WO2016143599A1 - 架橋体および制振材 - Google Patents
架橋体および制振材 Download PDFInfo
- Publication number
- WO2016143599A1 WO2016143599A1 PCT/JP2016/056195 JP2016056195W WO2016143599A1 WO 2016143599 A1 WO2016143599 A1 WO 2016143599A1 JP 2016056195 W JP2016056195 W JP 2016056195W WO 2016143599 A1 WO2016143599 A1 WO 2016143599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- parts
- tan
- olefin
- temperature range
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Ethene-propene or ethene-propene-diene copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/346—Clay
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/01—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2312/00—Crosslinking
Definitions
- the present invention relates to a crosslinked body and a vibration damping material, and more particularly, to a crosslinked body and a vibration damping material in which both high hardness and low impact resilience are compatible.
- parts and molding materials used in the transportation and mobile industries are required to have vibration damping properties. Therefore, a damping material is used for such parts and molding materials.
- the damping material includes a low-hardness product having a gel-like property used for a sole of an athletic shoe and a high-hardness product having a relatively high hardness used for a support material for an acoustic device.
- Patent Document 1 discloses an olefin having 2 to 20 carbon atoms excluding 4-methyl-1-pentene and a structural unit of 50 to 100% by weight derived from 4-methyl-1-pentene.
- a damping material comprising an olefin polymer comprising 0 to 50% by weight of structural units derived from at least one olefin selected from
- Patent Document 2 discloses a low-rebound resilience / damping polymer composition in which an active ingredient that increases the amount of dipole moment of a copolymer such as polyurethane is blended.
- Patent Document 3 discloses an impact absorber composition containing a copolymer containing a vinyl aromatic compound, wherein the tan ⁇ peak obtained by dynamic viscoelasticity measurement (1 Hz) of the copolymer exceeds 0 ° C. and 20
- An impact absorber composition having a tan ⁇ value of 0.4 or more in the entire temperature range of 5 ° C. to 15 ° C. and a tan ⁇ value of 15 ° C. of 0.5 or more is disclosed. Has been.
- Patent Document 4 discloses a rubber composition having at least one loss tangent (tan ⁇ ) peak measured at 100 rad / sec in the range of ⁇ 60 to ⁇ 30 ° C. and at least one in the range of 0 to 40 ° C. , An acrylic copolymer copolymerized with an ⁇ , ⁇ -unsaturated nitrile monomer, and a rubber containing an ethylene / ⁇ -olefin copolymer having the tan ⁇ peak in the range of ⁇ 60 to ⁇ 30 ° C. A composition is disclosed.
- the inventor has studied to obtain a material that can achieve both high hardness and low rebound resilience. Specifically, it is a method of using a combination of known vibration damping materials including the materials described above. However, it has been found that even if these materials are simply used in combination, it is not possible to achieve both a high hardness such as a durometer hardness of 50 to 80 and a low rebound resilience such as a rebound resilience of 20% or less.
- the present invention provides a new damping material that achieves both high hardness and low rebound resilience, in particular, high hardness such as durometer hardness of 50 to 80 and low rebound resilience such as 20% or less.
- An object is to provide a manufacturing method.
- the present inventor has found that a composition containing a specific component and a crosslinked product obtained by crosslinking the composition have both high hardness and low rebound resilience. As a result, the present invention has been completed.
- the present invention relates to the following [1] to [12].
- [1] Ethylene / ⁇ -olefin / non-conjugated polyene copolymer having at least one tan ⁇ peak determined by dynamic viscoelasticity measurement in a temperature range of ⁇ 50 to ⁇ 30 ° C. 100 parts by mass
- a peak on the low temperature side exists in a temperature range of ⁇ 50 ° C. or higher and lower than ⁇ 10 ° C.
- a peak on the high temperature side exists in the temperature range of ⁇ 10 to 40 ° C.
- the (B) olefin copolymer is The content ratio of the structural unit (i) derived from 4-methyl-1-pentene is at least 16 to 95 mol% and is selected from ⁇ -olefins having 2 to 20 carbon atoms (excluding 4-methyl-1-pentene)
- the content ratio of the structural unit (ii) derived from one kind of ⁇ -olefin is 5 to 84 mol%
- the content ratio of the structural unit (iii) derived from non-conjugated polyene is 0 to 10 mol% (provided that the structural unit ( (B1) 4-methyl-1-pentene / ⁇ -olefin copolymer, wherein (i), (ii) and (iii) are the sum of 100 mol%)
- the crosslinked body in any one.
- the cross-linked product of the present invention achieves both high hardness and low rebound resilience, particularly high hardness such as durometer hardness of 50 to 80 and low rebound resilience of 20% or less. It is possible to obtain a vibration damping material that achieves both hardness and low impact resilience, and various products that require vibration damping. Moreover, since the crosslinked body of this invention contains an olefin type rubber
- the crosslinked product of the present invention is (A) 100 parts by mass of ethylene / ⁇ -olefin / non-conjugated polyene copolymer in which at least one tan ⁇ peak determined by dynamic viscoelasticity measurement is present in the temperature range of ⁇ 50 to ⁇ 30 ° C. Olefin copolymer having one or more tan ⁇ peaks determined by mechanical viscoelasticity measurement in the temperature range of 0 to 40 ° C.
- composition comprises (A) an ethylene / ⁇ -olefin / non-conjugated polyene copolymer, (B) an olefin copolymer, (C) a softening material, (D) a reinforcing filler, and (E) an additive. Contains sulfurizing agent. (A) Ethylene / ⁇ -olefin / non-conjugated polyene copolymer First, tan ⁇ determined by dynamic viscoelasticity measurement will be described.
- the dynamic viscoelasticity measurement is performed on the material while continuously changing the ambient temperature, and the storage elastic modulus G ′ (Pa) and the loss elastic modulus G ′′ (Pa) are measured and given by G ′′ / G ′.
- the loss tangent tan ⁇ is obtained. Looking at the relationship between the temperature and the loss tangent tan ⁇ , the loss tangent tan ⁇ generally has a peak at a specific temperature. The temperature at which the peak appears is generally called the glass transition temperature (hereinafter also referred to as tan ⁇ -Tg). The temperature at which the peak of loss tangent tan ⁇ appears can be determined based on the dynamic viscoelasticity measurement described in the examples.
- copolymer (A) The ethylene / ⁇ -olefin / non-conjugated polyene copolymer (hereinafter also referred to as copolymer (A)) has one or more tan ⁇ peaks in the temperature range of ⁇ 50 to ⁇ 30 ° C.
- the copolymer (A) preferably has a tan ⁇ peak in the temperature range of ⁇ 46 to ⁇ 33 ° C. Has a temperature range of -44 to -35 ° C.
- Examples of the ⁇ -olefin in the ethylene / ⁇ -olefin / non-conjugated polyene copolymer include ⁇ -olefins having 3 to 20 carbon atoms.
- Examples of the ⁇ -olefin include propylene, butene-1,4-methylpentene-1, hexene-1, heptene-1, octene-1, nonene-1, decene-1, undecene-1, dodecene-1, and tridecene.
- ⁇ -olefins can be used alone or in combination of two or more.
- the non-conjugated polyene in the ethylene / ⁇ -olefin / non-conjugated polyene copolymer has, for example, 5 to 20, preferably 5 to 10, carbon atoms, 1,4-pentadiene, 1,4- Hexadiene, 1,5-hexadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, 2-methyl-1,5-hexadiene, 6-methyl-1,5- Heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 4,8-dimethyl-1,4,8-decatriene, dicyclopentadiene, cyclohexadiene, dicycloocta Diene, methylene norbornene, 5-vinyl norbornene, 5-ethylidene-2-norborn
- the content of the structural unit derived from ethylene is preferably 40 to 72 mass%, more preferably 41 to 70 mass%, from the viewpoint of flexibility. More preferably, the content is 42 to 65% by mass, and the content of the structural unit derived from the non-conjugated polyene is preferably 2 to 15% by mass, more preferably 3 to 14% by mass, and still more preferably 4 to 12% by mass. .
- the ethylene / ⁇ -olefin / non-conjugated polyene copolymer is preferably an ⁇ -olefin having 3 to 10 carbon atoms among the aforementioned ⁇ -olefins, particularly propylene, 1-butene, 1-hexene, 1- Octene and the like are particularly preferable.
- (B) In the olefin copolymer (hereinafter also referred to as copolymer (B)), one or more tan ⁇ peaks are present in the temperature range of 0 to 40 ° C.
- the copolymer (A) and the copolymer (B) in combination it is possible to achieve both high hardness and low rebound resilience of the crosslinked product obtained from the present composition. Moreover, since the crosslinked body obtained from this composition contains the copolymer (B) which is an olefin type rubber
- the copolymer (B) preferably has a tan ⁇ peak in the temperature range of 4 to 36 ° C., 7 to 33. More preferably, it has a temperature range of ° C.
- the present composition comprises 50 to 500 parts by mass of the copolymer (B) with respect to 100 parts by mass of the copolymer (A), preferably It is contained at a ratio of 100 to 400 parts by mass.
- the copolymer (B) preferably contains a 4-methyl-1-pentene / ⁇ -olefin copolymer in terms of weather resistance and ozone resistance.
- the ⁇ -olefin in the 4-methyl-1-pentene / ⁇ -olefin copolymer is, for example, an ⁇ -olefin having 2 to 20 carbon atoms, and is linear or branched except for 4-methyl-1-pentene.
- the linear ⁇ -olefin has 2 to 20, preferably 2 to 15, and more preferably 2 to 10 carbon atoms.
- Ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene examples include octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, and the like, preferably ethylene, propylene, 1-butene, 1-pentene, 1-pentene, etc. Hexene, 1-octene.
- the branched ⁇ -olefin preferably has 5 to 20 carbon atoms, more preferably 5 to 15 carbon atoms, and includes 3-methyl-1-butene, 3-methyl-1-pentene, and 3-ethyl-1-pentene. 4,4-dimethyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene and the like.
- the cyclic olefin has 3 to 20 carbon atoms, preferably 5 to 15 carbon atoms, and examples thereof include cyclopentene, cyclohexene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, and vinylcyclohexane.
- Aromatic vinyl compounds include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o, p-dimethylstyrene, o-ethylstyrene, m-ethylstyrene, p-ethylstyrene. And mono- or polyalkyl styrene.
- the conjugated diene has 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms.
- Examples of functionalized vinyl compounds include hydroxyl group-containing olefins, halogenated olefins, (meth) acrylic acid, propionic acid, 3-butenoic acid, 4-pentenoic acid, 5-hexenoic acid, 6-heptenoic acid, 7-octenoic acid, Unsaturated carboxylic acids such as 8-nonenoic acid, 9-decenoic acid and 10-undecenoic acid, unsaturated amines such as allylamine, 5-hexenamine and 6-heptenamine, (2,7-octadienyl) succinic anhydride, penta Propenyl succinic anhydride, unsaturated carboxylic acid anhydride such as anhydride obtained from the above unsaturated carboxylic acid, unsaturated carboxylic acid halide such as halide obtained from the above unsaturated carboxylic acid, 4-epoxy-1 -Butene, 5-epoxy-1-pentene, 6-epoxy
- the hydroxyl group-containing olefin is not particularly limited as long as it is a hydroxyl group-containing olefin compound, and examples thereof include terminal hydroxylated olefin compounds.
- the terminal hydroxylated olefin compounds include vinyl alcohol, allyl alcohol, hydroxyl-1-butene, hydroxyl-1-pentene, hydroxyl-1-hexene, hydroxyl-1-octene, hydroxyl-1-decene, 2 to 20 carbon atoms such as hydroxyl-1-undecene, hydroxyl-1-dodecene, hydroxyl-1-tetradecene, hydroxyl-1-hexadecene, hydroxyl-1-octadecene, hydroxyl-1-eicocene, Preferably 2 to 15 linear hydroxylated ⁇ -olefin, hydroxylated 3-methyl-1-butene, hydroxylated 3-methyl-1-pentene, hydroxylated 4-methyl
- halogenated olefin examples include halogenated- ⁇ -olefins having a group 17 atom of the periodic table such as chlorine, bromine, iodine, and the like.
- vinyl halide halogenated-1-butene, halogenated -1-pentene, halogenated-1-hexene, halogenated-1-octene, halogenated-1-decene, halogenated-1-dodecene, halogenated-1-undecene, halogenated-1-tetradecene, halogenated- 1-hexadecene, halogenated-1-octadecene, halogenated-1-eicosene, etc., a straight-chain halogenated- ⁇ -olefin having 2 to 20 carbon atoms, preferably 2-15, halogenated-3-methyl -1-butene, halogenated-4-methyl-1-pentene,
- the ⁇ -olefin in the 4-methyl-1-pentene / ⁇ -olefin copolymer may be a single type or a combination of two or more types.
- Examples of the ⁇ -olefin in the 4-methyl-1-pentene / ⁇ -olefin copolymer include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, and 3-methyl.
- -1-pentene, 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene, norbornene, 5-methyl-2-norbornene, tetracyclodone Decene and hydroxyl-1-undecene are preferred.
- a linear ⁇ -olefin having 2 to 10 carbon atoms is preferable from the viewpoint of flexibility, stress absorption, stress relaxation, etc.
- ethylene, propylene, 1-butene, 1-pentene, 1-hexene is preferable.
- 1-octene is more preferred.
- ethylene and propylene are preferable, and propylene is particularly preferable in that high stress absorption and polyolefin modification properties can be obtained.
- the 4-methyl-1-pentene / ⁇ -olefin copolymer may have a structural unit derived from a non-conjugated polyene, if necessary.
- the non-conjugated polyene is the same as the non-conjugated polyene in the aforementioned ethylene / ⁇ -olefin / non-conjugated polyene copolymer (a).
- the 4-methyl-1-pentene / ⁇ -olefin copolymer may contain other copolymer components as long as the object of the present invention is not impaired.
- Examples of the 4-methyl-1-pentene / ⁇ -olefin copolymer include a structural unit (i) derived from 4-methyl-1-pentene and having 2 to 20 carbon atoms excluding 4-methyl-1-pentene.
- a 4-methyl-1-pentene / ⁇ -olefin copolymer having a structural unit (ii) derived from at least one ⁇ -olefin selected from ⁇ -olefins and optionally a structural unit (iii) derived from a non-conjugated polyene Polymers are preferred.
- the total of the structural units (i), (ii) and (iii) is preferably 100 mol%, and preferably the structural unit (i ) 16 to 95 mol%, structural unit (ii) 5 to 84 mol%, structural unit (iii) 0 to 10 mol%, more preferably structural unit (i) 26 to 90 mol%, structural unit (ii) 10 to 74 mol%, structural unit (iii) 0 to 7 mol%, more preferably 61 to 85 mol%, structural unit (ii) 15 to 39 mol%, structural unit (iii) 0 ⁇ 5 mol%.
- the content ratio of the structural unit (i) is 16 to 95 mol%
- the content ratio of the structural unit (ii) is 5 to 84 mol%
- the content ratio of the structural unit (iii) is (B1) a 4-methyl-1-pentene / ⁇ -olefin copolymer which is 0 to 10 mol% (provided that the total of the structural units (i), (ii) and (iii) is 100 mol%)) It is preferable to include.
- Softening material include process oils such as paraffin oil (for example, “Diana Process Oil PS-430” (trade name: manufactured by Idemitsu Kosan Co., Ltd.)), lubricating oil, liquid paraffin, petroleum Petroleum softeners such as asphalt and petrolatum; coal tar softeners such as coal tar and coal tar pitch; fatty oil softeners such as castor oil, linseed oil, rapeseed oil, soybean oil and coconut oil; Waxes such as wax, carnauba wax, and lanolin; fatty acids or salts thereof such as ricinoleic acid, palmitic acid, stearic acid, barium stearate, calcium stearate, and zinc laurate; naphthenic acid, pine oil, and rosin or derivatives thereof; Terpene resin, petroleum resin, atactic polypropylene, and coumarone in Synthetic polymer materials such as den resins; ester-based softeners such as dioct
- the content of the softening material is 5 to 300 parts by mass, preferably 10 to 250 parts by mass, and more preferably 20 to 230 parts by mass with respect to 100 parts by mass of the copolymer (A).
- the mass-based content ratio ((C) / (D)) of (C) softening material to (D) reinforcing filler described later is 0.3 to 1.5, preferably 0.4 to 1. .4, more preferably 0.5 to 1.3.
- the content ratio ((C) / (D)) is within the above range, a highly hard crosslinked product can be obtained from the present composition.
- the content of the (D) reinforcing filler is 10 to 300 parts by weight, preferably 20 to 280 parts by weight, more preferably 30 to 260 parts by weight with respect to 100 parts by weight of the copolymer (A).
- Vulcanizing agent As the vulcanizing agent (crosslinking agent), sulfur, a sulfur compound, an organic peroxide, a phenol resin, an oxime compound, or the like can be used.
- sulfur compound examples include sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, selenium dithiocarbamate and the like.
- sulfur and sulfur compounds sulfur and tetramethylthiuram disulfide are preferred.
- organic peroxide examples include dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, 2, Examples include 5-diethyl-2,5-di (t-butylperoxy) hexyne-3, di-t-butylperoxide, di-t-butylperoxy-3,3,5-trimethylcyclohexane, t-dibutylhydroperoxide, etc. it can. Of these, dicumyl peroxide, di-t-butyl peroxide, and di-t-butylperoxy-3,3,5-trimethylcyclohexane are preferable.
- the content of the vulcanizing agent is 0.1 to 10 parts by weight, preferably 0.3 to 9.0 parts by weight, more preferably 0 to 100 parts by weight of the copolymer (A). .5 to 8.0 parts by mass.
- the composition includes a vulcanization accelerator, a vulcanization aid, a filler other than the reinforcing filler, and a processing aid within a range not impairing the object of the present invention.
- a vulcanization accelerator for vulcanization, a vulcanization aid, a filler other than the reinforcing filler, and a processing aid within a range not impairing the object of the present invention.
- An agent, an activator, a hygroscopic agent and the like may be contained.
- Vulcanization accelerators include N-cyclohexyl-2-benzothiazole sulfenamide, N-oxydiethylene-2-benzothiazole sulfenamide, N, N′-diisopropyl-2-benzothiazole sulfenamide, 2-mercapto Benzothiazole (for example, “Sunceller M” (trade name: manufactured by Sanshin Chemical Co., Ltd.)), 2- (4-morpholinodithio) benzothiazole (for example, “Noxeller MDB-P” (trade name: Sanshin) Such as 2- (2,4-dinitrophenyl) mercaptobenzothiazole, 2- (2,6-diethyl-4-morpholinothio) benzothiazole, dibenzothiazyl disulfide; Gua such as diphenyl guanidine,
- Thiuram series zinc dimethyldithiocarbamate, zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate (for example, “Suncellar PZ” (trade name: manufactured by Sanshin Chemical Co., Ltd.), “Suncellor BZ” (trade name: Sanshin Chemical Industries) Etc.), dithioates such as tellurium diethyldithiocarbamate; ethylenethiourea (for example, “Suncellor BUR” (trade name: manufactured by Sanshin Chemical Industry Co., Ltd.), “Suncellor 22-C” (trade name: Thiourea such as N, N'-diethylthiourea; xanthate such as zinc dibutylxatogenate; other zinc white (for example, "META-Z102" (trade name: Inoue Lime Industry) Zinc oxide), etc.
- “Suncellar PZ” trade name: manufactured by Sanshin Chemical Co., Ltd.
- the content of these vulcanization accelerators is 0.1 to 20 parts by weight, preferably 0.2 to 15 parts by weight, more preferably 0.5 to 10 parts by weight based on 100 parts by weight of the copolymer (A). Part by mass.
- a vulcanization aid can be contained.
- the vulcanization aid include magnesium oxide and zinc white (for example, zinc oxide such as “META-Z102” (trade name: manufactured by Inoue Lime Industry Co., Ltd.)).
- the vulcanization aid include quinone dioximes such as p-quinonedioxime; acrylics such as ethylene glycol dimethacrylate and trimethylolpropane trimethacrylate; allyls such as diallyl phthalate and triallyl isocyanurate; other maleimides; Examples include divinylbenzene.
- Vulcanization aids can be used alone or in admixture of two or more. The content of the vulcanization aid is usually 1 to 20 parts by mass with respect to 100 parts by mass of the copolymer (A).
- the filler other than the reinforcing filler light calcium carbonate, heavy calcium carbonate, talc, clay and the like can be used. Of these, heavy calcium carbonate is preferred.
- heavy calcium carbonate commercially available “Whiteon SB” (trade name: Shiraishi Calcium Co., Ltd.) or the like can be used.
- the content of the filler is usually 30 to 300 parts by mass, preferably 50 to 250 parts by mass, and more preferably 70 to 230 parts by mass with respect to 100 parts by mass of the copolymer (A).
- processing aids those generally blended into rubber as processing aids can be widely used. Specific examples include ricinoleic acid, stearic acid, palmitic acid, lauric acid, barium stearate, zinc stearate, calcium stearate or esters. Of these, stearic acid is preferred.
- the processing aid can be appropriately blended in an amount of 10 parts by mass or less, preferably 8.0 parts by mass or less, more preferably 5.0 parts by mass or less, relative to 100 parts by mass of the copolymer (A).
- the activator include di-n-butylamine, dicyclohexylamine, monoelaanolamine, “Acting B” (trade name: manufactured by Yoshitake Pharmaceutical Co., Ltd.), “Acching SL” (trade name: Yoshitsugu Pharmaceutical Co., Ltd.)
- Amines such as diethylene glycol, polyethylene glycol (for example, “PEG # 4000” (manufactured by Lion Corporation)), lecithin, triarylate melitlate, zinc compounds of aliphatic and aromatic carboxylic acids (for example, “Struktolvactivator”) 73 ”,“ Struktol IB 531 ”and“ Struktol FA541 ”(trade name: Schill &Seiler)); Zinc peroxide preparations such as“ ZEONET ZP ”(trade name: manufactured by Nippon Zeon Co., Ltd.) ; Octadeci Rutrimethylammonium bromide, synthetic hydrotalcite, special quaternary ammonium compounds (
- the compounding amount of the activator is 0.2 to 10 parts by mass, preferably 0.3 to 5 parts by mass, and more preferably 0.5 to 4 parts by mass with respect to 100 parts by mass of the copolymer (A).
- the hygroscopic agent examples include calcium oxide, silica gel, sodium sulfate, molecular sieve, zeolite, white carbon and the like. Of these, calcium oxide is preferred.
- the hygroscopic agent can be used alone or in combination of two or more.
- the content of the hygroscopic agent is 0.5 to 15 parts by mass, preferably 1.0 to 12 parts by mass, and more preferably 1.0 to 10 parts by mass with respect to 100 parts by mass of the copolymer (A).
- ⁇ Crosslinking method> The composition can be obtained by kneading the components (A) to (E) and other components added as necessary.
- the cross-linked product of the present invention is obtained by cross-linking the composition.
- the above components (A) to (E) and other components are kneaded to prepare a composition, the composition is dispensed into a sheet, and then heated at 140 to 230 ° C. at 2 to 30 with a heating press. By heating for a minute, a crosslinked olefin polymer is obtained.
- the lower limit temperature of the temperature range is preferably 150 ° C., more preferably 160 ° C.
- the upper limit temperature is preferably 220 ° C., more preferably 200 ° C.
- a raw material composition that has not been crosslinked is easily deformed by external stress and cannot return to its original shape, so that it is not practical as a molding material.
- a crosslinked product obtained by crosslinking the composition has high utility as a molding material.
- the standard of being a crosslinked body is that the tensile stress at break exceeds 5 MPa. If the tensile stress at break exceeds 5 MPa, it is considered that there is no practical problem from the viewpoint of taking out from the mold, mounting the product, and long-term use.
- the durometer hardness (value immediately after measurement) of the crosslinked product of the present invention is 50 to 80, preferably 55 to 78, more preferably 58 to 75. Since the crosslinked product of the present invention is formed from the composition having the above composition, it has a high durometer hardness (value immediately after measurement) of 50 to 80.
- the method for measuring durometer hardness (value immediately after measurement) was described in detail in the examples.
- the durometer hardness (value immediately after measurement) is 50 or more, the adhesion due to the surface adhesiveness between the crosslinked bodies is reduced, so that the handling property is excellent, and further, it can be used for high load applications.
- the durometer hardness (value immediately after the measurement) exceeds 80, the resilience increases and the impact absorbability tends to decrease.
- the durometer hardness (value after 15 seconds of measurement) is not particularly limited, but the crosslinked product of the present invention has a difference of 7 or more between the durometer hardness (value immediately after measurement) and the durometer hardness (value after 15 seconds of measurement). It is preferable that it exhibits excellent unevenness followability, can adhere well to the substrate, and can exhibit its vibration damping, shock absorption, and vibration absorption functions to the maximum.
- the temperature profile of tan ⁇ obtained by measuring the temperature dependence of dynamic viscoelasticity under the conditions of 1 Hz, 0.5%, ⁇ 70 to 100 ° C., and a temperature increase rate of 4 ° C./min. Is bimodal, and the tan ⁇ peak preferably satisfies the following requirements (1) and (2), and more preferably satisfies the requirement (3).
- a peak on the low temperature side exists in a temperature range of ⁇ 50 ° C. or higher and lower than ⁇ 10 ° C.
- a peak on the high temperature side exists in the temperature range of ⁇ 10 to 40 ° C.
- the crosslinked product of the present invention has high hardness and low resilience. That is, both high hardness and low rebound resilience are achieved.
- a high hardness such as a durometer hardness of 50 to 80 and a low rebound resilience such as a rebound resilience of 20% or less are compatible.
- the crosslinked product of the present invention examples include a damping member, a shock absorbing material, a vibration absorbing material, and a resonance suppressing material.
- the crosslinked body of the present invention is preferably used in fields where vibration suppression is required for automobiles, railroads, aircraft, electrical and electronic equipment, various precision equipments, and particularly where both high hardness and low rebound resilience are required. it can.
- molding methods such as injection molding, various extrusion molding, compression molding, calendar molding, and vacuum molding can be used.
- foaming agent a known chemical foaming agent or a known physical foaming agent such as carbon dioxide gas, nitrogen gas, or water can be used.
- EPDM (trade name: Mitsui EPT 3110M (manufactured by Mitsui Chemicals, Inc.), content of structural units derived from ethylene: 56 mass%, containing structural units derived from 5-ethylidene-2-norbornene (ENB) Amount: 5.0 mass%, Mooney viscosity [ML1 + 4 (125 ° C.)]: 78, tan ⁇ -Tg: -38 ° C., tan ⁇ maximum value: 1.0)
- EPDM (trade name: Mitsui EPT 9090M (manufactured by Mitsui Chemicals)), content of structural unit derived from ethylene: 41 mass%, structural unit derived from 5-ethylidene-2-norbornene (ENB) Amount: 14% by mass, Mooney viscosity [ML1 + 4 (125 ° C.)]: 58, tan ⁇ -Tg: ⁇ 32 ° C., tan
- the autoclave was heated to an internal temperature of 60 ° C. and pressurized with propylene so that the total pressure was 0.40 MPa (gauge pressure).
- methylaluminoxane prepared in advance, 1 mmol in terms of Al, diphenylmethylene (1-ethyl-3-t-butyl-cyclopentadienyl) (2,7-di-t-butyl-fluorenyl) zirconium Polymerization was initiated by injecting 0.34 ml of a toluene solution containing 0.01 mmol of dichloride into the autoclave with nitrogen. During the polymerization reaction, the temperature was adjusted so that the internal temperature of the autoclave was 60 ° C. Sixty minutes after the start of polymerization, 5 ml of methanol was injected into the autoclave with nitrogen to stop the polymerization, and the autoclave was depressurized to atmospheric pressure. Acetone was poured into the reaction solution with stirring.
- the powdered polymer containing the obtained solvent was dried at 100 ° C. under reduced pressure for 12 hours.
- the obtained polymer was 36.9 g, and the content of structural units derived from 4-methyl-1-pentene in the polymer was 72 mol%, and the content of structural units derived from propylene was 28 mol%.
- the weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) was 337,000, tan ⁇ -Tg was 28 ° C., and the maximum tan ⁇ was 2.4.
- Softening material C-1) Paraffin oil (trade name: Diana Process Oil PS-430 (manufactured by Idemitsu Kosan Co., Ltd.)) C-2) Paraffin oil (trade name: Diana Process Oil PW-90 (manufactured by Idemitsu Kosan Co., Ltd.))
- Vulcanizing agent E-1) Sulfur (trade name: Alpha Grand S-50EN (manufactured by Tochi Co., Ltd.)) E-2) Dicumyl peroxide (trade name: Park Mill D-40 (manufactured by NOF Corporation))
- H Processing aid H-1) Stearic acid (trade name: powdered stearic acid cherry (manufactured by NOF Corporation)) H-2) Fatty acid ester (trade name: Stratokol WB212 (manufactured by S & S Japan Co., Ltd.))
- Active agent Polyethylene glycol (trade name: PEG # 4000 (manufactured by Lion Corporation))
- each physical property was measured or evaluated by the following method.
- a) Dynamic Viscoelasticity Measurement Using a viscoelasticity measuring device ARES (manufactured by TA Instruments JAPAN Inc.), the temperature dependence of the viscosity of each sheet-like crosslinked body sample was measured under the following measurement conditions. The ratio (G ′′ / G ′: loss tangent) between the storage elastic modulus (G ′) and the loss elastic modulus (G ′′) obtained by the measurement was defined as tan ⁇ .
- Hardness measurement A sheet-like cross-linked sample was punched out, and the three cross-linked products were stacked to obtain a sample for hardness measurement. Measurement was performed at 23 ° C. in accordance with the description of test type A in “Durometer hardness test” in Section 6 of JIS K6253 (2006) “Vulcanized rubber and thermoplastic rubber—How to obtain hardness”. The hardness was measured immediately after the pressure plate was brought into contact with the test piece and 15 seconds after the contact. The hardness obtained immediately after contact was defined as “durometer hardness (value immediately after measurement)”, and the hardness obtained 15 seconds after contact was defined as “durometer hardness (value after measurement 15 seconds)”.
- Rebound resilience is 0 to 20%.
- T B Tensile Break Point Stress
- E B Tensile Break Point Elongation
- Example 1 MIXTRON BB MIXER (manufactured by Kobe Steel, Ltd., BB-4 type, volume 2.95 L, rotor 4WH), filling rate 70%, conventional method (total kneading time 5 minutes) with ethylene ⁇ - 100 parts by mass (430 g) of olefin / non-conjugated polyene copolymer (A-1), 50 parts by mass (215 g) of olefin copolymer (B-1), 145 parts by mass (625 g) of softening material (C-1) Reinforcing filler (D-1) 215 parts by mass (925 g), filler (F) 28 parts by mass (120 g), vulcanization aid (G) 5 parts by mass (22 g), processing aid (H-1 2 parts by mass (9 g), 2 parts by mass (9 g) of processing aid (H-2), and 1 part by mass (4 g) of activator (I) were kneaded. In the kneaded. In
- vulcanization accelerator (J-1) 1. was added to 2,192 g of the blend using an 8-inch two-roll kneader. 5 parts by mass (6 g), 1.0 part by mass (4 g) of vulcanization accelerator (J-2), 0.5 part by mass (2 g) of vulcanization accelerator (J-3), vulcanization accelerator (J- 4) 0.5 parts by mass (2 g) and 0.8 parts by mass (3.2 g) of vulcanizing agent (E-1) were added and kneaded.
- the kneading conditions were such that the roll temperature was the front roll / rear roll: 70 ° C./70° C., the rotation speed of the front roll was 12.5 rpm, and the rotation speed of the rear roll was 10.4 rpm.
- a vulcanized sheet (press sheet) having a thickness of 2 mm was obtained by heating and vulcanizing at 160 ° C. for 10 minutes using a heating press.
- the vulcanized sheet was cross-linked as described below in accordance with the above measurement methods to prepare a cross-linked sample.
- the physical-property value was calculated
- the vulcanized sheet was prepared using a 50T electrothermal press manufactured by Kotaki Co., Ltd. Crosslinking was performed at 160 ° C. for 10 minutes to prepare a sheet-like crosslinked body sample having a thickness of 2 mm.
- the vulcanized sheet was crosslinked at 160 ° C. for 13 minutes using a Kotaki Co., Ltd. Sakai 50T electric heat press to prepare a cylindrical crosslinked body sample having a thickness of 12 mm and a diameter of 29 mm.
- Examples 2 to 16 Vulcanized sheets under the same conditions as in Example 1 except that the composition of components A to E was changed to the composition shown in Table 1 for Examples 2 to 9 and in Table 2 for Examples 10 to 16 The physical property values were determined in the same manner as in Example 1. However, in Example 16, vulcanization accelerators (J-1) to (J-4) were not used, and vulcanizing agent (E-2) 8.0 was used instead of vulcanizing agent (E-1). A vulcanized sheet was prepared using part by mass (32 g).
- Example 16 dynamic viscoelasticity measurement, hardness measurement, tensile breaking point stress (T B ) and tensile breaking point elongation (E B ) measurement, and specific gravity measurement, except that the crosslinking time was 20 minutes.
- a sheet-like cross-linked sample having a thickness of 2 mm was prepared in the same manner as in Example 1, and the rebound resilience measurement was performed in the same manner as in Example 1 except that the cross-linking time was 25 minutes.
- a body sample was prepared.
- the results of Examples 2 to 9 are shown in Table 1, and the results of Examples 10 to 16 are shown in Table 2.
- Comparative Examples 1 to 11 A vulcanized sheet was prepared under the same conditions as in Example 1 except that the compounding compositions of components A to E were changed to the compounding composition shown in Table 3, and the physical property values were determined in the same manner as in Example 1. The results of Comparative Examples 1 to 11 are shown in Table 3.
- the rubber cross-linked body shown in this example has both a relatively hard property having a durometer hardness of 50 or more and low rebound resilience as compared with the rubber cross-linked body shown in the comparative example.
- Comparative Examples 1 to 9 do not contain an olefin copolymer having a tan ⁇ peak at 0 to 40 ° C., the rebound resilience of 20% or less has not been reached.
- Comparative Example 10 the olefin copolymer (B) having a tan ⁇ peak between 0 and 40 ° C.
- the blending number of the olefin copolymer (B) is the copolymer ( A) Since it is 50 mass or less with respect to 100 mass parts, it has not reached the said target value of impact resilience. Since the rubber cross-linked product shown in this example is composed of EPDM, which is a non-conjugated diene rubber, and an olefin polymer, it can be expected to have weather resistance and moist heat resistance. In addition, it has excellent tensile stress at break (T B ) and tensile elongation at break (E B ) determined by a tensile test, and further exhibits a lightweight with a specific gravity of 1.18 or less.
- EPDM tensile stress at break
- E B tensile elongation at break
- the cross-linked body of the present invention Since the cross-linked body of the present invention has such characteristics, it is equipped with vibrations such as mobility fields such as automobiles, railways and aircraft, sports equipment fields such as shoes and tennis rackets, processing machines, rock drills and impact wrenches. In fields such as the above, industrial use is expected as a vibration absorbing material, shock absorbing material and damping material for holding grips.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
Abstract
Description
[1](A)動的粘弾性測定により求められたtanδのピークが-50~-30℃の温度範囲に一つ以上存在するエチレン・α-オレフィン・非共役ポリエン共重合体 100質量部
(B)動的粘弾性測定により求められたtanδのピークが0~40℃の温度範囲に一つ以上存在するオレフィン系共重合体 50~500質量部
(C)軟化材 5~300質量部
(D)補強性充填材 10~300質量部、および、
(E)加硫剤 0.1質量部~10質量部
を含み、前記(D)補強性充填材に対する前記(C)軟化材の質量基準の配合比率((C)/(D))が0.3~1.5である組成物。
(B)動的粘弾性測定により求められたtanδのピークが0~40℃の温度範囲に一つ以上存在するオレフィン系共重合体 50~500質量部
(C)軟化材 5~300質量部
(D)補強性充填材 10~300質量部、および、
(E)加硫剤 0.1質量部~10質量部
を含み、前記(D)補強性充填材に対する前記(C)軟化材の質量基準の配合比率((C)/(D))が0.3~1.5である組成物を架橋して得られ、デュロメーター硬度(測定直後の値)が50~80である架橋体。
(2)高温側のピークが-10~40℃の温度範囲に存在する。
(3)[-10℃~40℃の温度範囲に存在するピークにおけるtanδの値] ≧ [-50℃以上、-10℃未満の温度範囲に存在するにピークおけるtanδの値]
4-メチル-1-ペンテンから導かれる構成単位(i)の含有比率が16~95モル%、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のα-オレフィンから導かれる構成単位(ii)の含有比率が5~84モル%、非共役ポリエンから導かれる構成単位(iii)の含有比率が0~10モル%(ただし、構成単位(i)、(ii)および(iii)の合計を100モル%とする)である(B1)4-メチル-1-ペンテン・α-オレフィン共重合体を含む、前記[2]~[4]のいずれかに記載の架橋体。
[8]前記[2]~[7]に記載の架橋体を用いて得られる制振部材。
[10]前記[2]~[7]に記載の架橋体を用いて得られる振動吸収材。
[11]前記[2]~[7]に記載の架橋体を用いて得られる共振抑制材。
(B)動的粘弾性測定により求められたtanδのピークが0~40℃の温度範囲に一つ以上存在するオレフィン系共重合体 50~500質量部
(C)軟化材 5~300質量部
(D)補強性充填材 10~300質量部、および、
(E)加硫剤 0.1質量部~10質量部
を含み、前記(D)補強性充填材に対する前記(C)軟化材の質量基準の配合比率((C)/(D))が0.3~1.5である組成物を140~230℃の条件で反応させることを特徴とするオレフィン重合体架橋体の製造方法。
(A)動的粘弾性測定により求められたtanδのピークが-50~-30℃の温度範囲に一つ以上存在するエチレン・α-オレフィン・非共役ポリエン共重合体 100質量部
(B)動的粘弾性測定により求められたtanδのピークが0~40℃の温度範囲に一つ以上存在するオレフィン系共重合体 50~500質量部
(C)軟化材 5~300質量部
(D)補強性充填材 10~300質量部、および、
(E)加硫剤 0.1質量部~10質量部
を含み、前記(C)軟化材と(D)補強性充填材との配合比率((C)/(D))が0.3~1.5である組成物を架橋して得られ、デュロメーター硬度(測定直後の値)が50~80である。
<組成物>
前記組成物は、前記(A)エチレン・α-オレフィン・非共役ポリエン共重合体、(B)オレフィン系共重合体、(C)軟化材、(D)補強性充填材、および(E)加硫剤を含む。
(A)エチレン・α-オレフィン・非共役ポリエン共重合体
まず、動的粘弾性測定により求められたtanδについて説明する。材料に対し、雰囲気温度を連続的に変化させながら動的粘弾性測定を行い、貯蔵弾性率G'(Pa)、損失弾性率G"(Pa)を測定し、G"/ G'で与えられる損失正接tanδを求める。温度と損失正接tanδとの関係をみると、損失正接tanδは一般に特定の温度においてピークを有する。そのピークが現れる温度は一般にガラス転移温度(以下、tanδ―Tgとも記す)と呼ばれる。損失正接tanδのピークが現れる温度は、実施例において記した動的粘弾性測定に基づき求めることができる。
(B)オレフィン系共重合体
(B)オレフィン系共重合体(以下、共重合体(B)ともいう)は、前記tanδのピークが0~40℃の温度範囲に一つ以上存在する。共重合体(A)と共重合体(B)とを組み合わせて用いることにより、本組成物から得られる架橋体の高硬度と低反発弾性との両立が可能になる。また、本組成物から得られる架橋体は、オレフィン系ゴムである共重合体(B)を含むことから、耐候性、耐湿熱性および軽量化の向上が期待できる。
(C)軟化材としては、パラフィンオイル等のプロセスオイル(例えば、「ダイアナプロセスオイル PS-430」(商品名:出光興産株式会社製)など)、潤滑油、流動パラフィン、石油アスファルト、およびワセリン等の石油系軟化材;コールタール、およびコールタールピッチ等のコールタール系軟化材;ヒマシ油、アマニ油、ナタネ油、大豆油、およびヤシ油等の脂肪油系軟化材;蜜ロウ、カルナウバロウ、およびラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム、およびラウリン酸亜鉛等の脂肪酸またはその塩;ナフテン酸、パイン油、およびロジンまたはその誘導体;テルペン樹脂、石油樹脂、アタクチックポリプロピレン、およびクマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、およびジオクチルセバケート等のエステル系軟化材;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコール、炭化水素系合成潤滑油、トール油、およびサブ(ファクチス)などが挙げられる。なかでも、石油系軟化材が好ましく、特にプロセスオイル、その中でもパラフィンオイルが好ましい。軟化材は、単独でも2種以上混合しても用いることができる。
(D)補強性充填材としては、具体的には、市販されている「旭#55G」および「旭#50HG」(商品名:旭カーボン株式会社製)、「シースト(商品名)」シリーズ:SRF、GPF、FEF、MAF、HAF、ISAF、SAF、FT、MT等のカーボンブラック(東海カーボン株式会社製)、これらカーボンブラックをシランカップリング剤等で表面処理したもの、マイカ、タルク、シリカおよびクレー等を用いることができる。これらのうち、「旭#60G」、「旭#80」、「シーストHAF」のカーボンブラックが好ましい。
(E)加硫剤
(E)加硫剤(架橋剤)としては、イオウ、イオウ系化合物、有機過酸化物、フェノール樹脂、オキシム化合物等を用いることができる。
<架橋方法>
前記組成物は、前記(A)~(E)成分および必要により添加されるその他の成分を混練することにより得られる。
本発明の架橋体のデュロメーター硬度(測定直後の値)は50~80であり、好ましくは55~78、より好ましくは58~75である。本発明の架橋体は上記の組成を有する組成物から形成されるのでデュロメーター硬度(測定直後の値)50~80という高い硬度を有する。デュロメーター硬度(測定直後の値)の測定方法については実施例において詳説した。デュロメーター硬度(測定直後の値)が50以上であると、架橋体同士の表面粘着性によるくっつきが低減されるため取扱い性に優れ、さらに、高荷重の用途にも使用できる。一方、デュロメーター硬度(測定直後の値)が80を超えると、反発弾性が高くなり、衝撃吸収性が低下する傾向にある。
本発明の架橋体においては、1Hz、0.5%、-70~100℃および昇温速度4℃/minの条件下で動的粘弾性の温度依存性を測定して得られるtanδの温度プロファイルが二峰性を示し、前記tanδのピークが以下の要件(1)および(2)を満たすことが好ましく、さらに要件(3)を満たすことが好ましい。
(2)高温側のピークが-10~40℃の温度範囲に存在する。
(3)[-10℃~40℃の温度範囲に存在するピークにおけるtanδの値] ≧ [-50℃以上、-10℃未満の温度範囲に存在するピークにおけるtanδの値]
前記tanδの温度プロファイルが二峰性を示し、前記tanδのピークが前記要件(1)および(2)を満たすことにより、より高硬度かつ低反発弾性を実現でき、要件(3)および(2)を満たすことにより、さらに高硬度かつ低反発弾性を実現できる。
本発明の架橋体は、高硬度であり、かつ低反発弾性である。つまり、高硬度と低反発弾性とが両立されている。特にデュロメーター硬度50~80といった高硬度と反発弾性20%以下といった低反発弾性とが両立されている。
(配合材料)
実施例及び比較例に用いた配合材料は下記の通りである。
A)動的粘弾性測定により求められたtanδのピークが-50~-30℃の温度範囲に一つ以上存在するエチレン・α-オレフィン・非共役ポリエン共重合体(A)
A-1)EPDM(商品名:三井EPT 3110M(三井化学(株)製)、エチレンから導かれる構造単位含有量:56質量%、5-エチリデン-2-ノルボルネン(ENB)から導かれる構造単位含有量:5.0質量%、ムーニー粘度[ML1+4(125℃)]:78、tanδ―Tg:-38℃、tanδ最大値:1.0)
A-2)EPDM(商品名:三井EPT 9090M(三井化学(株)製)、エチレンから導かれる構造単位含有量:41質量%、5-エチリデン-2-ノルボルネン(ENB)から導かれる構造単位含有量:14質量%、ムーニー粘度[ML1+4(125℃)]:58、tanδ―Tg:-32℃、tanδ最大値:1.8)
B)動的粘弾性測定により求められたtanδのピークが0~40℃の温度範囲に一つ以上存在するオレフィン系共重合体(B)
B-1)下記重合例1により得られた4-メチル-1-ペンテン・α-オレフィン重合体
充分窒素置換した容量1.5リットルの攪拌翼付SUS製オートクレーブに、23℃でノルマルヘキサン300ml(乾燥窒素雰囲気、活性アルミナ上で乾燥したもの)、4-メチル-1-ペンテン450mlを装入した。このオートクレーブに、トリイソブチルアルミニウム(TIBAL)の1.0mmol/mlトルエン溶液を0.75ml装入し、攪拌機を回した。
C-1) パラフィンオイル(商品名:ダイアナプロセスオイル PS-430(出光興産(株)製))
C-2) パラフィンオイル(商品名:ダイアナプロセスオイル PW-90(出光興産(株)製))
D-1) カーボンブラック(商品名:旭#60G(旭カーボン(株)製))
D-2) カーボンブラック(商品名:旭#80(旭カーボン(株)製))
E-1) 硫黄(商品名:アルファグランS-50EN(東知(株)製))
E-2) ジクミルペルオキシド(商品名:パークミルD-40(日本油脂(株)製))
炭酸カルシウム(商品名:Silver-W(白石カルシウム(株)製)
G)加硫助剤
活性亜鉛華(商品名:META-Z102(井上石灰工業(株)製))
H-1)ステアリン酸(商品名:粉末ステアリン酸さくら(日油(株)製))
H-2)脂肪酸エステル(商品名:ストラクトールWB212(エスアンドエスジャパン(株)製))
I)活性剤
ポリエチレングリコール(商品名:PEG#4000(ライオン(株)製))
J-1)スルフェンアミド系加硫促進剤:N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(商品名:サンセラーCM(三新化学工業(株)製))
J-2)ジチオカルバメート系加硫促進剤:ジブチルジチオカルバミン酸亜鉛(商品名:サンセラーBZ(三新化学工業(株)製))
J-3)チウラム系加硫促進剤:テトラメチルチウラムジスルフィド(商品名:サンセラーTT(三新化学工業(株)製))
J-4)チウラム系加硫促進剤:ジペンタメチレンチウラムテトラスルフィド(商品名:サンセラーTRA(三新化学工業(株)製))
以下の実施例および比較例において、各物性は以下の方法により測定または評価した。
a)動的粘弾性測定
粘弾性測定装置ARES(TA Instrumens JAPAN Inc.社製)を用いて、下記測定条件で各シート状架橋体サンプルの粘度の温度依存性を測定した。当該測定で得られた、貯蔵弾性率(G')と損失弾性率(G")との比(G"/G':損失正接)をtanδとした。tanδを温度に対してプロットすると、上に凸の曲線すなわちピークが得られ、そのピークの頂点の温度をガラス転移温度、すなわちtanδ―Tgとし、その温度における極大値を測定した。tanδにつき2つ以上のピークが観測された場合には、第1および第2のピークとして双方のtanδ―Tgおよび極大値を記録した。
Frequency :1.0Hz
Temperature :-70~80℃
Ramp Rate :4.0℃/分
Strain :0.5%
シート状架橋体サンプルを打抜き、この架橋体3枚を積み重ねて硬度測定用サンプルとし、試験を行った。JIS K6253(2006)「加硫ゴム及び熱可塑性ゴム-硬さの求め方」の6項の「デュロメーター硬さ試験」の試験タイプAの記載に準拠して23℃で測定を行った。加圧板を試験片に接触させた直後および接触時から15秒後の硬度を測定した。接触させた直後に得られた硬度を「デュロメーター硬度(測定直後の値)」、接触時から15秒後に得られた硬度を「デュロメーター硬度(測定15秒後の値)」とした。
円柱状架橋体サンプルについて、JIS K6255(1996)「加硫ゴム及び熱可塑性ゴムの反発弾性試験方法」の4項の「リュプケ式反発弾性試験」の記載に準拠して、23℃で測定を行い、反発弾性(%)を求めた。得られた結果から、下記基準に従って反発弾性を評価した。
B: 反発弾性が21~25%である。
C: 反発弾性 が25%より大きい。
シート状架橋体サンプルを打抜き、JIS K 6251(2001)に記載されている3号形ダンベル試験片を作製した。この試験片を用いて同JIS K 6251に規定される方法に従い、測定温度23℃、引張速度500mm/分の条件で引張り試験を行ない、引張破断点応力(TB)および引張破断点伸び(EB)を測定した。
シート状架橋体サンプルを打抜き、比重測定用サンプルとした。このサンプルについて、25℃雰囲気下で自動比重計(東洋精機製作所製:M-1型)を用いて空気中と純水中との質量の差から比重測定を行った。
MIXTRON BB MIXER((株)神戸製鋼所社製、BB-4型、容積2.95L、ローター4WH)を用いて、充填率70%、コンベンショナル法(トータル混練時間5分)にてエチレン・α-オレフィン・非共役ポリエン共重合体(A-1)100質量部(430g)、オレフィン系共重合体(B-1)50質量部(215g)、軟化材(C-1)145質量部(625g)、補強性充填材(D-1)215質量部(925g)、充填剤(F)28質量部(120g)、加硫助剤(G)5質量部(22g)、加工助剤(H-1)2質量部(9g)、加工助剤(H-2)2質量部(9g)、活性剤(I)1質量部(4g)を混練した。混練は、ローター回転数が50rpm、フローティングウェイト圧力が3kg/cm2、混練排出温度は138℃であった。
A~E成分の配合組成を、実施例2~9については表1に、実施例10~16については表2に示すとおりの配合組成に変更した以外は実施例1と同条件で加硫シートを作製し、実施例1と同様に物性値を求めた。ただし、実施例16では、加硫促進剤(J-1)~(J-4)を使用せず、加硫剤(E-1)の代わりに、加硫剤(E-2)8.0質量部(32g)を使用して加硫シートを作製した。また、実施例16では、動的粘弾性測定、硬度測定、引張破断点応力(TB)および引張破断点伸び(EB)測定ならびに比重測定については、架橋時間を20分間にしたこと以外は実施例1と同様に厚み2mmのシート状架橋体サンプルを作製し、反発弾性測定については、架橋時間を25分間にしたこと以外は実施例1と同様に厚さ12mm、直径29mmの円柱状架橋体サンプルを作製した。実施例2~9の結果を表1に、実施例10~16の結果を表2に示す。
A~E成分の配合組成を表3に示すとおりの配合組成に変更した以外は実施例1と同条件で加硫シートを作製し、実施例1と同様に物性値を求めた。比較例1~11の結果を表3に示す。
Claims (12)
- (A)動的粘弾性測定により求められたtanδのピークが-50~-30℃の温度範囲に一つ以上存在するエチレン・α-オレフィン・非共役ポリエン共重合体 100質量部
(B)動的粘弾性測定により求められたtanδのピークが0~40℃の温度範囲に一つ以上存在するオレフィン系共重合体 50~500質量部
(C)軟化材 5~300質量部
(D)補強性充填材 10~300質量部、および、
(E)加硫剤 0.1質量部~10質量部
を含み、前記(D)補強性充填材に対する(C)軟化材の質量基準の含有比率((C)/(D))が0.3~1.5である組成物。 - (A)動的粘弾性測定により求められたtanδのピークが-50~-30℃の温度範囲に一つ以上存在するエチレン・α-オレフィン・非共役ポリエン共重合体 100質量部
(B)動的粘弾性測定により求められたtanδのピークが0~40℃の温度範囲に一つ以上存在するオレフィン系共重合体 50~500質量部
(C)軟化材 5~300質量部
(D)補強性充填材 10~300質量部、および、
(E)加硫剤 0.1質量部~10質量部
を含み、(D)補強性充填材に対する前記(C)軟化材の質量基準の含有比率((C)/(D))が0.3~1.5である組成物を架橋して得られ、デュロメーター硬度(測定直後の値)が50~80である架橋体。 - 1Hz、0.5%、-70~100℃および昇温速度4℃/minの条件下で動的粘弾性の温度依存性を測定して得られるtanδの温度プロファイルが二峰性を示し、さらに、前記tanδのピークが以下の要件を満たす請求項2に記載の架橋体。
(1)低温側のピークが-50℃以上、-10℃未満の温度範囲に存在する。
(2)高温側のピークが-10~40℃の温度範囲に存在する。 - さらに下記要件(3)を満たす請求項3に記載の架橋体。
(3)[-10℃~40℃の温度範囲に存在するピークにおけるtanδの値] ≧ [-50℃以上、-10℃未満の温度範囲に存在するピークにおけるtanδの値] - 前記(B)オレフィン系共重合体が、
4-メチル-1-ペンテンから導かれる構成単位(i)の含有比率が16~95モル%、炭素原子数2~20のα-オレフィン(4-メチル-1-ペンテンを除く)から選ばれる少なくとも1種のα-オレフィンから導かれる構成単位(ii)の含有比率が5~84モル%、非共役ポリエンから導かれる構成単位(iii)の含有比率が0~10モル%(ただし、構成単位(i)、(ii)および(iii)の合計を100モル%とする)である(B1)4-メチル-1-ペンテン・α-オレフィン共重合体を含む、請求項2~4のいずれかに記載の架橋体。 - 前記(D)補強性充填材がカーボンブラック、マイカ、タルク、シリカおよびクレーから選ばれる少なくとも1種である、請求項2~5のいずれかに記載の架橋体。
- 前記(C)軟化材がパラフィンオイルである、請求項2~6のいずれかに記載の架橋体。
- 請求項2~7のいずれかに記載の架橋体を用いて得られる制振部材。
- 請求項2~7のいずれかに記載の架橋体を用いて得られる衝撃吸収材。
- 請求項2~7のいずれかに記載の架橋体を用いて得られる振動吸収材。
- 請求項2~7のいずれかに記載の架橋体を用いて得られる共振抑制材。
- (A)動的粘弾性測定により求められたtanδのピークが-50~-30℃の温度範囲に一つ以上存在するエチレン・α-オレフィン・非共役ポリエン共重合体 100質量部
(B)動的粘弾性測定により求められたtanδのピークが0~40℃の温度範囲に一つ以上存在するオレフィン系共重合体 50~500質量部
(C)軟化材 5~300質量部
(D)補強性充填材 10~300質量部、および、
(E)加硫剤 0.1質量部~10質量部
を含み、前記(D)補強性充填材に対する前記(C)軟化材の質量基準の配合比率((C)/(D))が0.3~1.5である組成物を140~230℃の条件で反応させることを特徴とするオレフィン重合体架橋体の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16761569.9A EP3266822B1 (en) | 2015-03-06 | 2016-03-01 | Crosslinked body and damping material |
JP2017504994A JP6496806B2 (ja) | 2015-03-06 | 2016-03-01 | 架橋体および制振材 |
CN201680010734.5A CN107250247B (zh) | 2015-03-06 | 2016-03-01 | 交联体及减振材 |
US15/555,603 US10457802B2 (en) | 2015-03-06 | 2016-03-01 | Crosslinked body and vibration damper |
KR1020177025641A KR101962561B1 (ko) | 2015-03-06 | 2016-03-01 | 가교체 및 제진재 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015044686 | 2015-03-06 | ||
JP2015-044686 | 2015-03-06 | ||
JP2016019662 | 2016-02-04 | ||
JP2016-019662 | 2016-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016143599A1 true WO2016143599A1 (ja) | 2016-09-15 |
Family
ID=56880567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056195 WO2016143599A1 (ja) | 2015-03-06 | 2016-03-01 | 架橋体および制振材 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10457802B2 (ja) |
EP (1) | EP3266822B1 (ja) |
JP (1) | JP6496806B2 (ja) |
KR (1) | KR101962561B1 (ja) |
CN (1) | CN107250247B (ja) |
TW (1) | TWI689545B (ja) |
WO (1) | WO2016143599A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017199581A1 (ja) * | 2016-05-17 | 2017-11-23 | 豊田合成株式会社 | Epdm組成物 |
JP2018145350A (ja) * | 2017-03-08 | 2018-09-20 | 三井化学株式会社 | 熱可塑性エラストマー組成物、その成形体及びそれらの製造方法 |
JP2018172532A (ja) * | 2017-03-31 | 2018-11-08 | 三井化学株式会社 | 熱可塑性重合体組成物及びその用途 |
JP2020075947A (ja) * | 2018-11-05 | 2020-05-21 | 三井化学株式会社 | 重合体組成物および当該重合体組成物から形成される制振材 |
JPWO2021095683A1 (ja) * | 2019-11-15 | 2021-05-20 | ||
WO2022158511A1 (ja) * | 2021-01-25 | 2022-07-28 | 三井化学株式会社 | 樹脂組成物および成形体 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3998782A1 (en) * | 2019-07-08 | 2022-05-18 | Yamaha Corporation | Composition for acoustic member and acoustic member |
JP7129507B1 (ja) * | 2021-02-25 | 2022-09-01 | 美津濃株式会社 | 架橋発泡用樹脂組成物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180452A (ja) * | 1997-09-03 | 1999-03-26 | Jsr Corp | 防振ゴム用ゴム組成物 |
JP2007023258A (ja) * | 2005-06-16 | 2007-02-01 | Jsr Corp | ゴム組成物 |
JP2012097249A (ja) * | 2010-10-06 | 2012-05-24 | Mitsui Chemicals Inc | 制振ダンパー用材料および制振ダンパー |
WO2012157709A1 (ja) * | 2011-05-18 | 2012-11-22 | 三井化学株式会社 | プロピレン系共重合体、プロピレン系共重合体組成物、その成形体およびその発泡体、およびそれらの製造方法 |
JP5424893B2 (ja) * | 2007-12-05 | 2014-02-26 | 三井化学株式会社 | ゴム組成物、該組成物の架橋体および発泡体、該組成物からなるゴム成形体ならびにそれらの用途 |
JP2014210869A (ja) * | 2013-04-19 | 2014-11-13 | 三井化学株式会社 | 熱可塑性重合体組成物、およびその用途 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4225501A (en) | 1977-07-25 | 1980-09-30 | Givaudan Corporation | 1,4-Epoxy-1,3,3-trimethyl-2-(2-buten-1-ylidene)-cyclohexanes |
MY114719A (en) | 1995-06-29 | 2002-12-31 | Mitsui Chemicals Inc | Olefin thermoplastic elastomer compositions |
KR100474162B1 (ko) * | 1996-12-20 | 2005-05-16 | 스미또모 가가꾸 가부시끼가이샤 | 열가소성엘라스토머조성물,그의파우더또는펠릿,및그를포함하는성형체 |
WO2000059962A1 (fr) * | 1999-04-02 | 2000-10-12 | Mitsui Chemicals, Inc. | CAOUTCHOUC COPOLYMERE D'ETHYLENE/α-OLEFINE/POLYENE NON CONJUGUE, COMPOSITION DE CAOUTCHOUC D'ETANCHEITE, CAOUTCHOUC MOULE D'ETANCHEITE ET PROCEDE DE FABRICATION DU CAOUTCHOUC MOULE |
JP4766741B2 (ja) | 2000-12-15 | 2011-09-07 | シーシーアイ株式会社 | 不低反発弾性・制振性ポリマー組成物 |
JP2005121192A (ja) | 2003-10-20 | 2005-05-12 | Koyo Seiko Co Ltd | ころ軸受 |
CN1282704C (zh) * | 2004-01-15 | 2006-11-01 | 株洲时代新材料科技股份有限公司 | 原位改性炭黑补强三元乙丙橡胶及其制备方法 |
US7166678B2 (en) * | 2004-03-31 | 2007-01-23 | The Gates Corporation | Rubber composition and vibration damper using the rubber composition |
JP4828415B2 (ja) | 2004-06-10 | 2011-11-30 | 三井化学株式会社 | オレフィン系重合体およびその用途 |
JP2008102761A (ja) | 2006-10-19 | 2008-05-01 | Mitsubishi Electric Corp | 組み込みファームウェアの更新方法 |
CN101616985B (zh) | 2007-02-20 | 2012-06-13 | 旭化成化学株式会社 | 冲击吸收体组合物 |
JP5357635B2 (ja) * | 2009-06-19 | 2013-12-04 | 三井化学株式会社 | ゴム組成物およびその用途 |
KR101408423B1 (ko) * | 2009-11-06 | 2014-06-17 | 미쓰이 가가쿠 가부시키가이샤 | 4-메틸-1-펜텐·α-올레핀 공중합체, 이 공중합체를 포함하는 조성물 및 4-메틸-1-펜텐 공중합체 조성물 |
JP5872792B2 (ja) * | 2010-09-15 | 2016-03-01 | 三井化学株式会社 | 防振材および防振部材 |
WO2013191222A1 (ja) * | 2012-06-20 | 2013-12-27 | 積水化学工業株式会社 | 衝撃吸収材及びシール材 |
-
2016
- 2016-03-01 WO PCT/JP2016/056195 patent/WO2016143599A1/ja active Application Filing
- 2016-03-01 JP JP2017504994A patent/JP6496806B2/ja active Active
- 2016-03-01 EP EP16761569.9A patent/EP3266822B1/en active Active
- 2016-03-01 KR KR1020177025641A patent/KR101962561B1/ko active Active
- 2016-03-01 CN CN201680010734.5A patent/CN107250247B/zh active Active
- 2016-03-01 US US15/555,603 patent/US10457802B2/en active Active
- 2016-03-04 TW TW105106668A patent/TWI689545B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180452A (ja) * | 1997-09-03 | 1999-03-26 | Jsr Corp | 防振ゴム用ゴム組成物 |
JP2007023258A (ja) * | 2005-06-16 | 2007-02-01 | Jsr Corp | ゴム組成物 |
JP5424893B2 (ja) * | 2007-12-05 | 2014-02-26 | 三井化学株式会社 | ゴム組成物、該組成物の架橋体および発泡体、該組成物からなるゴム成形体ならびにそれらの用途 |
JP2012097249A (ja) * | 2010-10-06 | 2012-05-24 | Mitsui Chemicals Inc | 制振ダンパー用材料および制振ダンパー |
WO2012157709A1 (ja) * | 2011-05-18 | 2012-11-22 | 三井化学株式会社 | プロピレン系共重合体、プロピレン系共重合体組成物、その成形体およびその発泡体、およびそれらの製造方法 |
JP2014210869A (ja) * | 2013-04-19 | 2014-11-13 | 三井化学株式会社 | 熱可塑性重合体組成物、およびその用途 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017199581A1 (ja) * | 2016-05-17 | 2017-11-23 | 豊田合成株式会社 | Epdm組成物 |
JP2018145350A (ja) * | 2017-03-08 | 2018-09-20 | 三井化学株式会社 | 熱可塑性エラストマー組成物、その成形体及びそれらの製造方法 |
JP2018172532A (ja) * | 2017-03-31 | 2018-11-08 | 三井化学株式会社 | 熱可塑性重合体組成物及びその用途 |
JP7189732B2 (ja) | 2018-11-05 | 2022-12-14 | 三井化学株式会社 | 重合体組成物および当該重合体組成物から形成される制振材 |
JP2020075947A (ja) * | 2018-11-05 | 2020-05-21 | 三井化学株式会社 | 重合体組成物および当該重合体組成物から形成される制振材 |
JPWO2021095683A1 (ja) * | 2019-11-15 | 2021-05-20 | ||
WO2021095683A1 (ja) * | 2019-11-15 | 2021-05-20 | 三井化学株式会社 | 樹脂組成物および成形体 |
KR20220079644A (ko) * | 2019-11-15 | 2022-06-13 | 미쓰이 가가쿠 가부시키가이샤 | 수지 조성물 및 성형체 |
CN114651044A (zh) * | 2019-11-15 | 2022-06-21 | 三井化学株式会社 | 树脂组合物和成型体 |
JP7206416B2 (ja) | 2019-11-15 | 2023-01-17 | 三井化学株式会社 | 樹脂組成物および成形体 |
CN114651044B (zh) * | 2019-11-15 | 2024-02-20 | 三井化学株式会社 | 树脂组合物和成型体 |
KR102709690B1 (ko) | 2019-11-15 | 2024-09-24 | 미쓰이 가가쿠 가부시키가이샤 | 수지 조성물 및 성형체 |
WO2022158511A1 (ja) * | 2021-01-25 | 2022-07-28 | 三井化学株式会社 | 樹脂組成物および成形体 |
JP7564252B2 (ja) | 2021-01-25 | 2024-10-08 | 三井化学株式会社 | 樹脂組成物および成形体 |
Also Published As
Publication number | Publication date |
---|---|
KR20170117500A (ko) | 2017-10-23 |
TWI689545B (zh) | 2020-04-01 |
JPWO2016143599A1 (ja) | 2017-12-14 |
EP3266822B1 (en) | 2021-04-21 |
TW201641564A (zh) | 2016-12-01 |
US10457802B2 (en) | 2019-10-29 |
JP6496806B2 (ja) | 2019-04-10 |
KR101962561B1 (ko) | 2019-03-26 |
CN107250247A (zh) | 2017-10-13 |
EP3266822A4 (en) | 2018-10-31 |
CN107250247B (zh) | 2020-04-14 |
EP3266822A1 (en) | 2018-01-10 |
US20190211193A1 (en) | 2019-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6496806B2 (ja) | 架橋体および制振材 | |
JP5357643B2 (ja) | ゴム組成物およびその用途 | |
JP6560191B2 (ja) | 遮音材 | |
KR101576404B1 (ko) | 에틸렌계 공중합체, 당해 공중합체를 포함하는 조성물, 및 에틸렌계 공중합체 또는 조성물로 이루어지는 성형품 및 필름 또는 시트 | |
JP6717982B2 (ja) | ゴム組成物 | |
JP2010174127A (ja) | ゴム組成物、ゴム組成物の製造方法、加硫ゴム組成物および防振材 | |
KR20160023697A (ko) | 오일 증량 에틸렌-알파-올레핀-비공액 디엔 공중합체 | |
JP4180384B2 (ja) | 熱可塑性エラストマーからなるホース | |
JP5625227B2 (ja) | 液封入防振ゴム用ゴム組成物 | |
JP5364621B2 (ja) | 高減衰ゴム組成物及びその用途 | |
JP2018119097A (ja) | 自動車水系ホース用ゴム組成物 | |
JP2009073912A (ja) | 熱可塑性エラストマー組成物 | |
JP6466181B2 (ja) | 架橋発泡体 | |
JP2017110094A (ja) | ゴム組成物 | |
JP5562181B2 (ja) | 高減衰ゴム組成物及びその用途 | |
JP7189732B2 (ja) | 重合体組成物および当該重合体組成物から形成される制振材 | |
EP3805308A1 (en) | Thermoplastic elastomer composition and production method therefor | |
JP2019167403A (ja) | エチレン・α−オレフィン・ビニルノルボルネン共重合体 | |
JP7288305B2 (ja) | 難燃性エチレン系共重合体組成物および鉄道用製品 | |
JP2023150375A (ja) | エチレン系共重合体組成物および鉄道用製品 | |
WO2024190034A1 (ja) | ゴム組成物 | |
JP2019108420A (ja) | エチレン・α−オレフィン・非共役ポリエン共重合体組成物およびその用途 | |
JP2002121337A (ja) | シールゴム部品用ゴム組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16761569 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017504994 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2016761569 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20177025641 Country of ref document: KR Kind code of ref document: A |