[go: up one dir, main page]

WO2016136695A1 - Emitter and drip irrigation tube - Google Patents

Emitter and drip irrigation tube Download PDF

Info

Publication number
WO2016136695A1
WO2016136695A1 PCT/JP2016/055140 JP2016055140W WO2016136695A1 WO 2016136695 A1 WO2016136695 A1 WO 2016136695A1 JP 2016055140 W JP2016055140 W JP 2016055140W WO 2016136695 A1 WO2016136695 A1 WO 2016136695A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
irrigation liquid
pressure
tube
emitter
Prior art date
Application number
PCT/JP2016/055140
Other languages
French (fr)
Japanese (ja)
Inventor
昌宏 木立
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015112274A external-priority patent/JP6532763B2/en
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201680011472.4A priority Critical patent/CN107249304B/en
Priority to EP16755441.9A priority patent/EP3262926B1/en
Priority to ES16755441T priority patent/ES2741635T3/en
Priority to BR112017017871-0A priority patent/BR112017017871A2/en
Priority to US15/552,968 priority patent/US10362740B2/en
Publication of WO2016136695A1 publication Critical patent/WO2016136695A1/en
Priority to IL253957A priority patent/IL253957B/en
Priority to ZA2017/05665A priority patent/ZA201705665B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation

Definitions

  • the present invention relates to an emitter and a drip irrigation tube having the emitter.
  • drip irrigation has been known as one of the plant cultivation methods.
  • the drip irrigation method is a method in which a drip irrigation tube is arranged on the soil in which plants are planted, and irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil.
  • irrigation liquid such as water or liquid fertilizer
  • a drip irrigation tube usually has a tube formed with a plurality of through holes through which irrigation liquid is discharged, and a plurality of emitters (also referred to as “drippers”) for discharging the irrigation liquid from each through hole.
  • emitters there are known an emitter that is used while being joined to the inner wall surface of the tube (see, for example, Patent Document 1), and an emitter that is used by piercing the tube from the outside.
  • Patent Document 1 describes an emitter bonded to the inner wall surface of a tube.
  • An emitter described in Patent Document 1 includes a first member having a water intake for taking in irrigation liquid, a second member having a discharge port for discharging irrigation liquid, and the first member and the second member. And a membrane member disposed therebetween. Inside the first member, there are formed a valve seat portion arranged so as to surround the water intake port and a decompression groove which becomes a part of the decompression flow path. A through hole is formed in the membrane member at a position corresponding to the downstream end of the decompression groove.
  • the first member, the membrane member, and the second member are stacked to form a decompression flow path, and the membrane member contacts the valve seat portion and closes the water intake.
  • a flow path through which the irrigation liquid flows is formed from the intake port to the discharge port.
  • the irrigation liquid does not flow into the emitter unless the pressure of the irrigation liquid in the tube exceeds a predetermined pressure. Does not work when the pressure of the working liquid is very low.
  • an emitter in the vicinity of the liquid feed pump for sending the irrigation liquid to the tube functions properly, but an emitter arranged at a position away from the liquid feed pump does not function properly. Therefore, the flow rate of the supplied irrigation liquid changes depending on the irrigation position, and the irrigable distance is limited.
  • an object of the present invention is to provide an emitter and a drip irrigation tube that can quantitatively discharge the irrigation liquid not only when the pressure of the irrigation liquid is high but also when the pressure is low.
  • an emitter is an inner wall surface of a tube through which an irrigation liquid is circulated, and is joined to a position corresponding to a discharge port that communicates the inside and outside of the tube.
  • the flow path opening / closing part for opening and closing the second flow path, and the first flow path upstream from the flow rate reducing part The pressure of the introduced irrigation liquid is reduced, the pressure reducing channel leading to the flow rate reducing unit, and the second channel on the upstream side of the channel opening / closing unit are arranged and introduced from the water intake unit
  • a bypass channel for guiding the pressure of the irrigation liquid to the channel opening / closing part in a state where the pressure of the irrigation liquid is higher than the pressure of the irrigation liquid flowing through the decompression channel, and flows through the tube
  • a drip irrigation tube according to the present invention is joined to a tube having a discharge port for discharging irrigation liquid and a position corresponding to the discharge port on the inner wall surface of the tube. And an emitter according to the present invention.
  • the emitter and drip irrigation tube according to the present invention can quantitatively discharge the irrigation liquid not only when the pressure of the irrigation liquid is high but also when the pressure of the irrigation liquid is low. Further, the emitter and drip irrigation tube according to the present invention can perform quantitative irrigation for a long distance.
  • FIG. 1A and 1B are cross-sectional views of a drip irrigation tube according to Embodiment 1.
  • FIG. 2A and 2B are perspective views of the emitter according to Embodiment 1.
  • FIG. 3A and 3B are diagrams showing the configuration of the emitter according to the first embodiment.
  • 4A to 4C are diagrams showing the configuration of the emitter according to the first embodiment.
  • 5A to 5C are diagrams showing the configuration of the emitter according to the first embodiment.
  • 6A to 6C are schematic views for explaining the operation of the emitter according to the first embodiment.
  • FIG. 7 is a graph showing an example of the relationship between the pressure of the irrigation liquid in the tube and the flow rate of the irrigation liquid dropped from the discharge port when the drip irrigation tube according to Embodiment 1 is used. is there.
  • 8A and 8B are diagrams showing a configuration of an emitter according to a modification of the first embodiment.
  • 9A and 9B are diagrams showing the configuration of the emitter according to the second embodiment.
  • 10A and 10B are diagrams showing the configuration of the emitter according to the third embodiment.
  • 11A and 11B are perspective views of the emitter according to the fourth embodiment.
  • 12A and 12B are diagrams illustrating the configuration of the emitter according to the fourth embodiment.
  • 13A to 13C are diagrams showing the configuration of the emitter according to the fourth embodiment.
  • 14A and 14B are partial enlarged cross-sectional views of the emitter according to the fourth embodiment.
  • FIG. 1A is a cross-sectional view in the direction along the axis of the drip irrigation tube 100 according to Embodiment 1 of the present invention
  • FIG. 1B is a cross-sectional view in the direction perpendicular to the axis of the drip irrigation tube 100.
  • the drip irrigation tube 100 has a tube 110 and an emitter 120.
  • the tube 110 is a tube for flowing irrigation liquid.
  • the material of the tube 110 is not particularly limited.
  • the material of the tube 110 is polyethylene.
  • a plurality of discharge ports 112 for discharging irrigation liquid at predetermined intervals (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110.
  • the diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm.
  • Emitters 120 are respectively joined to positions corresponding to the discharge ports 112 on the inner wall surface of the tube 110.
  • the cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be disposed inside the tube 110.
  • the drip irrigation tube 100 is created by joining the back surface 138 of the emitter 120 to the inner wall surface of the tube 110.
  • the method for joining the tube 110 and the emitter 120 is not particularly limited. Examples of the method for joining the tube 110 and the emitter 120 include welding of a resin material constituting the emitter 120 or the tube 110, adhesion by an adhesive, and the like. Normally, the discharge port 112 is formed after the tube 110 and the emitter 120 are joined, but may be formed before joining.
  • FIG. 2A is a perspective view of the emitter 120 as viewed from the front surface 139 side
  • FIG. 2B is a perspective view of the emitter 120 as viewed from the back surface 138 side
  • FIG. 3A is a plan view of the emitter 120 before joining the emitter body 122 and the film 124
  • FIG. 3B is a bottom view of the emitter 120 before joining the emitter body 122 and the film 124
  • 4A is a side view of the emitter 120
  • FIG. 4B is a cross-sectional view taken along the line AA shown in FIG. 3A
  • FIG. 4C is a cross-sectional view taken along the line BB shown in FIG. 3A
  • 5A is a front view of the emitter 120
  • FIG. 4B is a cross-sectional view taken along the line AA shown in FIG. 3A
  • FIG. 4C is a cross-sectional view taken along the line BB shown in FIG. 3A
  • 5A is a front view of the emitter 120
  • FIG. 5B is a cross-sectional view of the emitter body 122 taken along line CC shown in FIG. 3A
  • FIG. 5C is an emitter taken along line EE shown in FIG. 3B
  • 4 is a cross-sectional view of a main body 122.
  • the emitter 120 is joined to the inner wall surface of the tube 110 so as to cover the discharge port 112.
  • the shape of the emitter 120 is not particularly limited as long as it can adhere to the inner wall surface of the tube 110 and cover the discharge port 112.
  • the shape of the back surface 138 bonded to the inner wall surface of the tube 110 in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is formed on the inner wall surface of the tube 110 so as to be along the inner wall surface of the tube 110. It has a generally arc shape that is convex toward the top.
  • the planar shape of the emitter 120 is a substantially rectangular shape with four corners rounded.
  • the size of the emitter 120 is not particularly limited. In the present embodiment, the length of the emitter 120 in the long side direction is 25 mm, the length in the short side direction is 8 mm, and the height is 2.5 mm.
  • the emitter 120 has an emitter body 122 joined to the inner wall surface of the tube 110 and a film 124 joined to the emitter body 122.
  • the emitter body 122 and the film 124 are integrally formed via a hinge portion 126 (see FIGS. 3A and 3B).
  • Both the emitter main body 122 and the film 124 are formed of one kind of flexible material.
  • the material of the emitter body 122 and the film 124 include resin and rubber.
  • the resin include polyethylene and silicone.
  • the flexibility of the emitter body 122 and the film 124 can be adjusted by using a resin material having elasticity. Examples of methods for adjusting the flexibility of the emitter body 122 and the film 124 include selection of a resin having elasticity, adjustment of a mixing ratio of a resin material having elasticity to a hard resin material, and the like.
  • the integrally molded product of the emitter body 122 and the film 124 can be manufactured by, for example, injection molding.
  • the emitter 120 includes a water intake part 131, a connection groove 132 that becomes the connection flow path 141, a pressure reduction groove 133 that becomes the pressure reduction flow path 142, a bypass groove 134 that becomes the bypass flow path 144, a flow rate reduction part 135, a flow path An opening / closing part 136 and a discharge part 137 are provided.
  • the water intake part 131, the flow rate reducing part 135, and the flow path opening / closing part 136 are arranged on the surface 139 side of the emitter 120.
  • the connection groove 132, the decompression groove 133, the bypass groove 134, and the discharge part 137 are disposed on the back surface 138 side of the emitter 120.
  • connection groove 132, the decompression groove 133, and the bypass groove 134 become a connection channel 141, a decompression channel 142, and a bypass channel 144, respectively.
  • a first flow path 143 that includes the water intake section 131, the connection flow path 141, the decompression flow path 142, the flow rate reduction section 135, and the discharge section 137 and connects the water intake section 131 and the discharge section 137 is formed.
  • the intake passage 131, the connection passage 141, the bypass passage 144, the passage opening / closing portion 136, and the discharge portion 137 are formed, and a second passage 145 that connects the intake portion 131 and the discharge portion 137 is formed.
  • the irrigation liquid is circulated from the water intake section 131 to the discharge section 137.
  • the first flow path 143 and the second flow path 145 overlap between the intake section 131 and the connection flow path 141.
  • the downstream of the flow path opening / closing part 136 of the second flow path 145 is connected to the flow rate reducing part 135, and the first flow path 143 is also connected between the flow rate reducing part 135 and the discharge part 137.
  • the second flow path 145 overlap.
  • the water intake 131 is disposed in a region that is more than half of the surface 139 of the emitter 120 (see FIGS. 2A and 3A). In the region of the surface 139 where the water intake part 131 is not arranged, a flow rate reducing part 135 and a flow path opening / closing part 136 (film 124) are arranged.
  • the water intake part 131 has a water intake side screen part 151 and a plurality of water intake through holes 152.
  • the water intake side screen unit 151 prevents the suspended matter in the irrigation liquid taken into the emitter 120 from entering the water intake recess 153.
  • the water intake side screen portion 151 is open to the inside of the tube 110 and has a water intake recess 153, a slit 154, and a ridge 155.
  • the water intake recess 153 is one recess formed on the entire surface 139 of the emitter 120 where the film 124 is not bonded.
  • the depth of the water intake recess 153 is not particularly limited, and is appropriately set depending on the size of the emitter 120.
  • a plurality of slits 154 are formed on the outer peripheral wall of the water intake recess 153, and a protrusion 155 is formed on the bottom surface of the water intake recess 153.
  • a water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
  • the slit 154 connects the inner surface of the water intake recess 153 and the outer surface of the emitter body 122, while taking the irrigation liquid from the side surface of the emitter body 122 into the water recess 153 and floating in the irrigation liquid. An object is prevented from entering the recess 153 for water intake.
  • the shape of the slit 154 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the shape of the slit 154 is formed such that the width increases from the outer surface of the emitter body 122 toward the inner surface of the water intake recess 153 (see FIG. 3A). Thus, since the slit 154 is configured to have a so-called wedge wire structure, the pressure loss of the water flowing into the water intake recess 153 is suppressed.
  • the protrusion 155 is disposed on the bottom surface of the water intake recess 153.
  • the arrangement and number of the ridges 155 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 153 and the intrusion of suspended matter in the irrigation liquid can be prevented.
  • the ridges 155 are arranged along the minor axis direction of the emitter 120 and a plurality of first ridges 156 arranged in the major axis direction of the emitter 120 and the major axis direction of the emitter 120.
  • One second ridge 157 is formed.
  • the first ridges 156 are formed so that the width decreases from the surface 139 of the emitter body 122 toward the bottom surface of the water intake recess 153 (see FIG. 4C). That is, in the arrangement direction of the first ridges 156, the space between the adjacent first ridges 156 has a so-called wedge wire structure. Moreover, the distance between the adjacent 1st protruding item
  • the second ridge 157 may be formed so that the width decreases from the surface 139 of the emitter body 122 toward the bottom surface of the recess 153 for water intake.
  • the same width may be formed from the surface 139 of the main body 122 to the bottom surface of the water intake recess 153.
  • the space between the adjacent first ridges 156 is configured to have a so-called wedge wire structure, the pressure loss of the water flowing into the water intake recess 153 is suppressed.
  • the water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
  • the shape and number of the water intake through holes 152 are not particularly limited as long as the irrigation liquid taken into the water intake recess 153 can be taken into the emitter body 122.
  • the water intake through hole 152 is two long holes formed along the long axis direction of the bottom surface of the water intake recess 153. Since each long hole is covered with a plurality of first ridges 156, when viewed from the front side, one water intake through hole 152 appears to be divided into a number of through holes.
  • the irrigation liquid that has flowed through the tube 110 is taken into the emitter main body 122 while preventing the suspended matter from entering the water intake recess 153 by the water intake side screen portion 151.
  • connection groove 132 (connection flow path 141) connects the water intake through hole 152 (water intake part 131), the decompression groove 133 and the bypass groove 134.
  • the connection groove 132 is formed in a substantially U shape along the outer edge on the back surface 138 side of the emitter 120.
  • a decompression groove 133 is connected near the center of the connection groove 132, and a bypass groove 134 is connected to one end of the connection groove 132.
  • the decompression groove 133 (decompression flow path 142) is disposed in the first flow path 143 on the upstream side of the flow rate reduction unit 135, and connects the connection groove 132 (connection channel 141) and the flow rate reduction unit 135.
  • the decompression groove 133 (decompression channel 142) reduces the pressure of the irrigation liquid taken from the water intake unit 131 and guides it to the flow rate reduction unit 135.
  • the decompression groove 133 is disposed in the central portion of the back surface 138 along the long axis direction.
  • the upstream end of the decompression groove 133 is connected to the connection groove 132, and the flow rate reducing through-hole 161 communicating with the flow rate reducing unit 135 is disposed at the downstream end.
  • the shape of the decompression groove 133 is not particularly limited as long as the above function can be exhibited.
  • the planar view shape of the decompression groove 133 is a zigzag shape.
  • substantially triangular prism-shaped protrusions 162 protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows.
  • the convex portion 162 is disposed such that the tip does not exceed the central axis of the decompression groove 133 when viewed in plan.
  • the decompression flow path 142 mainly functions when the pressure of the irrigation liquid is high.
  • the bypass groove 134 (bypass channel 144) is disposed in the second channel 145 upstream of the channel opening / closing part 136, and connects the connection groove 132 (connection channel 141) and the channel opening / closing part 136. .
  • the bypass groove 134 (bypass channel 144) maintains the pressure of the irrigation liquid taken from the water intake section 131 higher than the pressure of the irrigation liquid that has flowed through the decompression groove 133 (decompression channel 142). Then, it is guided to the flow path opening / closing part 136.
  • An upstream end of the bypass groove 134 is connected to the connection groove 132, and a bypass through-hole 163 communicating with the flow path opening / closing portion 136 is formed at the downstream end.
  • a flow path screen 164 is disposed in the bypass groove 134.
  • the flow path screen unit 164 collects suspended matter in the irrigation liquid that could not be collected by the water intake side screen unit 151.
  • the form of the screen portion 164 for the flow path is not particularly limited as long as the above function can be exhibited.
  • the flow path screen portion 164 is a plurality of columnar protrusions 165 disposed on the bottom surface of the bypass groove 134. Note that the flow path screen unit 164 may not be disposed.
  • the bypass flow path 144 functions only when the pressure of the irrigation liquid is low.
  • the flow rate reducing unit 135 is disposed between the decompression channel 142 (decompression groove 133) and the discharge unit 137 in the first channel 143, and is disposed on the surface 139 side of the emitter 120.
  • the flow rate reduction unit 135 sends the irrigation liquid to the discharge unit 137 while reducing the flow rate of the irrigation liquid according to the pressure of the irrigation liquid in the tube 110.
  • the configuration of the flow rate reducing unit 135 is not particularly limited as long as the above function can be exhibited.
  • the flow rate reducing portion 135 includes a flow rate reducing recess 171, a first valve seat portion 172, a communication groove 173, a discharge through hole 174 communicating with the discharge portion 137, and a part of the film 124.
  • the flow rate reducing recess 171 has a flow rate reducing through hole 161 communicating with the decompression groove 133 (decompression channel 142) and a discharge through hole 174 communicating with the ejection unit 137.
  • the plan view shape of the flow rate reducing recess 171 is substantially circular.
  • a flow rate reducing through hole 161 communicating with the decompression groove 133 (decompression channel 142), a discharge through hole 174 communicating with the discharge unit 137, and a first valve seat 172 are arranged.
  • the depth of the flow rate reducing recess 171 is not particularly limited as long as it is equal to or greater than the depth of the communication groove 173.
  • the discharge through-hole 174 is disposed at the center of the bottom surface of the flow rate reducing recess 171 and communicates with the discharge portion 137.
  • the first valve seat 172 is disposed on the bottom surface of the flow rate reducing recess 171 so as to surround the discharge through-hole 174.
  • the first valve seat 172 is formed so that the first diaphragm 175 can be in close contact when the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the second pressure. When the first diaphragm portion 175 contacts the first valve seat portion 172, the flow rate of the irrigation liquid flowing from the flow rate reducing recess portion 171 into the discharge portion 137 is reduced.
  • the shape of the 1st valve seat part 172 will not be specifically limited if the above-mentioned function can be exhibited.
  • the shape of the first valve seat portion 172 is an annular convex portion.
  • a communication groove 173 that connects the inside of the flow rate reducing recess 171 and the discharge through-hole 174 is formed in a part of the region where the first diaphragm portion 175 of the first valve seat portion 172 can be in close contact.
  • the flow rate reducing through hole 161 communicated with the pressure reducing groove 133 is formed in a region where the first valve seat portion 172 is not disposed on the bottom surface of the flow rate reducing recess 171.
  • the flow rate reducing through hole 161 communicating with the decompression groove 133 (decompression channel 142) is disposed so as to be surrounded by the first valve seat portion 172, and the discharge through hole 174 communicating with the discharge portion 137 is the first valve. It may be arranged outside the seat portion 172.
  • the first diaphragm portion 175 is a part of the film 124.
  • the first diaphragm portion 175 is disposed so as to partition the inside of the flow rate reducing recess 171 and the inside of the tube 110.
  • the first diaphragm portion 175 is deformed so as to contact the first valve seat portion 172 in accordance with the pressure of the irrigation liquid in the tube 110. Specifically, the first diaphragm portion 175 deforms toward the first valve seat portion 172 as the pressure of the irrigation liquid increases, and eventually comes into contact with the first valve seat portion 172.
  • the first diaphragm portion 175 Even if the first diaphragm portion 175 is in close contact with the first valve seat portion 172, the first diaphragm portion 175 does not block the flow rate reducing through hole 161, the discharge through hole 174, and the communication groove 173.
  • the irrigation liquid sent from the flow rate reducing through-hole 161 can be sent to the discharge section 137 through the communication groove 173 and the discharge through-hole 174.
  • the first diaphragm portion 175 is disposed adjacent to a second diaphragm portion 183 described later.
  • the channel opening / closing part 136 is disposed between the bypass channel 144 (bypass groove 134) and the discharge unit 137 in the second channel 145, and is disposed on the surface 139 side of the emitter 120.
  • the channel opening / closing unit 136 opens the second channel 145 according to the pressure in the tube 110 and sends the irrigation liquid to the discharge unit 137.
  • the downstream of the channel opening / closing part 136 is connected to the flow rate reducing unit 135, and the irrigation liquid from the bypass channel 144 (bypass groove 134) is supplied to the channel opening / closing unit 136 and the flow rate reducing unit 135. It passes through and reaches the discharge part 137.
  • the flow path opening / closing part 136 includes a flow path opening / closing recess 181, a second valve seat portion 182, and a second diaphragm portion 183 that is a part of the film 124.
  • a bypass through-hole 163 communicating with the bypass groove 134 (bypass channel 144) is opened.
  • the channel opening / closing recess 181 communicates with the flow rate reducing recess 171 of the flow rate reducing unit 135.
  • the plan view shape of the channel opening / closing recess 181 is substantially circular.
  • a bypass through hole 163 connected to the bypass groove 134 and a second valve seat portion 182 are disposed on the bottom surface of the flow path opening / closing recess 181.
  • the inner side surface of the channel opening / closing recess 181 is inclined so as to approach the back surface 138 from the front surface 139 toward the center portion from the outer edge portion.
  • the bottom surface of the channel opening / closing recess 181 is disposed closer to the surface 139 than the bottom surface of the flow rate reducing recess 171. That is, the channel opening / closing recess 181 is formed shallower than the flow rate reducing recess 171. Accordingly, when the film 124 is deformed by the pressure of the irrigation liquid, the film 124 comes into contact with the second valve seat portion 182 before the first valve seat portion 172.
  • the bypass through-hole 163 communicating with the bypass groove 134 is disposed at the center of the bottom surface of the channel opening / closing recess 181.
  • the second valve seat 182 is disposed on the bottom surface of the flow path opening / closing recess 181 so as to surround the bypass through-hole 163.
  • the second valve seat portion 182 faces the second diaphragm portion 183 and is disposed in a non-contact manner.
  • the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the first pressure, the second diaphragm portion 183 can be in close contact. It is formed as follows.
  • the second diaphragm portion 183 When the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the first pressure, the second diaphragm portion 183 is in close contact with the second valve seat portion 182 to close the bypass through-hole 163, and as a result, the second flow path 145 is closed.
  • the shape of the 2nd valve seat part 182 will not be specifically limited if the above-mentioned function can be exhibited.
  • the second valve seat 182 is a part of the bottom surface of the channel opening / closing recess 181 that surrounds the bypass through-hole 163.
  • the second valve seat part 182 may be an annular convex part arranged so as to surround the bypass through-hole 163 like the first valve seat part 172.
  • the second diaphragm portion 183 is a part of the film 124 and is disposed adjacent to the first diaphragm portion 175.
  • the second diaphragm portion 183 is disposed so as to partition the inside of the channel opening / closing recess 181 and the inside of the tube 110.
  • the second diaphragm portion 183 is deformed so as to contact the second valve seat portion 182 according to the pressure of the irrigation liquid in the tube 110.
  • the second diaphragm portion 183 deforms toward the second valve seat portion 182 as the pressure of the irrigation liquid increases, and when the pressure of the irrigation liquid reaches the first pressure, Contact the seat 182. Thereby, the 2nd flow path 145 (through-hole for bypass 163) is obstruct
  • the discharge part 137 is disposed on the back surface 138 side of the emitter 120.
  • the discharge unit 137 sends the irrigation liquid from the discharge through-hole 174 to the discharge port 112 of the tube 110.
  • the configuration of the discharge unit 137 is not particularly limited as long as the above-described function can be exhibited.
  • the discharge unit 137 includes a discharge recess 191 and an intrusion prevention unit 192.
  • the discharge recess 191 is disposed on the back surface 138 side of the emitter 120.
  • the shape of the discharge recess 191 in plan view is substantially rectangular.
  • a discharge through hole 174 and an intrusion prevention portion 192 are disposed on the bottom surface of the discharge recess 191.
  • the intrusion prevention unit 192 prevents intrusion of foreign matter from the discharge port 112.
  • the intrusion prevention unit 192 is not particularly limited as long as it can exhibit the above-described function.
  • the intrusion prevention unit 192 has a plurality of ridges 193 arranged adjacent to each other. The plurality of ridges 193 are arranged so as to be positioned between the discharge through-hole 174 and the discharge port 112 when the emitter 120 is joined to the tube 110.
  • the film 124 has a first diaphragm portion 175 and a second diaphragm portion 183.
  • the thickness of the film 124 is 0.3 mm, for example.
  • the hinge portion 126 is connected to a part of the surface 139 of the emitter body 122.
  • the thickness of the hinge portion 126 is the same as that of the film 124 and is formed integrally with the emitter body 122 and the film 124.
  • the film 124 may be prepared as a separate body from the emitter body 122 and bonded to the emitter body 122.
  • the emitter 120 is configured by rotating the film 124 around the hinge 126 and joining it to the surface 139 of the emitter body 122.
  • the joining method of the emitter body 122 and the film 124 is not particularly limited. Examples of the method for joining the emitter body 122 and the film 124 include welding of a resin material constituting the film 124 and adhesion with an adhesive.
  • the hinge portion 126 may be cut after the emitter body 122 and the film 124 are joined.
  • irrigation liquid is fed into the tube 110.
  • irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof.
  • the pressure of the irrigation liquid fed to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged.
  • the irrigation liquid in the tube 110 is taken into the emitter 120 from the water intake 131. Specifically, the irrigation liquid in the tube 110 enters the water intake recess 153 through the slit 154 or the gap between the first ridges 156 and passes through the water intake through hole 152.
  • the water intake part 131 has the water intake side screen part 151 (gap between the slit 154 and the 1st protruding item
  • the irrigation liquid taken in from the water intake unit 131 reaches the connection channel 141.
  • the irrigation liquid that has reached the connection channel 141 flows into the decompression channel 142 and the bypass channel 144.
  • the irrigation liquid advances ahead of the bypass flow path 144 with less pressure loss than the decompression flow path 142.
  • the irrigation liquid that has flowed into the bypass channel 144 flows into the channel opening / closing part 136 through the bypass through-hole 163.
  • the irrigation liquid that has flowed into the flow path opening / closing part 136 flows into the discharge part 137 through the flow rate reducing part 135.
  • the irrigation liquid that has flowed into the discharge unit 137 is discharged from the discharge port 112 of the tube 110 to the outside of the tube 110.
  • the irrigation liquid that has flowed into the decompression flow path 142 reaches the flow rate reduction unit 135 through the flow rate reduction through hole 161.
  • the irrigation liquid that has flowed into the flow rate reduction unit 135 flows into the discharge unit 137.
  • the irrigation liquid that has flowed into the discharge unit 137 is discharged from the discharge port 112 of the tube 110 to the outside of the tube 110.
  • the flow rate reducing portion 135 and the flow path opening / closing portion 136 are in communication.
  • the flow rate of the irrigation liquid in the tube 110 is controlled by the first diaphragm unit 175 in accordance with the pressure of the irrigation liquid in the tube 110.
  • the flow rate of the irrigation liquid is controlled by the second diaphragm unit 183 in accordance with the pressure. Therefore, the operation of the flow path opening / closing unit 136 and the flow rate reducing unit 135 according to the pressure of the irrigation liquid in the tube 110 will be described.
  • FIGS. 6A to 6C are schematic diagrams showing the operational relationship between the flow rate reducing unit 135 and the flow path opening / closing unit 136.
  • FIG. 6A to 6C are diagrams schematically showing a cross section taken along the line DD shown in FIG. 3A in order to explain the operation of the emitter 120.
  • FIG. 6A is a cross-sectional view when the irrigation liquid is not supplied to the tube 110
  • FIG. 6B is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the first pressure
  • FIG. 6C is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the second pressure exceeding the first pressure.
  • FIG. 7 is a graph showing an example of the relationship between the pressure of the irrigation liquid in the tube 110 and the flow rate of the irrigation liquid dropped from the discharge port 112.
  • the solid line in FIG. 7 indicates the total flow rate of the irrigation liquid dropped from the discharge port 112, and the broken line in FIG. 7 indicates the irrigation liquid that has flowed through the second flow path 145 (through the bypass flow path 144).
  • the alternate long and short dash line in FIG. 7 indicates the flow rate of the irrigation liquid that has flowed through the first flow path 143 (through the decompression flow path 142).
  • the horizontal axis in FIG. 7 indicates the pressure (MPa) of the irrigation liquid, and the vertical axis indicates the flow rate (L / h) of the irrigation liquid discharged from the discharge port 112.
  • the pressure of the irrigation liquid is not applied to the film 124, so the first diaphragm portion 175 and the second diaphragm portion 183 are not deformed (see FIG. 6A).
  • the first diaphragm portion 175 of the flow rate reducing portion 135 starts to deform toward the first valve seat portion 172. Further, the second diaphragm part 183 of the flow path opening / closing part 136 starts to deform toward the second valve seat part 182. However, in this state, the first diaphragm portion 175 is not in contact with the first valve seat portion 172, and the second diaphragm portion 183 is not in contact with the second valve seat portion 182.
  • the irrigation liquid thus obtained includes the first flow path 143 (connection flow path 141, decompression flow path 142, flow rate reduction part 135 and discharge part 137) and second flow path 145 (connection flow path 141, bypass flow path 144, flow It is discharged from the discharge port 112 of the tube 110 to the outside through both the path opening / closing part 136, the flow rate reducing part 135 and the discharge part 137).
  • first flow path 143 connection flow path 141, decompression flow path 142, flow rate reduction part 135 and discharge part 137
  • second flow path 145 connection flow path 141, bypass flow path 144, flow It is discharged from the discharge port 112 of the tube 110 to the outside through both the path opening / closing part 136, the flow rate reducing part 135 and the discharge part 137.
  • the second diaphragm portion 183 comes into contact with the second valve seat portion 182 and closes the second flow path 145 (see FIG. 6B). At this time, the first diaphragm portion 175 is not in contact with the first valve seat portion 172. As described above, when the pressure of the irrigation liquid in the tube 110 becomes so high that the film 124 is deformed, the second diaphragm portion 183 comes close to the second valve seat portion 182, and thus the liquid is discharged through the second flow path 145. The amount of irrigation liquid to be reduced will decrease.
  • the irrigation liquid in the second flow path 145 is not discharged from the discharge port 112 (see the broken line shown in FIG. 7).
  • the irrigation liquid taken from the water intake unit 131 is discharged from the discharge port 112 of the tube 110 to the outside through the first flow path 143.
  • the first diaphragm portion 175 When the pressure of the irrigation liquid in the tube 110 is further increased, the first diaphragm portion 175 is further deformed toward the first valve seat portion 172. Normally, as the pressure of the irrigation liquid increases, the amount of irrigation liquid flowing through the first flow path 143 should increase. However, in the emitter 120 according to the present embodiment, the decompression flow path 142 is used for irrigation. By reducing the pressure of the liquid and reducing the distance between the first diaphragm portion 175 and the first valve seat portion 172, an excessive increase in the amount of irrigation liquid flowing in the first flow path 143 is prevented. When the pressure of the irrigation liquid in the tube 110 is equal to or higher than the second pressure exceeding the first pressure, the first diaphragm portion 175 contacts the first valve seat portion 172 (see FIG.
  • the irrigation liquid introduced from the water intake portion 131 is not connected to the communication groove.
  • the liquid is discharged to the outside through the discharge port 112 of the tube 110 through 173.
  • the flow rate reducing unit 135 makes the first flow path when the second diaphragm unit 183 contacts the second valve seat unit 182. The increase in the amount of the irrigation liquid flowing through 143 is suppressed (see the one-dot chain line shown in FIG. 7).
  • the flow rate reducing unit 135 and the flow path opening / closing unit 136 function so that the amounts of liquid flowing through each of them are complemented according to the pressure of the irrigation liquid in the tube 110.
  • the drip irrigation tube 100 can discharge a certain amount of irrigation liquid out of the tube 110 regardless of whether the pressure of the irrigation liquid is low or high (see the solid line shown in FIG. 7).
  • the drip irrigation tube 100 since the drip irrigation tube 100 according to the present embodiment has the flow path opening / closing portion 136 that mainly operates at low pressure and the flow rate reduction portion 135 that mainly operates at high pressure, the irrigation liquid in the tube 110. Irrigation liquid can be dripped quantitatively without depending on the pressure.
  • a second decompression groove 233 may be provided between the connection groove 132 and the bypass groove 134 as necessary.
  • the corresponding water intake through hole 152 is configured to be short.
  • the second decompression groove 233 is configured in the same manner as the decompression groove 133 except that the flow path length is short.
  • the second decompression groove 233 becomes the second decompression flow path 242 by joining with the tube 110. In this case, the flow rate of the irrigation liquid flowing through the second flow path 145 can also be adjusted.
  • the drip irrigation tube according to the second embodiment is different from the drip irrigation tube 100 according to the first embodiment in the configuration of the emitter 320. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 9A is a plan view of the emitter 320 according to the second embodiment before the emitter body 322 and the film 124 are joined
  • FIG. 9B is the second embodiment before the emitter body 322 and the film 124 are joined. It is a bottom view of the emitter 320 concerning.
  • the flow path opening / closing portion 136 includes a flow path opening / closing recess 381, a second valve seat portion 182, and a second diaphragm portion 183 that is a part of the film 124.
  • the channel opening / closing recess 381 includes a channel opening / closing recess body 385 having a circular shape in plan view, and an extending portion 386 extending laterally from the channel opening / closing recess body 385.
  • a second discharge through-hole 384 communicating with the discharge portion 137 is formed in the extending portion 386.
  • the second discharge through-hole 384 opens in the discharge recess 191 in the discharge portion 137.
  • the first flow channel 143 and the second flow channel 145 include the water intake unit 131 and the connection flow channel 141. And only in the discharge part 137.
  • the irrigation liquid when the pressure of the irrigation liquid is low, the irrigation liquid is discharged out of the tube 110 through both the second flow path 145 and the first flow path 143. .
  • the irrigation liquid passing through the second flow path 145 decreases and the irrigation liquid passing through the first flow path 143 increases.
  • the second diaphragm portion 183 contacts the second valve seat portion 182 and the second flow path 145 is closed.
  • the irrigation liquid is discharged only through the first flow path 143.
  • the pressure of the irrigation liquid becomes equal to or higher than the second pressure, the amount of the irrigation liquid discharged through the first flow path 143 becomes substantially constant.
  • a drip irrigation tube according to Embodiment 2 can drop a certain amount of irrigation liquid without depending on the pressure of the irrigation liquid.
  • the drip irrigation tube according to the second embodiment has the same effect as the drip irrigation tube 100 according to the first embodiment.
  • the drip irrigation tube according to the third embodiment is different from the drip irrigation tube 100 according to the first embodiment in the configuration of the emitter 420. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 10A is a plan view of an emitter 420 according to Embodiment 3 before joining the emitter body 422 and the film 124
  • FIG. 10B shows Embodiment 3 before joining the emitter body 422 and the film 124.
  • FIG. It is a bottom view of the emitter 420 concerning.
  • connection groove 432 (connection flow path 441) includes the first connection groove 432a (first connection flow path 441a) and the second connection groove 432b. (Second connection flow path 441b).
  • the first connection groove 432a connects the one water intake through hole 152 and the decompression groove 133.
  • a part of the first connection groove 432a is formed to function as a decompression groove (decompression channel).
  • the second connection groove 432 b connects the other water intake through hole 152 and the bypass groove 134.
  • a part of the second connection groove 432b is formed to function as a decompression groove (decompression channel).
  • connection groove 432 replaces the first connection groove 432a (first connection flow path 441a) and the second connection groove 432b (second connection flow path 441b). Therefore, the first flow path 443 and the second flow path 445 overlap only in the discharge unit 137. That is, the first flow path includes the water intake part 131, the connection flow path 441 (first connection flow path 441a), the decompression flow path 142, the flow rate reduction part 135, and the discharge part 137, and connects the water intake part 131 and the discharge part 137. 443 is formed.
  • the intake section 131 includes a connection flow path 441 (second connection flow path 441b), a bypass flow path 144, a flow path opening / closing section 136, a flow rate reduction section 135, and a discharge section 137.
  • a second flow path 445 that connects the two is formed.
  • the irrigation liquid is circulated from the water intake section 131 to the discharge section 137.
  • the downstream of the flow path opening / closing part 136 of the second flow path 445 is connected to the flow rate reduction unit 135, and between the flow rate reduction unit 135 and the discharge unit 137, Two flow paths 445 overlap.
  • the drip irrigation tube according to Embodiment 3 has the same effects as the drip irrigation tube 100 according to Embodiment 1.
  • the drip irrigation tube according to the fourth embodiment is different from the drip irrigation tube 100 according to the first embodiment in the configuration of the emitter 520. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 11A is a perspective view of the emitter 520 viewed from the front surface 139 side
  • FIG. 11B is a perspective view of the emitter 520 viewed from the back surface 138 side
  • 12A is a plan view of the emitter 520 according to the fourth embodiment before the emitter body 522 and the film 124 are joined
  • FIG. 12B is the fourth embodiment before the emitter body 522 and the film 124 are joined. It is a bottom view of the emitter 520 which concerns on.
  • 13A is a side view of the emitter 520
  • FIG. 13B is a cross-sectional view taken along the line AA shown in FIG. 12A
  • FIG. 13C is a cross-sectional view taken along the line BB shown in FIG. 12A
  • 14A is a partial enlarged cross-sectional view of the flow path opening / closing part 536
  • FIG. 14B is a partial enlarged cross-sectional view of the flow rate reducing part 535.
  • the emitter 520 includes an emitter body 522 and a film 124.
  • the emitter body 522 and the film 124 are integrally formed via a hinge portion 126.
  • the emitter 520 includes a water intake 131, a first connection groove 532 that becomes the first connection flow path 541, a pressure reduction groove 533 that becomes the pressure reduction flow path 542, a bypass groove 534 that becomes the bypass flow path 544, and a flow rate reduction part 535. And a flow path opening / closing part 536, a discharge part 137, and a second connection groove 538 serving as a second connection flow path 539.
  • the water intake part 131, the flow rate reduction part 535, and the flow path opening / closing part 536 are arranged on the surface 139 side of the emitter 520.
  • the first connection groove 532, the decompression groove 533, the bypass groove 534, the discharge part 137, and the second connection groove 538 are disposed on the back surface 138 side of the emitter 520.
  • the first connection groove 532, the decompression groove 533, the bypass groove 534, and the second connection groove 538 are respectively connected to the first connection channel 541, the decompression channel 542, the bypass channel 544, and A second connection flow path 539 is formed. That is, a first flow path 543 that includes the water intake section 131, the first connection flow path 541, the decompression flow path 542, the flow rate reduction section 535, and the discharge section 137 and connects the water intake section 131 and the discharge section 137 is formed.
  • the intake section 131, the first connection flow path 541, the bypass flow path 544, the flow path opening / closing section 536, the second connection flow path 359, the flow rate reduction section 535, and the discharge section 137 are configured.
  • a second flow path 545 that connects the two is formed.
  • the irrigation liquid is circulated from the water intake section 131 to the discharge section 137.
  • the downstream of the flow path opening / closing part 536 of the second flow path 545 is connected to the flow rate reduction part 535, and the area between the flow rate reduction part 535 and the discharge part 137 is connected to the first flow path 543 and the first flow path 535.
  • the two flow paths 545 overlap.
  • the water intake part 131 has a water intake side screen part 151 and a water intake through hole 152.
  • the water intake through hole 152 is a single long hole formed along the long axis direction of the bottom surface of the water intake recess 153. Since the long hole is covered with a plurality of first ridges 156, when viewed from the front side, the water intake through hole 152 appears to be divided into a large number of through holes.
  • the first connection groove 532 (first connection flow path 541) connects the water intake through hole 152 (water intake part 131), the pressure reducing groove 533, and the bypass groove 534.
  • a bypass groove 534 is connected near the center of the first connection groove 532, and a decompression groove 533 is connected to one end of the first connection groove 532 (the side where the water intake through hole 152 is not disposed). ing.
  • a part of the bypass groove 534 is formed so as to function as a decompression groove.
  • a part of the connection groove 432 between the water intake through hole 152 and the bypass groove 534 is also formed to function as a decompression groove.
  • the flow rate reducing portion 535 includes a first flow rate reducing recess 171, a first valve seat portion 572, a communication groove 573, a discharge through hole 174, a first diaphragm portion 175, and a flow path opening / closing portion 536.
  • the flow rate reducing recess 171 has a flow rate reducing through hole 161, a discharge through hole 174, and a first connection hole 576 communicating with the second connection groove 538 (second connection channel 539).
  • the first valve seat 572 is disposed on the bottom surface of the flow rate reducing recess 171 so as to surround the discharge through-hole 174.
  • the shape of the first valve seat portion 572 is an annular convex portion. More specifically, the shape of the first valve seat portion 572 is formed such that the valve seat surface is inclined from the opening portion of the discharge through hole 174 toward the bottom surface of the flow rate reducing recess portion 171.
  • the communication groove 573 communicates with the discharge through-hole 174 and has a constant section 577 having a constant cross-sectional area, and is disposed on the outer edge side with respect to the constant section 577 and decreases in a cross-sectional area that decreases toward the outer edge. 578.
  • the channel opening / closing portion 536 includes a second connection hole communicating with the channel opening / closing recess 581, the second valve seat portion 582, the second diaphragm portion 183, and the second connection groove 538 (second connection channel 539). 540.
  • the planar view shape of the channel opening / closing recess 581 is substantially circular.
  • a bypass through-hole 163, a second valve seat portion 582, and a second connection hole 540 communicating with the second connection groove 538 (flow rate reducing portion 535) are disposed on the bottom surface of the channel opening / closing recess 581.
  • the channel opening / closing recess 581 has the same size and the same shape as the flow rate reducing recess 171. That is, in the fourth embodiment, the channel opening / closing recess 581 is formed larger than the channel opening / closing recesses 181 and 381 of the first to third embodiments.
  • the flow rate reducing recess 171 and the flow path opening / closing recess 581 are arranged side by side in the major axis direction of the emitter 520.
  • the irrigation liquid that has flowed into the channel opening / closing recess 581 flows into the flow rate reduction unit 535 via the second connection hole 540, the second connection channel 539, and the first connection hole 576.
  • the irrigation liquid when the pressure of the irrigation liquid is low, the irrigation liquid is discharged out of the tube through both the second channel 545 and the first channel 543.
  • the first diaphragm portion 175 deforms toward the first valve seat portion 572 and the second diaphragm portion 183 deforms toward the second valve seat portion 582.
  • the second diaphragm portion 183 contacts the second valve seat portion 582 and the second flow path 545 is closed.
  • the channel opening / closing recess 581 is formed larger than in the first to third embodiments, the second diaphragm portion 183 is easily affected by the pressure of the irrigation liquid.
  • the time from when the flow rate of the irrigation liquid in the second flow path 545 reaches its peak until the flow rate of the irrigation liquid in the second flow path 545 reaches zero is shortened (see the broken line in FIG. 7).
  • the irrigation liquid is discharged only through the first channel 543.
  • the first diaphragm portion 175 When the pressure of the irrigation liquid in the tube is further increased, the first diaphragm portion 175 is further deformed toward the first valve seat portion 572. Normally, as the pressure of the irrigation liquid increases, the amount of irrigation liquid flowing through the first flow path 543 should increase. However, in the emitter 520 according to the present embodiment, the first valve seat 572 Since the valve seat surface is inclined downward toward the outer edge, the first diaphragm portion 175 becomes closer to the valve seat surface as the pressure of the irrigation liquid becomes higher than the second pressure. The flow path formed by 573 and the first diaphragm portion 175 is gradually lengthened, and the opening on the outer edge side is gradually narrowed.
  • the flow rate of the irrigation liquid from the flow rate reduction unit 535 is controlled to a flow rate according to the opening area of the flow path, and finally from the discharge port. Only the irrigation liquid having a flow rate corresponding to the opening area is discharged.
  • the increase in the flow rate of the irrigation liquid due to the pressure of the irrigation liquid and the opening area of the flow path Since the decrease in the flow rate of the irrigation liquid is offset, the amount of the irrigation liquid discharged from the discharge port does not increase even when the pressure of the irrigation liquid increases to the second pressure or higher. .
  • the drip irrigation tube according to the fourth embodiment is more reliable than the drip irrigation tube according to the first embodiment without depending on the pressure of the irrigation liquid in the tube. Can be dripped.
  • the emitter 520 according to the fourth embodiment can be more easily downsized because the flow rate reducing recess 171 and the flow path opening / closing recess 581 are arranged side by side in the major axis direction of the emitter 520.
  • connection channels 141 and 441, the decompression channel 142, and the bypass channel 144 are formed by joining the emitters 120, 320, 420, and 520 and the tube 110 together.
  • the connection channels 141 and 441, the decompression channels 142, 442 and 542, and the bypass channels 144 and 544 may be previously formed as channels in the emitter.
  • the timing of contact when the film 124 is deformed is adjusted by changing the position (height) of the first valve seat portions 172 and 572 and the second valve seat portions 182 and 582.
  • the position (height) of the first valve seat portions 172 and 572 and the second valve seat portions 182 and 582 may be the same depth.
  • the contact timing when the film 124 is deformed may be adjusted.
  • the present invention it is possible to easily provide an emitter capable of dropping liquid at an appropriate speed depending on the pressure of the liquid to be dropped. Therefore, the spread of the emitter to technical fields that require long-term dripping, such as drip irrigation and durability tests, and further development of the technical field are expected.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Nozzles (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

An emitter according to the present invention includes a water intake part, a discharge part, a first flow path, a second flow path, a flow-rate decreasing part, a flow path opening/closing part, a pressure reducing flow path, and a bypass flow path. The pressure reducing flow path is provided to the first flow path on the upstream side of the flow-rate decreasing part, reduces the pressure of an irrigation liquid, and guides the irrigation liquid to the flow-rate decreasing part. The bypass flow path is provided to the second flow path on the upstream side of the flow path opening/closing part, and guides the irrigation liquid to the flow path opening/closing part in a state where the pressure of the irrigation liquid is maintained at a pressure higher than that of the irrigation liquid that has passed through the pressure reducing flow path. When the pressure of the irrigation liquid is lower than a first pressure, the irrigation liquid passes through the pressure reducing flow path and the bypass flow path to be guided to the discharge part. When the pressure of the irrigation liquid is a second pressure or higher, the second flow path is closed by the flow path opening/closing part and the irrigation liquid passes through the pressure reducing flow path to be guided to the discharge part.

Description

エミッタおよび点滴灌漑用チューブEmitter and drip irrigation tubes
 本発明は、エミッタおよび当該エミッタを有する点滴灌漑用チューブに関する。 The present invention relates to an emitter and a drip irrigation tube having the emitter.
 以前から、植物の栽培方法の一つとして点滴灌漑法が知られている。点滴灌漑法とは、植物が植えられている土壌上に点滴灌漑用チューブを配置し、点滴灌漑用チューブから土壌へ、水や液体肥料などの灌漑用液体を滴下する方法である。近年、点滴灌漑法は、灌漑用液体の消費量を最小限にすることが可能であるため、特に注目されている。 For some time, drip irrigation has been known as one of the plant cultivation methods. The drip irrigation method is a method in which a drip irrigation tube is arranged on the soil in which plants are planted, and irrigation liquid such as water or liquid fertilizer is dropped from the drip irrigation tube to the soil. In recent years, drip irrigation has attracted particular attention because it can minimize the consumption of irrigation liquid.
 点滴灌漑用チューブは、通常、灌漑用液体が吐出される複数の貫通孔が形成されたチューブと、各貫通孔から灌漑用液体を吐出するための複数のエミッタ(「ドリッパ」ともいう)を有する。また、エミッタの種類としては、チューブの内壁面に接合して使用されるエミッタ(例えば、特許文献1参照)と、チューブに外側から突き刺して使用されるエミッタとが知られている。 A drip irrigation tube usually has a tube formed with a plurality of through holes through which irrigation liquid is discharged, and a plurality of emitters (also referred to as “drippers”) for discharging the irrigation liquid from each through hole. . As types of emitters, there are known an emitter that is used while being joined to the inner wall surface of the tube (see, for example, Patent Document 1), and an emitter that is used by piercing the tube from the outside.
 特許文献1には、チューブの内壁面に接合されるエミッタが記載されている。特許文献1に記載のエミッタは、灌漑用液体を取り入れるための取水口を有する第1部材と、灌漑用液体を排出するための排出口を有する第2部材と、第1部材および第2部材の間に配置された膜部材とを有する。第1部材の内側には、取水口を取り囲むように配置された弁座部と、減圧流路の一部となる減圧溝とが形成されている。膜部材には、減圧溝の下流端に対応する位置に貫通孔が形成されている。 Patent Document 1 describes an emitter bonded to the inner wall surface of a tube. An emitter described in Patent Document 1 includes a first member having a water intake for taking in irrigation liquid, a second member having a discharge port for discharging irrigation liquid, and the first member and the second member. And a membrane member disposed therebetween. Inside the first member, there are formed a valve seat portion arranged so as to surround the water intake port and a decompression groove which becomes a part of the decompression flow path. A through hole is formed in the membrane member at a position corresponding to the downstream end of the decompression groove.
 第1部材、膜部材および第2部材を積層することで、減圧流路が形成されるとともに、膜部材が弁座部に接触して取水口を閉塞する。また、取水口から排出口まで、灌漑用液体が流れる流路が形成される。 The first member, the membrane member, and the second member are stacked to form a decompression flow path, and the membrane member contacts the valve seat portion and closes the water intake. In addition, a flow path through which the irrigation liquid flows is formed from the intake port to the discharge port.
 特許文献1に記載のエミッタでは、チューブ内の灌漑用液体の圧力が所定の圧力以上となった場合に、取水口を閉塞している膜部材が灌漑用液体によって押し込まれて、灌漑用液体がエミッタ内に流入するようになっている。エミッタ内に流入した灌漑用液体は、減圧流路により減圧されて定量的に排出口から排出される。 In the emitter described in Patent Document 1, when the pressure of the irrigation liquid in the tube becomes equal to or higher than a predetermined pressure, the membrane member closing the intake port is pushed in by the irrigation liquid, and the irrigation liquid is It flows into the emitter. The irrigation liquid that has flowed into the emitter is depressurized by the depressurization channel and quantitatively discharged from the discharge port.
特開2010-046094号公報JP 2010-046094 A
 しかしながら、特許文献1に記載のエミッタを使用した点滴灌漑用チューブでは、チューブ内の灌漑用液体の圧力が所定の圧力以上にならないと、灌漑用液体がエミッタ内に流入しないため、チューブ内における灌漑用液体の圧力が極めて低い場合に機能しない。また、灌漑用液体をチューブに送るための送液ポンプ近傍のエミッタは適切に機能するが、送液ポンプから離れた位置に配置されたエミッタは適切に機能しない。したがって、灌水する位置によって、供給される灌漑用液体の流量が変化してしまうとともに、灌水可能距離が制限されてしまうという問題があった。 However, in the drip irrigation tube using the emitter described in Patent Document 1, the irrigation liquid does not flow into the emitter unless the pressure of the irrigation liquid in the tube exceeds a predetermined pressure. Does not work when the pressure of the working liquid is very low. In addition, an emitter in the vicinity of the liquid feed pump for sending the irrigation liquid to the tube functions properly, but an emitter arranged at a position away from the liquid feed pump does not function properly. Therefore, the flow rate of the supplied irrigation liquid changes depending on the irrigation position, and the irrigable distance is limited.
 そこで、本発明の目的は、灌漑用液体の圧力が高圧の場合だけでなく、低圧の場合であっても灌漑用液体を定量的に吐出できるエミッタおよび点滴灌漑用チューブを提供することである。 Accordingly, an object of the present invention is to provide an emitter and a drip irrigation tube that can quantitatively discharge the irrigation liquid not only when the pressure of the irrigation liquid is high but also when the pressure is low.
 上記の課題を解決するため、本発明に係るエミッタは、灌漑用液体を流通させるチューブの内壁面であり、かつ前記チューブの内外を連通する吐出口に対応する位置に接合され、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、前記灌漑用液体を取り入れるための取水部と、前記吐出口に面して配置され、前記灌漑用液体を吐出するための吐出部と、前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させる第1流路と、前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させる第2流路と、前記第1流路に配置され、前記チューブ内の前記灌漑用液体の圧力に応じて、前記灌漑用液体の流量を減少させる流量減少部と、前記第2流路に配置され、前記チューブ内の前記灌漑用液体の圧力に応じて、前記第2流路を開放および閉塞する流路開閉部と、前記流量減少部より上流側の前記第1流路に配置され、前記取水部から取り入れられた前記灌漑用液体の圧力を減圧させて、前記流量減少部に導く減圧流路と、前記流路開閉部より上流側の前記第2流路に配置され、前記取水部から取り入れられた前記灌漑用液体の圧力を、前記減圧流路を流れた前記灌漑用液体の圧力より高い圧力を維持した状態で、前記流路開閉部に導くバイパス流路と、を有し、前記チューブを流れる前記灌漑用液体の圧力が第1圧力未満の場合、前記取水部から取り入れられた前記灌漑用液体は、前記減圧流路および前記バイパス流路を通って、前記吐出部に導かれ、前記チューブを流れる前記灌漑用液体の圧力が前記第1圧力以上である場合、前記流路開閉部により前記第2流路が閉塞され、前記取水部から取り入れられた前記灌漑用液体は、前記減圧流路を通って前記吐出部に導かれる。 In order to solve the above problems, an emitter according to the present invention is an inner wall surface of a tube through which an irrigation liquid is circulated, and is joined to a position corresponding to a discharge port that communicates the inside and outside of the tube. An emitter for quantitatively discharging the irrigation liquid from the discharge port to the outside of the tube, the water intake unit for taking in the irrigation liquid, and being disposed facing the discharge port, A discharge part for discharging liquid, the water intake part and the discharge part are connected to each other, a first flow path for distributing the irrigation liquid, and the water intake part and the discharge part are connected to distribute the irrigation liquid. A second flow channel, a flow rate reduction unit disposed in the first flow channel and configured to reduce a flow rate of the irrigation liquid in accordance with a pressure of the irrigation liquid in the tube, and disposed in the second flow channel. And the above In accordance with the pressure of the irrigation liquid in the tank, the flow path opening / closing part for opening and closing the second flow path, and the first flow path upstream from the flow rate reducing part, The pressure of the introduced irrigation liquid is reduced, the pressure reducing channel leading to the flow rate reducing unit, and the second channel on the upstream side of the channel opening / closing unit are arranged and introduced from the water intake unit A bypass channel for guiding the pressure of the irrigation liquid to the channel opening / closing part in a state where the pressure of the irrigation liquid is higher than the pressure of the irrigation liquid flowing through the decompression channel, and flows through the tube When the pressure of the irrigation liquid is less than the first pressure, the irrigation liquid taken from the water intake section is guided to the discharge section through the decompression flow path and the bypass flow path, and the tube The pressure of the flowing irrigation liquid is the first If it is the force or more, the second flow path by the flow channel opening and closing portion is closed, the irrigation liquid taken in from the water intake unit is guided to the discharge portion through the vacuum passage.
 また、上記の課題を解決するため、本発明に係る点滴灌漑用チューブは、灌漑用液体を吐出するための吐出口を有するチューブと、前記チューブの内壁面の前記吐出口に対応する位置に接合された、本発明に係るエミッタとを有する。 In order to solve the above problems, a drip irrigation tube according to the present invention is joined to a tube having a discharge port for discharging irrigation liquid and a position corresponding to the discharge port on the inner wall surface of the tube. And an emitter according to the present invention.
 本発明に係るエミッタおよび点滴灌漑用チューブは、灌漑用液体の圧力が高圧の場合だけでなく、灌漑用液体の圧力が低圧の場合であっても灌漑用液体を定量的に吐出できる。また、本発明に係るエミッタおよび点滴灌漑用チューブは、定量灌水を長距離行うこともできる。 The emitter and drip irrigation tube according to the present invention can quantitatively discharge the irrigation liquid not only when the pressure of the irrigation liquid is high but also when the pressure of the irrigation liquid is low. Further, the emitter and drip irrigation tube according to the present invention can perform quantitative irrigation for a long distance.
図1A、Bは、実施の形態1に係る点滴灌漑用チューブの断面図である。1A and 1B are cross-sectional views of a drip irrigation tube according to Embodiment 1. FIG. 図2A、Bは、実施の形態1に係るエミッタの斜視図である。2A and 2B are perspective views of the emitter according to Embodiment 1. FIG. 図3A、Bは、実施の形態1に係るエミッタの構成を示す図である。3A and 3B are diagrams showing the configuration of the emitter according to the first embodiment. 図4A~Cは、実施の形態1に係るエミッタの構成を示す図である。4A to 4C are diagrams showing the configuration of the emitter according to the first embodiment. 図5A~Cは、実施の形態1に係るエミッタの構成を示す図である。5A to 5C are diagrams showing the configuration of the emitter according to the first embodiment. 図6A~Cは、実施の形態1に係るエミッタの動作を説明するための模式図である。6A to 6C are schematic views for explaining the operation of the emitter according to the first embodiment. 図7は、実施の形態1に係る点滴灌漑用チューブを用いた場合の、チューブ内の灌漑用液体の圧力と、吐出口から滴下される灌漑用液体の流量との関係の一例を示すグラフである。FIG. 7 is a graph showing an example of the relationship between the pressure of the irrigation liquid in the tube and the flow rate of the irrigation liquid dropped from the discharge port when the drip irrigation tube according to Embodiment 1 is used. is there. 図8A、Bは、実施の形態1の変形例に係るエミッタの構成を示す図である。8A and 8B are diagrams showing a configuration of an emitter according to a modification of the first embodiment. 図9A、Bは、実施の形態2に係るエミッタの構成を示す図である。9A and 9B are diagrams showing the configuration of the emitter according to the second embodiment. 図10A、Bは、実施の形態3に係るエミッタの構成を示す図である。10A and 10B are diagrams showing the configuration of the emitter according to the third embodiment. 図11A、Bは、実施の形態4に係るエミッタの斜視図である。11A and 11B are perspective views of the emitter according to the fourth embodiment. 図12A、Bは、実施の形態4に係るエミッタの構成を示す図である。12A and 12B are diagrams illustrating the configuration of the emitter according to the fourth embodiment. 図13A~Cは、実施の形態4に係るエミッタの構成を示す図である。13A to 13C are diagrams showing the configuration of the emitter according to the fourth embodiment. 図14A、Bは、実施の形態4に係るエミッタの部分拡大断面図である。14A and 14B are partial enlarged cross-sectional views of the emitter according to the fourth embodiment.
 以下、本発明に係る実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [実施の形態1]
 (点滴灌漑用チューブおよびエミッタの構成)
 図1Aは、本発明の実施の形態1に係る点滴灌漑用チューブ100の軸に沿う方向における断面図であり、図1Bは、点滴灌漑用チューブ100の軸に垂直な方向における断面図である。
[Embodiment 1]
(Composition of drip irrigation tube and emitter)
FIG. 1A is a cross-sectional view in the direction along the axis of the drip irrigation tube 100 according to Embodiment 1 of the present invention, and FIG. 1B is a cross-sectional view in the direction perpendicular to the axis of the drip irrigation tube 100.
 図1に示されるように、点滴灌漑用チューブ100は、チューブ110およびエミッタ120を有する。 As shown in FIG. 1, the drip irrigation tube 100 has a tube 110 and an emitter 120.
 チューブ110は、灌漑用液体を流すための管である。チューブ110の材料は、特に限定されない。本実施の形態では、チューブ110の材料は、ポリエチレンである。チューブ110の管壁には、チューブ110の軸方向において所定の間隔(例えば、200~500mm)で灌漑用液体を吐出するための複数の吐出口112が形成されている。吐出口112の開口部の直径は、灌漑用液体を吐出することができれば特に限定されない。本実施の形態では、吐出口112の開口部の直径は、1.5mmである。チューブ110の内壁面の吐出口112に対応する位置には、エミッタ120がそれぞれ接合される。チューブ110の軸方向に垂直な断面形状および断面積は、チューブ110の内部にエミッタ120を配置することができれば特に限定されない。 The tube 110 is a tube for flowing irrigation liquid. The material of the tube 110 is not particularly limited. In the present embodiment, the material of the tube 110 is polyethylene. A plurality of discharge ports 112 for discharging irrigation liquid at predetermined intervals (for example, 200 to 500 mm) in the axial direction of the tube 110 are formed on the tube wall of the tube 110. The diameter of the opening of the discharge port 112 is not particularly limited as long as the irrigation liquid can be discharged. In the present embodiment, the diameter of the opening of the discharge port 112 is 1.5 mm. Emitters 120 are respectively joined to positions corresponding to the discharge ports 112 on the inner wall surface of the tube 110. The cross-sectional shape and cross-sectional area perpendicular to the axial direction of the tube 110 are not particularly limited as long as the emitter 120 can be disposed inside the tube 110.
 点滴灌漑用チューブ100は、エミッタ120の裏面138をチューブ110の内壁面に接合することによって作成される。チューブ110とエミッタ120との接合方法は、特に限定されない。チューブ110とエミッタ120との接合方法の例には、エミッタ120またはチューブ110を構成する樹脂材料の溶着や、接着剤による接着などが含まれる。なお、通常、吐出口112は、チューブ110とエミッタ120とを接合した後に形成されるが、接合前に形成されてもよい。 The drip irrigation tube 100 is created by joining the back surface 138 of the emitter 120 to the inner wall surface of the tube 110. The method for joining the tube 110 and the emitter 120 is not particularly limited. Examples of the method for joining the tube 110 and the emitter 120 include welding of a resin material constituting the emitter 120 or the tube 110, adhesion by an adhesive, and the like. Normally, the discharge port 112 is formed after the tube 110 and the emitter 120 are joined, but may be formed before joining.
 図2Aは、エミッタ120を表面139側から見た斜視図であり、図2Bは、エミッタ120を裏面138側から見た斜視図である。図3Aは、エミッタ本体122とフィルム124とを接合する前のエミッタ120の平面図であり、図3Bは、エミッタ本体122とフィルム124とを接合する前のエミッタ120の底面図である。図4Aは、エミッタ120の側面図であり、図4Bは、図3Aに示されるA-A線の断面図であり、図4Cは、図3Aに示されるB-B線の断面図である。図5Aは、エミッタ120の正面図であり、図5Bは、図3Aに示されるC-C線のエミッタ本体122の断面図であり、図5Cは、図3Bに示されるE-E線のエミッタ本体122の断面図である。 2A is a perspective view of the emitter 120 as viewed from the front surface 139 side, and FIG. 2B is a perspective view of the emitter 120 as viewed from the back surface 138 side. FIG. 3A is a plan view of the emitter 120 before joining the emitter body 122 and the film 124, and FIG. 3B is a bottom view of the emitter 120 before joining the emitter body 122 and the film 124. 4A is a side view of the emitter 120, FIG. 4B is a cross-sectional view taken along the line AA shown in FIG. 3A, and FIG. 4C is a cross-sectional view taken along the line BB shown in FIG. 3A. 5A is a front view of the emitter 120, FIG. 5B is a cross-sectional view of the emitter body 122 taken along line CC shown in FIG. 3A, and FIG. 5C is an emitter taken along line EE shown in FIG. 3B. 4 is a cross-sectional view of a main body 122. FIG.
 図1~図5に示されるように、エミッタ120は、吐出口112を覆うようにチューブ110の内壁面に接合されている。エミッタ120の形状は、チューブ110の内壁面に密着して、吐出口112を覆うことができれば特に限定されない。本実施の形態では、チューブ110の軸方向に垂直なエミッタ120の断面における、チューブ110の内壁面に接合する裏面138の形状は、チューブ110の内壁面に沿うように、チューブ110の内壁面に向かって凸の略円弧形状である。エミッタ120の平面形状は、四隅がR面取りされた略矩形である。エミッタ120の大きさは、特に限定されない。本実施の形態では、エミッタ120の長辺方向の長さは25mmであり、短辺方向の長さは8mmであり、高さは2.5mmである。 As shown in FIGS. 1 to 5, the emitter 120 is joined to the inner wall surface of the tube 110 so as to cover the discharge port 112. The shape of the emitter 120 is not particularly limited as long as it can adhere to the inner wall surface of the tube 110 and cover the discharge port 112. In the present embodiment, the shape of the back surface 138 bonded to the inner wall surface of the tube 110 in the cross section of the emitter 120 perpendicular to the axial direction of the tube 110 is formed on the inner wall surface of the tube 110 so as to be along the inner wall surface of the tube 110. It has a generally arc shape that is convex toward the top. The planar shape of the emitter 120 is a substantially rectangular shape with four corners rounded. The size of the emitter 120 is not particularly limited. In the present embodiment, the length of the emitter 120 in the long side direction is 25 mm, the length in the short side direction is 8 mm, and the height is 2.5 mm.
 エミッタ120は、チューブ110の内壁面に接合されるエミッタ本体122と、エミッタ本体122に接合されたフィルム124とを有する。エミッタ本体122およびフィルム124は、ヒンジ部126を介して一体的に形成されている(図3A、B参照)。 The emitter 120 has an emitter body 122 joined to the inner wall surface of the tube 110 and a film 124 joined to the emitter body 122. The emitter body 122 and the film 124 are integrally formed via a hinge portion 126 (see FIGS. 3A and 3B).
 エミッタ本体122およびフィルム124は、いずれも可撓性を有する一種類の材料で成形されている。エミッタ本体122およびフィルム124の材料の例には、樹脂およびゴムが含まれる。樹脂の例には、ポリエチレンおよびシリコーンが含まれる。エミッタ本体122およびフィルム124の可撓性は、弾性を有する樹脂材料の使用によって調整することができる。エミッタ本体122およびフィルム124の可撓性の調整方法の例には、弾性を有する樹脂の選択や、硬質の樹脂材料に対する弾性を有する樹脂材料の混合比の調整などが含まれる。エミッタ本体122およびフィルム124の一体成形品は、例えば、射出成形によって製造できる。 Both the emitter main body 122 and the film 124 are formed of one kind of flexible material. Examples of the material of the emitter body 122 and the film 124 include resin and rubber. Examples of the resin include polyethylene and silicone. The flexibility of the emitter body 122 and the film 124 can be adjusted by using a resin material having elasticity. Examples of methods for adjusting the flexibility of the emitter body 122 and the film 124 include selection of a resin having elasticity, adjustment of a mixing ratio of a resin material having elasticity to a hard resin material, and the like. The integrally molded product of the emitter body 122 and the film 124 can be manufactured by, for example, injection molding.
 エミッタ120は、取水部131と、接続流路141となる接続溝132と、減圧流路142となる減圧溝133と、バイパス流路144となるバイパス溝134と、流量減少部135と、流路開閉部136と、吐出部137とを有する。取水部131、流量減少部135および流路開閉部136は、エミッタ120の表面139側に配置されている。また、接続溝132、減圧溝133、バイパス溝134および吐出部137は、エミッタ120の裏面138側に配置されている。 The emitter 120 includes a water intake part 131, a connection groove 132 that becomes the connection flow path 141, a pressure reduction groove 133 that becomes the pressure reduction flow path 142, a bypass groove 134 that becomes the bypass flow path 144, a flow rate reduction part 135, a flow path An opening / closing part 136 and a discharge part 137 are provided. The water intake part 131, the flow rate reducing part 135, and the flow path opening / closing part 136 are arranged on the surface 139 side of the emitter 120. Further, the connection groove 132, the decompression groove 133, the bypass groove 134, and the discharge part 137 are disposed on the back surface 138 side of the emitter 120.
 エミッタ120およびチューブ110が接合されることにより、接続溝132、減圧溝133およびバイパス溝134は、それぞれ接続流路141、減圧流路142およびバイパス流路144となる。これにより、取水部131、接続流路141、減圧流路142、流量減少部135および吐出部137から構成され、取水部131と吐出部137とを繋ぐ第1流路143が形成される。また、取水部131、接続流路141、バイパス流路144、流路開閉部136および吐出部137から構成され、取水部131と吐出部137とを繋ぐ第2流路145が形成される。第1流路143および第2流路145は、いずれも取水部131から吐出部137まで灌漑用液体を流通させる。本実施の形態では、取水部131から接続流路141までの間は、第1流路143と第2流路145とが重複している。また、本実施の形態では、第2流路145の流路開閉部136の下流が流量減少部135に接続されており、流量減少部135から吐出部137までの間も、第1流路143と第2流路145とが重複している。 When the emitter 120 and the tube 110 are joined, the connection groove 132, the decompression groove 133, and the bypass groove 134 become a connection channel 141, a decompression channel 142, and a bypass channel 144, respectively. As a result, a first flow path 143 that includes the water intake section 131, the connection flow path 141, the decompression flow path 142, the flow rate reduction section 135, and the discharge section 137 and connects the water intake section 131 and the discharge section 137 is formed. Further, the intake passage 131, the connection passage 141, the bypass passage 144, the passage opening / closing portion 136, and the discharge portion 137 are formed, and a second passage 145 that connects the intake portion 131 and the discharge portion 137 is formed. In each of the first flow path 143 and the second flow path 145, the irrigation liquid is circulated from the water intake section 131 to the discharge section 137. In the present embodiment, the first flow path 143 and the second flow path 145 overlap between the intake section 131 and the connection flow path 141. Further, in the present embodiment, the downstream of the flow path opening / closing part 136 of the second flow path 145 is connected to the flow rate reducing part 135, and the first flow path 143 is also connected between the flow rate reducing part 135 and the discharge part 137. And the second flow path 145 overlap.
 取水部131は、エミッタ120の表面139の半分以上の領域に配置されている(図2Aおよび図3A参照)。取水部131が配置されていない表面139の領域には、流量減少部135および流路開閉部136(フィルム124)が配置されている。取水部131は、取水側スクリーン部151および複数の取水用貫通孔152を有する。 The water intake 131 is disposed in a region that is more than half of the surface 139 of the emitter 120 (see FIGS. 2A and 3A). In the region of the surface 139 where the water intake part 131 is not arranged, a flow rate reducing part 135 and a flow path opening / closing part 136 (film 124) are arranged. The water intake part 131 has a water intake side screen part 151 and a plurality of water intake through holes 152.
 取水側スクリーン部151は、エミッタ120に取り入れられる灌漑用液体中の浮遊物が取水用凹部153内に侵入することを防止する。取水側スクリーン部151は、チューブ110内に対して開口しており、取水用凹部153、スリット154および凸条155を有する。 The water intake side screen unit 151 prevents the suspended matter in the irrigation liquid taken into the emitter 120 from entering the water intake recess 153. The water intake side screen portion 151 is open to the inside of the tube 110 and has a water intake recess 153, a slit 154, and a ridge 155.
 取水用凹部153は、エミッタ120の表面139において、フィルム124が接合されていない領域の全体に形成されている1つの凹部である。取水用凹部153の深さは特に限定されず、エミッタ120の大きさによって適宜設定される。取水用凹部153の外周壁には複数のスリット154が形成されており、取水用凹部153の底面上には凸条155が形成されている。また、取水用凹部153の底面には取水用貫通孔152が形成されている。 The water intake recess 153 is one recess formed on the entire surface 139 of the emitter 120 where the film 124 is not bonded. The depth of the water intake recess 153 is not particularly limited, and is appropriately set depending on the size of the emitter 120. A plurality of slits 154 are formed on the outer peripheral wall of the water intake recess 153, and a protrusion 155 is formed on the bottom surface of the water intake recess 153. In addition, a water intake through hole 152 is formed on the bottom surface of the water intake recess 153.
 スリット154は、取水用凹部153の内側面と、エミッタ本体122の外側面とを繋いでおり、エミッタ本体122の側面から灌漑用液体を取水用凹部153内に取り入れつつ、灌漑用液体中の浮遊物が取水用凹部153内に侵入することを防止する。スリット154の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、スリット154の形状は、エミッタ本体122の外側面から取水用凹部153の内側面に向かうにつれて、幅が大きくなるように形成されている(図3A参照)。このように、スリット154は、いわゆるウェッジワイヤー構造となるように構成されているため、取水用凹部153内に流入した水の圧力損失が抑制される。 The slit 154 connects the inner surface of the water intake recess 153 and the outer surface of the emitter body 122, while taking the irrigation liquid from the side surface of the emitter body 122 into the water recess 153 and floating in the irrigation liquid. An object is prevented from entering the recess 153 for water intake. The shape of the slit 154 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the shape of the slit 154 is formed such that the width increases from the outer surface of the emitter body 122 toward the inner surface of the water intake recess 153 (see FIG. 3A). Thus, since the slit 154 is configured to have a so-called wedge wire structure, the pressure loss of the water flowing into the water intake recess 153 is suppressed.
 凸条155は、取水用凹部153の底面上に配置されている。凸条155の配置および数は、取水用凹部153の開口部側から灌漑用液体を取り入れつつ、灌漑用液体中の浮遊物の侵入を防止することができれば特に限定されない。本実施の形態では、凸条155は、エミッタ120の短軸方向に沿い、かつエミッタ120の長軸方向に配列された複数の第1凸条156と、エミッタ120の長軸方向に沿って配置された1つの第2凸条157とを有する。第1凸条156は、エミッタ本体122の表面139から取水用凹部153の底面に向かうにつれて幅が小さくなるように形成されている(図4C参照)。すなわち、第1凸条156の配列方向において、隣接する第1凸条156間の空間は、いわゆるウェッジワイヤー構造となっている。また、隣接する第1凸条156間の距離は、前述の機能を発揮することができれば特に限定されない。一方、第2凸条157は、第1凸条156と同じように、エミッタ本体122の表面139から取水用凹部153の底面に向かうにつれて幅が小さくなるように形成されていてもよいし、エミッタ本体122の表面139から取水用凹部153の底面まで同じ幅に形成されていてもよい。このように、隣接する第1凸条156間の空間は、いわゆるウェッジワイヤー構造となるように構成されているため、取水用凹部153内に流入した水の圧力損失が抑制される。 The protrusion 155 is disposed on the bottom surface of the water intake recess 153. The arrangement and number of the ridges 155 are not particularly limited as long as the irrigation liquid can be taken in from the opening side of the water intake recess 153 and the intrusion of suspended matter in the irrigation liquid can be prevented. In the present embodiment, the ridges 155 are arranged along the minor axis direction of the emitter 120 and a plurality of first ridges 156 arranged in the major axis direction of the emitter 120 and the major axis direction of the emitter 120. One second ridge 157 is formed. The first ridges 156 are formed so that the width decreases from the surface 139 of the emitter body 122 toward the bottom surface of the water intake recess 153 (see FIG. 4C). That is, in the arrangement direction of the first ridges 156, the space between the adjacent first ridges 156 has a so-called wedge wire structure. Moreover, the distance between the adjacent 1st protruding item | lines 156 will not be specifically limited if the above-mentioned function can be exhibited. On the other hand, like the first ridge 156, the second ridge 157 may be formed so that the width decreases from the surface 139 of the emitter body 122 toward the bottom surface of the recess 153 for water intake. The same width may be formed from the surface 139 of the main body 122 to the bottom surface of the water intake recess 153. Thus, since the space between the adjacent first ridges 156 is configured to have a so-called wedge wire structure, the pressure loss of the water flowing into the water intake recess 153 is suppressed.
 取水用貫通孔152は、取水用凹部153の底面に形成されている。取水用貫通孔152の形状および数は、取水用凹部153の内部に取り込まれた灌漑用液体をエミッタ本体122内に取り込むことができれば特に限定されない。本実施の形態では、取水用貫通孔152は、取水用凹部153の底面の長軸方向に沿って形成された2つの長孔である。それぞれの長孔は、複数の第1凸条156により覆われているため、表側から見た場合、1つの取水用貫通孔152は、多数の貫通孔に分かれているように見える。 The water intake through hole 152 is formed on the bottom surface of the water intake recess 153. The shape and number of the water intake through holes 152 are not particularly limited as long as the irrigation liquid taken into the water intake recess 153 can be taken into the emitter body 122. In the present embodiment, the water intake through hole 152 is two long holes formed along the long axis direction of the bottom surface of the water intake recess 153. Since each long hole is covered with a plurality of first ridges 156, when viewed from the front side, one water intake through hole 152 appears to be divided into a number of through holes.
 チューブ110内を流れてきた灌漑用液体は、取水側スクリーン部151によって浮遊物が取水用凹部153内に侵入することが防止されつつ、エミッタ本体122内に取り込まれる。 The irrigation liquid that has flowed through the tube 110 is taken into the emitter main body 122 while preventing the suspended matter from entering the water intake recess 153 by the water intake side screen portion 151.
 接続溝132(接続流路141)は、取水用貫通孔152(取水部131)と、減圧溝133およびバイパス溝134とを接続する。接続溝132は、エミッタ120の裏面138側に外縁部に沿って略U字状に形成されている。接続溝132の中央部付近には、減圧溝133が接続されており、接続溝132の一端には、バイパス溝134が接続されている。チューブ110およびエミッタ120が接合されることにより、接続溝132とチューブ110の内壁面とにより、接続流路141が形成される。取水部131から取り込まれた灌漑用液体は、接続流路141を通って、減圧流路142およびバイパス流路144に流れる。 The connection groove 132 (connection flow path 141) connects the water intake through hole 152 (water intake part 131), the decompression groove 133 and the bypass groove 134. The connection groove 132 is formed in a substantially U shape along the outer edge on the back surface 138 side of the emitter 120. A decompression groove 133 is connected near the center of the connection groove 132, and a bypass groove 134 is connected to one end of the connection groove 132. By connecting the tube 110 and the emitter 120, the connection channel 141 is formed by the connection groove 132 and the inner wall surface of the tube 110. The irrigation liquid taken in from the water intake unit 131 flows through the connection channel 141 to the decompression channel 142 and the bypass channel 144.
 減圧溝133(減圧流路142)は、流量減少部135より上流側の第1流路143に配置されており、接続溝132(接続流路141)と流量減少部135とを接続する。減圧溝133(減圧流路142)は、取水部131から取り入れられた灌漑用液体の圧力を減圧させて、流量減少部135に導く。減圧溝133は、裏面138の中央部分に、長軸方向に沿って配置されている。減圧溝133の上流端は接続溝132に接続されており、下流端には流量減少部135に連通した流量減少用貫通孔161が配置されている。減圧溝133の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、減圧溝133の平面視形状は、ジグザグ形状である。減圧溝133は、内側面から突出する略三角柱形状の凸部162が灌漑用液体の流れる方向に沿って交互に配置されている。凸部162は、平面視したときに、先端が減圧溝133の中心軸を超えないように配置されている。チューブ110およびエミッタ120が接合されることにより、減圧溝133とチューブ110の内壁面により、減圧流路142が形成される。取水部131から取り込まれた灌漑用液体のうち、少なくとも一部の灌漑用液体は、減圧流路142により減圧されて流量減少部135に導かれる。詳細は後述するが、減圧流路142は、主として灌漑用液体の圧力が高圧の場合に機能する。 The decompression groove 133 (decompression flow path 142) is disposed in the first flow path 143 on the upstream side of the flow rate reduction unit 135, and connects the connection groove 132 (connection channel 141) and the flow rate reduction unit 135. The decompression groove 133 (decompression channel 142) reduces the pressure of the irrigation liquid taken from the water intake unit 131 and guides it to the flow rate reduction unit 135. The decompression groove 133 is disposed in the central portion of the back surface 138 along the long axis direction. The upstream end of the decompression groove 133 is connected to the connection groove 132, and the flow rate reducing through-hole 161 communicating with the flow rate reducing unit 135 is disposed at the downstream end. The shape of the decompression groove 133 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the planar view shape of the decompression groove 133 is a zigzag shape. In the decompression grooves 133, substantially triangular prism-shaped protrusions 162 protruding from the inner surface are alternately arranged along the direction in which the irrigation liquid flows. The convex portion 162 is disposed such that the tip does not exceed the central axis of the decompression groove 133 when viewed in plan. By joining the tube 110 and the emitter 120, the decompression channel 142 is formed by the decompression groove 133 and the inner wall surface of the tube 110. Of the irrigation liquid taken in from the water intake unit 131, at least a part of the irrigation liquid is decompressed by the decompression flow path 142 and guided to the flow rate reduction unit 135. Although details will be described later, the decompression flow path 142 mainly functions when the pressure of the irrigation liquid is high.
 バイパス溝134(バイパス流路144)は、流路開閉部136より上流側の第2流路145に配置されており、接続溝132(接続流路141)と流路開閉部136とを接続する。バイパス溝134(バイパス流路144)は、取水部131から取り入れられた灌漑用液体の圧力を、減圧溝133(減圧流路142)を流れた灌漑用液体の圧力より高い圧力を維持した状態で、流路開閉部136に導く。バイパス溝134の上流端は接続溝132に接続されており、下流端には流路開閉部136に連通したバイパス用貫通孔163が形成されている。また、バイパス溝134には、流路用スクリーン部164が配置されている。流路用スクリーン部164は、取水側スクリーン部151で捕集できなかった灌漑用液体中の浮遊物を捕集する。流路用スクリーン部164の形態は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、流路用スクリーン部164は、バイパス溝134の底面上に配置された、円柱形状の複数の突起165である。なお、流路用スクリーン部164は、配置されていなくてもよい。チューブ110およびエミッタ120が接合されることにより、バイパス溝134とチューブ110の内壁面の一部とにより、バイパス流路144が形成される。取水部131から取り込まれた灌漑用液体のうち、一部の灌漑用液体は、バイパス流路144を通過して流路開閉部136に導かれる。詳細は後述するが、バイパス流路144は、灌漑用液体の圧力が低圧の場合にのみ機能する。 The bypass groove 134 (bypass channel 144) is disposed in the second channel 145 upstream of the channel opening / closing part 136, and connects the connection groove 132 (connection channel 141) and the channel opening / closing part 136. . The bypass groove 134 (bypass channel 144) maintains the pressure of the irrigation liquid taken from the water intake section 131 higher than the pressure of the irrigation liquid that has flowed through the decompression groove 133 (decompression channel 142). Then, it is guided to the flow path opening / closing part 136. An upstream end of the bypass groove 134 is connected to the connection groove 132, and a bypass through-hole 163 communicating with the flow path opening / closing portion 136 is formed at the downstream end. A flow path screen 164 is disposed in the bypass groove 134. The flow path screen unit 164 collects suspended matter in the irrigation liquid that could not be collected by the water intake side screen unit 151. The form of the screen portion 164 for the flow path is not particularly limited as long as the above function can be exhibited. In the present embodiment, the flow path screen portion 164 is a plurality of columnar protrusions 165 disposed on the bottom surface of the bypass groove 134. Note that the flow path screen unit 164 may not be disposed. By joining the tube 110 and the emitter 120, a bypass flow path 144 is formed by the bypass groove 134 and a part of the inner wall surface of the tube 110. Among the irrigation liquid taken from the water intake unit 131, a part of the irrigation liquid passes through the bypass channel 144 and is guided to the channel opening / closing unit 136. Although details will be described later, the bypass flow path 144 functions only when the pressure of the irrigation liquid is low.
 流量減少部135は、第1流路143内において減圧流路142(減圧溝133)と吐出部137との間に配置されており、かつエミッタ120の表面139側に配置されている。流量減少部135は、チューブ110内の灌漑用液体の圧力に応じて灌漑用液体の流量を減少させつつ、灌漑用液体を吐出部137に送る。流量減少部135の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、流量減少部135は、流量減少用凹部171と、第1弁座部172と、連通溝173と、吐出部137に連通した吐出用貫通孔174と、フィルム124の一部である第1ダイヤフラム部175とを有する。流量減少用凹部171には、減圧溝133(減圧流路142)に連通した流量減少用貫通孔161と、吐出部137に連通した吐出用貫通孔174とが開口している。 The flow rate reducing unit 135 is disposed between the decompression channel 142 (decompression groove 133) and the discharge unit 137 in the first channel 143, and is disposed on the surface 139 side of the emitter 120. The flow rate reduction unit 135 sends the irrigation liquid to the discharge unit 137 while reducing the flow rate of the irrigation liquid according to the pressure of the irrigation liquid in the tube 110. The configuration of the flow rate reducing unit 135 is not particularly limited as long as the above function can be exhibited. In the present embodiment, the flow rate reducing portion 135 includes a flow rate reducing recess 171, a first valve seat portion 172, a communication groove 173, a discharge through hole 174 communicating with the discharge portion 137, and a part of the film 124. And a first diaphragm portion 175. The flow rate reducing recess 171 has a flow rate reducing through hole 161 communicating with the decompression groove 133 (decompression channel 142) and a discharge through hole 174 communicating with the ejection unit 137.
 流量減少用凹部171の平面視形状は、略円形状である。流量減少用凹部171の底面には、減圧溝133(減圧流路142)に連通した流量減少用貫通孔161、吐出部137に連通した吐出用貫通孔174、および第1弁座部172が配置されている。流量減少用凹部171の深さは、特に限定されず、連通溝173の深さ以上であればよい。 The plan view shape of the flow rate reducing recess 171 is substantially circular. On the bottom surface of the flow rate reducing recess 171, a flow rate reducing through hole 161 communicating with the decompression groove 133 (decompression channel 142), a discharge through hole 174 communicating with the discharge unit 137, and a first valve seat 172 are arranged. Has been. The depth of the flow rate reducing recess 171 is not particularly limited as long as it is equal to or greater than the depth of the communication groove 173.
 吐出用貫通孔174は、流量減少用凹部171の底面の中央部分に配置されており、吐出部137に連通している。第1弁座部172は、吐出用貫通孔174を取り囲むように流量減少用凹部171の底面に配置されている。第1弁座部172は、チューブ110を流れる灌漑用液体の圧力が第2圧力以上の場合に、第1ダイヤフラム部175が密着できるように形成されている。第1弁座部172に第1ダイヤフラム部175が接触することによって、流量減少用凹部171から吐出部137に流れ込む灌漑用液体の流量を減少させる。第1弁座部172の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第1弁座部172の形状は、円環状の凸部である。第1弁座部172の第1ダイヤフラム部175が密着可能な領域の一部には、流量減少用凹部171の内部と吐出用貫通孔174を連通する連通溝173が形成されている。減圧溝133に連通した流量減少用貫通孔161は、流量減少用凹部171の底面において、第1弁座部172が配置されていない領域に形成されている。なお、減圧溝133(減圧流路142)に連通した流量減少用貫通孔161が第1弁座部172に囲まれるように配置され、吐出部137に連通した吐出用貫通孔174が第1弁座部172の外側に配置されていてもよい。 The discharge through-hole 174 is disposed at the center of the bottom surface of the flow rate reducing recess 171 and communicates with the discharge portion 137. The first valve seat 172 is disposed on the bottom surface of the flow rate reducing recess 171 so as to surround the discharge through-hole 174. The first valve seat 172 is formed so that the first diaphragm 175 can be in close contact when the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the second pressure. When the first diaphragm portion 175 contacts the first valve seat portion 172, the flow rate of the irrigation liquid flowing from the flow rate reducing recess portion 171 into the discharge portion 137 is reduced. The shape of the 1st valve seat part 172 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, the shape of the first valve seat portion 172 is an annular convex portion. A communication groove 173 that connects the inside of the flow rate reducing recess 171 and the discharge through-hole 174 is formed in a part of the region where the first diaphragm portion 175 of the first valve seat portion 172 can be in close contact. The flow rate reducing through hole 161 communicated with the pressure reducing groove 133 is formed in a region where the first valve seat portion 172 is not disposed on the bottom surface of the flow rate reducing recess 171. The flow rate reducing through hole 161 communicating with the decompression groove 133 (decompression channel 142) is disposed so as to be surrounded by the first valve seat portion 172, and the discharge through hole 174 communicating with the discharge portion 137 is the first valve. It may be arranged outside the seat portion 172.
 第1ダイヤフラム部175は、フィルム124の一部である。第1ダイヤフラム部175は、流量減少用凹部171の内部とチューブ110の内部とを仕切るように配置されている。第1ダイヤフラム部175は、チューブ110内の灌漑用液体の圧力に応じて、第1弁座部172に接触するように変形する。具体的には、第1ダイヤフラム部175は、灌漑用液体の圧力が高くなるにつれて、第1弁座部172に向かって変形し、やがて第1弁座部172に接触する。第1ダイヤフラム部175が第1弁座部172に密着している場合であっても、第1ダイヤフラム部175は、流量減少用貫通孔161、吐出用貫通孔174および連通溝173を閉塞しないため、流量減少用貫通孔161から送られてきた灌漑用液体は、連通溝173および吐出用貫通孔174を通って、吐出部137に送られうる。なお、第1ダイヤフラム部175は、後述の第2ダイヤフラム部183と隣接して配置されている。 The first diaphragm portion 175 is a part of the film 124. The first diaphragm portion 175 is disposed so as to partition the inside of the flow rate reducing recess 171 and the inside of the tube 110. The first diaphragm portion 175 is deformed so as to contact the first valve seat portion 172 in accordance with the pressure of the irrigation liquid in the tube 110. Specifically, the first diaphragm portion 175 deforms toward the first valve seat portion 172 as the pressure of the irrigation liquid increases, and eventually comes into contact with the first valve seat portion 172. Even if the first diaphragm portion 175 is in close contact with the first valve seat portion 172, the first diaphragm portion 175 does not block the flow rate reducing through hole 161, the discharge through hole 174, and the communication groove 173. The irrigation liquid sent from the flow rate reducing through-hole 161 can be sent to the discharge section 137 through the communication groove 173 and the discharge through-hole 174. Note that the first diaphragm portion 175 is disposed adjacent to a second diaphragm portion 183 described later.
 流路開閉部136は、第2流路145内においてバイパス流路144(バイパス溝134)と吐出部137との間に配置されており、かつエミッタ120の表面139側に配置されている。流路開閉部136は、チューブ110内の圧力に応じて第2流路145を開放して、灌漑用液体を吐出部137に送る。本実施の形態では、流路開閉部136の下流は流量減少部135に接続されており、バイパス流路144(バイパス溝134)からの灌漑用液体は、流路開閉部136および流量減少部135を通って吐出部137に到達する。流路開閉部136の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、流路開閉部136は、流路開閉用凹部181と、第2弁座部182と、フィルム124の一部である第2ダイヤフラム部183とを有する。流路開閉用凹部181には、バイパス溝134(バイパス流路144)に連通したバイパス用貫通孔163が開口している。また、流路開閉用凹部181は、流量減少部135の流量減少用凹部171と連通している。 The channel opening / closing part 136 is disposed between the bypass channel 144 (bypass groove 134) and the discharge unit 137 in the second channel 145, and is disposed on the surface 139 side of the emitter 120. The channel opening / closing unit 136 opens the second channel 145 according to the pressure in the tube 110 and sends the irrigation liquid to the discharge unit 137. In the present embodiment, the downstream of the channel opening / closing part 136 is connected to the flow rate reducing unit 135, and the irrigation liquid from the bypass channel 144 (bypass groove 134) is supplied to the channel opening / closing unit 136 and the flow rate reducing unit 135. It passes through and reaches the discharge part 137. The structure of the flow path opening / closing part 136 is not particularly limited as long as the above-described function can be exhibited. In the present embodiment, the flow path opening / closing portion 136 includes a flow path opening / closing recess 181, a second valve seat portion 182, and a second diaphragm portion 183 that is a part of the film 124. In the channel opening / closing recess 181, a bypass through-hole 163 communicating with the bypass groove 134 (bypass channel 144) is opened. The channel opening / closing recess 181 communicates with the flow rate reducing recess 171 of the flow rate reducing unit 135.
 流路開閉用凹部181の平面視形状は、略円形状である。流路開閉用凹部181の底面には、バイパス溝134に接続されたバイパス用貫通孔163と、第2弁座部182とが配置されている。流路開閉用凹部181の内側面は、外縁部から中央部分に向かうにつれて、表面139から裏面138に近づくように傾斜している。流路開閉用凹部181の底面は、流量減少用凹部171の底面より表面139側に配置されている。すなわち、流路開閉用凹部181は、流量減少用凹部171より浅く形成されている。これにより、フィルム124が灌漑用液体の圧力により変形した場合に、フィルム124は、第1弁座部172より先に第2弁座部182に接触する。 The plan view shape of the channel opening / closing recess 181 is substantially circular. A bypass through hole 163 connected to the bypass groove 134 and a second valve seat portion 182 are disposed on the bottom surface of the flow path opening / closing recess 181. The inner side surface of the channel opening / closing recess 181 is inclined so as to approach the back surface 138 from the front surface 139 toward the center portion from the outer edge portion. The bottom surface of the channel opening / closing recess 181 is disposed closer to the surface 139 than the bottom surface of the flow rate reducing recess 171. That is, the channel opening / closing recess 181 is formed shallower than the flow rate reducing recess 171. Accordingly, when the film 124 is deformed by the pressure of the irrigation liquid, the film 124 comes into contact with the second valve seat portion 182 before the first valve seat portion 172.
 バイパス溝134に連通したバイパス用貫通孔163は、流路開閉用凹部181の底面の中央部分に配置されている。第2弁座部182は、バイパス用貫通孔163を取り囲むように流路開閉用凹部181の底面に配置されている。また、第2弁座部182は、第2ダイヤフラム部183に面して非接触に配置され、チューブ110を流れる灌漑用液体の圧力が第1圧力以上の場合、第2ダイヤフラム部183が密着できるように形成されている。チューブ110を流れる灌漑用液体の圧力が第1圧力以上の場合、第2ダイヤフラム部183は、第2弁座部182に密着してバイパス用貫通孔163を閉塞し、その結果として第2流路145を閉塞する。第2弁座部182の形状は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、第2弁座部182は、バイパス用貫通孔163を取り囲む流路開閉用凹部181の底面の一部である。なお、第2弁座部182は、第1弁座部172のように、バイパス用貫通孔163を取り囲むように配置された円環状の凸部であってもよい。 The bypass through-hole 163 communicating with the bypass groove 134 is disposed at the center of the bottom surface of the channel opening / closing recess 181. The second valve seat 182 is disposed on the bottom surface of the flow path opening / closing recess 181 so as to surround the bypass through-hole 163. In addition, the second valve seat portion 182 faces the second diaphragm portion 183 and is disposed in a non-contact manner. When the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the first pressure, the second diaphragm portion 183 can be in close contact. It is formed as follows. When the pressure of the irrigation liquid flowing through the tube 110 is equal to or higher than the first pressure, the second diaphragm portion 183 is in close contact with the second valve seat portion 182 to close the bypass through-hole 163, and as a result, the second flow path 145 is closed. The shape of the 2nd valve seat part 182 will not be specifically limited if the above-mentioned function can be exhibited. In the present embodiment, the second valve seat 182 is a part of the bottom surface of the channel opening / closing recess 181 that surrounds the bypass through-hole 163. The second valve seat part 182 may be an annular convex part arranged so as to surround the bypass through-hole 163 like the first valve seat part 172.
 第2ダイヤフラム部183は、フィルム124の一部であり、第1ダイヤフラム部175と隣接して配置されている。第2ダイヤフラム部183は、流路開閉用凹部181の内部とチューブ110の内部とを仕切るように配置されている。第2ダイヤフラム部183は、チューブ110内の灌漑用液体の圧力に応じて、第2弁座部182に接触するように変形する。具体的には、第2ダイヤフラム部183は、灌漑用液体の圧力が高くなるにつれて、第2弁座部182に向かって変形し、灌漑用液体の圧力が第1圧力に到達すると、第2弁座部182に接触する。これにより、第2流路145(バイパス用貫通孔163)は閉塞される。 The second diaphragm portion 183 is a part of the film 124 and is disposed adjacent to the first diaphragm portion 175. The second diaphragm portion 183 is disposed so as to partition the inside of the channel opening / closing recess 181 and the inside of the tube 110. The second diaphragm portion 183 is deformed so as to contact the second valve seat portion 182 according to the pressure of the irrigation liquid in the tube 110. Specifically, the second diaphragm portion 183 deforms toward the second valve seat portion 182 as the pressure of the irrigation liquid increases, and when the pressure of the irrigation liquid reaches the first pressure, Contact the seat 182. Thereby, the 2nd flow path 145 (through-hole for bypass 163) is obstruct | occluded.
 吐出部137は、エミッタ120の裏面138側に配置されている。吐出部137は、吐出用貫通孔174からの灌漑用液体をチューブ110の吐出口112に送る。吐出部137の構成は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、吐出部137は、吐出用凹部191と、侵入防止部192とを有する。 The discharge part 137 is disposed on the back surface 138 side of the emitter 120. The discharge unit 137 sends the irrigation liquid from the discharge through-hole 174 to the discharge port 112 of the tube 110. The configuration of the discharge unit 137 is not particularly limited as long as the above-described function can be exhibited. In the present embodiment, the discharge unit 137 includes a discharge recess 191 and an intrusion prevention unit 192.
 吐出用凹部191は、エミッタ120の裏面138側に配置されている。吐出用凹部191の平面視形状は、略矩形である。吐出用凹部191の底面には、吐出用貫通孔174および侵入防止部192が配置されている。 The discharge recess 191 is disposed on the back surface 138 side of the emitter 120. The shape of the discharge recess 191 in plan view is substantially rectangular. A discharge through hole 174 and an intrusion prevention portion 192 are disposed on the bottom surface of the discharge recess 191.
 侵入防止部192は、吐出口112からの異物の侵入を防止する。侵入防止部192は、前述の機能を発揮することができれば特に限定されない。本実施の形態では、侵入防止部192は、隣接して配置された複数の凸条部193を有する。複数の凸条部193は、エミッタ120をチューブ110に接合した場合に、吐出用貫通孔174および吐出口112の間に位置するように配置されている。 The intrusion prevention unit 192 prevents intrusion of foreign matter from the discharge port 112. The intrusion prevention unit 192 is not particularly limited as long as it can exhibit the above-described function. In the present embodiment, the intrusion prevention unit 192 has a plurality of ridges 193 arranged adjacent to each other. The plurality of ridges 193 are arranged so as to be positioned between the discharge through-hole 174 and the discharge port 112 when the emitter 120 is joined to the tube 110.
 フィルム124は、第1ダイヤフラム部175および第2ダイヤフラム部183を有する。フィルム124の厚さは、例えば0.3mmである。 The film 124 has a first diaphragm portion 175 and a second diaphragm portion 183. The thickness of the film 124 is 0.3 mm, for example.
 ヒンジ部126は、エミッタ本体122の表面139の一部に接続されている。本実施の形態では、ヒンジ部126の厚さは、フィルム124と同じ厚さであり、エミッタ本体122およびフィルム124と一体的に成形されている。なお、フィルム124は、エミッタ本体122と別体として準備して、エミッタ本体122と接合してもよい。 The hinge portion 126 is connected to a part of the surface 139 of the emitter body 122. In the present embodiment, the thickness of the hinge portion 126 is the same as that of the film 124 and is formed integrally with the emitter body 122 and the film 124. The film 124 may be prepared as a separate body from the emitter body 122 and bonded to the emitter body 122.
 エミッタ120は、フィルム124をヒンジ部126を軸に回動させ、エミッタ本体122の表面139に接合することにより構成される。エミッタ本体122とフィルム124との接合方法は、特に限定されない。エミッタ本体122とフィルム124との接合方法の例には、フィルム124を構成する樹脂材料の溶着や、接着剤による接着などが含まれる。なお、ヒンジ部126は、エミッタ本体122とフィルム124とを接合した後に切断してもよい。 The emitter 120 is configured by rotating the film 124 around the hinge 126 and joining it to the surface 139 of the emitter body 122. The joining method of the emitter body 122 and the film 124 is not particularly limited. Examples of the method for joining the emitter body 122 and the film 124 include welding of a resin material constituting the film 124 and adhesion with an adhesive. The hinge portion 126 may be cut after the emitter body 122 and the film 124 are joined.
 (点滴灌漑用チューブおよびエミッタの動作)
 次に、点滴灌漑用チューブ100の動作について説明する。まず、チューブ110内に灌漑用液体が送液される。灌漑用液体の例には、水、液体肥料、農薬およびこれらの混合液が含まれる。点滴灌漑用チューブ100へ送液される灌漑用液体の圧力は、簡易に点滴灌漑法を導入できるように、またチューブ110およびエミッタ120の破損を防止するため、0.1MPa以下であることが好ましい。チューブ110内の灌漑用液体は、取水部131からエミッタ120内に取り込まれる。具体的には、チューブ110内の灌漑用液体は、スリット154、または第1凸条156間の隙間から取水用凹部153に入り込み、取水用貫通孔152を通過する。このとき、取水部131は、取水側スクリーン部151(スリット154および第1凸条156間の隙間)を有しているため、灌漑用液体中の浮遊物を除去することができる。また、取水部131には、いわゆるウェッジワイヤー構造が形成されているため、取水部131への水の取り込み時における水の圧力損失は抑制される。
(Operation of drip irrigation tube and emitter)
Next, the operation of the drip irrigation tube 100 will be described. First, irrigation liquid is fed into the tube 110. Examples of irrigation liquids include water, liquid fertilizers, pesticides and mixtures thereof. The pressure of the irrigation liquid fed to the drip irrigation tube 100 is preferably 0.1 MPa or less so that the drip irrigation method can be easily introduced and the tube 110 and the emitter 120 are prevented from being damaged. . The irrigation liquid in the tube 110 is taken into the emitter 120 from the water intake 131. Specifically, the irrigation liquid in the tube 110 enters the water intake recess 153 through the slit 154 or the gap between the first ridges 156 and passes through the water intake through hole 152. At this time, since the water intake part 131 has the water intake side screen part 151 (gap between the slit 154 and the 1st protruding item | line 156), the suspended | floating matter in the irrigation liquid can be removed. Moreover, since the so-called wedge wire structure is formed in the water intake part 131, the pressure loss of the water at the time of taking-in of the water to the water intake part 131 is suppressed.
 取水部131から取り込まれた灌漑用液体は、接続流路141に到達する。接続流路141に到達した灌漑用液体は、減圧流路142およびバイパス流路144に流れ込む。このとき、灌漑用液体は、減圧流路142と比較して圧力損失の少ないバイパス流路144を先行して進む。バイパス流路144に流れ込んだ灌漑用液体は、バイパス用貫通孔163を通って流路開閉部136に流れ込む。 The irrigation liquid taken in from the water intake unit 131 reaches the connection channel 141. The irrigation liquid that has reached the connection channel 141 flows into the decompression channel 142 and the bypass channel 144. At this time, the irrigation liquid advances ahead of the bypass flow path 144 with less pressure loss than the decompression flow path 142. The irrigation liquid that has flowed into the bypass channel 144 flows into the channel opening / closing part 136 through the bypass through-hole 163.
 流路開閉部136に流れ込んだ灌漑用液体は、流量減少部135を通って吐出部137に流れ込む。吐出部137に流れ込んだ灌漑用液体は、チューブ110の吐出口112からチューブ110外に吐出される。 The irrigation liquid that has flowed into the flow path opening / closing part 136 flows into the discharge part 137 through the flow rate reducing part 135. The irrigation liquid that has flowed into the discharge unit 137 is discharged from the discharge port 112 of the tube 110 to the outside of the tube 110.
 一方、減圧流路142に流れ込んだ灌漑用液体は、流量減少用貫通孔161を通って、流量減少部135に到達する。流量減少部135に流れ込んだ灌漑用液体は、吐出部137に流れ込む。吐出部137に流れ込んだ灌漑用液体は、チューブ110の吐出口112からチューブ110外に吐出される。 On the other hand, the irrigation liquid that has flowed into the decompression flow path 142 reaches the flow rate reduction unit 135 through the flow rate reduction through hole 161. The irrigation liquid that has flowed into the flow rate reduction unit 135 flows into the discharge unit 137. The irrigation liquid that has flowed into the discharge unit 137 is discharged from the discharge port 112 of the tube 110 to the outside of the tube 110.
 前述したように、流量減少部135と、流路開閉部136とは連通している。また、流量減少部135では、チューブ110内の灌漑用液体の圧力に応じて第1ダイヤフラム部175によって灌漑用液体の流量が制御され、流路開閉部136では、チューブ110内の灌漑用液体の圧力に応じて第2ダイヤフラム部183によって灌漑用液体の流量が制御される。そこで、チューブ110内の灌漑用液体の圧力に応じた流路開閉部136および流量減少部135の動作について説明する。 As described above, the flow rate reducing portion 135 and the flow path opening / closing portion 136 are in communication. In the flow rate reduction unit 135, the flow rate of the irrigation liquid in the tube 110 is controlled by the first diaphragm unit 175 in accordance with the pressure of the irrigation liquid in the tube 110. The flow rate of the irrigation liquid is controlled by the second diaphragm unit 183 in accordance with the pressure. Therefore, the operation of the flow path opening / closing unit 136 and the flow rate reducing unit 135 according to the pressure of the irrigation liquid in the tube 110 will be described.
 図6A~Cは、流量減少部135と、流路開閉部136との動作の関係を示す模式図である。なお、図6A~Cは、エミッタ120の動作を説明するために、図3Aに示されるD-D線の断面を模式的に示した図である。図6Aは、チューブ110に灌漑用液体が送液されていない場合における断面図であり、図6Bは、チューブ110内の灌漑用液体の圧力が第1圧力である場合における断面図であり、図6Cは、チューブ110内の灌漑用液体の圧力が第1圧力を超える第2圧力である場合における断面図である。図7は、チューブ110内の灌漑用液体の圧力と、吐出口112から滴下される灌漑用液体の流量との関係の一例を示すグラフである。図7の実線は、吐出口112から滴下される灌漑用液体の総流量を示しており、図7の破線は、第2流路145を流れた(バイパス流路144を通った)灌漑用液体の流量を示しており、図7の一点鎖線は、第1流路143を流れた(減圧流路142を通った)灌漑用液体の流量を示している。図7の横軸は、灌漑用液体の圧力(MPa)を示しており、縦軸は、吐出口112から吐出された灌漑用液体の流量(L/h)を示している。 FIGS. 6A to 6C are schematic diagrams showing the operational relationship between the flow rate reducing unit 135 and the flow path opening / closing unit 136. FIG. 6A to 6C are diagrams schematically showing a cross section taken along the line DD shown in FIG. 3A in order to explain the operation of the emitter 120. FIG. 6A is a cross-sectional view when the irrigation liquid is not supplied to the tube 110, and FIG. 6B is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the first pressure. FIG. 6C is a cross-sectional view when the pressure of the irrigation liquid in the tube 110 is the second pressure exceeding the first pressure. FIG. 7 is a graph showing an example of the relationship between the pressure of the irrigation liquid in the tube 110 and the flow rate of the irrigation liquid dropped from the discharge port 112. The solid line in FIG. 7 indicates the total flow rate of the irrigation liquid dropped from the discharge port 112, and the broken line in FIG. 7 indicates the irrigation liquid that has flowed through the second flow path 145 (through the bypass flow path 144). The alternate long and short dash line in FIG. 7 indicates the flow rate of the irrigation liquid that has flowed through the first flow path 143 (through the decompression flow path 142). The horizontal axis in FIG. 7 indicates the pressure (MPa) of the irrigation liquid, and the vertical axis indicates the flow rate (L / h) of the irrigation liquid discharged from the discharge port 112.
 チューブ110内に灌漑用液体を送液する前は、フィルム124に灌漑用液体の圧力が加わらないため、第1ダイヤフラム部175および第2ダイヤフラム部183は、変形していない(図6A参照)。 Before the irrigation liquid is fed into the tube 110, the pressure of the irrigation liquid is not applied to the film 124, so the first diaphragm portion 175 and the second diaphragm portion 183 are not deformed (see FIG. 6A).
 チューブ110内に灌漑用液体を送液し始めると、流量減少部135の第1ダイヤフラム部175は、第1弁座部172に向かって変形し始める。また、流路開閉部136の第2ダイヤフラム部183は、第2弁座部182に向かって変形し始める。しかしながら、この状態では、第1ダイヤフラム部175が第1弁座部172に接触しておらず、かつ第2ダイヤフラム部183が第2弁座部182に接触していないため、取水部131から取り入れられた灌漑用液体は、第1流路143(接続流路141、減圧流路142、流量減少部135および吐出部137)および第2流路145(接続流路141、バイパス流路144、流路開閉部136、流量減少部135および吐出部137)の両方を通って、チューブ110の吐出口112から外部に吐出される。このように、チューブ110内への灌漑用液体の送液開始時や、チューブ110内の灌漑用液体の圧力が低圧の場合などでは、取水部131から取り入れられた灌漑用液体は、減圧流路142およびバイパス流路144の両方を通って吐出される。 When the irrigation liquid starts to be fed into the tube 110, the first diaphragm portion 175 of the flow rate reducing portion 135 starts to deform toward the first valve seat portion 172. Further, the second diaphragm part 183 of the flow path opening / closing part 136 starts to deform toward the second valve seat part 182. However, in this state, the first diaphragm portion 175 is not in contact with the first valve seat portion 172, and the second diaphragm portion 183 is not in contact with the second valve seat portion 182. The irrigation liquid thus obtained includes the first flow path 143 (connection flow path 141, decompression flow path 142, flow rate reduction part 135 and discharge part 137) and second flow path 145 (connection flow path 141, bypass flow path 144, flow It is discharged from the discharge port 112 of the tube 110 to the outside through both the path opening / closing part 136, the flow rate reducing part 135 and the discharge part 137). As described above, when the irrigation liquid is started to be fed into the tube 110 or when the pressure of the irrigation liquid in the tube 110 is low, the irrigation liquid taken from the water intake unit 131 is reduced in pressure. It is discharged through both 142 and the bypass flow path 144.
 チューブ110内の灌漑用液体の圧力が第1圧力に到達すると、第2ダイヤフラム部183が第2弁座部182に接触して、第2流路145を閉塞する(図6B参照)。このとき、第1ダイヤフラム部175は、第1弁座部172に接触していない。このように、チューブ110内の灌漑用液体の圧力がフィルム124を変形されるほど高くなると、第2ダイヤフラム部183が第2弁座部182に近接するため、第2流路145を通って吐出される灌漑用液体の液量は減少する。そして、チューブ110内の灌漑用液体の圧力が第1圧力に到達すると、第2流路145内の灌漑用液体は、吐出口112から吐出されなくなる(図7に示される破線参照)。その結果、取水部131から取り入れられた灌漑用液体は、第1流路143を通って、チューブ110の吐出口112から外部に吐出される。 When the pressure of the irrigation liquid in the tube 110 reaches the first pressure, the second diaphragm portion 183 comes into contact with the second valve seat portion 182 and closes the second flow path 145 (see FIG. 6B). At this time, the first diaphragm portion 175 is not in contact with the first valve seat portion 172. As described above, when the pressure of the irrigation liquid in the tube 110 becomes so high that the film 124 is deformed, the second diaphragm portion 183 comes close to the second valve seat portion 182, and thus the liquid is discharged through the second flow path 145. The amount of irrigation liquid to be reduced will decrease. When the pressure of the irrigation liquid in the tube 110 reaches the first pressure, the irrigation liquid in the second flow path 145 is not discharged from the discharge port 112 (see the broken line shown in FIG. 7). As a result, the irrigation liquid taken from the water intake unit 131 is discharged from the discharge port 112 of the tube 110 to the outside through the first flow path 143.
 チューブ110内の灌漑用液体の圧力がさらに高まると、第1ダイヤフラム部175は、第1弁座部172に向かってさらに変形する。通常は、灌漑用液体の圧力が高くなるにつれて、第1流路143を流れる灌漑用液体の量が増大するはずであるが、本実施の形態に係るエミッタ120では、減圧流路142で灌漑用液体の圧力を減少させるとともに、第1ダイヤフラム部175と第1弁座部172との間隔を狭めることで、第1流路143を流れる灌漑用液体の量の過剰な増大を防止している。そして、チューブ110内の灌漑用液体の圧力が第1圧力を超える第2圧力以上である場合に、第1ダイヤフラム部175は、第1弁座部172に接触する(図6C参照)。この場合であっても、第1ダイヤフラム部175は、流量減少用貫通孔161、連通溝173および吐出用貫通孔174を塞がないため、取水部131から取り入れられた灌漑用液体は、連通溝173を通って、チューブ110の吐出口112から外部に吐出される。このように、流量減少部135は、チューブ110内の灌漑用液体の圧力が第2圧力以上である場合、第2ダイヤフラム部183が第2弁座部182に接触することにより、第1流路143を流れる灌漑用液体の液量の増大を抑制する(図7に示される一点鎖線参照)。 When the pressure of the irrigation liquid in the tube 110 is further increased, the first diaphragm portion 175 is further deformed toward the first valve seat portion 172. Normally, as the pressure of the irrigation liquid increases, the amount of irrigation liquid flowing through the first flow path 143 should increase. However, in the emitter 120 according to the present embodiment, the decompression flow path 142 is used for irrigation. By reducing the pressure of the liquid and reducing the distance between the first diaphragm portion 175 and the first valve seat portion 172, an excessive increase in the amount of irrigation liquid flowing in the first flow path 143 is prevented. When the pressure of the irrigation liquid in the tube 110 is equal to or higher than the second pressure exceeding the first pressure, the first diaphragm portion 175 contacts the first valve seat portion 172 (see FIG. 6C). Even in this case, since the first diaphragm portion 175 does not block the flow rate reducing through-hole 161, the communication groove 173, and the discharge through-hole 174, the irrigation liquid introduced from the water intake portion 131 is not connected to the communication groove. The liquid is discharged to the outside through the discharge port 112 of the tube 110 through 173. As described above, when the pressure of the irrigation liquid in the tube 110 is equal to or higher than the second pressure, the flow rate reducing unit 135 makes the first flow path when the second diaphragm unit 183 contacts the second valve seat unit 182. The increase in the amount of the irrigation liquid flowing through 143 is suppressed (see the one-dot chain line shown in FIG. 7).
 このように、流量減少部135および流路開閉部136は、チューブ110内の灌漑用液体の圧力に応じて、それぞれを流れる液量が相互に補完されるように機能するため、本実施の形態に係る点滴灌漑用チューブ100は、灌漑用液体の圧力が低圧および高圧のいずれの場合であっても、一定量の灌漑用液体をチューブ110外に吐出できる(図7に示される実線参照)。 As described above, the flow rate reducing unit 135 and the flow path opening / closing unit 136 function so that the amounts of liquid flowing through each of them are complemented according to the pressure of the irrigation liquid in the tube 110. The drip irrigation tube 100 can discharge a certain amount of irrigation liquid out of the tube 110 regardless of whether the pressure of the irrigation liquid is low or high (see the solid line shown in FIG. 7).
 (効果)
 以上のように、本実施の形態に係る点滴灌漑用チューブ100は、主として低圧時に作動する流路開閉部136と、主として高圧時に作動する流量減少部135を有するため、チューブ110内の灌漑用液体の圧力に依存せず、灌漑用液体を定量的に滴下することができる。
(effect)
As described above, since the drip irrigation tube 100 according to the present embodiment has the flow path opening / closing portion 136 that mainly operates at low pressure and the flow rate reduction portion 135 that mainly operates at high pressure, the irrigation liquid in the tube 110. Irrigation liquid can be dripped quantitatively without depending on the pressure.
 (変形例)
 なお、図8A、Bに示されるように、必要に応じて、接続溝132とバイパス溝134との間に第2減圧溝233を設けてもよい。この場合、対応する取水用貫通孔152を短く構成する。第2減圧溝233は、流路長が短いことを除いて、減圧溝133と同様に構成される。第2減圧溝233は、チューブ110と接合することにより第2減圧流路242となる。この場合、第2流路145を流れる灌漑用液体の流量も調整できる。
(Modification)
8A and 8B, a second decompression groove 233 may be provided between the connection groove 132 and the bypass groove 134 as necessary. In this case, the corresponding water intake through hole 152 is configured to be short. The second decompression groove 233 is configured in the same manner as the decompression groove 133 except that the flow path length is short. The second decompression groove 233 becomes the second decompression flow path 242 by joining with the tube 110. In this case, the flow rate of the irrigation liquid flowing through the second flow path 145 can also be adjusted.
 [実施の形態2]
 実施の形態2に係る点滴灌漑用チューブは、エミッタ320の構成が実施の形態1に係る点滴灌漑用チューブ100と異なる。そこで、実施の形態1と同様の構成については、同一の符号を付してその説明を省略する。
[Embodiment 2]
The drip irrigation tube according to the second embodiment is different from the drip irrigation tube 100 according to the first embodiment in the configuration of the emitter 320. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図9Aは、エミッタ本体322とフィルム124とを接合する前の実施の形態2に係るエミッタ320の平面図であり、図9Bは、エミッタ本体322とフィルム124とを接合する前の実施の形態2に係るエミッタ320の底面図である。 FIG. 9A is a plan view of the emitter 320 according to the second embodiment before the emitter body 322 and the film 124 are joined, and FIG. 9B is the second embodiment before the emitter body 322 and the film 124 are joined. It is a bottom view of the emitter 320 concerning.
 図9A、Bに示されるように、実施の形態2に係るエミッタ320では、流量減少部135および流路開閉部136は独立している。流路開閉部136は、流路開閉用凹部381と、第2弁座部182と、フィルム124の一部である第2ダイヤフラム部183と、を有する。 9A and 9B, in the emitter 320 according to Embodiment 2, the flow rate reducing unit 135 and the flow path opening / closing unit 136 are independent. The flow path opening / closing portion 136 includes a flow path opening / closing recess 381, a second valve seat portion 182, and a second diaphragm portion 183 that is a part of the film 124.
 流路開閉用凹部381は、平面視形状が円形の流路開閉用凹部本体385と、流路開閉用凹部本体385から側方に延在した延在部386とを有する。延在部386には、吐出部137に連通した第2吐出用貫通孔384が形成されている。第2吐出用貫通孔384は、吐出部137における吐出用凹部191に開口している。 The channel opening / closing recess 381 includes a channel opening / closing recess body 385 having a circular shape in plan view, and an extending portion 386 extending laterally from the channel opening / closing recess body 385. A second discharge through-hole 384 communicating with the discharge portion 137 is formed in the extending portion 386. The second discharge through-hole 384 opens in the discharge recess 191 in the discharge portion 137.
 実施の形態2に係る点滴灌漑用チューブでは、流量減少部135および流路開閉部136が独立しているため、第1流路143および第2流路145は、取水部131と接続流路141との間、および吐出部137のみで重複する。 In the drip irrigation tube according to the second embodiment, since the flow rate reducing unit 135 and the flow channel opening / closing unit 136 are independent, the first flow channel 143 and the second flow channel 145 include the water intake unit 131 and the connection flow channel 141. And only in the discharge part 137.
 実施の形態2に係る点滴灌漑用チューブでは、灌漑用液体の圧力が低圧の場合、灌漑用液体は、第2流路145および第1流路143の両方を通ってチューブ110外に吐出される。灌漑用液体の圧力が高くなるにつれて、第2流路145を通る灌漑用液体が減少するとともに、第1流路143を通る灌漑用液体が増加する。灌漑用液体の圧力が第1圧力に到達すると、第2ダイヤフラム部183が第2弁座部182に接触して第2流路145が閉塞される。第2流路145が閉塞されると、灌漑用液体は、第1流路143のみを通って吐出される。そして、さらに灌漑用液体の圧力が第2圧力以上になると、第1流路143を通って吐出される灌漑用液体の液量が略一定となる。このように、実施の形態2に係る点滴灌漑用チューブでも灌漑用液体の圧力に依存せずに、一定量の灌漑用液体を滴下できる。 In the drip irrigation tube according to Embodiment 2, when the pressure of the irrigation liquid is low, the irrigation liquid is discharged out of the tube 110 through both the second flow path 145 and the first flow path 143. . As the pressure of the irrigation liquid increases, the irrigation liquid passing through the second flow path 145 decreases and the irrigation liquid passing through the first flow path 143 increases. When the pressure of the irrigation liquid reaches the first pressure, the second diaphragm portion 183 contacts the second valve seat portion 182 and the second flow path 145 is closed. When the second flow path 145 is closed, the irrigation liquid is discharged only through the first flow path 143. When the pressure of the irrigation liquid becomes equal to or higher than the second pressure, the amount of the irrigation liquid discharged through the first flow path 143 becomes substantially constant. Thus, even a drip irrigation tube according to Embodiment 2 can drop a certain amount of irrigation liquid without depending on the pressure of the irrigation liquid.
 (効果)
 以上のように、実施の形態2に係る点滴灌漑用チューブは、実施の形態1に係る点滴灌漑用チューブ100と同様の効果を有する。
(effect)
As described above, the drip irrigation tube according to the second embodiment has the same effect as the drip irrigation tube 100 according to the first embodiment.
 [実施の形態3]
 実施の形態3に係る点滴灌漑用チューブは、エミッタ420の構成が実施の形態1に係る点滴灌漑用チューブ100と異なる。そこで、実施の形態1と同様の構成については、同一の符号を付してその説明を省略する。
[Embodiment 3]
The drip irrigation tube according to the third embodiment is different from the drip irrigation tube 100 according to the first embodiment in the configuration of the emitter 420. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図10Aは、エミッタ本体422とフィルム124とを接合する前の実施の形態3に係るエミッタ420の平面図であり、図10Bは、エミッタ本体422とフィルム124とを接合する前の実施の形態3に係るエミッタ420の底面図である。 FIG. 10A is a plan view of an emitter 420 according to Embodiment 3 before joining the emitter body 422 and the film 124, and FIG. 10B shows Embodiment 3 before joining the emitter body 422 and the film 124. FIG. It is a bottom view of the emitter 420 concerning.
 図10A、Bに示されるように、実施の形態3に係るエミッタ420では、接続溝432(接続流路441)は、第1接続溝432a(第1接続流路441a)および第2接続溝432b(第2接続流路441b)を有する。第1接続溝432aは、一方の取水用貫通孔152および減圧溝133を接続する。第1接続溝432aのうち、一部の領域は、減圧溝(減圧流路)として機能するように形成されている。また、第2接続溝432bは、他方の取水用貫通孔152およびバイパス溝134を接続する。第2接続溝432bのうち、一部の領域は、減圧溝(減圧流路)として機能するように形成されている。 As shown in FIGS. 10A and 10B, in the emitter 420 according to Embodiment 3, the connection groove 432 (connection flow path 441) includes the first connection groove 432a (first connection flow path 441a) and the second connection groove 432b. (Second connection flow path 441b). The first connection groove 432a connects the one water intake through hole 152 and the decompression groove 133. A part of the first connection groove 432a is formed to function as a decompression groove (decompression channel). The second connection groove 432 b connects the other water intake through hole 152 and the bypass groove 134. A part of the second connection groove 432b is formed to function as a decompression groove (decompression channel).
 実施の形態3に係る点滴灌漑用チューブでは、接続溝432(接続流路441)が第1接続溝432a(第1接続流路441a)および第2接続溝432b(第2接続流路441b)を有しているため、第1流路443および第2流路445は、吐出部137のみで重複する。すなわち、取水部131、接続流路441(第1接続流路441a)、減圧流路142、流量減少部135および吐出部137から構成され、取水部131と吐出部137とを繋ぐ第1流路443が形成される。また、取水部131、接続流路441(第2接続流路441b)、バイパス流路144、流路開閉部136、流量減少部135および吐出部137から構成され、取水部131と吐出部137とを繋ぐ第2流路445が形成される。第1流路443および第2流路445は、いずれも取水部131から吐出部137まで灌漑用液体を流通させる。本実施の形態では、第2流路445の流路開閉部136の下流が流量減少部135に接続されており、流量減少部135から吐出部137までの間が、第1流路443と第2流路445とが重複している。 In the drip irrigation tube according to Embodiment 3, the connection groove 432 (connection flow path 441) replaces the first connection groove 432a (first connection flow path 441a) and the second connection groove 432b (second connection flow path 441b). Therefore, the first flow path 443 and the second flow path 445 overlap only in the discharge unit 137. That is, the first flow path includes the water intake part 131, the connection flow path 441 (first connection flow path 441a), the decompression flow path 142, the flow rate reduction part 135, and the discharge part 137, and connects the water intake part 131 and the discharge part 137. 443 is formed. In addition, the intake section 131 includes a connection flow path 441 (second connection flow path 441b), a bypass flow path 144, a flow path opening / closing section 136, a flow rate reduction section 135, and a discharge section 137. A second flow path 445 that connects the two is formed. In each of the first flow path 443 and the second flow path 445, the irrigation liquid is circulated from the water intake section 131 to the discharge section 137. In the present embodiment, the downstream of the flow path opening / closing part 136 of the second flow path 445 is connected to the flow rate reduction unit 135, and between the flow rate reduction unit 135 and the discharge unit 137, Two flow paths 445 overlap.
 実施の形態3に係る点滴灌漑用チューブでは、灌漑用液体の圧力が低圧の場合、灌漑用液体は、第2流路445および第1流路443の両方を通ってチューブ110外に吐出される。灌漑用液体の圧力が高くなるにつれて、第2流路445を通る灌漑用液体が減少するとともに、第1流路443を通る灌漑用液体が増加する。灌漑用液体の圧力が第1圧力に到達すると、第2ダイヤフラム部183が第2弁座部182に接触して第2流路445が閉塞される。第2流路445が閉塞されると、灌漑用液体は、第1流路443のみを通って吐出される。そして、さらに灌漑用液体の圧力が第2圧力以上になると、第1流路443を通って吐出される灌漑用液体の液量が略一定となる。このように、実施の形態3に係る点滴灌漑用チューブでも灌漑用液体の圧力に依存せずに、一定量の灌漑用液体を滴下できる。 In the drip irrigation tube according to Embodiment 3, when the pressure of the irrigation liquid is low, the irrigation liquid is discharged out of the tube 110 through both the second flow path 445 and the first flow path 443. . As the pressure of the irrigation liquid increases, the irrigation liquid passing through the second flow path 445 decreases and the irrigation liquid passing through the first flow path 443 increases. When the pressure of the irrigation liquid reaches the first pressure, the second diaphragm portion 183 contacts the second valve seat portion 182 and the second flow path 445 is closed. When the second flow path 445 is closed, the irrigation liquid is discharged only through the first flow path 443. Further, when the pressure of the irrigation liquid becomes equal to or higher than the second pressure, the amount of the irrigation liquid discharged through the first flow path 443 becomes substantially constant. Thus, even a drip irrigation tube according to Embodiment 3 can drop a certain amount of irrigation liquid without depending on the pressure of the irrigation liquid.
 (効果)
 以上のように、実施の形態3に係る点滴灌漑用チューブは、実施の形態1に係る点滴灌漑用チューブ100と同様の効果を有する。
(effect)
As described above, the drip irrigation tube according to Embodiment 3 has the same effects as the drip irrigation tube 100 according to Embodiment 1.
 [実施の形態4]
 実施の形態4に係る点滴灌漑用チューブは、エミッタ520の構成が実施の形態1に係る点滴灌漑用チューブ100と異なる。そこで、実施の形態1と同様の構成については、同一の符号を付してその説明を省略する。
[Embodiment 4]
The drip irrigation tube according to the fourth embodiment is different from the drip irrigation tube 100 according to the first embodiment in the configuration of the emitter 520. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図11Aは、エミッタ520を表面139側から見た斜視図であり、図11Bは、エミッタ520を裏面138側から見た斜視図である。図12Aは、エミッタ本体522とフィルム124とを接合する前の実施の形態4に係るエミッタ520の平面図であり、図12Bは、エミッタ本体522とフィルム124とを接合する前の実施の形態4に係るエミッタ520の底面図である。図13Aは、エミッタ520の側面図であり、図13Bは、図12Aに示されるA-A線の断面図であり、図13Cは、図12Aに示されるB-B線の断面図である。図14Aは、流路開閉部536の部分拡大断面図であり、図14Bは、流量減少部535の部分拡大断面図である。 FIG. 11A is a perspective view of the emitter 520 viewed from the front surface 139 side, and FIG. 11B is a perspective view of the emitter 520 viewed from the back surface 138 side. 12A is a plan view of the emitter 520 according to the fourth embodiment before the emitter body 522 and the film 124 are joined, and FIG. 12B is the fourth embodiment before the emitter body 522 and the film 124 are joined. It is a bottom view of the emitter 520 which concerns on. 13A is a side view of the emitter 520, FIG. 13B is a cross-sectional view taken along the line AA shown in FIG. 12A, and FIG. 13C is a cross-sectional view taken along the line BB shown in FIG. 12A. 14A is a partial enlarged cross-sectional view of the flow path opening / closing part 536, and FIG. 14B is a partial enlarged cross-sectional view of the flow rate reducing part 535.
 図11および図12に示されるように、エミッタ520は、エミッタ本体522およびフィルム124を有する。エミッタ本体522およびフィルム124は、ヒンジ部126を介して一体的に形成されている。 11 and 12, the emitter 520 includes an emitter body 522 and a film 124. The emitter body 522 and the film 124 are integrally formed via a hinge portion 126.
 エミッタ520は、取水部131と、第1接続流路541となる第1接続溝532と、減圧流路542となる減圧溝533と、バイパス流路544となるバイパス溝534と、流量減少部535と、流路開閉部536と、吐出部137と、第2接続流路539となる第2接続溝538と、を有する。取水部131、流量減少部535および流路開閉部536は、エミッタ520の表面139側に配置されている。また、第1接続溝532、減圧溝533、バイパス溝534、吐出部137および第2接続溝538は、エミッタ520の裏面138側に配置されている。 The emitter 520 includes a water intake 131, a first connection groove 532 that becomes the first connection flow path 541, a pressure reduction groove 533 that becomes the pressure reduction flow path 542, a bypass groove 534 that becomes the bypass flow path 544, and a flow rate reduction part 535. And a flow path opening / closing part 536, a discharge part 137, and a second connection groove 538 serving as a second connection flow path 539. The water intake part 131, the flow rate reduction part 535, and the flow path opening / closing part 536 are arranged on the surface 139 side of the emitter 520. Further, the first connection groove 532, the decompression groove 533, the bypass groove 534, the discharge part 137, and the second connection groove 538 are disposed on the back surface 138 side of the emitter 520.
 エミッタ520およびチューブが接合されることにより、第1接続溝532、減圧溝533、バイパス溝534および第2接続溝538は、それぞれ第1接続流路541、減圧流路542、バイパス流路544および第2接続流路539となる。すなわち、取水部131、第1接続流路541、減圧流路542、流量減少部535および吐出部137から構成され、取水部131と吐出部137とを繋ぐ第1流路543が形成される。また、取水部131、第1接続流路541、バイパス流路544、流路開閉部536、第2接続流路359、流量減少部535および吐出部137から構成され、取水部131と吐出部137とを繋ぐ第2流路545が形成される。第1流路543および第2流路545は、いずれも取水部131から吐出部137まで灌漑用液体を流通させる。本実施の形態では、第2流路545の流路開閉部536の下流が流量減少部535に接続されており、流量減少部535から吐出部137までの間が、第1流路543と第2流路545とが重複している。 By joining the emitter 520 and the tube, the first connection groove 532, the decompression groove 533, the bypass groove 534, and the second connection groove 538 are respectively connected to the first connection channel 541, the decompression channel 542, the bypass channel 544, and A second connection flow path 539 is formed. That is, a first flow path 543 that includes the water intake section 131, the first connection flow path 541, the decompression flow path 542, the flow rate reduction section 535, and the discharge section 137 and connects the water intake section 131 and the discharge section 137 is formed. Further, the intake section 131, the first connection flow path 541, the bypass flow path 544, the flow path opening / closing section 536, the second connection flow path 359, the flow rate reduction section 535, and the discharge section 137 are configured. A second flow path 545 that connects the two is formed. In each of the first flow path 543 and the second flow path 545, the irrigation liquid is circulated from the water intake section 131 to the discharge section 137. In the present embodiment, the downstream of the flow path opening / closing part 536 of the second flow path 545 is connected to the flow rate reduction part 535, and the area between the flow rate reduction part 535 and the discharge part 137 is connected to the first flow path 543 and the first flow path 535. The two flow paths 545 overlap.
 取水部131は、取水側スクリーン部151および取水用貫通孔152を有する。本実施の形態では、取水用貫通孔152は、取水用凹部153の底面の長軸方向に沿って形成された1つの長孔である。長孔は、複数の第1凸条156により覆われているため、表側から見た場合、取水用貫通孔152は、多数の貫通孔に分かれているように見える。 The water intake part 131 has a water intake side screen part 151 and a water intake through hole 152. In the present embodiment, the water intake through hole 152 is a single long hole formed along the long axis direction of the bottom surface of the water intake recess 153. Since the long hole is covered with a plurality of first ridges 156, when viewed from the front side, the water intake through hole 152 appears to be divided into a large number of through holes.
 第1接続溝532(第1接続流路541)は、取水用貫通孔152(取水部131)と、減圧溝533およびバイパス溝534とを接続する。第1接続溝532の中央部付近には、バイパス溝534が接続されており、第1接続溝532の一端(取水用貫通孔152が配置されていない側)には、減圧溝533が接続されている。本実施の形態では、バイパス溝534のうち、一部の領域は、減圧溝として機能するように形成されている。また、取水用貫通孔152とバイパス溝534との間の接続溝432のうち、一部の領域も減圧溝として機能するように形成されている。 The first connection groove 532 (first connection flow path 541) connects the water intake through hole 152 (water intake part 131), the pressure reducing groove 533, and the bypass groove 534. A bypass groove 534 is connected near the center of the first connection groove 532, and a decompression groove 533 is connected to one end of the first connection groove 532 (the side where the water intake through hole 152 is not disposed). ing. In the present embodiment, a part of the bypass groove 534 is formed so as to function as a decompression groove. In addition, a part of the connection groove 432 between the water intake through hole 152 and the bypass groove 534 is also formed to function as a decompression groove.
 流量減少部535は、流量減少用凹部171と、第1弁座部572と、連通溝573と、吐出用貫通孔174と、第1ダイヤフラム部175と、流路開閉部536に連通した第1接続孔576と、を有する。流量減少用凹部171には、流量減少用貫通孔161と、吐出用貫通孔174と、第2接続溝538(第2接続流路539)に連通した第1接続孔576が開口している。 The flow rate reducing portion 535 includes a first flow rate reducing recess 171, a first valve seat portion 572, a communication groove 573, a discharge through hole 174, a first diaphragm portion 175, and a flow path opening / closing portion 536. A connection hole 576. The flow rate reducing recess 171 has a flow rate reducing through hole 161, a discharge through hole 174, and a first connection hole 576 communicating with the second connection groove 538 (second connection channel 539).
 第1弁座部572は、吐出用貫通孔174を取り囲むように流量減少用凹部171の底面に配置されている。本実施の形態では、第1弁座部572の形状は、円環状の凸部である。より具体的には、第1弁座部572の形状は、その弁座面が吐出用貫通孔174の開口部から流量減少用凹部171の底面に向かって傾斜するように形成されている。連通溝573は、吐出用貫通孔174に連通し、その断面積が一定な一定部577と、一定部577よりも外縁部側に配置され、その断面積が外縁部に向かうにつれて減少する減少部578と、を有する。 The first valve seat 572 is disposed on the bottom surface of the flow rate reducing recess 171 so as to surround the discharge through-hole 174. In the present embodiment, the shape of the first valve seat portion 572 is an annular convex portion. More specifically, the shape of the first valve seat portion 572 is formed such that the valve seat surface is inclined from the opening portion of the discharge through hole 174 toward the bottom surface of the flow rate reducing recess portion 171. The communication groove 573 communicates with the discharge through-hole 174 and has a constant section 577 having a constant cross-sectional area, and is disposed on the outer edge side with respect to the constant section 577 and decreases in a cross-sectional area that decreases toward the outer edge. 578.
 流路開閉部536は、流路開閉用凹部581と、第2弁座部582と、第2ダイヤフラム部183と、第2接続溝538(第2接続流路539)に連通した第2接続孔540と、を有する。 The channel opening / closing portion 536 includes a second connection hole communicating with the channel opening / closing recess 581, the second valve seat portion 582, the second diaphragm portion 183, and the second connection groove 538 (second connection channel 539). 540.
 流路開閉用凹部581の平面視形状は、略円形状である。流路開閉用凹部581の底面には、バイパス用貫通孔163と、第2弁座部582と、第2接続溝538(流量減少部535)に連通した第2接続孔540と、が配置されている。本実施の形態では、流路開閉用凹部581は、流量減少用凹部171と同じ大きさおよび同じ形状である。すなわち、実施の形態4では、流路開閉用凹部581は、実施の形態1~3の流路開閉用凹部181、381と比較して、大きく形成されている。本実施の形態では、流量減少用凹部171と、流路開閉用凹部581とは、エミッタ520の長軸方向に並んで配置されている。流路開閉用凹部581に流れ込んだ灌漑用液体は、第2接続孔540、第2接続流路539および第1接続孔576を経由して、流量減少部535に流れ込む。 The planar view shape of the channel opening / closing recess 581 is substantially circular. A bypass through-hole 163, a second valve seat portion 582, and a second connection hole 540 communicating with the second connection groove 538 (flow rate reducing portion 535) are disposed on the bottom surface of the channel opening / closing recess 581. ing. In the present embodiment, the channel opening / closing recess 581 has the same size and the same shape as the flow rate reducing recess 171. That is, in the fourth embodiment, the channel opening / closing recess 581 is formed larger than the channel opening / closing recesses 181 and 381 of the first to third embodiments. In the present embodiment, the flow rate reducing recess 171 and the flow path opening / closing recess 581 are arranged side by side in the major axis direction of the emitter 520. The irrigation liquid that has flowed into the channel opening / closing recess 581 flows into the flow rate reduction unit 535 via the second connection hole 540, the second connection channel 539, and the first connection hole 576.
 実施の形態4に係る点滴灌漑用チューブでは、灌漑用液体の圧力が低圧の場合、灌漑用液体は、第2流路545および第1流路543の両方を通ってチューブ外に吐出される。灌漑用液体の圧力が高くなるにつれて、第1ダイヤフラム部175が第1弁座部572に向かって変形するとともに、第2ダイヤフラム部183が第2弁座部582に向かって変形する。灌漑用液体の圧力が第1圧力に到達すると、第2ダイヤフラム部183が第2弁座部582に接触して第2流路545が閉塞される。このとき、流路開閉用凹部581が実施の形態1~3と比較して、大きく形成されているため、第2ダイヤフラム部183は、灌漑用液体の圧力の影響を受けやすい。よって、第2流路545内の灌漑用液体の流量がピークの時間から第2流路545内の灌漑用液体の流量がゼロになるまでの時間が短縮される(図7破線参照)。第2流路545が閉塞されると、灌漑用液体は、第1流路543のみを通って吐出される。 In the drip irrigation tube according to the fourth embodiment, when the pressure of the irrigation liquid is low, the irrigation liquid is discharged out of the tube through both the second channel 545 and the first channel 543. As the pressure of the irrigation liquid increases, the first diaphragm portion 175 deforms toward the first valve seat portion 572 and the second diaphragm portion 183 deforms toward the second valve seat portion 582. When the pressure of the irrigation liquid reaches the first pressure, the second diaphragm portion 183 contacts the second valve seat portion 582 and the second flow path 545 is closed. At this time, since the channel opening / closing recess 581 is formed larger than in the first to third embodiments, the second diaphragm portion 183 is easily affected by the pressure of the irrigation liquid. Therefore, the time from when the flow rate of the irrigation liquid in the second flow path 545 reaches its peak until the flow rate of the irrigation liquid in the second flow path 545 reaches zero is shortened (see the broken line in FIG. 7). When the second channel 545 is closed, the irrigation liquid is discharged only through the first channel 543.
 チューブ内の灌漑用液体の圧力がさらに高まると、第1ダイヤフラム部175は、第1弁座部572に向かってさらに変形する。通常は、灌漑用液体の圧力が高くなるにつれて、第1流路543を流れる灌漑用液体の量が増大するはずであるが、本実施の形態に係るエミッタ520では、第1弁座部572の弁座面が外縁に向けて下方に傾斜していることから、第1ダイヤフラム部175は、灌漑用液体の圧力が第2圧力より高くなるに連れて、弁座面により一層密着し、連通溝573と第1ダイヤフラム部175で形成される流路は徐々に長くなり、その外縁側の開口部は徐々に狭くなる。このように、灌漑用液体の圧力が第2圧力以上になると、流量減少部535からの灌漑用液体の流量は、当該流路の開口面積に応じた流量に制御され、最終的に吐出口からは、当該開口面積に応じた流量の灌漑用液体のみが吐出される。このように、実施の形態4に係るエミッタ520では、灌漑用液体の圧力が第2圧力以上の場合、当該灌漑用液体の圧力による灌漑用液体の流量の増加と、当該流路の開口面積による灌漑用液体の流量の減少が相殺されるため、灌漑用液体の圧力が第2圧力以上に増加した場合であっても、吐出口から吐出される灌漑用液体の液量が増加することがない。 When the pressure of the irrigation liquid in the tube is further increased, the first diaphragm portion 175 is further deformed toward the first valve seat portion 572. Normally, as the pressure of the irrigation liquid increases, the amount of irrigation liquid flowing through the first flow path 543 should increase. However, in the emitter 520 according to the present embodiment, the first valve seat 572 Since the valve seat surface is inclined downward toward the outer edge, the first diaphragm portion 175 becomes closer to the valve seat surface as the pressure of the irrigation liquid becomes higher than the second pressure. The flow path formed by 573 and the first diaphragm portion 175 is gradually lengthened, and the opening on the outer edge side is gradually narrowed. Thus, when the pressure of the irrigation liquid becomes equal to or higher than the second pressure, the flow rate of the irrigation liquid from the flow rate reduction unit 535 is controlled to a flow rate according to the opening area of the flow path, and finally from the discharge port. Only the irrigation liquid having a flow rate corresponding to the opening area is discharged. Thus, in the emitter 520 according to the fourth embodiment, when the pressure of the irrigation liquid is equal to or higher than the second pressure, the increase in the flow rate of the irrigation liquid due to the pressure of the irrigation liquid and the opening area of the flow path Since the decrease in the flow rate of the irrigation liquid is offset, the amount of the irrigation liquid discharged from the discharge port does not increase even when the pressure of the irrigation liquid increases to the second pressure or higher. .
 (効果)
 以上のように、実施の形態4に係る点滴灌漑用チューブは、実施の形態1に係る点滴灌漑用チューブよりもさらに、チューブ内の灌漑用液体の圧力に依存せずに、灌漑用液体を定量的に滴下することができる。
(effect)
As described above, the drip irrigation tube according to the fourth embodiment is more reliable than the drip irrigation tube according to the first embodiment without depending on the pressure of the irrigation liquid in the tube. Can be dripped.
 また、実施の形態4に係るエミッタ520は、流量減少用凹部171と、流路開閉用凹部581とがエミッタ520の長軸方向に並んで配置されているため、より容易に小型化されうる。 In addition, the emitter 520 according to the fourth embodiment can be more easily downsized because the flow rate reducing recess 171 and the flow path opening / closing recess 581 are arranged side by side in the major axis direction of the emitter 520.
 なお、実施の形態1~4では、エミッタ120、320、420、520およびチューブ110が接合されることにより、接続流路141、441、減圧流路142およびバイパス流路144が形成されているが、接続流路141、441、減圧流路142、442、542およびバイパス流路144、544は、予めエミッタ内に流路として形成されていてもよい。 In the first to fourth embodiments, the connection channels 141 and 441, the decompression channel 142, and the bypass channel 144 are formed by joining the emitters 120, 320, 420, and 520 and the tube 110 together. The connection channels 141 and 441, the decompression channels 142, 442 and 542, and the bypass channels 144 and 544 may be previously formed as channels in the emitter.
 また、実施の形態1~4では、第1弁座部172、572および第2弁座部182、582の位置(高さ)を変えることにより、フィルム124が変形した場合に接触するタイミングを調整したが、第1弁座部172、572および第2弁座部182、582の位置(高さ)は、同じ深さであってもよい。この場合、第1ダイヤフラム部175および第2ダイヤフラム部183の厚みや材料(弾性)を変えることにより、フィルム124が変形した場合に接触するタイミングを調整してもよい。 In the first to fourth embodiments, the timing of contact when the film 124 is deformed is adjusted by changing the position (height) of the first valve seat portions 172 and 572 and the second valve seat portions 182 and 582. However, the position (height) of the first valve seat portions 172 and 572 and the second valve seat portions 182 and 582 may be the same depth. In this case, by changing the thickness and material (elasticity) of the first diaphragm portion 175 and the second diaphragm portion 183, the contact timing when the film 124 is deformed may be adjusted.
 本出願は、2015年2月25日出願の特願2015-035450および2015年6月2日出願の特願2015-112274に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2015-035450 filed on February 25, 2015 and Japanese Patent Application No. 2015-112274 filed on June 2, 2015. The contents described in the application specification and the drawings are all incorporated herein.
 本発明によれば、滴下すべき液体の圧力によって適切な速度での液体の滴下が可能なエミッタを簡易に提供することが可能である。したがって、点滴灌漑や耐久試験などの、長期の滴下を要する技術分野への上記エミッタの普及および当該技術分野のさらなる発展が期待される。 According to the present invention, it is possible to easily provide an emitter capable of dropping liquid at an appropriate speed depending on the pressure of the liquid to be dropped. Therefore, the spread of the emitter to technical fields that require long-term dripping, such as drip irrigation and durability tests, and further development of the technical field are expected.
 100 点滴灌漑用チューブ
 110 チューブ
 112 吐出口
 120、320、420、520 エミッタ
 122、322、422、522 エミッタ本体
 124 フィルム
 126 ヒンジ部
 131 取水部
 132 接続溝
 133、533 減圧溝
 134、534 バイパス溝
 135、535 流量減少部
 136、536 流路開閉部
 137 吐出部
 138 裏面
 139 表面
 141、441 接続流路
 142、542 減圧流路
 143、443、543 第1流路
 144、544 バイパス流路
 145、445、545 第2流路
 151 取水側スクリーン部
 152 取水用貫通孔
 153 取水用凹部
 154 スリット
 155 凸条
 156 第1凸条
 157 第2凸条
 161 流量減少用貫通孔
 162 凸部
 163 バイパス用貫通孔
 164 流路用スクリーン部
 165 突起
 171 流量減少用凹部
 172、572 第1弁座部
 173、573 連通溝
 174 吐出用貫通孔
 175 第1ダイヤフラム部
 181、381、581 流路開閉用凹部
 182、582 第2弁座部
 183 第2ダイヤフラム部
 191 吐出用凹部
 192 侵入防止部
 193 凸条部
 233 第2減圧溝
 242 第2減圧流路
 384 第2吐出用貫通孔
 385 流路開閉用凹部本体
 386 延在部
 432a 第1接続溝
 432b 第2接続溝
 433a 第3減圧溝
 433b 第4減圧溝
 441a 第1接続流路
 441b 第2接続流路
 442a 第3減圧流路
 442b 第4減圧流路
 532 第1接続溝
 538 第2接続溝
 539 第2接続流路
 540 第2接続孔
 541 第1接続流路
 576 第1接続孔
 577 一定部
 578 減少部
100 Drip irrigation tube 110 Tube 112 Discharge port 120, 320, 420, 520 Emitter 122, 322, 422, 522 Emitter body 124 Film 126 Hinge part 131 Water intake part 132 Connection groove 133, 533 Decompression groove 134, 534 Bypass groove 135, 535 Flow rate decreasing unit 136, 536 Channel opening / closing unit 137 Discharging unit 138 Back surface 139 Surface 141, 441 Connection channel 142, 542 Decompression channel 143, 443, 543 First channel 144, 544 Bypass channel 145, 445, 545 Second flow passage 151 Water intake side screen portion 152 Water intake through hole 153 Water intake concave portion 154 Slit 155 Projection 156 First convex strip 157 Second convex strip 161 Flow rate reducing through hole 162 Projection portion 163 Bypass through hole 164 Channel For screen 165 Protrusion 171 Flow rate reducing recess 172, 572 First valve seat 173, 573 Communication groove 174 Discharge through-hole 175 First diaphragm 181, 381, 581 Flow channel opening / closing recess 182, 582 Second valve seat 183 First 2 Diaphragm portion 191 Discharge recess 192 Intrusion prevention portion 193 Projection ridge 233 Second decompression groove 242 Second decompression flow channel 384 Second discharge through hole 385 Flow passage opening / closing recess body 386 Extension portion 432a First connection groove 432b Second connection groove 433a Third decompression groove 433b Fourth decompression groove 441a First connection flow path 441b Second connection flow path 442a Third decompression flow path 442b Fourth decompression flow path 532 First connection groove 538 Second connection groove 539 Second 2 connection channel 540 2nd connection hole 541 1st connection channel 576 1st connection hole 577 fixed part 578 decreasing part

Claims (10)

  1.  灌漑用液体を流通させるチューブの内壁面であり、かつ前記チューブの内外を連通する吐出口に対応する位置に接合され、前記チューブ内の前記灌漑用液体を前記吐出口から定量的に前記チューブ外に吐出するためのエミッタであって、
     前記灌漑用液体を取り入れるための取水部と、
     前記吐出口に面して配置され、前記灌漑用液体を吐出するための吐出部と、
     前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させる第1流路と、
     前記取水部および前記吐出部を繋ぎ、前記灌漑用液体を流通させる第2流路と、
     前記第1流路に配置され、前記チューブ内の前記灌漑用液体の圧力に応じて、前記灌漑用液体の流量を減少させる流量減少部と、
     前記第2流路に配置され、前記チューブ内の前記灌漑用液体の圧力に応じて、前記第2流路を開放および閉塞する流路開閉部と、
     前記流量減少部より上流側の前記第1流路に配置され、前記取水部から取り入れられた前記灌漑用液体の圧力を減圧させて、前記流量減少部に導く減圧流路と、
     前記流路開閉部より上流側の前記第2流路に配置され、前記取水部から取り入れられた前記灌漑用液体の圧力を、前記減圧流路を流れた前記灌漑用液体の圧力より高い圧力を維持した状態で、前記流路開閉部に導くバイパス流路と、
     を有し、
     前記チューブを流れる前記灌漑用液体の圧力が第1圧力未満の場合、前記取水部から取り入れられた前記灌漑用液体は、前記減圧流路および前記バイパス流路を通って、前記吐出部に導かれ、
     前記チューブを流れる前記灌漑用液体の圧力が前記第1圧力以上である場合、前記流路開閉部により前記第2流路が閉塞され、前記取水部から取り入れられた前記灌漑用液体は、前記減圧流路を通って前記吐出部に導かれる、
     エミッタ。
    It is an inner wall surface of a tube through which the irrigation liquid is circulated, and is joined to a position corresponding to a discharge port communicating between the inside and the outside of the tube, and quantitatively discharges the irrigation liquid in the tube from the discharge port. An emitter for discharging
    A water intake for taking in the irrigation liquid;
    A discharge part arranged to face the discharge port, for discharging the irrigation liquid;
    A first flow path that connects the water intake section and the discharge section and distributes the irrigation liquid;
    A second flow path that connects the water intake section and the discharge section and distributes the irrigation liquid;
    A flow rate reduction unit disposed in the first flow path and configured to reduce the flow rate of the irrigation liquid according to the pressure of the irrigation liquid in the tube;
    A flow path opening / closing section that is disposed in the second flow path and opens and closes the second flow path according to the pressure of the irrigation liquid in the tube;
    A pressure reducing channel disposed in the first flow channel upstream of the flow rate reducing unit, and reducing the pressure of the irrigation liquid taken from the water intake unit and leading to the flow rate reducing unit;
    The pressure of the irrigation liquid, which is disposed in the second flow path upstream of the flow path opening / closing section and is taken in from the water intake section, is higher than the pressure of the irrigation liquid flowing through the decompression flow path. In a maintained state, a bypass flow path leading to the flow path opening and closing section,
    Have
    When the pressure of the irrigation liquid flowing through the tube is less than a first pressure, the irrigation liquid taken from the water intake section is guided to the discharge section through the decompression flow path and the bypass flow path. ,
    When the pressure of the irrigation liquid flowing through the tube is equal to or higher than the first pressure, the second flow path is closed by the flow path opening / closing section, and the irrigation liquid taken in from the water intake section is reduced in pressure. Led to the discharge part through the flow path,
    Emitter.
  2.  前記流路開閉部の下流は、前記流量減少部に接続されており、
     前記チューブを流れる前記灌漑用液体の圧力が前記第1圧力未満の場合、前記バイパス流路からの前記灌漑用液体は、前記流路開閉部および前記流量減少部の両方を通って前記吐出部に導かれる、
     請求項1に記載のエミッタ。
    The downstream of the flow path opening / closing part is connected to the flow rate reducing part,
    When the pressure of the irrigation liquid flowing through the tube is less than the first pressure, the irrigation liquid from the bypass flow channel passes through both the flow channel opening / closing unit and the flow rate reducing unit to the discharge unit. Led,
    The emitter according to claim 1.
  3.  前記流量減少部および前記流路開閉部は、独立しており、
     前記減圧流路からの前記灌漑用液体は、前記流量減少部を通って前記吐出部に導かれ、
     前記バイパス流路からの前記灌漑用液体は、前記流路開閉部を通って前記吐出部に導かれる、
     請求項1に記載のエミッタ。
    The flow rate reducing portion and the flow path opening / closing portion are independent,
    The irrigation liquid from the decompression flow path is led to the discharge part through the flow rate reducing part,
    The irrigation liquid from the bypass flow path is guided to the discharge section through the flow path opening / closing section,
    The emitter according to claim 1.
  4.  前記流量減少部は、
     流量減少用凹部と、
     前記流量減少用凹部の内部と前記チューブの内部とを仕切るように配置された、可撓性を有する第1ダイヤフラム部と、
     前記流量減少用凹部の内面に開口し、前記吐出部および前記減圧流路の一方に連通する流量減少用貫通孔と、
     前記流量減少用貫通孔を取り囲むように、前記第1ダイヤフラム部に面して非接触に配置され、前記チューブを流れる前記灌漑用液体の圧力が前記第1圧力を超える第2圧力以上の場合、前記第1ダイヤフラム部が密着可能な第1弁座部と、
     前記第1弁座部の前記第1ダイヤフラム部が密着可能な面に形成され、前記流量減少用凹部の内部と前記流量減少用貫通孔とを連通する連通溝と、
     前記流量減少用凹部の内面に開口し、前記吐出部および前記減圧流路の他方に連通する吐出用貫通孔と、を含む、
     請求項1~3のいずれか一項に記載のエミッタ。
    The flow rate reducing part is
    A recess for reducing the flow rate;
    A first diaphragm portion having flexibility, disposed so as to partition the inside of the recess for reducing flow rate and the inside of the tube;
    An opening on the inner surface of the flow rate reducing recess, and a flow rate reducing through hole communicating with one of the discharge portion and the pressure reducing channel;
    If the pressure of the irrigation liquid flowing through the tube is not less than a second pressure exceeding the first pressure, the non-contact arrangement facing the first diaphragm portion so as to surround the flow rate reducing through hole, A first valve seat part to which the first diaphragm part can be in close contact;
    A communication groove formed on a surface to which the first diaphragm portion of the first valve seat portion can be in close contact, and communicating the inside of the flow rate reducing recess and the flow rate reducing through hole;
    A discharge through hole that opens to the inner surface of the flow rate reducing recess and communicates with the other of the discharge portion and the decompression flow path.
    The emitter according to any one of claims 1 to 3.
  5.  前記流路開閉部は、
     前記バイパス流路に連通するバイパス用貫通孔が内面に開口した流路開閉用凹部と、
     前記流路開閉用凹部の内部と前記チューブの内部とを仕切るように配置された、可撓性を有する第2ダイヤフラム部と、
     前記バイパス用貫通孔を取り囲むように、前記第2ダイヤフラム部に面して非接触に配置され、前記チューブを流れる前記灌漑用液体の圧力が前記第1圧力以上の場合、前記第2ダイヤフラム部が密着可能な第2弁座部と、を含む、
     請求項1~4のいずれか一項に記載のエミッタ。
    The flow path opening / closing part is
    A channel opening / closing recess in which a bypass through hole communicating with the bypass channel is opened on an inner surface;
    A flexible second diaphragm portion disposed so as to partition the inside of the channel opening / closing recess and the inside of the tube;
    When the pressure of the irrigation liquid flowing through the tube is equal to or higher than the first pressure, the second diaphragm portion is disposed so as to face the second diaphragm portion so as to surround the bypass through hole. A second valve seat portion that can be brought into close contact with,
    The emitter according to any one of claims 1 to 4.
  6.  前記取水部は、前記チューブ内に対して開口するスリットを含む取水側スクリーン部を有する、請求項1~5のいずれか一項に記載のエミッタ。 The emitter according to any one of claims 1 to 5, wherein the water intake portion has a water intake side screen portion including a slit opened to the inside of the tube.
  7.  前記吐出部は、前記吐出口からの異物の侵入を防止するための侵入防止部を有する、請求項1~6のいずれか一項に記載のエミッタ。 The emitter according to any one of claims 1 to 6, wherein the discharge unit includes an intrusion prevention unit for preventing intrusion of foreign matter from the discharge port.
  8.  前記エミッタは、可撓性を有する一種類の材料で成形されており、
     前記第1ダイヤフラム部は、前記エミッタの一部として一体的に成形されている、
     請求項4に記載のエミッタ。
    The emitter is molded from one kind of flexible material,
    The first diaphragm portion is integrally formed as a part of the emitter,
    The emitter according to claim 4.
  9.  前記エミッタは、可撓性を有する一種類の材料で成形されており、
     前記第2ダイヤフラム部は、前記エミッタの一部として一体的に成形されている、
     請求項5に記載のエミッタ。
    The emitter is molded from one kind of flexible material,
    The second diaphragm portion is integrally formed as a part of the emitter,
    The emitter according to claim 5.
  10.  灌漑用液体を吐出するための吐出口を有するチューブと、
     前記チューブの内壁面の前記吐出口に対応する位置に接合された、請求項1~9のいずれか一項に記載のエミッタとを有する、
     点滴灌漑用チューブ。
    A tube having a discharge port for discharging irrigation liquid;
    The emitter according to any one of claims 1 to 9, which is joined to a position corresponding to the discharge port of the inner wall surface of the tube.
    Tube for drip irrigation.
PCT/JP2016/055140 2015-02-25 2016-02-23 Emitter and drip irrigation tube WO2016136695A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201680011472.4A CN107249304B (en) 2015-02-25 2016-02-23 Emitter and drip irrigation pipe
EP16755441.9A EP3262926B1 (en) 2015-02-25 2016-02-23 Emitter and drip irrigation tube
ES16755441T ES2741635T3 (en) 2015-02-25 2016-02-23 Emitter and drip irrigation tube
BR112017017871-0A BR112017017871A2 (en) 2015-02-25 2016-02-23 An emitter and the tube for intravenous drip irrigation
US15/552,968 US10362740B2 (en) 2015-02-25 2016-02-23 Emitter and drip irrigation tube
IL253957A IL253957B (en) 2015-02-25 2017-08-10 Emitter and drip irrigation tube
ZA2017/05665A ZA201705665B (en) 2015-02-25 2017-08-21 Emitter and drip irrigation tube

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-035450 2015-02-25
JP2015035450 2015-02-25
JP2015-112274 2015-06-02
JP2015112274A JP6532763B2 (en) 2015-02-25 2015-06-02 Emitter and drip irrigation tube

Publications (1)

Publication Number Publication Date
WO2016136695A1 true WO2016136695A1 (en) 2016-09-01

Family

ID=56788806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055140 WO2016136695A1 (en) 2015-02-25 2016-02-23 Emitter and drip irrigation tube

Country Status (1)

Country Link
WO (1) WO2016136695A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046094A (en) * 1997-10-14 2010-03-04 Hydro Plan Engineering Ltd Emitter unit
US20120199673A1 (en) * 2010-01-31 2012-08-09 Amirim Products Bi-component drip emitter
WO2013175802A1 (en) * 2012-05-24 2013-11-28 株式会社エンプラス Drip irrigation dripper and drip irrigation device equipped with same
WO2014097638A1 (en) * 2012-12-20 2014-06-26 株式会社エンプラス Drip-irrigation emitter and drip-irrigation device provided therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046094A (en) * 1997-10-14 2010-03-04 Hydro Plan Engineering Ltd Emitter unit
US20120199673A1 (en) * 2010-01-31 2012-08-09 Amirim Products Bi-component drip emitter
WO2013175802A1 (en) * 2012-05-24 2013-11-28 株式会社エンプラス Drip irrigation dripper and drip irrigation device equipped with same
WO2014097638A1 (en) * 2012-12-20 2014-06-26 株式会社エンプラス Drip-irrigation emitter and drip-irrigation device provided therewith

Similar Documents

Publication Publication Date Title
JP2016154525A (en) Emitter and tube for irrigation by drip infusion
JP6577319B2 (en) Emitter and drip irrigation tubes
EP3305064B1 (en) Emitter and drip irrigation tube
JP6577318B2 (en) Emitter and drip irrigation tubes
EP3075237B1 (en) Emitter and drip irrigation tube
WO2016190167A1 (en) Emitter and drip irrigation tube
WO2018003303A1 (en) Emitter and tube for drip irrigation
JP2018019609A (en) Emitter and drip irrigation tube
WO2018025681A1 (en) Emitter and drip-irrigation tube
WO2017159251A1 (en) Emitter, and tube for drip irrigation
WO2016136695A1 (en) Emitter and drip irrigation tube
WO2018180700A1 (en) Emitter and drip irrigation tube
WO2018190083A1 (en) Emitter, and tube for drip irrigation
JP2019054758A (en) Emitter and drip irrigation tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755441

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 253957

Country of ref document: IL

REEP Request for entry into the european phase

Ref document number: 2016755441

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017017871

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017017871

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170821