WO2016132447A1 - 加速度センサ - Google Patents
加速度センサ Download PDFInfo
- Publication number
- WO2016132447A1 WO2016132447A1 PCT/JP2015/054230 JP2015054230W WO2016132447A1 WO 2016132447 A1 WO2016132447 A1 WO 2016132447A1 JP 2015054230 W JP2015054230 W JP 2015054230W WO 2016132447 A1 WO2016132447 A1 WO 2016132447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- capacitance
- unit
- acceleration sensor
- bit
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 157
- 238000001514 detection method Methods 0.000 claims abstract description 162
- 239000003990 capacitor Substances 0.000 claims description 162
- 230000008859 change Effects 0.000 claims description 47
- 238000006073 displacement reaction Methods 0.000 claims description 23
- 238000004364 calculation method Methods 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 9
- 230000004069 differentiation Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 38
- 230000008569 process Effects 0.000 abstract description 21
- 238000004519 manufacturing process Methods 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 12
- 238000003672 processing method Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 16
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 230000010355 oscillation Effects 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 10
- 230000010354 integration Effects 0.000 description 6
- 239000003345 natural gas Substances 0.000 description 6
- 238000013139 quantization Methods 0.000 description 5
- 238000005070 sampling Methods 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/13—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position
- G01P15/131—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by measuring the force required to restore a proofmass subjected to inertial forces to a null position with electrostatic counterbalancing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/0802—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P15/00—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
- G01P15/02—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
- G01P15/08—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
- G01P15/125—Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/028—Electrodynamic magnetometers
- G01R33/0286—Electrodynamic magnetometers comprising microelectromechanical systems [MEMS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/20—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
Definitions
- the present invention relates to an acceleration sensor, and more particularly, to a MEMS (Micro Electro Mechanical Systems) capacitive acceleration sensor.
- MEMS Micro Electro Mechanical Systems
- Reflective seismic exploration sensors for exploring oil, natural gas, etc. are scattered so that many sensors are arranged in a predetermined two-dimensional arrangement on the ground surface where the resources are expected to be buried. After being installed, an artificial earthquake is generated and the reflected wave reflected by the strata is regarded as acceleration. It is used for purposes such as analyzing acceleration data received simultaneously by two-dimensionally arranged sensor groups and examining the state of the formation to determine the presence or absence of resources such as oil and natural gas. Acceleration sensor for reflection seismic exploration sensor is necessary to control a large number of sensors simultaneously with low noise that enables detection of small acceleration signals with much less noise than other sensors. Compatibility with low power consumption is required.
- sampling noise (kT / C noise, k is Boltzmann's constant) is generated by switching operation for switching, and noise density increases. This is an inevitable principle phenomenon. This leads to increased sensor noise.
- An object of the present invention is to solve the problems caused by the time division processing method as described above, and to provide an acceleration sensor that realizes a simultaneous operation method of signal detection and servo control instead of this time division processing method. It is to realize an acceleration sensor with low power consumption and low noise.
- the emphasis is on compensating for the mismatch of capacitance values between MEMS capacitive elements so that it can be realized even in a MEMS process with large manufacturing variations.
- effects such as (1) a low-cost MEMS process using an inexpensive manufacturing apparatus can be applied, and (2) the yield of the MEMS sensor is improved, and it is considered that mass productivity can be improved.
- a MEMS capacitive acceleration sensor includes a first MEMS capacitance pair for signal detection, and the first capacitance pair connected to one electrode, and the first MEMS.
- a second MEMS capacitor pair for servo control to which a servo voltage for generating a force opposite to the acceleration detection signal by the capacitor pair is applied, the first MEMS capacitor pair, and the second MEMS capacitor pair are connected to each other.
- a charge amplifier for connecting a charge change on the weight to a voltage change, an A / D converter for digitizing a voltage change signal of the charge amplifier output, and the A / D conversion A 1-bit quantizer that quantizes a servo value that is generated from the output of the measuring device to generate a force in the direction opposite to the displacement of the weight due to the acceleration, and the 1-bit quantization Is converted to an analog servo voltage and applied to the second MEMS capacitor pair, and the correlation between the output of the A / D converter and the output of the 1-bit quantizer
- the influence of the capacitance value mismatch ⁇ C is based on the output of the correlation detection unit.
- a MEMS capacitive acceleration sensor includes a first MEMS capacitance pair for signal detection, and one electrode of the first capacitance pair connected to each other on the positive side. And a second MEMS capacitor pair for servo control to which a servo voltage for generating a force opposite to the acceleration detection signal by the first MEMS capacitor pair is applied.
- the third MEMS capacitor pair and one electrode of the third capacitor pair are connected to each other to form a negative weight (movable electrode portion), and the force in the direction opposite to the acceleration detection signal by the third MEMS capacitor pair
- a fourth MEMS capacitor pair for servo control to which a servo voltage is applied, and a first charge amplifier connected to the positive weight and converting a charge change on the positive weight into a voltage change
- the negative side A second charge amplifier that is connected to a weight and converts a charge change on the negative weight to a voltage change; and an A / A that digitizes a voltage change signal of a differential output of the first and second charge amplifiers.
- a D-converter a 1-bit quantizer that quantizes a servo value that is generated from an output of the A / D converter and generates a force opposite to the displacement of the weight due to the acceleration into 1 bit, and the 1 A 1-bit D / A converter that converts an output of the bit quantizer into an analog servo voltage and applies the analog servo voltage to the second MEMS capacitor pair and the fourth MEMS capacitor pair; an output of the A / D converter; A correlation detector that outputs a signal proportional to the mismatch ⁇ C of capacitance values between the second MEMS capacitor pair and the fourth MEMS capacitor pair by correlating with the output of the 1-bit quantizer; and the correlation detector Based on the output of A control unit that outputs a differential capacitance control value that cancels out the influence of the capacitance value mismatch ⁇ C on the input nodes of the first and second charge amplifiers; and an output of the 1-bit quantizer is an amplitude of the servo voltage.
- a first variable capacitance unit that is inserted between an output node of a driver that outputs a voltage amplitude that is more suppressed and an input node of the first charge amplifier, and controls a capacitance according to a differential capacitance control value of an output of the control unit And between the output node of the driver that outputs the output of the 1-bit quantizer to a voltage amplitude that is less than the amplitude of the servo voltage and the input node of the second charge amplifier, And a second variable capacitance section that controls the capacitance according to the differential capacitance control value.
- a typical effect of the invention disclosed in the present application is that an acceleration sensor that realizes a simultaneous operation method of signal detection and servo control instead of the time division processing method can be provided even in a MEMS process having a large manufacturing variation.
- FIG. 3 is a first diagram illustrating in detail the configuration of a correlation detection unit, a control unit, and a variable capacitance unit of the acceleration sensor of the present invention.
- FIG. 3 is a second diagram illustrating in detail the configuration of the correlation detection unit, the control unit, and the variable capacitance unit of the acceleration sensor of the present invention.
- FIG. 4 is a third diagram illustrating in detail the configuration of the correlation detection unit, the control unit, and the variable capacitance unit of the acceleration sensor of the present invention.
- FIG. 7 is a diagram (part 4) illustrating in detail the configuration of the correlation detection unit, the control unit, and the variable resistance unit of the acceleration sensor of the present invention.
- FIG. 9 is a diagram (part 5) illustrating in detail the configuration of the correlation detection unit, the control unit, and the variable capacitance unit of the acceleration sensor of the present invention.
- FIG. 6 is a sixth diagram illustrating in detail the configuration of the correlation detection unit, the control unit, and the variable resistance unit of the acceleration sensor according to the present invention.
- FIG. 7 is a seventh diagram illustrating in detail the configuration of the correlation detection unit, the control unit, and the variable capacitance unit of the acceleration sensor according to the present invention. It is drawing which shows the structural example of the digital control voltage divider in FIG.
- the constituent elements are not necessarily indispensable unless otherwise specified and apparently essential in principle. Needless to say.
- the shapes, positional relationships, etc. of the components, etc. when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
- FIG. 1 is a diagram illustrating an example of a configuration of an acceleration sensor.
- the acceleration sensor has a mechanical part made up of MEMS (Micro Electro Mechanical Systems) and a circuit part made up of ASIC (Application Specific Integrated Circuit).
- MEMS Micro Electro Mechanical Systems
- ASIC Application Specific Integrated Circuit
- this acceleration sensor is not limited to this, for example, as a reflection seismic exploration sensor for exploring oil and natural gas, it is a MEMS capacitance type sensor that detects vibration acceleration that is extremely minute than gravity. Used for acceleration sensors.
- the MEMS includes a signal detection capacitor pair 101a and 101b and a servo control capacitor pair 102a and 102b.
- One electrode of each of these four capacitors is mechanically and electrically connected to each other, and forms one weight (movable electrode portion) 100.
- the weight is connected to the inverting input terminal of the operational amplifier 103 a constituting the charge amplifier 103.
- the charge amplifier 103 includes an operational amplifier 103a, a feedback capacitor 103b, and a feedback resistor 103c.
- a bias voltage V B is connected to the non-inverting input terminal of the operational amplifier 103a.
- V B may or may not be a ground potential.
- the output of the charge amplifier 103 (that is, the output of the operational amplifier 103a) is input to the amplifier 104, the output of the amplifier 104 is input to the analog filter 105, and the output of the analog filter 105 is input to the A / D converter 106.
- the output of the A / D converter 106 is input to the demodulator 107.
- the demodulator 107 also receives a modulation clock.
- the output of the demodulator 107 is input to the servo control unit 108, the output of the servo control unit 108 is input to the 1-bit quantizer 109, and the output of the 1-bit quantizer 109 is input to the 1-bit D / A converter 110. Is done.
- the differential output of the 1-bit D / A converter 110 is connected to the electrodes (electrodes on the non-weight side) of the servo control capacitor pairs 102a and 102b.
- the modulation clock and its inverted clock are input to the signal detection capacitor pair drivers 112a and 112b, respectively, and their outputs are the electrodes of the signal detection capacitor pairs 101a and 101b (non-weight electrodes), respectively.
- the output of the A / D converter 106 is also input to the correlation detection unit 113, and the output of the 1-bit quantizer 109 is also input to the correlation detection unit 113.
- the output of the correlation detector 113 is input to the controller 114, and the output of the controller 114 controls the capacitance value of the variable capacitor 115 as a control signal.
- the output of the 1-bit quantizer 109 is also input to the variable capacitor driver 116, and the output of the variable capacitor driver 116 is connected to one terminal of the variable capacitor unit 115.
- the other terminal of the variable capacitor 115 is connected to the weight (movable electrode) 100 (that is, the inverting input terminal of the operational amplifier 103a).
- the output of the 1-bit quantizer 109 is input to the digital low-pass filter 111, and the output of the digital low-pass filter 111 becomes an output as an acceleration sensor.
- the ASIC is from the charge amplifier 103 to the 1-bit D / A converter 110.
- the variable capacitor 115 is also mounted in the ASIC.
- the weight 100 is displaced to the right, the movable electrode of the signal detection capacitor 101b (i.e., the weight 100) the distance between the fixed electrode becomes narrower + [Delta] C D capacity become change value, the movable electrode of the signal detection capacitor 101a (i.e., the weight 100) the capacitance change value of -DerutaC D the distance between the fixed electrode becomes wider.
- the direction and amount of application of acceleration can be detected based on the capacitance change values (+ ⁇ C D , ⁇ C D ) in the signal detection capacitor pairs 101a and 101b.
- the pair structure of the detection capacitor pair 101a and 101b is a structure for various known purposes although details are not described, such as to cancel the in-phase component of the capacitance value.
- the above description and the structure of the MEMS shown in FIG. 1 are parallel plate capacitors for convenience of explanation, the same mechanism is established even with other types of capacitors. Therefore, the present invention is not limited to the parallel plate capacitance type MEMS.
- a modulation clock voltage and its inverted clock voltage are applied to the detection capacitor pair 101a and 101b via signal detection capacitor pair drivers 112a and 112b, respectively. Accordingly, the capacitance change of the [Delta] C D is converted into a charge change. This charge change is converted into a voltage change by the first stage charge amplifier 103 in the ASIC.
- the charge amplifier 103 has a configuration of a so-called capacitive operational amplifier inverting amplifier.
- the input capacitance is a MEMS-side signal detection capacitance pair 101a, 101b
- the feedback capacitance is an ASIC-side feedback capacitance 103b.
- a high-resistance feedback resistor 103c is inserted in parallel with the feedback path.
- the signal converted into a voltage by the charge amplifier 103 is amplified by the amplifier 104, noise and unnecessary signal components are suppressed by the analog filter 105, and converted to a digital value by the A / D converter 106.
- the demodulator 107 is a two-input digital multiplier, and performs synchronous detection on the modulation clock by multiplying the output of the A / D converter 106 and the modulation clock. As a result, a value proportional to the displacement of the weight 100 is obtained at the output of the demodulator 107.
- the servo control unit 108 receives the displacement value of the weight 100 demodulated by the demodulator 107, determines a servo value that generates a force in the direction opposite to the detection signal based on this value, and determines a 1-bit quantizer 109 is a circuit to output to 109. In particular, for example, control may be performed such that the displacement of the weight 100 becomes zero by including digital integration calculation in the signal processing in the servo control unit 108.
- phase compensation may be performed by including differential (or difference) calculation in the signal processing in the servo control unit 108, and the servo control loop may be stabilized. In this case, general PID control theory can be applied.
- the 1-bit quantizer 109 quantizes the servo value determined and output by the servo control unit 108 into 1 bit. For example, if the input of the 1-bit quantizer 109 is 0 or more, +1 is output, and if the input is negative, -1 is output.
- the 1-bit D / A converter 110 receives the 1-bit digital value ( ⁇ 1) quantized by the 1-bit quantizer 109 and inputs the digital value to an analog voltage (for example, ⁇ 5 V or 10 V / 0V), and this analog voltage is applied to the fixed electrodes of the servo control capacitor pair 102a, 102b. Thereby, an electrostatic force in the direction opposite to the detected acceleration signal can be applied to the weight 100.
- the 1-bit quantizer 109 In the steady state, the net force acting on the weight 100 and the displacement of the weight 100 are almost zero.
- the 1-bit quantizer 109 By inserting the 1-bit quantizer 109 in this way, the subsequent D / A converter can be used as the 1-bit D / A converter 110. Since the 1-bit D / A converter is easy to implement in terms of circuitry, it is advantageous for reducing power consumption. Furthermore, the servo control capacitor can be simplified.
- the output of the 1-bit quantizer 109 is suppressed by the digital low-pass filter 111 from high-frequency components (that is, quantization errors that are noise-shaped (diffused) on the high-frequency side by servo loop sigma delta control).
- the final acceleration sensor output can be low noise. With this configuration, this acceleration sensor performs signal detection and servo control simultaneously.
- the correlation detector 113 further correlates the output signal of the A / D converter 106 and the output signal of the 1-bit quantizer 109. This is for detecting a capacitance value mismatch ⁇ C between the servo control capacitance pairs 102a and 102b.
- ⁇ C capacitance value mismatch
- a servo leak signal proportional to ⁇ C is generated at the output of the charge amplifier 103, and then amplified by the amplifier 104, the high frequency component is somewhat suppressed by the analog filter 105, and a digital value is obtained by the A / D converter 106.
- the servo leak signal has almost the same waveform as the output signal of the 1-bit quantizer 109. That is, the servo leak signal is proportional to ⁇ C and has the same waveform as the output signal of the 1-bit quantizer 109. Focusing on this fact, for example, a servo leak signal included in the output of the A / D converter 106 can be detected.
- the correlation detection unit 113 correlates the output signal of the A / D converter 106 with the output signal of the 1-bit quantizer 109.
- the output of the correlation detection unit 113 can include a direct current or low frequency signal proportional to the ⁇ C. Therefore, the subsequent control unit 114 performs a digital integration calculation or a phase compensation calculation as necessary on the output signal of the correlation detection unit 113 to determine and output a capacitance control value.
- This capacity control value is a digital value, and thereby the capacity value of the variable capacity unit 115 is controlled.
- the variable capacitor 115 is intended to cancel the influence of ⁇ C on the input node of the charge amplifier 103 (that is, the inverting input terminal node of the operational amplifier 103a).
- a capacity having the same capacity value as the mismatch ⁇ C of the servo control capacity pairs 102 a and 102 b may be inserted between the node and one of the outputs of the 1-bit D / A converter 110.
- this method has two problems.
- the output of the 1-bit D / A converter 110 has a high voltage amplitude of about 10 V
- the voltage amplitude level is temporarily input to the variable capacitor unit 115 mounted in the ASIC. Therefore, the waveform is clipped by the electrostatic breakdown protection element (ESD element) connected to the input terminal of the ASIC for that purpose, and a desired voltage is not transmitted to the variable capacitor 115 after all.
- ESD element electrostatic breakdown protection element
- a low-voltage semiconductor process is applied to the ASIC to reduce power consumption. Therefore, the input voltage range in which the clipping does not occur is smaller than the output amplitude of the 1-bit D / A converter 110. Therefore, the above waveform clipping occurs.
- the lower end of the variable capacitance unit 115 is connected not to the output of the 1-bit D / A converter 110 but to the output of the variable capacitance driver 116.
- the output of the 1-bit D / A converter 110 has a high voltage amplitude (for example, ⁇ 5 V or 10 V / 0 V) to generate a sufficient electrostatic force, but the variable capacity driver 116 is inserted.
- the output signal of the variable capacitor driver 116 has the same waveform as the output signal of the 1-bit D / A converter 110 (that is, both have the same waveform as the output signal of the 1-bit quantizer 109), but the output amplitude Gives you the freedom to make
- the output voltage amplitude of the 1-bit D / A converter 110 is ⁇ V
- the output amplitude of the variable capacitance driver 116 is V / ⁇ ( ⁇ > 1)
- the capacitance value is ⁇ C, which can be multiplied by ⁇ . That is, the capacity value accuracy can be increased by ⁇ times.
- a capacitive MEMS acceleration sensor with low noise and low power consumption can be realized even if a MEMS process with large manufacturing variations is used.
- the servo leak signal can be canceled out by a digital operation subject that is easy to mount, and a dedicated A / D converter is not required.
- FIG. 3 shows a third embodiment of the present invention. Since the basic part of this embodiment is the same as that of the first embodiment, differences from the first embodiment will be described.
- correlation detection section 113 is connected to the output of amplifier 104 instead of the output of A / D converter 106 as in the first embodiment. Therefore, the correlation detection unit 113 detects the servo leak signal included in the output of the amplifier 104 by correlating with the output signal of the 1-bit quantizer 109. Therefore, the delay amount of the servo leak signal is smaller than in the first embodiment, and the parameter design of the control unit 114 is facilitated.
- the output waveform of the 1-bit D / A converter 110 can be simulated by making the delay unit 417 a primary low-pass filter having a similar time constant. Thereby, the servo leak signal disclosed in the first embodiment can be canceled more completely.
- ⁇ Effect of Example 4 As described above, according to the acceleration sensor of the fourth embodiment, signal detection and servo control are performed at the same time, and the servo leak signal accompanying the capacitance mismatch of the MEMS capacitive element can be canceled with high accuracy. It is possible to prevent noise increase and illegal oscillation accompanying the signal. For this reason, a capacitive MEMS acceleration sensor with low noise and low power consumption can be realized even if a MEMS process with large manufacturing variations is used. Since the delay compensation of the 1-bit D / A converter is performed by the delay unit, the servo leak signal can be canceled with higher accuracy.
- FIG. 5 is a diagram illustrating an example of the configuration of the acceleration sensor. This corresponds to the case where the first embodiment of the present invention has a “differential MEMS” configuration.
- the acceleration sensor has a mechanical part made up of MEMS (Micro Electro Mechanical Systems) and a circuit part made up of ASIC (Application Specific Integrated Circuit).
- MEMS Micro Electro Mechanical Systems
- ASIC Application Specific Integrated Circuit
- this acceleration sensor is not limited to this, for example, as a reflection seismic exploration sensor for exploring oil and natural gas, it is a MEMS capacitance type sensor that detects vibration acceleration that is extremely minute than gravity. Used for acceleration sensors.
- the MEMS includes positive-side signal detection capacitor pairs 501a and 501b, negative-side signal detection capacitor pairs 501c and 501d, positive-side servo control capacitor pairs 502a and 502b, and negative-side servo control capacitor pairs 502c and 502d.
- One electrode of these four capacitors 501a, 501b, 502a, and 502b is mechanically and electrically connected to each other to form a positive weight (movable electrode portion) 500a.
- One electrode of each of the four capacitors 501c, 501d, 502c, and 502d is mechanically and electrically connected to each other, and forms a negative weight (movable electrode portion) 500b.
- the positive weight 500 a is connected to the inverting input terminal of the operational amplifier 503 a constituting the differential charge amplifier 503.
- the positive side of the differential charge amplifier 503 includes an operational amplifier 503a, a feedback capacitor 503b, and a feedback resistor 503c.
- a bias voltage V B is connected to the non-inverting input terminal of the operational amplifier 503a. V B may or may not be a ground potential.
- the negative side of the differential charge amplifier 503 includes an operational amplifier 503d, a feedback capacitor 503e, and a feedback resistor 503f.
- the differential output of the differential charge amplifier 503 (that is, the output of the operational amplifier 503a and the output of the operational amplifier 503d) is input to the differential amplifier 504, and the output of the differential amplifier 504 is input to the differential analog filter 505.
- the output of the filter 505 is input to the differential A / D converter 506.
- the output of the differential A / D converter 506 is input to the demodulator 507.
- the demodulator 507 also receives a modulation clock.
- the output of the demodulator 507 is input to the servo control unit 508, the output of the servo control unit 508 is input to the 1-bit quantizer 509, and the output of the 1-bit quantizer 509 is input to the 1-bit D / A converter 510. Is done.
- the positive side of the differential output of the 1-bit D / A converter 510 is connected to the electrodes of the positive servo control capacitor 502a and the negative servo control capacitor 502c (non-weight side electrodes).
- the negative side of the differential output of the 1-bit D / A converter 510 is connected to the electrodes of the positive servo control capacitor 502b and the negative servo control capacitor 502d (non-weight side electrodes).
- the modulation clock and its inverted clock are respectively input to signal detection capacitor pair drivers 512a and 512b, and the output of the signal detection capacitor pair driver 512a is a positive signal detection capacitor 501a and a negative signal.
- the output of the signal detection capacitor pair driver 512b is applied to the electrode of the detection capacitor 501d (the electrode on the non-weight side), and the electrode of the positive signal detection capacitor 501b and the negative signal detection capacitor 501c (the electrode on the non-weight side). ).
- the output of the differential A / D converter 506 is also input to the correlation detector 513, and the output of the 1-bit quantizer 509 is also input to the correlation detector 513.
- the output of the correlation detector 513 is input to the controller 514, and the differential output of the controller 514 controls the capacitance values of the variable capacitors 515a and 515b as control signals.
- the output of the 1-bit quantizer 509 is also input to the variable capacitor driver 516, and the output of the variable capacitor driver 516 is connected to one terminal of the variable capacitor unit 515a and one terminal of the variable capacitor unit 515b.
- the other terminal of the variable capacitor section 515a is connected to a positive weight (movable electrode section) 500a (that is, the inverting input terminal of the operational amplifier 503a), and the other terminal of the variable capacitor section 515b is a negative weight (movable electrode). Electrode section) 500b (that is, the inverting input terminal of the operational amplifier 503d). Further, the output of the 1-bit quantizer 509 is input to the digital low-pass filter 511, and the output of the digital low-pass filter 511 becomes an output as an acceleration sensor.
- the ASIC is from the differential charge amplifier 503 to the 1-bit D / A converter 510.
- the variable capacitance units 515a and 515b are also mounted in the ASIC.
- the movable electrode of the negative signal detection capacitance 501d i.e., the weight 500b
- the movable electrode of the negative signal detection capacitance 501d i.e., the weight 500b
- the movable electrode side signal detection capacitance 501c i.e., the weight 500b
- the distance between the fixed electrode becomes wider.
- the direction and amount of application of acceleration can also be detected based on such capacitance change values (+ ⁇ C D , ⁇ C D ) in the negative side signal detection capacitance pair 501c, 501d.
- the positive detection capacitance pair 501a and 501b and the negative detection capacitance pair 501c and 501d are not described in detail for the purpose of canceling the in-phase component of the capacitance value.
- the structure for the structure.
- the above description and the structure of the MEMS shown in FIG. 5 are parallel plate capacitors for convenience of explanation, the same mechanism is established even with other types of capacitors. Therefore, the present invention is not limited to the parallel plate capacitance type MEMS.
- the modulation clock voltage and its inverted clock voltage are applied to the positive detection capacitance pair 501a and 501b via the signal detection capacitance pair drivers 512a and 512b, respectively. Accordingly, the positive detection capacitance pair 501a, capacitance change [Delta] C D of 501b is converted into electric charge changes.
- the inverted clock voltage and the modulation clock voltage are applied to the negative detection capacitance pair 501c and 501d via the signal detection capacitance pair drivers 512b and 512a, respectively.
- the clock application method is inverted between the positive side detection capacitor pair and the negative side detection capacitor pair.
- the input capacitance is a positive-side signal detection capacitance pair 501a, 501b on the MEMS side
- the feedback capacitance is a feedback capacitance 503b on the ASIC side.
- a high-resistance feedback resistor 503c is inserted in parallel with the feedback path. The reason is to secure a direct current feed path that compensates for the input leakage current of the operational amplifier 503a.
- a countermeasure using a reset switch for the feedback resistor 503c is conventionally known, but in that case, there is a problem that the noise density of the sampling noise by the reset switch is high.
- the thermal noise caused by the high resistance feedback resistor 503c used in this method is sufficiently suppressed near the desired frequency (ie, the frequency of the modulation clock) due to the low-pass filter characteristics of the feedback resistor 503c and the feedback capacitor 503b. Absent.
- the input capacitance is the MEMS side negative signal detection capacitance pair 501c, 501d
- the feedback capacitance is the ASIC-side feedback capacitance 503e.
- a high-resistance feedback resistor 503f is inserted in parallel with the feedback path. The reason is as described above.
- the signal converted into the differential voltage by the differential charge amplifier 503 is amplified by the differential amplifier 504, noise and unnecessary signal components are suppressed by the differential analog filter 505, and a digital value is obtained by the differential A / D converter 506.
- Is converted to The demodulator 507 is a two-input digital multiplier, and performs synchronous detection on the modulation clock by multiplying the output of the A / D converter 506 and the modulation clock. As a result, a value proportional to the displacement of the weights 500a and 500b is obtained at the output of the demodulator 507.
- This series of modulation / demodulation processing is equivalent to a so-called “chopper method”, and thus, a large 1 / D that occurs in the differential charge amplifier 503, differential amplifier 504, differential analog filter 505, and differential A / D converter 506. f The influence of noise can be avoided.
- the servo control unit 508 receives the displacement values of the weights 500a and 500b demodulated by the demodulator 507 as input, determines a servo value that generates a force in the direction opposite to the detection signal based on these values, and determines 1 bit.
- This circuit outputs to the quantizer 509.
- control may be performed so that the displacement of the weights 500a and 500b becomes zero by including digital integration calculation in the signal processing in the servo control unit 508.
- phase compensation may be performed by including differentiation (or difference) calculation in the signal processing in the servo control unit 508, and the servo control loop may be stabilized. In this case, general PID control theory can be applied.
- the 1-bit quantizer 509 quantizes the servo value determined and output by the servo control unit 508 into 1 bit. For example, if the input of the 1-bit quantizer 509 is 0 or more, +1 is output, and if the input is negative, -1 is output.
- the 1-bit D / A converter 510 receives the 1-bit digital value ( ⁇ 1) quantized by the 1-bit quantizer 509 and inputs the digital value to an analog voltage (for example, ⁇ 5V or 10V / 0V).
- the positive-side output voltage of the 1-bit D / A converter 510 is applied to the fixed electrodes of the positive-side servo control capacitor pair 502 a and the negative-side servo control capacitor pair 502 c, while the 1-bit D / A converter 510
- the negative output voltage is applied to the fixed electrodes of the positive servo control capacitor pair 502b and the negative servo control capacitor pair 502d.
- an electrostatic force in a direction opposite to the detected acceleration signal can be applied to the weights 500a and 500b.
- the output of the 1-bit D / A converter 510 is applied to the servo control capacitor “in phase” with respect to the “differential MEMS” structure.
- the output of the 1-bit quantizer 509 is suppressed by the digital low-pass filter 511, the high-frequency component (that is, the quantization error that is noise-shaped (spread) on the high-frequency side by the sigma-delta control of the servo loop) is suppressed.
- the final acceleration sensor output can be low noise.
- a servo leak signal proportional to ⁇ C is generated at the output of the differential charge amplifier 503, and then amplified by the differential amplifier 504, and the high frequency component is somewhat suppressed by the differential analog filter 505, and the differential A
- the digital value is converted by the / D converter 506.
- the positive-side servo control capacitance pair 502a and 502b and the negative-side servo control capacitance pair 502c and 502d have the same waveform as the output signal of the 1-bit quantizer 509 via the 1-bit D / A converter 510, and Since the inverted waveform is applied differentially, the servo leak signal has substantially the same waveform as the output signal of the 1-bit quantizer 509.
- the servo leak signal is proportional to ⁇ C and has the same waveform as the output signal of the 1-bit quantizer 509. Focusing on this fact, for example, a servo leak signal included in the output of the differential A / D converter 506 can be detected. Therefore, as described above, the output signal of the differential A / D converter 506 is correlated with the output signal of the 1-bit quantizer 509 in the correlation detection unit 513. As a result, the output of the correlation detector 513 can include a direct current or low frequency signal proportional to the ⁇ C.
- the subsequent control unit 514 performs a digital integration calculation or a phase compensation calculation as necessary on the output signal of the correlation detection unit 513 to determine and output a differential capacitance control value.
- This differential capacitance control value is a digital value, and thereby the capacitance values of the variable capacitance units 515a and 515b are controlled.
- the differential capacitance control values may be complementary to each other (that is, the signs are opposite and have the same magnitude).
- the variable capacitors 515a and 515b are intended to cancel the influence of ⁇ C on the differential input node of the differential charge amplifier 503 (that is, the inverting input terminal node of the operational amplifier 503a and the inverting input terminal node of the operational amplifier 503d).
- the capacity of the positive side servo control capacity pair 502a, 502b and the negative side servo control capacity pair 502c, 502d having the same capacity value as the mismatch ⁇ C is output from the node and the 1-bit D / A converter 510. It is also possible to insert between the two. However, this method has two problems.
- the output of the 1-bit D / A converter 510 has a high voltage amplitude of about 10 V, it is assumed that this voltage amplitude level is input as it is to the variable capacitors 515a and 515b mounted in the ASIC.
- the waveform is clipped by the electrostatic breakdown protection element (ESD element) connected to the input terminal of the ASIC for that purpose, so that a desired voltage is not transmitted to the variable capacitance units 515a and 515b.
- ESD element electrostatic breakdown protection element
- a low-voltage semiconductor process is applied to the ASIC to reduce power consumption. Therefore, the input voltage range in which the clipping does not occur is smaller than the output amplitude of the 1-bit D / A converter 510. Therefore, the above waveform clipping occurs.
- the capacitance values of the positive servo control capacitance pair 502a and 502b and the negative servo control capacitance pair 502c and 502d are 5 pF.
- the lower ends of the variable capacitance units 515a and 515b are connected to the output of the variable capacitance driver 516 instead of the output of the 1-bit D / A converter 510.
- the output of the 1-bit D / A converter 510 has a high voltage amplitude (for example, ⁇ 5V or 10V / 0V) in order to generate a sufficient electrostatic force, but by inserting the capacitor driver 516,
- the output signal of the capacitor driver 516 has the same waveform as the output signal of the 1-bit D / A converter 510 (that is, both have the same waveform as the output signal of the 1-bit quantizer 509), but the output amplitude is reduced. The freedom to do is born.
- the “differential MEMS” structure disclosed in the present embodiment has three major advantages. First, since the signal amount is doubled with respect to the same acceleration signal, the circuit noise can be allowed twice, that is, the power consumption of the circuit can be theoretically reduced to 1 ⁇ 4. Second, since it is not affected by the common-mode noise of the circuit (power supply noise such as a differential charge amplifier), the noise can be reduced.
- ⁇ C capacity value of positive servo control capacitance 502a + capacity value of negative servo control capacitance 502d ⁇ positive servo control
- Capacity value of the capacitor 502b for use minus the capacity value of the negative-side servo control capacitor 502c these changes cancel each other and are not affected. That is, in the case of the differential MEMS structure, ⁇ C can be regarded as a static value determined by the initial MEMS manufacturing variation. Therefore, the bandwidth of the MEMS capacitance compensation loop can be narrowed, and the design of the control unit 514 is facilitated. As a result, noise can be further reduced.
- FIG. 7 shows a seventh embodiment of the present invention. Since the basic part of this embodiment is the same as that of the fifth embodiment, differences from the fifth embodiment will be described.
- a delay unit 717 is inserted between the variable capacitance driver 516 and the variable capacitance units 515a and 515b.
- the purpose of this delay unit 717 is to simulate a response delay resulting from the limit of the driving capability of the 1-bit D / A converter 510.
- the response delay of the 1-bit D / A converter 510 is determined by a time constant that is the product of the output resistance and the capacitance values of the positive-side servo control capacitors 502a and 502b and the negative-side servo control capacitors 502c and 502d. Low pass filter characteristics.
- the output waveform of the 1-bit D / A converter 510 can be simulated by making the delay unit 717 a primary low-pass filter having a similar time constant. Thereby, the servo leak signal disclosed in the fifth embodiment can be canceled more completely.
- ⁇ Effect of Example 7 As described above, according to the acceleration sensor in the seventh embodiment, signal detection and servo control are performed at the same time, and the servo leak signal due to the capacitance mismatch of the MEMS capacitive element can be canceled with high accuracy. It is possible to prevent noise increase and illegal oscillation accompanying the signal. For this reason, a capacitive MEMS acceleration sensor with low noise and low power consumption can be realized even if a MEMS process with large manufacturing variations is used. Since the delay compensation of the 1-bit D / A converter is performed by the delay unit, the servo leak signal can be canceled with higher accuracy.
- FIG. 9 is a diagram illustrating an example of the configuration of the acceleration sensor.
- the MEMS capacitor is compensated by using a variable resistance unit and not by the first stage charge amplifier but by the next stage amplifier.
- the acceleration sensor has a mechanical part made up of MEMS (Micro Electro Mechanical Systems) and a circuit part made up of ASIC (Application Specific Integrated Circuit).
- MEMS Micro Electro Mechanical Systems
- ASIC Application Specific Integrated Circuit
- this acceleration sensor is not limited to this, for example, as a reflection seismic exploration sensor for exploring oil and natural gas, it is a MEMS capacitance type sensor that detects vibration acceleration that is extremely minute than gravity. Used for acceleration sensors.
- the MEMS includes a signal detection capacitor pair 101a and 101b and a servo control capacitor pair 102a and 102b.
- One electrode of these four capacitors is mechanically and electrically connected to each other, and forms one weight (movable electrode portion) 100.
- the weight is connected to the inverting input terminal of the operational amplifier 103 a constituting the charge amplifier 103.
- the charge amplifier 103 includes an operational amplifier 103a, a feedback capacitor 103b, and a feedback resistor 103c.
- a bias voltage V B is connected to the non-inverting input terminal of the operational amplifier 103a.
- V B may or may not be a ground potential.
- the output of the charge amplifier 103 (that is, the output of the operational amplifier 103a) is input to the amplifier 904.
- the amplifier 904 is a resistance feedback type operational amplifier inverting amplifier circuit, and includes an operational amplifier 904a, an input resistor 904b, and a feedback resistor 904c.
- a bias voltage V B is connected to the non-inverting input terminal of the operational amplifier 904a. V B may or may not be a ground potential.
- the output of the amplifier 904 (that is, the output of the operational amplifier 904a) is input to the analog filter 105, and the output of the analog filter 105 is input to the A / D converter 106.
- the output of the A / D converter 106 is input to the demodulator 107.
- the demodulator 107 also receives a modulation clock.
- the output of the demodulator 107 is input to the servo control unit 108, the output of the servo control unit 108 is input to the 1-bit quantizer 109, and the output of the 1-bit quantizer 109 is input to the 1-bit D / A converter 110. Is done.
- the differential output of the 1-bit D / A converter 110 is connected to the electrodes (electrodes on the non-weight side) of the servo control capacitor pairs 102a and 102b.
- the modulation clock and its inverted clock are input to the signal detection capacitor pair drivers 112a and 112b, respectively, and their outputs are the electrodes of the signal detection capacitor pairs 101a and 101b (non-weight electrodes), respectively.
- the output of the A / D converter 106 is also input to the correlation detection unit 113, and the output of the 1-bit quantizer 109 is also input to the correlation detection unit 113.
- the output of the correlation detection unit 113 is input to the control unit 114, and the output of the control unit 114 controls the resistance value of the variable resistance unit 915 as a control signal.
- the output of the 1-bit quantizer 109 is also input to the driver 916, the output of the driver 916 is input to the delay unit 917, and the output of the delay unit 917 is connected to one terminal of the variable resistor unit 915.
- the other terminal of the variable resistor unit 915 is connected to the inverting input terminal node of the operational amplifier 904a.
- the output of the 1-bit quantizer 109 is input to the digital low-pass filter 111, and the output of the digital low-pass filter 111 becomes an output as an acceleration sensor.
- the ASIC is from the charge amplifier 103 to the 1-bit D / A converter 110.
- the movable electrode of the signal detection capacitor 101b i.e., the weight 100
- the movable electrode of the signal detection capacitor 101a i.e., the weight 100
- the capacitance change value of -DerutaC D the distance between the fixed electrode becomes wider.
- the direction and amount of application of acceleration can be detected based on the capacitance change values (+ ⁇ C D , ⁇ C D ) in the signal detection capacitor pairs 101a and 101b.
- the pair structure of the detection capacitor pair 101a and 101b is a structure for various known purposes although details are not described, such as to cancel the in-phase component of the capacitance value.
- the above description and the configuration of the MEMS shown in FIG. 9 are parallel plate capacitors for convenience of explanation, the same mechanism is established even with other types of capacitors. Therefore, the present invention is not limited to the parallel plate capacitance type MEMS.
- a modulation clock voltage and its inverted clock voltage are applied to the detection capacitor pair 101a and 101b via signal detection capacitor pair drivers 112a and 112b, respectively. Accordingly, the capacitance change of the [Delta] C D is converted into a charge change. This charge change is converted into a voltage change by the first stage charge amplifier 103 in the ASIC.
- the charge amplifier 103 has a configuration of a so-called capacitive operational amplifier inverting amplifier.
- the input capacitance is a MEMS-side signal detection capacitance pair 101a, 101b
- the feedback capacitance is an ASIC-side feedback capacitance 103b.
- a high-resistance feedback resistor 103c is inserted in parallel with the feedback path.
- the signal converted into the voltage by the charge amplifier 103 is amplified by the amplifier 904, noise and unnecessary signal components are suppressed by the analog filter 105, and converted to a digital value by the A / D converter 106.
- the demodulator 107 is a two-input digital multiplier, and performs synchronous detection on the modulation clock by multiplying the output of the A / D converter 106 and the modulation clock. As a result, a value proportional to the displacement of the weight 100 is obtained at the output of the demodulator 107.
- the servo control unit 108 receives the displacement value of the weight 100 demodulated by the demodulator 107, determines a servo value that generates a force in the direction opposite to the detection signal based on this value, and determines a 1-bit quantizer 109 is a circuit to output to 109. In particular, for example, control may be performed such that the displacement of the weight 100 becomes zero by including digital integration calculation in the signal processing in the servo control unit 108.
- phase compensation may be performed by including differential (or difference) calculation in the signal processing in the servo control unit 108, and the servo control loop may be stabilized.
- general PID control theory can be applied.
- the 1-bit quantizer 109 quantizes the servo value determined and output by the servo control unit 108 into 1 bit. For example, if the input of the 1-bit quantizer 109 is 0 or more, +1 is output, and if the input is negative, -1 is output.
- the 1-bit D / A converter 110 receives the 1-bit digital value ( ⁇ 1) quantized by the 1-bit quantizer 109 and inputs the digital value to an analog voltage (for example, ⁇ 5 V or 10 V / 0V), and this analog voltage is applied to the fixed electrodes of the servo control capacitor pair 102a, 102b. Thereby, an electrostatic force in the direction opposite to the detected acceleration signal can be applied to the weight 100.
- the 1-bit quantizer 109 In the steady state, the net force acting on the weight 100 and the displacement of the weight 100 are almost zero.
- the 1-bit quantizer 109 By inserting the 1-bit quantizer 109 in this way, the subsequent D / A converter can be used as the 1-bit D / A converter 110. Since the 1-bit D / A converter is easy to implement in terms of circuitry, it is advantageous for reducing power consumption. Furthermore, the servo control capacitor can be simplified.
- the output of the 1-bit quantizer 109 is suppressed by the digital low-pass filter 111 from high-frequency components (that is, quantization errors that are noise-shaped (diffused) on the high-frequency side by servo loop sigma delta control).
- the final acceleration sensor output can be low noise. With this configuration, this acceleration sensor performs signal detection and servo control simultaneously.
- the correlation detector 113 further correlates the output signal of the A / D converter 106 and the output signal of the 1-bit quantizer 109. This is for detecting a capacitance value mismatch ⁇ C between the servo control capacitance pairs 102a and 102b. If this ⁇ C exists, a servo leak signal proportional to ⁇ C is generated at the output of the charge amplifier 103, and then amplified by the amplifier 904, the high frequency component is somewhat suppressed by the analog filter 105, and a digital value is obtained by the A / D converter 106.
- the servo leak signal has almost the same waveform as the output signal of the 1-bit quantizer 109. That is, the servo leak signal is proportional to ⁇ C and has the same waveform as the output signal of the 1-bit quantizer 109. Focusing on this fact, for example, a servo leak signal included in the output of the A / D converter 106 can be detected.
- the correlation detection unit 113 correlates the output signal of the A / D converter 106 with the output signal of the 1-bit quantizer 109. Thereby, the output of the correlation detection unit 113 can include a direct current or low frequency signal proportional to the ⁇ C.
- the subsequent control unit 114 performs digital integration calculation or phase compensation calculation as necessary on the output signal of the correlation detection unit 113 to determine and output a resistance control value.
- This resistance control value is a digital value, and thereby the resistance value of the variable resistance unit 915 is controlled.
- the purpose of the variable resistor 915 is to cancel the influence of ⁇ C on the inverting input terminal node of the operational amplifier 904a in the amplifier 904 by a so-called “op-amp subtractor” method.
- the primary high-pass filter characteristic and the operational amplifier by the feedback capacitor 103b and the feedback resistor 103c of the charge amplifier 103 are used.
- the acceleration sensor instead of the 1-bit quantizers 109 and 509, a 1.5-bit (3-value) quantizer or a 2-bit or more quantizer is used. Accordingly, instead of the 1-bit D / A converters 110 and 510, the acceleration sensor is used by using a 1.5-bit (3-value) D / A converter or a D / A converter of 2 bits or more. It may be configured.
- the mechanical part MEMS and the circuit part ASIC are respectively formed on individual semiconductor substrates and configured as individual semiconductor chips. It is conceivable that MEMS and ASIC are formed on the semiconductor chip.
- the acceleration sensor of each embodiment constitutes a one-dimensional acceleration sensor.
- the acceleration sensor of the one-dimensional acceleration sensor is used.
- Configuration is used.
- three one-dimensional acceleration sensor modules may be configured for each dimension, or three MEMS may be connected to a common ASIC.
- the MEMS capacitive acceleration sensor shown in each embodiment may be used in the future in the vehicle. ⁇ Configuration of correlation detection unit, control unit, variable capacitance unit, variable resistance unit >> FIG.
- the correlation detection unit 113 can be realized by a digital multiplier 1001 and a digital low-pass filter 1002 connected to the output thereof.
- the control unit 114 can be realized by a digital integrator 1003 and a phase compensation unit 1004 connected to the output thereof.
- the phase compensator 1004 includes a differential (or difference) operation, which generates a zero point that advances the phase and stabilizes the servo control.
- the variable capacitance unit 115 is controlled by the digital value of the output of the phase compensation unit 1004.
- variable capacitance unit 115 includes binary capacitance elements 1005a, 1005b, 1005c, and 1005d connected in parallel, and a switch 1006 connected to each capacitance element.
- some of the switches 1006 connected to the binary capacitive elements are turned on, thereby changing the parallel capacitance value.
- FIG. 11 shows an example of the correlation detection unit 113 (513), the control unit 114 (514), and the variable capacitance unit 115 (515a, 515b) applied in the second embodiment (the sixth embodiment).
- the correlation detection unit 113 can be realized by an analog multiplier 1101 and an analog low-pass filter 1102 connected to the output thereof.
- the control unit 114 can be realized by an analog integrator 1103 and an A / D converter 1104 connected to the output thereof.
- the phase compensation unit 1004 in FIG. 10 may be inserted after the A / D converter 1104 to improve the stability of servo control.
- the variable capacitor 115 is controlled by the digital value of the output of the A / D converter 1104 and the output of the phase compensation unit 1004.
- the variable capacitor 115 is the same as in FIG.
- FIG. 12 shows another example of correlation detection section 113 (513), control section 114 (514), and variable capacitance section 115 (515a, 515b) applied in the second embodiment (the sixth embodiment).
- the correlation detection unit 113 can be realized by an analog multiplier 1101 and an analog low-pass filter 1102 connected to the output thereof.
- the control unit 114 is realized by a comparator 1203 and an up / down counter 1204 connected to the output thereof.
- the comparator 1203 serves as a 1-bit A / D converter
- the up / down counter 1204 serves as a digital integrator.
- the circuit design is easy because both the comparator and the up / down counter are simple circuits.
- the variable capacitor 115 is controlled by the digital value (count value) of the output of the up / down counter.
- the variable capacitor 115 is the same as in FIG.
- FIG. 13 shows an example of the correlation detection unit 113, the control unit 114, and the variable resistance unit 915 applied in the ninth embodiment.
- the correlation detection unit 113 can be realized by a digital multiplier 1001 and a digital low-pass filter 1002 connected to the output thereof.
- the control unit 114 can be realized by a digital integrator 1003 and a phase compensation unit 1004 connected to the output thereof.
- the phase compensator 1004 includes a differential (or difference) operation, which generates a zero point that advances the phase and stabilizes the servo control.
- the variable resistance unit 915 is controlled by the digital value of the output of the phase compensation unit 1004.
- variable resistance unit 915 includes binary resistance elements 1305a, 1305b, 1305c, and 1305d connected in parallel and a switch 1306 connected to each resistance element.
- some of the switches 1306 connected to the binary resistance elements are turned on, thereby changing the parallel resistance value.
- FIG. 17 is a diagram illustrating a configuration example of the digitally controlled voltage divider in FIG.
- FIG. 18 is a diagram showing another configuration example of the digitally controlled voltage divider in FIG.
- FIG. 19 is a diagram illustrating a configuration example of a delay unit of the acceleration sensor of the present invention.
- FIG. 20 is a diagram showing another configuration example of the delay unit of the acceleration sensor of the present invention.
- FIG. 21 is a diagram showing a configuration example of an analog multiplier in the correlation detection unit of the acceleration sensor of the present invention.
- FIG. 22 is a diagram showing another configuration example of the analog multiplier in the correlation detection unit of the acceleration sensor of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Pressure Sensors (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
加速度センサは、機械部分がMEMS(Micro Electro Mechanical Systems)で構成され、回路部分がASIC(Application Specific Integrated Circuit)で構成されている。この加速度センサは、これに限定されるものではないが、例えば、石油・天然ガスなどを探査する反射法地震探査用センサとして、重力よりも極めて微小な振動加速度を検知するMEMS静電容量型の加速度センサに用いられる。
また、サーボ制御部108での信号処理に微分(または、差分)演算を含むことで位相補償を行い、サーボ制御ループを安定化させてもよい。その際には一般的なPID制御の理論を適用できる。
《実施例1の効果》
以上のように、本実施の形態1における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。サーボリーク信号は実装が容易なデジタル演算主体で相殺でき、専用のA/D変換器も不要である。
《実施例2の効果》
以上のように、本実施の形態2における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。チャージアンプ出力のサーボリーク信号を直接検出するため、安定化設計が容易である。
《実施例3の効果》
以上のように、本実施の形態3における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。
《実施例4の効果》
以上のように、本実施の形態4における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。遅延部により1ビットD/A変換器の遅延補償を行うため、サーボリーク信号のより高精度な相殺が可能である。
加速度センサは、機械部分がMEMS(Micro Electro Mechanical Systems)で構成され、回路部分がASIC(Application Specific Integrated Circuit)で構成されている。この加速度センサは、これに限定されるものではないが、例えば、石油・天然ガスなどを探査する反射法地震探査用センサとして、重力よりも極めて微小な振動加速度を検知するMEMS静電容量型の加速度センサに用いられる。
《実施例5の効果》
以上のように、本実施の形態5における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。実施の形態1と比較して、MEMSが差動構造となるため実装面積が増大するが、より低雑音にできる。
《実施例6の効果》
以上のように、本実施の形態6における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。差動チャージアンプ出力のサーボリーク信号を直接検出するため、安定化設計が容易である。
《実施例7の効果》
以上のように、本実施の形態7における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。遅延部により1ビットD/A変換器の遅延補償を行うため、サーボリーク信号のより高精度な相殺が可能である。
《実施例8の効果》
以上のように、本実施の形態8における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。
加速度センサは、機械部分がMEMS(Micro Electro Mechanical Systems)で構成され、回路部分がASIC(Application Specific Integrated Circuit)で構成されている。この加速度センサは、これに限定されるものではないが、例えば、石油・天然ガスなどを探査する反射法地震探査用センサとして、重力よりも極めて微小な振動加速度を検知するMEMS静電容量型の加速度センサに用いられる。
《実施例9の効果》
以上のように、本実施の形態9における加速度センサによれば、信号検出とサーボ制御を同時に行い、かつ、MEMS容量素子の容量値ミスマッチにともなうサーボリーク信号を高精度に相殺できるため、サーボリーク信号にともなう雑音増大や不正発振を防止することができる。そのため、製造バラツキが大きいMEMSプロセスを用いても、低雑音かつ低消費電力の静電容量式MEMS加速度センサを実現できる。
各実施例に示したMEMS静電容量型の加速度センサは、将来、車載の用途も考えられる。
《相関検波部、制御部、可変容量部、可変抵抗部の構成》
図10に、実施の形態1(実施の形態5)において適用される相関検波部113(513)、制御部114(514)、可変容量部115(515a、515b)の一例を示す。相関検波部113は、デジタル乗算器1001とその出力に接続されたデジタルローパスフィルタ1002で実現できる。また、制御部114は、デジタル積分器1003とその出力に接続された位相補償部1004で実現できる。位相補償部1004は微分(または差分)演算を含み、これにより位相を進めるゼロ点を生成してサーボ制御を安定化させられる。位相補償部1004の出力のデジタル値により、可変容量部115が制御される。可変容量部115は、例えば4ビット制御であれば、並列接続されたバイナリ容量素子1005a、1005b、1005c、1005dと、各容量素子に接続されたスイッチ1006からなる。前記4ビット制御値に応じて、前記各バイナリ容量素子に接続されたスイッチ1006のいくつかがオンになり、これにより並列容量値が可変される。
図18は、図16におけるデジタル制御分圧器の別の構成例を示す図面である。
図19は、本発明の加速度センサの遅延部の構成例を示す図面である。
図20は、本発明の加速度センサの遅延部の別の構成例を示す図面である。
図21は、本発明の加速度センサの相関検波部におけるアナログ乗算器の構成例を示す図面である。
図22は、本発明の加速度センサの相関検波部におけるアナログ乗算器の別の構成例を示す図面である。
101a,101b 信号検出用容量対
102a,102b サーボ制御用容量対
103 チャージアンプ
103a オペアンプ
103b 帰還容量
103c 帰還抵抗
104 アンプ
105 アナログフィルタ
106 A/D変換器
107 復調器
108 サーボ制御部
109 1ビット量子化器
110 1ビットD/A変換器
111 デジタルローパスフィルタ
112a,112b 信号検出用容量対用ドライバ
113 相関検波部
114 制御部
115 可変容量部
116 可変容量用ドライバ
417 遅延部
500a,500b 錘(可動電極部)
501a,501b 正側信号検出用容量対
501c,501d 負側信号検出用容量対
502a,502b 正側サーボ制御用容量対
502c,502d 負側サーボ制御用容量対
503 差動チャージアンプ
503a,503d オペアンプ
503b,503e 帰還容量
503c,503f 帰還抵抗
504 差動アンプ
505 差動アナログフィルタ
506 差動A/D変換器
507 復調器
508 サーボ制御部
509 1ビット量子化器
510 1ビットD/A変換器
511 デジタルローパスフィルタ
512a,512b 信号検出用容量対用ドライバ
513 相関検波部
514 制御部
515a,515b 可変容量部
516 可変容量用ドライバ
717 遅延部
818 インバータ
904 アンプ
904a オペアンプ
904b 入力抵抗
904c 帰還抵抗
915 可変抵抗部
916 ドライバ
917 遅延部
1001 デジタル乗算器
1002 デジタルローパスフィルタ
1003 デジタル積分器
1004 位相補償部
1005a,1005b,1005c,1005d バイナリ容量素子
1006 スイッチ
1101 アナログ乗算器
1102 アナログローパスフィルタ
1103 アナログ積分器
1104 A/D変換器
1203 比較器
1204 アップダウンカウンタ
1305a,1305b,1305c,1305d バイナリ抵抗素子
1306 スイッチ
Claims (14)
- MEMS静電容量型の加速度センサであって、
信号検出用の第1MEMS容量対と、
前記第1容量対とそれぞれ一方の電極同士が接続されて、前記第1MEMS容量対による加速度の検出信号とは逆向きの力を発生させるサーボ電圧が印加されるサーボ制御用の第2MEMS容量対と、
前記第1MEMS容量対、及び前記第2MEMS容量対の互いに接続されて1つの錘を成す電極と接続して、前記錘上の電荷変化を電圧変化に変換するチャージアンプと、
前記チャージアンプ出力の電圧変化信号をデジタル化するA/D変換器と、
前記A/D変換器の出力から作成された前記加速度による前記錘の変位と逆向きの力を発生させるサーボ値を1ビットに量子化する1ビット量子化器と、
前記1ビット量子化器の出力をアナログのサーボ電圧に変換して前記第2MEMS容量対へ印加する1ビットD/A変換器と、
前記A/D変換器の出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力する相関検波部と、
前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記チャージアンプの入力ノード上で相殺する容量制御値を出力する制御部と、
前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅に出力するドライバの出力ノードと、前記チャージアンプの入力ノードの間に挿入され、前記制御部の出力の容量制御値に従って容量を制御する可変容量部と、
を備えたことを特徴とする加速度センサ。 - 請求項1に記載の加速度センサにおいて、
前記相関検波部は、前記A/D変換器の出力に替えて前記チャージアンプの出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力することを特徴とする加速度センサ。 - 請求項1に記載の加速度センサにおいて、
前記相関検波部は、前記A/D変換器の出力に替えて前記チャージアンプの出力信号を増幅するアンプの出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力することを特徴とする加速度センサ。 - 請求項1に記載の加速度センサにおいて、
前記可変容量部は、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅にするドライバに続けて接続された遅延部の前記1ビットD/A変換器の応答遅延を模擬する遅延の出力ノードと、前記チャージアンプの入力ノードの間に挿入され、前記制御部の出力の容量制御値に従って容量が制御されることを特徴とする加速度センサ。 - MEMS静電容量型の加速度センサであって、
信号検出用の第1MEMS容量対と、
前記第1容量対とそれぞれ一方の電極同士が接続されて正側の錘(可動電極部)が構成され、前記第1MEMS容量対による加速度の検出信号とは逆向きの力を発生させるサーボ電圧が印加されるサーボ制御用の第2MEMS容量対と、
信号検出用の第3MEMS容量対と、
前記第3容量対とそれぞれ一方の電極同士が接続されて負側の錘(可動電極部)が構成され、前記第3MEMS容量対による加速度の検出信号とは逆向きの力を発生させるサーボ電圧が印加されるサーボ制御用の第4MEMS容量対と、
前記正側の錘と接続して、前記正側の錘上の電荷変化を電圧変化に変換する第1チャージアンプと、
前記負側の錘と接続して、前記負側の錘上の電荷変化を電圧変化に変換する第2チャージアンプと、
前記第1、及び第2チャージアンプの差動出力の電圧変化信号をデジタル化するA/D変換器と、
前記A/D変換器の出力から作成された前記加速度による前記錘の変位と逆向きの力を発生させるサーボ値を1ビットに量子化する1ビット量子化器と、
前記1ビット量子化器の出力をアナログのサーボ電圧に変換して前記第2MEMS容量対、及び前記第4MEMS容量対へ印加する1ビットD/A変換器と、
前記A/D変換器の出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対、及び前記第4MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力する相関検波部と、
前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記第1、及び第2チャージアンプの入力ノード上で相殺する差動容量制御値を出力する制御部と、
前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅に出力するドライバの出力ノードと、前記第1チャージアンプの入力ノードの間に挿入され、前記制御部の出力の差動容量制御値に従って容量を制御する第1可変容量部と、
前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅に出力するドライバの出力ノードと、前記第2チャージアンプの入力ノードの間に挿入され、前記制御部の出力の差動容量制御値に従って容量を制御する第2可変容量部と、
を備えたことを特徴とする加速度センサ。 - 請求項5に記載の加速度センサにおいて、
前記相関検波部は、前記A/D変換器の出力に替えて前記第1、または第2チャージアンプの出力と、前記1ビット量子化器の出力に基づき、前記第2MEMS容量対、及び前記第4MEMS容量対の間の容量値のミスマッチΔCに比例した信号を出力することを特徴とする加速度センサ。 - 請求項5に記載の加速度センサにおいて、
前記第1可変容量部は、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅にするドライバに続けて接続された遅延部の前記1ビットD/A変換器の応答遅延を模擬する遅延の出力ノードと、前記第1チャージアンプの入力ノードの間に挿入されて、前記制御部の出力の差動容量制御値に従って容量が制御され、
前記第2可変容量部は、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅にするドライバに続けて接続された遅延部の前記1ビットD/A変換器の応答遅延を模擬する遅延の出力ノードと、前記第2チャージアンプの入力ノードの間に挿入されて、前記制御部の出力の差動容量制御値に従って容量が制御されることを特徴とする加速度センサ。 - 請求項5に記載の加速度センサにおいて、
前記制御部は、前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記第1、及び第2チャージアンプの入力ノード上で相殺する共通の容量制御値を出力し、
前記第2可変容量部は、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅にするドライバに続けてインバータが接続された出力ノードと、前記第2チャージアンプの入力ノードの間に挿入され、前記制御部の出力の容量制御値に従って容量が制御されることを特徴とする加速度センサ。 - 請求項1に記載の加速度センサにおいて、
前記チャージアンプ出力の電圧変化信号を増幅するため、オペアンプ、入力抵抗、及び帰還抵抗からなるアンプを更に備え、
前記制御部は、前記相関検波部の出力に基づき、前記容量値のミスマッチΔCによる影響を前記オペアンプの反転入力端子ノード上で相殺する抵抗制御値を出力し、
前記可変容量部に替えて、前記1ビット量子化器の出力を前記サーボ電圧の振幅よりも抑えた電圧振幅にするドライバに続けて接続された遅延部の出力ノードと、前記遅延部の出力ノードと挿入されて、前記制御部の出力の抵抗制御値に従って抵抗値が制御される可変抵抗部が更に備えられていることを特徴とする加速度センサ。 - 請求項1乃至9のいずれかの請求項に記載の加速度センサにおいて、
前記1ビット量子化器に替えて、1.5ビット(3値) 量子化器、又は2ビット以上の量子化器を使用して、
前記1ビットD/A変換器に替えて、1.5ビット(3値) D/A変換器、又は2ビット以上のD/A変換器を使用していることを特徴とする加速度センサ。 - 請求項1、または請求項5に記載の加速度センサにおいて、
前記相関検波部は、入力部よりデジタル乗算器とデジタルローパスフィルタにより構成され、
前記制御部は、前記相関検波部の出力を入力部より受けて、デジタル積分器と、及び微分(または差分)演算により位相を進めるゼロ点を生成してサーボ制御を安定化する位相補償部により構成され、
前記可変容量部は、並列接続されたバイナリ容量素子と前記制御部からの制御値に応じて制御されるスイッチにより構成されることを特徴とする加速度センサ。 - 請求項2、または請求項6に記載の加速度センサにおいて、
前記相関検波部は、入力部よりアナログ乗算器とアナログローパスフィルタにより構成され、
前記制御部は、前記相関検波部の出力を入力部より受けて、アナログ積分器と、及びA/D変換器により構成され、
前記可変容量部は、並列接続されたバイナリ容量素子と前記制御部からの制御値に応じて制御されるスイッチにより構成されることを特徴とする加速度センサ。 - 請求項2、または請求項6に記載の加速度センサにおいて、
前記相関検波部は、入力部よりアナログ乗算器とアナログローパスフィルタにより構成され、
前記制御部は、前記相関検波部の出力を入力部より受けて、1ビットA/D変換器の役割を果たす比較器と、及びデジタル積分器の役割を果たすアップダウンカウンタにより構成され、
前記可変容量部は、並列接続されたバイナリ容量素子と前記制御部からの制御値に応じて制御されるスイッチにより構成されることを特徴とする加速度センサ。 - 請求項9に記載の加速度センサにおいて、
前記相関検波部は、入力部よりデジタル乗算器とデジタルローパスフィルタにより構成され、
前記制御部は、前記相関検波部の出力を入力部より受けて、デジタル積分器と、及び微分(または差分)演算により位相を進めるゼロ点を生成してサーボ制御を安定化する位相補償部により構成され、
前記可変抵抗部は、並列接続されたバイナリ抵抗素子と前記制御部からの制御値に応じて制御されるスイッチにより構成されることを特徴とする加速度センサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/547,210 US10585112B2 (en) | 2015-02-17 | 2015-02-17 | Acceleration sensor |
JP2017500164A JP6397115B2 (ja) | 2015-02-17 | 2015-02-17 | 加速度センサ |
PCT/JP2015/054230 WO2016132447A1 (ja) | 2015-02-17 | 2015-02-17 | 加速度センサ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/054230 WO2016132447A1 (ja) | 2015-02-17 | 2015-02-17 | 加速度センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132447A1 true WO2016132447A1 (ja) | 2016-08-25 |
Family
ID=56688836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054230 WO2016132447A1 (ja) | 2015-02-17 | 2015-02-17 | 加速度センサ |
Country Status (3)
Country | Link |
---|---|
US (1) | US10585112B2 (ja) |
JP (1) | JP6397115B2 (ja) |
WO (1) | WO2016132447A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018087829A (ja) * | 2018-03-01 | 2018-06-07 | 株式会社日立製作所 | 加速度センサ |
JP2019120600A (ja) * | 2018-01-09 | 2019-07-22 | 株式会社日立製作所 | 加速度センサ |
JP2020034397A (ja) * | 2018-08-29 | 2020-03-05 | 株式会社日立製作所 | Mems静電容量型加速度センサ |
US11035876B2 (en) | 2018-09-14 | 2021-06-15 | Hitachi, Ltd. | Sensor with servo noise reduction |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6437429B2 (ja) * | 2015-12-25 | 2018-12-12 | 株式会社日立製作所 | 加速度センサ、受振器および地震探査システム |
US10274510B2 (en) * | 2016-02-09 | 2019-04-30 | Stmicroelectronics, Inc. | Cancellation of noise due to capacitance mismatch in MEMS sensors |
EP3477855B1 (en) * | 2017-10-25 | 2023-06-14 | ams International AG | Sensor arrangement |
US11092616B2 (en) * | 2018-11-06 | 2021-08-17 | Invensense, Inc. | Method and device for band-pass sensor data acquisition |
US11693020B2 (en) * | 2018-11-06 | 2023-07-04 | Rohm Co., Ltd. | Accelerometer having a root-mean-square (RMS) output |
FR3092171B1 (fr) * | 2019-01-29 | 2021-04-30 | Ateq | Système de détection de fuite par gaz traceur et utilisation correspondante. |
US10715169B1 (en) * | 2019-05-21 | 2020-07-14 | Ciena Corporation | Coarse-fine gain-tracking loop and method of operating |
CN112954237A (zh) * | 2021-02-07 | 2021-06-11 | 电子科技大学 | 一种用于光电探测器的自适应可变增益积分电路 |
US11563427B2 (en) * | 2021-06-18 | 2023-01-24 | Micron Technology, Inc. | Delay adjustment circuits |
US12092672B2 (en) * | 2022-10-12 | 2024-09-17 | Elite Semiconductor Microelectronics Technology Inc. | Capacitance measurement circuit |
US12313664B2 (en) | 2023-08-18 | 2025-05-27 | Elite Semiconductor Microelectronics Technology Inc. | Capacitance measurement circuit |
TWI850116B (zh) * | 2023-09-21 | 2024-07-21 | 晶豪科技股份有限公司 | 電容量測電路 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08292206A (ja) * | 1995-04-24 | 1996-11-05 | Nippondenso Co Ltd | 物理量検出装置 |
US5583290A (en) * | 1994-12-20 | 1996-12-10 | Analog Devices, Inc. | Micromechanical apparatus with limited actuation bandwidth |
US5744968A (en) * | 1996-04-30 | 1998-04-28 | Motorola Inc. | Ratiometric circuit |
JP2001066323A (ja) * | 1999-07-29 | 2001-03-16 | Litton Syst Inc | デジタル的に再度平衡状態に設定される加速度計において、出力ノイズを低減するための方法および装置 |
US20080011081A1 (en) * | 2004-12-09 | 2008-01-17 | The Boeing Company | Magnetic null accelerometer |
JP2011027445A (ja) * | 2009-07-22 | 2011-02-10 | Mitsutoyo Corp | 過減衰型加速度計及び地震計 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620931A (en) * | 1990-08-17 | 1997-04-15 | Analog Devices, Inc. | Methods for fabricating monolithic device containing circuitry and suspended microstructure |
US5510156A (en) * | 1994-08-23 | 1996-04-23 | Analog Devices, Inc. | Micromechanical structure with textured surface and method for making same |
US5852242A (en) * | 1995-12-04 | 1998-12-22 | I/O Sensors, Inc. | Apparatus with mechanical and electric springs and method for its manufacture |
FR2769369B1 (fr) * | 1997-10-08 | 1999-12-24 | Sercel Rech Const Elect | Accelerometre a plaque mobile, avec moteur electrostatique de contre-reaction |
US8800371B2 (en) * | 2012-03-08 | 2014-08-12 | Industrial Technology Research Institute | Electrostatic force generator and force measurement system and accelerometer having the same |
JP6358913B2 (ja) * | 2014-09-30 | 2018-07-18 | 株式会社日立製作所 | 加速度センサ |
-
2015
- 2015-02-17 US US15/547,210 patent/US10585112B2/en not_active Expired - Fee Related
- 2015-02-17 WO PCT/JP2015/054230 patent/WO2016132447A1/ja active Application Filing
- 2015-02-17 JP JP2017500164A patent/JP6397115B2/ja not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5583290A (en) * | 1994-12-20 | 1996-12-10 | Analog Devices, Inc. | Micromechanical apparatus with limited actuation bandwidth |
JPH08292206A (ja) * | 1995-04-24 | 1996-11-05 | Nippondenso Co Ltd | 物理量検出装置 |
US5744968A (en) * | 1996-04-30 | 1998-04-28 | Motorola Inc. | Ratiometric circuit |
JP2001066323A (ja) * | 1999-07-29 | 2001-03-16 | Litton Syst Inc | デジタル的に再度平衡状態に設定される加速度計において、出力ノイズを低減するための方法および装置 |
US20080011081A1 (en) * | 2004-12-09 | 2008-01-17 | The Boeing Company | Magnetic null accelerometer |
JP2011027445A (ja) * | 2009-07-22 | 2011-02-10 | Mitsutoyo Corp | 過減衰型加速度計及び地震計 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019120600A (ja) * | 2018-01-09 | 2019-07-22 | 株式会社日立製作所 | 加速度センサ |
JP2018087829A (ja) * | 2018-03-01 | 2018-06-07 | 株式会社日立製作所 | 加速度センサ |
JP2020034397A (ja) * | 2018-08-29 | 2020-03-05 | 株式会社日立製作所 | Mems静電容量型加速度センサ |
US11169174B2 (en) * | 2018-08-29 | 2021-11-09 | Hitachi, Ltd. | MEMS electrostatic capacitor type acceleration sensor |
JP7075849B2 (ja) | 2018-08-29 | 2022-05-26 | 株式会社日立製作所 | Mems静電容量型加速度センサ |
US11035876B2 (en) | 2018-09-14 | 2021-06-15 | Hitachi, Ltd. | Sensor with servo noise reduction |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016132447A1 (ja) | 2017-06-29 |
US20180011125A1 (en) | 2018-01-11 |
US10585112B2 (en) | 2020-03-10 |
JP6397115B2 (ja) | 2018-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6397115B2 (ja) | 加速度センサ | |
JP6446579B2 (ja) | 加速度センサ | |
TWI585368B (zh) | 用以於物理參數之測量期間減少非線性的方法及用以實施此方法之電子電路 | |
JP6895397B2 (ja) | 加速度センサ | |
JP7075849B2 (ja) | Mems静電容量型加速度センサ | |
JP2009033303A (ja) | A/d変換器及び半導体装置 | |
US9335429B2 (en) | Low power analog-to-digital converter for sensing geophone signals | |
US9462375B2 (en) | Feedback delay reduction in force feedback devices | |
JP6358913B2 (ja) | 加速度センサ | |
US9804190B2 (en) | Apparatus and method for calibration of capacitance mismatch and temperature variations in a MEMS device | |
Kulah et al. | A multi-step electromechanical/spl Sigma//spl Delta/converter for micro-g capacitive accelerometers | |
US11035876B2 (en) | Sensor with servo noise reduction | |
Almutairi et al. | Multi stage noise shaping sigma–delta modulator (MASH) for capacitive MEMS accelerometers | |
CN105301284A (zh) | 一种低功耗数字加速度计接口电路系统 | |
WO2016032598A2 (en) | Low-power analog-to-digital converter for sensing geophone signals | |
US9383860B2 (en) | Capacitance processing circuit and a MEMS device | |
Northemann et al. | Drive and sense interface for gyroscopes based on bandpass sigma-delta modulators | |
CN110850467B (zh) | 一种数字低频地震传感器 | |
Lanniel et al. | Evaluation of frontend readout circuits for high performance automotive MEMS accelerometers | |
US20150020592A1 (en) | Resistive type acceleration sensor | |
CN104535796A (zh) | 三电极微机械加速度计数字闭环控制电路及其接口电路以及三电极微机械加速度计系统 | |
WO2020195606A1 (ja) | 加速度センサ、出力信号制御方法 | |
Lanniel et al. | Tackling sdm feedback coefficient modulation in area optimized frontend readout circuit for high performance mems accelerometers | |
JP2019087876A (ja) | Δς変調器 | |
Ismail et al. | ∑-Δ based force-feedback capacitive micro-machined sensors: Extending the input signal range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882551 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017500164 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15547210 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15882551 Country of ref document: EP Kind code of ref document: A1 |