기 위한 정보(또는 이를 지시하기 위한 정보)를 RRC 메시지에 포함하여 단말에 지시할 수 있다. 기지국은 이를 위한 리오더링 기능을 수행할 수 있다.
다른 방법으로 전술한 리오더링 기능을 사용하지 않을 때, PDCP에서 제공하는 하향링크 데이터 수신 절차를 이용할 수 있다. 전술한 리오더링 기능을 사용하지 않을 때, AM RLC에 매핑되는 무선 베어러에 대해서는, 만약 하위 계층 재설정이 아니라면, PDCP에 의해 수신된 PDCP PDU는 곧바로 상위 계층으로 전달된다. 즉, 전술한 리오더링 기능을 사용하지 않을 때는 RLC가 in-sequence 전달을 보장하기 때문에 PDCP를 리오더링하지 않고 바로 상위 계층으로 전달할 수 있다. 그러나, 전술한 리오더링 기능을 사용하지 않을 때, AM RLC에 매핑되는 무선 베어러에 대해서, 만약 하위 계층 재설정이 발생하면, 핸드오버 등과 같이 PDCP 재설정에 연관되기 때문에 PDCP에서 리오더링을 수행하여 상위 계층으로 전달할 수 있다. 그러나, WLAN 베어러 변경은 RLC 재설정을 수반하지 않기 때문에 종래 기술에 따른 리오더링 기능을 사용하지 않을 때 PDCP에서 제공하는 하향링크 데이터 수신 절차를 이용할 수 없다.
따라서 전술한 WLAN 베어러를 WLAN 베어러로 재구성/수정/변경하는 경우에 PDCP 데이터 복구를 사용한다면, 단말은 전술한 리오더링 기능을 사용하지 않을 때 종래의 PDCP에서 제공하는 하향링크 데이터 수신 절차를 개선하여 리오더링을 하도록 할 수 있다.
일 예를 들어, 만약 PDCP에 의해 수신된 PDCP SDU 또는 PDCP PDU가 WLAN 베어러에서 WLAN 베어러 변경으로 인한 것이라면(또는 WLAN 개체의 해제로 인한 것이라면 또는 WLAN 개체의 특정 동작으로 인한 것이라면) 다음과 같이 리오더링을 하도록 할 수 있다.
- elseif received PDCP SN = Last_Submitted_PDCP_RX_SN + 1 or received PDCP SN = Last_Submitted_PDCP_RX_SN ― Maximum_PDCP_SN:
-- deliver to upper layers in ascending order of the associated COUNT value:
--- all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP PDU;
- set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;
다른 예를 들어, 만약 PDCP에 의해 수신된 PDCP SDU 또는 PDCP PDU가 WLAN 베어러에서 WLAN 베어러 변경으로 인한 것이라면(또는 WLAN 개체의 해제로 인한 것이라면 또는 WLAN 개체의 특정 동작으로 인한 것이라면) 다음과 같이 리오더링을 하도록 할 수 있다.
- deliver to upper layers in ascending order of the associated COUNT value:
-- all stored PDCP SDU(s) with consecutively associated COUNT value(s) starting from the COUNT value associated with the received PDCP PDU;
- set Last_Submitted_PDCP_RX_SN to the PDCP SN of the last PDCP SDU delivered to upper layers;
이상에서 설명한 바와 같이, 본 발명은 단말과 기지국이 특정 무선 베어러를 통해서 데이터를 송수신함에 있어서, 해당 특정 무선 베어러의 베어러 타입 정보 또는 WLAN 네트워크 변경에 따른 재구성 방법을 구체적으로 제시하는 효과가 있다. 특히, E-UTRAN 베어러를 WLAN 베어러로 변경하는 절차 및 WLAN 베어러를 E-UTRAN 베어러로 변경하는 절차에 있어서, PDCP 재설정 없이 수행하여 불필요한 지연 및 데이터 재전송을 억제하는 효과를 제공한다. 아울러, 특정 무선 베어러의 재구성 시에 손실없는 데이터 송수신이 가능하다.
전술한 본 발명의 동작을 모두 수행할 수 있는 단말 및 기지국 장치를 도면을 참조하여 간략하게 다시 설명한다.
도 7은 본 발명의 또 다른 실시예에 따른 단말 구성을 설명하기 위한 도면이다.
도 7을 참조하면, 무선 베어러를 재구성하는 단말(700)은, 기지국으로부터 WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 수신하는 수신부(730) 및 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 PDCP 데이터 복구 절차를 수행하고, PDCP 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 수행하는 제어부(710)를 포함한다.
수신부(730)는 데이터 무선 베어러 타입 변경을 위한 정보를 포함하는 RRC 연결 재구성 메시지를 기지국으로부터 수신할 수 있다. 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는 특정 무선 베어러를 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함할 수 있다. 또는,
한편, 수신부(730)는 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링 수신할 수도 있다. 이 경우, 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는 특정 무선 베어러를 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 WLAN(Wireless Local Area Network) 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함할 수도 있다.
한편, 수신부(730)는 PDCP 개체에서 리오더링 절차를 수행하는 데에 사용되는 리오더링 타이머를 구성하기 위한 정보를 더 수신할 수 있으며, 상위계층 시그널링을 통해서 타이머를 구성하기 위한 정보를 수신할 수 있다.
제어부(710)는 리오더링 절차를 수행함에 있어서, 리오더링 타이머가 만료되면 리오더링을 위해 저장된 모든 PDCP SDU를 연계된 COUNT 값의 올림차순으로 상위계층으로 전달할 수 있다.
또한, 제어부(710)는 PDCP 데이터 복구 절차를 수행함에 있어서, PDCP 상태 리포트를 생성하고, PDCP 상태 리포트를 PDCP PDU(PDCP Protocol Data Unit)에 포함하여 하위계층으로 전달할 수 있다.
또한, 제어부(710)는 WLAN 베어러를 E-UTRAN 베어러로 재구성하는 경우에는 전술한 PDCP 데이터 복구 절차 및 리오더링 절차를 모두 수행하고, E-UTRAN 베어러를 WLAN 베어러로 재구성하는 경우에는 전술한 PDCP 데이터 복구 절차없이 리오더링 절차만 수행할 수도 있다.
이 외에도, 수신부(730)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다. 또한 제어부(710)는 전술한 본 발명을 수행하기에 필요한 기지국이 WLAN 캐리어를 추가하여 단말과 무선 베어러를 추가/수정/해제/변경 등을 위한 구성/재구성에 따른 전반적인 단말의 동작을 제어한다.
송신부(720)는 기지국에 상향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.
도 8은 본 발명의 또 다른 실시예에 따른 기지국 구성을 설명하기 위한 도면이다.
도 8를 참조하면, 기지국(800)은 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 전송하는 송신부(820)와 단말로부터 PDCP(Packet Data Convergence Protocol) 상태 리포트를 수신하는 수신부(830) 및 PDCP 상태 리포트에 기초하여 PDCP 개체에서 전달 성공 여부가 확인되지 않은 PDCP PDU(PDCP Protocol Data Unit) 또는 PDCP SDU(PDCP Service Data Unit)를 재전송하는 제어부(810)를 포함한다.
송신부(820)는 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함한다. 여기서, 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는 특정 무선 베어러를 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함할 수 있다. 또는, 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는 특정 무선 베어러를 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함할 수 있다.
또한, 송신부(820)는 단말이 리오더링 절차를 수행하는 데에 사용되는 리오더링 타이머를 구성하기 위한 정보를 단말로 전송할 수 있다. 이 경우, 리오더링 타이머를 구성하기 위한 정보는 상위계층 시그널링(예를 들어, RRC 메시지)을 통해서 전송될 수 있다.
이 외에도 제어부(810)는 전술한 본 발명을 수행하기에 필요한 기지국이 WLAN 캐리어를 추가하여 단말과 무선 베어러를 추가/수정/해제/변경 등을 위한 구성/재구성에 따른 전반적인 기지국의 동작을 제어한다.
송신부(820)와 수신부(830)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.
전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2015년 04월 02일 한국에 출원한 특허출원번호 제 10-2015-0046974호 및 2016년 03월 29일 한국에 출원한 특허출원번호 제 10-2016-0037352호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (20)

  1. 단말이 무선 베어러를 재구성하는 방법에 있어서,
    기지국으로부터 WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 수신하는 단계;
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 PDCP 데이터 복구 절차를 수행하는 단계; 및
    상기 PDCP 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 수행하는 단계를 포함하는 방법.
  2. 제 1 항에 있어서,
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는,
    상기 특정 무선 베어러를 상기 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 상기 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함하는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 PDCP 데이터 복구 절차를 수행하는 단계는,
    PDCP 상태 리포트를 생성하고, 상기 PDCP 상태 리포트를 PDCP PDU(PDCP Protocol Data Unit)에 포함하여 하위계층으로 전달하는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    상기 상위계층 시그널링은,
    상기 PDCP 개체에서 리오더링 절차를 수행하는 데에 사용되는 리오더링 타이머를 구성하기 위한 정보를 더 포함하는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 리오더링 절차를 수행하는 단계는,
    상기 리오더링 타이머가 만료되면 리오더링을 위해서 저장된 모든 상기 하향링크 데이터의 PDCP SDU(PDCP Service Data Unit)를 상위계층으로 전달하는 것을 특징으로 하는 방법.
  6. 단말이 무선 베어러를 재구성하는 방법에 있어서,
    기지국으로부터 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링 수신하는 단계; 및
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, 상기 PDCP(Packet Data Convergence Protocol) 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 개시하는 단계를 포함하는 방법.
  7. 제 6 항에 있어서,
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는,
    상기 특정 무선 베어러를 상기 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 WLAN(Wireless Local Area Network) 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함하는 것을 특징으로 하는 방법.
  8. 기지국이 단말의 무선 베어러를 재구성하는 방법에 있어서,
    WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 전송하는 단계;
    단말로부터 PDCP(Packet Data Convergence Protocol) 상태 리포트를 수신하는 단계; 및
    상기 PDCP 상태 리포트에 기초하여 PDCP 개체에서 전달 성공 여부가 확인되지 않은 PDCP PDU(PDCP Protocol Data Unit) 또는 PDCP SDU(PDCP Service Data Unit)를 재전송하는 단계를 포함하는 방법.
  9. 제 8 항에 있어서,
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는,
    상기 특정 무선 베어러를 상기 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 상기 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함하는 것을 특징으로 하는 방법.
  10. 제 8 항에 있어서,
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는,
    상기 단말의 리오더링 절차 수행에 사용되는 리오더링 타이머를 구성하기 위한 정보를 더 포함하는 것을 특징으로 하는 방법.
  11. 무선 베어러를 재구성하는 단말에 있어서,
    기지국으로부터 WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 수신하는 수신부; 및
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, PDCP(Packet Data Convergence Protocol) 개체에서 PDCP 데이터 복구 절차를 수행하고, 상기 PDCP 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 수행하는 제어부를 포함하는 단말.
  12. 제 11 항에 있어서,
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는,
    상기 특정 무선 베어러를 상기 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 상기 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함하는 것을 특징으로 하는 단말.
  13. 제 11 항에 있어서,
    상기 PDCP 데이터 복구 절차를 수행하는 상기 제어부는,
    PDCP 상태 리포트를 생성하고, 상기 PDCP 상태 리포트를 PDCP PDU(PDCP Protocol Data Unit)에 포함하여 하위계층으로 전달하는 것을 특징으로 하는 단말.
  14. 제 11 항에 있어서,
    상기 상위계층 시그널링은,
    상기 PDCP 개체에서 리오더링 절차를 수행하는 데에 사용되는 리오더링 타이머를 구성하기 위한 정보를 더 포함하는 것을 특징으로 하는 단말.
  15. 제 11 항에 있어서,
    상기 리오더링 절차를 수행하는 상기 제어부는,
    리오더링 타이머가 만료되면 리오더링을 위해서 저장된 모든 상기 하향링크 데이터의 PDCP SDU(PDCP Service Data Unit)를 상위계층으로 전달하는 것을 특징으로 하는 단말.
  16. 무선 베어러를 재구성하는 단말에 있어서,
    기지국으로부터 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링 수신하는 수신부; 및
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보에 기초하여, 상기 PDCP(Packet Data Convergence Protocol) 개체에서 상기 특정 무선 베어러에 대한 리오더링 절차를 개시하는 제어부를 포함하는 단말.
  17. 제 16 항에 있어서,
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는,
    상기 특정 무선 베어러를 상기 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 WLAN(Wireless Local Area Network) 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함하는 것을 특징으로 하는 단말.
  18. 단말의 무선 베어러를 재구성하는 기지국에 있어서,
    WLAN(Wireless local area network) 무선 자원만을 이용하여 하향링크 데이터를 수신하도록 구성된 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보를 포함하는 상위계층 시그널링을 전송하는 송신부;
    단말로부터 PDCP(Packet Data Convergence Protocol) 상태 리포트를 수신하는 수신부; 및
    상기 PDCP 상태 리포트에 기초하여 PDCP 개체에서 전달 성공 여부가 확인되지 않은 PDCP PDU(PDCP Protocol Data Unit) 또는 PDCP SDU(PDCP Service Data Unit)를 재전송하는 제어부를 포함하는 기지국.
  19. 제 18 항에 있어서,
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는,
    상기 특정 무선 베어러를 상기 WLAN 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입에서 상기 기지국 무선 자원만을 이용하여 하향링크 데이터를 수신하는 무선 베어러 타입으로 변경하는 정보를 포함하는 것을 특징으로 하는 기지국.
  20. 제 18 항에 있어서,
    상기 특정 무선 베어러에 대한 데이터 무선 베어러 타입을 변경하는 정보는,
    상기 단말의 리오더링 절차 수행에 사용되는 리오더링 타이머를 구성하기 위한 정보를 더 포함하는 것을 특징으로 하는 기지국.
PCT/KR2016/003203 2015-04-02 2016-03-29 무선 베어러 재구성 방법 및 그 장치 WO2016159634A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/562,463 US10485042B2 (en) 2015-04-02 2016-03-29 Method for reconfiguring wireless bearer and device thereof
CN201680007805.6A CN107211475B (zh) 2015-04-02 2016-03-29 用于重新配置无线承载的方法及其装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0046974 2015-04-02
KR20150046974 2015-04-02
KR10-2016-0037352 2016-03-29
KR1020160037352A KR101870022B1 (ko) 2015-04-02 2016-03-29 무선 베어러 재구성 방법 및 그 장치

Publications (1)

Publication Number Publication Date
WO2016159634A1 true WO2016159634A1 (ko) 2016-10-06

Family

ID=57006102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003203 WO2016159634A1 (ko) 2015-04-02 2016-03-29 무선 베어러 재구성 방법 및 그 장치

Country Status (1)

Country Link
WO (1) WO2016159634A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171300A1 (zh) * 2017-03-21 2018-09-27 中兴通讯股份有限公司 一种确定无线承载方式的方法及装置
WO2019051775A1 (zh) * 2017-09-15 2019-03-21 Oppo广东移动通信有限公司 一种改变承载类型的方法及装置、计算机存储介质
WO2020009414A1 (ko) * 2018-07-02 2020-01-09 삼성전자 주식회사 이동 통신 시스템에서 통신 방법 및 장치
EP3585087A4 (en) * 2017-03-13 2020-04-15 Huawei Technologies Co., Ltd. DATA PROCESSING METHOD, TERMINAL DEVICE, AND BASE STATION
US11336755B2 (en) 2019-07-08 2022-05-17 Mediatek Singapore Pte. Ltd. PDCP layer active protocol stack implementation to reduce handover interruption

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113686A2 (en) * 2013-01-17 2014-07-24 Interdigital Patent Holdings, Inc. Packet data convergence protocol (pdcp) placement
WO2015020508A1 (ko) * 2013-08-09 2015-02-12 주식회사 팬택 이중연결 시스템에서 멀티 플로우를 고려한 pdcp 재배열 방법 및 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014113686A2 (en) * 2013-01-17 2014-07-24 Interdigital Patent Holdings, Inc. Packet data convergence protocol (pdcp) placement
WO2015020508A1 (ko) * 2013-08-09 2015-02-12 주식회사 팬택 이중연결 시스템에서 멀티 플로우를 고려한 pdcp 재배열 방법 및 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NEC: "Introduction of Dual Connectivity", R2-145424, 3GPP TSG-RAN WG2 MEETING #88, 26 November 2014 (2014-11-26), San Francisco, USA, XP050920822 *
NOKIA NETWORKS ET AL.: "Reconfiguration Cases with Two Bearers", R2-144870, 3GPP TSG-RAN WG2 MEETING #88, 7 November 2014 (2014-11-07), San Francisco, USA, XP050877056 *
NVIDIA: "RRC and PDCP/RLC Interactions For Dual Connectivity", R2-145227, 3GPP TSG-RAN WG2 MEETING #88, 8 November 2014 (2014-11-08), San Francisco, USA, XP050877304 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3585087A4 (en) * 2017-03-13 2020-04-15 Huawei Technologies Co., Ltd. DATA PROCESSING METHOD, TERMINAL DEVICE, AND BASE STATION
US11096184B2 (en) 2017-03-13 2021-08-17 Huawei Technologies Co., Ltd. Data processing method, terminal device, and base station
US11924870B2 (en) 2017-03-13 2024-03-05 Huawei Technologies Co., Ltd. Data processing method, terminal device, and base station using RLC sequence numbers
WO2018171300A1 (zh) * 2017-03-21 2018-09-27 中兴通讯股份有限公司 一种确定无线承载方式的方法及装置
CN108924947A (zh) * 2017-03-21 2018-11-30 中兴通讯股份有限公司 一种确定无线承载方式的方法及装置
JP2020511853A (ja) * 2017-03-21 2020-04-16 中興通訊股▲ふん▼有限公司Zte Corporation 無線ベアラ方式を決定する方法および装置
WO2019051775A1 (zh) * 2017-09-15 2019-03-21 Oppo广东移动通信有限公司 一种改变承载类型的方法及装置、计算机存储介质
WO2020009414A1 (ko) * 2018-07-02 2020-01-09 삼성전자 주식회사 이동 통신 시스템에서 통신 방법 및 장치
US11337125B2 (en) 2018-07-02 2022-05-17 Samsung Electronics Co., Ltd. Communication method and device in mobile communication system
US11336755B2 (en) 2019-07-08 2022-05-17 Mediatek Singapore Pte. Ltd. PDCP layer active protocol stack implementation to reduce handover interruption
TWI770549B (zh) * 2019-07-08 2022-07-11 新加坡商聯發科技(新加坡)私人有限公司 減少行動中斷之方法和使用者設備

Similar Documents

Publication Publication Date Title
WO2019160342A1 (en) Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system
WO2018079998A1 (ko) 무선 통신 시스템에서 핸드오버를 수행하기 위한 방법 및 이를 위한 장치
WO2015115854A1 (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system
WO2020027491A1 (ko) 릴레이 노드에서 데이터를 처리하는 방법 및 그 장치
WO2018079947A1 (ko) 무선 통신 시스템에서 ue 이동성을 지원하기 위한 방법 및 이를 위한 장치
WO2016153130A1 (ko) 무선 통신 시스템에서 단말의 데이터 송수신 방법 및 장치
WO2020122509A1 (ko) 무선 통신 시스템에서 조건부 핸드오버의 실패 타이머 운용방법
WO2018004278A1 (ko) 이중 연결 상태에서 데이터를 송수신하는 방법 및 그 장치
WO2021066511A1 (en) Capability coordination for mobility with daps
WO2019031883A1 (ko) 무선 통신 시스템에서 pdcp 재수립 방법 및 장치
WO2015064972A1 (ko) 이동통신망에서 이중 연결을 구성하기 위한 방법 및 그 장치
EP3100376A1 (en) Method and apparatus for transmitting and receiving data using a plurality of carriers in mobile communication system
WO2017039042A1 (ko) 무선 통신 시스템에서 단말의 데이터 송수신 방법 및 장치
WO2016148357A1 (ko) 무선 통신 시스템에서 단말의 데이터 송수신 방법 및 장치
WO2020022849A1 (en) Method and apparatus for wireless communication of wireless node in wireless communication system
WO2017138769A1 (ko) 무선 통신 시스템에서 단말의 위치 갱신 방법 및 이를 지원하는 장치
WO2018164499A1 (ko) 버퍼 상태 리포트 전송 방법 및 그 장치
WO2017010589A1 (ko) 무선 통신 시스템에서 단말의 데이터 송수신 방법 및 장치
WO2019212249A1 (ko) 릴레이 노드를 통한 데이터 처리 방법 및 그 장치
WO2016159634A1 (ko) 무선 베어러 재구성 방법 및 그 장치
WO2017138768A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2015046780A1 (ko) 업링크 데이터 전송 방법 및 그 장치
WO2014157888A1 (ko) 복수의 기지국과 연결된 상황에서의 핸드오버 방법 및 그 장치
WO2018169242A1 (ko) 제어 메시지 중복수신 방법 및 장치
WO2019059638A1 (ko) 릴레이 노드의 데이터 처리 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562463

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 08/12/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 16773415

Country of ref document: EP

Kind code of ref document: A1