[go: up one dir, main page]

WO2016148019A1 - 光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法 - Google Patents

光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法 Download PDF

Info

Publication number
WO2016148019A1
WO2016148019A1 PCT/JP2016/057597 JP2016057597W WO2016148019A1 WO 2016148019 A1 WO2016148019 A1 WO 2016148019A1 JP 2016057597 W JP2016057597 W JP 2016057597W WO 2016148019 A1 WO2016148019 A1 WO 2016148019A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
light reflecting
layer
sheet
semiconductor element
Prior art date
Application number
PCT/JP2016/057597
Other languages
English (en)
French (fr)
Inventor
恭也 大薮
広希 河野
逸旻 周
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016043581A external-priority patent/JP6762736B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US15/556,020 priority Critical patent/US10424703B2/en
Priority to EP16764849.2A priority patent/EP3273491B1/en
Priority to CN201680016213.0A priority patent/CN107431115A/zh
Priority to KR1020177025605A priority patent/KR102541533B1/ko
Publication of WO2016148019A1 publication Critical patent/WO2016148019A1/ja
Priority to US16/523,627 priority patent/US10923639B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • H10H20/856Reflecting means

Definitions

  • the present invention relates to an optical semiconductor element with a light reflection layer, and a method for manufacturing an optical semiconductor element with a light reflection layer and a phosphor layer, and more specifically, manufacturing an optical semiconductor element with a light reflection layer and an optical semiconductor element.
  • the present invention relates to a method, and a method for producing a light reflecting layer and an optical semiconductor element with a phosphor layer, comprising a light reflecting layer, a phosphor layer, and an optical semiconductor element.
  • Patent Document 1 a method of arranging a covering member containing light-reflecting particles on each side surface of a plurality of light-emitting elements is known (for example, see Patent Document 1).
  • Patent Document 1 first, a plurality of light-emitting elements are flip-chip mounted on a substrate at intervals in the plane direction, and then a liquid resin containing light-reflective particles by a dispenser (liquid dispensing apparatus). Are potted (dropped) between adjacent light emitting elements, and the covering member is disposed on the side surfaces of the plurality of light emitting elements.
  • the covering member from a sheet, and specifically, to embed a plurality of light emitting elements with the covering sheet.
  • the covering member adheres to the upper surface of the light emitting element. If it does so, the light emitted toward the upper side from the light emitting element will be reflected by the coating
  • An object of the present invention is to provide an optical semiconductor element with a light reflecting layer that is excellent in light extraction efficiency, and a method for manufacturing an optical semiconductor element with a light reflecting layer and a phosphor layer.
  • the present invention (1) has an electrode surface on which an electrode is provided, a light emitting surface facing the electrode surface and provided with a light emitting layer, and a connecting surface for connecting peripheral edges of the electrode surface and the light emitting surface.
  • a method for manufacturing an optical semiconductor element with a light reflection layer comprising the step of cutting the light reflection layer.
  • the light reflecting layer attached to the light emitting surfaces of the plurality of optical semiconductor elements is removed, the light emitted from the light emitting surfaces of the plurality of optical semiconductor elements can be efficiently extracted.
  • the light reflecting sheet has a shape continuous in a direction orthogonal to the thickness direction so as to include the plurality of optical semiconductor elements when projected in the thickness direction of the light reflecting sheet.
  • the manufacturing method of the optical-semiconductor element with a light reflection layer as described in (1) is included.
  • the light reflecting sheet has a shape that is continuous in a direction orthogonal to the thickness direction so as to include a plurality of optical semiconductor elements when projected in the thickness direction of the light reflecting sheet.
  • the sheet can be easily filled into the first gap.
  • the present invention (3) has an electrode surface on which an electrode is provided, a light emitting surface that faces the electrode surface and is provided with a light emitting layer, and a connecting surface that connects peripheral edges of the electrode surface and the light emitting surface.
  • a step of temporarily fixing the electrode surfaces of the plurality of optical semiconductor elements to the temporary fixing sheet with a space therebetween, and a phosphor layer so that a second gap is formed between the adjacent optical semiconductor elements Forming the light emitting surface of the plurality of optical semiconductor elements, filling the second gap with a light reflecting sheet, and forming a light reflecting layer on a side surface of the phosphor layer facing the second gap.
  • a step of removing the light reflecting layer attached to the surface of the phosphor layer, and a step of cutting the light reflecting layer between the phosphor layers adjacent to each other, and The manufacturing method of the optical semiconductor element with a fluorescent substance layer is included.
  • this invention (4) WHEREIN: In the manufacturing method of the optical semiconductor element with a light reflection layer and a fluorescent substance layer, in the process of forming the said fluorescent substance layer, it forms also in the said connection surface of these optical semiconductor elements.
  • the manufacturing method of the optical semiconductor element with a light reflection layer and fluorescent substance layer as described in (3) is included.
  • the phosphor layer is also formed on the connection surface of the optical semiconductor element in the light reflecting layer and the optical semiconductor element with the phosphor layer, the light emitted from the connection surface of the optical semiconductor element is efficiently converted into the wavelength. After that, the light can be reliably reflected by the light reflecting layer formed on the side surface of the phosphor layer facing the second gap.
  • the step of forming the phosphor layer has a fluorescence having a shape that is continuous in a direction orthogonal to the thickness direction so as to include the plurality of optical semiconductor elements when projected in the thickness direction.
  • the phosphor sheet is cut so that the second gap is formed between the step of filling the body sheet into the first gap between the optical semiconductor elements adjacent to each other and the optical semiconductor element adjacent to each other.
  • the phosphor sheet can be simply filled into the first gap, and then the second gap can be easily formed.
  • the phosphor sheet having a pattern corresponding to the light emitting surface of the plurality of optical semiconductor elements when projected in the thickness direction is used.
  • the manufacturing method of the optical semiconductor element with a body layer is included.
  • the light reflection layer is formed on the connection surface of the plurality of optical semiconductor elements, the light emitted from the connection surface of the optical semiconductor elements can be efficiently reflected by the light reflection layer.
  • the light reflecting sheet has a shape continuous in a direction orthogonal to the thickness direction so as to include the plurality of optical semiconductor elements when projected in the thickness direction of the light reflecting sheet.
  • the light reflecting sheet has a shape that is continuous in a direction orthogonal to the thickness direction so as to include a plurality of optical semiconductor elements when projected in the thickness direction of the light reflecting sheet.
  • the sheet can be easily filled in the second gap.
  • an optical semiconductor element with a light reflecting layer of the present invention According to the method for manufacturing an optical semiconductor element with a light reflecting layer of the present invention, light emitted from the light emitting surfaces of a plurality of optical semiconductor elements can be efficiently extracted.
  • the method for manufacturing a light reflecting layer and a phosphor layer-attached optical semiconductor element of the present invention light emitted from the light emitting surfaces of a plurality of optical semiconductor elements and wavelength-converted by the phosphor layer can be efficiently extracted. .
  • FIG. 1A to 1E are process diagrams of an embodiment of a method of manufacturing an optical semiconductor element with a light reflecting layer according to the present invention.
  • FIG. 1A is a temporary fixing process
  • FIG. 1B is a light reflecting sheet filling process
  • FIG. 1D shows a cutting step
  • FIG. 1E shows a peeling step.
  • FIG. 2 is a cross-sectional view of an optical semiconductor device including an optical semiconductor element with a light reflecting layer obtained by the method shown in FIGS. 1A to 1E.
  • FIG. 3 is a modified example of the first embodiment, and shows a mode in which a light reflecting sheet in which an opening is formed is used.
  • FIG. 4A to 4D are process diagrams of an embodiment (second embodiment) of a method for manufacturing an optical semiconductor element with a light reflecting layer and a phosphor layer according to the present invention.
  • FIG. 4A is a temporary fixing process
  • FIG. FIG. 4C shows a phosphor layer removing process
  • FIG. 4D shows a light reflecting sheet filling process.
  • 5E to FIG. 5G are process diagrams of an embodiment (second embodiment) of the method for manufacturing an optical semiconductor element with a light reflecting layer and a phosphor layer according to the present invention, following FIG. 4D. 2 attachment part removal process
  • FIG. 5F shows a cutting process
  • FIG. 5G shows a peeling process.
  • FIG. 6 shows a cross-sectional view of an optical semiconductor device including a light reflecting layer and an optical semiconductor element with a phosphor layer obtained by the method shown in FIGS. 4A to 5G.
  • FIG. 7 is a modified example of the second embodiment and shows a mode in which a light reflecting sheet in which an opening is formed is used.
  • 8A to 8C are process diagrams of another embodiment (third embodiment) of the method of manufacturing the optical semiconductor element with the light reflecting layer and the phosphor layer according to the present invention.
  • FIG. 8A is a temporary fixing process
  • FIG. 8B shows a phosphor sheet laminating step
  • FIG. 8C shows a light reflecting sheet filling step.
  • FIGS. 8A to 9F are process charts of another embodiment (third embodiment) of the method for manufacturing an optical semiconductor element with a light reflecting layer and a phosphor layer according to the present invention, following FIG. 8C.
  • FIG. 9E shows a cutting process and FIG. 9F shows a peeling process.
  • FIG. 10 shows a cross-sectional view of an optical semiconductor device including an optical semiconductor element with a light reflecting layer and a phosphor layer obtained by the method shown in FIGS. 8A to 9F.
  • 11A to 11D are process diagrams of an embodiment (fourth embodiment) of a method for producing an optical semiconductor element with a light reflecting layer and a phosphor layer according to the present invention.
  • FIG. 11A shows a phosphor sheet filling process
  • 11B shows a phosphor layer removing step
  • FIG. 11A shows a phosphor sheet filling process
  • 11B shows a phosphor layer removing step
  • FIG. 11C shows a light reflecting sheet filling step
  • FIG. 11D shows a step of removing the release sheet.
  • 12E to 12G are process diagrams of an embodiment (fourth embodiment) of a method for manufacturing an optical semiconductor element with a light reflecting layer and a phosphor layer according to the present invention, following FIG. 11D.
  • FIG. 12F shows a cutting process
  • FIG. 12G shows a peeling process.
  • FIG. 13 shows a cross-sectional view of an optical semiconductor device including an optical semiconductor element with a light reflecting layer and a phosphor layer obtained by the method shown in FIGS. 11A to 12G.
  • 14A to 14C are process diagrams for measuring the hardness of the light reflecting sheet, FIG.
  • FIG. 14A is a process for preparing a soft material hardness meter and a light reflecting sheet
  • FIG. 14B is a diagram showing a sensor head mounted on the light reflecting sheet
  • FIG. 14C shows a step of loading the sensor head to the light reflecting sheet with the actual load.
  • the vertical direction of the paper surface is the vertical direction (an example of the first direction and the thickness direction)
  • the upper side of the paper surface is the upper side (one side in the first direction, the one side in the thickness direction)
  • the lower side of the paper surface is the lower side ( The other side in the first direction and the other side in the thickness direction).
  • the left-right direction on the paper surface is the left-right direction (second direction orthogonal to the first direction, an example of the orthogonal direction to the thickness direction)
  • the left side on the paper surface is the left side (second side in the second direction)
  • the right side on the paper surface is the right side (the other in the second direction).
  • Side the left-right direction on the paper surface
  • the paper thickness direction is the front-rear direction (a third direction orthogonal to the first direction and the second direction, an example of a direction orthogonal to the thickness direction), the front side of the paper is the front side (one side in the third direction), and the back side of the paper is the rear side (The other side in the third direction). Specifically, it conforms to the direction arrow in each figure.
  • 1st Embodiment one Embodiment of the manufacturing method of the optical-semiconductor element with a light reflection layer
  • a temporary fixing process (refer FIG. 1A), a light reflection sheet filling process (refer FIG. 1B), and 1st adhesion.
  • a partial removal process (refer FIG. 1C), a cutting process (refer FIG. 1D), and a peeling process (refer FIG. 1E) are provided.
  • FIG. 1A temporary fixing process
  • FIG. 1B a light reflection sheet filling process
  • 1st adhesion A partial removal process (refer FIG. 1C), a cutting process (refer FIG. 1D), and a peeling process (refer FIG. 1E) are provided.
  • the temporary fixing step is a step of temporarily fixing a plurality of optical semiconductor elements 1 to the temporary fixing sheet 2 at intervals.
  • the optical semiconductor element 1 is, for example, an LED or LD that converts electrical energy into light energy.
  • the optical semiconductor element 1 is a blue LED (light emitting diode element) that emits blue light.
  • the optical semiconductor element 1 does not include a rectifier (semiconductor element) such as a transistor having a technical field different from that of the optical semiconductor element.
  • the optical semiconductor element 1 has a substantially flat plate shape along the front-rear direction and the left-right direction.
  • the optical semiconductor element 1 has an electrode surface 3, a light emitting surface 4, and a peripheral side surface 5 as an example of a connecting surface.
  • the electrode surface 3 is the lower surface of the optical semiconductor element 1 and the surface on which the electrode 6 is formed.
  • the light emitting surface 4 is the upper surface of the optical semiconductor element 1 and is disposed so as to face the electrode surface 3 with an interval on the upper side.
  • the light emitting surface 4 has a flat shape.
  • a light emitting layer 7 disposed on the optical semiconductor element 1 is provided on the light emitting surface 4. Note that the light emitting layer 7 is omitted in FIGS. 1B to 1E in order to clarify the relative arrangement of the optical semiconductor element 1 and a light reflecting layer 14 described later.
  • the peripheral side surface 5 connects the peripheral end edge of the electrode surface 3 and the peripheral end edge of the opposing surface 4.
  • the dimensions of the optical semiconductor element 1 are set as appropriate. Specifically, the thickness (height) is, for example, 0.1 ⁇ m or more, preferably 0.2 ⁇ m or more, and, for example, 500 ⁇ m or less, Preferably, it is 200 micrometers or less.
  • the length L1 in the front-rear direction and / or the left-right direction of the optical semiconductor element 1 is, for example, 0.2 mm or more, preferably 0.5 mm or more, and, for example, 3.00 mm or less, preferably 2.00 mm. It is as follows.
  • the temporary fixing sheet 2 includes a support plate 8 and a pressure-sensitive adhesive layer 9 disposed on the support plate 8.
  • the support plate 8 examples include polymer films such as polyethylene films and polyester films (such as PET), ceramic sheets such as metal foil, and the like.
  • the thickness of the support plate 8 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the pressure sensitive adhesive layer 9 is disposed on the entire upper surface of the support plate 8.
  • the pressure-sensitive adhesive layer 9 has a sheet shape on the upper surface of the support plate 8.
  • the pressure-sensitive adhesive layer 9 is formed of a pressure-sensitive adhesive whose pressure-sensitive adhesive force is reduced by, for example, treatment (for example, irradiation of ultraviolet rays or heating).
  • a support layer (not shown) for improving the mechanical strength of the pressure-sensitive adhesive layer 9 is interposed in the pressure-sensitive adhesive layer 9 in the middle of the pressure-sensitive adhesive layer 9 in the thickness direction.
  • a support layer polymer films, such as a polyethylene film and a polyester film (PET etc.), etc. are mentioned, for example.
  • the total thickness of the pressure-sensitive adhesive layer 9 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 1,000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the plurality of optical semiconductor elements 1 are temporarily fixed on the temporary fixing sheet 2 with a space therebetween in the front-rear direction and the left-right direction.
  • the electrode surfaces 3 of the plurality of optical semiconductor elements 1 are pressure-sensitive bonded to the upper surface of the pressure-sensitive adhesive layer 9 so as to ensure the interval L0 and the pitch L2 described below.
  • the plurality of optical semiconductor elements 1 are temporarily fixed to the temporary fixing sheet 2 so that the light emitting layer 7 faces upward.
  • FIG. 1A only the electrode 6 is in contact with the pressure-sensitive adhesive layer 9, but the electrode surface 3 other than the electrode 6 may be in contact with the pressure-sensitive adhesive layer 9.
  • the interval (interval in the front-rear direction and / or the left-right direction) L0 between the adjacent optical semiconductor elements 1 is, for example, 0.05 mm or more, preferably 0.1 mm or more, and, for example, 1.50 mm or less. Preferably, it is 0.80 mm or less.
  • the pitch L2 of the optical semiconductor elements 1 adjacent to each other, specifically, the sum (L1 + L0) of the length L1 and the interval L0 described above is, for example, 0.25 mm or more, preferably 0.60 mm or more. For example, it is 3.00 mm or less, preferably 2.00 mm or less.
  • the plurality of optical semiconductor elements 1 are supported on the support plate 8 via the pressure-sensitive adhesive layer 9.
  • a first gap 10 is formed between the optical semiconductor elements 1 adjacent to each other.
  • the first gap 10 has a dimension corresponding to the interval L0 and is not shown in FIG. 1A, but has a substantially grid shape in plan view.
  • the light reflecting sheet filling step is performed after the temporary fixing step (see FIG. 1A).
  • the light reflecting sheet 11 is filled into the first gap 10.
  • the light reflecting sheet 11 is provided in the light reflecting member 13 as shown in FIG. 1A.
  • the light reflection member 13 includes a release sheet 12 and a light reflection sheet 11 supported by the release sheet 12.
  • the light reflecting member 13 includes only the release sheet 12 and the light reflecting sheet 11.
  • the release sheet 12 is made of the same material as the support plate 8 described above and has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction.
  • the thickness of the release sheet 12 is, for example, 1 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the length in the front-rear direction and the length in the left-right direction of the release sheet 12 are set to be larger than or equal to those of the light reflecting sheet 11 described below.
  • the light reflecting sheet 11 is disposed on the lower surface of the release sheet 12.
  • the light reflecting sheet 11 has a layer (flat plate) shape continuous in the front-rear direction and the left-right direction.
  • the light reflecting sheet 11 has the light reflecting member 13 opposed to the upper side of the plurality of optical semiconductor elements 1 temporarily fixed to the temporarily fixing sheet 2 and projected them in the thickness direction.
  • the size (the length in the front-rear direction and the length in the left-right direction) including the plurality of optical semiconductor elements 1 is set.
  • the volume V1 of the light reflecting sheet 11 (that is, the thickness of the light reflecting sheet 11 ⁇ the length in the front-rear direction ⁇ the length in the left-right direction) is preferably larger than or equal to the total volume V0 of the first gap 10. Is set to More preferably, the volume V1 of the light reflecting sheet 11 is larger than the total volume V0 of the first gap 10. In this case, the light reflecting sheet 11 can be easily and reliably filled in the first gap 10.
  • the volume V1 of the light reflecting sheet 11 is, for example, 95% or more, preferably 103% or more, for example, 120% or less, preferably, with respect to the total volume V0 of the first gap 10. 110% or less.
  • the thickness of the light reflecting sheet 11 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and, for example, 1,000 ⁇ m or less, preferably 450 ⁇ m or less.
  • the light reflecting sheet 11 is prepared from, for example, a light reflecting composition containing a light reflecting component and a resin.
  • Examples of the light reflecting component include light reflecting particles such as inorganic particles and organic particles.
  • oxides such as titanium oxide, zinc oxide, zirconium oxide, composite inorganic oxide particles (glass and the like), for example, lead white (basic lead carbonate), carbonates such as calcium carbonate, for example, Examples include clay minerals such as kaolin.
  • an oxide is used.
  • organic particles examples include acrylic resin particles, styrene resin particles, acrylic-styrene resin particles, silicone resin particles, polycarbonate resin particles, benzoguanamine resin particles, polyolefin resin particles, polyester resin particles, and polyamides. Resin particles, polyimide resin particles, and the like. Preferably, acrylic resin particles are used.
  • the content ratio of the light reflection component is, for example, 1% by mass or more, preferably 3% by mass or more, and, for example, 80% by mass or less, preferably 75% by mass or less with respect to the light reflection composition. is there.
  • the resin is a matrix that uniformly disperses the light reflection component in the light reflection composition, and for example, the light reflection sheet 11 has a viscosity (described later) that can fill the first gap 10 with the light reflection sheet 11 when heated. It is a component to be imparted.
  • the resin include a curable resin and a thermoplastic resin.
  • a curable resin is used.
  • the curable resin include thermosetting resins such as a two-stage reaction curable resin and a one-stage reaction curable resin.
  • the two-stage reaction curable resin has two reaction mechanisms.
  • the A stage state is changed to the B stage (semi-cured), and then in the second stage reaction, the B stage state is obtained.
  • C-stage complete curing
  • the two-stage reaction curable resin is a thermosetting resin that can be in a B-stage state under appropriate heating conditions.
  • the B stage state is a state between the A stage state where the thermosetting resin is in a liquid state and the fully cured C stage state, and curing and gelation proceed slightly, and the compression elastic modulus is C stage.
  • the first-stage reaction curable resin has one reaction mechanism, and can be C-staged (completely cured) from the A-stage state by the first-stage reaction.
  • a one-stage reaction curable resin can stop the reaction in the middle of the first-stage reaction and change from the A-stage state to the B-stage state.
  • the reaction is restarted, and the thermosetting resin that can be C-staged (completely cured) from the B-stage state is included. That is, the thermosetting resin includes a thermosetting resin that can be in a B-stage state.
  • the one-stage reaction curable resin cannot be controlled to stop in the middle of the one-stage reaction, that is, cannot enter the B stage state, and is changed from the A stage state to the C stage (completely cured). ) Can be included.
  • thermosetting resin includes a thermosetting resin that can be in a B-stage state.
  • thermosetting resin examples include silicone resin, epoxy resin, urethane resin, polyimide resin, phenol resin, urea resin, melamine resin, and unsaturated polyester resin.
  • the thermosetting resin that can be in the B-stage state preferably includes a silicone resin and an epoxy resin, and more preferably includes a silicone resin.
  • silicone resin examples include a phenyl silicone resin containing a phenyl group in the molecule, for example, a methyl silicone resin containing a methyl group in the molecule.
  • B-stage phenyl-based silicone resin is once melted or liquefied by heating and then completely cured.
  • the B-stage methyl silicone resin is once softened or plasticized by heating and then completely cured.
  • the B-staged phenyl silicone resin is easier to form the first adhesion portion 17 (described later) in the light reflecting sheet filling step shown in FIG. 1B than the B-staged methyl silicone resin.
  • the viscosity of the B-stage silicone resin gradually decreases as the temperature rises, and thereafter, when the temperature rise is continued, the viscosity gradually increases and becomes a C-stage silicone resin.
  • thermosetting resin may be the same type or a plurality of types.
  • the blending ratio of the resin is, for example, 10% by mass or more, preferably 25% by mass or more, and for example, 99% by mass or less, preferably 97% by mass or less with respect to the light reflecting composition.
  • the light reflecting composition may contain an additive at an appropriate ratio.
  • the light reflecting sheet 11 for example, first, a light reflecting component, a resin, and an additive that is added as necessary are blended to prepare a varnish of the light reflecting composition. Subsequently, the varnish is applied to the surface of the release sheet 12. Thereafter, when the light reflecting composition contains a thermosetting resin that can be in a B-stage state, the light reflecting composition is B-staged (semi-cured). Specifically, the light reflecting composition is heated.
  • the heating temperature is, for example, 50 ° C. or more, preferably 70 ° C. or more, and for example, 120 ° C. or less, preferably 100 ° C. or less.
  • the heating time is, for example, 5 minutes or more, preferably 10 minutes or more, and for example, 20 minutes or less, preferably 15 minutes or less.
  • the light reflecting sheet 11 is formed.
  • the light reflecting sheet 11 in the B stage state is formed on the surface of the release sheet 12.
  • the melt viscosity of the light reflecting sheet 11 at 60 ° C. is, for example, 40 Pa ⁇ s or more, for example, 1,000 Pa ⁇ s or less, preferably 300 Pa ⁇ s or less.
  • the melt viscosity is measured using an E-type viscometer.
  • melt viscosity at 60 ° C. is equal to or less than the above upper limit, the viscosity of the light reflecting sheet 11 is sufficiently lowered by hot pressing (described later), and the light reflecting sheet 11 is quickly and surely filled into the first gap 10. be able to.
  • melt viscosity at 60 ° C. is equal to or higher than the lower limit described above, the light reflecting sheet 11 is suppressed from being excessively soft, and the light reflecting sheet 11 flows toward the outside so as to be separated from the optical semiconductor element 1. Can be suppressed.
  • the light reflecting member 13 is pressure-bonded to the temporary fixing sheet 2 and the optical semiconductor element 1.
  • the light reflecting member 13, the temporary fixing sheet 2, and the optical semiconductor element 1 are set in a press so that the light reflecting sheet 11 and the optical semiconductor element 1 are opposed to each other in the thickness direction. For example, hot pressing is performed.
  • the heat press conditions are set as appropriate.
  • the temperature of the hot press is 60 ° C. or higher, preferably 70 ° C. or higher, and 200 ° C. or lower, preferably 180 ° C. or lower.
  • the pressure of the hot press is, for example, 0.01 MPa or more, preferably 0.10 MPa or more, and for example, 10.00 MPa or less, preferably 5.00 MPa or less.
  • the time for hot pressing is, for example, 1 minute or more, preferably 3 minutes or more, and for example, 60 minutes or less, preferably 30 minutes or less.
  • the hot press can be performed a plurality of times.
  • This light press fills the first gap 10 with the light reflecting sheet 11 (light reflecting composition).
  • the light reflecting layer 14 made of the light reflecting composition (light reflecting sheet 11) is formed in a shape in which the first gap 10 is filled.
  • the portion filled in the first gap 10 is a first filling portion 33.
  • the light reflecting layer 14 (first filling portion 33) covers the peripheral side surface 5 of the optical semiconductor element 1. That is, the light reflection layer 14 is formed on the peripheral side surface 5 of the plurality of optical semiconductor elements 1.
  • the light reflecting layer 14 also covers the surface exposed from the electrode 6 in the electrode surface 3 of the optical semiconductor element 1. Furthermore, the light reflecting layer 14 is covered and attached to the light emitting surface 4 of the optical semiconductor element 1. In the light reflecting layer 14, a portion attached to the light emitting surface 4 is a first attached portion 17.
  • the light reflecting layer 14 has a flat upper surface 15.
  • the upper surface 15 of the first attachment portion 17 and the upper surface 15 of the portion located on the first filling portion 33 are the front-rear direction and the left-right direction. It is the same as that.
  • the thickness T1 of the first adhesion portion 17 is, for example, 1 ⁇ m or more, for example, 500 ⁇ m or less, and further 200 ⁇ m or less.
  • the release sheet 12 is peeled from the light reflecting layer 14 as indicated by the arrow in FIG. 1B. Specifically, the release sheet 12 is peeled off from the upper surface 15 of the light reflecting layer 14.
  • the light reflecting layer-attached optical semiconductor element 16 including the plurality of optical semiconductor elements 1 and the light reflecting layer 14 having the first filling portion 33 and the first attached portion 17, and the electrode surface 3 on the temporary fixing sheet 2. Get in a temporarily fixed state.
  • the upper surface of the optical semiconductor element 16 with the light reflecting layer is composed of the upper surface 15 of the light reflecting layer 14.
  • the light emitting surface 4 of the optical semiconductor element 1 is covered with the light reflecting layer 14.
  • the optical semiconductor element 16 with the light reflection layer including the optical semiconductor element 1 and the light reflection layer 14 is obtained in a state of being temporarily fixed to the temporary fixing sheet 2.
  • the first attached portion 17 is removed.
  • the pressure-sensitive adhesive sheet 18 is prepared from a pressure-sensitive adhesive and has a sheet shape continuous in the front-rear direction and the left-right direction.
  • the size of the pressure-sensitive adhesive sheet 18 is set to a size that can include the first attached portion 17 when, for example, the pressure-sensitive adhesive sheet 18 is projected in the thickness direction.
  • Examples of pressure sensitive adhesives include acrylic pressure sensitive adhesives, rubber pressure sensitive adhesives, silicone pressure sensitive adhesives, urethane pressure sensitive adhesives, polyacrylamide pressure sensitive adhesives, and the like.
  • the pressure-sensitive adhesive sheet 18 may be supported by a support material or the like.
  • the pressure-sensitive adhesive sheet 18 has an adhesive strength (180 ° C. peel adhesive strength) at 25 ° C.
  • the pressure-sensitive adhesive sheet 18 was cut to a width of 20 mm, and this was pressure-sensitively bonded to a silicone wafer. After that, the pressure-sensitive adhesive sheet 18 was subjected to a peeling test at a peeling speed of 100 mm / min and a peeling angle of 180 ° C. It is measured as the adhesive strength.
  • the pressure-sensitive adhesive surface of the pressure-sensitive adhesive sheet 18 (when the pressure-sensitive adhesive sheet 18 supports a support material, first, the opposite side surface to the surface supported by the support material) ) Is disposed opposite to the upper surface 15 of the light reflecting layer 14 including the first attached portion 17 and pressure-sensitively adhered to the first attached portion 17, and then the first attached portion 17 is peeled off from the light emitting surface 4.
  • the pressure-sensitive adhesive sheet 18 is lowered, and then, as shown in the center part of FIG. Then, as shown in the left part of FIG. 1B, the pressure-sensitive adhesive sheet 18 is raised (pulled up) together with the first adhesion part 17.
  • the first adhesion portion 17 is peeled off at the interface between the first adhesion portion 17 and the light emitting surface 4 and follows the pressure-sensitive adhesive sheet 18.
  • the portion located on the first filling portion 33 also follows the pressure-sensitive adhesive sheet 18 together with the first attachment portion 17. That is, in the light reflection layer 14, the first adhesion portion 17 and the portion located on the first filling portion 33 are removed. That is, in the light reflecting layer 14, when projected in the front-rear direction and the left-right direction, the portion 34 (upper layer portion 34) located above the light emitting surface 4 is removed.
  • the upper surface 15 of the first filling portion 33 is flush with the light emitting surface 4 in the front-rear direction and the left-right direction. That is, the upper surface 15 of the first filling portion 33 and the light emitting surface 4 form the same plane.
  • thermosetting resin B-stage thermosetting resin
  • the light reflecting layer 14 is heated and cured (fully cured).
  • the heating temperature is, for example, 100 ° C. or more, preferably 120 ° C. or more, and for example, 200 ° C. or less, preferably 150 ° C. or less.
  • the heating time is, for example, 10 minutes or more, preferably 30 minutes or more, and for example, 180 minutes or less, preferably 120 minutes or less.
  • a solvent capable of completely or partially dissolving or dispersing the light reflecting composition forming the first adhesion portion 17 is selected.
  • the solvent include organic solvents and aqueous solvents.
  • the organic solvent include alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, aliphatic hydrocarbons such as hexane, aromatic hydrocarbons such as toluene, and ethers such as tetrahydrofuran. Is mentioned.
  • alcohol and aromatic hydrocarbon are used.
  • Examples of the pressure-sensitive adhesive sheet 18 include the pressure-sensitive adhesive sheet 18 described in (1).
  • thermosetting resin B stage thermosetting resin
  • the light reflecting layer 14 is heated to be cured (completely cured).
  • the above-described solvent is then absorbed into the cloth, and the upper surface 15 of the cured light reflecting layer 14 is wiped with the cloth. Even when the upper surface 15 of the light reflecting layer 14 is wiped with this solvent, the first attached portion 17 remains.
  • the remaining first adhering portion 17 is removed using the pressure-sensitive adhesive sheet 18 described in (1).
  • polishing member examples include cloths such as buffs, brushes, and water blasting.
  • the upper surface 15 of the light reflecting layer 14 in the optical semiconductor element 16 with the light reflecting layer is polished by the polishing member. As a result, the upper layer portion 34 including the first adhesion portion 17 is removed.
  • the polishing timing of the upper surface 15 by the polishing member is either before or after the light reflecting layer 14 is cured when the resin is a thermosetting resin (B stage thermosetting resin). There may be.
  • Cutting Step As shown in FIG. 1D, the cutting step is performed after the first attached portion removing step (see FIG. 1C).
  • the light reflecting layer 14 is cut between the optical semiconductor elements 1 adjacent to each other. That is, in the cutting step, the first filling portion 33 is cut. Thereby, in the optical semiconductor element 16 with a light reflection layer, a plurality of optical semiconductor elements 1 are separated into pieces.
  • a dicing apparatus using a disc-shaped dicing saw (dicing blade) 19 for example, a cutting apparatus using a cutter, for example, cutting of a laser irradiation apparatus or the like A device is used.
  • a dicing apparatus is used.
  • the blade thickness T3 of the dicing saw 19 is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the light reflecting layer 14 is formed with cutting grooves 20 aligned along the front-rear direction and the left-right direction between the adjacent optical semiconductor elements 1. .
  • the cutting groove 20 penetrates the light reflecting layer 14 in the thickness direction.
  • the cutting groove 20 is not illustrated in FIG. 1D, the cutting groove 20 has a substantially grid pattern in a plan view.
  • the cutting groove 20 may also be formed in the pressure-sensitive adhesive layer 9 as shown in a partially enlarged view in FIG. 1D. In that case, the lower end portion of the cutting groove 20 reaches midway in the thickness direction of the pressure-sensitive adhesive layer 9. That is, the cutting groove 20 is cut into both the light reflecting layer 14 and the pressure sensitive adhesive layer 9.
  • the width W1 of the cutting groove 20 corresponds to a cutting device (preferably the blade thickness T3 of the dicing saw 19), and specifically, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more. It is 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the side surface 32 facing the cutting groove 20 is formed in the light reflecting layer 14 (first filling portion 33) by the cutting groove 20.
  • the optical semiconductor with a light reflection layer comprising one optical semiconductor element 1 separated into pieces, and the light reflection layer 14 that covers the peripheral side surface 5, exposes the light emitting surface 4, and is partitioned by the cutting groove 20.
  • the element 16 is obtained while being supported by the temporarily fixing sheet 2.
  • the support plate 8 is peeled from the pressure-sensitive adhesive layer 9 as shown by the downward arrow in FIG. 1E.
  • a treatment such as ultraviolet irradiation or heating is performed on the interface between the support plate 8 and the pressure-sensitive adhesive layer 9.
  • a treatment such as ultraviolet irradiation or heating is performed on the interface between the support plate 8 and the pressure-sensitive adhesive layer 9.
  • the optical semiconductor element 16 with the light reflecting layer is peeled from the pressure-sensitive adhesive layer 9.
  • a pick-up device including a collet and a suction pump connected thereto is used. Specifically, the collet is brought into contact with the light emitting surface 4, and then the suction pump is driven, and then the collet is pulled up.
  • an optical semiconductor element 16 with a light reflecting layer that includes one optical semiconductor element 1 and a light reflecting layer 14 that covers the peripheral side surface 5 of the optical semiconductor element 1 and exposes the light emitting surface 4.
  • the optical semiconductor element 16 with a light reflection layer is composed of only the optical semiconductor element 1 and the light reflection layer 14.
  • the side surface 32 of the light reflecting layer 14 is exposed to the side, and the light reflecting surface 14 and the light reflecting layer 14 located around the light emitting surface 4 are located.
  • the upper surface 15 of the electrode 6 is exposed on the upper side, and the lower surface of the electrode 6 is exposed on the lower side.
  • the light emitting surface 4 of the optical semiconductor element 1 is flush with the upper surface 15 of the light reflecting layer 14.
  • the optical semiconductor element 16 with a light reflecting layer is not an optical semiconductor device 60 (see FIG. 2) described below, that is, does not include the substrate 50 provided in the optical semiconductor device 60. That is, in the optical semiconductor element 16 with a light reflecting layer, the electrode 6 is not electrically connected to the terminal 51 provided on the substrate 50.
  • the optical semiconductor element 16 with the light reflecting layer is a component for manufacturing the optical semiconductor device 60, that is, a component for distributing the component alone and industrially usable.
  • the electrode 6 of the optical semiconductor element 16 with the light reflecting layer is electrically connected to a terminal 51 provided on the upper surface of the substrate 50.
  • the optical semiconductor element 16 with a light reflecting layer is flip-chip mounted on the substrate 50.
  • the optical semiconductor device 60 including the optical semiconductor element 16 with the light reflecting layer and the substrate 50 is obtained. That is, the optical semiconductor device 60 includes the substrate 50, the optical semiconductor element 1 mounted on the substrate 50, and the light reflection layer 14 that covers the peripheral side surface 5 of the optical semiconductor element 1.
  • the optical semiconductor device 60 preferably includes only the substrate 50, the optical semiconductor element 1, and the light reflecting layer 14.
  • the light emitting layer 7 is located above the optical semiconductor element 1, and the light emitting surface 4 is exposed upward from the light reflecting layer 14.
  • the light reflecting sheet 11 has a shape that is continuous in the front-rear direction and the left-right direction so as to include a plurality of optical semiconductor elements 1 when projected in the thickness direction. Therefore, as shown in FIG. 1B, the light reflecting sheet 11 can be easily filled in the first gap 10 (see FIG. 1A).
  • Second attached portion removing step of the first embodiment, first, the second attached portion 31 in the light reflecting layer 14 is removed using the pressure-sensitive adhesive sheet 18.
  • the resin contained in the light reflecting layer 14 is a thermosetting resin (B stage thermosetting resin)
  • the light reflecting layer 14 is heated and cured (completely cured).
  • the light reflecting layer 14 can be first heated and cured (completely cured), and then the second adhesion portion 31 in the light reflecting layer 14 can be removed using the pressure-sensitive adhesive sheet 18.
  • the solvent and the pressure-sensitive adhesive sheet 18 are used in combination. However, when the second adhesion portion 31 in the light reflection layer 14 can be sufficiently removed by the solvent, the second adhesion portion 31 in the light reflection layer 14 can be removed only by the solvent.
  • the light reflecting sheet 11 has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction on the lower surface of the release sheet 12.
  • a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction on the lower surface of the release sheet 12.
  • it can also have a pattern shape corresponding to the first gap 10.
  • the light reflecting sheet 11 has a plurality of openings 21 formed therein.
  • the opening 21 has the same shape as the outer shape of the optical semiconductor element 1 when projected in the thickness direction.
  • the light reflecting sheet 11 has the same shape as the first gap 10 when projected in the thickness direction.
  • the light reflecting layer 14 is attached to the light emitting surface 4 to form the first attached portion 17.
  • the light reflecting sheet 11 shown in FIG. 1A in the first embodiment is more likely to cause the first adhesion portion 17 (see FIG. 1B) than the light reflecting sheet 11 shown in FIG. 3 in the modification, that is, the present invention. This problem is likely to occur.
  • the cutting process (refer FIG. 1D) is implemented after the 1st adhesion part removal process (refer FIG. 1C).
  • a 1st adhesion part removal process (refer FIG. 1C) can also be implemented after a cutting process (refer FIG. 1D).
  • the cutting step is performed after the first attached portion removing step (see FIG. 1C).
  • the first attached portion removing step (see FIG. 1C) is performed by “(1) Method using pressure-sensitive adhesive sheet 18” and / or “(3 )) Method using polishing member ”, the pressure-sensitive adhesive of the pressure-sensitive adhesive sheet 18 and / or the polishing member enters the cutting groove 20 (see FIG. 1D) formed by the cutting step, and the first The filling portion 33 (the light reflecting layer 14 covering the peripheral side surface 5) may be removed by the pressure-sensitive adhesive sheet 18 and / or the polishing member.
  • it is 1st Embodiment, the above-mentioned fear can be eliminated.
  • the light reflecting sheet 11 is filled.
  • “(2) Method using solvent” can be adopted.
  • the hardness of the light reflecting sheet 11 of the B stage is set to 95 or more and 99 or less, for example.
  • the hardness of the light reflecting sheet 11 is calculated using, for example, a soft material hardness meter (manufactured by Citizen Seimitsu: CH-R01, sensor head diameter: 2 mm).
  • a soft material hardness meter 71 is prepared.
  • the soft material hardness meter 71 is connected to the plunger 74 extending in the vertical direction, the sensor head 72 provided at the lower end of the plunger 74, the cylinder 73 that houses the plunger 74, and the sensor head 72. Is provided with a processing device (not shown) configured to be able to detect the position.
  • the sensor head 72 has a substantially spherical shape.
  • the plunger 74 is applied to the light reflecting sheet 11 at an initial load of 8.3 mN for 5 seconds. At this time, the position of the lower end portion of the sensor head 72 is input to a processing device (not shown).
  • the sensor head 72 applies a load of 150 mN to the light reflecting sheet 11 for 20 seconds. Then, the plunger 74 sinks into the light reflecting sheet 11. At this time, the position of the lower end portion of the sensor head 72 is input to a processing device (not shown).
  • the distance d at which the sensor head 72 sinks from the surface of the light reflecting sheet 11 is measured. Based on the formula, the hardness is calculated.
  • Hardness [1- ⁇ Distance d into which the sensor head 72 sinks (substantial load subtraction ⁇ substantial initial load) ( ⁇ m) / 300 (reference value) ( ⁇ m) ⁇ ] ⁇ 100 It measures 5 times with respect to one light reflection sheet 11, The average value is obtained as hardness.
  • the filling time of the light reflecting sheet 11 is appropriately set according to the filling temperature.
  • the filling time of the light reflecting sheet 11 is, for example, 250 seconds or more and 600 seconds or less.
  • the filling temperature of the light reflecting sheet 11 is 90 ° C.
  • the filling time of the light reflecting sheet 11 is, for example, not less than 400 seconds and not more than 750 seconds.
  • the filling temperature of the light reflecting sheet 11 is 80 ° C.
  • the filling time of the light reflecting sheet 11 is, for example, not less than 800 seconds and not more than 1,000 seconds.
  • the first attached portion 17 when the first attached portion 17 is removed by “(2) Method using a solvent” (described later), the first attached portion 17 can be more reliably removed.
  • the peeling step is performed as shown in FIG. 1E, but the peeling step may not be performed.
  • the optical semiconductor element 1 is separated into one piece and the light reflecting layer 14, and is supported by the temporary fixing sheet 2 (the support plate 8 and the pressure-sensitive adhesive layer 9).
  • the plurality of optical semiconductor elements 16 with a light reflection layer in the state are also components for producing the optical semiconductor device 60, and are distributed as individual components and used as industrially usable devices.
  • the plurality of optical semiconductor elements 16 with the light reflecting layer supported only by the pressure-sensitive adhesive layer 9 are also components for producing the optical semiconductor device 60. It is distributed alone and used as an industrially available device.
  • a phosphor layer or the like may be provided on the light emitting surface 4 of the optical semiconductor element 16 with a light reflecting layer shown in FIG. 1E.
  • a second embodiment of the present invention (one embodiment of a method for manufacturing a light reflecting layer and an optical semiconductor element with a phosphor layer) includes a temporary fixing step (see FIG. 4A) and a phosphor layer forming step (FIGS. 4B and 4C).
  • a light reflecting sheet filling step (see FIG. 4D), a second attached portion removing step (see FIG. 5E), a cutting step (see FIG. 5F), and a peeling step (see FIG. 5G).
  • the temporary fixing step is a step of temporarily fixing a plurality of optical semiconductor elements 1 to the temporary fixing sheet 2 at intervals.
  • the phosphor layer formation step is performed after the temporary fixing step (see FIG. 4A).
  • the phosphor layer 26 is formed on the light emitting surfaces 4 and the peripheral side surfaces 5 of the plurality of optical semiconductor elements 1 so that the second gaps 23 are formed between the adjacent optical semiconductor elements 1. To do.
  • a phosphor sheet 24 is prepared.
  • the phosphor sheet 24 is provided on the phosphor member 25.
  • the phosphor member 25 includes a release sheet 12 and a phosphor sheet 24 supported by the release sheet 12.
  • the phosphor member 25 includes only the release sheet 12 and the phosphor sheet 24.
  • the phosphor sheet 24 is formed on the lower surface of the release sheet 12 and has a layer (flat plate) shape that is continuous in the front-rear direction and the left-right direction.
  • the phosphor sheet 24 is prepared from, for example, a phosphor composition containing a phosphor and a resin.
  • the phosphor converts the wavelength of light emitted from the optical semiconductor element 1.
  • Examples of the phosphor include a yellow phosphor that can convert blue light into yellow light, and a red phosphor that can convert blue light into red light.
  • yellow phosphor examples include silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)), for example, Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce), Tb 3 Al 3 O 12 : Ce (TAG (terbium, aluminum, garnet): Ce) Examples thereof include oxynitride phosphors such as Ca- ⁇ -SiAlON.
  • silicate phosphors such as (Ba, Sr, Ca) 2 SiO 4 ; Eu, (Sr, Ba) 2 SiO 4 : Eu (barium orthosilicate (BOS)
  • Y 3 Al Garnet-type phosphors having a garnet-type crystal structure such as 5 O 12 : Ce (YAG (yttrium, aluminum, garnet): Ce
  • red phosphor examples include nitride phosphors such as CaAlSiN 3 : Eu and CaSiN 2 : Eu.
  • the phosphor is preferably a yellow phosphor, more preferably a garnet phosphor.
  • Examples of the shape of the phosphor include a spherical shape, a plate shape, and a needle shape.
  • the average value of the maximum length of the phosphor (in the case of a sphere, the average particle diameter) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, and for example, 200 ⁇ m or less, preferably 100 ⁇ m or less. But there is.
  • Fluorescent substances can be used alone or in combination.
  • the blending ratio of the phosphor is, for example, 5% by mass or more, preferably 10% by mass or more, and for example, 80% by mass or less, preferably 70% by mass or less with respect to the phosphor composition.
  • the resin is a matrix that uniformly disperses the phosphor in the phosphor composition, and is, for example, a component that imparts to the phosphor sheet 24 a viscosity capable of filling the phosphor sheet 24 into the first gap 10 when heated. .
  • the resin is the same as the resin contained in the light reflecting composition in the first embodiment.
  • the blending ratio of the resin is the balance of the blending ratio of the phosphor (and the light reflection component and / or additive described below).
  • the fluorescent composition may contain a light reflection component and / or an additive in an appropriate ratio.
  • the phosphor sheet 24 for example, a phosphor, a resin, and a light reflection component and / or an additive that are added as necessary are blended to prepare a varnish of the phosphor composition. Subsequently, the varnish is applied to the surface of the release sheet 12. Thereafter, when the fluorescent composition contains a thermosetting resin that can be in a B-stage state, the fluorescent composition is B-staged (semi-cured). Specifically, the fluorescent composition is heated. Thereby, the phosphor sheet 24 is formed.
  • the physical properties (storage shear modulus G ′ and the like) of the phosphor sheet 24 are appropriately selected from the physical properties of the light reflecting composition in the first embodiment.
  • the thickness of the phosphor sheet 24 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 1,000 ⁇ m or less, preferably 450 ⁇ m or less.
  • the phosphor sheet 24 faces the light reflecting member 13 to the upper side of the plurality of optical semiconductor elements 1 temporarily fixed to the temporary fixing sheet 2 and projects them in the thickness direction.
  • the size (the length in the front-rear direction and the length in the left-right direction) including the plurality of optical semiconductor elements 1 is set.
  • the phosphor member 25 is hot pressed against the temporarily fixed sheet 2.
  • the phosphor sheet 24 (phosphor composition) is filled in the first gap 10 by a hot press (phosphor sheet filling step).
  • a portion filled in the first gap 10 is a second filling portion 35.
  • the phosphor sheet 24 facing the plurality of optical semiconductor elements 1 covers the light emitting surfaces 4 of the plurality of optical semiconductor elements 1.
  • the phosphor layer 26 is formed on the light emitting surface 4 and the peripheral side surface 5 of the plurality of optical semiconductor elements 1 from the phosphor sheet 24.
  • the phosphor layer 26 has a plurality of optical semiconductor elements 1 embedded therein.
  • the phosphor layer 26 has a continuous shape in the front-rear direction and the left-right direction. Further, the phosphor layer 26 has an upper surface 27 as an example of a flat surface.
  • the phosphor layer 26 also covers the surface exposed from the electrode 6 in the electrode surface 3 of the optical semiconductor element 1.
  • the phosphor layer 26 is cut between the adjacent optical semiconductor elements 1.
  • the phosphor layer 26 between the optical semiconductor elements 1 adjacent to each other is obtained by a disc-shaped dicing saw (dicing blade) 28 (see FIG. 4B) having a predetermined width (blade thickness T4). That is, the second filling portion 35 is cut.
  • dicing blade dicing blade
  • the dicing saw 28 has the same width (same blade thickness T4) as it goes from the inner side to the outer side in the radial direction.
  • the blade thickness T4 of the dicing saw 28 is thicker than the blade thickness T3 (see FIG. 1D) of the dicing saw 19 obtained by cutting the light reflecting layer 14 in the first embodiment.
  • it is 150% or more, preferably 200% or more, more preferably 300% or more, and for example, 10,000% or less.
  • the blade thickness T4 of the dicing saw 28 is appropriately set corresponding to the width W2 (see FIG. 4C) of the second gap 23 described below, and is, for example, 100 ⁇ m or more, preferably 200 ⁇ m or more.
  • it is 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the phosphor layer 26 between the adjacent optical semiconductor elements 1 is cut by etching (phosphor layer removing step).
  • a second gap 23 is formed in the phosphor layer 26 between the adjacent optical semiconductor elements 1.
  • the second gap 23 penetrates the phosphor layer 26 in the thickness direction.
  • the second gap 23 is formed in the second filling portion 35 and the portion located on the second filling portion 35 in the phosphor layer 26.
  • the second gap 23 has a substantially grid shape in plan view.
  • the opening cross-sectional shape and the opening cross-sectional area at the lower end thereof are the same as the opening cross-section and the opening cross-sectional area at the upper end.
  • the width W3 of the phosphor layer 26 formed on the peripheral side surface 5 is adjusted to a desired dimension. That is, in cutting the phosphor layer 26 formed on the peripheral side surface 5, the phosphor layer 26 is trimmed so that the width W3 of the phosphor layer 26 has a predetermined dimension.
  • the width W3 of the phosphor layer 26 formed on the peripheral side surface 5 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the width W3 of the phosphor layer 26 is the same over the thickness direction.
  • the width W2 of the second gap 23 is, for example, 100 ⁇ m or more, preferably 200 ⁇ m or more, and for example, 2,000 ⁇ m or less, preferably 1,000 ⁇ m or less.
  • the width W2 of the second gap 23 is the same across the thickness direction.
  • a plurality of phosphor layers 26 are formed corresponding to the plurality of optical semiconductor elements 1 in a pattern covering the light emitting surfaces 4 and the peripheral side surfaces 5 of the plurality of optical semiconductor elements 1.
  • Each of the plurality of phosphor layers 26 has a substantially U-shaped cross section that opens downward.
  • the light reflecting sheet filling step is performed after the phosphor layer forming step (FIGS. 4B and 4C).
  • the light reflecting sheet 11 (see FIG. 4C) is filled in the second gap 23.
  • the light reflecting sheet 11 is the same as the light reflecting sheet 11 of the first embodiment.
  • the light reflecting member 13, the temporary fixing sheet 2, the optical semiconductor element 1, and the phosphor layer 26 are set in a press machine so that the light reflecting sheet 11 and the phosphor layer 26 face each other. For example, hot pressing.
  • the light reflecting sheet 11 (light reflecting composition) is filled in the second gap 23 by this pressing. Thereby, the light reflection layer 14 made of the light reflection composition (light reflection sheet 11) is formed in a shape filled in the second gap 23. In the light reflecting layer 14, the portion filled in the second gap 23 is a third filling portion 37.
  • the light reflecting layer 14 (third filling portion 37) covers the peripheral side surface 29 of the phosphor layer 26 formed on the peripheral side surface 5 of the optical semiconductor element 1. Further, the light reflecting layer 14 is coated and attached to the upper surface 27 of the phosphor layer 26 formed on the light emitting surface 4 of the optical semiconductor element 1. In the light reflecting layer 14, the portion attached to the upper surface 27 of the phosphor layer 26 is a second attached portion 31.
  • the light reflecting layer 14 has a flat upper surface 15.
  • the second adhesion portion 31 and the portion located on the third filling portion 37 are flush with each other in the front-rear direction and the left-right direction.
  • the thickness T2 of the second adhesion portion 31 is, for example, 1 ⁇ m or more, for example, 50 ⁇ m or less, and further 200 ⁇ m or less.
  • the release sheet 12 is peeled from the light reflecting layer 14 as shown by the arrow in FIG. 4D. Specifically, the release sheet 12 is peeled off from the upper surface 15 of the light reflecting layer 14.
  • the upper surface 15 of the light reflecting layer 14 is exposed. Thereby, the light reflecting layer 14 having the plurality of optical semiconductor elements 1, the phosphor layer 26 formed on the light emitting surface 4 and the peripheral side surface 5 of the optical semiconductor element 1, the third filling portion 37 and the second adhesion portion 31. And the optical semiconductor element 30 with a phosphor layer are obtained in a state where the electrode surface 3 of the optical semiconductor element 1 is temporarily fixed to the temporary fixing sheet 2.
  • 2nd adhesion part removal process As shown to FIG. 5E, a 2nd adhesion part removal process is implemented after a light reflection sheet filling process (refer FIG. 4D).
  • the second attached portion removing step the second attached portion 31 is removed.
  • the portion of the light reflecting layer 14 located on the third filling portion 37 is also removed together with the second adhesion portion 31. That is, the portion 36 (upper layer portion 36) located above the upper surface 27 of the phosphor layer 26 is removed in the light reflecting layer 14 when projected in the front-rear direction and the left-right direction.
  • the method for removing the second adhering portion 31 is the same as the method for removing the first adhering portion 17 exemplified in the first embodiment. Specifically, (1) a method using the pressure-sensitive adhesive sheet 18, for example, although not shown, (2) a method using a solvent, for example, although not shown, (3) a method using a polishing member is employed.
  • the pressure-sensitive adhesive sheet 18 is used to remove the second adhesion portion 31 in the light reflecting layer 14, and then the resin contained in the light reflecting layer 14 is a thermosetting resin (B stage).
  • the light reflecting layer 14 is heated to be cured (completely cured).
  • the solvent and the pressure-sensitive adhesive sheet 18 are used in combination.
  • thermosetting resin B stage thermosetting resin
  • the light reflecting layer 14 is heated and cured. (Completely cured).
  • the solvent is then absorbed into the cloth, and the upper surface 15 of the cured light reflecting layer 14 is wiped with the cloth. Even if the upper surface 15 of the light reflecting layer 14 is wiped with this solvent, the second attached portion 31 remains.
  • the polishing timing of the upper surface 15 by the polishing member is either before or after the light reflecting layer 14 is cured when the resin is a thermosetting resin (B stage thermosetting resin). There may be.
  • the upper surface 15 of the third filling portion 37 is flush with the upper surface 27 of the phosphor layer 26 in the front-rear direction and the left-right direction. That is, the upper surface 27 of the phosphor layer 26 exposed from the light reflecting layer 14 and the upper surface 15 of the third filling portion 37 of the light reflecting layer 14 form the same plane.
  • Cutting Step As shown in FIG. 5F, the cutting step is performed after the second attached portion removing step (see FIG. 5E).
  • the light reflecting layer 14 is cut between the optical semiconductor elements 1 adjacent to each other. Specifically, the third filling portion 37 (see FIG. 5E) is cut.
  • the method for cutting the light reflecting layer 14 is the same as that of the first embodiment.
  • the cutting groove 20 may also be formed in the pressure-sensitive adhesive layer 9 although not shown in FIG. 5F. In that case, the lower end portion of the cutting groove 20 reaches midway in the thickness direction of the pressure-sensitive adhesive layer 9. That is, the cutting groove 20 is cut into both the light reflecting layer 14 and the pressure sensitive adhesive layer 9.
  • the cutting grooves 20 aligned along the front-rear direction and the left-right direction are formed between the adjacent optical semiconductor elements 1.
  • the support plate 8 is peeled from the pressure-sensitive adhesive layer 9 as shown by the downward arrow in FIG. 5G.
  • a plurality of light reflecting layers and optical semiconductor elements 30 with a phosphor layer which are aligned in the front-rear direction and the left-right direction with a space (width W1) therebetween, are supported by the pressure-sensitive adhesive layer 9. ,can get.
  • the light reflecting layer and the optical semiconductor element 30 with the phosphor layer are peeled from the pressure-sensitive adhesive layer 9.
  • the method of peeling the light reflecting layer and the optical semiconductor element 30 with the phosphor layer from the pressure-sensitive adhesive layer 9 is the same as the method exemplified in the first embodiment.
  • one optical semiconductor element 1, a phosphor layer 26 covering the light emitting surface 4 and the peripheral side surface 5 of the optical semiconductor element 1, and a light reflecting layer 14 covering the peripheral side surface 29 of the phosphor layer 26 are provided.
  • the optical semiconductor element 30 with a light reflection layer and a phosphor layer is obtained.
  • the optical semiconductor element 30 with the light reflection layer and the phosphor layer includes only the optical semiconductor element 1, the phosphor layer 26, and the light reflection layer 14.
  • the side surface 32 of the light reflecting layer 14 is exposed to the side, and the upper surface 27 of the phosphor layer 26 and the upper surface of the light reflecting layer 14 located around the upper surface 27. 15 is exposed on the upper side, and the lower surface of the electrode 6 is exposed on the lower side.
  • the upper surface 27 of the phosphor layer 26 is flush with the upper surface 15 of the light reflecting layer 14.
  • the optical semiconductor element 30 with the light reflecting layer and the phosphor layer is not the optical semiconductor device 60 (see FIG. 6), that is, does not include the substrate 50 provided in the optical semiconductor device 60. That is, in the optical semiconductor element 30 with the light reflecting layer and the phosphor layer, the electrode 6 is not electrically connected to the terminal 51 provided on the substrate 50. Furthermore, the optical semiconductor element 30 with the light reflection layer and the phosphor layer is a component for manufacturing the optical semiconductor device 60, that is, a component for manufacturing the optical semiconductor device 60. It is a device.
  • the electrode 6 of the optical semiconductor element 30 with the light reflecting layer and the phosphor layer is electrically connected to a terminal 51 provided on the upper surface of the substrate 50.
  • the optical semiconductor element 30 with the light reflecting layer and the phosphor layer is flip-chip mounted on the substrate 50.
  • the optical semiconductor device 60 including the optical semiconductor element 30 with the light reflection layer and the phosphor layer and the substrate 50 is obtained. That is, the optical semiconductor device 60 includes the substrate 50, the optical semiconductor element 1 mounted on the substrate 50, the phosphor layer 26 that covers the light emitting surface 4 and the peripheral side surface 5 of the optical semiconductor element 1, and the phosphor layer 26. A light reflecting layer 14 covering the peripheral side surface 29.
  • the optical semiconductor device 60 preferably includes only the substrate 50, the optical semiconductor element 1, the phosphor layer 26, and the light reflecting layer 14. In the optical semiconductor device 60, the phosphor layer 26 and the light reflecting layer 14 are in contact with the substrate 50.
  • the phosphor sheet 24 can be simply filled in the first gap 10, and then the second gap 23 can be easily formed as shown in FIG. 4C. it can.
  • the phosphor sheet 24 shown in FIG. 4A has a shape that is continuous in the front-rear direction and the left-right direction so as to include the plurality of optical semiconductor elements 1 when projected in the thickness direction. Therefore, as shown in FIG. 4B, the phosphor sheet 24 can be easily filled in the first gap 10.
  • Second attached portion removing step of the second embodiment, first, the second attached portion 31 in the light reflecting layer 14 is removed using the pressure-sensitive adhesive sheet 18.
  • the resin contained in the light reflecting layer 14 is a thermosetting resin (B stage thermosetting resin)
  • the light reflecting layer 14 is heated and cured (completely cured).
  • the light reflecting layer 14 can be first heated and cured (completely cured), and then the second adhesion portion 31 in the light reflecting layer 14 can be removed using the pressure-sensitive adhesive sheet 18.
  • Second attached portion removing step of the second embodiment, a solvent and a pressure-sensitive adhesive sheet 18 are used in combination. However, when the second adhesion portion 31 in the light reflection layer 14 can be sufficiently removed by the solvent, the second adhesion portion 31 in the light reflection layer 14 can be removed only by the solvent.
  • the fluorescent substance layer formation process is implemented using the fluorescent substance sheet 24, without using the fluorescent substance sheet 24, the varnish of a fluorescent composition is used, for example.
  • a phosphor layer 26 having a continuous shape in the front-rear direction and the left-right direction as shown in FIG. 4B can be formed.
  • the phosphor layer 26 is cut.
  • the light reflection sheet 11 has a layer (flat plate) shape which continues in the front-back direction and the left-right direction in the whole lower surface of the peeling sheet 12, FIG. As shown, it may have a pattern shape corresponding to the second gap 23.
  • a plurality of openings 21 are formed in the light reflecting sheet 11.
  • the opening 21 has the same shape as the outer shape of the phosphor layer 26 when projected in the thickness direction.
  • the light reflecting sheet 11 has the same shape as the second gap 23 when projected in the thickness direction.
  • the light reflecting layer 14 is attached to the upper surface 27 of the phosphor layer 26 to form the second attached portion 31.
  • the light reflecting sheet 11 shown in FIG. 4C in the second embodiment is more likely to produce the second attached portion 31 than the light reflecting sheet 11 shown in FIG. .
  • the cutting process (refer FIG. 5F) is implemented after the 2nd adhesion part removal process (refer FIG. 5E).
  • the second attached portion removing step (see FIG. 5E) can be performed.
  • a cutting step is performed after the second attached portion removing step (see FIG. 5E) (second embodiment).
  • the attached portion removing step is performed by “(1) Method using pressure-sensitive adhesive sheet 18” and / or “(3) Polishing”. If the method using the member is performed, the pressure-sensitive adhesive of the pressure-sensitive adhesive sheet 18 and / or the abrasive member enters the cutting groove 20 formed by the cutting step, and the third filling portion 37 (phosphor layer) 26 may be removed by the pressure sensitive adhesive sheet 18 and / or the polishing member. On the other hand, if it is 2nd Embodiment, the above-mentioned fear can be eliminated.
  • the filling temperature and time of the light reflection sheet 11 are controlled.
  • the second attached portion removing step can be performed, and then the light reflecting layer 14 can be C-staged (completely cured).
  • “(2) Method using solvent” is preferably employed.
  • the hardness of the light reflecting sheet 11 of the B stage is set to 95 or more and 99 or less, for example. The measurement of hardness is the same as described above.
  • the filling temperature and filling time of the light reflecting sheet 11 are the same as described above.
  • the peeling process is performed, but the peeling process may not be performed. That is, as shown in FIG. 5F, the optical semiconductor element 1, the light reflecting layer 14, and the phosphor layer 26, which are separated into pieces, are provided, and the temporary fixing sheet 2 (the support plate 8 and the pressure-sensitive adhesive layer).
  • the plurality of optical semiconductor elements 16 with a light reflecting layer supported in 9) are also components for producing the optical semiconductor device 60, and are distributed as individual components and used as industrially available devices.
  • the plurality of optical semiconductor elements 16 with a light reflecting layer supported only by the pressure-sensitive adhesive layer 9 are also components for producing the optical semiconductor device 60 and can be distributed and used industrially. Used as a simple device.
  • a third embodiment of the present invention (another embodiment of a method for manufacturing a light reflecting layer and an optical semiconductor element with a phosphor layer) includes a temporary fixing step (see FIG. 8A) and a phosphor sheet laminating step (see FIG. 8B). And a light reflecting sheet filling step (see FIG. 8C), a second attached portion removing step (see FIG. 9D), a cutting step (see FIG. 9E), and a peeling step (see FIG. 9F).
  • Phosphor sheet laminating step As shown in FIG. 8B, the phosphor sheet laminating step is performed after the provisional step (see FIG. 8A).
  • a phosphor sheet 24 having a pattern corresponding to the light emitting surfaces 4 of the plurality of light reflecting sheets 11 is prepared when projected in the thickness direction.
  • the phosphor sheet 24 has a second opening 38 having the same pattern as the first gap 10 when projected in the thickness direction. Thereby, the phosphor sheet 24 is partitioned by the second opening 38 and has the same size and pattern shape as the light emitting surface 4 of the light reflecting sheet 11.
  • the phosphor sheet 24 may be prepared from a phosphor ceramic plate.
  • the phosphor member 25 is composed only of the phosphor sheet 24, and the phosphor member 25 may not include the release sheet 12 (see the phantom line in FIG. 8A).
  • the phosphor sheet 24 is laminated on the light emitting surface 4 as shown in FIG. 8B.
  • the phosphor sheet 24 is formed as a phosphor layer 26 that covers the light emitting surface 4 of the optical semiconductor element 1.
  • the second gap 23 is formed from the first gap 10 of the optical semiconductor element 1 and the second opening 38 (see FIG. 8A) of the phosphor layer 26 that communicates with the upper side of the first gap 10.
  • Both the peripheral side surface 29 of the phosphor layer 26 and the peripheral side surface 5 of the optical semiconductor element 1 face the second gap 23 and are flush with each other in the thickness direction.
  • the light reflecting sheet filling step is performed after the phosphor sheet stacking step (see FIG. 8B).
  • the light reflecting sheet 11 (see FIG. 8B) is filled in the second gap 23.
  • the light reflecting layer 14 has the third filling portion 37 that continuously covers the peripheral side surface 5 of the optical semiconductor element 1 and the peripheral side surface 29 of the phosphor layer 26.
  • the light reflecting layer 14 is attached to the upper surface 27 of the phosphor layer 26 so as to have a second attached portion 31. Further, the light reflecting layer 14 covers the surface exposed from the electrode 6 in the electrode surface 3 of the optical semiconductor element 1.
  • the phosphor layer 26 covering the light emitting surface 4 of the optical semiconductor element 1, the peripheral side surface 29 of the phosphor layer 26, and the peripheral side surface 5 of the optical semiconductor element 1
  • An optical semiconductor element 30 with a light reflection layer and a phosphor layer provided with the light reflection layer 14 to be coated is obtained.
  • the electrode 6 of the optical semiconductor element 30 with the light reflecting layer and the phosphor layer is electrically connected to the terminal 51 of the substrate 50. Accordingly, the substrate 50, the optical semiconductor element 1 mounted on the substrate 50, the phosphor layer 26 covering the light emitting surface 4 of the optical semiconductor element 1, the peripheral side surface 29 of the phosphor layer 26, and the optical semiconductor element An optical semiconductor device 60 including the light reflecting layer 14 covering the one peripheral side surface 5 is obtained.
  • the light reflecting layer 14 is formed on the peripheral side surface 5 of the plurality of optical semiconductor elements 1, so that light is emitted from the peripheral side surface 5 of the optical semiconductor element 1.
  • the reflected light can be efficiently reflected by the light reflecting layer 14.
  • a second dicing saw (dicing blade) 28 having the same blade thickness T4 is used from the radially inner side toward the outer side. Then, the phosphor layer 26 is cut.
  • the phosphor layer 26 is cut using a second dicing saw (dicing blade) 43 whose blade thickness becomes narrower from the inner side toward the outer side in the radial direction.
  • a second dicing saw (dicing blade) 43 whose blade thickness becomes narrower from the inner side toward the outer side in the radial direction.
  • the fourth embodiment of the present invention (one embodiment of a method for manufacturing a light reflecting layer and an optical semiconductor element with a phosphor layer) includes a temporary fixing step (see FIG. 11A) and a phosphor layer forming step (FIGS. 11A to C).
  • a light reflecting sheet filling step (see FIG. 11D), a second attached portion removing step (see FIG. 12E), a cutting step (see FIG. 12F), and a peeling step (see FIG. 12G). Processes different from those of the second embodiment will be described.
  • Phosphor layer forming step is a step (1) of forming the phosphor layer 26 on the light emitting surface 4 and the peripheral side surface 5 of the plurality of optical semiconductor elements 1 (see FIG. 11A), and the plurality of optical semiconductor elements 1. And the step (2) of transferring the phosphor layer 26 to the second fixing sheet 40 (see FIG. 11B) and the step (3) of cutting the phosphor layer 26 supported by the second fixing sheet 40 (see FIG. 11C). ). In the phosphor layer forming step, step (1), step (2), and step (3) are sequentially performed.
  • step (1) is the same as the “phosphor layer forming step” (see FIGS. 4B and 4C) in the second embodiment.
  • the second fixing sheet 40 includes a second support plate 41 and a second pressure-sensitive adhesive layer 42 disposed on the second support plate 41.
  • the second fixing sheet 40 is a transfer sheet on which the plurality of optical semiconductor elements 1 and the phosphor layer 26 are transferred from the temporary fixing sheet 2.
  • Each of the second support plate 41 and the second pressure-sensitive adhesive layer 42 is the same as each of the support plate 8 and the pressure-sensitive adhesive layer 9 exemplified in the second embodiment.
  • the second fixing is performed on the upper side of the plurality of optical semiconductor elements 1 and the phosphor layer 26.
  • the sheet 40 is disposed.
  • the second pressure-sensitive adhesive layer 42 faces the phosphor layer 26.
  • the second pressure-sensitive adhesive layer 42 and the phosphor layer 26 are brought into contact with the second fixing sheet 40 in proximity to the phosphor layer 26. Then, the some optical semiconductor element 1 and the fluorescent substance layer 26 are peeled from the pressure sensitive adhesive layer 9 (temporary fixing sheet 2).
  • the plurality of optical semiconductor elements 1 and the phosphor layers 26 are transferred from the temporary fixing sheet 2 to the second fixing sheet 40.
  • the some optical semiconductor element 1 and the fluorescent substance layer 26 are obtained in the state supported by the 2nd fixing sheet 40.
  • FIG. The electrode 6 and the electrode side surface 3 in the optical semiconductor element 1 are directed upward.
  • the electrode 6 is exposed on the upper side.
  • the light emitting surface 4 faces downward.
  • step (3) the phosphor layer 26 (second filling portion 35) is cut from the phosphor layer 26 using a second dicing saw (dicing blade) 43.
  • the second dicing saw 43 has a shape in which the blade thickness gradually decreases from the center toward the radially outer side.
  • the second dicing saw 43 has a tapered surface that becomes narrower toward the outside in the radial direction.
  • the second dicing saw 43 has a substantially V-shaped cross section.
  • the angle ⁇ of the tapered surface of the second dicing saw 43 with respect to the virtual plane along the radial direction is, for example, 10 degrees or more, preferably 30 degrees or more, and, for example, 60 degrees or less, preferably 80 degrees or less. It is.
  • the second dicing saw 43 is disposed on the upper side of the phosphor layer 26, and then the second dicing saw 43 is lowered, and the tip of the second dicing saw 43 (radially outer end). Part) is brought into contact with the upper surface of the phosphor layer 26. Subsequently, the tip of the second dicing saw 43 is lowered until it penetrates all the thickness direction of the phosphor layer 26 and further contacts the second pressure-sensitive adhesive layer 42. Subsequently, the second dicing saw 43 is moved in the front-rear direction and the left-right direction.
  • the second gap 23 having a smaller opening cross-sectional area is formed toward the lower side.
  • the second gap 23 has a shape corresponding to the tapered surface of the second dicing saw 43. That is, the second gap 23 has a shape that becomes smaller as the opening cross-sectional area decreases downward.
  • the second gap 23 has a shape in which a distance between two opposing sides extending in the thickness direction becomes narrower as viewed in a cross-sectional view.
  • the second gap 23 has a substantially triangular shape that is pointed downward.
  • the second gap 23 penetrates the phosphor layer 26 in the thickness direction. Furthermore, the lower end portion of the second gap 23 may reach the middle of the second pressure-sensitive adhesive layer 42 in the thickness direction, as shown in the partially enlarged view of FIG. 11C. That is, the second gap 23 may be cut into both the phosphor layer 26 and the second pressure-sensitive adhesive layer 42.
  • the peripheral side surface 29 of the phosphor layer 26 is a tapered surface that is inclined inward in the left-right direction (on the side of the optical semiconductor element 1 between the adjacent optical semiconductor elements 1) toward the upper side (electrode 6 side).
  • the distance (width) W4 between the lower ends of the peripheral side surfaces 29 of the adjacent optical semiconductor elements 1 is, for example, 50 ⁇ m or more, preferably 100 ⁇ m or more, and for example, 600 ⁇ m or less, preferably 400 ⁇ m or less.
  • the third filling portion 37 which is a portion filled in the second gap 23, has the same shape as the second gap 23 (a substantially trapezoidal cross section having an upper base longer than the lower bottom). Further, the light reflecting layer 14 has a second attachment portion 31 attached to the upper surface 27 of the phosphor layer 26 facing the electrode side surface 3.
  • the plurality of optical semiconductor elements 1, the phosphor layer 26 that covers the electrode side surface 3, the light emitting surface 4, and the peripheral side surface 5 of the optical semiconductor element 1, and the light reflecting layer that covers the peripheral side surface 29 of the phosphor layer 26. 14 and the optical semiconductor element 30 with the light reflection layer and the phosphor layer are obtained in a state of being temporarily fixed to the second fixing sheet 40.
  • one optical semiconductor element 1 a phosphor layer 26 that covers the electrode side surface 3, the light emitting surface 4, and the peripheral side surface 5 of the optical semiconductor element 1, and a light reflection layer that covers the peripheral side surface 29 of the phosphor layer 26. 14 and an optical semiconductor element 30 with a phosphor layer and a phosphor layer.
  • the optical semiconductor element 30 with the light reflection layer and the phosphor layer includes only the optical semiconductor element 1, the phosphor layer 26, and the light reflection layer 14.
  • the side surface 32 of the light reflecting layer 14 is exposed to the side.
  • the upper surface 27 of the phosphor layer 26, the upper surface 15 of the light reflecting layer 14 located around the upper surface 27, and the electrode 6 are exposed on the upper side, and they are flush with each other.
  • the lower surface of the phosphor layer 26 and the lower surface of the light reflecting layer 14 are exposed on the lower side, and they are flush with each other.
  • the inner side surface of the light reflecting layer 14 is a tapered surface corresponding to the peripheral side surface 29 of the phosphor layer 26.
  • the outer surface 32 of the light reflecting layer 14 is a vertical surface along the thickness direction.
  • the width W5 of the upper end portion of the light reflecting layer 14 (the electrode side surface 3 side end portion of the optical semiconductor element 1) is expressed by the following formula when the thickness of the phosphor layer 26 is T5.
  • W5 (T5 ⁇ tan ⁇ ) + W6 ( ⁇ is an angle ⁇ (see FIG. 13) formed by the peripheral side surface (outer surface) 29 of the phosphor layer 26 and the peripheral side surface (outer surface) of the light reflecting layer 14, and the second dicing saw 43 (FIG. 11B) described above.
  • W6 is the width of the lower end portion of the light reflecting layer 14 and the width of the end portion of the optical semiconductor element 1 on the light emitting surface 4 side.
  • the width W5 of the upper end portion of the light reflecting layer 14 is, for example, 25 ⁇ m or more, preferably 50 ⁇ m or more, and, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less.
  • the electrode 6 of the optical semiconductor element 30 with the light reflecting layer and the phosphor layer is electrically connected to a terminal 51 provided on the upper surface of the substrate 50.
  • the optical semiconductor element 30 with the light reflecting layer and the phosphor layer is flip-chip mounted on the substrate 50.
  • the optical semiconductor device 60 includes the substrate 50, the optical semiconductor element 1 mounted on the substrate 50, the phosphor layer 26 that covers the electrode side surface 3, the light emitting surface 4, and the peripheral side surface 5 of the optical semiconductor element 1.
  • a light reflecting layer 14 that covers the peripheral side surface 29 of the body layer 26.
  • the optical semiconductor device 60 preferably includes only the substrate 50, the optical semiconductor element 1, the phosphor layer 26, and the light reflecting layer 14. In the optical semiconductor device 60, the phosphor layer 26 and the light reflecting layer 14 are in contact with the substrate 50.
  • the phosphor layer 26 is cut using a second dicing saw (dicing blade) 43 so as to be longer than the lower bottom.
  • a second gap 23 having a substantially trapezoidal cross section with a bottom is formed, and a third filling portion 37 of the light reflecting layer 14 is formed in the second gap 23 as shown in FIG. 11D.
  • the inner surface of the light reflecting layer 14 can be easily tapered.
  • the inner surface of the light reflecting layer 14 is the above-described tapered surface, so that the luminance can be improved.
  • the phosphor layer 26 is cut using a second dicing saw (dicing blade) 43.
  • the present invention is not limited to the above as long as the second gap 23 having a substantially trapezoidal cross section having an upper base longer than the lower base can be formed.
  • a water jet can also be used.
  • An optical semiconductor element with a light reflection layer, an optical semiconductor element with a light reflection layer, and a phosphor layer are used in a method for manufacturing an optical semiconductor device.

Landscapes

  • Led Device Packages (AREA)

Abstract

光反射層付光半導体素子の製造方法は、電極が設けられる電極面、電極面に対向し、発光層が設けられる発光面、および、電極面と発光面との周端縁を連結する連結面を有する複数の光半導体素子の電極面を、仮固定シートに互いに間隔を隔てて仮固定する工程と、光反射シートを互いに隣接する光半導体素子の第1隙間に充填して、光反射層を複数の光半導体素子の連結面に形成する工程と、複数の光半導体素子の発光面に付着する光反射層を除去する工程と、互いに隣接する光半導体素子の間において、光反射層を切断する工程とを備える。

Description

光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法
 本発明は、光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法、詳しくは、光反射層および光半導体素子を備える光反射層付光半導体素子の製造方法、および、光反射層、蛍光体層および光半導体素子を備える、光反射層および蛍光体層付光半導体素子の製造方法に関する。
 従来、複数の発光素子のそれぞれの側面に、光反射性粒子を含有する被覆部材を配置する方法が知られている(例えば、特許文献1参照)。
 特許文献1では、まず、複数の発光素子を、基板に、面方向に互いに間隔を隔ててフリップチップ実装し、その後、ディスペンサ(液体定量吐出装置)により、光反射性粒子を含有する液状の樹脂を、隣接する発光素子の間に、ポッティング(滴下)して、被覆部材を複数の発光素子の側面に配置している。
特開2010-238846号公報
 近年、被覆部材を、シートから形成することが試案されており、具体的には、被覆シートによって複数の発光素子を埋設することが試案されている。
 しかし、このような試案では、発光素子の上面に被覆部材が付着する。そうすると、発光素子から上側に向かって発光された光は、被覆部材により反射され、そのため、効率的に外部に取り出されないという不具合がある。
 本発明の目的は、光の取出効率に優れる光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法を提供することにある。
 本発明(1)は、電極が設けられる電極面、前記電極面に対向し、発光層が設けられる発光面、および、前記電極面と前記発光面との周端縁を連結する連結面を有する複数の光半導体素子の前記電極面を、仮固定シートに互いに間隔を隔てて仮固定する工程と、光反射シートを互いに隣接する前記光半導体素子の第1隙間に充填して、光反射層を前記複数の光半導体素子の前記連結面に形成する工程と、前記複数の光半導体素子の前記発光面に付着する前記光反射層を除去する工程と、互いに隣接する前記光半導体素子の間において、前記光反射層を切断する工程とを備える、光反射層付光半導体素子の製造方法を含む。
 この方法によれば、複数の光半導体素子の発光面に付着する光反射層を除去するので、複数の光半導体素子の発光面から発光された光を効率的に取り出すことができる。
 また、本発明(2)は、前記光反射シートは、前記光反射シートの厚み方向に投影したときに前記複数の光半導体素子を含むように、前記厚み方向に対する直交方向に連続する形状を有している、(1)に記載の光反射層付光半導体素子の製造方法を含む。
 この方法によれば、光反射シートは、光反射シートの厚み方向に投影したときに複数の光半導体素子を含むように、厚み方向に対する直交方向に連続する形状を有しているので、光反射シートを第1隙間に簡便に充填することができる。
 本発明(3)は、電極が設けられる電極面、前記電極面に対向し、発光層が設けられる発光面、および、前記電極面と前記発光面との周端縁を連結する連結面を有する複数の光半導体素子の前記電極面を、仮固定シートに互いに間隔を隔てて仮固定する工程と、蛍光体層を、互いに隣接する前記光半導体素子の間に第2隙間が形成されるように、前記複数の光半導体素子の前記発光面に形成する工程と、光反射シートを前記第2隙間に充填して、光反射層を、前記第2隙間に面する前記蛍光体層の側面に形成する工程と、前記蛍光体層の表面に付着する前記光反射層を除去する工程と、互いに隣接する前記蛍光体層の間において、前記光反射層を切断する工程とを備える、光反射層および蛍光体層付光半導体素子の製造方法を含む。
 この方法によれば、蛍光体層の表面に付着する光反射層を除去するので、複数の光半導体素子の発光面から発光され、蛍光体層によって波長変換された光を効率的に取り出すことができる。
 また、本発明(4)は、光反射層および蛍光体層付光半導体素子の製造方法において、前記蛍光体層を形成する工程では、前記複数の光半導体素子の前記連結面にも形成する、(3)に記載の光反射層および蛍光体層付光半導体素子の製造方法を含む。
 この方法によれば、光反射層および蛍光体層付光半導体素子における光半導体素子の連結面にも蛍光体層を形成するので、光半導体素子の連結面から発光された光を効率的に波長変換することができ、その後、かかる光を、第2隙間に面する蛍光体層の側面に形成された光反射層によって、確実に反射させることができる。
 また、本発明(5)は、前記蛍光体層を形成する工程は、厚み方向に投影したときに前記複数の光半導体素子を含むように、前記厚み方向に対する直交方向に連続する形状を有する蛍光体シートを、互いに隣接する前記光半導体素子の第1隙間に充填する工程と、互いに隣接する前記光半導体素子の間において、前記蛍光体層を、前記第2隙間が形成されるように、切断する工程とを備える、(3)または(4)に記載の光反射層および蛍光体層付光半導体素子の製造方法を含む。
 この方法によれば、蛍光体シートを第1隙間に簡便に充填し、次いで、第2隙間を簡単に形成することができる。
 また、本発明(6)は、前記蛍光体層を形成する工程では、厚み方向に投影したときに前記複数の光半導体素子の前記発光面に対応するパターンを有する蛍光体シートを、前記複数の光半導体素子の前記発光面に配置し、前記光反射層を形成する工程では、前記複数の光半導体素子の前記連結面に形成する、(3)または(4)に記載の光反射層および蛍光体層付光半導体素子の製造方法を含む。
 この方法によれば、光反射層を複数の光半導体素子の連結面に形成するので、光半導体素子の連結面から発光された光を光反射層によって効率的に反射させることができる。
 また、本発明(7)は、前記光反射シートは、前記光反射シートの厚み方向に投影したときに前記複数の光半導体素子を含むように、前記厚み方向に対する直交方向に連続する形状を有している、(3)~(6)のいずれか一項に記載の光反射層および蛍光体層付光半導体素子の製造方法を含む。
 この方法によれば、光反射シートは、光反射シートの厚み方向に投影したときに複数の光半導体素子を含むように、厚み方向に対する直交方向に連続する形状を有しているので、光反射シートを第2隙間に簡便に充填することができる。
 本発明の光反射層付光半導体素子の製造方法によれば、複数の光半導体素子の発光面から発光された光を効率的に取り出すことができる。
 本発明の光反射層および蛍光体層付光半導体素子の製造方法によれば、複数の光半導体素子の発光面から発光され、蛍光体層によって波長変換された光を効率的に取り出すことができる。
図1A~図1Eは、本発明の光反射層付光半導体素子の製造方法の一実施形態の工程図であり、図1Aは、仮固定工程、図1Bは、光反射シート充填工程、図1Cは、第1付着部分除去工程、図1Dは、切断工程、図1Eは、剥離工程を示す。 図2は、図1A~図1Eに示す方法により得られた光反射層付光半導体素子を備える光半導体装置の断面図を示す。 図3は、第1実施形態の変形例であって、開口部が形成された光反射シートを用いる態様を示す。 図4A~図4Dは、本発明の光反射層および蛍光体層付光半導体素子の製造方法の一実施形態(第2実施形態)の工程図であり、図4Aは、仮固定工程、図4Bは、蛍光体シート充填工程、図4Cは、蛍光体層除去工程、図4Dは、光反射シート充填工程を示す。 図5E~図5Gは、図4Dに引き続き、本発明の光反射層および蛍光体層付光半導体素子の製造方法の一実施形態(第2実施形態)の工程図であり、図5Eは、第2付着部分除去工程、図5Fは、切断工程、図5Gは、剥離工程を示す。 図6は、図4A~図5Gに示す方法により得られた光反射層および蛍光体層付光半導体素子を備える光半導体装置の断面図を示す。 図7は、第2実施形態の変形例であって、開口部が形成された光反射シートを用いる態様を示す。 図8A~図8Cは、本発明の光反射層および蛍光体層付光半導体素子の製造方法の他の実施形態(第3実施形態)の工程図であり、図8Aは、仮固定工程、図8Bは、蛍光体シート積層工程、図8Cは、光反射シート充填工程を示す。 図9D~図9Fは、図8Cに引き続き、本発明の光反射層および蛍光体層付光半導体素子の製造方法の他の実施形態(第3実施形態)の工程図であり、図9Dは、第2付着部分除去工程、図9Eは、切断工程、図9Fは、剥離工程を示す。 図10は、図8A~図9Fに示す方法により得られた光反射層および蛍光体層付光半導体素子を備える光半導体装置の断面図を示す。 図11A~図11Dは、本発明の光反射層および蛍光体層付光半導体素子の製造方法の一実施形態(第4実施形態)の工程図であり、図11Aが、蛍光体シート充填工程、図11Bが、蛍光体層除去工程、図11Cが、光反射シート充填工程図11Dが、剥離シートを除去する工程を示す。 図12E~図12Gは、図11Dに引き続き、本発明の光反射層および蛍光体層付光半導体素子の製造方法の一実施形態(第4実施形態)の工程図であり、図12Eが、第2付着部分除去工程、図12Fが、切断工程、図12Gが、剥離工程を示す。 図13は、図11A~図12Gに示す方法により得られた光反射層および蛍光体層付光半導体素子を備える光半導体装置の断面図を示す。 図14A~図14Cは、光反射シートの硬度の測定の工程図であり、図14Aは、軟物質硬度計および光反射シートをそれぞれ用意する工程、図14Bは、センサーヘッドを光反射シートに対して初期荷重で負荷する工程、図14Cは、センサーヘッドを光反射シートに対して本荷重で負荷する工程を示す。
  <第1実施形態>
 図1A~図1Eにおいて、紙面上下方向は、上下方向(第1方向、厚み方向の一例)であり、紙面上側が上側(第1方向一方側、厚み方向一方側)、紙面下側が下側(第1方向他方側、厚み方向他方側)である。紙面左右方向は、左右方向(第1方向に直交する第2方向、厚み方向に対する直交方向の一例)であり、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。紙厚方向は、前後方向(第1方向および第2方向に直交する第3方向、厚み方向に対する直交方向の一例)であり、紙面手前側が前側(第3方向一方側)、紙面奥側が後側(第3方向他方側)である。具体的には、各図の方向矢印に準拠する。
 本発明の第1実施形態(光反射層付光半導体素子の製造方法の一実施形態)は、仮固定工程(図1A参照)と、光反射シート充填工程(図1B参照)と、第1付着部分除去工程(図1C参照)と、切断工程(図1D参照)と、剥離工程(図1E参照)とを備える。以下、各工程を説明する。
 1. 仮固定工程
 図1Aに示すように、仮固定工程は、複数の光半導体素子1を、仮固定シート2に互いに間隔を隔てて仮固定する工程である。
 光半導体素子1は、例えば、電気エネルギーを光エネルギーに変換するLEDやLDである。好ましくは、光半導体素子1は、青色光を発光する青色LED(発光ダイオード素子)である。一方、光半導体素子1は、光半導体素子とは技術分野が異なるトランジスタなどの整流器(半導体素子)を含まない。
 光半導体素子1は、前後方向および左右方向に沿う略平板形状を有している。光半導体素子1は、電極面3と、発光面4と、連結面の一例としての周側面5とを有している。
 電極面3は、光半導体素子1における下面であって、電極6が形成されている面である。
 発光面4は、光半導体素子1における上面であって、電極面3に対して上側に間隔を隔てて対向配置されている。発光面4は、平坦な形状を有している。発光面4には、光半導体素子1の上部に配置される発光層7が設けられている。なお、発光層7は、図1B~図1Eにおいて、光半導体素子1と後述する光反射層14との相対配置を明確にするために、省略している。
 周側面5は、電極面3の周端縁と、対向面4の周端縁とを連結している。
 光半導体素子1の寸法は、適宜設定されており、具体的には、厚み(高さ)が、例えば、0.1μm以上、好ましくは、0.2μm以上であり、また、例えば、500μm以下、好ましくは、200μm以下である。光半導体素子1の前後方向および/または左右方向における長さL1は、例えば、0.2mm以上、好ましくは、0.5mm以上であり、また、例えば、3.00mm以下、好ましくは、2.00mm以下である。
 仮固定シート2は、支持板8と、支持板8の上に配置される感圧接着剤層9とを備えている。
 支持板8としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルム、例えば、セラミックスシート、例えば、金属箔などが挙げられる。支持板8の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。
 感圧接着剤層9は、支持板8の上面全面に配置されている。感圧接着剤層9は、支持板8の上面において、シート形状を有している。感圧接着剤層9は、例えば、処理(例えば、紫外線の照射や加熱など)によって感圧接着力が低減するような感圧接着剤から形成されている。また、感圧接着剤層9には、感圧接着剤層9の機械強度を向上させるための支持層(図示せず)が、感圧接着剤層9の厚み方向途中に介在されていてもよい。支持層としては、例えば、ポリエチレンフィルム、ポリエステルフィルム(PETなど)などのポリマーフィルムなどが挙げられる。感圧接着剤層9の総厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、1,000μm以下、好ましくは、500μm以下である。
 仮固定工程では、図1Aに示すように、複数の光半導体素子1を、前後方向および左右方向に互いに間隔を隔てて、仮固定シート2の上に仮固定する。具体的には、複数の光半導体素子1の電極面3を、次に述べる間隔L0およびピッチL2が確保されるように、感圧接着剤層9の上面に感圧接着する。また、複数の光半導体素子1を、発光層7が上側に向かうように、仮固定シート2に仮固定する。なお、図1Aでは、電極6のみが、感圧接着剤層9に接触しているが、電極6以外の電極面3が、感圧接着剤層9に接触してもよい。
 互いに隣接する光半導体素子1の間の間隔(前後方向および/または左右方向における間隔)L0は、例えば、0.05mm以上、好ましくは、0.1mm以上であり、また、例えば、1.50mm以下、好ましくは、0.80mm以下である。互いに隣接する光半導体素子1のピッチL2、具体的には、上記した長さL1および間隔L0の和(L1+L0)は、例えば、0.25mm以上、好ましくは、0.60mm以上であり、また、例えば、3.00mm以下、好ましくは、2.00mm以下である。
 これにより、複数の光半導体素子1を、感圧接着剤層9を介して、支持板8に支持させる。また、互いに隣接する光半導体素子1の間には、第1隙間10が形成される。
 第1隙間10は、間隔L0に対応する寸法を有し、図1Aにおいて図示されないが、平面視において、略碁盤目形状を有している。
 2. 光反射シート充填工程
 図1Bに示すように、光反射シート充填工程を、仮固定工程(図1A参照)の後に実施する。
 光反射シート充填工程では、光反射シート11を第1隙間10に充填する。
 光反射シート11は、図1Aに示すように、光反射部材13に備えられている。
 光反射部材13は、剥離シート12と、剥離シート12に支持される光反射シート11とを備える。好ましくは、光反射部材13は、剥離シート12と、光反射シート11とのみからなる。
 剥離シート12は、上記した支持板8と同じ材料からなり、前後方向および左右方向に連続する層(平板)形状を有している。剥離シート12の厚みは、例えば、1μm以上、好ましくは、10μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。剥離シート12の前後方向長さおよび左右方向長さは、次に説明する光反射シート11のそれらに対して大きいかまたはそれらと同じ大きさに設定されている。
 光反射シート11は、剥離シート12の下面に配置されている。光反射シート11は、前後方向および左右方向に連続する層(平板)形状を有している。具体的には、光反射シート11は、光反射部材13を、仮固定シート2に仮固定された複数の光半導体素子1の上側に対向させて、そして、それらを厚み方向に投影したときに、複数の光半導体素子1を含む大きさ(前後方向長さおよび左右方向長さ)に設定されている。
 また、光反射シート11の体積V1(つまり、光反射シート11の厚み×前後方向長さ×左右方向長さ)は、好ましくは、第1隙間10の総体積V0に対して大きいかまたはそれと同じに設定されている。より好ましくは、光反射シート11の体積V1は、第1隙間10の総体積V0に対して大きい。この場合には、光反射シート11を第1隙間10に簡易かつ確実に充填することができる。
 具体的には、光反射シート11の体積V1は、第1隙間10の総体積V0に対して、例えば、95%以上、好ましくは、103%以上、また、例えば、120%以下、好ましくは、110%以下である。
 光反射シート11の厚みは、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、1,000μm以下、好ましくは、450μm以下である。
 光反射シート11は、例えば、光反射成分および樹脂を含有する光反射組成物から調製されている。
 光反射成分としては、例えば、無機粒子、有機粒子などの光反射粒子が挙げられる。
 無機粒子としては、例えば、酸化チタン、酸化亜鉛、酸化ジルコニウム、複合無機酸化物粒子(ガラスなど)などの酸化物、例えば、鉛白(塩基性炭酸鉛)、炭酸カルシウムなどの炭酸塩、例えば、カオリンなどの粘土鉱物などが挙げられる。好ましくは、酸化物が挙げられる。
 有機粒子としては、例えば、アクリル系樹脂粒子、スチレン系樹脂粒子、アクリル-スチレン系樹脂粒子、シリコーン系樹脂粒子、ポリカーボネート系樹脂粒子、ベンゾグアナミン系樹脂粒子、ポリオレフィン系樹脂粒子、ポリエステル系樹脂粒子、ポリアミド系樹脂粒子、ポリイミド系樹脂粒子などが挙げられる。好ましくは、アクリル系樹脂粒子が挙げられる。
 光反射成分の含有割合は、光反射組成物に対して、例えば、1質量%以上、好ましくは、3質量%以上であり、また、例えば、80質量%以下、好ましくは、75質量%以下である。
 樹脂は、光反射組成物において光反射成分を均一に分散させるマトリクスであって、例えば、加熱されたときに光反射シート11を第1隙間10に充填できる粘度(後述)を光反射シート11に付与する成分である。樹脂としては、例えば、硬化性樹脂、熱可塑性樹脂が挙げられる。好ましくは、硬化性樹脂が挙げられる。硬化性樹脂としては、2段反応硬化性樹脂、1段反応硬化性樹脂などの熱硬化性樹脂が挙げられる。
 2段反応硬化性樹脂は、2つの反応機構を有しており、第1段の反応で、Aステージ状態からBステージ化(半硬化)し、次いで、第2段の反応で、Bステージ状態からCステージ化(完全硬化)することができる。つまり、2段反応硬化性樹脂は、適度の加熱条件によりBステージ状態となることができる熱硬化性樹脂である。Bステージ状態は、熱硬化性樹脂が、液状であるAステージ状態と、完全硬化したCステージ状態との間の状態であって、硬化およびゲル化がわずかに進行し、圧縮弾性率がCステージ状態の圧縮弾性率よりも小さい半固体状態または固体状態である。
 1段反応硬化性樹脂は、1つの反応機構を有しており、第1段の反応で、Aステージ状態からCステージ化(完全硬化)することができる。このような1段反応硬化性樹脂は、第1段の反応の途中で、その反応が停止して、Aステージ状態からBステージ状態となることができ、その後のさらなる加熱によって、第1段の反応が再開されて、Bステージ状態からCステージ化(完全硬化)することができる熱硬化性樹脂を含む。つまり、かかる熱硬化性樹脂は、Bステージ状態となることができる熱硬化性樹脂を含む。また、1段反応硬化性樹脂は、1段の反応の途中で停止するように制御できず、つまり、Bステージ状態となることができず、一度に、Aステージ状態からCステージ化(完全硬化)する熱硬化性樹脂を含むこともできる。
 好ましくは、熱硬化性樹脂としては、Bステージ状態となることができる熱硬化性樹脂が挙げられる。
 Bステージ状態となることができる熱硬化性樹脂としては、例えば、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂などが挙げられる。Bステージ状態となることができる熱硬化性樹脂としては、好ましくは、シリコーン樹脂、エポキシ樹脂が挙げられ、より好ましくは、シリコーン樹脂が挙げられる。
 シリコーン樹脂としては、例えば、フェニル基を分子内に含むフェニル系シリコーン樹脂、例えば、メチル基を分子内に含むメチル系シリコーン樹脂などが挙げられる。
 Bステージ状態のフェニル系シリコーン樹脂は、加熱により、一旦、融解または液化した後、完全硬化する。一方、Bステージ状態のメチル系シリコーン樹脂は、加熱により、一旦、軟化または可塑化した後、完全硬化する。
 Bステージ状態のフェニル系シリコーン樹脂は、Bステージ状態のメチル系シリコーン樹脂に比べて、図1Bに示す光反射シート充填工程において第1付着部分17(後述)を形成し易い。
 つまり、Bステージ状態のシリコーン樹脂は、昇温とともに、粘度が次第に降下し、その後、昇温を継続すると、粘度が次第に上昇し、Cステージ状態のシリコーン樹脂となる。
 上記した熱硬化性樹脂は、同一種類または複数種類のいずれでもよい。
 樹脂の配合割合は、光反射組成物に対して、例えば、10質量%以上、好ましくは、25質量%以上であり、また、例えば、99質量%以下、好ましくは、97質量%以下である。
 光反射組成物には、添加剤を、適宜の割合で含有することもできる。
 光反射シート11を形成するには、例えば、まず、光反射成分と、樹脂と、必要により添加される添加剤とを配合して、光反射組成物のワニスを調製する。続いて、ワニスを、剥離シート12の表面に塗布する。その後、光反射組成物が、Bステージ状態となることができる熱硬化性樹脂を含有する場合には、光反射組成物を、Bステージ化する(半硬化させる)。具体的には、光反射組成物を、加熱する。
 加熱温度は、例えば、50℃以上、好ましくは、70℃以上であり、また、例えば、120℃以下、好ましくは、100℃以下である。加熱時間は、例えば、5分以上、好ましくは、10分以上であり、また、例えば、20分以下、好ましくは、15分以下である。
 これにより、光反射シート11を形成する。好ましくは、Bステージ状態の光反射シート11を、剥離シート12の表面に形成する。
 光反射シート11の60℃における溶融粘度は、例えば、40Pa・s以上であり、例えば、1,000Pa・s以下、好ましくは、300Pa・s以下である。溶融粘度は、E型粘度計を用いて測定される。
 60℃における溶融粘度が上記した上限以下であれば、熱プレス(後述)によって、光反射シート11の粘度を十分に降下させて、光反射シート11を第1隙間10へ迅速かつ確実に充填することができる。一方、60℃における溶融粘度が上記した下限以上であれば、光反射シート11が過度に柔らかくなることを抑制して、光反射シート11が、光半導体素子1から離れるように外部に向かって流動することを抑制することができる。
 次いで、図1Bに示すように、光反射シート充填工程では、光反射部材13を、仮固定シート2および光半導体素子1に対して、圧着する。
 具体的には、光反射部材13、仮固定シート2および光半導体素子1を、光反射シート11と光半導体素子1とが厚み方向に対向するように、プレス機にセットして、それらを、例えば、熱プレスする。
 熱プレスの条件は、適宜設定される。熱プレスの温度は、60℃以上、好ましくは、70℃以上であり、また、200℃以下、好ましくは、180℃以下である。熱プレスの圧力は、例えば、0.01MPa以上、好ましくは、0.10MPa以上であり、また、例えば、10.00MPa以下、好ましくは、5.00MPa以下である。熱プレスの時間は、例えば、1分以上、好ましくは、3分以上であり、また、例えば、60分以下、好ましくは、30分以下である。また、熱プレスは、複数回実施することができる。
 この熱プレスによって、光反射シート11(光反射組成物)が第1隙間10に充填される。
 これによって、光反射組成物(光反射シート11)からなる光反射層14が、第1隙間10に充填された形状で、形成される。なお、光反射層14において、第1隙間10に充填された部分は、第1充填部分33である。
 光反射層14(第1充填部分33)は、光半導体素子1の周側面5を被覆している。つまり、光反射層14は、複数の光半導体素子1の周側面5に形成されている。また、光反射層14は、光半導体素子1の電極面3において、電極6から露出する面も被覆している。さらに、光反射層14は、光半導体素子1の発光面4に、被覆して付着している。光反射層14において、発光面4に付着する部分は、第1付着部分17である。
 一方、光反射層14は、平坦な上面15を有している。詳しくは、第1付着部分17の上面15と、第1充填部分33の上に位置する部分(隣接する第1付着部分17の間に位置する部分)の上面15とは、前後方向および左右方向に面一である。
 第1付着部分17の厚みT1は、例えば、1μm以上であり、また、例えば、500μm以下、さらには200μm以下である。
 その後、図1Bの矢印で示すように、剥離シート12を光反射層14から剥離する。具体的には、剥離シート12を、光反射層14の上面15から引き剥がす。
 そうすると、光反射層14の上面15が露出する。
 これによって、複数の光半導体素子1と、第1充填部分33および第1付着部分17を有する光反射層14とを備える光反射層付光半導体素子16を、電極面3が仮固定シート2に仮固定された状態で、得る。光反射層付光半導体素子16の上面は、光反射層14の上面15からなり、具体的には、光半導体素子1の発光面4が光反射層14に被覆されている。
 これによって、光半導体素子1と、光反射層14とを備える光反射層付光半導体素子16を、仮固定シート2に仮固定された状態で、得る。
 3. 第1付着部分除去工程
 図1Cに示すように、第1付着部分除去工程を、光反射シート充填工程(図1B参照)の後に実施する。
 第1付着部分除去工程では、第1付着部分17を除去する。
 第1付着部分17を除去するには、例えば、図1Cに示すように、(1)感圧接着シート18を用いる方法、例えば、図示しないが、(2)溶媒を用いる方法、例えば、図示しないが、(3)研磨部材を用いる方法が採用される。以下、各方法を説明する。
  (1)感圧接着シート18を用いる方法
 感圧接着シート18は、感圧接着剤から調製されており、前後方向および左右方向に連続するシート形状を有している。感圧接着シート18の大きさは、例えば、感圧接着シート18を、厚み方向に投影したときに、第1付着部分17を含むことができる大きさに設定されている。感圧接着剤としては、例えば、アクリル系感圧接着剤、ゴム系感圧接着剤、シリコーン系感圧接着剤、ウレタン系感圧接着剤、ポリアクリルアミド系感圧接着剤などが挙げられる。また、感圧接着シート18は、支持材などで支持されていてもよい。感圧接着シート18の25℃における粘着力(180℃剥離接着力)は、例えば、7.5(N/20mm)以上、好ましくは、10.0(N/20mm)以上であり、また、例えば、100(N/20mm)以下、好ましくは、20.0(N/20mm)以下である。粘着力は、感圧接着シート18を20mm幅に切り出し、これを、シリコーンウェハーに感圧接着し、その後、感圧接着シート18を、剥離速度100mm/分、剥離角度180℃で剥離試験したときの接着力として測定される。
 感圧接着シート18を用いる方法では、感圧接着シート18の感圧接着面(感圧接着シート18が支持材が支持されている場合には、まず、支持材によって支持される面に対する逆側面)を、第1付着部分17を含む光反射層14の上面15に対向配置し、第1付着部分17に感圧接着し、続いて、第1付着部分17を、発光面4から引き剥がす。具体的には、図1Bの右側部分に示すように、まず、感圧接着シート18を下降させ、続いて、図1Bの中央部分に示すように、感圧接着シート18を第1付着部分17に対して感圧接着し、その後、図1Bの左側部分に示すように、感圧接着シート18を第1付着部分17とともに、上昇させる(引き上げる)。
 第1付着部分17は、第1付着部分17と発光面4との界面で剥離し、感圧接着シート18に追従する。また、第1付着部分17の剥離が一回で完了しない時には、上記動作を複数回繰り返し、これによって第1付着部分17の剥離を完了させる。このとき、光反射層14において、第1充填部分33の上に位置する部分も、第1付着部分17とともに、感圧接着シート18に追従する。つまり、光反射層14において、第1付着部分17と、第1充填部分33の上に位置する部分とが、除去される。すなわち、光反射層14において、前後方向および左右方向に投影したときに、発光面4より上に位置する部分34(上層部分34)が、除去される。光反射層14の上層部分34の除去によって、第1充填部分33の上面15は、発光面4と、前後方向および左右方向に面一となる。つまり、第1充填部分33の上面15と、発光面4とが、同一平面を形成する。
 その後、樹脂が熱硬化性樹脂(Bステージの熱硬化性樹脂)である場合には、光反射層14を、加熱して硬化(完全硬化)させる。
 加熱温度は、例えば、100℃以上、好ましくは、120℃以上であり、また、例えば、200℃以下、好ましくは、150℃以下である。また、加熱時間が、例えば、10分以上、好ましくは、30分以上であり、また、例えば、180分以下、好ましくは、120分以下である。
  (2)溶媒を用いる方法
 この方法では、具体的には、溶媒、および、感圧接着シート18を併用する。
 溶媒としては、例えば、第1付着部分17を形成する光反射組成物を完全または部分的に溶解または分散させることができる溶媒が選択される。具体的には、溶媒としては、有機溶媒、水系溶媒が挙げられる。有機溶媒としては、例えば、メタノール、エタノールなどのアルコール、例えば、アセトン、メチルエチルケトンなどのケトン、例えば、ヘキサンなどの脂肪族炭化水素、例えば、トルエンなどの芳香族炭化水素、例えば、テトラヒドロフランなどのエーテルなどが挙げられる。好ましくは、アルコール、芳香族炭化水素が挙げられる。
 感圧接着シート18は、(1)で説明した感圧接着シート18が挙げられる。
 この方法では、まず、樹脂が熱硬化性樹脂(Bステージの熱硬化性樹脂)である場合には、光反射層14を、加熱して硬化(完全硬化)させる。
 この方法では、次いで、上記した溶媒を布に吸収させ、その布によって、硬化した光反射層14の上面15を拭く。なお、この溶媒によって、光反射層14の上面15を拭いても、第1付着部分17が残存する。
 その後、残存する第1付着部分17を(1)で説明した感圧接着シート18を用いて除去する。
 これによって、第1付着部分17を含む上層部分34が除去される。
  (3)研磨部材を用いる方法
 研磨部材としては、バフなどの布、ブラシ、ウォーターブラストなどが挙げられる。
 研磨部材によって、光反射層付光半導体素子16における光反射層14の上面15を研磨する。これによって、第1付着部分17を含む上層部分34が除去される。
 (3)の方法では、研磨部材による上面15の研磨のタイミングは、樹脂が熱硬化性樹脂(Bステージの熱硬化性樹脂)である場合には、光反射層14の硬化の前後のいずれであってもよい。
 4. 切断工程
 図1Dに示すように、切断工程を、第1付着部分除去工程(図1C参照)の後に実施する。
 切断工程では、互いに隣接する光半導体素子1の間において、光反射層14を切断する。つまり、切断工程では、第1充填部分33を切断する。これにより、光反射層付光半導体素子16において、複数の光半導体素子1を個片化する。
 光反射層14(第1充填部分33)を切断するには、例えば、円盤状のダイシングソー(ダイシングブレード)19を用いるダイシング装置、例えば、カッターを用いるカッティング装置、例えば、レーザー照射装置などの切断装置が用いられる。好ましくは、ダイシング装置が用いられる。ダイシングソー19の刃厚T3は、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。
 光反射層14(第1充填部分33)の切断によって、光反射層14には、互いに隣接する光半導体素子1の間において、前後方向および左右方向に沿って整列する切断溝20が形成される。切断溝20は、光反射層14を厚み方向に貫通している。切断溝20は、図1Dにおいて図示されないが、平面視において、略碁盤目形状を有している。なお、切断溝20は、図1Dにおける部分拡大図に示すように、感圧接着剤層9にも形成されていてもよい。その場合には、切断溝20の下端部は、感圧接着剤層9の厚み方向途中に到達する。つまり、光反射層14および感圧接着剤層9の両方に、切断溝20が切り込まれている。切断溝20の幅W1は、切断装置(好ましくは、ダイシングソー19の刃厚T3)に対応しており、具体的には、例えば、10μm以上、好ましくは、20μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下である。
 切断溝20によって、光反射層14(第1充填部分33)には、切断溝20に面する側面32が形成される。
 これにより、個片化された1つの光半導体素子1と、周側面5を被覆し、発光面4を露出し、切断溝20により仕切られた光反射層14とを備える光反射層付光半導体素子16を、仮固定シート2に支持された状態で、得る。
 5. 剥離工程
 図1Eに示すように、剥離工程を、切断工程(図1D参照)の後に実施する。
 剥離工程では、まず、図1Eの下向き矢印で示すように、支持板8を感圧接着剤層9から剥離する。
 支持板8を感圧接着剤層9から剥離するには、例えば、紫外線の照射や加熱など処理を、支持板8および感圧接着剤層9の界面に対して、実施する。すると、感圧接着剤層9の支持板8に対する感圧接着力が低減し、これによって、支持板8が除去される。
 これによって、前後方向および左右方向に互いに間隔(幅W1)を隔てて整列配置された複数の光反射層付光半導体素子16が、感圧接着剤層9に支持された状態で、得られる。
 その後、図1Eの上向き矢印で示すように、光反射層付光半導体素子16を感圧接着剤層9から剥離する。
 光反射層付光半導体素子16を感圧接着剤層9から剥離するには、コレットおよびそれに接続される吸引ポンプを備えるピックアップ装置(図示せず)などを用いる。具体的には、コレットを、発光面4に接触させ、続いて、吸引ポンプを駆動させ、次いで、コレットを引き上げる。
 これによって、1つの光半導体素子1と、光半導体素子1の周側面5を被覆し、発光面4を露出する光反射層14とを備える光反射層付光半導体素子16を得る。好ましくは、光反射層付光半導体素子16は、光半導体素子1と、光反射層14とのみからなる。
 図1Eの破線で示すように、光反射層付光半導体素子16では、光反射層14の側面32が側方に露出し、発光面4と、発光面4の周囲に位置する光反射層14の上面15とが、上側に露出し、電極6の下面が下側に露出している。光半導体素子1の発光面4は、光反射層14の上面15と面一である。
 この光反射層付光半導体素子16は、次に説明する光半導体装置60(図2参照)ではなく、つまり、光半導体装置60に備えられる基板50を含まない。つまり、光反射層付光半導体素子16は、電極6が、基板50に設けられる端子51と電気的に接続されていない。つまり、光反射層付光半導体素子16は、光半導体装置60の一部品、すなわち、光半導体装置60を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスである。
 6. 光半導体装置の製造
 その後、図2に示すように、光反射層付光半導体素子16の電極6を、基板50の上面に設けられた端子51に電気的に接続する。具体的には、光反射層付光半導体素子16を基板50にフリップチップ実装する。
 これによって、光反射層付光半導体素子16と、基板50とを備える光半導体装置60を得る。つまり、光半導体装置60は、基板50と、基板50に実装される光半導体素子1と、光半導体素子1の周側面5を被覆する光反射層14とを備える。光半導体装置60は、好ましくは、基板50と、光半導体素子1と、光反射層14とのみからなる。光半導体装置60では、発光層7が、光半導体素子1の上部に位置しており、発光面4が光反射層14から上方に露出している。
 7. 第1実施形態の作用効果
 この方法によれば、図1Cに示すように、複数の光半導体素子1の発光面4に付着する光反射層14、つまり、第1付着部分17を除去するので、複数の光半導体素子1の発光面4から発光された光を効率的に取り出すことができる。
 また、この方法によれば、図1Aに示すように、光反射シート11は、厚み方向に投影したときに複数の光半導体素子1を含むように、前後方向および左右方向に連続する形状を有しているので、図1Bに示すように、光反射シート11を第1隙間10(図1A参照)に簡便に充填することができる。
 8. 変形例
 第1実施形態の「4. 第2付着部分除去工程」における(1)の方法では、まず、感圧接着シート18を用いて、光反射層14における第2付着部分31を除去した後、光反射層14に含有される樹脂が熱硬化性樹脂(Bステージの熱硬化性樹脂)である場合には、光反射層14を、加熱して硬化(完全硬化)させている。しかし、例えば、まず、光反射層14を加熱して硬化(完全硬化)させ、その後、感圧接着シート18を用いて、光反射層14における第2付着部分31を除去することもできる。
 第1実施形態の「4. 第2付着部分除去工程」における(2)の方法では、溶媒、および感圧接着シート18を併用している。しかし、溶媒により、光反射層14における第2付着部分31を十分に除去できる場合には、溶媒のみによって、光反射層14における第2付着部分31を除去することもできる。
 第1実施形態では、図1Aに示すように、光反射シート11を、剥離シート12の下面において、前後方向および左右方向に連続する層(平板)形状を有しているが、図3に示すように、第1隙間10に対応するパターン形状を有することもできる。
 図3に示すように、光反射シート11には、開口部21が複数形成されている。
 開口部21は、厚み方向に投影したときに、光半導体素子1の外形形状と同一の形状を有している。一方、光反射シート11は、厚み方向に投影したときに、第1隙間10の形状と同一の形状を有している。
 この変形例においても、図1Bに示す光反射シート充填工程では、光反射層14が、発光面4に付着して、第1付着部分17を形成する。
 一方、第1実施形態における図1Aに示す光反射シート11は、変形例における図3に示す光反射シート11に比べて、第1付着部分17(図1B参照)を生じ易く、つまり、本発明の課題を生じ易い。
 また、第1実施形態では、図1Cおよび図1Dに示すように、第1付着部分除去工程(図1C参照)の後に、切断工程(図1D参照)を実施している。しかし、例えば、切断工程(図1D参照)の後に、第1付着部分除去工程(図1C参照)を実施することもできる。
 好ましくは、図1Cおよび図1Dに示される第1実施形態のように、第1付着部分除去工程(図1C参照)の後に、切断工程(図1D参照)を実施する。
 一方、変形例のように、切断工程(図1D参照)の後に、第1付着部分除去工程(図1C参照)を、「(1)感圧接着シート18を用いる方法」および/または「(3)研磨部材を用いる方法」により実施すれば、切断工程によって形成された切断溝20(図1D参照)に、感圧接着シート18の感圧接着剤、および/または、研磨部材が入り込み、第1充填部分33(周側面5を被覆する光反射層14)が、感圧接着シート18、および/または、研磨部材によって除去されるおそれがある。他方、第1実施形態であれば、上記したおそれを解消できる。
 また、切断工程(図1D参照)の後に、第1付着部分除去工程(図1C参照)を、「(2)溶媒を用いる方法」により実施すれば、切断工程によって形成された切断溝20に、溶媒が入り込み、残存するおそれがあり、また、そのため、溶媒を除去する工程が別途必要となる。他方、第1実施形態であれば、上記したおそれを解消できる。
 また、例えば、光反射シート充填工程において、図1Bに示すように、Bステージ(半硬化)状態の、第1付着部分17を含む光反射層14を形成する際に、光反射シート11の充填温度と時間とを制御することにより、「(2)溶媒を用いる方法」が採用できる。具体的には、Bステージの光反射シート11の硬度を、例えば、95以上、99以下に設定する。光反射シート11の硬度は、例えば、軟物質硬度計(シチズンセイミツ製:CH-R01。センサーヘッドの直径:2mm)を用いて算出される。具体的には、図14Aに示すように、軟物質硬度計71を用意する。軟物質硬度計71は、上下方向に延びるプランジャー74と、プランジャー74の下端部に設けられるセンサーヘッド72と、プランジャー74を収容するシリンダー73と、センサーヘッド72に接続され、センサーヘッド72の位置を検知可能に構成される処理装置(図示せず)を備える。センサーヘッド72の略球形状を有している。
 そして、図14Bに示すように、まず、シリンダー73の下端部と、センサーヘッド72の下端部とを、剥離シート12の上に配置された光反射シート11の表面に、接触させる。
 続いて、プランジャー74の駆動に基づいて、プランジャー74で光反射シート11に対して初期荷重8.3mNで、5秒間かける。この際、センサーヘッド72の下端部の位置が処理装置(図示せず)に入力される。
 次いで、図14Cに示すように、プランジャー74の駆動に基づいて、センサーヘッド72で光反射シート11に対して本荷重150mNで、20秒間かける。すると、プランジャー74が光反射シート11に対して沈み込む。この際、センサーヘッド72の下端部の位置が処理装置(図示せず)に入力される。
 そして、図14Cに示すように、センサーヘッド72を光反射シート11に対して本荷重をかけた際に、光反射シート11の表面からセンサーヘッド72が沈み込んだ距離dを測定し、以下の式に基づいて、硬度を算出する。
  硬度=[1-{センサーヘッド72が沈み込んだ距離d(本荷重の沈み込み-初期荷重の沈み込み)(μm)/300(基準値)(μm)}]×100
 1つの光反射シート11に対して5回測定し、その平均値を硬度として得る。
 光反射シート11の充填時間は、充填温度に応じて適宜設定される。光反射シート11の充填温度が100℃のときには、光反射シート11の充填時間が、例えば、250秒以上、600秒以下である。光反射シート11の充填温度が90℃のときには、光反射シート11の充填時間が、例えば、400秒以上、750秒以下である。光反射シート11の充填温度が80℃のときには、光反射シート11の充填時間が、例えば、800秒以上、1,000秒以下である。
 この方法によれば、「(2)溶媒を用いる方法」により第1付着部分17を除去するとき(後述)に、第1付着部分17をより確実に除去することができる。
 第1実施形態において、図1Eに示すように、剥離工程を実施しているが、剥離工程を実施しなくてもよい。つまり、図1Dに示すように、個片化された1つの光半導体素子1と、光反射層14とを備え、仮固定シート2(支持板8および感圧接着剤層9)に支持された状態の複数の光反射層付光半導体素子16も、光半導体装置60を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスとして用いられる。
 さらに、図1Eにおける剥離工程における支持板8のみを除去することもできる。つまり、図1Eの実線で示すように、感圧接着剤層9のみに支持された状態の複数の光反射層付光半導体素子16も、光半導体装置60を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスとして用いられる。
 また、図示しないが、図1Eに示す光反射層付光半導体素子16における発光面4に、蛍光体層などを設置することもできる。
  <第2実施形態>
 第2実施形態において、第1実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 本発明の第2実施形態(光反射層および蛍光体層付光半導体素子の製造方法の一実施形態)は、仮固定工程(図4A参照)と、蛍光体層形成工程(図4Bおよび図4C参照)と、光反射シート充填工程(図4D参照)と、第2付着部分除去工程(図5E参照)と、切断工程(図5F参照)と、剥離工程(図5G参照)とを備える。以下、各工程を説明する。
 1. 仮固定工程
 図4Aに示すように、仮固定工程は、複数の光半導体素子1を、仮固定シート2に互いに間隔を隔てて仮固定する工程である。
 2. 蛍光体層形成工程
 図4Bおよび図4Cに示すように、蛍光体層形成工程を、仮固定工程(図4A参照)の後に実施する。
 蛍光体層形成工程では、蛍光体層26を、互いに隣接する光半導体素子1の間に第2隙間23が形成されるように、複数の光半導体素子1の発光面4および周側面5に形成する。
 蛍光体層26を形成するには、まず、例えば、図4Aに示すように、蛍光体シート24を用意する。蛍光体シート24は、蛍光体部材25に備えられている。
 蛍光体部材25は、剥離シート12と、剥離シート12に支持される蛍光体シート24とを備える。好ましくは、蛍光体部材25は、剥離シート12と、蛍光体シート24とのみからなる。
 蛍光体シート24は、剥離シート12の下面に形成されており、前後方向および左右方向に連続する層(平板)形状を有している。蛍光体シート24は、例えば、蛍光体および樹脂を含有する蛍光組成物から調製されている。
 蛍光体は、光半導体素子1から発光される光を波長変換する。蛍光体としては、例えば、青色光を黄色光に変換することのできる黄色蛍光体、青色光を赤色光に変換することのできる赤色蛍光体などが挙げられる。
 黄色蛍光体としては、例えば、(Ba,Sr,Ca)SiO;Eu、(Sr,Ba)SiO:Eu(バリウムオルソシリケート(BOS))などのシリケート蛍光体、例えば、YAl12:Ce(YAG(イットリウム・アルミニウム・ガーネット):Ce)、TbAl12:Ce(TAG(テルビウム・アルミニウム・ガーネット):Ce)などのガーネット型結晶構造を有するガーネット型蛍光体、例えば、Ca-α-SiAlONなどの酸窒化物蛍光体などが挙げられる。
 赤色蛍光体としては、例えば、CaAlSiN:Eu、CaSiN:Euなどの窒化物蛍光体などが挙げられる。
 蛍光体として、好ましくは、黄色蛍光体、より好ましくは、ガーネット型蛍光体が挙げられる。
 蛍光体の形状としては、例えば、球状、板状、針状などが挙げられる。
 蛍光体の最大長さの平均値(球状である場合には、平均粒子径)は、例えば、0.1μm以上、好ましくは、1μm以上であり、また、例えば、200μm以下、好ましくは、100μm以下でもある。
 蛍光体は、単独使用または併用することができる。
 蛍光体の配合割合は、蛍光組成物に対して、例えば、5質量%以上、好ましくは、10質量%以上であり、また、例えば、80質量%以下、好ましくは、70質量%以下である。
 樹脂は、蛍光組成物において蛍光体を均一に分散させるマトリクスであって、例えば、加熱されたときに蛍光体シート24を第1隙間10に充填できる粘度を蛍光体シート24に付与する成分である。樹脂は、第1実施形態において光反射組成物に含まれる樹脂と同一である。樹脂の配合割合は、蛍光体(および次に説明する光反射成分および/または添加剤)の配合割合の残部である。
 蛍光組成物には、光反射成分および/または添加剤を、適宜の割合で含有することもできる。
 蛍光体シート24を形成するには、例えば、蛍光体と、樹脂と、必要により添加される光反射成分および/または添加剤とを配合して、蛍光組成物のワニスを調製する。続いて、ワニスを、剥離シート12の表面に塗布する。その後、蛍光組成物が、Bステージ状態となることができる熱硬化性樹脂を含有する場合には、蛍光組成物を、Bステージ化する(半硬化させる)。具体的には、蛍光組成物を、加熱する。これにより、蛍光体シート24を形成する。蛍光体シート24の物性(貯蔵剪断弾性率G’など)は、第1実施形態における光反射組成物の物性から適宜選択される。蛍光体シート24の厚みは、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、1,000μm以下、好ましくは、450μm以下である。蛍光体シート24は、図1Aに示すように、光反射部材13を、仮固定シート2に仮固定された複数の光半導体素子1の上側に対向し、そして、それらを厚み方向に投影したときに、複数の光半導体素子1を含む大きさ(前後方向長さおよび左右方向長さ)に設定されている。
 次いで、図4Bに示すように、蛍光体層形成工程では、蛍光体部材25を、仮固定シート2に対して、熱プレスする。
 熱プレスによって、蛍光体シート24(蛍光組成物)が、第1隙間10に充填される(蛍光体シート充填工程)。蛍光体シート24(具体的には、次に説明する蛍光体層26)において、第1隙間10に充填された部分は、第2充填部分35である。
 これに伴って、複数の光半導体素子1に対向する蛍光体シート24は、複数の光半導体素子1の発光面4を被覆する。これによって、蛍光体シート24から、蛍光体層26が、複数の光半導体素子1の発光面4および周側面5に形成される。
 蛍光体層26は、複数の光半導体素子1を埋設している。また、蛍光体層26は、前後方向および左右方向において連続する形状を有している。さらに、蛍光体層26は、平坦な表面の一例としての上面27を有している。なお、蛍光体層26は、光半導体素子1の電極面3において、電極6から露出する面も被覆する。
 その後、図4Cに示すように、蛍光体層形成工程では、互いに隣接する光半導体素子1の間において、蛍光体層26を切断する。
 蛍光体層26を切断するには、所定幅(刃厚T4)を有する円盤状のダイシングソー(ダイシングブレード)28(図4B参照)によって、互いに隣接する光半導体素子1の間における蛍光体層26、つまり、第2充填部分35を切削する。
 ダイシングソー28は、径方向内側から外側にむかうに従って、同一幅(同一刃厚T4)を有している。ダイシングソー28の刃厚T4は、第1実施形態において光反射層14を切断したダイシングソー19の刃厚T3(図1D参照)より厚く、具体的には、ダイシングソー19の刃厚T3に対して、例えば、150%以上、好ましくは、200%以上、より好ましくは、300%以上であり、また、例えば、10,000%以下である。より具体的には、ダイシングソー28の刃厚T4は、次に説明する第2隙間23の幅W2(図4C参照)に対応して適宜設定され、例えば、100μm以上、好ましくは、200μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。
 または、エッチングによって、互いに隣接する光半導体素子1の間における蛍光体層26を切断する(蛍光体層除去工程)。
 これによって、図4Cに示すように、互いに隣接する光半導体素子1の間において、蛍光体層26に第2隙間23が形成される。第2隙間23は、蛍光体層26を厚み方向に貫通している。具体的には、第2隙間23は、蛍光体層26において、第2充填部分35と、第2充填部分35の上に位置する部分とに、形成される。第2隙間23は、図示されないが、平面視において、略碁盤目形状を有している。また、第2隙間23において、その下端部における開口断面形状および開口断面積と、上端部における開口断面および開口断面積とは、同一である。
 なお、上記した蛍光体層26の切断によって、周側面5に形成される蛍光体層26の幅W3が所望寸法に調節される。つまり、周側面5に形成される蛍光体層26の切断では、蛍光体層26の幅W3が所定の寸法となるように、蛍光体層26を外形加工する。周側面5に形成される蛍光体層26の幅W3は、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。蛍光体層26の幅W3は、厚み方向にわたって、同一である。
 第2隙間23の幅W2は、例えば、100μm以上、好ましくは、200μm以上であり、また、例えば、2,000μm以下、好ましくは、1,000μm以下である。第2隙間23の幅W2は、厚み方向にわたって、同一である。
 これによって、蛍光体層26が、複数の光半導体素子1の発光面4および周側面5を被覆するパターンで、複数の光半導体素子1に対応して、複数形成される。複数の蛍光体層26のそれぞれは、下方に向かって開放される、断面略U字形状を有している。
 3. 光反射シート充填工程
 図4Dに示すように、光反射シート充填工程を、蛍光体層形成工程(図4Bおよび図4C)の後に実施する。
 光反射シート充填工程では、光反射シート11(図4C参照)を第2隙間23に充填する。
 光反射シート11は、第1実施形態の光反射シート11と同一である。
 具体的には、光反射部材13、仮固定シート2、光半導体素子1および蛍光体層26を、光反射シート11と蛍光体層26とが対向するように、プレス機にセットして、それらを、例えば、熱プレスする。
 このプレスによって、光反射シート11(光反射組成物)が第2隙間23に充填される。これによって、光反射組成物(光反射シート11)からなる光反射層14が、第2隙間23に充填された形状で、形成される。なお、光反射層14において、第2隙間23に充填された部分は、第3充填部分37である。
 光反射層14(第3充填部分37)は、光半導体素子1の周側面5に形成される蛍光体層26の周側面29を被覆している。また、光反射層14は、光半導体素子1の発光面4に形成される蛍光体層26の上面27に、被覆して付着している。光反射層14において、蛍光体層26の上面27に付着する部分は、第2付着部分31である。また、光反射層14は、平坦な上面15を有している。
 光反射層14の上面15において、第2付着部分31と、第3充填部分37の上に位置する部分とは、前後方向および左右方向に面一である。
 第2付着部分31の厚みT2は、例えば、1μm以上であり、また、例えば、50μm以下、さらには200μm以下である。
 その後、図4Dの矢印で示すように、剥離シート12を光反射層14から剥離する。具体的には、剥離シート12を、光反射層14の上面15から引き剥がす。
 そうすると、光反射層14の上面15が露出する。これによって、複数の光半導体素子1と、光半導体素子1の発光面4および周側面5に形成された蛍光体層26と、第3充填部分37および第2付着部分31を有する光反射層14とを備える光反射層および蛍光体層付光半導体素子30を、光半導体素子1の電極面3が仮固定シート2に仮固定された状態で、得る。
 4. 第2付着部分除去工程
 図5Eに示すように、第2付着部分除去工程を、光反射シート充填工程(図4D参照)の後に実施する。
 第2付着部分除去工程では、第2付着部分31を、除去する。
 このとき、光反射層14において、第3充填部分37の上に位置する部分も、第2付着部分31とともに、除去される。すなわち、光反射層14において、前後方向および左右方向に投影したときに、蛍光体層26の上面27より上に位置する部分36(上層部分36)が、除去される。
 第2付着部分31を除去する方法は、第1実施形態において例示した第1付着部分17を除去する方法と同一である。具体的には、(1)感圧接着シート18を用いる方法、例えば、図示しないが、(2)溶媒を用いる方法、例えば、図示しないが、(3)研磨部材を用いる方法が採用される。
 (1)の方法では、まず、感圧接着シート18を用いて、光反射層14における第2付着部分31を除去した後、光反射層14に含有される樹脂が熱硬化性樹脂(Bステージの熱硬化性樹脂)である場合には、光反射層14を、加熱して硬化(完全硬化)させる。
 (2)の方法では、溶媒、および感圧接着シート18が併用される。
 つまり、(2)の方法では、まず、光反射層14に含有される樹脂が熱硬化性樹脂(Bステージの熱硬化性樹脂)である場合には、光反射層14を、加熱して硬化(完全硬化)させる。
 この方法では、次いで、上記溶媒を布に吸収させ、その布によって、硬化した光反射層14の上面15を拭く。なお、この溶媒によって、光反射層14の上面15を拭いても、第2付着部分31が残存する。
 その後、残存する第2付着部分31を(1)で説明した感圧接着シート18を用いて除去する。
 (3)の方法では、研磨部材による上面15の研磨のタイミングは、樹脂が熱硬化性樹脂(Bステージの熱硬化性樹脂)である場合には、光反射層14の硬化の前後のいずれであってもよい。
 そして、光反射層14の上層部分36の除去によって、第3充填部分37の上面15は、蛍光体層26の上面27と、前後方向および左右方向に面一となる。つまり、光反射層14から露出する蛍光体層26の上面27と、光反射層14の第3充填部分37の上面15とは、同一平面を形成する。
 5. 切断工程
 図5Fに示すように、切断工程を、第2付着部分除去工程(図5E参照)の後に実施する。
 切断工程では、互いに隣接する光半導体素子1の間において、光反射層14を切断する。具体的には、第3充填部分37(図5E参照)を切断する。光反射層14を切断する方法は、第1実施形態のそれと同一である。なお、切断溝20は、図5Fでは、図示されないが、感圧接着剤層9にも形成されていてもよい。その場合には、切断溝20の下端部は、感圧接着剤層9の厚み方向途中に到達する。つまり、光反射層14および感圧接着剤層9の両方に、切断溝20が切り込まれている。
 光反射層14(第3充填部分37)には、互いに隣接する光半導体素子1の間において、前後方向および左右方向に沿って整列する切断溝20が形成される。
 6. 剥離工程
 図5Gに示すように、剥離工程を、切断工程(図5F参照)の後に実施する。
 剥離工程では、まず、図5Gの下向き矢印で示すように、支持板8を感圧接着剤層9から剥離する。これによって、前後方向および左右方向に互いに間隔(幅W1)を隔てて整列配置された複数の光反射層および蛍光体層付光半導体素子30が、感圧接着剤層9に支持された状態で、得られる。
 その後、図5Gの上向き矢印で示すように、光反射層および蛍光体層付光半導体素子30を感圧接着剤層9から剥離する。光反射層および蛍光体層付光半導体素子30を感圧接着剤層9から剥離する方法は、第1実施形態において例示した方法と同一である。
 これによって、1つの光半導体素子1と、光半導体素子1の発光面4および周側面5を被覆する蛍光体層26と、蛍光体層26の周側面29を被覆する光反射層14とを備える光反射層および蛍光体層付光半導体素子30を得る。好ましくは、光反射層および蛍光体層付光半導体素子30は、光半導体素子1と、蛍光体層26と、光反射層14とのみからなる。
 光反射層および蛍光体層付光半導体素子30では、光反射層14の側面32が側方に露出し、蛍光体層26の上面27と、上面27の周囲に位置する光反射層14の上面15とが、上側に露出し、電極6の下面が下側に露出している。蛍光体層26の上面27は、光反射層14の上面15と面一となる。
 この光反射層および蛍光体層付光半導体素子30は、光半導体装置60(図6参照)ではなく、つまり、光半導体装置60に備えられる基板50を含まない。つまり、光反射層および蛍光体層付光半導体素子30は、電極6が、基板50に設けられる端子51と電気的に接続されていない。さらに、光反射層および蛍光体層付光半導体素子30は、光半導体装置60の一部品、すなわち、光半導体装置60を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスである。
 7. 光半導体装置の製造
 その後、図6に示すように、光反射層および蛍光体層付光半導体素子30の電極6を、基板50の上面に設けられた端子51に電気的に接続する。具体的には、光反射層および蛍光体層付光半導体素子30を基板50にフリップチップ実装する。
 これによって、光反射層および蛍光体層付光半導体素子30と、基板50とを備える光半導体装置60を得る。つまり、光半導体装置60は、基板50と、基板50に実装される光半導体素子1と、光半導体素子1の発光面4および周側面5を被覆する蛍光体層26と、蛍光体層26の周側面29を被覆する光反射層14とを備える。光半導体装置60は、好ましくは、基板50と、光半導体素子1と、蛍光体層26と、光反射層14とのみからなる。また、光半導体装置60では、蛍光体層26および光反射層14が、基板50に接触している。
 8. 第2実施形態の作用効果
 この方法によれば、図5Eに示すように、蛍光体層26の上面27に付着する光反射層14、つまり、第2付着部分31を除去するので、複数の光半導体素子1の発光面4から発光され、蛍光体層26によって波長変換された光を蛍光体層26の上面27から効率的に取り出すことができる。
 また、この方法によれば、図4Bに示すように、蛍光体シート24を第1隙間10に簡便に充填し、次いで、図4Cに示すように、第2隙間23を簡単に形成することができる。
 また、この方法によれば、図4Aに示す蛍光体シート24は、厚み方向に投影したときに複数の光半導体素子1を含むように、前後方向および左右方向に連続する形状を有しているので、図4Bに示すように、蛍光体シート24を第1隙間10に簡便に充填することができる。
 9. 変形例
 第2実施形態の「4. 第2付着部分除去工程」における(1)の方法では、まず、感圧接着シート18を用いて、光反射層14における第2付着部分31を除去した後、光反射層14に含有される樹脂が熱硬化性樹脂(Bステージの熱硬化性樹脂)である場合には、光反射層14を、加熱して硬化(完全硬化)させている。しかし、例えば、まず、光反射層14を加熱して硬化(完全硬化)させ、その後、感圧接着シート18を用いて、光反射層14における第2付着部分31を除去することもできる。
 第2実施形態の「4. 第2付着部分除去工程」における(2)の方法では、溶媒、および感圧接着シート18を併用している。しかし、溶媒により、光反射層14における第2付着部分31を十分に除去できる場合には、溶媒のみによって、光反射層14における第2付着部分31を除去することもできる。
 第2実施形態では、蛍光体層形成工程を、図4Aに示すように、蛍光体シート24を用いて実施しているが、例えば、蛍光体シート24を用いず、蛍光組成物のワニスを、第1隙間10に対して、ポッティングすることによって、図4Bに示すような、前後方向および左右方向において連続する形状を有する蛍光体層26を形成することができる。その後、図4Cに示すように、蛍光体層26を切断する。
 第2実施形態では、図4Cに示すように、光反射シート11を、剥離シート12の下面全面において、前後方向および左右方向に連続する層(平板)形状を有しているが、図7に示すように、第2隙間23に対応するパターン形状を有することもできる。
 光反射シート11には、開口部21が複数形成されている。
 開口部21は、厚み方向に投影したときに、蛍光体層26の外形形状と同一の形状を有している。光反射シート11は、厚み方向に投影したときに、第2隙間23の形状と同一の形状を有している。
 この変形例においても、光反射シート充填工程では、図4Dに示すように、光反射層14が、蛍光体層26の上面27に付着して、第2付着部分31を形成する。
 一方、第2実施形態における図4Cに示す光反射シート11は、変形例における図7に示す光反射シート11に比べて、第2付着部分31を生じ易く、つまり、本発明の課題を生じ易い。
 また、第2実施形態では、図5Eおよび図5Fに示すように、第2付着部分除去工程(図5E参照)の後に、切断工程(図5F参照)を実施している。しかし、例えば、切断工程(図5F参照)の後に、第2付着部分除去工程(図5E参照)を実施することもできる。
 好ましくは、図5Eおよび図5Fに示すように、第2付着部分除去工程(図5E参照)の後に、切断工程(図5F参照)を実施する(第2実施形態)。
 一方、変形例のように、切断工程(図5F参照)の後に、付着部分除去工程(図5E参照)を、「(1)感圧接着シート18を用いる方法」および/または「(3)研磨部材を用いる方法」により実施すれば、切断工程によって形成された切断溝20に、感圧接着シート18の感圧接着剤、および/または、研磨部材が入り込み、第3充填部分37(蛍光体層26の周側面29を被覆する光反射層14)が、感圧接着シート18、および/または、研磨部材によって除去されるおそれがある。他方、第2実施形態であれば、上記したおそれを解消できる。
 また、切断工程(図5F参照)の後に、第2付着部分除去工程(図5E参照)を、「(2)溶媒を用いる方法」により実施すれば、切断工程によって形成された切断溝20に、溶媒が入り込み、残存するおそれがあり、また、そのため、溶媒を除去する工程が別途必要となる。他方、第2実施形態であれば、上記したおそれを解消できる。
 また、例えば、光反射シート充填工程において、Bステージ(半硬化)状態の、第2付着部分31を含む光反射層14を形成する際に、光反射シート11の充填温度と時間とを制御することにより、を形成した後、第2付着部分除去工程を実施し、その後、光反射層14をCステージ(完全硬化)させることもできる。この場合には、第2付着部分除去工程では、好ましくは、「(2)溶媒を用いる方法」が採用される。具体的には、Bステージの光反射シート11の硬度を、例えば、95以上、99以下に設定する。硬度の測定は、上記と同一である。光反射シート11の充填温度および充填時間は、上記と同一である。「(2)溶媒を用いる方法」により第1付着部分17を除去するとき(後述)、第1付着部分17を確実に除去することができる。
 第2実施形態において、図5Gに示すように、剥離工程を実施しているが、剥離工程を実施しなくてもよい。つまり、図5Fに示すように、個片化された1つの光半導体素子1と、光反射層14と、蛍光体層26とを備え、仮固定シート2(支持板8および感圧接着剤層9)に支持された状態の複数の光反射層付光半導体素子16も、光半導体装置60を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスとして用いられる。
 さらに、図5Gの実線で示されるように、剥離工程における支持板8のみを除去することもできる。つまり、感圧接着剤層9のみに支持された状態の複数の光反射層付光半導体素子16も、光半導体装置60を作製するための部品であり、部品単独で流通し、産業上利用可能なデバイスとして用いられる。
  <第3実施形態>
 第3実施形態において、第1~第2実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 本発明の第3実施形態(光反射層および蛍光体層付光半導体素子の製造方法の他の実施形態)は、仮固定工程(図8A参照)と、蛍光体シート積層工程(図8B参照)と、光反射シート充填工程(図8C参照)と、第2付着部分除去工程(図9D参照)と、切断工程(図9E参照)と、剥離工程(図9F参照)とを備える。
 1.蛍光体シート積層工程
 図8Bに示すように、蛍光体シート積層工程を、仮工程(図8A参照)の後に実施する。
 蛍光体シート積層工程では、図8Aに示すように、まず、厚み方向に投影したときに複数の光反射シート11の発光面4に対応するパターンを有する蛍光体シート24を用意する。
 蛍光体シート24は、厚み方向に投影したときに、第1隙間10と同一パターンを有する第2開口部38を有する。これにより、蛍光体シート24は、第2開口部38により仕切られており、光反射シート11の発光面4と同一寸法およびパターン形状を有する。
 また、蛍光体シート24は、蛍光体セラミックプレートから調製されていてもよい。その際には、蛍光体部材25は、蛍光体シート24のみからなっており、蛍光体部材25は、剥離シート12(図8Aの仮想線参照)を備えなくてもよい。
 次いで、蛍光体シート積層工程では、図8Bに示すように、蛍光体シート24を、発光面4に積層する。
 これにより、蛍光体シート24は、光半導体素子1の発光面4を被覆する蛍光体層26として形成される。また、第2隙間23が、光半導体素子1の第1隙間10と、第1隙間10の上側に連通し、蛍光体層26の第2開口部38(図8A参照)とから形成される。蛍光体層26の周側面29と、光半導体素子1の周側面5とは、ともに、第2隙間23に面しており、厚み方向に面一に形成されている。
 2.光反射シート充填工程
 図8Cに示すように、光反射シート充填工程を、蛍光体シート積層工程(図8B参照)の後に実施する。
 光反射シート充填工程では、光反射シート11(図8B参照)を第2隙間23に充填する。
 これによって、光反射層14は、光半導体素子1の周側面5と、蛍光体層26の周側面29とに連続して被覆する第3充填部分37を有している。また、光反射層14は、蛍光体層26の上面27に被覆して付着しており、第2付着部分31とを有している。さらに、光反射層14は、光半導体素子1の電極面3において、電極6から露出する面も被覆する。
 3.第2付着部分除去工程、切断工程および剥離工程
 その後、図9Dに示す第2付着部分除去工程と、図9Eに示す切断工程と、図9Fに示す剥離工程とを順に実施する。
 これにより、図9Fの仮想線で示すように、光半導体素子1の発光面4を被覆する蛍光体層26と、蛍光体層26の周側面29、および、光半導体素子1の周側面5を被覆する光反射層14とを備える光反射層および蛍光体層付光半導体素子30を得る。
 その後、図10に示すように、光反射層および蛍光体層付光半導体素子30の電極6を、基板50の端子51に電気的に接続する。これにより、基板50と、基板50に実装される光半導体素子1と、光半導体素子1の発光面4を被覆する蛍光体層26と、蛍光体層26の周側面29、および、光半導体素子1の周側面5を被覆する光反射層14とを備える光半導体装置60を得る。
 4.第3実施形態の作用効果
 この方法によれば、図9Fに示すように、光反射層14を複数の光半導体素子1の周側面5に形成するので、光半導体素子1の周側面5から発光された光を光反射層14によって効率的に反射させることができる。
  <第4実施形態>
 第4実施形態において、第1~第3実施形態と同じ部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 第2実施形態では、図4Bに示すように、「2. 蛍光体層形成工程」において、径方向内側から外側に向かうに従って、同一刃厚T4を有する第2ダイシングソー(ダイシングブレード)28を用いて、蛍光体層26を切断する。
 しかし、第4実施形態では、図11Bに示すように、径方向内側から外側に向かうに従って刃厚が狭くなる第2ダイシングソー(ダイシングブレード)43を用いて、蛍光体層26を切断する。
 本発明の第4実施形態(光反射層および蛍光体層付光半導体素子の製造方法の一実施形態)は、仮固定工程(図11A参照)と、蛍光体層形成工程(図11A~図C参照)と、光反射シート充填工程(図11D参照)と、第2付着部分除去工程(図12E参照)と、切断工程(図12F参照)と、剥離工程(図12G参照)とを備える。第2実施形態と異なる工程を説明する。
 1.蛍光体層形成工程
 蛍光体層形成工程は、蛍光体層26を複数の光半導体素子1の発光面4および周側面5に形成する工程(1)(図11A参照)、複数の光半導体素子1および蛍光体層26を第2固定シート40に転写する工程(2)(図11B参照)、および、第2固定シート40に支持された蛍光体層26を切断する工程(3)(図11C参照)を備える。蛍光体層形成工程では、工程(1)、工程(2)および工程(3)を順次実施する。
 1-1.工程(1)
 図11Aに示すように、工程(1)は、第2実施形態における「蛍光体層形成工程」(図4Bおよび図4C参照)と同一である。
 1-2.第2工程(2)
 図11Bに示すように、第2固定シート40は、第2支持板41と、第2支持板41の上に配置される第2感圧接着剤層42とを備える。第2固定シート40は、複数の光半導体素子1および蛍光体層26を仮固定シート2から転写される転写シートである。
 第2支持板41および第2感圧接着剤層42のそれぞれは、第2実施形態で例示した支持板8および感圧接着剤層9のそれぞれと同一である。
 複数の光半導体素子1および蛍光体層26を第2固定シート40に転写するには、図11Aに示すように、まず、複数の光半導体素子1および蛍光体層26の上側に、第2固定シート40を配置する。第2固定シート40において、第2感圧接着剤層42は、蛍光体層26に向かっている。
 次いで、図11Aの矢印で示すように、第2固定シート40を蛍光体層26に近接させて、第2感圧接着剤層42と蛍光体層26とを接触させる。その後、複数の光半導体素子1および蛍光体層26を感圧接着剤層9(仮固定シート2)から剥離する。
 これによって、図11Bに示すように、複数の光半導体素子1および蛍光体層26は、仮固定シート2から第2固定シート40に転写される。これにより、複数の光半導体素子1および蛍光体層26が、第2固定シート40に支持された状態で得られる。光半導体素子1における電極6および電極側面3は、上側に向かう。また、電極6は、上側に露出している。一方、発光面4は、下側に向かっている。
 1-3.工程(3)
 図11Cに示すように、工程(3)では、蛍光体層26を、第2ダイシングソー(ダイシングブレード)43を用いて、蛍光体層26(第2充填部分35)を切断する。
 第2ダイシングソー43は、中心から径方向外側に向かって刃厚が次第に狭くなる形状を有する。また、第2ダイシングソー43は、径方向外側に向かって幅狭となるテーパー面を有する。また、第2ダイシングソー43は、断面略V字形状を有する。第2ダイシングソー43のテーパー面の、径方向に沿う仮想面に対する角度αは、例えば、10度以上、好ましくは、30度以上であり、また、例えば、60度以下、好ましくは、80度以下である。
 工程(3)では、まず、第2ダイシングソー43を蛍光体層26の上側に配置し、続いて、第2ダイシングソー43を下降させて、第2ダイシングソー43の先端部(径方向外端部)を蛍光体層26の上面に接触させる。続いて、第2ダイシングソー43の先端部を、蛍光体層26の厚み方向全部を貫通して、さらに、第2感圧接着剤層42に接触するまで、下降させる。続いて、第2ダイシングソー43を前後方向および左右方向に移動させる。
 これによって、下側に向かうに従って、開口断面積が小さくなる第2隙間23が形成される。第2隙間23は、第2ダイシングソー43のテーパー面に対応する形状を有する。つまり、第2隙間23は、開口断面積が下側に向かうに従って小さくなる形状を有する。具体的には、第2隙間23は、断面視において、厚み方向に沿って延びる2つの対向辺間の間隔が下側に向かうに従って狭くなる形状を有する。詳しくは、第2隙間23は、下側に向かって尖る断面略三角形状を有する。
 また、第2隙間23は、蛍光体層26の厚み方向を貫通する。さらに、第2隙間23の下端部は、図11Cの部分拡大図に示すように、第2感圧接着剤層42の厚み方向途中に到達していてもよい。つまり、蛍光体層26および第2感圧接着剤層42の両方に、第2隙間23が切り込まれていてもよい。
 そのため、蛍光体層26の周側面29は、上側(電極6側)に向かうに従って左右方向内側(隣接する光半導体素子1の間における光半導体素子1側)に傾斜するテーパー面である。
 隣接する光半導体素子1の周側面29の下端部間の距離(幅)W4は、例えば、50μm以上、好ましくは、100μm以上であり、また、例えば、600μm以下、好ましくは、400μm以下である。
 2.光反射シート充填工程
 図11Dに示すように、光反射シート充填工程では、光反射シート11(図11C参照)を第2隙間23に充填する。
 光反射層14において、第2隙間23に充填された部分である第3充填部分37は、第2隙間23と同一形状(下底より長い上底を有する断面略台形状)を有する。また、光反射層14は、電極側面3に対向する蛍光体層26の上面27に付着する第2付着部分31を有する。
 3.第2付着部分除去工程、切断工程および剥離工程
 その後、図12Eに示す第2付着部分除去工程と、図12Fに示す切断工程と、図12Gに示す剥離工程とを順に実施する。
 これによって、複数の光半導体素子1と、光半導体素子1の電極側面3、発光面4および周側面5を被覆する蛍光体層26と、蛍光体層26の周側面29を被覆する光反射層14とを備える、光反射層および蛍光体層付光半導体素子30が、第2固定シート40に仮固定された状態で得られる。
 これによって、1つの光半導体素子1と、光半導体素子1の電極側面3、発光面4および周側面5を被覆する蛍光体層26と、蛍光体層26の周側面29を被覆する光反射層14とを備える光反射層および蛍光体層付光半導体素子30を得る。好ましくは、光反射層および蛍光体層付光半導体素子30は、光半導体素子1と、蛍光体層26と、光反射層14とのみからなる。
 光反射層および蛍光体層付光半導体素子30では、光反射層14の側面32は、側方に露出している。蛍光体層26の上面27と、上面27の周囲に位置する光反射層14の上面15と、電極6とは、上側に露出しており、それらは、面一である。また、蛍光体層26の下面と、光反射層14の下面とは、下側に露出しており、それらは、面一である。
 光反射層14の内側面は、蛍光体層26の周側面29に対応するテーパー面である。光反射層14の外側面32は、厚み方向に沿う垂直面である。光反射層14の上端部(光半導体素子1の電極側面3側端部)の幅W5は、蛍光体層26の厚みをT5とした場合に、下記式で表される。
  W5=(T5×tanα)+W6
 (αは、蛍光体層26の周側面(外面)29と、光反射層14の周側面(外面)との成す角度α(図13参照)であり、上記した第2ダイシングソー43(図11B参照)のテーパー面の、径方向に沿う仮想面に対する角度αと同一である。W6は、光反射層14の下端部の幅であり、光半導体素子1の発光面4側端部の幅である。)
 具体的には、光反射層14の上端部の幅W5は、例えば、25μm以上、好ましくは、50μm以上であり、また、例えば、300μm以下、好ましくは、200μm以下である。
 4. 光半導体装置の製造
 その後、図13に示すように、光反射層および蛍光体層付光半導体素子30の電極6を、基板50の上面に設けられた端子51に電気的に接続する。具体的には、光反射層および蛍光体層付光半導体素子30を基板50にフリップチップ実装する。
 これによって、光反射層および蛍光体層付光半導体素子30と、基板50とを備える光半導体装置60を得る。つまり、光半導体装置60は、基板50と、基板50に実装される光半導体素子1と、光半導体素子1の電極側面3、発光面4および周側面5を被覆する蛍光体層26と、蛍光体層26の周側面29を被覆する光反射層14とを備える。光半導体装置60は、好ましくは、基板50と、光半導体素子1と、蛍光体層26と、光反射層14とのみからなる。また、光半導体装置60では、蛍光体層26および光反射層14が、基板50に接触している。
 5. 第4実施形態の作用効果
 この方法によれば、図11Bおよび図11Cに示すように、第2ダイシングソー(ダイシングブレード)43を用いて、蛍光体層26を切断して、下底より長い上底を有する断面略台形状を有する第2隙間23を形成し、図11Dに示すように、第2隙間23に、光反射層14の第3充填部分37を形成する。これによって、光反射層14の内側面を、容易にテーパー面とすることができる。
 また、この光反射層および蛍光体層付光半導体素子30では、光反射層14の内側面が上記したテーパー面であるので、輝度を向上させることができる。
 6. 第4実施形態の変形例
 第4実施形態では、図11Bおよび図11Cに示すように、第2ダイシングソー(ダイシングブレード)43を用いて、蛍光体層26を切断している。しかし、下底より長い上底を有する断面略台形状を有する第2隙間23を形成できれば、上記に限定されず、例えば、ウォータジェットを用いることもできる。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
光反射層付光半導体素子と光反射層および蛍光体層付光半導体素子とは、光半導体装置の製法に用いられる。
1     光半導体素子
2     仮固定シート
3     電極面(光半導体素子)
4     発光面(光半導体素子)
5     周側面(光半導体素子)
6     電極
7     発光層
10   第1隙間
11   光反射シート
14   光反射層
16   光反射層付光半導体素子
17   第1付着部分
23   第2隙間
24   蛍光体シート
26   蛍光体層
27   上面(蛍光体層)
29   周側面(蛍光体層)
30   光反射層および蛍光体層付光半導体素子
31   第2付着部分

Claims (7)

  1.  電極が設けられる電極面、前記電極面に対向し、発光層が設けられる発光面、および、前記電極面と前記発光面との周端縁を連結する連結面を有する複数の光半導体素子の前記電極面を、仮固定シートに互いに間隔を隔てて仮固定する工程と、
     光反射シートを互いに隣接する前記光半導体素子の第1隙間に充填して、光反射層を前記複数の光半導体素子の前記連結面に形成する工程と、
     前記複数の光半導体素子の前記発光面に付着する前記光反射層を除去する工程と、
     互いに隣接する前記光半導体素子の間において、前記光反射層を切断する工程と
    を備えることを特徴とする、光反射層付光半導体素子の製造方法。
  2.  前記光反射シートは、前記光反射シートの厚み方向に投影したときに前記複数の光半導体素子を含むように、前記厚み方向に対する直交方向に連続する形状を有していることを特徴とする、請求項1に記載の光反射層付光半導体素子の製造方法。
  3.  電極が設けられる電極面、前記電極面に対向し、発光層が設けられる発光面、および、前記電極面と前記発光面との周端縁を連結する連結面を有する複数の光半導体素子の前記電極面を、仮固定シートに互いに間隔を隔てて仮固定する工程と、
     蛍光体層を、互いに隣接する前記光半導体素子の間に第2隙間が形成されるように、前記複数の光半導体素子の前記発光面に形成する工程と、
     光反射シートを前記第2隙間に充填して、光反射層を、前記第2隙間に面する前記蛍光体層の側面に形成する工程と、
     前記蛍光体層の表面に付着する前記光反射層を除去する工程と、
     互いに隣接する前記蛍光体層の間において、前記光反射層を切断する工程と
    を備えることを特徴とする、光反射層および蛍光体層付光半導体素子の製造方法。
  4.  前記蛍光体層を形成する工程では、前記複数の光半導体素子の前記連結面にも形成することを特徴とする、請求項3に記載の光反射層および蛍光体層付光半導体素子の製造方法。
  5.  前記蛍光体層を形成する工程は、
      厚み方向に投影したときに前記複数の光半導体素子を含むように、前記厚み方向に対する直交方向に連続する形状を有する蛍光体シートを、互いに隣接する前記光半導体素子の第1隙間に充填する工程と、
      互いに隣接する前記光半導体素子の間において、前記蛍光体層を、前記第2隙間が形成されるように、切断する工程と
    を備えることを特徴とする、請求項3に記載の光反射層および蛍光体層付光半導体素子の製造方法。
  6.  前記蛍光体層を形成する工程では、厚み方向に投影したときに前記複数の光半導体素子の前記発光面に対応するパターンを有する蛍光体シートを、前記複数の光半導体素子の前記発光面に配置し、
     前記光反射層を形成する工程では、前記複数の光半導体素子の前記連結面に形成することを特徴とする、請求項3に記載の光反射層および蛍光体層付光半導体素子の製造方法。
  7.  前記光反射シートは、前記光反射シートの厚み方向に投影したときに前記複数の光半導体素子を含むように、前記厚み方向に対する直交方向に連続する形状を有していることを特徴とする、請求項3に記載の光反射層および蛍光体層付光半導体素子の製造方法。
PCT/JP2016/057597 2015-03-16 2016-03-10 光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法 WO2016148019A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/556,020 US10424703B2 (en) 2015-03-16 2016-03-10 Method of producing an optical semiconductor device
EP16764849.2A EP3273491B1 (en) 2015-03-16 2016-03-10 Optical semiconductor element with light reflecting layer and phosphor layer
CN201680016213.0A CN107431115A (zh) 2015-03-16 2016-03-10 带光反射层的光半导体元件的制造方法、带光反射层和荧光体层的光半导体元件的制造方法
KR1020177025605A KR102541533B1 (ko) 2015-03-16 2016-03-10 광 반사층 부착 광 반도체 소자, 및 광 반사층 및 형광체층 부착 광 반도체 소자의 제조 방법
US16/523,627 US10923639B2 (en) 2015-03-16 2019-07-26 Method for producing an optical semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015052523 2015-03-16
JP2015-052523 2015-03-16
JP2016-043581 2016-03-07
JP2016043581A JP6762736B2 (ja) 2015-03-16 2016-03-07 光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/556,020 A-371-Of-International US10424703B2 (en) 2015-03-16 2016-03-10 Method of producing an optical semiconductor device
US16/523,627 Continuation US10923639B2 (en) 2015-03-16 2019-07-26 Method for producing an optical semiconductor device

Publications (1)

Publication Number Publication Date
WO2016148019A1 true WO2016148019A1 (ja) 2016-09-22

Family

ID=56918883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057597 WO2016148019A1 (ja) 2015-03-16 2016-03-10 光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法

Country Status (1)

Country Link
WO (1) WO2016148019A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108231974A (zh) * 2016-12-21 2018-06-29 日亚化学工业株式会社 发光装置的制造方法
JP2018139285A (ja) * 2016-12-21 2018-09-06 日亜化学工業株式会社 発光装置の製造方法
JP2019016629A (ja) * 2017-07-03 2019-01-31 大日本印刷株式会社 Ledモジュール
JP2019064136A (ja) * 2017-09-29 2019-04-25 日亜化学工業株式会社 透光性シートの製造方法
CN110050207A (zh) * 2016-12-09 2019-07-23 日本电气硝子株式会社 波长转换部件的制造方法、波长转换部件和发光设备
JP2020529122A (ja) * 2017-07-27 2020-10-01 ダウ シリコーンズ コーポレーション 光を制御するためのシリコーン組成物及び物品
US11538966B2 (en) 2019-04-05 2022-12-27 Nichia Corporation Method of manufacturing light emitting device
US12027501B2 (en) 2020-04-02 2024-07-02 Nichia Corporation Surface light source and method of manufacturing surface light source
US12266744B2 (en) 2018-10-22 2025-04-01 Osram Opto Semiconductors Gmbh Method for producing optoelectronic semiconductor devices and optoelectronic semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222320A (ja) * 2011-04-14 2012-11-12 Nitto Denko Corp 発光素子転写シートの製造方法、発光装置の製造方法、発光素子転写シートおよび発光装置
JP2012231018A (ja) * 2011-04-26 2012-11-22 Nippon Mektron Ltd フレキシブル回路体及びその製造方法
JP2012251031A (ja) * 2011-06-01 2012-12-20 Nitto Denko Corp リフレクタ材料および発光ダイオード装置
JP2013004807A (ja) * 2011-06-17 2013-01-07 Toshiba Corp 半導体発光装置およびその製造方法
WO2013137356A1 (ja) * 2012-03-13 2013-09-19 シチズンホールディングス株式会社 半導体発光装置及びその製造方法
WO2014072871A1 (en) * 2012-11-07 2014-05-15 Koninklijke Philips N.V. Light emitting device including a filter and a protective layer
WO2014157455A1 (ja) * 2013-03-28 2014-10-02 東芝ホクト電子株式会社 発光装置、その製造方法、および発光装置使用装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222320A (ja) * 2011-04-14 2012-11-12 Nitto Denko Corp 発光素子転写シートの製造方法、発光装置の製造方法、発光素子転写シートおよび発光装置
JP2012231018A (ja) * 2011-04-26 2012-11-22 Nippon Mektron Ltd フレキシブル回路体及びその製造方法
JP2012251031A (ja) * 2011-06-01 2012-12-20 Nitto Denko Corp リフレクタ材料および発光ダイオード装置
JP2013004807A (ja) * 2011-06-17 2013-01-07 Toshiba Corp 半導体発光装置およびその製造方法
WO2013137356A1 (ja) * 2012-03-13 2013-09-19 シチズンホールディングス株式会社 半導体発光装置及びその製造方法
WO2014072871A1 (en) * 2012-11-07 2014-05-15 Koninklijke Philips N.V. Light emitting device including a filter and a protective layer
WO2014157455A1 (ja) * 2013-03-28 2014-10-02 東芝ホクト電子株式会社 発光装置、その製造方法、および発光装置使用装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273491A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110050207A (zh) * 2016-12-09 2019-07-23 日本电气硝子株式会社 波长转换部件的制造方法、波长转换部件和发光设备
US11322659B2 (en) 2016-12-09 2022-05-03 Nippon Electric Glass Co., Ltd. Method for manufacturing wavelength conversion member, wavelength conversion member, and light-emitting device
JP2018139285A (ja) * 2016-12-21 2018-09-06 日亜化学工業株式会社 発光装置の製造方法
CN108231974A (zh) * 2016-12-21 2018-06-29 日亚化学工业株式会社 发光装置的制造方法
JP2019016629A (ja) * 2017-07-03 2019-01-31 大日本印刷株式会社 Ledモジュール
JP7187533B2 (ja) 2017-07-27 2022-12-12 ダウ シリコーンズ コーポレーション 光電子デバイスを製造する方法及び光電子デバイスを使用する方法
JP2020529122A (ja) * 2017-07-27 2020-10-01 ダウ シリコーンズ コーポレーション 光を制御するためのシリコーン組成物及び物品
US11670741B2 (en) 2017-07-27 2023-06-06 Rohm And Haas Electronic Materials Llc Method of manufacturing an optoelectronic device
JP2019064136A (ja) * 2017-09-29 2019-04-25 日亜化学工業株式会社 透光性シートの製造方法
US11398587B2 (en) 2017-09-29 2022-07-26 Nichia Corporation Method of manufacturing light-transmissive sheet
US12266744B2 (en) 2018-10-22 2025-04-01 Osram Opto Semiconductors Gmbh Method for producing optoelectronic semiconductor devices and optoelectronic semiconductor device
US11538966B2 (en) 2019-04-05 2022-12-27 Nichia Corporation Method of manufacturing light emitting device
US12027501B2 (en) 2020-04-02 2024-07-02 Nichia Corporation Surface light source and method of manufacturing surface light source

Similar Documents

Publication Publication Date Title
JP6762736B2 (ja) 光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法
WO2016148019A1 (ja) 光反射層付光半導体素子、および、光反射層および蛍光体層付光半導体素子の製造方法
JP5862066B2 (ja) 蛍光体含有シート、それを用いたled発光装置およびその製造方法
JP5110229B1 (ja) 樹脂シート積層体、その製造方法およびそれを用いた蛍光体含有樹脂シート付きledチップの製造方法
JP6287212B2 (ja) 蛍光体含有樹脂シートおよび発光装置
JP2016213451A (ja) 蛍光体層−封止層付光半導体素子の製造方法
CN103531688A (zh) 覆有反射层-荧光体层的led、其制造方法、led装置及其制造方法
CN104321888A (zh) 树脂片材层合体及使用其的半导体发光元件的制造方法
CN102738362A (zh) 反射树脂片、发光二极管装置及其制造方法
JP2014022704A (ja) 蛍光体含有樹脂シートと発光装置及びその製造方法
JP2014013879A (ja) 光半導体用光反射部材およびそれを用いた光半導体実装用基板ならびに光半導体装置
JP2014116587A (ja) 蛍光体含有樹脂シート、これを用いたled素子およびその製造方法
TW201401575A (zh) 密封層被覆半導體元件、其製造方法及半導體裝置
JP5953797B2 (ja) 半導体発光装置の製造方法
JP2013252637A (ja) 蛍光体シート積層体
WO2017221606A1 (ja) 蛍光体層付光半導体素子およびその製造方法
JP6543564B2 (ja) 被覆光半導体素子の製造方法
WO2017221607A1 (ja) 蛍光体層付光半導体素子
JP2018049864A (ja) 機能層−被覆層付光半導体素子の製造方法
CN108630795B (zh) 透光性构件的制造方法以及发光装置的制造方法
WO2016178397A1 (ja) 蛍光体層-封止層付光半導体素子の製造方法
WO2017221608A1 (ja) 蛍光体層シート、および、蛍光体層付光半導体素子の製造方法
US11398587B2 (en) Method of manufacturing light-transmissive sheet
JP2018101659A (ja) 機能層−被覆層付光半導体素子の製造方法
JP2018049865A (ja) 被覆層付光半導体素子および蛍光体層−被覆層付光半導体素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15556020

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016764849

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177025605

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE