WO2016158670A1 - Composition for vascular regeneration therapy, containing dedifferentiated fat cells as active ingredient - Google Patents
Composition for vascular regeneration therapy, containing dedifferentiated fat cells as active ingredient Download PDFInfo
- Publication number
- WO2016158670A1 WO2016158670A1 PCT/JP2016/059386 JP2016059386W WO2016158670A1 WO 2016158670 A1 WO2016158670 A1 WO 2016158670A1 JP 2016059386 W JP2016059386 W JP 2016059386W WO 2016158670 A1 WO2016158670 A1 WO 2016158670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- human
- dfat
- cells
- active ingredient
- cell
- Prior art date
Links
- 210000001789 adipocyte Anatomy 0.000 title claims abstract description 40
- 239000004480 active ingredient Substances 0.000 title claims abstract description 11
- 238000002560 therapeutic procedure Methods 0.000 title abstract description 12
- 230000002792 vascular Effects 0.000 title abstract description 7
- 230000008929 regeneration Effects 0.000 title abstract description 5
- 238000011069 regeneration method Methods 0.000 title abstract description 5
- 239000000203 mixture Substances 0.000 title description 3
- 230000033115 angiogenesis Effects 0.000 claims description 18
- 230000017531 blood circulation Effects 0.000 claims description 14
- 208000005764 Peripheral Arterial Disease Diseases 0.000 claims description 13
- 208000030831 Peripheral arterial occlusive disease Diseases 0.000 claims description 13
- 208000023589 ischemic disease Diseases 0.000 claims description 10
- 239000003814 drug Substances 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 229940124597 therapeutic agent Drugs 0.000 claims description 4
- 206010048858 Ischaemic cardiomyopathy Diseases 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 abstract description 70
- 238000002054 transplantation Methods 0.000 abstract description 21
- 210000001185 bone marrow Anatomy 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 13
- 210000004369 blood Anatomy 0.000 abstract description 3
- 239000008280 blood Substances 0.000 abstract description 3
- 230000035755 proliferation Effects 0.000 abstract description 3
- 230000009466 transformation Effects 0.000 abstract description 3
- 206010029113 Neovascularisation Diseases 0.000 abstract 1
- 238000000034 method Methods 0.000 description 25
- 239000012228 culture supernatant Substances 0.000 description 23
- 101000728679 Homo sapiens Apoptosis-associated speck-like protein containing a CARD Proteins 0.000 description 20
- 238000011282 treatment Methods 0.000 description 18
- 238000012360 testing method Methods 0.000 description 17
- 101000661600 Homo sapiens Steryl-sulfatase Proteins 0.000 description 16
- 102000050702 human PYCARD Human genes 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- 108090000695 Cytokines Proteins 0.000 description 12
- 102000004127 Cytokines Human genes 0.000 description 12
- 230000002491 angiogenic effect Effects 0.000 description 12
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 12
- 238000010998 test method Methods 0.000 description 12
- 210000000577 adipose tissue Anatomy 0.000 description 11
- 230000000302 ischemic effect Effects 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 108090000623 proteins and genes Proteins 0.000 description 9
- 210000004204 blood vessel Anatomy 0.000 description 8
- 239000002609 medium Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000000250 revascularization Effects 0.000 description 8
- 241000700159 Rattus Species 0.000 description 7
- 108010017842 Telomerase Proteins 0.000 description 7
- 210000003556 vascular endothelial cell Anatomy 0.000 description 7
- 102100031573 Hematopoietic progenitor cell antigen CD34 Human genes 0.000 description 6
- 101000777663 Homo sapiens Hematopoietic progenitor cell antigen CD34 Proteins 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 6
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 210000003141 lower extremity Anatomy 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 210000003205 muscle Anatomy 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 210000000229 preadipocyte Anatomy 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 5
- 102100021669 Stromal cell-derived factor 1 Human genes 0.000 description 5
- 101710088580 Stromal cell-derived factor 1 Proteins 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 201000002818 limb ischemia Diseases 0.000 description 5
- 238000001356 surgical procedure Methods 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 4
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 4
- 102000004889 Interleukin-6 Human genes 0.000 description 4
- 108090001005 Interleukin-6 Proteins 0.000 description 4
- 238000002659 cell therapy Methods 0.000 description 4
- 210000003414 extremity Anatomy 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 230000002062 proliferating effect Effects 0.000 description 4
- 238000011002 quantification Methods 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 102000029816 Collagenase Human genes 0.000 description 3
- 108060005980 Collagenase Proteins 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- 230000007067 DNA methylation Effects 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 3
- 238000002738 Giemsa staining Methods 0.000 description 3
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 3
- 101000898034 Homo sapiens Hepatocyte growth factor Proteins 0.000 description 3
- 101001076408 Homo sapiens Interleukin-6 Proteins 0.000 description 3
- 101000868152 Homo sapiens Son of sevenless homolog 1 Proteins 0.000 description 3
- 102000004890 Interleukin-8 Human genes 0.000 description 3
- 108090001007 Interleukin-8 Proteins 0.000 description 3
- 102000016267 Leptin Human genes 0.000 description 3
- 108010092277 Leptin Proteins 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 229960002424 collagenase Drugs 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000012258 culturing Methods 0.000 description 3
- 230000032459 dedifferentiation Effects 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 3
- 229940039781 leptin Drugs 0.000 description 3
- 230000011987 methylation Effects 0.000 description 3
- 238000007069 methylation reaction Methods 0.000 description 3
- 238000010257 thawing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102000009524 Vascular Endothelial Growth Factor A Human genes 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 238000004115 adherent culture Methods 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 210000001612 chondrocyte Anatomy 0.000 description 2
- 210000001726 chromosome structure Anatomy 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000002316 cosmetic surgery Methods 0.000 description 2
- 229940127089 cytotoxic agent Drugs 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000012744 immunostaining Methods 0.000 description 2
- 238000010255 intramuscular injection Methods 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000002493 microarray Methods 0.000 description 2
- 210000000963 osteoblast Anatomy 0.000 description 2
- -1 pH adjusters Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 208000030613 peripheral artery disease Diseases 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000003498 protein array Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 238000010254 subcutaneous injection Methods 0.000 description 2
- 230000005740 tumor formation Effects 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 1
- 102100022464 5'-nucleotidase Human genes 0.000 description 1
- 206010002383 Angina Pectoris Diseases 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 1
- 108010049990 CD13 Antigens Proteins 0.000 description 1
- 102100032912 CD44 antigen Human genes 0.000 description 1
- 241000725101 Clea Species 0.000 description 1
- 108010024682 Core Binding Factor Alpha 1 Subunit Proteins 0.000 description 1
- 102000015775 Core Binding Factor Alpha 1 Subunit Human genes 0.000 description 1
- 235000005956 Cosmos caudatus Nutrition 0.000 description 1
- 108091029523 CpG island Proteins 0.000 description 1
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102100037241 Endoglin Human genes 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 1
- 102000058061 Glucose Transporter Type 4 Human genes 0.000 description 1
- 102000006354 HLA-DR Antigens Human genes 0.000 description 1
- 108010058597 HLA-DR Antigens Proteins 0.000 description 1
- 101000678236 Homo sapiens 5'-nucleotidase Proteins 0.000 description 1
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 1
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 1
- 101000881679 Homo sapiens Endoglin Proteins 0.000 description 1
- 101000994375 Homo sapiens Integrin alpha-4 Proteins 0.000 description 1
- 101001046686 Homo sapiens Integrin alpha-M Proteins 0.000 description 1
- 101000935043 Homo sapiens Integrin beta-1 Proteins 0.000 description 1
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000800116 Homo sapiens Thy-1 membrane glycoprotein Proteins 0.000 description 1
- 101000711846 Homo sapiens Transcription factor SOX-9 Proteins 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 102100032818 Integrin alpha-4 Human genes 0.000 description 1
- 102100022338 Integrin alpha-M Human genes 0.000 description 1
- 102100025304 Integrin beta-1 Human genes 0.000 description 1
- 108010013563 Lipoprotein Lipase Proteins 0.000 description 1
- 102100022119 Lipoprotein lipase Human genes 0.000 description 1
- 102100039364 Metalloproteinase inhibitor 1 Human genes 0.000 description 1
- 102100026262 Metalloproteinase inhibitor 2 Human genes 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 1
- 101150023417 PPARG gene Proteins 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 208000017442 Retinal disease Diseases 0.000 description 1
- 206010038923 Retinopathy Diseases 0.000 description 1
- 238000011579 SCID mouse model Methods 0.000 description 1
- 108091006300 SLC2A4 Proteins 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 102100033523 Thy-1 membrane glycoprotein Human genes 0.000 description 1
- 108010031374 Tissue Inhibitor of Metalloproteinase-1 Proteins 0.000 description 1
- 108010031372 Tissue Inhibitor of Metalloproteinase-2 Proteins 0.000 description 1
- 102100034204 Transcription factor SOX-9 Human genes 0.000 description 1
- 231100000071 abnormal chromosome number Toxicity 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000011316 allogeneic transplantation Methods 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000015624 blood vessel development Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000002683 hand surgery Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 210000005087 mononuclear cell Anatomy 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 210000003668 pericyte Anatomy 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 239000000902 placebo Substances 0.000 description 1
- 229940068196 placebo Drugs 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- YEENEYXBHNNNGV-XEHWZWQGSA-M sodium;3-acetamido-5-[acetyl(methyl)amino]-2,4,6-triiodobenzoate;(2r,3r,4s,5s,6r)-2-[(2r,3s,4s,5r)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound [Na+].CC(=O)N(C)C1=C(I)C(NC(C)=O)=C(I)C(C([O-])=O)=C1I.O[C@H]1[C@H](O)[C@@H](CO)O[C@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 YEENEYXBHNNNGV-XEHWZWQGSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/35—Fat tissue; Adipocytes; Stromal cells; Connective tissues
Definitions
- the present invention relates to a composition for revascularization therapy.
- the present invention relates to a composition for revascularization therapy comprising dedifferentiated fat cells (DFAT) as an active ingredient.
- DFAT dedifferentiated fat cells
- G-CSF mobilized peripheral blood mononuclear cells (iii) adipose tissue derived basal basal fraction (SVF) cells, (iv) peripheral blood mononuclear cells, (v) G-CSF mobilized CD34 positive cells, Similar angiogenesis therapy using many autologous cells such as vi) bone marrow-derived CD133 positive cells, (vii) cultured bone marrow mesenchymal stem cells (MSC) (viii) cultured adipose tissue-derived stem cells (ASC) has been performed.
- MSC bone marrow mesenchymal stem cells
- ASC cultured adipose tissue-derived stem cells
- the cells of (i) to (vi) are not cultured, but a large amount of tissue is required to obtain the required number of cells, which is highly invasive to patients. For this reason, the number of treatments is usually limited to only one, except that the invasiveness associated with collection is relatively low (iv).
- the cells (i) to (iv) are a diverse cell population, the transplantation effect and safety are not constant.
- the cells of (v) and (vi) can be improved in cell uniformity by performing a sorting operation using a stem cell marker antibody, but the complexity and reduction in preparation efficiency associated with antibody selection and preparation are reduced. There is a problem that the cost becomes high.
- the cells of (vii) are used after collecting dozens of ml of bone marrow fluid, adherently cultured and proliferated, and the cells of (viii) are subjected to enzyme treatment of adipose tissue and adherently cultured and proliferated in the same manner as (vii). Use from. Therefore, both (vii) and (viii) cells have the merit that they can be prepared in large quantities from a relatively small amount of tissue, but this method is a method of culturing and proliferating stem cells present in minute amounts in adult tissues. For this reason, contamination with other cells is unavoidable, and it is necessary to repeat the subculture several times in order to obtain the number of cells necessary for treatment. The number of treatments is usually only once.
- rat adipose tissue-derived progenitor cells and rat adipose tissue-derived mesenchymal stem cells are effective for angiogenesis (Patent Documents 1 and 2).
- the present inventors have succeeded for the first time in establishing dedifferentiated adipocytes (DFAT) as preadipocytes by inducing dedifferentiation of mature adipocytes derived from adipose tissue of non-human animals such as mice (patents) Reference 3), it has been shown that by inducing differentiation of DFAT, functions of osteoblasts, myoblasts, chondrocytes, nerve cells and the like can be obtained (Patent Document 4).
- DFAT dedifferentiated adipocytes
- Non-Patent Documents 1 to 3 mouse and rat DFAT has angiogenic ability.
- DFAT in mice and rats is difficult to increase to the number required for transplantation because of its low growth ability after subculture, and since transformation (immortalization) occurs by subculture, it is tumorigenic. The possibility increases and it cannot be safely transplanted. For these reasons, it has been considered that the same phenomenon occurs in human DFAT as in mouse and rat DFAT and is not suitable for treatment.
- the present invention is a cell for revascularization therapy that exhibits an excellent blood flow improvement effect compared to bone marrow MSC, ASC, etc., which are conventional treatment cells, and it is easy to obtain a sufficient amount necessary for transplantation.
- An object of the present invention is to provide a cell for revascularization therapy having a stable quality.
- a blood flow improving agent comprising human dedifferentiated adipocytes (human DFAT) as an active ingredient.
- An angiogenesis promoter containing human dedifferentiated adipocytes (human DFAT) as an active ingredient.
- a therapeutic agent for ischemic disease comprising human dedifferentiated fat cells (human DFAT) as an active ingredient.
- human dedifferentiated adipocytes prepared from human mature adipocytes have excellent angiogenic potential, and are effective cells for cell therapy for ischemic diseases such as peripheral artery disease (PAD). Clarified that it can be a source. Therefore, the present invention has the following effects. (1) Large-scale cell preparation facilities, growth factors, and antibody selection for increasing purity are not necessary. Moreover, since a large amount can be adjusted in a short culture period, the preparation cost can be kept low. (2) Regenerative medical donor cells with high purity can be efficiently collected from a small amount of adipose tissue that can be easily collected, and the obtained cells have high angiogenic ability. (3) Multiple treatments can be performed by collecting a single tissue, and treatment that exhibits a certain level of effectiveness without being affected by donor age or underlying disease is possible. (4) Unlike existing cell sources, it can show long-term efficacy against PAD.
- the karyotype analysis result of human DFAT is shown.
- A Photograph of chromosome structure by Giemsa staining.
- B The table
- the comprehensive analysis result of the cytokine secreted in a human DFAT culture supernatant is shown.
- Human DFAT (hDFAT), human ASC (hASC), human preadipocyte (hPreadipocyte), human fibroblast (hFibroblast), secreted cytokine (HGF, SDF-1, The quantification results of MCP-1, IL-6, VEGF, and Leptin) are shown. Figures in parentheses indicate donor age.
- the examination result of the angiogenesis ability of a human DFAT culture supernatant is shown.
- A Photograph showing the proliferation of vascular endothelial cells by human DFAT culture supernatant.
- B A graph showing the total length (total lumen length) and total area (total lumen area) of the vascular lumen formed in the well by the human DFAT culture supernatant and human bone marrow MMC culture supernatant.
- the examination result of the angiogenesis ability of the human DFAT culture supernatant by the difference in donor age is shown.
- Donors are 2-year-old male (h-DFAT2yM), 29-year-old male (h-DFAT29yM), 56-year-old female (h-dFAT56yF), 75-year-old female (h-DFAT75yF), 82-year-old female (h-DFAT82yF).
- the comparative examination result of the angiogenesis ability of the human DFAT culture supernatant (hDFAT) and human ASC culture supernatant (hASC) derived from the same donor is shown.
- A Photograph showing histological observation results.
- the effect of human DFAT transplantation in an immunodeficient mouse lower limb ischemia model is shown.
- (B) The graph which shows the ischemic rate of the ischemic limb with respect to a mouse
- the quantification result of secretory cytokine (HGF) in the culture supernatant of human DFAT (hDFAT) and human ASC (hASC) is shown.
- the quantification result of secretory cytokine (VEGF) in the culture supernatant of human DFAT (hDFAT) and human ASC (hASC) is shown.
- Human DFAT The method for adjusting human DFAT in the present invention may be performed with reference to, for example, Japanese Patent Application Laid-Open No. 2000-83656 made by the present inventors. That is, after adipose tissue such as human subcutaneous or internal organs is treated with collagenase, a single fraction consisting only of monocystic adipocytes is collected by filtration with a mesh having a diameter of 100 to 200 ⁇ m. Human dedifferentiated adipocytes (human DFAT) can be obtained by further subculturing fibroblast-like adipocytes produced by ceiling culture of these monocystic adipocytes.
- human DFAT can also be obtained by a method of adjusting cells that do not have lipid droplets originating from mature adipocytes by culturing mature adipocytes by methods other than the above-described ceiling culture. Confirmation that the obtained cells are human DFAT can be determined, for example, based on whether or not they have the following characteristics specific to human DFAT. Human DFAT has adhesiveness to plastic and exhibits multipotency into osteoblasts, adipocytes, chondrocytes and smooth muscle cells in vitro.
- human DFAT has lost expression of marker genes of mature adipocytes such as lipoprotein lipase and GLUT4, but expresses early differentiation marker genes of fat, bone and cartilage such as PPARg, RUNX2, and SOX9. Furthermore, human DFAT had a high cell proliferation ability, and the cell doubling time was about 65 hours for the second passage cell and about 48 hours for the tenth passage.
- Human DFAT can be obtained from 10 ml of aspirated fat or 1 g of adipose tissue by the above-mentioned preparation method, and 10 8 cells can be obtained in primary culture for about 2 weeks. This is about 25 times the preparation efficiency of cultured ASC. Therefore, it is possible to obtain cells of the order of 10 9 by subculturing 2-3 times. Since the number of cells used for a single cell therapy is about 10 8 , treatment can be performed about 10 times if the obtained cells are subdivided and cryopreserved by collecting adipose tissue once (about 10 ml). I know that there is.
- human DFAT can obtain homogeneous cells from primary culture.
- Primary cultured ASC contains smooth muscle cells (18.6%), vascular endothelial cells (2.7%) and monocytes (13.3%).
- the contamination rate of these cells in primary cultured human DFAT is It was very low as 0.1% or less.
- human DFAT is not only subcultured but also primary culture cells are CD34 negative, and maintain stable traits compared to ASC that is CD34 positive at the start of culture but whose expression is reduced by subculture (See FIG. 9). When isolating mature adipocytes, if collagenase treatment and filtration are not performed properly and adequately, cells other than mature adipocytes attach to mature adipocytes and proliferate in ceiling culture.
- CD34 positive cells may increase. It was also revealed that human DFAT can be prepared without being affected by donor age or underlying disease. These characteristics are thought to contribute to eliminating individual differences in performance as therapeutic cells and reducing treatment refractory cases (standardization of therapeutic cells). Furthermore, human DFAT showed a significantly higher blood flow improvement effect than peripheral blood mononuclear cells and fibroblasts in transplantation experiments to lower limb ischemia model animals described later in Examples.
- angiogenesis refers to a phenomenon in which new blood vessels are formed from existing blood vessels.
- physiological blood vessel development in the embryonic period, as well as cancer and diabetic properties It also occurs in pathological conditions such as retinopathy.
- angiogenesis and vascular regeneration are used synonymously unless otherwise specified.
- revascularization or therapeutic angiogenesis
- ischemic diseases such as peripheral arterial disease (PAD), angina pectoris, and myocardial infarction.
- PED peripheral arterial disease
- the performance of cells having revascularization ability includes the expression and secretion amount of angiogenesis-promoting factors such as HGF, VEGF-A, FGF-2, SDF-1, and leptin, and vascular endothelial cells and pericytes that are vascular constituent cells. It can be confirmed by the ability to differentiate into.
- DFAT in-house DFAT
- DFAT in-house DFAT
- a method of improving the blood flow by thawing this periodically and injecting it into an ischemic site (muscle) can be mentioned.
- a DFAT cell bank for allogeneic transplantation using adipose tissue discarded by surgery or the like it is possible to construct a DFAT cell bank for allogeneic transplantation using adipose tissue discarded by surgery or the like.
- a therapeutic model is assumed in which cryopreserved DFAT fully matched with HLA is thawed and injected into the patient's ischemic site.
- the present invention relates to a drug for regenerating blood vessels and repairing damaged tissue caused by ischemia, comprising human DFAT of the present invention as an active ingredient.
- the drug of the present invention may be human DFAT itself, or a pharmaceutically acceptable carrier such as a preservative or stabilizer may be added.
- “Pharmaceutically acceptable” means a pharmaceutically acceptable material that itself does not have the above-mentioned activity and can be administered together with the above-mentioned drug.
- parenteral administration includes parenteral administration.
- parenteral administration include administration in the form of injections, and examples of injections include subcutaneous injections, intramuscular injections, intraperitoneal injections, and the like.
- parenteral administration includes administration in the form of injections, and examples of injections include subcutaneous injections, intramuscular injections, intraperitoneal injections, and the like.
- local administration may be performed targeting a part of a human body (one tissue such as an organ), or the cells of the present invention may be applied to an entire organism by administration into a blood vessel. May be circulated. Moreover, you may administer simultaneously to the target of several places.
- the cells of the present invention can be locally administered to a region where treatment is desired. For example, it can be administered by local injection during surgery or by use of a catheter.
- pH adjusters, buffers, stabilizers, preservatives, etc. are added as necessary, and subcutaneous, intramuscular and intravenous injections are prepared by conventional methods.
- the dose varies depending on the patient's age, sex, weight and symptoms, therapeutic effect, administration method, treatment time, type of active ingredient contained in the cells, etc., and is not particularly limited.
- the cells of the invention may be administered as part of a pharmaceutical composition with at least one known chemotherapeutic agent. In one embodiment, the cells of the invention and the known chemotherapeutic agent may be administered substantially simultaneously. It is also possible to administer the cell of the present invention to a part of a human removed from the human and return the part of the human to the removed human or other human.
- Example 1 Character analysis of human DFAT (1) Karyotype analysis (1-1) Test method (i) Preparation of human DFAT This was carried out with reference to Japanese Patent Application Laid-Open No. 2000-83656 made by the present inventors. . That is, a human adipose subcutaneous human tissue was treated with collagenase, and then filtered with a mesh having a diameter of 100 to 200 ⁇ m to collect a single fraction consisting only of monocystic adipocytes. Human dedifferentiated adipocytes (human DFAT) were prepared by subculturing fibroblast-like adipocytes produced by ceiling culture of these monocystic adipocytes.
- Example 2 Examination of angiogenic ability of human DFAT Analysis of DFAT-secreted cytokine (1) Protein array analysis of expressed cytokine (1-1) Test method (i) Preparation method of human ASC Precipitation fraction of human DFAT obtained in the same manner as in Example 1 (stromal vascular fraction) SVF cells were collected from the fractional basal fraction (SVF) and cultured for about 2 weeks in a culture flask to prepare human ASC. The method for adjusting human ASC is the same in the following test examples.
- hPreadipocyte Human preadipocytes purchased from DS Pharma Medical Co., Ltd. were prepared by thawing, washing and adherent culture. As the medium, DMEM containing 10% FBS was used. The method for preparing human preadipocytes is the same in the following test examples.
- hBM-MSC Human bone marrow MSC
- DMEM containing 10% FBS was used.
- the method for adjusting human bone marrow MSC is the same in the following test examples.
- HGF and SDF-1 were found to be characteristically higher in expression than preadipocyte, human ASC, and human bone marrow MSC (FIG. 4).
- Angiogenic ability of human DFAT culture supernatant in vitro (1) Comparison of human DFAT and human bone marrow MSC (hBM-MSC) (1-1) Test method Angiogenesis kit (KZ-1000, KURABO, Osaka, Japan) The in vitro angiogenesis ability of the human DFAT culture supernatant was examined.
- This kit is a design in which human fibroblasts and human vascular endothelial cells are co-cultured in advance in a 24-well plate, and luminal formation of vascular endothelial cells is induced by culturing in a dedicated angiogenic medium. When a sample medium containing a test substance is added to this and cultured, a difference in lumen forming ability occurs.
- the angiogenesis ability was measured by inducing tube formation according to the protocol of this kit, and tube formation was visualized by immunostaining using a mouse anti-human CD31 antibody.
- the DFAT culture supernatant and human bone marrow MSC culture supernatant were prepared by the above method and mixed 1: 1 with the attached angiogenesis medium to obtain a sample medium.
- Test Results The culture supernatant of human DFAT markedly promoted the proliferation and lumen formation of vascular endothelial cells.
- the angiogenic potential of DFAT was equal to or greater than that of bone marrow MSC (FIG. 5).
- SCID immunodeficient mice
- the cell therapy method with respect to ischemic diseases can be provided by utilizing the human dedifferentiated fat cell (human DFAT) prepared from a human mature fat cell. .
- human DFAT human dedifferentiated fat cell
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Developmental Biology & Embryology (AREA)
- Immunology (AREA)
- Virology (AREA)
- Zoology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention addresses the problem of providing a cell for use in a vascular regeneration therapy, which has a superior blood flow-improving effect compared with a bone marrow-derived MSC, an ASC or the like that is a conventional cell for use in a therapy, and which can be obtained easily in an amount sufficient enough for transplantation, and which has stable quality.
It is found that a human DFAT has a high neovascularization ability, can exhibit a high proliferation ability after being subcultured and therefore can be produced easily in an amount needed for transplantation, and does not undergo transformation. Therefore, it is found for the first time that a human DFAT is effective for a vascular regeneration therapy for a human body. These findings lead to the accomplishment of the present invention.
That is, the present invention provides a blood flow-improving agent containing human dedifferentiated fat cells (human DFAT) as an active ingredient.
Description
本発明は、血管再生療法用組成物に関する。特に脱分化脂肪細胞(dedifferentiated fat cell:DFAT)を有効成分とする血管再生療法用組成物に関する。
The present invention relates to a composition for revascularization therapy. In particular, the present invention relates to a composition for revascularization therapy comprising dedifferentiated fat cells (DFAT) as an active ingredient.
従来、薬物療法や外科的療法が適応とならない難治性末梢動脈疾患(以下、単にPADということがある)に対して、(i)自己骨髄単核球を虚血筋肉内投与することによる血管新生療法が行われ、その有効性が確認されてきた(TACTスタディ)。その後、(ii)G-CSF動員末梢血単核球、(iii)脂肪組織由来stromal vascular fraction(SVF)細胞、(iv)末梢血単核球、(v)G-CSF動員CD34陽性細胞、(vi)骨髄由来CD133陽性細胞、(vii)培養骨髄間葉系幹細胞(MSC)(viii)培養脂肪組織由来幹細胞(ASC)など多くの自己細胞を用いた同様の血管新生療法が行われている。
上記(i)~(viii)のうち、(i)~(vi)の細胞は培養を行わないが、必要な細胞数を得るために多量の組織採取が必要となり患者に与える侵襲性が高い。このため採取に伴う侵襲性が比較的低い(iv)を除いて治療回数は通常1回のみに限られる。
また、(i)~(iv)の細胞は、雑多な細胞集団であるため、移植効果や安全性が一定ではない。
また、(v)、(vi)の細胞は、幹細胞マーカー抗体を利用して選別操作を行うことにより細胞の均一性を高めることができるが、抗体選別に伴う煩雑性や調製効率の低下、調製コストが高くなるといった問題がある。
(vii)の細胞は骨髄液を数10ml採取し、付着培養し増殖させてから使用し、(viii)の細胞は、脂肪組織を酵素処理し、(vii)と同様に付着培養し増殖させてから使用する。そのため、(vii)、(viii)の細胞は共に、比較的少量の組織から大量調製が可能であるというメリットがあるが、この方法は成体組織に微量に存在する幹細胞を培養・増殖させる方法であるため、他細胞の混入が避けられず、治療に必要な細胞数を得るために継代培養を何回か繰り返す必要がある。治療回数は通常1回のみである。また増殖能など細胞の性能に個体差があり、年齢・基礎疾患による影響を受けやすいというデメリットがある。
(i)~(viii)の細胞の共通する問題点は、治療コストがかかる割に、性能に個体差があり、必要細胞数が得られない症例や治療不応例(non-responder)が存在すること、患者に対する侵襲性を考慮すると通常1回の治療にとどまること、である。現時点で、これらの細胞を用いた難治性末梢動脈疾患(PAD)に対する臨床試験は多数行われているが、プラセボ・コントロール試験で有意な効果を示した細胞はまだない。
また、このほかにも、ラットの脂肪組織由来前駆細胞やラットの脂肪組織由来間葉系幹細胞が血管新生に有効であることが開示されている(特許文献1,2)。
本発明者らは、マウス等のヒト以外の動物の脂肪組織由来の成熟脂肪細胞の脱分化を誘導することで前駆脂肪細胞として脱分化脂肪細胞(DFAT)を樹立することに初めて成功し(特許文献3)、DFATを分化誘導することにより、骨芽細胞、筋芽細胞、軟骨細胞、神経細胞等の機能を獲得できることを示してきた(特許文献4)。
また、本発明者らは、マウスおよびラットのDFATが血管新生能を有することについても明らかにしてきた(非特許文献1~3)。しかし、マウスやラットのDFATは継代培養後の増殖能が低いことから移植に必要な数まで増やすことが困難であり、継代培養により形質転換(不死化)が起こることから造腫瘍性の可能性が高まり安全に移植できない。これらの理由から、ヒトDFATにおいてもマウスやラットのDFATと同様の現象が起こり、治療には適さないと考えられてきた。 Conventionally, for refractory peripheral arterial disease (hereinafter sometimes simply referred to as PAD) to which pharmacotherapy or surgical therapy is not applicable, (i) Angiogenesis by administering autologous bone marrow mononuclear cells into ischemic muscle Therapy has been performed and its effectiveness has been confirmed (TACT study). Then, (ii) G-CSF mobilized peripheral blood mononuclear cells, (iii) adipose tissue derived basal basal fraction (SVF) cells, (iv) peripheral blood mononuclear cells, (v) G-CSF mobilized CD34 positive cells, Similar angiogenesis therapy using many autologous cells such as vi) bone marrow-derived CD133 positive cells, (vii) cultured bone marrow mesenchymal stem cells (MSC) (viii) cultured adipose tissue-derived stem cells (ASC) has been performed.
Of the above (i) to (viii), the cells of (i) to (vi) are not cultured, but a large amount of tissue is required to obtain the required number of cells, which is highly invasive to patients. For this reason, the number of treatments is usually limited to only one, except that the invasiveness associated with collection is relatively low (iv).
In addition, since the cells (i) to (iv) are a diverse cell population, the transplantation effect and safety are not constant.
The cells of (v) and (vi) can be improved in cell uniformity by performing a sorting operation using a stem cell marker antibody, but the complexity and reduction in preparation efficiency associated with antibody selection and preparation are reduced. There is a problem that the cost becomes high.
The cells of (vii) are used after collecting dozens of ml of bone marrow fluid, adherently cultured and proliferated, and the cells of (viii) are subjected to enzyme treatment of adipose tissue and adherently cultured and proliferated in the same manner as (vii). Use from. Therefore, both (vii) and (viii) cells have the merit that they can be prepared in large quantities from a relatively small amount of tissue, but this method is a method of culturing and proliferating stem cells present in minute amounts in adult tissues. For this reason, contamination with other cells is unavoidable, and it is necessary to repeat the subculture several times in order to obtain the number of cells necessary for treatment. The number of treatments is usually only once. In addition, there is a demerit that there are individual differences in cell performance such as proliferative ability and it is easily affected by age and underlying disease.
The common problem of cells (i) to (viii) is that there are cases in which the required number of cells cannot be obtained and there are non-responders despite the high cost of treatment, despite the cost of treatment. In view of the invasiveness to the patient, it is usually only one treatment. At present, many clinical trials for refractory peripheral arterial disease (PAD) using these cells have been carried out, but no cells have yet shown significant effects in placebo-controlled trials.
In addition, it is disclosed that rat adipose tissue-derived progenitor cells and rat adipose tissue-derived mesenchymal stem cells are effective for angiogenesis (Patent Documents 1 and 2).
The present inventors have succeeded for the first time in establishing dedifferentiated adipocytes (DFAT) as preadipocytes by inducing dedifferentiation of mature adipocytes derived from adipose tissue of non-human animals such as mice (patents) Reference 3), it has been shown that by inducing differentiation of DFAT, functions of osteoblasts, myoblasts, chondrocytes, nerve cells and the like can be obtained (Patent Document 4).
The present inventors have also clarified that mouse and rat DFAT has angiogenic ability (Non-PatentDocuments 1 to 3). However, DFAT in mice and rats is difficult to increase to the number required for transplantation because of its low growth ability after subculture, and since transformation (immortalization) occurs by subculture, it is tumorigenic. The possibility increases and it cannot be safely transplanted. For these reasons, it has been considered that the same phenomenon occurs in human DFAT as in mouse and rat DFAT and is not suitable for treatment.
上記(i)~(viii)のうち、(i)~(vi)の細胞は培養を行わないが、必要な細胞数を得るために多量の組織採取が必要となり患者に与える侵襲性が高い。このため採取に伴う侵襲性が比較的低い(iv)を除いて治療回数は通常1回のみに限られる。
また、(i)~(iv)の細胞は、雑多な細胞集団であるため、移植効果や安全性が一定ではない。
また、(v)、(vi)の細胞は、幹細胞マーカー抗体を利用して選別操作を行うことにより細胞の均一性を高めることができるが、抗体選別に伴う煩雑性や調製効率の低下、調製コストが高くなるといった問題がある。
(vii)の細胞は骨髄液を数10ml採取し、付着培養し増殖させてから使用し、(viii)の細胞は、脂肪組織を酵素処理し、(vii)と同様に付着培養し増殖させてから使用する。そのため、(vii)、(viii)の細胞は共に、比較的少量の組織から大量調製が可能であるというメリットがあるが、この方法は成体組織に微量に存在する幹細胞を培養・増殖させる方法であるため、他細胞の混入が避けられず、治療に必要な細胞数を得るために継代培養を何回か繰り返す必要がある。治療回数は通常1回のみである。また増殖能など細胞の性能に個体差があり、年齢・基礎疾患による影響を受けやすいというデメリットがある。
(i)~(viii)の細胞の共通する問題点は、治療コストがかかる割に、性能に個体差があり、必要細胞数が得られない症例や治療不応例(non-responder)が存在すること、患者に対する侵襲性を考慮すると通常1回の治療にとどまること、である。現時点で、これらの細胞を用いた難治性末梢動脈疾患(PAD)に対する臨床試験は多数行われているが、プラセボ・コントロール試験で有意な効果を示した細胞はまだない。
また、このほかにも、ラットの脂肪組織由来前駆細胞やラットの脂肪組織由来間葉系幹細胞が血管新生に有効であることが開示されている(特許文献1,2)。
本発明者らは、マウス等のヒト以外の動物の脂肪組織由来の成熟脂肪細胞の脱分化を誘導することで前駆脂肪細胞として脱分化脂肪細胞(DFAT)を樹立することに初めて成功し(特許文献3)、DFATを分化誘導することにより、骨芽細胞、筋芽細胞、軟骨細胞、神経細胞等の機能を獲得できることを示してきた(特許文献4)。
また、本発明者らは、マウスおよびラットのDFATが血管新生能を有することについても明らかにしてきた(非特許文献1~3)。しかし、マウスやラットのDFATは継代培養後の増殖能が低いことから移植に必要な数まで増やすことが困難であり、継代培養により形質転換(不死化)が起こることから造腫瘍性の可能性が高まり安全に移植できない。これらの理由から、ヒトDFATにおいてもマウスやラットのDFATと同様の現象が起こり、治療には適さないと考えられてきた。 Conventionally, for refractory peripheral arterial disease (hereinafter sometimes simply referred to as PAD) to which pharmacotherapy or surgical therapy is not applicable, (i) Angiogenesis by administering autologous bone marrow mononuclear cells into ischemic muscle Therapy has been performed and its effectiveness has been confirmed (TACT study). Then, (ii) G-CSF mobilized peripheral blood mononuclear cells, (iii) adipose tissue derived basal basal fraction (SVF) cells, (iv) peripheral blood mononuclear cells, (v) G-CSF mobilized CD34 positive cells, Similar angiogenesis therapy using many autologous cells such as vi) bone marrow-derived CD133 positive cells, (vii) cultured bone marrow mesenchymal stem cells (MSC) (viii) cultured adipose tissue-derived stem cells (ASC) has been performed.
Of the above (i) to (viii), the cells of (i) to (vi) are not cultured, but a large amount of tissue is required to obtain the required number of cells, which is highly invasive to patients. For this reason, the number of treatments is usually limited to only one, except that the invasiveness associated with collection is relatively low (iv).
In addition, since the cells (i) to (iv) are a diverse cell population, the transplantation effect and safety are not constant.
The cells of (v) and (vi) can be improved in cell uniformity by performing a sorting operation using a stem cell marker antibody, but the complexity and reduction in preparation efficiency associated with antibody selection and preparation are reduced. There is a problem that the cost becomes high.
The cells of (vii) are used after collecting dozens of ml of bone marrow fluid, adherently cultured and proliferated, and the cells of (viii) are subjected to enzyme treatment of adipose tissue and adherently cultured and proliferated in the same manner as (vii). Use from. Therefore, both (vii) and (viii) cells have the merit that they can be prepared in large quantities from a relatively small amount of tissue, but this method is a method of culturing and proliferating stem cells present in minute amounts in adult tissues. For this reason, contamination with other cells is unavoidable, and it is necessary to repeat the subculture several times in order to obtain the number of cells necessary for treatment. The number of treatments is usually only once. In addition, there is a demerit that there are individual differences in cell performance such as proliferative ability and it is easily affected by age and underlying disease.
The common problem of cells (i) to (viii) is that there are cases in which the required number of cells cannot be obtained and there are non-responders despite the high cost of treatment, despite the cost of treatment. In view of the invasiveness to the patient, it is usually only one treatment. At present, many clinical trials for refractory peripheral arterial disease (PAD) using these cells have been carried out, but no cells have yet shown significant effects in placebo-controlled trials.
In addition, it is disclosed that rat adipose tissue-derived progenitor cells and rat adipose tissue-derived mesenchymal stem cells are effective for angiogenesis (
The present inventors have succeeded for the first time in establishing dedifferentiated adipocytes (DFAT) as preadipocytes by inducing dedifferentiation of mature adipocytes derived from adipose tissue of non-human animals such as mice (patents) Reference 3), it has been shown that by inducing differentiation of DFAT, functions of osteoblasts, myoblasts, chondrocytes, nerve cells and the like can be obtained (Patent Document 4).
The present inventors have also clarified that mouse and rat DFAT has angiogenic ability (Non-Patent
本発明は、従来技術の治療用細胞である骨髄MSCやASC等に比べ、優れた血流改善作用を示す血管再生療法用細胞であって、かつ移植に必要な十分量を取得することが容易であり、安定した品質の前記血管再生療法用細胞を提供することを目的とする。
The present invention is a cell for revascularization therapy that exhibits an excellent blood flow improvement effect compared to bone marrow MSC, ASC, etc., which are conventional treatment cells, and it is easy to obtain a sufficient amount necessary for transplantation. An object of the present invention is to provide a cell for revascularization therapy having a stable quality.
マウスやラットのDFATは、血管新生能はあっても、上述の理由により、実際の治療には適さないことからヒトDFATについても同様であろうと考えられてきた。しかし、本発明者らは意外にも、ヒトDFATが高い血管新生能を有するのみならず、マウスやラットのDFATとは異なり、継代培養後の増殖能が高く移植に必要な細胞数を容易に獲得できること、および形質転換も起こらないことを見出した。そして、これによりヒトDFATがヒトの血管再生治療にも有効であることを初めて明らかにした。
すなわち、本発明は以下の構成を有する。
(1)ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする血流改善剤。
(2)ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする血管新生促進剤。
(3)ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする虚血性疾患治療剤。
(4)虚血性疾患が末梢動脈疾患(PAD)または虚血性心筋症である、前記(3)に記載の虚血性疾患治療剤。
(5)ヒト脱分化脂肪細胞(ヒトDFAT)が、1~4代継代培養されたヒト脱分化脂肪細胞(ヒトDFAT)である、前記(1)~(4)のいずれかに記載の剤。 Although DFAT in mice and rats has angiogenic potential, it has been considered that the same applies to human DFAT because it is not suitable for actual treatment for the reasons described above. However, the present inventors surprisingly not only have a high angiogenic ability of human DFAT, but also have a high proliferative ability after subculture, and easily the number of cells required for transplantation, unlike mouse and rat DFAT. And found that no transformation occurred. And this revealed for the first time that human DFAT is also effective for human blood vessel regeneration therapy.
That is, the present invention has the following configuration.
(1) A blood flow improving agent comprising human dedifferentiated adipocytes (human DFAT) as an active ingredient.
(2) An angiogenesis promoter containing human dedifferentiated adipocytes (human DFAT) as an active ingredient.
(3) A therapeutic agent for ischemic disease comprising human dedifferentiated fat cells (human DFAT) as an active ingredient.
(4) The therapeutic agent for ischemic disease according to (3), wherein the ischemic disease is peripheral arterial disease (PAD) or ischemic cardiomyopathy.
(5) The agent according to any one of (1) to (4) above, wherein the human dedifferentiated adipocyte (human DFAT) is a human dedifferentiated adipocyte (human DFAT) subcultured for 1 to 4 passages .
すなわち、本発明は以下の構成を有する。
(1)ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする血流改善剤。
(2)ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする血管新生促進剤。
(3)ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする虚血性疾患治療剤。
(4)虚血性疾患が末梢動脈疾患(PAD)または虚血性心筋症である、前記(3)に記載の虚血性疾患治療剤。
(5)ヒト脱分化脂肪細胞(ヒトDFAT)が、1~4代継代培養されたヒト脱分化脂肪細胞(ヒトDFAT)である、前記(1)~(4)のいずれかに記載の剤。 Although DFAT in mice and rats has angiogenic potential, it has been considered that the same applies to human DFAT because it is not suitable for actual treatment for the reasons described above. However, the present inventors surprisingly not only have a high angiogenic ability of human DFAT, but also have a high proliferative ability after subculture, and easily the number of cells required for transplantation, unlike mouse and rat DFAT. And found that no transformation occurred. And this revealed for the first time that human DFAT is also effective for human blood vessel regeneration therapy.
That is, the present invention has the following configuration.
(1) A blood flow improving agent comprising human dedifferentiated adipocytes (human DFAT) as an active ingredient.
(2) An angiogenesis promoter containing human dedifferentiated adipocytes (human DFAT) as an active ingredient.
(3) A therapeutic agent for ischemic disease comprising human dedifferentiated fat cells (human DFAT) as an active ingredient.
(4) The therapeutic agent for ischemic disease according to (3), wherein the ischemic disease is peripheral arterial disease (PAD) or ischemic cardiomyopathy.
(5) The agent according to any one of (1) to (4) above, wherein the human dedifferentiated adipocyte (human DFAT) is a human dedifferentiated adipocyte (human DFAT) subcultured for 1 to 4 passages .
本発明は、ヒト成熟脂肪細胞から調製されるヒト脱分化脂肪細胞(ヒトDFAT)が、優れた血管新生能を有し、末梢動脈疾患(PAD)などの虚血性疾患に対する細胞治療の有効な細胞ソースとなり得ることを明らかにした。したがって、本発明は、以下の効果を有する。
(1)大規模な細胞調製施設や、増殖因子、純度を高めるための抗体選別などが必要ない。また短い培養期間で大量調整が可能であるため、調製コストが低くおさえることができる。
(2)採取が容易な少量の脂肪組織から純度の高い再生医療用ドナー細胞を効率よく採取でき、得られた細胞は高い血管新生能を有する。
(3)一回の組織採取により複数回の治療が可能となり、ドナー年齢や基礎疾患に影響されずに一定の有効性を示す治療が可能となる。
(4)既存の細胞ソースと異なり、PADに対して長期有効性を示すことが可能である。 In the present invention, human dedifferentiated adipocytes (human DFAT) prepared from human mature adipocytes have excellent angiogenic potential, and are effective cells for cell therapy for ischemic diseases such as peripheral artery disease (PAD). Clarified that it can be a source. Therefore, the present invention has the following effects.
(1) Large-scale cell preparation facilities, growth factors, and antibody selection for increasing purity are not necessary. Moreover, since a large amount can be adjusted in a short culture period, the preparation cost can be kept low.
(2) Regenerative medical donor cells with high purity can be efficiently collected from a small amount of adipose tissue that can be easily collected, and the obtained cells have high angiogenic ability.
(3) Multiple treatments can be performed by collecting a single tissue, and treatment that exhibits a certain level of effectiveness without being affected by donor age or underlying disease is possible.
(4) Unlike existing cell sources, it can show long-term efficacy against PAD.
(1)大規模な細胞調製施設や、増殖因子、純度を高めるための抗体選別などが必要ない。また短い培養期間で大量調整が可能であるため、調製コストが低くおさえることができる。
(2)採取が容易な少量の脂肪組織から純度の高い再生医療用ドナー細胞を効率よく採取でき、得られた細胞は高い血管新生能を有する。
(3)一回の組織採取により複数回の治療が可能となり、ドナー年齢や基礎疾患に影響されずに一定の有効性を示す治療が可能となる。
(4)既存の細胞ソースと異なり、PADに対して長期有効性を示すことが可能である。 In the present invention, human dedifferentiated adipocytes (human DFAT) prepared from human mature adipocytes have excellent angiogenic potential, and are effective cells for cell therapy for ischemic diseases such as peripheral artery disease (PAD). Clarified that it can be a source. Therefore, the present invention has the following effects.
(1) Large-scale cell preparation facilities, growth factors, and antibody selection for increasing purity are not necessary. Moreover, since a large amount can be adjusted in a short culture period, the preparation cost can be kept low.
(2) Regenerative medical donor cells with high purity can be efficiently collected from a small amount of adipose tissue that can be easily collected, and the obtained cells have high angiogenic ability.
(3) Multiple treatments can be performed by collecting a single tissue, and treatment that exhibits a certain level of effectiveness without being affected by donor age or underlying disease is possible.
(4) Unlike existing cell sources, it can show long-term efficacy against PAD.
(ヒトDFAT)
本発明におけるヒトDFATの調整方法は、たとえば、本発明者らによってなされた特開2000-83656号公報を参考にしておこなうとよい。すなわち、ヒトの皮下または内臓などの脂肪組織をコラゲナーゼ処理したのち、口径100~200μmのメッシュでフィルトレーションすることにより単胞性脂肪細胞のみからなる単一の画分を採取する。それらの単胞性脂肪細胞を天井培養することで産生された線維芽細胞様脂肪細胞を、さらに継代培養することによってヒト脱分化脂肪細胞(ヒトDFAT)を得ることができる。また、上記天井培養以外の方法によっても、成熟脂肪細胞を培養することにより、成熟脂肪細胞を起源とする脂肪滴を有さない細胞を調整する方法等によりヒトDFATを得ることができる。
得られた細胞がヒトDFATであることの確認は、例えば、以下のようなヒトDFAT特有の性質を有するかどうかにより判断することができる。
ヒトDFATはプラスチックへの付着性を有し、in vitroで骨芽細胞、脂肪細胞、軟骨細胞、平滑筋細胞への多分化能を示す。また、細胞表面抗原として、CD13,CD29,CD44,CD49d,CD73,CD90,CD105陽性、CD11b,CD14,CD34,CD45,CD19,HLA-DR陰性であり、国際細胞治療学会(ISCT)が定めたMSCの最小基準を満たす。また、ヒトDFATはリポプロテインリパーゼ、GLUT4といった成熟脂肪細胞のマーカー遺伝子の発現が消失している一方、PPARg,RUNX2,SOX9といった脂肪、骨、軟骨の初期分化マーカー遺伝子が発現している。さらに、ヒトDFATは高い細胞増殖能を有し、細胞倍加時間は第2継代細胞で約65時間、第10継代で約48時間であった。第5継代以後は多分化能が低下するため、第1継代~第4継代で使用することが望ましい。
ヒトDFATは10mlの吸引脂肪または1gの脂肪組織より上記調整方法により、約2週間の初代培養で108の細胞が得られる。これは培養ASCの約25倍の調製効率である。従って、2-3回継代培養することにより109オーダーの細胞を得ることが可能である。1回の細胞治療に用いる細胞数は約108個であるため、1回(約10ml)の脂肪組織採取で、得られた細胞を小分けして凍結保存すれば、約10回治療が可能であることがわかる。
また、ヒトDFATは初代培養から均質な細胞が得られる。初代培養ASCは平滑筋細胞(18.6%)、血管内皮細胞(2.7%)、単球(13.3%)の混入があるが、初代培養ヒトDFATのこれらの細胞の混入率は0.1%以下と非常に低いものであった。
また、ヒトDFATは継代した細胞のみならず初代培養細胞もCD34陰性であり、培養開始時にCD34陽性であるが継代培養によって発現が低下するASCと比べて安定した形質を維持している(図9、参照)。成熟脂肪細胞を単離する際、コラゲナーゼ処理やフィルトレーションを適切、十分に行わないと、成熟脂肪細胞以外の細胞が成熟脂肪細胞に付着し、天井培養にて増殖するため本発明とは異なり、CD34陽性細胞などが増加することがある。
また、ヒトDFATはドナー年齢や基礎疾患に影響されず、調製可能であることも明らかになった。これらの特性は、治療用細胞としての性能の個体差をなくし、治療不応例を減らすこと(治療用細胞の標準化)に寄与すると考えられる。
さらには、実施例にて後述する下肢虚血モデル動物への移植実験において、ヒトDFATは、末梢血単核球や線維芽細胞より有意に高い血流改善効果を示した。 (Human DFAT)
The method for adjusting human DFAT in the present invention may be performed with reference to, for example, Japanese Patent Application Laid-Open No. 2000-83656 made by the present inventors. That is, after adipose tissue such as human subcutaneous or internal organs is treated with collagenase, a single fraction consisting only of monocystic adipocytes is collected by filtration with a mesh having a diameter of 100 to 200 μm. Human dedifferentiated adipocytes (human DFAT) can be obtained by further subculturing fibroblast-like adipocytes produced by ceiling culture of these monocystic adipocytes. Moreover, human DFAT can also be obtained by a method of adjusting cells that do not have lipid droplets originating from mature adipocytes by culturing mature adipocytes by methods other than the above-described ceiling culture.
Confirmation that the obtained cells are human DFAT can be determined, for example, based on whether or not they have the following characteristics specific to human DFAT.
Human DFAT has adhesiveness to plastic and exhibits multipotency into osteoblasts, adipocytes, chondrocytes and smooth muscle cells in vitro. Further, as cell surface antigens, CD13, CD29, CD44, CD49d, CD73, CD90, CD105 positive, CD11b, CD14, CD34, CD45, CD19, HLA-DR negative, MSC defined by the International Society for Cell Therapy (ISCT) Meet the minimum criteria. In addition, human DFAT has lost expression of marker genes of mature adipocytes such as lipoprotein lipase and GLUT4, but expresses early differentiation marker genes of fat, bone and cartilage such as PPARg, RUNX2, and SOX9. Furthermore, human DFAT had a high cell proliferation ability, and the cell doubling time was about 65 hours for the second passage cell and about 48 hours for the tenth passage. Since the pluripotency decreases after the 5th passage, it is desirable to use in the 1st to 4th passages.
Human DFAT can be obtained from 10 ml of aspirated fat or 1 g of adipose tissue by the above-mentioned preparation method, and 10 8 cells can be obtained in primary culture for about 2 weeks. This is about 25 times the preparation efficiency of cultured ASC. Therefore, it is possible to obtain cells of the order of 10 9 by subculturing 2-3 times. Since the number of cells used for a single cell therapy is about 10 8 , treatment can be performed about 10 times if the obtained cells are subdivided and cryopreserved by collecting adipose tissue once (about 10 ml). I know that there is.
In addition, human DFAT can obtain homogeneous cells from primary culture. Primary cultured ASC contains smooth muscle cells (18.6%), vascular endothelial cells (2.7%) and monocytes (13.3%). The contamination rate of these cells in primary cultured human DFAT is It was very low as 0.1% or less.
Moreover, human DFAT is not only subcultured but also primary culture cells are CD34 negative, and maintain stable traits compared to ASC that is CD34 positive at the start of culture but whose expression is reduced by subculture ( (See FIG. 9). When isolating mature adipocytes, if collagenase treatment and filtration are not performed properly and adequately, cells other than mature adipocytes attach to mature adipocytes and proliferate in ceiling culture. CD34 positive cells may increase.
It was also revealed that human DFAT can be prepared without being affected by donor age or underlying disease. These characteristics are thought to contribute to eliminating individual differences in performance as therapeutic cells and reducing treatment refractory cases (standardization of therapeutic cells).
Furthermore, human DFAT showed a significantly higher blood flow improvement effect than peripheral blood mononuclear cells and fibroblasts in transplantation experiments to lower limb ischemia model animals described later in Examples.
本発明におけるヒトDFATの調整方法は、たとえば、本発明者らによってなされた特開2000-83656号公報を参考にしておこなうとよい。すなわち、ヒトの皮下または内臓などの脂肪組織をコラゲナーゼ処理したのち、口径100~200μmのメッシュでフィルトレーションすることにより単胞性脂肪細胞のみからなる単一の画分を採取する。それらの単胞性脂肪細胞を天井培養することで産生された線維芽細胞様脂肪細胞を、さらに継代培養することによってヒト脱分化脂肪細胞(ヒトDFAT)を得ることができる。また、上記天井培養以外の方法によっても、成熟脂肪細胞を培養することにより、成熟脂肪細胞を起源とする脂肪滴を有さない細胞を調整する方法等によりヒトDFATを得ることができる。
得られた細胞がヒトDFATであることの確認は、例えば、以下のようなヒトDFAT特有の性質を有するかどうかにより判断することができる。
ヒトDFATはプラスチックへの付着性を有し、in vitroで骨芽細胞、脂肪細胞、軟骨細胞、平滑筋細胞への多分化能を示す。また、細胞表面抗原として、CD13,CD29,CD44,CD49d,CD73,CD90,CD105陽性、CD11b,CD14,CD34,CD45,CD19,HLA-DR陰性であり、国際細胞治療学会(ISCT)が定めたMSCの最小基準を満たす。また、ヒトDFATはリポプロテインリパーゼ、GLUT4といった成熟脂肪細胞のマーカー遺伝子の発現が消失している一方、PPARg,RUNX2,SOX9といった脂肪、骨、軟骨の初期分化マーカー遺伝子が発現している。さらに、ヒトDFATは高い細胞増殖能を有し、細胞倍加時間は第2継代細胞で約65時間、第10継代で約48時間であった。第5継代以後は多分化能が低下するため、第1継代~第4継代で使用することが望ましい。
ヒトDFATは10mlの吸引脂肪または1gの脂肪組織より上記調整方法により、約2週間の初代培養で108の細胞が得られる。これは培養ASCの約25倍の調製効率である。従って、2-3回継代培養することにより109オーダーの細胞を得ることが可能である。1回の細胞治療に用いる細胞数は約108個であるため、1回(約10ml)の脂肪組織採取で、得られた細胞を小分けして凍結保存すれば、約10回治療が可能であることがわかる。
また、ヒトDFATは初代培養から均質な細胞が得られる。初代培養ASCは平滑筋細胞(18.6%)、血管内皮細胞(2.7%)、単球(13.3%)の混入があるが、初代培養ヒトDFATのこれらの細胞の混入率は0.1%以下と非常に低いものであった。
また、ヒトDFATは継代した細胞のみならず初代培養細胞もCD34陰性であり、培養開始時にCD34陽性であるが継代培養によって発現が低下するASCと比べて安定した形質を維持している(図9、参照)。成熟脂肪細胞を単離する際、コラゲナーゼ処理やフィルトレーションを適切、十分に行わないと、成熟脂肪細胞以外の細胞が成熟脂肪細胞に付着し、天井培養にて増殖するため本発明とは異なり、CD34陽性細胞などが増加することがある。
また、ヒトDFATはドナー年齢や基礎疾患に影響されず、調製可能であることも明らかになった。これらの特性は、治療用細胞としての性能の個体差をなくし、治療不応例を減らすこと(治療用細胞の標準化)に寄与すると考えられる。
さらには、実施例にて後述する下肢虚血モデル動物への移植実験において、ヒトDFATは、末梢血単核球や線維芽細胞より有意に高い血流改善効果を示した。 (Human DFAT)
The method for adjusting human DFAT in the present invention may be performed with reference to, for example, Japanese Patent Application Laid-Open No. 2000-83656 made by the present inventors. That is, after adipose tissue such as human subcutaneous or internal organs is treated with collagenase, a single fraction consisting only of monocystic adipocytes is collected by filtration with a mesh having a diameter of 100 to 200 μm. Human dedifferentiated adipocytes (human DFAT) can be obtained by further subculturing fibroblast-like adipocytes produced by ceiling culture of these monocystic adipocytes. Moreover, human DFAT can also be obtained by a method of adjusting cells that do not have lipid droplets originating from mature adipocytes by culturing mature adipocytes by methods other than the above-described ceiling culture.
Confirmation that the obtained cells are human DFAT can be determined, for example, based on whether or not they have the following characteristics specific to human DFAT.
Human DFAT has adhesiveness to plastic and exhibits multipotency into osteoblasts, adipocytes, chondrocytes and smooth muscle cells in vitro. Further, as cell surface antigens, CD13, CD29, CD44, CD49d, CD73, CD90, CD105 positive, CD11b, CD14, CD34, CD45, CD19, HLA-DR negative, MSC defined by the International Society for Cell Therapy (ISCT) Meet the minimum criteria. In addition, human DFAT has lost expression of marker genes of mature adipocytes such as lipoprotein lipase and GLUT4, but expresses early differentiation marker genes of fat, bone and cartilage such as PPARg, RUNX2, and SOX9. Furthermore, human DFAT had a high cell proliferation ability, and the cell doubling time was about 65 hours for the second passage cell and about 48 hours for the tenth passage. Since the pluripotency decreases after the 5th passage, it is desirable to use in the 1st to 4th passages.
Human DFAT can be obtained from 10 ml of aspirated fat or 1 g of adipose tissue by the above-mentioned preparation method, and 10 8 cells can be obtained in primary culture for about 2 weeks. This is about 25 times the preparation efficiency of cultured ASC. Therefore, it is possible to obtain cells of the order of 10 9 by subculturing 2-3 times. Since the number of cells used for a single cell therapy is about 10 8 , treatment can be performed about 10 times if the obtained cells are subdivided and cryopreserved by collecting adipose tissue once (about 10 ml). I know that there is.
In addition, human DFAT can obtain homogeneous cells from primary culture. Primary cultured ASC contains smooth muscle cells (18.6%), vascular endothelial cells (2.7%) and monocytes (13.3%). The contamination rate of these cells in primary cultured human DFAT is It was very low as 0.1% or less.
Moreover, human DFAT is not only subcultured but also primary culture cells are CD34 negative, and maintain stable traits compared to ASC that is CD34 positive at the start of culture but whose expression is reduced by subculture ( (See FIG. 9). When isolating mature adipocytes, if collagenase treatment and filtration are not performed properly and adequately, cells other than mature adipocytes attach to mature adipocytes and proliferate in ceiling culture. CD34 positive cells may increase.
It was also revealed that human DFAT can be prepared without being affected by donor age or underlying disease. These characteristics are thought to contribute to eliminating individual differences in performance as therapeutic cells and reducing treatment refractory cases (standardization of therapeutic cells).
Furthermore, human DFAT showed a significantly higher blood flow improvement effect than peripheral blood mononuclear cells and fibroblasts in transplantation experiments to lower limb ischemia model animals described later in Examples.
(血管新生)
本発明において血管新生とは、既存の血管より新しい血管が形成される現象をいい、虚血性疾患における側副血行路の形成のほか、胎生期における生理的な血管発達、さらには癌や糖尿病性網膜症などの病的状態でも起こる。動脈硬化や血栓などにより血管が閉塞し、局所組織が血流障害に陥った状態において、生理活性物質や細胞などを用いて人為的に血管新生を誘導することを特に治療的血管新生または血管再生と呼ぶ。本明細書において、血管新生と血管再生は特に断らない限り同義で用いられる。
血管再生(または治療的血管新生)のより具体的な例としては、末梢動脈疾患(PAD)や狭心症、心筋梗塞などの虚血性疾患患者における血流改善が挙げられる。血管再生能を有する細胞の性能は、HGF、VEGF-A、FGF-2、SDF-1、leptinなどの血管新生促成因子の発現量・分泌量や、血管構成細胞である血管内皮細胞やペリサイトへの分化能などにより確認することができる。 (Angiogenesis)
In the present invention, angiogenesis refers to a phenomenon in which new blood vessels are formed from existing blood vessels. In addition to the formation of collateral blood circulation in ischemic diseases, physiological blood vessel development in the embryonic period, as well as cancer and diabetic properties It also occurs in pathological conditions such as retinopathy. Artificially induced angiogenesis using physiologically active substances or cells, etc., in the state where the blood vessel is blocked by arteriosclerosis or thrombus and the local tissue is damaged by blood flow, especially therapeutic angiogenesis or revascularization Call it. In this specification, angiogenesis and vascular regeneration are used synonymously unless otherwise specified.
More specific examples of revascularization (or therapeutic angiogenesis) include blood flow improvement in patients with ischemic diseases such as peripheral arterial disease (PAD), angina pectoris, and myocardial infarction. The performance of cells having revascularization ability includes the expression and secretion amount of angiogenesis-promoting factors such as HGF, VEGF-A, FGF-2, SDF-1, and leptin, and vascular endothelial cells and pericytes that are vascular constituent cells. It can be confirmed by the ability to differentiate into.
本発明において血管新生とは、既存の血管より新しい血管が形成される現象をいい、虚血性疾患における側副血行路の形成のほか、胎生期における生理的な血管発達、さらには癌や糖尿病性網膜症などの病的状態でも起こる。動脈硬化や血栓などにより血管が閉塞し、局所組織が血流障害に陥った状態において、生理活性物質や細胞などを用いて人為的に血管新生を誘導することを特に治療的血管新生または血管再生と呼ぶ。本明細書において、血管新生と血管再生は特に断らない限り同義で用いられる。
血管再生(または治療的血管新生)のより具体的な例としては、末梢動脈疾患(PAD)や狭心症、心筋梗塞などの虚血性疾患患者における血流改善が挙げられる。血管再生能を有する細胞の性能は、HGF、VEGF-A、FGF-2、SDF-1、leptinなどの血管新生促成因子の発現量・分泌量や、血管構成細胞である血管内皮細胞やペリサイトへの分化能などにより確認することができる。 (Angiogenesis)
In the present invention, angiogenesis refers to a phenomenon in which new blood vessels are formed from existing blood vessels. In addition to the formation of collateral blood circulation in ischemic diseases, physiological blood vessel development in the embryonic period, as well as cancer and diabetic properties It also occurs in pathological conditions such as retinopathy. Artificially induced angiogenesis using physiologically active substances or cells, etc., in the state where the blood vessel is blocked by arteriosclerosis or thrombus and the local tissue is damaged by blood flow, especially therapeutic angiogenesis or revascularization Call it. In this specification, angiogenesis and vascular regeneration are used synonymously unless otherwise specified.
More specific examples of revascularization (or therapeutic angiogenesis) include blood flow improvement in patients with ischemic diseases such as peripheral arterial disease (PAD), angina pectoris, and myocardial infarction. The performance of cells having revascularization ability includes the expression and secretion amount of angiogenesis-promoting factors such as HGF, VEGF-A, FGF-2, SDF-1, and leptin, and vascular endothelial cells and pericytes that are vascular constituent cells. It can be confirmed by the ability to differentiate into.
本発明のヒトDFATを使用した血管再生に係る治療方法は、例えば、患者自身から調製したDFAT(自家DFAT)を複数のバイアルに入れ液体窒素タンクに凍結保存しておく。これを定期的に解凍して、虚血部位(筋肉)に注射することにより血流改善を図る方法が挙げられる。
また、外科手術などで破棄される脂肪組織を利用した他家移植用DFAT細胞バンクの構築も可能である。この場合は、何らかの理由で自家DFATが調製できない患者に対し、HLAフルマッチした凍結保存DFATを解凍し、患者の虚血部位に注射するといった治療モデルが想定される。 In the treatment method related to revascularization using human DFAT of the present invention, for example, DFAT (in-house DFAT) prepared from the patient himself is placed in a plurality of vials and stored frozen in a liquid nitrogen tank. A method of improving the blood flow by thawing this periodically and injecting it into an ischemic site (muscle) can be mentioned.
In addition, it is possible to construct a DFAT cell bank for allogeneic transplantation using adipose tissue discarded by surgery or the like. In this case, for a patient who cannot prepare autologous DFAT for some reason, a therapeutic model is assumed in which cryopreserved DFAT fully matched with HLA is thawed and injected into the patient's ischemic site.
また、外科手術などで破棄される脂肪組織を利用した他家移植用DFAT細胞バンクの構築も可能である。この場合は、何らかの理由で自家DFATが調製できない患者に対し、HLAフルマッチした凍結保存DFATを解凍し、患者の虚血部位に注射するといった治療モデルが想定される。 In the treatment method related to revascularization using human DFAT of the present invention, for example, DFAT (in-house DFAT) prepared from the patient himself is placed in a plurality of vials and stored frozen in a liquid nitrogen tank. A method of improving the blood flow by thawing this periodically and injecting it into an ischemic site (muscle) can be mentioned.
In addition, it is possible to construct a DFAT cell bank for allogeneic transplantation using adipose tissue discarded by surgery or the like. In this case, for a patient who cannot prepare autologous DFAT for some reason, a therapeutic model is assumed in which cryopreserved DFAT fully matched with HLA is thawed and injected into the patient's ischemic site.
本発明は、本発明のヒトDFATを有効成分とする、血管を再生し虚血による障害組織を修復させる薬剤に関する。
本発明の薬剤は、ヒトDFATそのものでもよいし、保存剤や安定剤等の製剤上許容しうる担体を添加してもよい。製剤上許容しうるとは、それ自体は上記の活性を有さない材料であって、上記の薬剤とともに投与可能な製剤上許容される材料を意味する。 The present invention relates to a drug for regenerating blood vessels and repairing damaged tissue caused by ischemia, comprising human DFAT of the present invention as an active ingredient.
The drug of the present invention may be human DFAT itself, or a pharmaceutically acceptable carrier such as a preservative or stabilizer may be added. “Pharmaceutically acceptable” means a pharmaceutically acceptable material that itself does not have the above-mentioned activity and can be administered together with the above-mentioned drug.
本発明の薬剤は、ヒトDFATそのものでもよいし、保存剤や安定剤等の製剤上許容しうる担体を添加してもよい。製剤上許容しうるとは、それ自体は上記の活性を有さない材料であって、上記の薬剤とともに投与可能な製剤上許容される材料を意味する。 The present invention relates to a drug for regenerating blood vessels and repairing damaged tissue caused by ischemia, comprising human DFAT of the present invention as an active ingredient.
The drug of the present invention may be human DFAT itself, or a pharmaceutically acceptable carrier such as a preservative or stabilizer may be added. “Pharmaceutically acceptable” means a pharmaceutically acceptable material that itself does not have the above-mentioned activity and can be administered together with the above-mentioned drug.
本発明において、「投与する」とは、非経口的に投与することが含まれる。非経口的な投与としては、注射剤という形での投与を挙げることができ、注射剤としては、皮下注射剤、筋肉注射剤、あるいは腹腔内注射剤等を挙げることができる。注射剤を投与する方法としては、ヒト体内の一部分(臓器等の一組織)を標的として局所的に投与を行っても良いし、血管内に投与することにより、生物体全体に本発明の細胞を循環させてもよい。また、複数箇所の標的に同時に投与を行ってもよい。また、本発明の細胞を、処置を施したい領域に局所的に投与することもできる。例えば、手術中の局所注入、カテーテルの使用により投与することも可能である。
注射剤を調製する場合、必要により、pH 調製剤、緩衝剤、安定化剤、保存剤等を添加し、常法により、皮下、筋肉内、静脈内注射剤とする。 In the present invention, “administering” includes parenteral administration. Examples of parenteral administration include administration in the form of injections, and examples of injections include subcutaneous injections, intramuscular injections, intraperitoneal injections, and the like. As a method for administering an injection, local administration may be performed targeting a part of a human body (one tissue such as an organ), or the cells of the present invention may be applied to an entire organism by administration into a blood vessel. May be circulated. Moreover, you may administer simultaneously to the target of several places. In addition, the cells of the present invention can be locally administered to a region where treatment is desired. For example, it can be administered by local injection during surgery or by use of a catheter.
When preparing injections, pH adjusters, buffers, stabilizers, preservatives, etc. are added as necessary, and subcutaneous, intramuscular and intravenous injections are prepared by conventional methods.
注射剤を調製する場合、必要により、pH 調製剤、緩衝剤、安定化剤、保存剤等を添加し、常法により、皮下、筋肉内、静脈内注射剤とする。 In the present invention, “administering” includes parenteral administration. Examples of parenteral administration include administration in the form of injections, and examples of injections include subcutaneous injections, intramuscular injections, intraperitoneal injections, and the like. As a method for administering an injection, local administration may be performed targeting a part of a human body (one tissue such as an organ), or the cells of the present invention may be applied to an entire organism by administration into a blood vessel. May be circulated. Moreover, you may administer simultaneously to the target of several places. In addition, the cells of the present invention can be locally administered to a region where treatment is desired. For example, it can be administered by local injection during surgery or by use of a catheter.
When preparing injections, pH adjusters, buffers, stabilizers, preservatives, etc. are added as necessary, and subcutaneous, intramuscular and intravenous injections are prepared by conventional methods.
投与量は、患者の年齢、性別、体重および症状、治療効果、投与方法、処理時間、あるいは該細胞に含有される活性成分の種類などにより異なり、特に制限されるものではない。本発明の細胞は、少なくとも1つの既知の化学療法剤と共に薬学的組成物の一部として投与されてもよい。一つの態様において、本発明の細胞および既知の化学療法剤は、実質的に同時に投与されてもよい。また、ヒトより摘出されたヒトの一部分に本発明の細胞を投与し、摘出を行ったヒトまたは他のヒトに、該ヒトの一部分を戻すことも可能である。
The dose varies depending on the patient's age, sex, weight and symptoms, therapeutic effect, administration method, treatment time, type of active ingredient contained in the cells, etc., and is not particularly limited. The cells of the invention may be administered as part of a pharmaceutical composition with at least one known chemotherapeutic agent. In one embodiment, the cells of the invention and the known chemotherapeutic agent may be administered substantially simultaneously. It is also possible to administer the cell of the present invention to a part of a human removed from the human and return the part of the human to the removed human or other human.
[実施例1]ヒトDFATの形質解析
(1)核型解析
(1-1)試験方法
(i)ヒトDFATの調整
本発明者らによってなされた特開2000-83656号公報を参考にして行った。すなわち、ドナーであるヒトの皮下脂肪組織をコラゲナーゼ処理したのち、口径100~200μmのメッシュでフィルトレーションすることにより単胞性脂肪細胞のみからなる単一の画分を採取した。それらの単胞性脂肪細胞を天井培養して産生される線維芽細胞様脂肪細胞を継代培養することによってヒト脱分化脂肪細胞(ヒトDFAT)を調製した。
ドナー対象者は、日本大学医学部附属病院 形成外科、整形外科、小児外科にて外科手術を受けた10歳から82歳の患者である。ヒトDFATの調整方法は以下の試験例において同じである。
(ii)(i)により得られた培養ヒトDFAT(n=3)をコルセミド処理し染色体標本を作製し、染色体数の測定およびギムザ染色による染色体構造の観察を行った。
(1-2)試験結果
50細胞分の染色体数を測定した結果、すべての細胞において、染色体数は、正常ヒト染色体数である46であった(図1(B))。また、ギムザ染色では顕著な染色体構造の異常は観察されなかった(図1(A))。他の2細胞株でも同様の結果が得られた。 [Example 1] Character analysis of human DFAT (1) Karyotype analysis (1-1) Test method (i) Preparation of human DFAT This was carried out with reference to Japanese Patent Application Laid-Open No. 2000-83656 made by the present inventors. . That is, a human adipose subcutaneous human tissue was treated with collagenase, and then filtered with a mesh having a diameter of 100 to 200 μm to collect a single fraction consisting only of monocystic adipocytes. Human dedifferentiated adipocytes (human DFAT) were prepared by subculturing fibroblast-like adipocytes produced by ceiling culture of these monocystic adipocytes.
Donor subjects are patients aged 10 to 82 who have undergone surgery in plastic surgery, orthopedic surgery, and pediatric surgery at Nihon University Hospital. The method for adjusting human DFAT is the same in the following test examples.
(Ii) The cultured human DFAT (n = 3) obtained in (i) was treated with colcemid to prepare a chromosome sample, and the number of chromosomes was measured and the chromosome structure was observed by Giemsa staining.
(1-2) Test Results As a result of measuring the number of chromosomes for 50 cells, the number of chromosomes in all cells was 46, which is the number of normal human chromosomes (FIG. 1 (B)). In addition, no remarkable abnormality in the chromosomal structure was observed with Giemsa staining (FIG. 1 (A)). Similar results were obtained with the other two cell lines.
(1)核型解析
(1-1)試験方法
(i)ヒトDFATの調整
本発明者らによってなされた特開2000-83656号公報を参考にして行った。すなわち、ドナーであるヒトの皮下脂肪組織をコラゲナーゼ処理したのち、口径100~200μmのメッシュでフィルトレーションすることにより単胞性脂肪細胞のみからなる単一の画分を採取した。それらの単胞性脂肪細胞を天井培養して産生される線維芽細胞様脂肪細胞を継代培養することによってヒト脱分化脂肪細胞(ヒトDFAT)を調製した。
ドナー対象者は、日本大学医学部附属病院 形成外科、整形外科、小児外科にて外科手術を受けた10歳から82歳の患者である。ヒトDFATの調整方法は以下の試験例において同じである。
(ii)(i)により得られた培養ヒトDFAT(n=3)をコルセミド処理し染色体標本を作製し、染色体数の測定およびギムザ染色による染色体構造の観察を行った。
(1-2)試験結果
50細胞分の染色体数を測定した結果、すべての細胞において、染色体数は、正常ヒト染色体数である46であった(図1(B))。また、ギムザ染色では顕著な染色体構造の異常は観察されなかった(図1(A))。他の2細胞株でも同様の結果が得られた。 [Example 1] Character analysis of human DFAT (1) Karyotype analysis (1-1) Test method (i) Preparation of human DFAT This was carried out with reference to Japanese Patent Application Laid-Open No. 2000-83656 made by the present inventors. . That is, a human adipose subcutaneous human tissue was treated with collagenase, and then filtered with a mesh having a diameter of 100 to 200 μm to collect a single fraction consisting only of monocystic adipocytes. Human dedifferentiated adipocytes (human DFAT) were prepared by subculturing fibroblast-like adipocytes produced by ceiling culture of these monocystic adipocytes.
Donor subjects are patients aged 10 to 82 who have undergone surgery in plastic surgery, orthopedic surgery, and pediatric surgery at Nihon University Hospital. The method for adjusting human DFAT is the same in the following test examples.
(Ii) The cultured human DFAT (n = 3) obtained in (i) was treated with colcemid to prepare a chromosome sample, and the number of chromosomes was measured and the chromosome structure was observed by Giemsa staining.
(1-2) Test Results As a result of measuring the number of chromosomes for 50 cells, the number of chromosomes in all cells was 46, which is the number of normal human chromosomes (FIG. 1 (B)). In addition, no remarkable abnormality in the chromosomal structure was observed with Giemsa staining (FIG. 1 (A)). Similar results were obtained with the other two cell lines.
(2)CGHマイクロアレイ
(2-1)試験方法
ヒト成熟脂肪細胞およびヒトDFAT(ヒト成熟脂肪細胞から実施例1の方法により調製)(n=3)からゲノムDNAを抽出し、ヒト成熟脂肪細胞とヒトDFATのゲノムのコピー数の変化を、CGHマイクロアレイ(Agilent社)を用いて解析した。
(2-2)試験結果
上記培養前後におけるゲノムDNAのコピー数の増幅はほとんど認められず、DFATのゲノムコピー数のプロファイルは成熟脂肪細胞とほぼ一致していた(図示せず)。成熟脂肪細胞の脱分化によりDFATが産生される過程において、ゲノムコピー数はほとんど変化しないことが明らかになった。 (2) CGH microarray (2-1) Test method Genomic DNA was extracted from human mature adipocytes and human DFAT (prepared from the human mature adipocytes by the method of Example 1) (n = 3). Changes in the human DFAT genome copy number were analyzed using a CGH microarray (Agilent).
(2-2) Test Results Almost no amplification of the genomic DNA copy number was observed before and after the culture, and the profile of DFAT genomic copy number was almost the same as that of mature adipocytes (not shown). In the process of producing DFAT by dedifferentiation of mature adipocytes, it was revealed that the genome copy number hardly changed.
(2-1)試験方法
ヒト成熟脂肪細胞およびヒトDFAT(ヒト成熟脂肪細胞から実施例1の方法により調製)(n=3)からゲノムDNAを抽出し、ヒト成熟脂肪細胞とヒトDFATのゲノムのコピー数の変化を、CGHマイクロアレイ(Agilent社)を用いて解析した。
(2-2)試験結果
上記培養前後におけるゲノムDNAのコピー数の増幅はほとんど認められず、DFATのゲノムコピー数のプロファイルは成熟脂肪細胞とほぼ一致していた(図示せず)。成熟脂肪細胞の脱分化によりDFATが産生される過程において、ゲノムコピー数はほとんど変化しないことが明らかになった。 (2) CGH microarray (2-1) Test method Genomic DNA was extracted from human mature adipocytes and human DFAT (prepared from the human mature adipocytes by the method of Example 1) (n = 3). Changes in the human DFAT genome copy number were analyzed using a CGH microarray (Agilent).
(2-2) Test Results Almost no amplification of the genomic DNA copy number was observed before and after the culture, and the profile of DFAT genomic copy number was almost the same as that of mature adipocytes (not shown). In the process of producing DFAT by dedifferentiation of mature adipocytes, it was revealed that the genome copy number hardly changed.
(3)DNAメチル化解析(MassARRAY法)
(3-1)試験方法
ヒト成熟脂肪細胞およびヒトDFAT(n=3)からゲノムDNAを抽出し、既知の癌関連遺伝子(計96遺伝子)のプロモーター領域CpGアイランドにおけるDNAメチル化修飾を、MassARRAY法(Sequenom社)を用いて網羅的に解析した(図3)。
(3-2)試験結果
成熟脂肪細胞とDFATとの間には、癌関連遺伝子のプロモーター領域CpGのメチル化プロファイルは非常に類似しており、脱分化に伴う特徴的なメチル化変動は検討した遺伝子群(92遺伝子CpG)の中では全く確認されなかった。 (3) DNA methylation analysis (MassARRAY method)
(3-1) Test Method Genomic DNA is extracted from human mature adipocytes and human DFAT (n = 3), and DNA methylation modification in the promoter region CpG island of known cancer-related genes (96 genes in total) is performed by MassARRAY method. (Sequenom) was used for comprehensive analysis (FIG. 3).
(3-2) Test results The methylation profile of the promoter region CpG of cancer-related genes is very similar between mature adipocytes and DFAT, and characteristic methylation fluctuations associated with dedifferentiation were examined. It was not confirmed at all in the gene group (92 genes CpG).
(3-1)試験方法
ヒト成熟脂肪細胞およびヒトDFAT(n=3)からゲノムDNAを抽出し、既知の癌関連遺伝子(計96遺伝子)のプロモーター領域CpGアイランドにおけるDNAメチル化修飾を、MassARRAY法(Sequenom社)を用いて網羅的に解析した(図3)。
(3-2)試験結果
成熟脂肪細胞とDFATとの間には、癌関連遺伝子のプロモーター領域CpGのメチル化プロファイルは非常に類似しており、脱分化に伴う特徴的なメチル化変動は検討した遺伝子群(92遺伝子CpG)の中では全く確認されなかった。 (3) DNA methylation analysis (MassARRAY method)
(3-1) Test Method Genomic DNA is extracted from human mature adipocytes and human DFAT (n = 3), and DNA methylation modification in the promoter region CpG island of known cancer-related genes (96 genes in total) is performed by MassARRAY method. (Sequenom) was used for comprehensive analysis (FIG. 3).
(3-2) Test results The methylation profile of the promoter region CpG of cancer-related genes is very similar between mature adipocytes and DFAT, and characteristic methylation fluctuations associated with dedifferentiation were examined. It was not confirmed at all in the gene group (92 genes CpG).
(4)テロメラーゼ活性測定
(4-1)試験方法
市販されているテロメラーゼ測定キット(TeloTAGAA Telomerase PCR ELISAplus、ロシュ・ダイアグノスティックス株式会社)を用いて、異なった年齢から調整した培養ヒトDFAT(n=3、細胞数:2×105)より細胞抽出液を採取し、テロメラーゼ活性を測定した。
(4-2)試験結果
キット内の内部スタンダードとコントロールテンプレートを用いてテロメラーゼ反応産物量を定量した結果、測定したすべての培養ヒトDFATにおいてテロメラーゼ活性は検出されなかった。この結果により、癌細胞で高頻度に見られる既知の異常所見(染色体数の異常、ゲノムコピー数の異常、癌関連遺伝子のメチル化異常、テロメラーゼ活性の亢進)がヒトDFATでは認められず、細胞の安全性を示す重要な所見が得られた。 (4) Measurement of telomerase activity (4-1) Test method Cultured human DFAT (n) adjusted from different ages using a commercially available telomerase measurement kit (TeloTAGAA Telomerase PCR ELISAplus, Roche Diagnostics Inc.) = 3, cell number: 2 × 10 5 ), cell extracts were collected and telomerase activity was measured.
(4-2) Test Results As a result of quantifying the amount of telomerase reaction product using the internal standard and control template in the kit, telomerase activity was not detected in all measured cultured human DFAT. As a result, known abnormal findings (abnormal number of chromosomes, abnormal number of genome copies, abnormal methylation of cancer-related genes, increased telomerase activity) frequently observed in cancer cells were not observed in human DFAT. The important findings showing the safety of
(4-1)試験方法
市販されているテロメラーゼ測定キット(TeloTAGAA Telomerase PCR ELISAplus、ロシュ・ダイアグノスティックス株式会社)を用いて、異なった年齢から調整した培養ヒトDFAT(n=3、細胞数:2×105)より細胞抽出液を採取し、テロメラーゼ活性を測定した。
(4-2)試験結果
キット内の内部スタンダードとコントロールテンプレートを用いてテロメラーゼ反応産物量を定量した結果、測定したすべての培養ヒトDFATにおいてテロメラーゼ活性は検出されなかった。この結果により、癌細胞で高頻度に見られる既知の異常所見(染色体数の異常、ゲノムコピー数の異常、癌関連遺伝子のメチル化異常、テロメラーゼ活性の亢進)がヒトDFATでは認められず、細胞の安全性を示す重要な所見が得られた。 (4) Measurement of telomerase activity (4-1) Test method Cultured human DFAT (n) adjusted from different ages using a commercially available telomerase measurement kit (TeloTAGAA Telomerase PCR ELISAplus, Roche Diagnostics Inc.) = 3, cell number: 2 × 10 5 ), cell extracts were collected and telomerase activity was measured.
(4-2) Test Results As a result of quantifying the amount of telomerase reaction product using the internal standard and control template in the kit, telomerase activity was not detected in all measured cultured human DFAT. As a result, known abnormal findings (abnormal number of chromosomes, abnormal number of genome copies, abnormal methylation of cancer-related genes, increased telomerase activity) frequently observed in cancer cells were not observed in human DFAT. The important findings showing the safety of
[実施例2]ヒトDFATの血管新生能の検討
1.DFAT分泌サイトカインの解析
(1)発現サイトカインのプロテインアレイ解析
(1-1)試験方法
(i)ヒトASCの調整方法
実施例1と同様にして得られたヒトDFATの沈降分画(間質血管分画 stromal vascular fraction:SVF)からSVF細胞を採取し、培養フラスコ内で約2週間付着培養を行い、ヒトASCを調製した。ヒトASCの調整方法は以下の試験例において同じである。
(iii)第2~第4継代のそれぞれの細胞がコンフルエントに到達した時点で、培地を5%ウシ胎仔血清(FBS)含有DMEM培地5mlに交換し、さらに72時間培養した。
その後培養ヒトDFAT,ヒトASCより培養上清を採取し、0.45mmフィルターで濾過した後、プロテインアレイ法にて発現、分泌するサイトカインを検出した。
(1-2)試験結果
ヒトDFATからTIMP-1、TIMP-2、IL-6、IL-8、MCP-1などの種々のサイトカイン群の分泌が確認された(図3)。 [Example 2] Examination of angiogenic ability of human DFAT Analysis of DFAT-secreted cytokine (1) Protein array analysis of expressed cytokine (1-1) Test method (i) Preparation method of human ASC Precipitation fraction of human DFAT obtained in the same manner as in Example 1 (stromal vascular fraction) SVF cells were collected from the fractional basal fraction (SVF) and cultured for about 2 weeks in a culture flask to prepare human ASC. The method for adjusting human ASC is the same in the following test examples.
(Iii) When the cells of the second to fourth passages reached confluence, the medium was replaced with 5 ml of 5% fetal bovine serum (FBS) -containing DMEM medium, and further cultured for 72 hours.
Thereafter, the culture supernatant was collected from cultured human DFAT and human ASC, filtered through a 0.45 mm filter, and then the cytokine expressed and secreted by the protein array method was detected.
(1-2) Test Results Secretion of various cytokine groups such as TIMP-1, TIMP-2, IL-6, IL-8 and MCP-1 was confirmed from human DFAT (FIG. 3).
1.DFAT分泌サイトカインの解析
(1)発現サイトカインのプロテインアレイ解析
(1-1)試験方法
(i)ヒトASCの調整方法
実施例1と同様にして得られたヒトDFATの沈降分画(間質血管分画 stromal vascular fraction:SVF)からSVF細胞を採取し、培養フラスコ内で約2週間付着培養を行い、ヒトASCを調製した。ヒトASCの調整方法は以下の試験例において同じである。
(iii)第2~第4継代のそれぞれの細胞がコンフルエントに到達した時点で、培地を5%ウシ胎仔血清(FBS)含有DMEM培地5mlに交換し、さらに72時間培養した。
その後培養ヒトDFAT,ヒトASCより培養上清を採取し、0.45mmフィルターで濾過した後、プロテインアレイ法にて発現、分泌するサイトカインを検出した。
(1-2)試験結果
ヒトDFATからTIMP-1、TIMP-2、IL-6、IL-8、MCP-1などの種々のサイトカイン群の分泌が確認された(図3)。 [Example 2] Examination of angiogenic ability of human DFAT Analysis of DFAT-secreted cytokine (1) Protein array analysis of expressed cytokine (1-1) Test method (i) Preparation method of human ASC Precipitation fraction of human DFAT obtained in the same manner as in Example 1 (stromal vascular fraction) SVF cells were collected from the fractional basal fraction (SVF) and cultured for about 2 weeks in a culture flask to prepare human ASC. The method for adjusting human ASC is the same in the following test examples.
(Iii) When the cells of the second to fourth passages reached confluence, the medium was replaced with 5 ml of 5% fetal bovine serum (FBS) -containing DMEM medium, and further cultured for 72 hours.
Thereafter, the culture supernatant was collected from cultured human DFAT and human ASC, filtered through a 0.45 mm filter, and then the cytokine expressed and secreted by the protein array method was detected.
(1-2) Test Results Secretion of various cytokine groups such as TIMP-1, TIMP-2, IL-6, IL-8 and MCP-1 was confirmed from human DFAT (FIG. 3).
(2)発現サイトカインのELISA法による定量
(2-1)試験方法
培養ヒトDFAT(各ドナーにつきn=3),ヒトASC(ヒトDFATと同一ドナー由来、各ドナーにつきn=3),ヒト前駆脂肪細胞(hPreadipocyte),ヒト骨髄MSC(hBM-MSC),ヒト線維芽細胞(hFibroblast)より培養上清を採取し、プロテインアレイで分泌が確認されたサイトカインを中心に培養上清中の濃度を、ELISAキットを用いて測定した。検討対象サイトカインとしてHGF,VEGF,bFGF,SDF-1,IL-6,IL-8,MCP-1,Leptin,IGF-1,TGFβ1を測定した。各細胞の調整方法を以下に示す。測定は、各ドナーにつき3つの検体を調整して(n=3)測定し、得られた3つのデータの平均値と標準偏差を求めた。
(i)ヒト前駆脂肪細胞(hPreadipocyte)
DSファーマメディカル株式会社より購入したヒト前駆脂肪細胞を解凍、洗浄し、付着培養して調製した。培地は、10%FBS含有DMEMを用いた。ヒト前駆脂肪細胞の調整方法は以下の試験例において同じである。
(ii)ヒト骨髄MSC(hBM-MSC)
市販されている初代培養細胞(Lonza社)を解凍、洗浄し、付着培養して調製した。培地は、10%FBS含有DMEMを用いた。ヒト骨髄MSCの調整方法は以下の試験例において同じである。
(2-2)試験結果
ヒトDFATからはHGF,VEGF,SDF-1,IL-6,IL-8,MCP-1,leptinが高発現(1-10ng/ml)していることが確認された。特に、HGFおよびSDF-1はpreadipocyte、ヒトASC、ヒト骨髄MSCに比べて特徴的に発現が高いことが明らかになった(図4)。 (2) Quantification of expressed cytokines by ELISA method (2-1) Test method Cultured human DFAT (n = 3 for each donor), human ASC (derived from the same donor as human DFAT, n = 3 for each donor), human preadip Culture supernatants are collected from cells (hPreadiposite), human bone marrow MSC (hBM-MSC), and human fibroblasts (hFibroblast). Measurement was performed using a kit. HGF, VEGF, bFGF, SDF-1, IL-6, IL-8, MCP-1, Leptin, IGF-1, and TGFβ1 were measured as cytokines to be examined. The adjustment method of each cell is shown below. In the measurement, three specimens were adjusted for each donor (n = 3), and the average value and standard deviation of the obtained three data were obtained.
(I) Human preadipocytes (hPreadipocyte)
Human preadipocytes purchased from DS Pharma Medical Co., Ltd. were prepared by thawing, washing and adherent culture. As the medium, DMEM containing 10% FBS was used. The method for preparing human preadipocytes is the same in the following test examples.
(Ii) Human bone marrow MSC (hBM-MSC)
Commercially available primary cultured cells (Lonza) were prepared by thawing, washing and adherent culture. As the medium, DMEM containing 10% FBS was used. The method for adjusting human bone marrow MSC is the same in the following test examples.
(2-2) Test results From human DFAT, it was confirmed that HGF, VEGF, SDF-1, IL-6, IL-8, MCP-1, and leptin were highly expressed (1-10 ng / ml). . In particular, HGF and SDF-1 were found to be characteristically higher in expression than preadipocyte, human ASC, and human bone marrow MSC (FIG. 4).
(2-1)試験方法
培養ヒトDFAT(各ドナーにつきn=3),ヒトASC(ヒトDFATと同一ドナー由来、各ドナーにつきn=3),ヒト前駆脂肪細胞(hPreadipocyte),ヒト骨髄MSC(hBM-MSC),ヒト線維芽細胞(hFibroblast)より培養上清を採取し、プロテインアレイで分泌が確認されたサイトカインを中心に培養上清中の濃度を、ELISAキットを用いて測定した。検討対象サイトカインとしてHGF,VEGF,bFGF,SDF-1,IL-6,IL-8,MCP-1,Leptin,IGF-1,TGFβ1を測定した。各細胞の調整方法を以下に示す。測定は、各ドナーにつき3つの検体を調整して(n=3)測定し、得られた3つのデータの平均値と標準偏差を求めた。
(i)ヒト前駆脂肪細胞(hPreadipocyte)
DSファーマメディカル株式会社より購入したヒト前駆脂肪細胞を解凍、洗浄し、付着培養して調製した。培地は、10%FBS含有DMEMを用いた。ヒト前駆脂肪細胞の調整方法は以下の試験例において同じである。
(ii)ヒト骨髄MSC(hBM-MSC)
市販されている初代培養細胞(Lonza社)を解凍、洗浄し、付着培養して調製した。培地は、10%FBS含有DMEMを用いた。ヒト骨髄MSCの調整方法は以下の試験例において同じである。
(2-2)試験結果
ヒトDFATからはHGF,VEGF,SDF-1,IL-6,IL-8,MCP-1,leptinが高発現(1-10ng/ml)していることが確認された。特に、HGFおよびSDF-1はpreadipocyte、ヒトASC、ヒト骨髄MSCに比べて特徴的に発現が高いことが明らかになった(図4)。 (2) Quantification of expressed cytokines by ELISA method (2-1) Test method Cultured human DFAT (n = 3 for each donor), human ASC (derived from the same donor as human DFAT, n = 3 for each donor), human preadip Culture supernatants are collected from cells (hPreadiposite), human bone marrow MSC (hBM-MSC), and human fibroblasts (hFibroblast). Measurement was performed using a kit. HGF, VEGF, bFGF, SDF-1, IL-6, IL-8, MCP-1, Leptin, IGF-1, and TGFβ1 were measured as cytokines to be examined. The adjustment method of each cell is shown below. In the measurement, three specimens were adjusted for each donor (n = 3), and the average value and standard deviation of the obtained three data were obtained.
(I) Human preadipocytes (hPreadipocyte)
Human preadipocytes purchased from DS Pharma Medical Co., Ltd. were prepared by thawing, washing and adherent culture. As the medium, DMEM containing 10% FBS was used. The method for preparing human preadipocytes is the same in the following test examples.
(Ii) Human bone marrow MSC (hBM-MSC)
Commercially available primary cultured cells (Lonza) were prepared by thawing, washing and adherent culture. As the medium, DMEM containing 10% FBS was used. The method for adjusting human bone marrow MSC is the same in the following test examples.
(2-2) Test results From human DFAT, it was confirmed that HGF, VEGF, SDF-1, IL-6, IL-8, MCP-1, and leptin were highly expressed (1-10 ng / ml). . In particular, HGF and SDF-1 were found to be characteristically higher in expression than preadipocyte, human ASC, and human bone marrow MSC (FIG. 4).
2.ヒトDFAT培養上清のin vitroにおける血管新生能
(1)ヒトDFATとヒト骨髄MSC(hBM-MSC)の比較
(1-1)試験方法
血管新生キット(KZ-1000,KURABO,Osaka,Japan)を用いて、ヒトDFAT培養上清のin vitroにおける血管新生能を検討した。本キットは24ウェルプレートにあらかじめヒト線維芽細胞とヒト血管内皮細胞が共培養され、専用の血管新生培地で培養することで血管内皮細胞の管腔形成が誘導されるデザインである。これに被検物質を含むサンプル培地を加えて培養することで、管腔形成能に差が生じる。血管新生能の測定は本キットのプロトコールに従って管腔形成を誘導し、マウス抗ヒトCD31抗体を用いた免疫染色により管腔形成を可視可した。DFAT培養上清やヒト骨髄MSC培養上清は上記の方法で調整し、付属の血管新生培地に1:1で混合してサンプル培地とした。
(1-2)試験結果
ヒトDFATの培養上清は血管内皮細胞の増殖、管腔形成を著明に促進した。DFATの血管新生能は、骨髄MSCと同等またはそれ以上であった(図5)。 2. Angiogenic ability of human DFAT culture supernatant in vitro (1) Comparison of human DFAT and human bone marrow MSC (hBM-MSC) (1-1) Test method Angiogenesis kit (KZ-1000, KURABO, Osaka, Japan) The in vitro angiogenesis ability of the human DFAT culture supernatant was examined. This kit is a design in which human fibroblasts and human vascular endothelial cells are co-cultured in advance in a 24-well plate, and luminal formation of vascular endothelial cells is induced by culturing in a dedicated angiogenic medium. When a sample medium containing a test substance is added to this and cultured, a difference in lumen forming ability occurs. The angiogenesis ability was measured by inducing tube formation according to the protocol of this kit, and tube formation was visualized by immunostaining using a mouse anti-human CD31 antibody. The DFAT culture supernatant and human bone marrow MSC culture supernatant were prepared by the above method and mixed 1: 1 with the attached angiogenesis medium to obtain a sample medium.
(1-2) Test Results The culture supernatant of human DFAT markedly promoted the proliferation and lumen formation of vascular endothelial cells. The angiogenic potential of DFAT was equal to or greater than that of bone marrow MSC (FIG. 5).
(1)ヒトDFATとヒト骨髄MSC(hBM-MSC)の比較
(1-1)試験方法
血管新生キット(KZ-1000,KURABO,Osaka,Japan)を用いて、ヒトDFAT培養上清のin vitroにおける血管新生能を検討した。本キットは24ウェルプレートにあらかじめヒト線維芽細胞とヒト血管内皮細胞が共培養され、専用の血管新生培地で培養することで血管内皮細胞の管腔形成が誘導されるデザインである。これに被検物質を含むサンプル培地を加えて培養することで、管腔形成能に差が生じる。血管新生能の測定は本キットのプロトコールに従って管腔形成を誘導し、マウス抗ヒトCD31抗体を用いた免疫染色により管腔形成を可視可した。DFAT培養上清やヒト骨髄MSC培養上清は上記の方法で調整し、付属の血管新生培地に1:1で混合してサンプル培地とした。
(1-2)試験結果
ヒトDFATの培養上清は血管内皮細胞の増殖、管腔形成を著明に促進した。DFATの血管新生能は、骨髄MSCと同等またはそれ以上であった(図5)。 2. Angiogenic ability of human DFAT culture supernatant in vitro (1) Comparison of human DFAT and human bone marrow MSC (hBM-MSC) (1-1) Test method Angiogenesis kit (KZ-1000, KURABO, Osaka, Japan) The in vitro angiogenesis ability of the human DFAT culture supernatant was examined. This kit is a design in which human fibroblasts and human vascular endothelial cells are co-cultured in advance in a 24-well plate, and luminal formation of vascular endothelial cells is induced by culturing in a dedicated angiogenic medium. When a sample medium containing a test substance is added to this and cultured, a difference in lumen forming ability occurs. The angiogenesis ability was measured by inducing tube formation according to the protocol of this kit, and tube formation was visualized by immunostaining using a mouse anti-human CD31 antibody. The DFAT culture supernatant and human bone marrow MSC culture supernatant were prepared by the above method and mixed 1: 1 with the attached angiogenesis medium to obtain a sample medium.
(1-2) Test Results The culture supernatant of human DFAT markedly promoted the proliferation and lumen formation of vascular endothelial cells. The angiogenic potential of DFAT was equal to or greater than that of bone marrow MSC (FIG. 5).
(2)ドナー年齢の違いによる比較
(2-1)試験方法
ドナー年齢の違いによるDFAT培養上清の血管新生能について検討した。ポジテイブコントロールとしてVEGF-A(10ng/ml R&D Systems)を使用した。
(i)ドナー年齢および性別
2歳男性、29歳女性、56歳女性、75歳女性、82歳女性の5人である。
(2-2)試験結果
高齢ドナー(75歳、82歳)由来のヒトDFAT培養上清が、若年者と比較しても同等の血管新生能を有することが明らかになった(図6)。すなわち、ヒトDFAT培養上清の血管内皮細胞の管腔形成能に年齢による違いはなかった。 (2) Comparison by difference in donor age (2-1) Test method The angiogenic ability of the DFAT culture supernatant by difference in donor age was examined. VEGF-A (10 ng / ml R & D Systems) was used as a positive control.
(I) Donor age and sex There are five people: a 2-year-old man, a 29-year-old woman, a 56-year-old woman, a 75-year-old woman, and an 82-year-old woman.
(2-2) Test Results It was revealed that the human DFAT culture supernatant derived from an elderly donor (75 years old, 82 years old) has the same angiogenic ability as compared with younger ones (FIG. 6). That is, there was no difference with age in the lumen forming ability of vascular endothelial cells of the human DFAT culture supernatant.
(2-1)試験方法
ドナー年齢の違いによるDFAT培養上清の血管新生能について検討した。ポジテイブコントロールとしてVEGF-A(10ng/ml R&D Systems)を使用した。
(i)ドナー年齢および性別
2歳男性、29歳女性、56歳女性、75歳女性、82歳女性の5人である。
(2-2)試験結果
高齢ドナー(75歳、82歳)由来のヒトDFAT培養上清が、若年者と比較しても同等の血管新生能を有することが明らかになった(図6)。すなわち、ヒトDFAT培養上清の血管内皮細胞の管腔形成能に年齢による違いはなかった。 (2) Comparison by difference in donor age (2-1) Test method The angiogenic ability of the DFAT culture supernatant by difference in donor age was examined. VEGF-A (10 ng / ml R & D Systems) was used as a positive control.
(I) Donor age and sex There are five people: a 2-year-old man, a 29-year-old woman, a 56-year-old woman, a 75-year-old woman, and an 82-year-old woman.
(2-2) Test Results It was revealed that the human DFAT culture supernatant derived from an elderly donor (75 years old, 82 years old) has the same angiogenic ability as compared with younger ones (FIG. 6). That is, there was no difference with age in the lumen forming ability of vascular endothelial cells of the human DFAT culture supernatant.
(3)ヒトDFATとASC(同一ドナー由来)の比較
(3-1)試験方法
同一ドナーに由来するヒトDFATとヒトASCの血管新生能の比較検討を行った。ヒトDFATとヒトASCの調整方法は、実施例1と同じである。
(3-2)試験結果
ヒトDFAT培養上清はヒトASC培養上清と比較して管腔長、管腔面積、分枝数および接合部数などが有意に高値を示した(図7)。 (3) Comparison between human DFAT and ASC (from the same donor) (3-1) Test method A comparative study was conducted on the angiogenic ability of human DFAT and human ASC derived from the same donor. The method for adjusting human DFAT and human ASC is the same as in Example 1.
(3-2) Test Results Human DFAT culture supernatant showed significantly higher lumen length, lumen area, number of branches, number of junctions, etc. than human ASC culture supernatant (FIG. 7).
(3-1)試験方法
同一ドナーに由来するヒトDFATとヒトASCの血管新生能の比較検討を行った。ヒトDFATとヒトASCの調整方法は、実施例1と同じである。
(3-2)試験結果
ヒトDFAT培養上清はヒトASC培養上清と比較して管腔長、管腔面積、分枝数および接合部数などが有意に高値を示した(図7)。 (3) Comparison between human DFAT and ASC (from the same donor) (3-1) Test method A comparative study was conducted on the angiogenic ability of human DFAT and human ASC derived from the same donor. The method for adjusting human DFAT and human ASC is the same as in Example 1.
(3-2) Test Results Human DFAT culture supernatant showed significantly higher lumen length, lumen area, number of branches, number of junctions, etc. than human ASC culture supernatant (FIG. 7).
[実施例3]免疫不全マウス下肢虚血モデルにおけるヒトDFAT移植実験
1.ヒトDFATのモデルマウスの筋肉内への移植
(1)試験方法
免疫不全(SCID)マウス下肢虚血モデル(日本クレア株式会社、n=20)に対し、虚血作成6時間後にヒトDFAT(1x105)を虚血筋肉内に移植し、レーザードップラー血流計による血流測定および組織学的検討を行った。そして生理食塩水を投与するコントロール群、ヒト末梢血単核球を移植する群との比較検討を行った。
(i)ヒト末梢血単核球の調整方法
健常人の血液から血球分離溶液Lymphoprep(コスモバイオ株式会社製)を用いた比重遠心法により調整した。
(2)試験結果
DFAT移植群ではコントロール群に比べ、移植3週後より有意に血流改善が認められた。また、DFAT移植した虚血組織では血管密度が有意に増加していた。DFAT移植による血流改善効果は、ヒト末梢血単核球移植に比べても優れていることが明らかになった(図8)。 [Example 3] Human DFAT transplantation experiment in an immunodeficient mouse lower limb ischemia model Transplantation of human DFAT into muscles of model mice (1) Test method Human DFAT (1 × 10 5 ) 6 hours after ischemia generation against immunodeficient (SCID) mouse lower limb ischemia model (CLEA Japan, n = 20) ) Was transplanted into ischemic muscle, and blood flow measurement and histological examination were performed with a laser Doppler blood flow meter. Then, a comparative study was performed between a control group administered with physiological saline and a group transplanted with human peripheral blood mononuclear cells.
(I) Method for adjusting human peripheral blood mononuclear cells The blood was adjusted from a healthy person by a specific gravity centrifugation method using a blood cell separation solution Lymphoprep (manufactured by Cosmo Bio Co., Ltd.).
(2) Test results Significant improvement in blood flow was observed in the DFAT transplant group compared to thecontrol group 3 weeks after transplantation. Further, the blood vessel density was significantly increased in the ischemic tissue transplanted with DFAT. It was revealed that the blood flow improvement effect by DFAT transplantation was superior to that of human peripheral blood mononuclear cell transplantation (FIG. 8).
1.ヒトDFATのモデルマウスの筋肉内への移植
(1)試験方法
免疫不全(SCID)マウス下肢虚血モデル(日本クレア株式会社、n=20)に対し、虚血作成6時間後にヒトDFAT(1x105)を虚血筋肉内に移植し、レーザードップラー血流計による血流測定および組織学的検討を行った。そして生理食塩水を投与するコントロール群、ヒト末梢血単核球を移植する群との比較検討を行った。
(i)ヒト末梢血単核球の調整方法
健常人の血液から血球分離溶液Lymphoprep(コスモバイオ株式会社製)を用いた比重遠心法により調整した。
(2)試験結果
DFAT移植群ではコントロール群に比べ、移植3週後より有意に血流改善が認められた。また、DFAT移植した虚血組織では血管密度が有意に増加していた。DFAT移植による血流改善効果は、ヒト末梢血単核球移植に比べても優れていることが明らかになった(図8)。 [Example 3] Human DFAT transplantation experiment in an immunodeficient mouse lower limb ischemia model Transplantation of human DFAT into muscles of model mice (1) Test method Human DFAT (1 × 10 5 ) 6 hours after ischemia generation against immunodeficient (SCID) mouse lower limb ischemia model (CLEA Japan, n = 20) ) Was transplanted into ischemic muscle, and blood flow measurement and histological examination were performed with a laser Doppler blood flow meter. Then, a comparative study was performed between a control group administered with physiological saline and a group transplanted with human peripheral blood mononuclear cells.
(I) Method for adjusting human peripheral blood mononuclear cells The blood was adjusted from a healthy person by a specific gravity centrifugation method using a blood cell separation solution Lymphoprep (manufactured by Cosmo Bio Co., Ltd.).
(2) Test results Significant improvement in blood flow was observed in the DFAT transplant group compared to the
2.蛍光ラベルしたヒトDFATのモデルマウス組織への移植
(1)試験方法
SCIDマウス下肢虚血モデル(n=16)に対し、QTracker(商品名、Life technologies社製)にて蛍光ラベルしたヒトDFAT(1x105)を左側虚血組織および右側健常組織内に移植し、移植2日、7日、15日、1ヶ月、2ヶ月、3ヶ月、4ヶ月、6ヶ月後に2匹ずつ両則筋組織および肺、肝臓、腎臓、脾臓、腎臓を採取し、肉眼的、組織学的に移植細胞の局在、分布、腫瘍形成の有無について検討を行った。組織学的なヒトDFATの同定はQTrackerによる蛍光および抗HLA抗体(市販)による免疫染色で行った。
(2)試験結果
虚血組織内では移植1ヶ月、正常筋組織では移植15日後までは移植部位を中心にDFATが検出された。一方、虚血組織内では移植2ヶ月、正常筋組織では移植1ヶ月後からは移植したDFATはほとんど検出されなくなり、その後も検討した全ての組織において、細胞の増殖性変化や腫瘍形成などの有害事象は認められなかった。 2. Transplantation of fluorescently labeled human DFAT into model mouse tissue (1) Test method For SCID mouse lower limb ischemia model (n = 16), fluorescently labeled human DFAT (1 × 10) by QTracker (trade name, manufactured by Life technologies) 5 ) transplanted into the left ischemic tissue and right healthy tissue, 2 days after transplantation, 2 days, 7 days, 15 days, 1 month, 2 months, 3 months, 4 months, 6months 2 mice each The liver, kidney, spleen, and kidney were collected, and the localization and distribution of transplanted cells and the presence or absence of tumor formation were examined macroscopically and histologically. Histological identification of human DFAT was performed by fluorescence with QTracker and immunostaining with anti-HLA antibody (commercially available).
(2) Test results DFAT was detected mainly in the transplantation site until 1 month after transplantation in ischemic tissue and 15 days after transplantation in normal muscle tissue. On the other hand, transplanted DFAT is hardly detected after 2 months of transplantation in ischemic tissue and 1 month after transplantation in normal muscle tissue, and harmful effects such as cell proliferative changes and tumor formation are observed in all tissues examined thereafter. There were no events.
(1)試験方法
SCIDマウス下肢虚血モデル(n=16)に対し、QTracker(商品名、Life technologies社製)にて蛍光ラベルしたヒトDFAT(1x105)を左側虚血組織および右側健常組織内に移植し、移植2日、7日、15日、1ヶ月、2ヶ月、3ヶ月、4ヶ月、6ヶ月後に2匹ずつ両則筋組織および肺、肝臓、腎臓、脾臓、腎臓を採取し、肉眼的、組織学的に移植細胞の局在、分布、腫瘍形成の有無について検討を行った。組織学的なヒトDFATの同定はQTrackerによる蛍光および抗HLA抗体(市販)による免疫染色で行った。
(2)試験結果
虚血組織内では移植1ヶ月、正常筋組織では移植15日後までは移植部位を中心にDFATが検出された。一方、虚血組織内では移植2ヶ月、正常筋組織では移植1ヶ月後からは移植したDFATはほとんど検出されなくなり、その後も検討した全ての組織において、細胞の増殖性変化や腫瘍形成などの有害事象は認められなかった。 2. Transplantation of fluorescently labeled human DFAT into model mouse tissue (1) Test method For SCID mouse lower limb ischemia model (n = 16), fluorescently labeled human DFAT (1 × 10) by QTracker (trade name, manufactured by Life technologies) 5 ) transplanted into the left ischemic tissue and right healthy tissue, 2 days after transplantation, 2 days, 7 days, 15 days, 1 month, 2 months, 3 months, 4 months, 6
(2) Test results DFAT was detected mainly in the transplantation site until 1 month after transplantation in ischemic tissue and 15 days after transplantation in normal muscle tissue. On the other hand, transplanted DFAT is hardly detected after 2 months of transplantation in ischemic tissue and 1 month after transplantation in normal muscle tissue, and harmful effects such as cell proliferative changes and tumor formation are observed in all tissues examined thereafter. There were no events.
[実施例4]ヒトDFAT分泌サイトカインの解析
(1)ドナー年齢の違いによる比較
(1-1)試験方法
培養ヒトDFAT(各ドナーの継代数2,4,6,8につきn=3)およびヒトASC(ヒトDFATと同一ドナー由来、各ドナーの継代数2,4,6,8につきn=3)より培養上清を採取し、実施例2、(2)と同様の方法により、分泌されたサイトカイン(HGF,VEGF)の濃度を測定した。
(i)ドナー年齢および性別
生後一ヶ月男性、生後6ヶ月男性、34歳女性、61歳男性、74歳女性の5人である。
(1-2)試験結果
HGFについては、いずれのドナー由来のヒトDFATも、同一ドナー由来のヒトASCと比べて高発現している傾向が確認された。特に継代早期(継代数2、継代数4)や高齢ドナー(74歳)では、HGF濃度の差が顕著であることが確認された(図10)。
また、VEGFについては、ヒトDFATは、同一ドナー由来のヒトASCと明らかな差はなく、ドナー年齢や継代数に影響されず、ほぼ同等に発現していることが確認された(図11)。 [Example 4] Analysis of cytokine secreted by human DFAT (1) Comparison by difference in donor age (1-1) Test method Cultured human DFAT (n = 3 for passage numbers 2, 4, 6, 8 of each donor) and human Culture supernatant was collected from ASC (derived from the same donor as human DFAT, n = 3 per passage number 2, 4, 6, 8 of each donor) and secreted by the same method as in Example 2 (2). The concentration of cytokine (HGF, VEGF) was measured.
(I) Donor age and gender There are five men: one month old male, six month old male, 34 year old female, 61 year old male and 74 year old female.
(1-2) Test Results Regarding HGF, it was confirmed that the human DFAT derived from any donor tends to be highly expressed compared to human ASC derived from the same donor. In particular, in the early passage (passage number 2, passage number 4) and elderly donors (74 years old), it was confirmed that the difference in HGF concentration was remarkable (FIG. 10).
As for VEGF, human DFAT was not clearly different from human ASC derived from the same donor, and it was confirmed that it was expressed almost equally without being influenced by donor age or passage number (FIG. 11).
(1)ドナー年齢の違いによる比較
(1-1)試験方法
培養ヒトDFAT(各ドナーの継代数2,4,6,8につきn=3)およびヒトASC(ヒトDFATと同一ドナー由来、各ドナーの継代数2,4,6,8につきn=3)より培養上清を採取し、実施例2、(2)と同様の方法により、分泌されたサイトカイン(HGF,VEGF)の濃度を測定した。
(i)ドナー年齢および性別
生後一ヶ月男性、生後6ヶ月男性、34歳女性、61歳男性、74歳女性の5人である。
(1-2)試験結果
HGFについては、いずれのドナー由来のヒトDFATも、同一ドナー由来のヒトASCと比べて高発現している傾向が確認された。特に継代早期(継代数2、継代数4)や高齢ドナー(74歳)では、HGF濃度の差が顕著であることが確認された(図10)。
また、VEGFについては、ヒトDFATは、同一ドナー由来のヒトASCと明らかな差はなく、ドナー年齢や継代数に影響されず、ほぼ同等に発現していることが確認された(図11)。 [Example 4] Analysis of cytokine secreted by human DFAT (1) Comparison by difference in donor age (1-1) Test method Cultured human DFAT (n = 3 for
(I) Donor age and gender There are five men: one month old male, six month old male, 34 year old female, 61 year old male and 74 year old female.
(1-2) Test Results Regarding HGF, it was confirmed that the human DFAT derived from any donor tends to be highly expressed compared to human ASC derived from the same donor. In particular, in the early passage (
As for VEGF, human DFAT was not clearly different from human ASC derived from the same donor, and it was confirmed that it was expressed almost equally without being influenced by donor age or passage number (FIG. 11).
本発明によれば、ヒト成熟脂肪細胞から調製されるヒト脱分化脂肪細胞(ヒトDFAT)を利用することで、末梢動脈疾患(PAD)などの虚血性疾患に対する細胞治療方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the cell therapy method with respect to ischemic diseases, such as a peripheral artery disease (PAD), can be provided by utilizing the human dedifferentiated fat cell (human DFAT) prepared from a human mature fat cell. .
Claims (5)
- ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする血流改善剤。 A blood flow improving agent comprising human dedifferentiated fat cells (human DFAT) as an active ingredient.
- ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする血管新生促進剤。 An angiogenesis promoter comprising human dedifferentiated adipocytes (human DFAT) as an active ingredient.
- ヒト脱分化脂肪細胞(ヒトDFAT)を有効成分とする虚血性疾患治療剤。 A therapeutic agent for ischemic disease comprising human dedifferentiated fat cells (human DFAT) as an active ingredient.
- 虚血性疾患が末梢動脈疾患(PAD)または虚血性心筋症である、請求項3に記載の虚血性疾患治療剤。 The ischemic disease therapeutic agent according to claim 3, wherein the ischemic disease is peripheral arterial disease (PAD) or ischemic cardiomyopathy.
- ヒト脱分化脂肪細胞(ヒトDFAT)が、1~4代継代培養されたヒト脱分化脂肪細胞(ヒトDFAT)である、請求項1~4のいずれかに記載の剤。 The agent according to any one of claims 1 to 4, wherein the human dedifferentiated adipocytes (human DFAT) are human dedifferentiated adipocytes (human DFAT) subcultured for 1 to 4 passages.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-065598 | 2015-03-27 | ||
JP2015065598A JP2018087141A (en) | 2015-03-27 | 2015-03-27 | Compositions for revascularization therapy which contain dedifferentiated fat cells as an active ingredient |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016158670A1 true WO2016158670A1 (en) | 2016-10-06 |
Family
ID=57005811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/059386 WO2016158670A1 (en) | 2015-03-27 | 2016-03-24 | Composition for vascular regeneration therapy, containing dedifferentiated fat cells as active ingredient |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018087141A (en) |
WO (1) | WO2016158670A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020066624A (en) * | 2018-10-18 | 2020-04-30 | 学校法人日本大学 | Composition for treating necrotizing enteritis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007504204A (en) * | 2003-09-05 | 2007-03-01 | サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク | Use of adipose tissue cells to initiate the formation of a functional vascular network |
-
2015
- 2015-03-27 JP JP2015065598A patent/JP2018087141A/en active Pending
-
2016
- 2016-03-24 WO PCT/JP2016/059386 patent/WO2016158670A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007504204A (en) * | 2003-09-05 | 2007-03-01 | サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク | Use of adipose tissue cells to initiate the formation of a functional vascular network |
Non-Patent Citations (7)
Title |
---|
CASTEILLA L. ET AL.: "Plasticity of human adipose lineage cellstoward endothelial cells: physiological and therapeutic perspectives", CIRCULATION, vol. 109, 2004, pages 656 - 663, XP009034616 * |
HIDEOMI KAWAUCHI ET AL.: "Kekkan Geka to Kiso Kenkyu Datsubunka Shibo Saibo o Mochiita Buta Kyoketsushi ni Taisuru Jika Saibo Ishoku Chiryo no Kento", KEKKAN GEKA, vol. 32, no. 1, 2013, pages 18 - 24 * |
JUMABAY M. ET AL.: "Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes", J. MOL. CELL . CARDIOL., vol. 53, no. 6, 2012, pages 790 - 800, XP055319355 * |
KOU L. ET AL.: "The phenotype and tissue- specific nature of multipotent cells derived from human mature adipocytes", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 444, 2014, pages 543 - 548, XP028665411 * |
SONG N. ET AL.: "The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 457, no. 3, 13 February 2015 (2015-02-13), pages 479 - 484, XP055319353 * |
TARO MATSUMOTO: "Shibo Soshiki Yurai Kansaibo Ryoho no Kiso Datsubunka Shibo Saibo(DFAT", CLINICAL EVALUATION, vol. 38, no. 4, 2011, pages 761 - 765 * |
TARO MATSUMOTO: "Shibo Yurai Kansaibo no Rinsho Oyo eno Tenkai Biological characterization and potential clinical applications of dedifferentiated fat (DFAT) cells", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 242, no. 4, 2012, pages 326 - 331 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020066624A (en) * | 2018-10-18 | 2020-04-30 | 学校法人日本大学 | Composition for treating necrotizing enteritis |
JP7348612B2 (en) | 2018-10-18 | 2023-09-21 | 学校法人日本大学 | Composition for treating necrotizing enterocolitis |
Also Published As
Publication number | Publication date |
---|---|
JP2018087141A (en) | 2018-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10639335B2 (en) | Pluripotent stem cell that induces repair and regeneration after myocardial infarction | |
Javazon et al. | Enhanced epithelial gap closure and increased angiogenesis in wounds of diabetic mice treated with adult murine bone marrow stromal progenitor cells | |
Dazzi et al. | The role of mesenchymal stem cells in haemopoiesis | |
Moon et al. | Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia | |
US7582292B2 (en) | Adipose tissue derived stromal cells for the treatment of neurological disorders | |
EP2902483B1 (en) | Method for in vitro proliferation of cell population containing cells suitable for treatment of ischemic disease | |
Bony et al. | Adipose mesenchymal stem cells isolated after manual or water-jet-assisted liposuction display similar properties | |
JP2008504290A (en) | Cell-based treatment of ischemia | |
Li et al. | CXCR4 positive bone mesenchymal stem cells migrate to human endothelial cell stimulated by ox-LDL via SDF-1α/CXCR4 signaling axis | |
Spitkovsky et al. | Adult mesenchymal stromal stem cells for therapeutic applications | |
Swart et al. | Mesenchymal stromal cells for treatment of arthritis | |
EP3643316A1 (en) | Treatment agent for epidermolysis bullosa | |
US20070053884A1 (en) | Novel adult tissue-derived stem cell and use thereof | |
Wang et al. | Pre-clinical study of human umbilical cord mesenchymal stem cell transplantation for the treatment of traumatic brain injury: safety evaluation from immunogenic and oncogenic perspectives | |
EP1771551B1 (en) | Novel cell populations and uses thereof | |
JP7546193B2 (en) | Cell population and method for obtaining same | |
WO2016158670A1 (en) | Composition for vascular regeneration therapy, containing dedifferentiated fat cells as active ingredient | |
Hou et al. | Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia | |
JP6250706B2 (en) | Use of allogeneic stromal vascular layer cells and allogeneic mesenchymal progenitor cells in the prevention or treatment of osteoarthritis | |
US20240024370A1 (en) | Pharmaceutical composition including adipose-derived regenerative cells (adrcs) for use in prevention and treatment of liver fibrosis or liver cirrhosis | |
WO2024128222A1 (en) | Composition and use thereof | |
WO2024128224A1 (en) | Composition for amplifying ability of mesenchymal stem cells to differentiate into adipocytes | |
Wilson | Determining the Effects of Aging on Murine Bone-Marrow Derived Mesenchymal Stem Cell Cardiac and Angiogenic Plasticity Potential | |
Fazel | Cardiac repair and not regeneration after myocardial infarction: the role and therapeutic utility of the c-kitSCF pathway. | |
Kronfol et al. | MADHAVAN AMRUTHA, ADEEB MONAZA, PRASANTH RITHIKA, SUNIL SURYA, TEA KOCHORADZE-MARGISHVILI 2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16772551 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16772551 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |