WO2016151997A1 - Triode type ionization vacuum gauge - Google Patents
Triode type ionization vacuum gauge Download PDFInfo
- Publication number
- WO2016151997A1 WO2016151997A1 PCT/JP2016/000699 JP2016000699W WO2016151997A1 WO 2016151997 A1 WO2016151997 A1 WO 2016151997A1 JP 2016000699 W JP2016000699 W JP 2016000699W WO 2016151997 A1 WO2016151997 A1 WO 2016151997A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filament
- grid
- ion collector
- vacuum gauge
- pressure
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L21/00—Vacuum gauges
- G01L21/30—Vacuum gauges by making use of ionisation effects
- G01L21/32—Vacuum gauges by making use of ionisation effects using electric discharge tubes with thermionic cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H41/00—Switches providing a selected number of consecutive operations of the contacts by a single manual actuation of the operating part
- H01H41/04—Switches without means for setting or mechanically storing a multidigit number
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
Definitions
- the present invention relates to a triode ionization vacuum gauge that is mounted on a measurement object such as a vacuum vessel and detects the internal pressure.
- a triode ionization vacuum gauge is known as one that accurately measures a wide pressure range of 1 Pa to 10 ⁇ 6 Pa among the pressures in the vacuum chamber during the vacuum process (see, for example, Patent Document 1 and Non-Patent Document 1). ).
- This type of triode ionization vacuum gauge includes a filament in a glass vacuum partition (housing) attached to a measurement object, a grid having a cylindrical outline disposed around the filament, And a cylindrical ion collector disposed around. Then, a direct current is applied to the filament by the filament lighting power source to cause the filament to red-hot to emit thermoelectrons, and the grid power source applies a potential higher than the filament to the grid, and another power source supplies the filament potential. Is higher than the potential of the ion collector, and positive ions of gas atoms and molecules generated by colliding with thermionic electrons around this grid are collected by the ion collector, and the pressure in the specimen is measured from the ion current at this time. Is done.
- the length in the busbar direction is usually equal to or greater than the length in the grid busbar direction, and the grid and the ion collector are concentric. Placed in.
- the triode ionization vacuum gauge disclosed in Non-Patent Document 1 when trying to obtain an emission current of about 2 mA, it was necessary to set the power supplied to the filament to about 9 W (at this time, The surface temperature of the ion collector was thought to exceed 400 ° C).
- this type of ionization vacuum gauge is also required to be reduced in size. Accordingly, the vacuum partition itself is reduced in size, and the filament, grid, and ion collector to be assembled therein. The size has also been reduced.
- the power supplied to the filament should be less than half of the conventional example (for example, 4 W) so that the vacuum partition is not heated above a predetermined temperature (for example, 50 ° C.).
- a predetermined temperature for example, 50 ° C.
- a vacuum pump is connected to the vacuum partition and evacuation is performed at a constant exhaust speed from atmospheric pressure to a high vacuum region (pressure of about 10 ⁇ 5 Pa), for example, 4 W or less so that the emission current is controlled to 1 mA.
- the pressure indication value is continuously about 10 ⁇ 5 Pa, which is the pressure near the measurement limit (lower limit) value. After descending, it was found to rise again to about 10 ⁇ 4 Pa and reach equilibrium.
- a measurement error occurs (that is, a pressure higher than the pressure of the actual measurement object is indicated).
- the inventors of the present invention have made extensive studies and the above problem arises when the supply power of the filament is relatively high (for example, 9 W) and the surface temperature of the ion collector exceeds 400 ° C. Although the power supply to the filament was lowered, both ends of the ion collector in the direction of the bus line had a relatively low collision probability of positive ions, and particles (gas molecules) could be stored. It came to know that it originates in becoming the discharge
- gas atoms and molecules (components in the atmosphere) such as moisture adhering to the grid and ion collector are gradually released and exhausted (that is, the amount of adsorption along the so-called adsorption isotherm).
- the pressure indication value decreases to its measurement limit value (for example, 10 ⁇ 5 Pa).
- the composition of atoms and molecules attached to the ion collector (mainly the inner surface) is considered to be a composition ratio that is linked to the atmosphere.
- the emitted gas or gas molecules that have become positive ions collide with the ion collector again, and are chemically or physically adsorbed as oxides on the surface of the ion collector (mainly the inner surface).
- positive ions having releasable energy continuously collide with each other as particles such as neutral molecules, neutral fragment molecules, neutral atoms or ions thereof. While being released as much as possible (that is, it is difficult to deposit as a molecular layer), in the region where the collision probability of positive ions is low, positive ions do not collide continuously.
- the thickness of the molecular layer is easily maintained.
- the gas in the vacuum partition changes to a composition corresponding to the exhaust capacity.
- the composition of the atomic and molecular layers attached to the ion collector surface also changes.
- the composition changes to an increased composition of water molecules that are difficult to exhaust. Due to this change in composition and the like, in the region where the collision probability of positive ions is low, the adsorption is dominant over the separation, and the deposition proceeds as, for example, a weakly coupled molecular layer (such as an oxide layer). Then, after the pressure has dropped to the pressure near the measurement limit, the amount of particles released gradually increases as positive ions collide with the deposited molecular layer (including adsorbed water molecules, etc.).
- the pressure indication value rises and then the balance between the release of the particles and the re-adsorption or exhaust of the released particles is maintained, it is considered that the pressure indication value is balanced at a predetermined pressure (for example, 10 ⁇ 4 Pa). . Since the amount of chemical adsorption or physical adsorption on this molecular layer and the amount of particles emitted from this molecular layer depend on the collision probability of positive ions, etc., the ion collision probability is relatively low in the direction of the bus of the ion collector. It can be said that both end portions serve as particle emission sources, leading to an increase in pressure indication value.
- the present invention has been made based on the above knowledge, and a triode ionization vacuum gauge capable of measuring the pressure of an object to be measured without measurement error by reducing the influence of particles emitted from the surface of an ion collector.
- the issue is to provide.
- a triode ionization vacuum gauge of the present invention which is mounted on a measurement object and detects the pressure inside the object, includes a filament, and a grid having a cylindrical contour disposed around the filament.
- a cylindrical ion collector arranged concentrically around the grid, a filament lighting power source that causes the filament to red heat by passing a direct current through the filament, and a grid that gives the grid a higher potential than the filament
- a power supply for making the filament potential higher than that of the ion collector, the power supplied to the filament is 4 W or less, and the emission current between the filament and the grid is in the range of 2 mA to 10 mA. It is characterized by having comprised so that it may control.
- the amount of positive ions generated is relatively low by increasing the emission current to 2 mA or more in a state where the power supplied to the filament is 4 W or less in order to prevent heating of the vacuum partition.
- the emission current With the emission current, positive ions collide continuously even at both ends of the ion collector where the positive ion collision probability is low, and deposition as a weakly coupled molecular layer (such as an oxide layer) is suppressed.
- the emission current is set to a value exceeding 10 mA, the power supplied to the filament exceeds 4 W, and the temperature of the vacuum partition also exceeds 50 ° C.
- the filament, the grid, and the ion collector are housed in a metal vacuum partition. According to this, the charge-up of the thermoelectrons to the vacuum partition is prevented, and the potential distribution in the space surrounded by the vacuum partition is always kept constant. As a result, the pressure can be measured with a constant sensitivity over a long period of time.
- triode ionization vacuum gauge of the present invention will be described with reference to the drawings.
- the mounting direction of a sensor unit to be described later with respect to a measurement target (not shown) will be described as upward.
- the triode ionization vacuum gauge IG includes a sensor unit S and a control unit C.
- the sensor unit S includes a bottomed cylindrical metal housing 1 as a vacuum partition, and is detachable from a measurement object such as a vacuum chamber (not shown) via a flange 11 (and a vacuum seal) provided on the upper part. Attached to.
- the housing 1 is made of stainless steel, nickel, an alloy of nickel and iron, aluminum alloy, copper, copper alloy, titanium, titanium alloy, tungsten, molybdenum, tantalum, or at least two kinds of alloys selected from these. . In this case, the metal housing 1 is preferably grounded.
- the housing 1 is disposed concentrically so as to surround the filament 2, a grid 3 having a cylindrical outline disposed concentrically around the filament 2, and the grid 3. And a cylindrical ion collector 4.
- the filament 2 is made of a metal such as iridium covered with yttria or tungsten, and is formed by forming a wire having a diameter of 0.1 to 0.2 mm into a hairpin shape. Both free ends of the filament 2 are positioned and supported at predetermined positions in the housing 1 by support pins 21a and 21b projecting into the housing 1 through the bottom of the housing 1 through an insulator (not shown). . In this case, the support pins 21a and 21b also serve as connection terminals (electrodes).
- the filament 2 is inserted into one end (the lower end in FIG. 1) of the grid 3 from the top portion 22a side that is folded back into a hairpin shape at the front end of the filament 2 in the insertion direction.
- the top portion 22a is arranged so as to be positioned in the vicinity of the midpoint Mp of the length of the grid 3 in the generatrix direction.
- the grid 3 includes tungsten, molybdenum, molybdenum coated with platinum, tantalum, platinum, iridium, an alloy of platinum and iridium, an alloy of nickel, nickel and iron, stainless steel, or at least two alloys selected from these The product made from is used.
- a wire rod having a diameter of 0.1 to 0.5 mm is wound in a coil shape so as to have a cylindrical outline. In this case, the top portion 22 a of the filament 2 is positioned on the hole axis Ha of the grid 3.
- the form of the grid 3 is not limited to this, The thing which assembled
- seat cylindrically may be sufficient.
- the grid 3 is also positioned and supported at a predetermined position in the housing 1 by support pins 31a and 31b projecting into the housing 1 through the bottom of the housing 1 via an insulator (not shown). In this case, the support pins 31a and 31b also serve as connection terminals.
- the ion collector 4 is made of stainless steel, molybdenum, molybdenum coated with platinum, tantalum, platinum, iridium, an alloy of platinum and iridium, an alloy of nickel, nickel and iron, or at least two alloys selected from these. Is used.
- a rectangular plate material having a thickness of 50 to 300 ⁇ m is formed into a cylindrical shape. In this case, in order to collect positive ions as much as possible, the length of the ion collector 4 in the bus bar direction is made equal to the length of the grid 3 in the bus bar direction.
- the ion collector 4 is also positioned and supported at a predetermined position in the housing 1 by support pins 41a and 41b protruding through the housing 1 through an insulator (not shown).
- the support pins 41a and 41b also serve as connection terminals.
- the form of the ion collector 4 is not limited to this, and the ion collector 4 may be formed by assembling a strip-like wire rod into a lattice shape and forming it into a cylindrical shape, or punching metal or a photo-etching sheet as a cylindrical shape. Good.
- control unit C includes a housing F (indicated by a one-dot chain line in FIG. 1), and a control unit Cu including a computer, a memory, a sequencer, and the like is built in the housing F.
- Control unit Cu is carried out by generally controls each of the like for displaying the pressure in the display processing to for example not shown a measured ion current value by the current meter A 1 of the working or below of each power supply to be described later.
- a filament lighting power source E1 for supplying a direct current to the filament 2 to red heat (light) the filament 2 and a higher potential than the filament 2 are applied to the grid 3 with respect to the grid 3.
- a power supply E2 for the grid, the potential of the filament 2 and the power source E3 to higher than the potential of the ion collector 4, and a current meter a 1 for measuring the ionic current through the ion collector 4 is incorporated.
- the housing F is provided with output terminals that are electrically connected to the power sources E1 to E3, and the sensor unit S and the control unit C are connected by a cable with a connector.
- the sensor unit S and the control unit C can be incorporated in the same housing.
- an iridium wire having a diameter of ⁇ 0.127 mm and a length of 20 mm is used as the hairpin.
- the filament 2, the grid 3 and the ion collector 4 are in accordance with the above embodiment, and a cylindrical metal housing having an inner diameter of 25 mm 1 was prepared.
- FIG. 3 is a graph showing changes in pressure in the test body over time. According to this, as indicated by a dotted line in FIG. 3, the pressure indication value of the housing 1 continuously decreases to about 10 ⁇ 5 Pa and then increases again to about 10 ⁇ 4 Pa to reach equilibrium. confirmed. In this state, when only the grid voltage was changed from 150 V to 800 V, although a slightly lower pressure was indicated, it immediately increased to the original pressure. From this, it is considered that the cause of the pressure increase is not due to the grid 3.
- the filament current and voltage from the power source E1 are appropriately controlled to change the emission current to 0.01 mA, 1 mA, 2 mA, 3 mA and 0.5 mA, respectively, every predetermined time, and the pressure in the test body over time is changed.
- Each measurement was performed, and the results are shown in FIG. According to this, it can be seen that the commanded pressure decreases as the emission current is increased.
- the pressure indication value of the housing 1 is around 10 ⁇ 5 Pa as shown by the solid line in FIG. It was confirmed that the water descended continuously until it reached equilibrium.
- the surface temperature of the ion collector 4 was measured when the emission current was changed by appropriately controlling the filament current and voltage from the power source E1, and the results are shown in FIG. According to this, even when the emission current was set to 10 mA, the temperature of the ion collector 4 was 250 ° C. or less, and the temperature of the housing 1 at that time was about 40 ° C. When the emission current was set to 10 mA, the supply power of the filament was 3.2W.
- the filament 2 is further heated by the increase of the emission current, the grid 3 and the ion collector 4 are heated and the temperature rises, and there is a possibility that the influence of the particles emitted from the surfaces thereof is reduced.
- the temperature of the ion collector 4 rising at this time is at most about plus 100 ° C.
- the temperature of the housing 1 is at most about plus 20 ° C., and there is no pressure fluctuation immediately after changing the emission current.
- the emission current is set to 2 mA or more, the amount of positive ions generated increases, and positive ions collide continuously even at both ends of the ion collector 4 where the collision probability of positive ions is low at a relatively low emission current.
- deposition as a weakly bonded molecular layer such as an oxide layer
- the triode ionization vacuum gauge IG (that is, the filament 2 and the grid 3) is configured so that a specified emission current can be obtained even when the supply power of the filament 2 is 4 W or less.
- other ammeter a 2 for measuring the emission current flowing between the filament 2 and the grid 3 to the negative output side of the power source E2 is provided, while measuring the pressure, power supply of the filaments 2 by the control unit Cu
- the power source E1 is controlled so that the emission current measured by the ammeter A2 is 4 W or less and is in the range of 2 mA to 10 mA.
- the amount of positive ions generated increases, and positive ions collide continuously at both ends of the ion collector 4 where the collision probability of positive ions is low at a relatively low emission current.
- Deposition as a weakly bound molecular layer (such as an oxide layer) is suppressed.
- the influence of particles emitted from the surface of the ion collector 4 in the high vacuum region is suppressed as much as possible when the pressure is measured by attaching to the measurement object, and the pressure of the measurement object is accurately measured. Can do. If the emission current is set to a value exceeding 10 mA, the power supplied to the filament exceeds 4 W, and the temperature of the vacuum partition also exceeds 50 ° C.
- the filament 2, the grid 3, and the ion collector 4 are housed in the metal housing 1, the charge-up of the thermoelectrons to the housing 1 is prevented, and the potential distribution in the space surrounded by the housing 1 is reduced. Always kept constant. As a result, the pressure can be measured with a constant sensitivity over a long period of time.
- the filament 22 has the apex 22a and the midpoint of the length of the ion collector 4 in the direction of the generatrix in the vicinity of the midpoint Mp of the grid 3 in the length of the generatrix.
- the present invention is not limited to this, and the position of the filament 2 with respect to the grid 3 is appropriately set upward or downward as long as the electron emission efficiency when energizing the filament 2 to emit thermal electrons does not decrease beyond a predetermined value. Can be shifted.
- the filament 2 for example, a straight shape or a coiled shape can be used. In this case, the region where the electron emission efficiency is high is the midpoint Mp of the length of the grid 3 in the generatrix direction. It arrange
- IG triode ionization vacuum gauge
- S sensor section
- C control unit
- 1 metal housing (vacuum partition wall)
- 2 filament
- 3 ... grid
- 4 ... ion collector
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
本発明は、真空容器等の測定対象物に装着されてその内部の圧力を検出するための三極管型電離真空計に関する。 The present invention relates to a triode ionization vacuum gauge that is mounted on a measurement object such as a vacuum vessel and detects the internal pressure.
スパッタリングや蒸着による成膜等、真空処理装置内で実施される真空プロセスにおいては、測定対象物としての真空チャンバ内の圧力が、例えば製品歩留まりに大きな影響を与える場合がある。真空プロセス中、真空チャンバ内の圧力のうち1Pa~10-6Paの広い圧力範囲を精度よく測定するものとして、三極管型電離真空計が知られている(例えば特許文献1、非特許文献1参照)。
In a vacuum process performed in a vacuum processing apparatus such as film formation by sputtering or vapor deposition, the pressure in a vacuum chamber as a measurement object may greatly affect, for example, product yield. A triode ionization vacuum gauge is known as one that accurately measures a wide pressure range of 1 Pa to 10 −6 Pa among the pressures in the vacuum chamber during the vacuum process (see, for example,
この種の三極管型電離真空計は、測定対象物に装着されるガラス製の真空隔壁(ハウジング)内に、フィラメントと、フィラメントの周囲に配置される、円筒状の輪郭を有するグリッドと、グリッドの周囲に配置される円筒状のイオンコレクタとを備える。そして、フィラメント点灯用の電源によりフィラメントに直流電流を通電してフィラメントを赤熱させて熱電子を放出させ、グリッド用の電源によりフィラメントより高い電位をグリッドに付与すると共に、他の電源によりフィラメントの電位をイオンコレクタの電位よりも高くして、このグリッド周辺で熱電子と衝突して生じた気体原子、分子の正イオンをイオンコレクタで捕集し、このときのイオン電流から試験体内の圧力が測定される。 This type of triode ionization vacuum gauge includes a filament in a glass vacuum partition (housing) attached to a measurement object, a grid having a cylindrical outline disposed around the filament, And a cylindrical ion collector disposed around. Then, a direct current is applied to the filament by the filament lighting power source to cause the filament to red-hot to emit thermoelectrons, and the grid power source applies a potential higher than the filament to the grid, and another power source supplies the filament potential. Is higher than the potential of the ion collector, and positive ions of gas atoms and molecules generated by colliding with thermionic electrons around this grid are collected by the ion collector, and the pressure in the specimen is measured from the ion current at this time. Is done.
イオンコレクタとしては、通常、正イオンを可及的に捕集するために、その母線方向の長さがグリッドの母線方向の長さと同等以上のものが用いられ、グリッドとイオンコレクタとは同心状に配置される。ここで、上記非特許文献1に開示されている三極管型電離真空計において、2mA程度のエミッション電流を得ようとすると、フィラメントへの供給電力を9W程度に設定する必要があった(このとき、イオンコレクタの表面温度は400℃を超えると考えられていた)。
As the ion collector, in order to collect positive ions as much as possible, the length in the busbar direction is usually equal to or greater than the length in the grid busbar direction, and the grid and the ion collector are concentric. Placed in. Here, in the triode ionization vacuum gauge disclosed in
ところで、近年、使い勝手の向上等のため、この種の電離真空計にも小型化が要請され、これに伴って、真空隔壁自体がサイズダウンされると共に、その内部に組み付けるフィラメント、グリッド及びイオンコレクタもサイズダウンされている。このような場合、上記に従い、フィラメントに9Wを超える電力を供給すると、ガラス製の真空隔壁が70℃を超える温度まで加熱されてしまい、三極管型電離真空計の取扱い上、好ましくない。このため、真空隔壁が所定温度(例えば50℃)以上に加熱されないように、フィラメントへの供給電力を上記従来例の半分以下(例えば、4W)にすることが考えられ、これには、上記特許文献1に開示の如く、例えばフィラメントの材質を適宜選択すれば、低い温度でも規定のエミッション電流が得られ(つまり、高感度で圧力測定できる)、真空隔壁が必要以上に加熱されることを防止できる。
By the way, in recent years, in order to improve usability and the like, this type of ionization vacuum gauge is also required to be reduced in size. Accordingly, the vacuum partition itself is reduced in size, and the filament, grid, and ion collector to be assembled therein. The size has also been reduced. In such a case, if a power exceeding 9 W is supplied to the filament in accordance with the above, the glass vacuum partition is heated to a temperature exceeding 70 ° C., which is not preferable in the handling of the triode ionization vacuum gauge. For this reason, it is conceivable that the power supplied to the filament should be less than half of the conventional example (for example, 4 W) so that the vacuum partition is not heated above a predetermined temperature (for example, 50 ° C.). As disclosed in
然しながら、真空隔壁に真空ポンプを接続し、大気圧から高真空領域(10-5Pa程度の圧力)まで一定の排気速度で真空引きしながら、例えばエミッション電流が1mAに制御されるように4W以下の電力でフィラメントに電力供給し、上記小型化した三極管型電離真空計にて圧力を測定すると、圧力指示値がその測定限界(下限)値付近の圧力である10-5Pa程度まで連続して下降した後、10-4Pa程度まで再度上昇して平衡になることが判明した。このような三極管型電離真空計を測定対象物に装着して圧力を測定すると、測定誤差が生じる(即ち、実際の測定対象物の圧力より高い圧力を指示する)という問題を招来する。 However, when a vacuum pump is connected to the vacuum partition and evacuation is performed at a constant exhaust speed from atmospheric pressure to a high vacuum region (pressure of about 10 −5 Pa), for example, 4 W or less so that the emission current is controlled to 1 mA. When the pressure is measured with the above-mentioned miniaturized triode-type ionization vacuum gauge, the pressure indication value is continuously about 10 −5 Pa, which is the pressure near the measurement limit (lower limit) value. After descending, it was found to rise again to about 10 −4 Pa and reach equilibrium. When such a triode-type ionization vacuum gauge is attached to a measurement object and pressure is measured, a measurement error occurs (that is, a pressure higher than the pressure of the actual measurement object is indicated).
そこで、本発明の発明者らは、鋭意研究を重ね、フィラメントの供給電力が比較的高く(例えば、9W)、イオンコレクタの表面温度が400℃を超えているような場合には上記問題が生じなかったものの、フィラメントの供給電力を低くしたことで、イオンコレクタの母線方向の両端部が、正イオンの衝突確率が比較的低く、粒子(気体分子)が溜め込まれ得る領域となり、ひいては、正イオンの衝突で放出される粒子の放出源となっていることに起因していることを知見するのに至った。つまり、真空引き当初、グリッドやイオンコレクタに付着している水分などの気体の原子や分子(大気中の成分)も徐々に放出されて排気され(即ち、所謂吸着等温線に沿って吸着量が減少する)、圧力指示値がその測定限界値(例えば、10-5Pa)まで降下していく。この時点では、イオンコレクタ(主として、内表面)に付着している原子や分子の組成は、大気と連動した組成比率になっていると考えられる。 Therefore, the inventors of the present invention have made extensive studies and the above problem arises when the supply power of the filament is relatively high (for example, 9 W) and the surface temperature of the ion collector exceeds 400 ° C. Although the power supply to the filament was lowered, both ends of the ion collector in the direction of the bus line had a relatively low collision probability of positive ions, and particles (gas molecules) could be stored. It came to know that it originates in becoming the discharge | release source of the particle | grains discharge | released by a collision. That is, at the beginning of evacuation, gas atoms and molecules (components in the atmosphere) such as moisture adhering to the grid and ion collector are gradually released and exhausted (that is, the amount of adsorption along the so-called adsorption isotherm). The pressure indication value decreases to its measurement limit value (for example, 10 −5 Pa). At this point, the composition of atoms and molecules attached to the ion collector (mainly the inner surface) is considered to be a composition ratio that is linked to the atmosphere.
放出された気体や正イオンとなった気体分子などはイオンコレクタに再度衝突し、イオンコレクタ表面(主として、内表面)に酸化物などとして化学吸着または物理吸着する。この場合、正イオンの衝突確率が高い領域では、離脱可能なエネルギを持つ正イオンが継続的に衝突することで、中性分子、中性破片分子、中性原子またはそれらのイオンなどの粒子として可及的に放出される(即ち、分子層として堆積し難い)一方で、正イオンの衝突確率が低い領域では、正イオンが継続的に衝突しないことで例えば弱結合の分子層(酸化層など)として、正イオンの衝突確率が高い領域と比較して堆積し易く、分子層の厚さを保持し易い状態となっている。 The emitted gas or gas molecules that have become positive ions collide with the ion collector again, and are chemically or physically adsorbed as oxides on the surface of the ion collector (mainly the inner surface). In this case, in a region where the collision probability of positive ions is high, positive ions having releasable energy continuously collide with each other as particles such as neutral molecules, neutral fragment molecules, neutral atoms or ions thereof. While being released as much as possible (that is, it is difficult to deposit as a molecular layer), in the region where the collision probability of positive ions is low, positive ions do not collide continuously. ) As compared with a region where the positive ion collision probability is high, and the thickness of the molecular layer is easily maintained.
更に時間が経過すると、真空隔壁内の気体は排気能力に応じた組成へと変化する。この組成変化に応じてイオンコレクタ表面(主として、内表面)に付着している原子や分子層の組成も変化する。例えば、排気され難い水分子などが増加した組成へと変化する。この組成が変化した事等を起因として、正イオンの衝突確率が低い領域では、離脱より吸着が優勢となり、例えば弱結合の分子層(酸化層など)として堆積が進行する。そして、測定限界値付近の圧力まで下降した後、堆積した分子層(更に吸着した水分子等なども含む)に正イオンが衝突することで放出される粒子の量が徐々に多くなっていくのに従い、圧力指示値が上昇し、その後、粒子の放出と、放出された粒子の再吸着や排気との均衡が保たれると、所定圧力(例えば、10-4Pa)で平衡になると考えられる。この分子層に化学吸着または物理吸着する量と、この分子層から放出される粒子の量とは正イオンなどの衝突確率に依存するため、イオンの衝突確率が比較的低いイオンコレクタの母線方向の両端部が粒子の放出源となって、圧力指示値の上昇を招いていると言える。 As time further elapses, the gas in the vacuum partition changes to a composition corresponding to the exhaust capacity. In accordance with this change in composition, the composition of the atomic and molecular layers attached to the ion collector surface (mainly the inner surface) also changes. For example, the composition changes to an increased composition of water molecules that are difficult to exhaust. Due to this change in composition and the like, in the region where the collision probability of positive ions is low, the adsorption is dominant over the separation, and the deposition proceeds as, for example, a weakly coupled molecular layer (such as an oxide layer). Then, after the pressure has dropped to the pressure near the measurement limit, the amount of particles released gradually increases as positive ions collide with the deposited molecular layer (including adsorbed water molecules, etc.). If the pressure indication value rises and then the balance between the release of the particles and the re-adsorption or exhaust of the released particles is maintained, it is considered that the pressure indication value is balanced at a predetermined pressure (for example, 10 −4 Pa). . Since the amount of chemical adsorption or physical adsorption on this molecular layer and the amount of particles emitted from this molecular layer depend on the collision probability of positive ions, etc., the ion collision probability is relatively low in the direction of the bus of the ion collector. It can be said that both end portions serve as particle emission sources, leading to an increase in pressure indication value.
本発明は、以上の知見に基づいてなされたものであり、イオンコレクタ表面から放出される粒子の影響を少なくして測定誤差なく測定対象物の圧力を測定することができる三極管型電離真空計を提供することをその課題とするものである。 The present invention has been made based on the above knowledge, and a triode ionization vacuum gauge capable of measuring the pressure of an object to be measured without measurement error by reducing the influence of particles emitted from the surface of an ion collector. The issue is to provide.
上記課題を解決するために、測定対象物に装着されてその内部の圧力を検出する本発明の三極管型電離真空計は、フィラメントと、フィラメントの周囲に配置される筒状の輪郭を有するグリッドと、グリッドの周囲に同心に配置される筒状のイオンコレクタと、フィラメントに直流電流を通電してフィラメントを赤熱させるフィラメント点灯用の電源と、グリッドに対してフィラメントより高い電位をこのグリッドに与えるグリッド用の電源と、フィラメントの電位をイオンコレクタの電位よりも高くする電源とを備え、フィラメントへの供給電力を4W以下とし、フィラメントとグリッドとの間のエミッション電流を2mA~10mAの範囲となるように制御するように構成したことを特徴とする。 In order to solve the above problem, a triode ionization vacuum gauge of the present invention, which is mounted on a measurement object and detects the pressure inside the object, includes a filament, and a grid having a cylindrical contour disposed around the filament. A cylindrical ion collector arranged concentrically around the grid, a filament lighting power source that causes the filament to red heat by passing a direct current through the filament, and a grid that gives the grid a higher potential than the filament And a power supply for making the filament potential higher than that of the ion collector, the power supplied to the filament is 4 W or less, and the emission current between the filament and the grid is in the range of 2 mA to 10 mA. It is characterized by having comprised so that it may control.
本発明によれば、真空隔壁の加熱を防止すべくフィラメントへの供給電力を4W以下とした状態で、エミッション電流を2mA以上にすることで、正イオンの生成量が増加して、比較的低いエミッション電流では正イオンの衝突確率が低いイオンコレクタの両端部においても正イオンが継続的に衝突するようになり、弱結合の分子層(酸化層など)として堆積することが抑制される。その結果、測定対象物に取り付けて圧力を測定するときに高真空領域でのイオンコレクタ表面から放出される粒子の影響が可及的に抑制され、正確に測定対象物の圧力を測定することができる。なお、エミッション電流を10mAを超える値に設定すると、フィラメントへの供給電力が4Wを超えてしまい、真空隔壁の温度も50℃を超えてしまう。 According to the present invention, the amount of positive ions generated is relatively low by increasing the emission current to 2 mA or more in a state where the power supplied to the filament is 4 W or less in order to prevent heating of the vacuum partition. With the emission current, positive ions collide continuously even at both ends of the ion collector where the positive ion collision probability is low, and deposition as a weakly coupled molecular layer (such as an oxide layer) is suppressed. As a result, the influence of particles emitted from the surface of the ion collector in the high vacuum region is suppressed as much as possible when measuring the pressure attached to the measurement object, and the pressure of the measurement object can be measured accurately. it can. If the emission current is set to a value exceeding 10 mA, the power supplied to the filament exceeds 4 W, and the temperature of the vacuum partition also exceeds 50 ° C.
また、本発明においては、前記フィラメントと、前記グリッドと、前記イオンコレクタとを金属製の真空隔壁内に収納することが好ましい。これによれば、熱電子の真空隔壁へのチャージアップが防止され、真空隔壁で囲繞された空間内の電位分布を常時一定に保持される。その結果、長時間に亘って一定の感度で圧力を測定することができる。 In the present invention, it is preferable that the filament, the grid, and the ion collector are housed in a metal vacuum partition. According to this, the charge-up of the thermoelectrons to the vacuum partition is prevented, and the potential distribution in the space surrounded by the vacuum partition is always kept constant. As a result, the pressure can be measured with a constant sensitivity over a long period of time.
以下、図面を参照して、本発明の三極管型電離真空計の実施形態を説明する。以下においては、図示省略の測定対象物に対する後述のセンサ部の装着方向を上方として説明する。 Hereinafter, embodiments of the triode ionization vacuum gauge of the present invention will be described with reference to the drawings. In the following description, the mounting direction of a sensor unit to be described later with respect to a measurement target (not shown) will be described as upward.
図1及び図2を参照して、三極管型電離真空計IGは、センサ部Sと制御部Cとから構成される。センサ部Sは、真空隔壁としての有底筒状の金属製のハウジング1を備え、その上部に設けたフランジ11(及び真空シール)を介して図外の真空チャンバ等の測定対象物に着脱自在に取り付けられる。ハウジング1としては、ステンレス、ニッケル、ニッケルと鉄との合金、アルミ合金、銅、銅合金、チタン、チタン合金、タングステン、モリブデン、タンタルまたはこれらから選択された少なくとも二種の合金製で構成される。この場合、金属製のハウジング1は、アース接地していることが好ましい。
1 and 2, the triode ionization vacuum gauge IG includes a sensor unit S and a control unit C. The sensor unit S includes a bottomed
ハウジング1は、その内部に、フィラメント2と、フィラメント2の周囲を囲うように同心に配置される、円筒状の輪郭を有するグリッド3と、グリッド3の周囲を囲うように同心に配置される、円筒状のイオンコレクタ4とを備える。フィラメント2としては、イットリアで覆ったイリジウムや、タングステンなどの金属製のものが用いられ、φ0.1~0.2mmの線材をヘアピン状に成形してなるものが用いられる。そして、フィラメント2の両自由端が、ハウジング1の底部を図示省略の絶縁体を介して貫通させてハウジング1内に突設した支持ピン21a,21bによりハウジング1内の所定位置に位置決め支持される。この場合、支持ピン21a,21bは接続端子(電極)の役割も果たす。フィラメント2は、グリッド3の一端(図1中、下端)に、フィラメント2の挿入方向前端のヘアピン状に折り返す頂部22a側から挿入される。この場合、頂部22aが、例えば、グリッド3の母線方向の長さの中点Mpの近傍に位置するように配置される。
The
グリッド3としては、タングステン、モリブデン、表面を白金で被覆したモリブデン、タンタル、白金、イリジウム、白金とイリジウムの合金、ニッケル、ニッケルと鉄との合金、ステンレスまたはこれらから選択された少なくとも二種の合金製のものが用いられる。そして、φ0.1~0.5mmの線材を円筒状の輪郭を有するようにコイル状に巻回して構成される。この場合、グリッド3の孔軸Ha上にフィラメント2の頂部22aが位置するようにしている。なお、グリッド3の形態はこれに限定されるものではなく、上記線材を格子状に組み付けて円筒状に成形したものやパンチングメタルまたはフォトエッチングシートを筒状に成形したものであってもよい。グリッド3もまた、ハウジング1の底部を図示省略の絶縁体を介して貫通させてハウジング1内に突設した支持ピン31a,31bによりハウジング1内の所定位置に位置決め支持される。この場合、支持ピン31a,31bは接続端子の役割も果たす。
The
イオンコレクタ4としては、ステンレス、モリブデン、表面を白金で被覆したモリブデン、タンタル、白金、イリジウム、白金とイリジウムの合金、ニッケル、ニッケルと鉄との合金またはこれらから選択された少なくとも二種の合金製のものが用いられる。そして、厚さ50~300μmの矩形の板材を円筒状に成形して構成される。この場合、正イオンを可及的に捕集するために、イオンコレクタ4の母線方向の長さは、グリッド3の母線方向の長さと同等にしている。イオンコレクタ4もまた、ハウジング1の底部を図示省略の絶縁体を介して貫通させてハウジング1内に突設した支持ピン41a,41bによりハウジング1内の所定位置に位置決め支持される。この場合、支持ピン41a,41bは、接続端子の役割も果たす。なお、イオンコレクタ4の形態はこれに限定されるものではなく、帯状の線材を格子状に組み付けて円筒状に成形したものやパンチングメタルまたはフォトエッチングシートを筒状に成形したものであってもよい。
The
他方、制御部Cは筐体F(図1中、一点鎖線で示す)を備え、筐体F内にはコンピュータ、メモリやシーケンサ等を備えた制御ユニットCuが内蔵されている。制御ユニットCuは、後述の各電源の作動や後述の電流計A1にて測定されたイオン電流値を処理して例えば図示省略のディスプレイに圧力を表示する等の各種制御を統括して行う。また、筐体F内には、フィラメント2に直流電流を通電してフィラメント2を赤熱(点灯)するフィラメント点灯用の電源E1と、グリッド3に対してフィラメント2より高い電位をこのグリッド3に与えるグリッド用の電源E2と、フィラメント2の電位をイオンコレクタ4の電位よりも高くする電源E3と、イオンコレクタ4を流れるイオン電流を測定する電流計A1とが内蔵されている。なお、本実施形態では、特に図示して説明しないが、筐体Fには上記各電源E1~E3に導通した出力端子が設けられ、センサ部Sと制御部Cとはコネクタ付きケーブルで接続される。また、センサ部Sと制御部Cとを同一の筐体に組み込んで構成することもできる。
On the other hand, the control unit C includes a housing F (indicated by a one-dot chain line in FIG. 1), and a control unit Cu including a computer, a memory, a sequencer, and the like is built in the housing F. Control unit Cu is carried out by generally controls each of the like for displaying the pressure in the display processing to for example not shown a measured ion current value by the current meter A 1 of the working or below of each power supply to be described later. Further, in the housing F, a filament lighting power source E1 for supplying a direct current to the
ここで、フィラメント2の供給電力が4W以下でも規定のエミッション電流が得られるように三極管型電離真空計IGを構成するために、フィラメント2として、φ0.127mm、20mmの長さのイリジウム線をヘアピン状に成形し、イットリアで覆ったもの、グリッド3として、φ0.25mmの白金クラッドモリブデン線を直径φ10mm、母線方向の長さL1を20mmに成形したもの及び、イオンコレクタ4として、厚さ0.1mmのSUS304製の板材を直径φ17mm、高さ20mmの円筒状に成形したものを用い、これらフィラメント2、グリッド3及びイオンコレクタ4を上記実施形態に従い、内径がφ25mmの円筒状の金属製のハウジング1に組み付けて試験体を用意した。
Here, in order to configure the triode ionization gauge IG so that a prescribed emission current can be obtained even when the supply power of the
次に、ハウジング1内を真空ポンプにより一定の排気速度で真空引きしながら、エミッション電流を1mAに設定して作動させ、試験体内の圧力を測定した。この場合、グリッド電圧が150V、フィラメント電圧が25V、イオンコレクタ電圧が0Vであり、圧力を測定している間、エミッション電流が1mAに保持されるように、フィラメント2への供給電圧が4Wを超えない範囲で電源E1からのフィラメント電流及び電圧が適宜制御される。図3は、時間の経過に対する試験体内の圧力の変化を示すグラフである。これによれば、図3中、点線で示すように、ハウジング1の圧力指示値が10-5Pa程度まで連続して下降した後、10-4Pa程度まで再度上昇して平衡になることが確認された。この状態で、グリッド電圧のみを150Vから800Vに変更すると、わずかに低い圧力を指示するものの、直ぐに元の圧力まで上昇した。このことから、圧力上昇の原因はグリッド3に起因するものではないと考えられる。
Next, while the
次に、電源E1からのフィラメント電流及び電圧を適宜制御して所定時間毎にエミッション電流を0.01mA、1mA、2mA、3mA及び0.5mAに夫々変化させ、時間の経過に対する試験体内の圧力を夫々測定し、その結果を図4に示す。これによれば、エミッション電流を大きくしていくと、指示する圧力が低下していくことが判る。また、エミッション電流を2mAに設定したとき、時間の経過に対する試験体内の圧力の変化を測定してみると、図3中、実線で示すように、ハウジング1の圧力指示値が10-5Pa近傍まで連続して下降し、そのまま平衡になっていることが確認された。
Next, the filament current and voltage from the power source E1 are appropriately controlled to change the emission current to 0.01 mA, 1 mA, 2 mA, 3 mA and 0.5 mA, respectively, every predetermined time, and the pressure in the test body over time is changed. Each measurement was performed, and the results are shown in FIG. According to this, it can be seen that the commanded pressure decreases as the emission current is increased. When the emission current is set to 2 mA and the change in pressure in the test body over time is measured, the pressure indication value of the
次に、電源E1からのフィラメント電流及び電圧を適宜制御してエミッション電流を変化させたときのイオンコレクタ4の表面温度を測定し、その結果を図5に示す。これによれば、エミッション電流を10mAに設定してもイオンコレクタ4の温度は250℃以下であり、そのときのハウジング1の温度は40℃程度であった。なお、エミッション電流を10mAに設定したときのフィラメントの供給電力は3.2Wであった。
Next, the surface temperature of the
以上のことから、エミッション電流の増加によりフィラメント2がより加熱されるので、グリッド3やイオンコレクタ4が加熱されて温度上昇し、それらの表面から放出される粒子の影響が少なくなる可能性が考えられるが、このとき上昇する、イオンコレクタ4の温度は精々プラス100℃程度、ハウジング1の温度は精々プラス20℃程度であり、また、エミッション電流を変化させた直後の圧力変動もみられない。その結果、エミッション電流を2mA以上にすると、正イオンの生成量が増加して、比較的低いエミッション電流では正イオンの衝突確率が低いイオンコレクタ4の両端部においても正イオンが継続的に衝突するようになり、弱結合の分子層(酸化層など)として堆積することが抑制されると考えられる。
From the above, since the
そこで、本実施形態では、以上の知見に基づき、フィラメント2の供給電力が4W以下でも規定のエミッション電流が得られるように三極管型電離真空計IG(即ち、フィラメント2やグリッド3)を構成し、電源E2の負の出力側にフィラメント2とグリッド3との間を流れるエミッション電流を測定する他の電流計A2を設け、圧力を測定している間、制御ユニットCuによりフィラメント2の供給電力が4W以下でかつ電流計A2で測定されるエミッション電流が2mA~10mAの範囲となるように電源E1を制御するように構成した。
Therefore, in the present embodiment, based on the above knowledge, the triode ionization vacuum gauge IG (that is, the
以上の実施形態によれば、正イオンの生成量が増加して、比較的低いエミッション電流では正イオンの衝突確率が低いイオンコレクタ4の両端部においても正イオンが継続的に衝突するようになり、弱結合の分子層(酸化層など)として堆積することが抑制される。その結果、測定対象物に取り付けて圧力を測定するときに高真空領域でのイオンコレクタ4表面から放出される粒子の影響が可及的に抑制され、正確に測定対象物の圧力を測定することができる。なお、エミッション電流を10mAを超える値に設定すると、フィラメントへの供給電力が4Wを超えてしまい、真空隔壁の温度も50℃を超えてしまう。また、フィラメント2と、グリッド3と、イオンコレクタ4とを金属製のハウジング1内に収納したため、熱電子のハウジング1へのチャージアップが防止され、ハウジング1で囲繞された空間内の電位分布を常時一定に保持される。その結果、長時間に亘って一定の感度で圧力を測定することができる。
According to the above embodiment, the amount of positive ions generated increases, and positive ions collide continuously at both ends of the
以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。上記実施形態では、フィラメント2の頂部22aとイオンコレクタ4の母線方向の長さの中点とがグリッド3の母線方向の長さの中点Mpの近傍に位置するものを例に配置しているが、これに限定されるものではなく、フィラメント2に通電して熱電子を放出させるときの電子放出効率が所定値を超えて低下しない範囲でグリッド3に対するフィラメント2の位置を上方または下方に適宜ずらすことができる。また、フィラメント2としては、例えば、ストレート形状のものやコイル状に巻回したものを用いることもでき、この場合、電子放出効率が高い領域が、グリッド3の母線方向の長さの中点Mp近傍に位置するように配置される。
The embodiments of the present invention have been described above, but the present invention is not limited to the above. In the embodiment described above, the filament 22 has the apex 22a and the midpoint of the length of the
IG…三極管型電離真空計、S…センサ部、C…制御部、1…金属製のハウジング(真空隔壁)、2…フィラメント、3…グリッド、4…イオンコレクタ、A1,A2…電流計。 IG ... triode ionization vacuum gauge, S ... sensor section, C ... control unit, 1 ... metal housing (vacuum partition wall), 2 ... filament, 3 ... grid, 4 ... ion collector, A 1, A 2 ... ammeter .
Claims (2)
フィラメントと、フィラメントの周囲に配置される筒状の輪郭を有するグリッドと、グリッドの周囲に同心に配置される筒状のイオンコレクタと、フィラメントに直流電流を通電してフィラメントを赤熱させるフィラメント点灯用の電源と、グリッドに対してフィラメントより高い電位をこのグリッドに与えるグリッド用の電源と、フィラメントの電位をイオンコレクタの電位よりも高くする電源とを備え、フィラメントへの供給電力を4W以下としたものにおいて、
フィラメントとグリッドとの間のエミッション電流を2mA~10mAの範囲となるように制御するように構成したことを特徴とする三極管型電離真空計。 A triode-type ionization vacuum gauge that is attached to a measurement object and detects the pressure inside the object,
A filament, a grid having a cylindrical outline arranged around the filament, a cylindrical ion collector arranged concentrically around the grid, and a filament lighting device that supplies a direct current to the filament to heat the filament red A power source for the grid that gives the grid a higher potential than the filament and a power source that makes the potential of the filament higher than the potential of the ion collector, and the power supplied to the filament is 4 W or less In things,
A triode ionization vacuum gauge configured to control an emission current between a filament and a grid to be in a range of 2 mA to 10 mA.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017507357A JP6227836B2 (en) | 2015-03-23 | 2016-02-10 | Triode type ionization vacuum gauge |
KR1020177030432A KR101982606B1 (en) | 2015-03-23 | 2016-02-10 | Triode-type ionization vacuum system |
CN201680017058.4A CN107407612B (en) | 2015-03-23 | 2016-02-10 | Triode type ionization vacuum gauge |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-059501 | 2015-03-23 | ||
JP2015059501 | 2015-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016151997A1 true WO2016151997A1 (en) | 2016-09-29 |
Family
ID=56978858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/000699 WO2016151997A1 (en) | 2015-03-23 | 2016-02-10 | Triode type ionization vacuum gauge |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6227836B2 (en) |
KR (1) | KR101982606B1 (en) |
CN (1) | CN107407612B (en) |
TW (1) | TWI626435B (en) |
WO (1) | WO2016151997A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109238559A (en) * | 2017-07-10 | 2019-01-18 | 株式会社爱发科 | Triode type ion gauge and piezometry method |
JP2021523361A (en) * | 2018-05-09 | 2021-09-02 | エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated | Partial pressure detector and method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3097706B2 (en) | 1991-08-28 | 2000-10-10 | ブラザー工業株式会社 | Sewing machine with embroidery device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013072694A (en) * | 2011-09-27 | 2013-04-22 | Ulvac Japan Ltd | Hot cathode ionization vacuum gauge |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3069975B2 (en) * | 1991-09-06 | 2000-07-24 | アネルバ株式会社 | Ionization gauge |
KR20010036738A (en) * | 1999-10-11 | 2001-05-07 | 윤종용 | A vacuum gauge |
CN1965219A (en) * | 2004-03-12 | 2007-05-16 | 布鲁克斯自动化有限公司 | Ionization gauge |
CN100427912C (en) * | 2006-03-31 | 2008-10-22 | 核工业西南物理研究院 | Fast response ionization vacuum gauge with high anti-interference ability |
EP2252869B1 (en) * | 2008-02-21 | 2018-12-12 | MKS Instruments, Inc. | Ionization gauge with operational parameters and geometry designed for high pressure operation |
DK3517921T3 (en) * | 2008-09-19 | 2021-01-18 | Mks Instr Inc | Ionization meter with control of emission current and bias potential |
JP6059257B2 (en) * | 2012-02-08 | 2017-01-11 | エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated | Ionization gauge operating at high pressure |
-
2016
- 2016-02-10 WO PCT/JP2016/000699 patent/WO2016151997A1/en active Application Filing
- 2016-02-10 JP JP2017507357A patent/JP6227836B2/en active Active
- 2016-02-10 KR KR1020177030432A patent/KR101982606B1/en active Active
- 2016-02-10 CN CN201680017058.4A patent/CN107407612B/en active Active
- 2016-03-01 TW TW105106152A patent/TWI626435B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013072694A (en) * | 2011-09-27 | 2013-04-22 | Ulvac Japan Ltd | Hot cathode ionization vacuum gauge |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109238559A (en) * | 2017-07-10 | 2019-01-18 | 株式会社爱发科 | Triode type ion gauge and piezometry method |
KR20190006434A (en) | 2017-07-10 | 2019-01-18 | 가부시키가이샤 아루박 | Triode type ionization vacuum gauge and pressure measurement method |
JP2019015666A (en) * | 2017-07-10 | 2019-01-31 | 株式会社アルバック | Triode ionization vacuum gauge and pressure measurement method |
TWI786129B (en) * | 2017-07-10 | 2022-12-11 | 日商愛發科股份有限公司 | Triode type ionization vacuum gauge and pressure measurement method |
KR102550943B1 (en) * | 2017-07-10 | 2023-07-04 | 가부시키가이샤 아루박 | Triode type ionization vacuum gauge and pressure measurement method |
CN109238559B (en) * | 2017-07-10 | 2025-01-14 | 株式会社爱发科 | Triode type ionization vacuum gauge and pressure measurement method |
JP2021523361A (en) * | 2018-05-09 | 2021-09-02 | エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated | Partial pressure detector and method |
JP7628637B2 (en) | 2018-05-09 | 2025-02-10 | エム ケー エス インストルメンツ インコーポレーテッド | Partial pressure detection device and method |
Also Published As
Publication number | Publication date |
---|---|
TWI626435B (en) | 2018-06-11 |
CN107407612A (en) | 2017-11-28 |
KR20170129919A (en) | 2017-11-27 |
CN107407612B (en) | 2020-11-03 |
JP6227836B2 (en) | 2017-11-08 |
JPWO2016151997A1 (en) | 2017-10-26 |
KR101982606B1 (en) | 2019-05-27 |
TW201643397A (en) | 2016-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5127042B2 (en) | Ionization gauge | |
US7332714B2 (en) | Quadrupole mass spectrometer and vacuum device using the same | |
CN104134604B (en) | A kind of field emitting electronic source electron beam emitting performance evaluating apparatus and evaluating method thereof | |
US20090278436A1 (en) | Ionization Vacume gauge | |
JP6227836B2 (en) | Triode type ionization vacuum gauge | |
JP5669324B2 (en) | Quadrupole mass spectrometer | |
JP5827532B2 (en) | Hot cathode ionization gauge | |
KR102550943B1 (en) | Triode type ionization vacuum gauge and pressure measurement method | |
JP6227834B2 (en) | Triode type ionization vacuum gauge | |
JP6803496B1 (en) | Pressure measurement method and hot cathode ionization vacuum gauge | |
JP5783866B2 (en) | Hot cathode ionization gauge | |
JP2000039375A (en) | Ion source | |
JP6200840B2 (en) | Hot cathode ionization gauge | |
JP4196367B2 (en) | Ionization gauge | |
JP2020118555A (en) | Hot cathode ionization gauge, pressure measurement system with hot cathode ionization gauge and pressure measurement method using hot cathode ionization gauge | |
JP2008128994A (en) | Ionization vacuum gage, and mass spectrometer using the same | |
JP2012234776A (en) | Ion source for mass spectrometer and mass spectrometer having the same | |
Yates Jr | Thermionic Emitters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16767910 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017507357 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177030432 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16767910 Country of ref document: EP Kind code of ref document: A1 |