[go: up one dir, main page]

WO2016125917A2 - レーザ光源装置及びレーザパルス光生成方法 - Google Patents

レーザ光源装置及びレーザパルス光生成方法 Download PDF

Info

Publication number
WO2016125917A2
WO2016125917A2 PCT/JP2016/060369 JP2016060369W WO2016125917A2 WO 2016125917 A2 WO2016125917 A2 WO 2016125917A2 JP 2016060369 W JP2016060369 W JP 2016060369W WO 2016125917 A2 WO2016125917 A2 WO 2016125917A2
Authority
WO
WIPO (PCT)
Prior art keywords
output
light
light source
solid
state
Prior art date
Application number
PCT/JP2016/060369
Other languages
English (en)
French (fr)
Other versions
WO2016125917A8 (ja
WO2016125917A3 (ja
Inventor
穣治 岡田
庸亮 折井
村山 伸一
大輔 奥山
Original Assignee
スペクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スペクトロニクス株式会社 filed Critical スペクトロニクス株式会社
Priority to US15/549,360 priority Critical patent/US10256599B2/en
Priority to EP16746745.5A priority patent/EP3309912B1/en
Publication of WO2016125917A2 publication Critical patent/WO2016125917A2/ja
Publication of WO2016125917A3 publication Critical patent/WO2016125917A3/ja
Publication of WO2016125917A8 publication Critical patent/WO2016125917A8/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3551Crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094076Pulsed or modulated pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1068Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using an acousto-optical device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3507Arrangements comprising two or more nonlinear optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10038Amplitude control
    • H01S3/10046Pulse repetition rate control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1611Solid materials characterised by an active (lasing) ion rare earth neodymium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0658Self-pulsating

Definitions

  • the present invention relates to a laser light source device and a laser pulse light generation method used for various types of laser processing.
  • laser light has been used for various processes.
  • Laser light having a wavelength in the vicinity of 532 nm to 1064 nm has high energy intensity, and is suitably used for various processing such as cutting or welding of metal or glass.
  • laser light in the deep ultraviolet region with a wavelength of 200 nm to 350 nm is used for processing electronic materials and composite materials.
  • a laser light source device that outputs laser light having a shorter wavelength than the near infrared region includes a seed light source that outputs laser light having a wavelength in the near infrared region, an optical amplifier that amplifies the laser light output from the seed light source, A nonlinear optical element that converts the wavelength of the laser light amplified by the optical amplifier into a target wavelength is provided.
  • Various seed light sources are selected and various kinds of light sources are selected so that a laser pulse light having a pulse width of several nanoseconds or less, preferably several hundred picoseconds or less and a repetition frequency of several hundred megahertz or less can be obtained.
  • An optical amplifier or the like is used.
  • a mode-locked laser with a repetition frequency of several tens of megahertz is used as such a seed light source, and a pulse light of several kilohertz is obtained by dividing the pulse light output from the seed light source.
  • the oscillation frequency of the mode-locked laser fluctuates due to environmental factors such as temperature and vibration, and it is difficult to control the value appropriately, the oscillation frequency of the laser pulse light detected using a light receiving element etc. Therefore, there is a problem that the circuit configuration for this is complicated, and that the saturable absorber that is a component of the mode-locked laser is easily deteriorated and long-term stable driving is difficult. It was.
  • a semiconductor laser capable of controlling the oscillation frequency of pulsed light as a seed light source.
  • the pulse energy of near-infrared pulsed light output from such a semiconductor laser is from several picojoules to several hundreds of picojoules.
  • pulsed light having a pulse energy of a few tens of microjoules to several tens of millijoules, which is very small as a picojoule it is necessary to amplify much more than when a conventional seed light source is used.
  • fiber amplifiers such as erbium-doped fiber amplifiers and ytterbium-doped fiber amplifiers, Nd: YAG with neodymium added to yttrium aluminum garnet, and Nd: YVO4 with neodymium added to yttrium vanadate.
  • a solid-state amplifier such as is preferably used.
  • Patent Documents 1 and 2 disclose an optical amplifier in which such a fiber amplifier and a solid-state amplifier are combined. As shown in Patent Documents 1 and 2, both fiber amplifiers and solid-state amplifiers are used for excitation in order to amplify light having the same wavelength as the laser light to be amplified by the pumping action in the laser active region. It is necessary to provide a light source. Usually, a semiconductor laser is used as such a light source for excitation.
  • the solid-state laser medium constituting the solid-state amplifier is excessively stopped during output stoppage. Since the energy is stored in the solid laser medium, the solid laser medium excessively generates heat, causing a temperature rise, and the beam propagation characteristic is deteriorated due to the thermal lens effect appearing in the solid laser medium. For this reason, there is a possibility that the quality of the processing target using the laser pulse light is adversely affected until the temperature is stabilized after the output is restarted.
  • variably adjusting the power of the pumping light can suppress the temperature rise of the solid-state laser medium, but the pulsed light is output when the output of the pulsed light is restarted due to the thermal lens effect caused by the power fluctuation of the pumping light.
  • the center of the beam may be shifted. Since it is difficult to accurately adjust the optical axis of the excitation light incident on the solid-state laser medium, the heat distribution state of the solid-state laser medium fluctuates when the power of the excitation light fluctuates and is affected by the thermal lens effect accordingly. Because.
  • the object of the present invention is to avoid damage to a solid-state amplifier, a nonlinear optical element, or the like without stopping or adjusting the excitation light source when the output of pulsed light is temporarily stopped from the apparatus. It is possible to provide a laser light source device and a laser pulse light generation method capable of avoiding deterioration of beam propagation characteristics immediately after output restart.
  • the first characteristic configuration of the laser light source device is, as described in claim 1 of the claims, a first light source that outputs pulsed light by a gain switching method, A fiber amplifier that amplifies the pulsed light output from the first light source; a solid-state amplifier that amplifies the pulsed light output from the fiber amplifier; and a nonlinear that outputs the pulsed light output from the solid-state amplifier after wavelength conversion.
  • a second light source that outputs a laser beam that can be combined with a pulsed light output from the seed light source and disposed upstream of the solid-state amplifier, and the nonlinear element.
  • a control unit configured to generate an output stop state in which propagation to the width device is stopped and stop the output of pulsed light from the nonlinear optical element, and to control oscillation of the second light source in the output stop state It is in the point equipped with.
  • control unit prevents the pulsed light output from the first light source functioning as the seed light source from propagating to the solid-state amplifier, an output stop state is reached in which the output of the pulsed light from the nonlinear optical element is stopped.
  • the laser light output from the second light source propagates along the optical axis of the pulsed light from the seed light source to the solid-state amplifier, Since the energy of the active region of the solid state amplifier in the excited state is released, it is avoided that the solid state amplifier generates excessive heat and the temperature rises.
  • the optical switching element is controlled by the control unit and the propagation of the pulsed light from the fiber amplifier to the solid-state amplifier is blocked, so the output of the pulsed light from the first light source is stopped. Even without this, it is possible to realize an output stop state in which the output of pulsed light from the nonlinear optical element is stopped.
  • control unit further outputs an output period of pulsed light from the first light source in the output stopped state.
  • the optical switch element is controlled so as to allow the propagation of light during a different period, and the oscillation of the second light source is controlled at least during a period different from the output period of the pulsed light from the first light source in the output stopped state. It is in the point which is comprised.
  • the pulsed light output from the first light source is amplified by a fiber amplifier
  • the spectrum broadens beyond the band of signal light due to chirping phenomenon, self-phase modulation or Raman scattering in the optical fiber, and spontaneous emission light noise (hereinafter, It is well known that “ASE noise (amplified ⁇ ⁇ ⁇ spontaneous emission noise)” is generated and the S / N ratio of pulsed light is lowered.
  • ASE noise amplified ⁇ ⁇ ⁇ spontaneous emission noise
  • the optical switch element is controlled by the control unit and the optical switch element is controlled by the control unit so that the light propagates in a period different from the output period of the pulsed light from the first light source, the light is output from the second light source.
  • the ASE noise is propagated to the solid-state amplifier together with the laser light, and the energy of the active region of the solid-state amplifier in the excited state is released by the excitation light source.
  • control unit is configured to output light during an output period of pulsed light from the first light source.
  • the optical switch element By controlling the optical switch element so as to allow propagation and prevent light propagation during a period different from the output period of the pulsed light from the first light source, the output of the pulsed light from the nonlinear optical element is permitted.
  • the output allowable state is generated, and the oscillation of the second light source is stopped and controlled in the output allowable state.
  • the frequency of the pulsed light is larger than the order of megahertz, the above-mentioned ASE noise is very small, so that there is no problem.
  • the influence of the ASE noise becomes large in the region where the oscillation frequency of the pulsed light is lower than 1 megahertz. Therefore, a part of the energy of the pumping light injected into the solid-state amplifier is wasted for amplification of such noise components, and the efficiency of energy use for the amplification of pulsed light is lowered and the amplification factor is reduced.
  • useless heat generation due to the energy consumed to amplify the noise component increases, and the cost of components for cooling the solid-state amplifier and the like also increases.
  • the oscillation of the second light source is controlled to be stopped by the control unit, and the light is output in a period different from the output period of the pulsed light from the first light source. Since the optical switch element is controlled so as to prevent the propagation and the propagation of ASE noise and continuous light to the solid-state amplifier is prevented, it is avoided that the energy in the active region of the solid-state amplifier is wasted. become.
  • the optical switching element is controlled by the controller, and an output permission state is generated so that the pulse light propagates from the fiber amplifier to the solid-state amplifier only during the output period of the pulse light from the first light source. Since the oscillation of the two light sources is stopped and controlled, the pulsed light is amplified with energy efficiency by the solid-state amplifier, and the pulsed light with a large peak power is output from the nonlinear optical element. At this time, the optical switch element functions as a filter for removing ASE noise in the time domain.
  • the laser light output from the second light source is upstream of the optical switch element.
  • the pulse light output from the first light source is configured to be multiplexed, and the control unit is configured to control the oscillation of the second light source in the output stopped state.
  • the second light source is arranged on the upstream side of the optical switch element, it is not necessary to oscillate or stop the second light source in synchronization with the optical switch element when the output is stopped. It is only necessary to control the oscillation. Propagation of output light from the second light source is blocked by the optical switch element during the output period of the pulsed light from the first light source, and from the second light source by the optical switch element during a period different from the output period of the pulsed light from the first light source. This is because the output light of is propagated to the solid-state amplifier.
  • control unit is output from the solid-state amplifier in the output stopped state.
  • the power of the laser beam output from the second light source and input to the solid-state amplifier is adjusted so that the average power of the output light is substantially equal to the average power of the light output from the solid-state amplifier in the output allowable state. The point is that it is configured to do.
  • the power of the laser light output from the second light source and input to the solid-state amplifier is adjusted so that the average power of the light output from the solid-state amplifier is substantially equal between the output-permitted state and the output-stopped state.
  • the seventh feature configuration includes a predetermined power from the nonlinear optical element only in the output allowable state, as described in claim 7.
  • the power of the excitation light of the solid-state amplifier and / or the repetition frequency of the pulsed light are adjusted so that wavelength-converted light is output.
  • wavelength-converted light that can be processed can be output only when the output is allowed, and temporarily output from the nonlinear optical element when the output is stopped. Even if the wavelength-converted light is output, it is possible to avoid the occurrence of an inconvenient situation in which the object to be processed is processed by mistake.
  • the solid-state amplifier is provided between the solid-state amplifier and the nonlinear optical element. Further comprising an optical switch element that allows or blocks light from propagating to the nonlinear optical element, and the controller controls the optical switch element to stop the output from the solid-state amplifier to the nonlinear optical element. The point is that it is configured to prevent the propagation of light.
  • optical switch element prevents light from propagating from the solid-state amplifier to the nonlinear optical element when the output is stopped, wavelength-converted light that can be processed can be output only when the output is allowed. It is possible to avoid the occurrence of an inconvenient situation in which the object to be processed is processed by mistake.
  • the oscillation wavelength of the second light source is output from the first light source.
  • the amplification band of the solid-state amplifier capable of amplifying the pulsed light to be amplified is set.
  • the excitation energy accumulated in the solid-state amplifier after switching to the output stop state is consumed for amplification of the laser light output from the second light source. It becomes like this. If the power of the laser light output from the second light source is inherently low, even if it is amplified by the solid-state amplifier, the wavelength is not converted as light having a large peak power by the nonlinear optical element.
  • the oscillation wavelength of the second light source may be an amplification band of the solid-state amplifier.
  • the amplification band other than the amplification band capable of amplifying the pulsed light output from the first light source is set.
  • the oscillation wavelength of the second light source is set to an amplification band other than the amplification band capable of amplifying the pulsed light output from the first light source, after switching to the output stop state The excitation energy accumulated in the solid-state amplifier is consumed for amplification of the laser light output from the second light source. Even if the laser light output from the second light source is amplified by the solid-state amplifier and incident on the nonlinear optical element, the laser light has a wavelength different from the band that can be converted by the nonlinear optical element. No light is output.
  • the optical switch element includes an acousto-optic element or an electro-optic element. It is in the point comprised with the optical element.
  • Dynamic optical elements such as an acousto-optic element that turns on or off first-order diffracted light when an ultrasonic transducer is turned on or off as an optical switch element, or an electro-optic element that turns on or off light by an electric field using intensity modulation of EO modulation It is preferable to use it.
  • the seed light source is configured by a DFB laser
  • the control unit The DFB laser is configured to be driven at a frequency of several megahertz or less and with a pulse width of several nanoseconds or less.
  • the pulse light output from the first light source by the gain switching method is sequentially amplified by the fiber amplifier and the solid-state amplifier, and amplified.
  • the laser light is disposed upstream of the solid-state amplifier and can be combined with the pulsed light output from the first light source. Is to control the oscillation of the second light source that outputs.
  • the second feature configuration controls an optical switch element disposed between the fiber amplifier and the solid-state amplifier in addition to the first feature configuration described above, Propagation of light during the output period of the pulsed light from the first light source is allowed, propagation of light is allowed during a period different from the output period of the pulsed light from the first light source, and arranged upstream of the solid-state amplifier
  • the second light source that outputs laser light that can be combined with the pulsed light output from the first light source is controlled to oscillate at least during a period different from the output period of the pulsed light from the first light source.
  • the optical switch element is controlled when the output of the pulsed light from the nonlinear optical element is allowed. Then, light propagation is allowed during the output period of the pulsed light from the first light source, light propagation is prevented during a period different from the output period of the pulsed light from the first light source, and the second light source The point is to stop the oscillation.
  • FIG. 1 is a block diagram of a laser light source device according to the present invention.
  • FIG. 2A is an explanatory diagram of the frequency characteristics and time axis characteristics of narrow-band pulsed light oscillated from the first light source.
  • FIGS. 2B and 2C are diagrams illustrating the self-phase modulation of the fiber amplifier. It is explanatory drawing of the frequency characteristic and time-axis characteristic of the pulsed light broadened by Raman scattering.
  • FIG. 3A is an explanatory diagram of pulsed light periodically oscillated from the first light source
  • FIG. 3B is an explanatory diagram of pulsed light on which ASE noise is superimposed in the subsequent fiber amplifier.
  • FIG. 1 is a block diagram of a laser light source device according to the present invention.
  • FIG. 2A is an explanatory diagram of the frequency characteristics and time axis characteristics of narrow-band pulsed light oscillated from the first light source.
  • FIGS. 2B and 2C are diagrams illustrating the self-phase modulation of the fiber
  • FIG. 3C is an explanatory diagram of the pulsed light after passing through the optical switch element in synchronization with the oscillation cycle of the first light source in the time domain
  • FIG. 3D is a diagram before and after the oscillation cycle of the first light source in the time domain
  • FIG. 3 (e) is an explanatory diagram of ASE noise passing through the optical switch element
  • FIG. 3 (e) shows the pulse light amplified by the solid-state amplifier through the optical switch element in synchronization with the oscillation cycle of the first light source in the time domain
  • FIG. 3F is an explanatory diagram of ASE noise passing through the optical switch element before and after the oscillation cycle of the first light source in the time domain and laser light output from the second light source.
  • FIG. 4 is an explanatory diagram of output fluctuation and stabilization that occur at the time of switching from the output stop period to the output allowable period.
  • FIGS. 5A and 5B are explanatory diagrams of the relationship between the amplification band of the solid-state amplifier and the oscillation wavelength of the second light source.
  • FIG. 6 is a timing chart for explaining the output timing of the trigger signal for driving the first light source and the gate signal for driving the optical switch element, corresponding to the output stop state and the output allowable state of the optical pulse.
  • FIG. 1 shows an exemplary configuration of a laser light source device 1 according to the present invention.
  • the laser light source device 1 includes a light source unit 1A, a fiber amplification unit 1B, a solid amplification unit 1C, and a wavelength conversion unit 1D arranged along the optical axis L, and further includes a control unit 100 that controls the light source unit 1A and the like. It is prepared for.
  • the light source unit 1A includes a seed light source 10 serving as a first light source of the present invention, a driver D1 for seed light source, an optical isolator ISL1 for seed light source, a laser light source 11 serving as a second light source of the present invention, and a laser.
  • a light source driver D11, a laser light source optical isolator ISL11, and a photodiode PD for monitoring the power of output light from the laser light source 11 are provided.
  • the fiber amplifying unit 1B includes two-stage fiber amplifiers 20 and 30 each having excitation light sources 21 and 31 and multiplexers 22 and 32 each composed of a laser diode, optical isolators ISL2 and ISL3, and an optical switch element. 40 etc.
  • a multiplexer 23 is provided on the input side of the fiber amplifier 20 in the previous stage so that the laser light output from the laser light source 11 and the laser pulse light output from the seed light source 10 can be combined.
  • a demultiplexer 24 for guiding the output light of the fiber amplifier 20 to the photodiode PD is provided.
  • the solid-state amplifier 1C includes a solid-state amplifier 50, an excitation light source 51, reflection mirrors M1, M2, and M3, a lens L1, a collimator CL2, and the like.
  • the wavelength conversion unit 1D includes a first wavelength conversion unit 1E and a second wavelength conversion unit 1F, and includes nonlinear optical elements 60 and 70, respectively.
  • Laser pulse light with a wavelength of 1064 nm output from the seed light source 10 (hereinafter also simply referred to as “pulse light”) is amplified by the two-stage fiber amplifiers 20 and 30 and further amplified to a desired level by the one-stage solid-state amplifier 50. Is done.
  • the pulsed light amplified by the solid-state amplifier 50 is wavelength-converted to a wavelength of 532 nm by the nonlinear optical element 60 and further wavelength-converted to a wavelength of 266 nm by the nonlinear optical element 70 and output.
  • the number of fiber amplifiers and solid-state amplifiers is not particularly limited, and may be set as appropriate in order to obtain a desired amplification factor for pulsed light.
  • three fiber amplifiers may be cascaded, and two solid state amplifiers may be cascaded in the subsequent stage.
  • a distributed feedback laser diode (hereinafter referred to as “DFB laser”) that outputs a single longitudinal mode laser beam is used as the seed light source 10, and is controlled by a control signal output from the control unit 100 to which the gain switching method is applied.
  • DFB laser distributed feedback laser diode
  • pulse light having a desired pulse width of several nanoseconds or less, preferably several hundred picoseconds or less is output at a desired frequency of one shot or several megahertz or less.
  • the laser light source 11 a general-purpose semiconductor laser using a Fabry-Perot resonator capable of outputting continuous light or pulsed light is used.
  • Pulse light having a pulse energy of several picojoules to several hundred picojoules output from the seed light source 10 is finally pulsed by the fiber amplifiers 20 and 30 and the solid-state amplifier 50 with a pulse energy of several tens of microjoules to several tens of millijoules. After being amplified to light, it is converted into deep ultraviolet rays having a wavelength of 266 nm by being input to the two-stage nonlinear optical elements 60 and 70.
  • the pulse light output from the seed light source 10 is amplified by the first-stage fiber amplifier 20 via the optical isolator ISL1.
  • the fiber amplifiers 20 and 30 rare earth-doped optical fibers such as ytterbium (Yb) -doped fiber amplifiers pumped by a pumping light source 21 having a predetermined wavelength (for example, 975 nm) are used. Since the lifetime of the inversion distribution of the fiber amplifier 20 is in the order of milliseconds, the energy excited by the excitation light source 21 is efficiently transferred to pulsed light having a frequency of 1 kilohertz or more.
  • Yb ytterbium
  • the pulse light amplified by about 30 dB by the first-stage fiber amplifier 20 is input to the subsequent-stage fiber amplifier 30 via the optical isolator ISL2, and is amplified by about 25 dB.
  • the pulsed light amplified by the subsequent fiber amplifier 30 is beam-shaped by the collimator CL1, passes through the optical isolators ISL3 and ISL4, is guided to the solid-state amplifier 50, and is amplified by about 25 dB.
  • an acousto-optic modulator AOM Acoustic-Optic Modulator
  • An optical isolator ISL4 that guides the pulsed light amplified by the solid-state amplifier 50 to the nonlinear optical element 60 is disposed between M1 and M2.
  • Each of the above-described optical isolators ISL1 to ISL4 is a polarization-dependent type that blocks the return light by rotating the polarization plane in the opposite direction to the forward direction of the light propagation direction using the magneto-optic effect.
  • Each optical element which is an optical isolator and is arranged upstream along the optical axis, is provided to avoid thermal destruction by high-power return light.
  • a solid-state laser medium such as Nd: YVO4 crystal or Nd: YAG crystal is preferably used.
  • the solid-state laser medium is configured to be excited by the excitation light output from the excitation light source 51 including a laser diode having an emission wavelength of 808 nm or 888 nm and beam-formed by the collimator CL2.
  • the pulsed light that has passed through the optical switch element 40 is incident on the solid-state amplifier 50 through the reflection mirrors M1 and M2 and amplified, and then reflected by the reflection mirror M3 and re-enters the solid-state amplifier 50 to be amplified again. Is done. That is, it is configured to be amplified on the forward path and the return path of the solid-state amplifier 50, respectively.
  • the lens L1 is for beam shaping.
  • the pulsed light amplified by the solid-state amplifier 50 is reflected by the reflection mirror M2 and the optical isolator ISL4, is incident on the nonlinear optical elements 60 and 70 of the wavelength conversion unit 1D, is converted to a desired wavelength, and is output.
  • the first wavelength conversion unit 1E incorporates an LBO crystal (LiB 3 O 5 ) that is a nonlinear optical element 60
  • the second wavelength conversion unit 1F incorporates a CLBO crystal (CsLiB 6 O 10 ) that is a nonlinear optical element 70. It is.
  • the pulse light having a wavelength of 1064 nm output from the seed light source 10 is wavelength-converted to a wavelength of 532 nm by the nonlinear optical element 60, and further wavelength-converted to a wavelength of 266 nm by the nonlinear optical element 70.
  • the reflection mirrors M4 and M8 function as a filter for separating pulsed light with a wavelength of 1064 nm output from the nonlinear optical element 60, and the reflection mirror M6 is for separating pulsed light with a wavelength of 532 nm output from the nonlinear optical element 70.
  • Each of the separated pulse lights is attenuated by an optical damper.
  • the second wavelength conversion unit 1F is provided with a stage 71 that is a scanning mechanism that moves a CLBO crystal (CsLiB 6 O 10 ) in a plane orthogonal to the optical axis.
  • a stage 71 that is a scanning mechanism that moves a CLBO crystal (CsLiB 6 O 10 ) in a plane orthogonal to the optical axis.
  • CLBO crystal For lowering the ultraviolet When is irradiated to the same position long CLBO crystal (CsLiB 6 O 10) in the degradation and the wavelength converted output of the intensity distribution generated optical damage, CLBO crystal in a predetermined time (CsLiB 6 O 10) This is to shift the irradiation position of the pulsed light on the.
  • the control unit 100 is configured by a circuit block including an FPGA (Field Programmable Gate Array) and peripheral circuits, and a plurality of logic elements are driven based on a program stored in a memory in the FPGA in advance, whereby a laser light source device Each block constituting 1 is controlled sequentially, for example.
  • the control unit 100 may be configured with a microcomputer, a peripheral circuit such as a memory and an IO, or may be configured with a programmable logic controller (PLC) or the like.
  • PLC programmable logic controller
  • the control unit 100 outputs a trigger signal having a predetermined pulse width to the driver D1 of the DFB laser that is the seed light source 10 in order to cause the seed light source 10 to emit light using the gain switching method.
  • a pulse current corresponding to the trigger signal is applied from the drive circuit to the DFB laser, relaxation oscillation occurs, and only the first wave having the highest emission intensity immediately after the start of light emission due to relaxation oscillation consists of the second and subsequent sub-pulses.
  • a pulsed laser beam not included is output.
  • the gain switching method refers to a method of generating pulsed light having a short pulse width and high peak power using such relaxation oscillation.
  • control unit 100 outputs a gate signal to the RF driver D2 that drives the acousto-optic modulator AOM that is the optical switch element 40.
  • a diffraction grating is generated in a crystal constituting the acoustooptic device by a transducer (piezoelectric conversion device) to which a high frequency signal is applied from the RF driver D2, and diffracted light of pulsed light incident on the acoustooptic device is incident on the reflection mirror M1.
  • the RF driver D2 is stopped, the pulsed light incident on the acoustooptic device passes through without being diffracted and does not enter the reflection mirror M1.
  • the light that has passed through the acoustooptic device when the RF driver D2 is stopped is attenuated by an optical damper.
  • the optical switch element 40 When the optical switch element 40 is turned on by the gate signal, the light diffracted by the acousto-optic element propagates from the fiber amplifier 30 to the solid amplifier 50, and when the optical switch element 40 is turned off by the gate signal, the light is transmitted from the fiber amplifier 30 to the solid amplifier 50. Propagation is prevented.
  • a narrow-band laser pulse light having a center wavelength of 1064 nm is output at a predetermined cycle from the DFB laser that is the seed light source 10 (see FIGS. 2A and 3A).
  • the spectrum width is unnecessarily widened by self-phase modulation, Raman scattering, etc., and further, ASE noise is generated and S of the optical pulse is generated.
  • the / N ratio decreases (see FIG. 2B).
  • the bandwidth is further increased, and the ASE noise level is increased (see FIGS. 2C and 3B).
  • the wavelength converting unit 1D In order to obtain deep ultraviolet pulsed light having a desired power, it is necessary to amplify the pulsed light amplified by the fiber amplifiers 20 and 30 to a higher peak power by the solid-state amplifier 50 at the subsequent stage.
  • the wavelength range that can be converted by the wavelength converting unit 1D is limited by the characteristics of the nonlinear optical elements 60 and 70, the energy required for amplification does not contribute to wavelength conversion efficiently. That is, the wavelength conversion efficiency is lowered.
  • control unit 100 allows the propagation of light during the output period of the pulsed light from the seed light source 10 and prevents the light from propagating during a period different from the output period of the pulsed light from the seed light source 10.
  • 40 is configured to generate an output permissible state that permits the output of pulsed light from the nonlinear optical elements 60 and 70.
  • control unit 100 prevents the light from propagating during the output period of the pulsed light from the seed light source 10 and allows the light to propagate during a period different from the output period of the pulsed light from the seed light source 10.
  • 40 is configured to generate an output stop state in which the output of the pulsed light from the nonlinear optical elements 60 and 70 is stopped.
  • output stop state used in this specification is such a low level that the object to be processed cannot be substantially processed except when the power of the wavelength-converted light output from the nonlinear optical elements 60 and 70 is zero. This is a concept including the case where power wavelength-converted light is output.
  • the optical switch element 40 when the optical switch element 40 is turned on by the control unit 100 during a period in which pulse light is output from the seed light source 10, pulse light propagates from the fiber amplifier 30 to the solid-state amplifier 50 (section in FIG. 3C). Ton), the pulsed light is amplified with energy efficiency (see FIG. 3E), and the pulsed light with a large peak power is output from the nonlinear optical element. That is, the optical switch element 40 is caused to function as a filter for removing ASE noise in the time domain.
  • the optical switch element 40 when the optical switch element 40 is turned off by the control unit 100 during the output period of the pulsed light from the seed light source 10, the propagation of the pulsed light from the fiber amplifier 30 to the solid state amplifier 50 is blocked, and the seed light source 10 is stopped. Even if not, the output stop state in which the output of the pulsed light from the nonlinear optical elements 60 and 70 stops can be easily realized.
  • the optical switch element 40 When the optical switch element 40 is turned on by the control unit 100 in a period different from the output period of the pulsed light from the seed light source 10 in the output stop state, the ASE noise generated in the front-stage fiber amplifier 30 is generated in the rear-stage solid-state amplifier. Propagating (see FIG. 3D), the energy of the active region of the solid state amplifier 50 in the excited state is released by the excitation light source 51.
  • the optical switch element 40 is turned on by the control unit 100 during the output period of the pulse light from the seed light source 10, and the pulse light is transmitted from the wavelength conversion devices 60 and 70. Even when output is performed, the solid-state amplifier 50 and the nonlinear optical elements 60 and 70 are prevented from being damaged without generating a giant pulse.
  • the energy stored in the active region of the solid-state amplifier 50 is not sufficiently released by only the ASE noise propagating to the solid-state amplifier 50 when the output is stopped. Even if the generation of a giant pulse can be avoided at the beginning of the transition to the output permissible state due to excessive heat generation, the beam propagation characteristics deteriorate and adversely affect the quality of the processing target using laser pulse light. There is a fear.
  • the crystal temperature of the solid-state amplifier As shown in the second stage from the top of FIG. 4 (crystal temperature of the solid-state amplifier), the crystal temperature of the solid-state amplifier, which was in a steady state in the output-permitted state until time t1, is increased by the excitation light during the output stop state. This is a phenomenon at time ⁇ t from the time t2 when it gradually increases due to the accumulated energy and returns to the output stop state until it returns to the crystal temperature in the previous steady state. This is because the beam quality deteriorates during the time ⁇ t compared to the previous steady state.
  • the time ⁇ t varies depending on the length of the output stop state, and is about 0.5 to 60 seconds.
  • the laser light source device 1 is controlled by the control unit 100 during the output stop state from the time t1 to the time t2.
  • the laser light source 11 (see FIG. 1), which is the second light source disposed on the upstream side, is controlled to oscillate, and is configured to stop and control the oscillation of the laser light source 11 in the output allowable state after time t2.
  • the laser light which is continuous light output from the laser light source 11, propagates to the solid-state amplifier 50 via the optical switch element 40 during a period different from the output period of the pulsed light output from the seed light source 10, and is used as an excitation light source.
  • the energy in the active region of the solid state amplifier 50 in the excited state is released by 51 (see FIG. 3F).
  • the solid-state amplifier 50 does not generate excessive heat due to the excitation energy, and the temperature does not rise.
  • the optical switch element 40 is controlled by the control unit 100 at a later time t2
  • the pulsed light from the seed light source 10 propagates to the solid-state amplifier 50 and the output from the wavelength conversion unit 1D is resumed.
  • stable pulsed light is output from the nonlinear optical element 70, and processing can be restarted stably without adversely affecting the quality of the processing target beam caused by the thermal lens effect of the solid-state amplifier 50, etc. This is because deterioration of propagation characteristics and fluctuations in output level due to temperature fluctuations are suppressed.
  • control unit 100 outputs the average power of the light output from the solid-state amplifier 50 in the output stopped state from the solid-state amplifier 50 in the output permissible state while the power of the pumping light for the solid-state amplifier 50 is maintained.
  • the power of the laser light output from the laser light source 11 and input to the solid-state amplifier 50 is adjusted so as to be substantially equal to the average power of the light to be transmitted.
  • the oscillation wavelength of a general-purpose semiconductor laser using a Fabry-Perot resonator used in the laser light source 11 is set to the amplification band of the solid-state amplifier 50 capable of amplifying pulsed light having a wavelength of 1064 ⁇ m output from the seed light source 10.
  • the excitation energy accumulated in the solid-state amplifier 50 after switching to the output stop state is consumed for amplification of the laser light output from the laser light source 11. Will come to be. Since the laser light output from the laser light source 11 is not a pulse light having a large peak power output from the seed light source 10, it is sufficient to process the processing target from the nonlinear optical elements 60 and 70 even when amplified by the solid-state amplifier 50. It is not output as power wavelength-converted light.
  • the solid-state amplifier 50 when the laser light source 11 capable of oscillation in a narrow band shifted laterally from the center of the amplification band of the solid-state amplifier 50 is used, the solid-state amplifier is not amplified with a very large gain. Even if amplified by 50, the nonlinear optical elements 60 and 70 are not output as wavelength-converted light having sufficient power capable of processing the object to be processed.
  • the spectrum light has a half width of about 0.0001 nm and the center wavelength pulse light.
  • the laser light source 11 outputs a laser beam shifted by about 0.1 nm laterally from the center wavelength.
  • the laser light source 11 that includes the center wavelength of the seed light source 10 and can oscillate with a wider bandwidth than the seed light source 10 is used, the wavelength band that is inherently low in power and wider than the wavelength conversion characteristics of the nonlinear optical elements 60 and 70 is obtained. Are not output as light having a large peak power.
  • the oscillation wavelength of the laser light source 11 is set to an amplification band other than the amplification band capable of amplifying the pulsed light output from the seed light source 10 among the amplification bands of the solid-state amplifier 50. May be.
  • the oscillation wavelength of the laser light source 11 is set to an amplification band other than the amplification band capable of amplifying the pulsed light output from the seed light source 10, switching to the output stopped state The excitation energy stored later in the solid-state amplifier 50 is consumed for amplification of the laser light output from the laser light source 11.
  • the oscillation wavelength of the laser light source 11 is the wavelength of the pulsed light output from the seed light source 10 If the amplification band is set to be different from 1064 ⁇ m, the wavelength-converted light is not output because the laser light has a wavelength that is essentially different from the wavelength-convertible band of the nonlinear optical element.
  • the nonlinear optical element 60 Even if the ASE noise amplified by the solid-state amplifier 50 is incident on the nonlinear optical elements 60 and 70 during a period different from the output period of the pulsed light from the seed light source 10, the nonlinear optical element 60, ASE noise in a wider wavelength band than the wavelength conversion characteristic of 70 is not output as light having a large peak power.
  • peripheral optical components including the optical switch element 40 are heated and the like even if blocked by the optical switch element 40. Will not be damaged by.
  • the nonlinear optical elements 60 and 70 select only the pulsed light output from the seed light source 10 regardless of the difference in oscillation wavelength between the pulsed light output from the seed light source 10 and the laser light output from the laser light source 11. It functions as a filter element that performs wavelength conversion and outputs the processed object with power that can be processed.
  • the driver D11 is provided with a feedback control circuit that feedback-controls the power of the laser light output from the laser light source 11 based on the amount of light input from the duplexer 24 to the photodiode PD.
  • the control unit 100 adjusts the average power of the laser light output from the laser light source 11.
  • the position of the duplexer 24 may be provided on the output side of the subsequent fiber amplifier 30, and more preferably on the output side of the solid-state amplifier 50.
  • the feedback control circuit is not essential if the average power of the emitted laser light can be adjusted.
  • the average power of the laser light output from the laser light source 11 is the power when the laser light is continuous light, and the time average value when the laser light is pulsed light.
  • ASE noise generated in the preceding fiber amplifiers 20 and 30 propagates to the solid-state amplifier 50 via the optical switch element 40. At this time, it is output from the laser light source 11 and input to the solid-state amplifier 50 so that the average power of the light output from the solid-state amplifier 50 is substantially equal to the average power of the light output from the solid-state amplifier 50 in the output allowable state. The power of the laser beam is adjusted.
  • the output light from the laser light source 11 is configured to be combined with the pulsed light output from the seed light source 10 on the upstream side of the optical switch element 40, the output is stopped. There is no need to oscillate or stop the laser light source 11 in synchronization with the optical switch element 40 when the transition is made, and the laser light source 11 may simply be controlled to oscillate.
  • Propagation of the output light from the laser light source 11 is blocked by the optical switch element 40 during the output period of the pulsed light from the seed light source 10, and the laser light source by the optical switch element 40 during a period different from the output period of the pulsed light from the seed light source 10. Since the output light from 11 is allowed to propagate, the laser light source 11 can be easily controlled.
  • the output period of the pulsed light from the seed light source in which the optical switch element 40 is on-controlled by the control unit 100 in the output-permitted state does not mean only the entire period in which the pulsed light is output from the seed light source. If the peak power of the pulsed light converted by the nonlinear optical element shows an appropriate value, it may be a partial period, or slightly before and after the period when the pulsed light is output from the seed light source. It is a concept that includes various periods.
  • the “period different from the output period of the pulsed light from the seed light source” in which the optical switch element 40 is turned off by the control unit 100 in the output allowable state is the entire period between the output periods of the adjacent pulsed light, that is, It does not mean only the whole period in which no pulsed light exists, but if it is within a range where it is possible to reduce the wasteful consumption of energy in the active region of the solid-state amplifier excited by the excitation light source due to ASE noise, a part thereof It is a concept that includes a period.
  • the “pulse light output period from the seed light source” in which the optical switch element 40 is off-controlled by the control unit 100 in the output stop state does not mean only the entire period in which the pulse light is output from the seed light source. If the pulse light whose wavelength is converted by the non-linear optical element is weak, it may be a partial period, and also includes a short period before and after the period when the pulse light is output from the seed light source. It is.
  • the “period different from the output period of the pulsed light from the seed light source” in which the optical switch element 40 is on-controlled by the control unit 100 in the output stopped state is the entire period between the adjacent output periods of the pulsed light. It does not mean only the whole period in which no pulsed light exists, but it is a concept that includes a part of the period as long as the excessive excitation state of the solid-state amplifier is eliminated by ASE noise. It is a concept that includes not only every period between light output periods but also a period once in a plurality of times.
  • FIG. 6 illustrates a control timing chart for the seed light source 10, the laser light source 11, and the optical switch element 40 executed by the control unit 100.
  • a gate signal is output to the RF driver D2 of the optical switch element 40 at a reference time t0, and a trigger signal for the driver D1 of the seed light source 10 is turned on at a time t3 after a predetermined delay time.
  • a trigger signal for the driver D1 of the seed light source 10 is turned on at a time t3 after a predetermined delay time.
  • the pulsed light S1 having a predetermined pulse width is obtained, and the pulsed light S3 amplified by the fiber amplifiers 20 and 30 is obtained.
  • the pulsed light S3 has a broad band and is further superimposed with ASE noise.
  • the controller 100 does not turn off the trigger signal at time t5 to stop the laser oscillation of the seed light source 10, but the driver D1 does not stop the seed light source 10 at a predetermined time t5 with respect to the seed light source 10 in which relaxation oscillation has occurred.
  • the laser oscillation may be stopped.
  • the trigger signal OFF timing may be set arbitrarily.
  • the optical switch element 40 is turned on at time t2 by the gate signal turned on at time t0, and the optical switch element 40 is turned off at time t6 by the gate signal turned off at time t1.
  • the output light S4 amplified by the fiber amplifier 30 and passed through the optical switch element 40 that is, the pulsed light S4 output from the seed light source 10 propagates to the solid-state amplifier 50. .
  • a gate signal is output to the RF driver D2 of the optical switch element 40 at a reference time t1, and after a predetermined delay time, a trigger signal for the driver D1 of the seed light source 10 is turned on at a time t3. To do.
  • the pulsed light S1 having a predetermined pulse width is obtained, and the pulsed light S3 amplified by the fiber amplifiers 20 and 30 is obtained.
  • the optical switch element 40 is turned on at time t6 by the gate signal turned on at time t1, and the optical switch element 40 is turned off at time t9 by the gate signal turned off at time t7.
  • the output light S4 ′ obtained by combining the ASE noise output from the fiber amplifier 30 and the laser light output from the laser light source 11 passes through the optical switch element 40 between time t6 and time t9 when the optical switch element 40 is turned on. And propagates to the solid-state amplifier 50.
  • the pulsed light S3 output from the seed light source 10 and amplified by the fiber amplifiers 20 and 30 is prevented from propagating to the solid-state amplifier 50 by the optical switch element 40 which is turned off from time t2 to t6.
  • the laser light source 11 is controlled to oscillate at the time t1 or the time t6 when the state is shifted to the output stop state, and the state is maintained until the state is shifted to the output allowable state. During this time, laser light is output from the laser light source 11.
  • the laser light output from the laser light source 11 may be pulsed light instead of continuous light.
  • the average power of the light output from the solid-state amplifier 50 in the output stop state is input to the solid-state amplifier 50 so that the average power of the light output from the solid-state amplifier 50 in the output allowable state is substantially equal. It is sufficient that the light power is adjusted.
  • pulse light from the seed light source 10 is not input to the solid-state amplifier 50, and only ASE noise and laser light from the laser light source 11 are input.
  • the excitation energy accumulated in the active region of the solid-state amplifier 50 is emitted by these lights, and generation of a giant pulse and fluctuation of the output are avoided even when the output is allowed to be changed next.
  • the gate signal for the optical switch element 40 in the output allowable state is 180 degrees in phase with the gate signal in the output stop state.
  • the OFF state is basically reversed.
  • a diffraction grating is formed in the optical switch element 40 when an RF signal is input, and the state in which the diffracted light propagates to the solid-state amplifier 50 is expressed as ON, and the diffraction grating is formed in the optical switch element 40.
  • the state in which the zero-order light is attenuated by the damper without propagating the light to the solid-state amplifier 50 is expressed as OFF.
  • the logic of the control signal output to the optical switch element 40 may be either positive logic or negative logic.
  • the mode in which the optical switch element 40 is turned on in the entire period between the output periods of the plurality of pulse lights repeatedly output from the seed light source 10 in the output stopped state has been described.
  • the power of the laser light source 11 input to the solid-state amplifier 50 is adjusted so that the average power of the light output from the solid-state amplifier 50 is substantially equal to the average power of the light output from the solid-state amplifier in the output allowable state
  • the mode in which the optical switch element 40 is turned on only in a part of the period between the output periods of the plurality of pulse lights repeatedly output from the seed light source 10 may be used.
  • the aspect may be such that the optical switch element 40 is controlled to be repeatedly turned on and off in the period between the output periods of the plurality of pulse lights repeatedly output from the seed light source 10. By controlling in this way, the heat generation of the AOM that constitutes the optical switch element 40 can be reduced.
  • control unit 100 is configured to output a trigger signal for controlling the seed light source 10 based on a control signal (gate signal) for the optical switch element 40.
  • a control signal gate signal
  • the optical switch element 40 When the response of the optical switch element 40 is sufficiently faster than the response of the pulsed light output from the seed light source 10, the optical switch element 40 is naturally controlled based on the control signal for the seed light source 10. It is also possible to do.
  • the optical switching element 40 disposed between the fiber amplifier 30 and the solid-state amplifier 50 is controlled, Light is prevented from propagating during the output period of the pulsed light from the seed light source 10, allowed to propagate during a period different from the output period of the pulsed light from the seed light source 10, and is disposed upstream of the solid-state amplifier 50.
  • a laser pulse light generation method is executed in which the laser light source 11 combined with the pulse light output from the light source 10 is controlled to oscillate at least in a period different from the output period of the pulse light from the seed light source 10.
  • the optical switch element 40 is controlled so that light is output during the output period of the pulsed light from the seed light source 10.
  • a laser pulse light generation method is performed in which propagation is allowed, light propagation is prevented during a period different from the pulse light output period from the seed light source 10, and oscillation of the laser light source 11 is stopped and controlled.
  • the present invention relates to a seed light source configured to drive a semiconductor laser including a DFB laser at a frequency of several hundred megahertz or less and a pulse width of several nanoseconds or less, preferably several hundred picoseconds or less.
  • the present invention can be widely applied to the provided laser light source device.
  • the output from the laser light source 11 is such that the average power of the light output from the solid-state amplifier 50 in the output stopped state is substantially equal to the average power of the light output from the solid-state amplifier 50 in the output allowable state.
  • the example of adjusting the power of the laser light input to the solid-state amplifier 50 has been described.
  • the output time may be adjusted while maintaining the power of the laser light output from the laser light source 11 constant. Both output times may be adjusted.
  • the mode for controlling the drive time during which the laser light is output from the laser light source 11 or the output from the laser light source 11 by controlling the optical switch element 40 It is possible to adopt a mode in which the time for which the laser beam to be propagated propagates to the solid-state amplifier 50 is controlled.
  • the laser light source 11 may be arranged upstream of the solid-state amplifier 50 and configured to be combined with the pulsed light output from the seed light source 10, and the seed light source 10 is downstream of the optical switch element 40. It may be configured to be combined with the pulsed light output from.
  • the solid-state amplifier uses the continuous light of both the ASE noise propagating to the solid-state amplifier 50 via the optical switch element 40 and the laser light output from the laser light source 11.
  • the laser light source 11 is configured to be combined with the pulsed light output from the seed light source 10 on the downstream side of the optical switch element 40. In some cases, it is possible to release the energy stored in the active region of the solid-state amplifier 50 using only the laser light output from the laser light source 11.
  • the optical switch element 40 is always controlled to be in an off state so that the output light from the fiber amplifier 30 does not propagate to the solid state amplifier 50. Also good.
  • a band pass filter that narrows the band of pulse light that has been widened by chirping phenomenon, self-phase modulation in optical fiber, Raman scattering, or the like may be provided downstream of the fiber amplifiers 20 and 30. .
  • a band pass filter may be provided between the seed light source 10, the optical isolator ISL1, and the fiber amplifier 20, so that reflection of ASE noise to the seed light source may be avoided.
  • optical switch device 40 an example in which an acoustooptic device that turns on or off the first-order diffracted light by turning on or off the ultrasonic transducer has been described as the optical switch device 40.
  • intensity modulation of EO modulation is performed. It is also possible to use an electro-optic element that turns on and off light by using an electric field.
  • the optical switch element 40 whether or not the output of the fiber amplifier 30 is propagated to the solid-state amplifier 50 by using a micro peristaltic mirror (mirror composed of MEMS (Micro Electro Mechanical Systems)) manufactured by the micromachining technology as the optical switch element 40. May be configured to be switched according to a slight swing angle of the swing mirror.
  • a polarization device capable of dynamically switching the polarization state and controlling transmission and blocking of light may be used.
  • the optical switch element only needs to be composed of a dynamic optical element.
  • the control part 100 of the laser light source device when the output of pulsed light from the nonlinear optical elements 60 and 70 is allowed, the propagation of light is allowed at the output timing of the pulsed light from the seed light source 10, and the light is emitted at a timing different from the output timing.
  • the control part 100 of the laser light source device at least outputs the pulsed light from the nonlinear optical element.
  • the optical switch element 10 When stopping, the optical switch element 10 is controlled so that the propagation of light is blocked at the output timing of the pulsed light from the seed light source 10 and the light is allowed to propagate at a timing different from the output timing, and the laser light source 11 It is only necessary to be configured to control the oscillation.
  • the fiber amplifier 30 in order to prevent the propagation of the pulsed light from the seed light source 10 to the solid-state amplifier 50 and to generate the output stop state in which the output of the pulsed light from the nonlinear optical elements 60 and 70 is stopped, the fiber amplifier 30.
  • the optical switch element 40 is provided between the power amplifier and the solid-state amplifier 50
  • the present invention is not limited to such a mode.
  • the peak power after amplification of the continuous light output from the laser light source 11 or the pulsed light longer than the time width of the pulsed light output from the seed light source 10 is sufficiently higher than the peak power of the pulsed light output from the seed light source 10. Since it is low, the wavelength conversion efficiency by the nonlinear optical elements 60 and 70 is low. Therefore, the possibility that the processing object is output with power that can be processed is extremely low.
  • the power of the pumping light of the solid-state amplifier 50 is sufficiently large, if the laser light output from the laser light source 11 and amplified by the solid-state amplifier 50 in the output stop state is input to the nonlinear optical elements 60 and 70, it is ignored. There is also a possibility that wavelength-converted light having an unusable power is output.
  • the power of the excitation light of the solid-state amplifier 50 and the laser light source 11 are output so that wavelength-converted light with a predetermined power is output from the nonlinear optical elements 60 and 70 only when the output is allowed. It is also possible to adjust the power of the laser beam.
  • an optical switch element that allows or blocks the propagation of light from the solid-state amplifier 50 to the nonlinear optical elements 60 and 70 is further provided between the solid-state amplifier 50 and the nonlinear optical elements 60 and 70, and the control unit 100 includes the light. It is also possible to control the switch element so as to prevent light from propagating from the solid-state amplifier 50 to the nonlinear optical elements 60 and 70 when the output is stopped.
  • the optical switch element an element similar to the optical switch element 40 described above can be used.
  • a DFB laser is used as a seed light source and a gain switching method is applied to the DFB laser to generate pulsed light having a higher power than a steady state in a single longitudinal mode.
  • the present invention only needs to use a semiconductor laser as a seed light source, and a general Fabry-Perot type semiconductor laser other than a DFB laser can also be used.
  • the present invention is not limited to a seed light source with an oscillation wavelength of 1064 nm.
  • a seed light source having a different wavelength depending on the application, such as 1030 nm, 1550 nm, and 976 nm.
  • Nonlinear optical elements other than those described above can be used as the nonlinear optical element.
  • a BBO crystal, a KBBF crystal, an SBBO crystal, a KABO crystal, a BABO crystal, or the like can be used instead of the CLBO crystal.
  • Laser light source device 10 seed light source (first light source) 11: Laser light source (second light source) 20, 30: fiber amplifier 40: optical switch element 50: solid state amplifier 60, 70: nonlinear optical element 100: control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 第1光源である種光源10から出力されるパルス光を増幅するファイバ増幅器20,30及び固体増幅器50と、固体増幅器から出力されるパルス光を波長変換する非線形光学素子60,70と、ファイバ増幅器から固体増幅器へのパルス光の伝播を許容または阻止する光スイッチ素子40と、固体増幅器の上流側に配置され種光源から出力されるパルス光と合波可能な第2光源11と、少なくとも種光源10からのパルス光の出力期間に光の伝播を阻止するように光スイッチ素子40を制御するとともに、第2光源11を発振制御する制御部100と、を備えて構成され、励起用光源を停止しなくても一時的にパルス光の出力を停止でき、出力再開直後のビーム伝播特性の劣化が回避できるレーザ光源装置。

Description

レーザ光源装置及びレーザパルス光生成方法
 本発明は、各種のレーザ加工に用いられるレーザ光源装置及びレーザパルス光生成方法に関する。
 近年、レーザ光は様々な加工に用いられている。波長が532nmから1064nm付近のレーザ光はエネルギー強度が大きく、金属やガラス等の切断または溶接等の各種の加工に好適に用いられている。また、波長が200nmから350nm付近の深紫外領域のレーザ光は電子材料や複合材料の加工に用いられている。
 近赤外領域よりも短い波長のレーザ光を出力するレーザ光源装置は、近赤外領域の波長のレーザ光を出力する種光源と、種光源から出力されるレーザ光を増幅する光増幅器と、光増幅器で増幅されたレーザ光の波長を目的とする波長に変換する非線形光学素子を備えて構成されている。
 そして、パルス幅が数ナノ秒以下、好ましくは数百ピコ秒以下で繰返し周波数が数百メガヘルツ以下のピークパワーが大きなレーザパルス光を得ることができるように様々な種光源が選択されて、様々な光増幅器等が用いられている。
 従来、このような種光源として繰返し周波数が数十メガヘルツのモード同期レーザを用い、当該種光源から出力されたパルス光を分周することにより数キロヘルツのパルス光を得るように構成されたものがあった。
 しかし、モード同期レーザの発振周波数は温度や振動等の環境的な要因で変動し、その値を適正に制御することが困難であるため、受光素子等を用いて検出したレーザパルス光の発振周波数に同期して分周する必要があり、そのための回路構成が複雑になるという問題や、モード同期レーザの構成部品である過飽和吸収体が劣化し易く、長期安定駆動が困難であるという問題があった。
 そこで、パルス光の発振周波数の制御が可能な半導体レーザを種光源に用いることが考えられるが、このような半導体レーザから出力される近赤外のパルス光のパルスエネルギーは数ピコジュールから数百ピコジュールと非常に小さく、最終的に数十マイクロジュールから数十ミリジュールのパルスエネルギーのパルス光を得るためには、従来の種光源を使用する場合よりも大幅に増幅する必要がある。
 そのための光増幅器として、エルビウム・ドープト・ファイバ増幅器やイッテルビウム・ドープト・ファイバ増幅器等のファイバ増幅器や、イットリウム・アルミニウム・ガーネットにネオジウムを添加したNd:YAG、イットリウム・バナデートにネオジムを添加したNd:YVO4等の固体増幅器が好適に用いられる。
 特許文献1,2には、このようなファイバ増幅器と固体増幅器を組み合わせた光増幅器が開示されている。当該特許文献1,2に示されているように、ファイバ増幅器及び固体増幅器の何れも、レーザ活性領域でのポンプ作用で増幅対象となるレーザ光と同じ波長の光を増幅するために、励起用の光源を備える必要がある。そして、通常、このような励起用の光源として半導体レーザが用いられている。
特開2011-192831号公報 WO2008/014331号公報
 上述したレーザ光源装置から出力されるパルス光を用いて加工作業を行なう際に、一時的にパルス光の出力を停止させたい場合がある。そのような場合に種光源の発振を停止させ、或いは光増幅器へのパルス光の伝播を阻止すると、光増幅器に備えた励起用のレーザ光源によって各光増幅器のレーザ活性領域が励起され続けて過度な反転分布状態に到る。そのため、次に種光源を発振させ、或いは光増幅器へのパルス光の伝播を許容したときに、通常よりも極めて大きなピークパワーのパルス光(以下、「ジャイアントパルス」とも表記する。)が出力されて、固体増幅器や非線形光学素子等の破損を招くという問題があった。
 また、励起用のレーザ光源を駆動した状態で一時的にパルス光の出力を停止し、その後にパルス光の出力を再開する場合に、出力の停止中に固体増幅器を構成する固体レーザ媒体に過剰にエネルギーが蓄積されるため、当該固体レーザ媒体が過剰に発熱して温度上昇を招き、固体レーザ媒体に現れる熱レンズ効果に起因して、ビーム伝播特性が劣化する。そのため、出力を再開した後に温度が安定するまでの間は、レーザパルス光を用いた加工対象の品質に悪影響を与える虞もあった。
 そこで、一時的にパルス光の出力を停止する間、固体増幅器の励起用のレーザ光源からのパワーを抑制して、固体レーザ媒体に過剰にエネルギーが蓄積しないように調整することも考えられる。
 しかし、励起光のパワーを可変に調整すると固体レーザ媒体の温度上昇を抑制できるが、励起光のパワー変動を原因とする熱レンズ効果に起因して、パルス光の出力を再開したときにパルス光のビーム中心がずれる虞があるという問題があった。固体レーザ媒体に入射する励起光の光軸を精度よく調整するのが困難なため、励起光のパワーが変動すると固体レーザ媒体の熱分布状態が変動し、それに伴って熱レンズ効果の影響を受けるためである。
 本発明の目的は、上述した問題点に鑑み、装置から一時的にパルス光の出力を停止させる場合に、励起用光源を停止または調整しなくても固体増幅器や非線形光学素子等の破損を回避でき、出力再開直後のビーム伝播特性の劣化を回避することができるレーザ光源装置及びレーザパルス光生成方法を提供する点にある。
 上述の目的を達成するため、本発明によるレーザ光源装置の第一特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、ゲインスイッチング法でパルス光を出力する第1光源と、前記第1光源から出力されるパルス光を増幅するファイバ増幅器と、前記ファイバ増幅器から出力されるパルス光を増幅する固体増幅器と、前記固体増幅器から出力されるパルス光を波長変換して出力する非線形光学素子と、を備えているレーザ光源装置であって、前記固体増幅器の上流側に配置され前記種光源から出力されるパルス光と合波可能なレーザ光を出力する第2光源と、前記非線形光学素子からパルス光が出力される出力許容状態から、前記固体増幅器に対する励起光のパワーが維持された状態で、前記第1光源からのパルス光の前記固体増幅器への伝播を阻止して前記非線形光学素子からパルス光の出力を停止する出力停止状態を生成するとともに、当該出力停止状態で前記第2光源を発振制御するように構成されている制御部と、を備えている点にある。
 制御部によって、種光源として機能する第1光源から出力されるパルス光の固体増幅器への伝播が阻止されると、非線形光学素子からパルス光の出力が停止する出力停止状態になる。このとき、固体増幅器に対する励起光のパワーが維持された状態であっても、第2光源から出力されるレーザ光が種光源からのパルス光の光軸に沿って固体増幅器に伝播することにより、励起状態にある固体増幅器の活性領域のエネルギーが放出されるので、固体増幅器が過剰に発熱して温度上昇するようなことが回避される。
 その結果、当該出力停止状態の後に、第1光源からのパルス光が固体増幅器へ伝播しても、固体増幅器の熱レンズ効果等に起因するビーム伝播特性の劣化や、温度変動に起因する出力レベルの変動が生じることなく、非線形光学素子から安定したパルス光が出力され、加工対象の品質に悪影響を与えることなく安定的に加工を再開することができるようになる。
 同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記ファイバ増幅器と前記固体増幅器との間に、前記ファイバ増幅器から前記固体増幅器への光の伝播を許容または阻止する光スイッチ素子をさらに備え、前記制御部は、少なくとも前記第1光源からのパルス光の出力期間に光の伝播を阻止するように前記光スイッチ素子を制御することにより、前記非線形光学素子からパルス光の出力を停止する出力停止状態を生成するとともに、前記出力停止状態で前記第2光源を発振制御するように構成されている点にある。
 第1光源からのパルス光の出力期間に、制御部によって光スイッチ素子が制御され、ファイバ増幅器から固体増幅器へのパルス光の伝播が阻止されるので、第1光源からのパルス光の出力を停止しなくても、非線形光学素子からパルス光の出力を停止させる出力停止状態を実現することができる。
 同第三の特徴構成は、同請求項3に記載した通り、上述の第二の特徴構成に加えて、前記制御部は、前記出力停止状態でさらに前記第1光源からのパルス光の出力期間と異なる期間に光の伝播を許容するように前記光スイッチ素子を制御し、前記出力停止状態で少なくとも前記第1光源からのパルス光の出力期間と異なる期間に前記第2光源を発振制御するように構成されている点にある。
 第1光源から出力されるパルス光をファイバ増幅器で増幅すると、チャーピング現象や光ファイバ内の自己位相変調やラマン散乱等によって信号光の帯域以上にスペクトルが広がるとともに、自然放出光ノイズ(以下、「ASEノイズ(amplified spontaneous emission noise)」と記す。)が発生してパルス光のSN比が低下することはよく知られている。制御部によって光スイッチ素子が制御され、第1光源からのパルス光の出力期間と異なる期間に光が伝播するように、制御部によって光スイッチ素子が制御されると、第2光源から出力されるレーザ光とともにASEノイズが固体増幅器に伝播され、励起用の光源によって励起状態にある固体増幅器の活性領域のエネルギーが放出されるようになる。
 同第四の特徴構成は、同請求項4に記載した通り、上述の第二または第三の特徴構成に加えて、前記制御部は、前記第1光源からのパルス光の出力期間に光の伝播を許容し、前記第1光源からのパルス光の出力期間と異なる期間に光の伝播を阻止するように前記光スイッチ素子を制御することにより、前記非線形光学素子からのパルス光の出力を許容する出力許容状態を生成するとともに、前記出力許容状態で前記第2光源の発振を停止制御するように構成されている点にある。
 パルス光の周波数がメガヘルツの位数より大きければ、上述したASEノイズは極僅かであるためさほど問題とならないが、パルス光の発振周波数が1メガヘルツよりも低い領域ではASEノイズの影響が大きくなる。そのため、固体増幅器に注入される励起光のエネルギーの一部がこのようなノイズ成分の増幅に無駄に消費されて、パルス光の増幅のためのエネルギー利用効率が低下して増幅率が低下するばかりか、ノイズ成分の増幅に消費されたエネルギーによる無駄な発熱が大きくなり、固体増幅器等の冷却のための部品コスト等も増大することになる。
 しかし、非線形光学素子からのパルス光の出力を許容する出力許容状態では、制御部によって第2光源の発振が停止制御されるとともに、第1光源からのパルス光の出力期間と異なる期間に光の伝播を阻止するように光スイッチ素子が制御されて、固体増幅器へのASEノイズや連続光の伝播が阻止されるため、固体増幅器の活性領域のエネルギーが無駄に消費されることが回避されるようになる。
 そして、制御部によって光スイッチ素子が制御され、第1光源からのパルス光の出力期間にのみファイバ増幅器から固体増幅器へパルス光が伝播するように出力許容状態が生成され、当該出力許容状態で第2光源の発振が停止制御されるので、固体増幅器でエネルギー効率よくパルス光が増幅されて、非線形光学素子から大きなピークパワーのパルス光が出力されるようになる。このとき、当該光スイッチ素子は時間領域でASEノイズを除去するフィルタとして機能する。
 同第五の特徴構成は、同請求項5に記載した通り、上述の第三または第四の特徴構成に加えて、前記第2光源から出力されるレーザ光が前記光スイッチ素子の上流側で前記第1光源から出力されるパルス光と合波可能に構成され、前記制御部は前記出力停止状態で第2光源を発振制御するように構成されている点にある。
 第2光源が光スイッチ素子の上流側に配置されていれば、出力停止状態に移行したときに第2光源を光スイッチ素子と同期して発振または停止制御する必要はなく、単に第2光源を発振制御するだけでよい。第1光源からのパルス光の出力期間に光スイッチ素子によって第2光源からの出力光の伝播が阻止され、第1光源からのパルス光の出力期間と異なる期間に光スイッチ素子によって第2光源からの出力光が固体増幅器へ伝播するからである。
 同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記制御部は、前記出力停止状態で前記固体増幅器から出力される光の平均パワーが、前記出力許容状態で前記固体増幅器から出力される光の平均パワーと略等しくなるように、前記第2光源から出力され前記固体増幅器に入力されるレーザ光のパワーを調整するように構成されている点にある。
 固体増幅器から出力される光の平均パワーが出力許容状態と出力停止状態で略等しくなるように、第2光源から出力され前記固体増幅器に入力されるレーザ光のパワーが調整されるので、出力許容状態と出力停止状態の双方で固体増幅器に対する励起光のパワーを維持することにより、固体増幅器の熱的安定性を確保することが可能になる。従って、出力許容状態から出力停止状態に切り替わった後に固体増幅器が過剰に発熱して温度上昇を招くようなことが回避できるようになる。
 同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記出力許容状態のときにのみ前記非線形光学素子から所定パワーの波長変換光が出力されるように、前記固体増幅器の励起光のパワー及び/またはパルス光の繰返し周波数が調整されている点にある。
 固体増幅器の励起光のパワー及び/またはパルス光の繰返し周波数を調整することにより、出力許容状態のときにのみ加工対象を加工可能な波長変換光が出力され、出力停止状態では仮に非線形光学素子から波長変換光が出力されも加工対象が誤って加工されるような不都合な事態の発生を回避できるようになる。
 同第八の特徴構成は、同請求項8に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記固体増幅器と前記非線形光学素子との間に、前記固体増幅器から前記非線形光学素子への光の伝播を許容または阻止する光スイッチ素子をさらに備え、前記制御部は、当該光スイッチ素子を制御して前記出力停止状態で前記固体増幅器から前記非線形光学素子への光の伝播を阻止するように構成されている点にある。
 当該光スイッチ素子によって出力停止状態で固体増幅器から非線形光学素子への光の伝播が阻止されるので、出力許容状態のときにのみ加工対象を加工可能な波長変換光が出力され、出力停止状態では加工対象が誤って加工されるような不都合な事態の発生を回避できるようになる。
 同第九の特徴構成は、同請求項9に記載した通り、上述の第一から第八の何れかの特徴構成に加えて、前記第2光源の発振波長は、前記第1光源から出力されるパルス光を増幅可能な前記固体増幅器の増幅帯域に設定されている点にある。
 第2光源の発振波長が固体増幅器の増幅帯域に設定されることにより、出力停止状態への切替後に固体増幅器に蓄積される励起エネルギーが第2光源から出力されるレーザ光の増幅に消費されるようになる。第2光源から出力されるレーザ光のパワーが本来的に低ければ、固体増幅器で増幅されても非線形光学素子で大きなピークパワーの光として波長変換されることがない。
 同第十の特徴構成は、同請求項10に記載した通り、上述の第一から第八の何れかの特徴構成に加えて、前記第2光源の発振波長は、前記固体増幅器の増幅帯域のうち、前記第1光源から出力されるパルス光を増幅可能な増幅帯域以外の増幅帯域に設定されている点にある。
 固体増幅器の増幅帯域が複数存在し、第2光源の発振波長が第1光源から出力されるパルス光を増幅可能な増幅帯域以外の増幅帯域に設定されていれば、出力停止状態への切替後に固体増幅器に蓄積される励起エネルギーが第2光源から出力されるレーザ光の増幅に消費されるようになる。第2光源から出力されるレーザ光が固体増幅器で増幅されて非線形光学素子に入射しても、本来的に非線形光学素子の波長変換可能な帯域とは異なる波長のレーザ光であるので、波長変換光が出力されることはない。
 同第十一の特徴構成は、同請求項11に記載した通り、上述の第一から第十の何れかの特徴構成に加えて、前記光スイッチ素子が音響光学素子または電気光学素子を含む動的光学素子で構成されている点にある。
 光スイッチ素子として超音波トランデューサのオンまたはオフによって1次回折光をオンまたはオフする音響光学素子、EO変調の強度変調を利用して電界により光をオンオフする電気光学素子等の動的光学素子を用いることが好ましい。
 同第十二の特徴構成は、同請求項12に記載した通り、上述の第一から第十一の何れかの特徴構成に加えて、前記種光源がDFBレーザで構成され、前記制御部は前記DFBレーザを数メガヘルツ以下の周波数で、且つ、数ナノ秒以下のパルス幅で駆動するように構成されている点にある。
 種光源としてDFBレーザを用いてゲインスイッチング法を適用することによって、単一縦モードで発振し、定常状態よりも高いパワーのパルス光が得られる。ゲインスイッチング法によれば、単発のパルス光を含む数メガヘルツ以下の所望の周波数で、数ナノ秒以下の所望のパルス幅のパルス光を容易に生成することができ、このようなパルス光に上述の光スイッチ素子を用いることによって、高い平均パワーで且つ所望の波長のパルス光を必要な時に効率よく且つ安定した状態で得ることができるようになる。
 本発明によるレーザパルス光生成方法の第一の特徴構成は、同請求項13に記載した通り、ゲインスイッチング法で第1光源から出力されたパルス光をファイバ増幅器及び固体増幅器で順次増幅し、増幅後のパルス光を非線形光学素子で波長変換して出力するレーザパルス光生成方法であって、前記非線形光学素子からのパルス光の出力を停止する場合に、前記増幅器に対する励起光のパワーが維持された状態で、前記第1光源からのパルス光の前記固体増幅器への伝播を阻止するとともに、前記固体増幅器の上流側に配置され前記第1光源から出力されるパルス光と合波可能なレーザ光を出力する第2光源を発振制御する点にある。
 同第二の特徴構成は、同請求項14に記載した通り、上述の第一の特徴構成に加えて、前記ファイバ増幅器と前記固体増幅器との間に配置された光スイッチ素子を制御して、前記第1光源からのパルス光の出力期間に光の伝播を阻止し、前記第1光源からのパルス光の出力期間と異なる期間に光の伝播を許容するとともに、前記固体増幅器の上流側に配置され前記第1光源から出力されるパルス光と合波可能なレーザ光を出力する第2光源を、少なくとも前記第1光源からのパルス光の出力期間と異なる期間に発振制御する点にある。
 同第三の特徴構成は、同請求項15に記載した通り、上述の第二の特徴構成に加えて、前記非線形光学素子からのパルス光の出力を許容する場合に、前記光スイッチ素子を制御して、前記第1光源からのパルス光の出力期間に光の伝播を許容し、前記第1光源からのパルス光の出力期間と異なる期間に光の伝播を阻止するとともに、前記第2光源の発振を停止制御する点にある。
 以上説明した通り、本発明によれば、装置から一時的にパルス光の出力を停止させる場合に、励起用光源を停止または調整しなくても固体増幅器や非線形光学素子等の破損を回避でき、出力再開直後のビーム伝播特性の劣化を回避することができるレーザ光源装置及びレーザパルス光生成方法を提供することができるようになった。
図1は本発明によるレーザ光源装置のブロック構成図である。 図2(a)は第1光源から発振される狭帯域のパルス光の周波数特性と時間軸特性の説明図であり、図2(b),図2(c)はファイバ増幅器の自己位相変調やラマン散乱によって広帯域化したパルス光の周波数特性と時間軸特性の説明図である。 図3(a)は第1光源から周期的に発振されるパルス光の説明図であり、図3(b)は後段のファイバ増幅器でASEノイズが重畳したパルス光の説明図であり、図3(c)は時間領域で第1光源の発振周期と同期して光スイッチ素子を通過した後のパルス光の説明図であり、図3(d)は時間領域で第1光源の発振周期の前後に光スイッチ素子を通過するASEノイズの説明図であり、図3(e)は時間領域で第1光源の発振周期と同期して光スイッチ素子を通過して、固体増幅器で増幅されたパルス光の説明図であり、図3(f)は時間領域で第1光源の発振周期の前後に光スイッチ素子を通過するASEノイズ及び第2光源から出力されるレーザ光の説明図である。 図4は出力停止期間から出力許容期間に切替時に生じる出力変動及び安定化の説明図である。 図5(a),図5(b)は固体増幅器の増幅帯域と第2光源の発振波長との関係の説明図である。 図6は光パルスの出力停止状態と出力許容状態に対応して、第1光源を駆動するトリガ信号と光スイッチ素子を駆動するゲート信号の出力タイミングを説明するタイミングチャートである。
 以下、本発明によるレーザ光源装置及びレーザパルス光生成方法の実施形態を説明する。
 図1には、本発明によるレーザ光源装置1の一例となる構成が示されている。レーザ光源装置1は、光源部1Aと、ファイバ増幅部1Bと、固体増幅部1Cと、波長変換部1Dとが光軸Lに沿って配置され、さらに光源部1A等を制御する制御部100を備えて構成されている。
 光源部1Aには、本発明の第1光源となる種光源10と、種光源用のドライバD1と、種光源用の光アイソレータISL1と、本発明の第2光源となるレーザ光源11と、レーザ光源用のドライバD11と、レーザ光源用の光アイソレータISL11と、レーザ光源11の出力光のパワーをモニタするフォトダイオードPD等を備えている。
 ファイバ増幅部1Bには、それぞれレーザダイオードで構成される励起用光源21,31及び合波器22,32を備えた二段のファイバ増幅器20,30と、光アイソレータISL2,ISL3と、光スイッチ素子40等を備えている。
 前段のファイバ増幅器20の入力側に、レーザ光源11から出力されるレーザ光を種光源10から出力されるレーザパルス光と合波可能な合波器23が設けられ、ファイバ増幅器20の出力側に、ファイバ増幅器20の出力光をフォトダイオードPDに導く分波器24が設けられている。
 固体増幅部1Cには、固体増幅器50と、励起用光源51と、反射ミラーM1,M2,M3と、レンズL1,コリメータCL2等を備えている。波長変換部1Dは、第1波長変換部1E及び第2波長変換部1Fで構成され、それぞれに非線形光学素子60,70を備えている。
 種光源10から出力された波長1064nmのレーザパルス光(以下、単に「パルス光」とも記す。)が二段のファイバ増幅器20,30で増幅され、さらに一段の固体増幅器50で所望のレベルまで増幅される。固体増幅器50で増幅されたパルス光は非線形光学素子60で波長532nmに波長変換され、さらに非線形光学素子70で波長266nmに波長変換されて出力される。
 尚、ファイバ増幅器及び固体増幅器の数は特に限定されることはなく、パルス光に対する所望の増幅率を得るために適宜設定されればよい。例えば三つのファイバ増幅器を縦続接続し、その後段に二つの固体増幅器を縦続接続してもよい。
 種光源10として単一縦モードのレーザ光を出力する分布帰還型レーザダイオード(以下、「DFBレーザ」と記す。)が用いられ、ゲインスイッチング法を適用する制御部100から出力される制御信号によって、DFBレーザから単発または数メガヘルツ以下の所望の周波数で、数ナノ秒以下、好ましくは数百ピコ秒以下の所望のパルス幅のパルス光が出力される。
 レーザ光源11として、連続光またはパルス光が出力可能な、ファブリペロー共振器を用いた汎用の半導体レーザが用いられる。
 種光源10から出力された数ピコジュールから数百ピコジュールのパルスエネルギーのパルス光が、ファイバ増幅器20,30及び固体増幅器50によって最終的に数十マイクロジュールから数十ミリジュールのパルスエネルギーのパルス光に増幅された後に、二段の非線形光学素子60,70に入力されることによって波長266nmの深紫外線に波長変換される。
 種光源10から出力されたパルス光は、光アイソレータISL1を介して、初段のファイバ増幅器20で増幅される。ファイバ増幅器20,30として、所定波長(例えば975nm)の励起用光源21で励起されるイッテルビウム(Yb)添加ファイバ増幅器等の希土類添加光ファイバが用いられる。このようなファイバ増幅器20の反転分布の寿命はミリ秒の位数であるため、励起用光源21で励起されたエネルギーは1キロヘルツ以上の周波数のパルス光に効率的に転移されるようになる。
 初段のファイバ増幅器20で約30デシベル増幅されたパルス光は、光アイソレータISL2を介して後段のファイバ増幅器30に入力されて約25デシベル増幅される。後段のファイバ増幅器30で増幅されたパルス光は、コリメータCL1によってビーム整形され、光アイソレータISL3,ISL4を通過した後に固体増幅器50に導かれて約25デシベル増幅される。
 コリメータCL1と固体増幅器50との間には、音響光学素子が組み込まれ光スイッチ素子40として機能する音響光学変調器AOM(Acousto-Optic Modulator)、一対の反射ミラーM1,M2が配置され、反射ミラーM1,M2間には固体増幅器50で増幅されたパルス光を非線形光学素子60に導く光アイソレータISL4が配置されている。
 尚、上述の光アイソレータISL1~ISL4は、何れも磁気光学効果を利用して光の伝播方向の順方向と逆方向で偏光面を逆方向に回転させることで戻り光を遮断する偏光依存型の光アイソレータであり、光軸に沿って上流側に配置された各光学素子が、高いパワーの戻り光によって熱破壊されることを回避する等のために設けられている。
 固体増幅器50としてNd:YVO4結晶やNd:YAG結晶等の固体レーザ媒体が好適に用いられる。発光波長808nmまたは888nmのレーザダイオードで構成される励起用光源51から出力され、コリメータCL2によってビーム成形された励起光によって固体レーザ媒体が励起されるように構成されている。
 光スイッチ素子40を通過したパルス光は、反射ミラーM1,M2を経由して固体増幅器50に入射して増幅された後に、さらに反射ミラーM3で反射されて固体増幅器50に再入射して再度増幅される。つまり、固体増幅器50の往路及び復路でそれぞれ増幅されるように構成されている。尚、レンズL1はビーム整形用である。
 固体増幅器50で増幅されたパルス光は反射ミラーM2、光アイソレータISL4で反射されて波長変換部1Dの非線形光学素子60,70に入射して所望の波長に変換された後に出力される。
 第1波長変換部1Eには非線形光学素子60であるLBO結晶(LiB)が組み込まれ、第2波長変換部1Fには非線形光学素子70であるCLBO結晶(CsLiB10)が組み込まれている。種光源10から出力された波長1064nmのパルス光が非線形光学素子60で波長532nmに波長変換され、さらに非線形光学素子70で波長266nmに波長変換される。
 反射ミラーM4,M8は非線形光学素子60から出力される波長1064nmのパルス光を分離するためのフィルタとして機能し、反射ミラーM6は非線形光学素子70から出力される波長532nmのパルス光を分離するためのフィルタとして機能し、分離されたパルス光はそれぞれ光ダンパで減衰される。
 第2波長変換部1FにはCLBO結晶(CsLiB10)を光軸と直交する面内で移動させる走査機構であるステージ71が設けられている。紫外線が長時間同一箇所に照射されるとCLBO結晶(CsLiB10)に光学損傷が生じて強度分布の劣化と波長変換出力の低下を招くため、所定時期にCLBO結晶(CsLiB10)へのパルス光の照射位置をシフトするためである。
 制御部100はFPGA(Field Programmable Gate Array)及び周辺回路等を備えた回路ブロックで構成され、予めFPGA内のメモリに記憶したプログラムに基づいて複数の論理素子が駆動されることにより、レーザ光源装置1を構成する各ブロックが例えばシーケンシャルに制御される。尚、制御部100はFPGAで構成される以外に、マイクロコンピュータとメモリ及びIO等の周辺回路で構成されていてもよいし、プログラマブル・ロジック・コントローラ(PLC)等で構成されていてもよい。
 具体的に、制御部100はゲインスイッチング法を用いて種光源10を発光させるべく、種光源10であるDFBレーザのドライバD1に所定パルス幅のトリガ信号を出力する。当該駆動回路からDFBレーザにトリガ信号に応じたパルス電流が印加されると緩和振動が発生し、緩和振動による発光開始直後の最も発光強度が大きな第1波のみからなり第2波以降のサブパルスを含まないパルス状のレーザ光が出力される。ゲインスイッチング法とは、このような緩和振動を利用した短いパルス幅でピークパワーが大きいパルス光を発生させる方法をいう。
 また、制御部100は光スイッチ素子40である音響光学変調器AOMを駆動するRFドライバD2にゲート信号を出力する。RFドライバD2から高周波信号が印加されたトランスジューサ(ピエゾ変換素子)によって音響光学素子を構成する結晶に回折格子が生成され、音響光学素子に入射するパルス光の回折光が反射ミラーM1に入射する。RFドライバD2が停止すると音響光学素子に入射したパルス光は回折せずにそのまま通過し、反射ミラーM1に入射することはない。尚、RFドライバD2の停止時に音響光学素子を通過した光は光ダンパによって減衰されるように構成されている。
 ゲート信号によって光スイッチ素子40がオンすると音響光学素子によって回折された光がファイバ増幅器30から固体増幅器50へ伝播し、ゲート信号によって光スイッチ素子40がオフするとファイバ増幅器30から固体増幅器50へ光の伝播が阻止される。
 図2(a),(b),(c)には、レーザ光源装置1の各部を伝播するパルス光の周波数特性が左側に示され、それらパルス光の時間軸特性が右側に示されている。これらの図で示す符号Sn(nは整数)は、図1に示すレーザ光源装置1の各部の出力ノードの光信号Sn(n=1,2,・・・)に対応する。
 制御部100から出力されるトリガ信号によって種光源10であるDFBレーザから中心波長1064nmの狭帯域のレーザパルス光が所定の周期で出力される(図2(a),図3(a)参照)。種光源10から出力されたパルス光がファイバ増幅器20に導かれて増幅される過程で自己位相変調やラマン散乱等によって不必要にスペクトル幅が広がり、さらにはASEノイズが発生して光パルスのS/N比が低下する(図2(b)参照)。そのようなパルス光が後段のファイバ増幅器30に導かれて増幅される過程でさらに広帯域化され、ASEノイズレベルが増大する(図2(c),図3(b)参照)。
 所望のパワーの深紫外のパルス光を得るために、ファイバ増幅器20,30で増幅されたパルス光を後段の固体増幅器50でさらに大きなピークパワーに増幅する必要がある。しかし、波長変換部1Dで波長変換可能な波長範囲が各非線形光学素子60,70の特性によって制限されることから、増幅に要したエネルギーが効率的に波長変換に寄与しない。つまり波長変換効率が低下することになる。
 固体増幅器50の励起エネルギーがASEノイズの増幅や広帯域化したパルス光に無駄に消費される結果、エネルギー効率が大きく低下するという問題や、そのために励起エネルギーを大きくすると、発熱による素子の破損を回避するために大掛かりな冷却装置が必要となり、徒にレーザ光源装置1が高価になるという問題がある。パルス光の周波数がメガヘルツの位数より大きい領域ではASEノイズは極僅かであるためさほど問題とならないが、パルス光の発振周波数が1メガヘルツよりも低い領域ではASEノイズの影響が顕著になる。
 一方、レーザ光源装置1から出力される深紫外域の波長のパルス光を各種のレーザ加工に用いる場合に、一時的にパルス光の出力を停止させたいときも多くある。そのような場合に種光源10の発振を停止させ、或いは光増幅器20,30,50へのパルス光の伝播を阻止すると、その間も光増幅器20,30,50に備えた励起用のレーザ光源によって各レーザ活性領域が励起され続けて過度な反転分布状態に到る。
 その結果、次に種光源を発振させたとき、或いは光増幅器50へのパルス光の伝播を許容したときにジャイアントパルスが出力されて、固体増幅器50や後段の非線形光学素子等の破損を招くという問題もある。
 そこで、制御部100は、種光源10からのパルス光の出力期間に光の伝播を許容し、種光源10からのパルス光の出力期間と異なる期間に光の伝播を阻止するように光スイッチ素子40を制御することにより、非線形光学素子60,70からパルス光の出力を許容する出力許容状態を生成するように構成されている。
 さらに、制御部100は、種光源10からのパルス光の出力期間に光の伝播を阻止し、種光源10からのパルス光の出力期間と異なる期間に光の伝播を許容するように光スイッチ素子40を制御することにより、非線形光学素子60,70からのパルス光の出力を停止する出力停止状態を生成するように構成されている。
 尚、本明細書で用いる「出力停止状態」とは、非線形光学素子60,70から出力される波長変換光のパワーがゼロである場合以外に、加工対象物を実質的に加工できないような低いパワーの波長変換光が出力される場合を含む概念である。
 当該出力許容状態で、種光源10からのパルス光の出力期間と異なる期間に制御部100によって光スイッチ素子40がオフされると、その間は、後段の固体増幅器50へのASEノイズの伝播が阻止されるようになり、固体増幅器50の活性領域のエネルギーが無駄に消費されることが回避されるようになる(図3(c)の区間Toff参照)。
 そして、種光源10からパルス光が出力される期間に制御部100によって光スイッチ素子40がオンされると、ファイバ増幅器30から固体増幅器50へパルス光が伝播するので(図3(c)の区間Ton参照)、エネルギー効率よくパルス光が増幅されて(図3(e)参照)、非線形光学素子から大きなピークパワーのパルス光が出力されるようになる。つまり、当該光スイッチ素子40を時間領域でASEノイズを除去するフィルタとして機能させるのである。
 さらに、種光源10からのパルス光の出力期間に制御部100によって光スイッチ素子40がオフされると、ファイバ増幅器30から固体増幅器50へのパルス光の伝播が阻止され、種光源10を停止させなくても非線形光学素子60,70からパルス光の出力が停止する出力停止状態が容易く実現できる。
 当該出力停止状態で、種光源10からのパルス光の出力期間と異なる期間に制御部100によって光スイッチ素子40がオンされると、前段のファイバ増幅器30で生じたASEノイズが後段の固体増幅器に伝播して(図3(d)参照)、励起用の光源51によって励起状態にある固体増幅器50の活性領域のエネルギーが放出される。
 その結果、当該出力停止状態の後に出力許容状態に移行して、種光源10からのパルス光の出力期間に制御部100によって光スイッチ素子40がオンされて波長変換装置60,70からパルス光が出力される場合でも、ジャイアントパルスが発生することなく、固体増幅器50や非線形光学素子60,70が破損するようなことが回避される。
 しかし、図4に示すように、出力停止状態で固体増幅器50に伝播するASEノイズのみで固体増幅器50の活性領域に蓄積されたエネルギーが十分に放出されることはなく、そのために固体増幅器50が過剰に発熱して温度上昇を招き、出力許容状態に移行した当初にジャイアントパルスの発生は回避できても、ビーム伝播特性が劣化して、レーザパルス光を用いた加工対象の品質に悪影響を与える虞がある。
 図4の最上段(出力(S4)(第2光源オフ)に示すように、時刻t1で出力許容状態から出力停止状態に切り替わり、出力停止状態から再度出力許容状態に切り替わった時刻t2から後の時刻t3までの時間Δtの間、ビーム伝播特性の劣化に起因するパワーの低下ΔSが現れるのである。
 図4の上から二段目(固体増幅器の結晶温度)に示すように、時刻t1までの出力許容状態でほぼ定常状態であった固体増幅器の結晶温度が、出力停止状態の間に励起光により蓄積されるエネルギーにより次第に上昇し、出力停止状態に復帰した時刻t2から以前の定常状態での結晶温度に復帰するまでの時間Δtでの現象で、図4の上から三段目(ビーム品質)に示すように、時間Δtの間はそれ以前の定常状態に比べてビーム品質が劣化するためである。時間Δtは、出力停止状態の長さにより変動し、0.5秒から60秒程度となる。
 そのため、図4の上から四段目(第2光源)に示すように、本発明によるレーザ光源装置1は、時刻t1から時刻t2の出力停止状態の間に、制御部100によって固体増幅器50の上流側に配置された第2光源であるレーザ光源11(図1参照)が発振制御され、時刻t2以降の出力許容状態でレーザ光源11の発振を停止制御するように構成されている。
 レーザ光源11から出力される連続光であるレーザ光が、種光源10から出力されるパルス光の出力期間と異なる期間に光スイッチ素子40を介して固体増幅器50に伝播して、励起用の光源51によって励起状態にある固体増幅器50の活性領域のエネルギーが放出されるようになる(図3(f)参照)。
 その結果、図4の最下段(出力(S4)(第2光源オン)に示すように、固体増幅器50が励起エネルギーによって過剰に発熱して温度上昇するようなことがないので、当該出力停止状態の後の時刻t2に制御部100により光スイッチ素子40が制御されて、種光源10からのパルス光が固体増幅器50へ伝播して波長変換部1Dからの出力が再開された直後であっても、非線形光学素子70から安定したパルス光が出力され、加工対象の品質に悪影響を与えることなく安定的に加工を再開することができるようになる。固体増幅器50の熱レンズ効果等に起因するビーム伝播特性の劣化や、温度変動に起因する出力レベルの変動が抑制されるためである。
 詳述すると、固体増幅器50に対する励起光のパワーが維持された状態で、制御部100は、出力停止状態で固体増幅器50から出力される光の平均パワーが、出力許容状態で固体増幅器50から出力される光の平均パワーと略等しくなるように、レーザ光源11から出力され固体増幅器50に入力されるレーザ光のパワーを調整するように構成されている。
 レーザ光源11に用いられるファブリペロー共振器を用いた汎用の半導体レーザの発振波長は、種光源10から出力される波長1064μmのパルス光を増幅可能な固体増幅器50の増幅帯域に設定されている。
 レーザ光源11の発振波長が固体増幅器50の増幅帯域に設定されることにより、出力停止状態への切替後に固体増幅器50に蓄積される励起エネルギーがレーザ光源11から出力されるレーザ光の増幅に消費されるようになる。レーザ光源11から出力されるレーザ光が種光源10から出力される大きなピークパワーのパルス光ではないので、固体増幅器50で増幅されても非線形光学素子60,70から加工対象を加工可能な十分なパワーの波長変換光として出力されることがない。
 図5(a)に示すように、固体増幅器50の増幅帯域の中心より側方にシフトした狭帯域で発振可能なレーザ光源11を用いれば、それほど大きなゲインで増幅されることがなく、固体増幅器50で増幅されても非線形光学素子60,70から加工対象を加工可能な十分なパワーの波長変換光として出力されることがない。
 例えば、種光源10から中心波長1064nm、スペクトル幅が半値幅で0.1~0.35nmのパルス光が出力される場合に、スペクトル幅が半値幅で0.0001nm程度で、中心波長のパルス光の中心波長から側方に0.1nm程度シフトしたレーザ光がレーザ光源11から出力されるような態様である。
 また、種光源10の中心波長が含まれ、種光源10より広帯域幅で発振可能なレーザ光源11を用いれば、本来的にパワーが低く非線形光学素子60,70の波長変換特性よりも広い波長帯域のレーザ光が大きなピークパワーの光として出力されることはない。
 さらに、図5(b)に示すように、レーザ光源11の発振波長は、固体増幅器50の増幅帯域のうち、種光源10から出力されるパルス光を増幅可能な増幅帯域以外の増幅帯域に設定されていてもよい。
 固体増幅器50の増幅帯域が複数存在し、レーザ光源11の発振波長が種光源10から出力されるパルス光を増幅可能な増幅帯域以外の増幅帯域に設定されていれば、出力停止状態への切替後に固体増幅器50に蓄積される励起エネルギーがレーザ光源11から出力されるレーザ光の増幅に消費されるようになる。
 例えば、固体増幅器50として914μm、1064μm、1342μmをそれぞれ中心波長とする3つの増幅帯域があるNd:YVO4結晶を用いる場合、レーザ光源11の発振波長が、種光源10から出力されるパルス光の波長1064μmとは異なる増幅帯域となるように設定すれば、本来的に非線形光学素子の波長変換可能な帯域とは異なる波長のレーザ光であるので、波長変換光が出力されることはない。
 尚、種光源10からのパルス光の出力期間とは異なる期間に固体増幅器50で増幅されたASEノイズが非線形光学素子60,70に入射しても、本来的にパワーが低く非線形光学素子60,70の波長変換特性よりも広い波長帯域のASEノイズが大きなピークパワーの光として出力されることはない。
 また、ファイバ増幅器30からの出力光は、それほど大きなピークパワーの光にまで増幅されることはないので、光スイッチ素子40によって遮断されても光スイッチ素子40を含めて周辺の光学部品が熱等によって破損することはない。
 つまり、非線形光学素子60,70は、種光源10から出力されるパルス光とレーザ光源11から出力されたレーザ光の発振波長の異同を問わず、種光源10から出力されたパルス光のみを選択的に波長変換して、加工対象物を加工可能なパワーで出力するフィルタ素子として機能する。
 具体的に、分波器24からフォトダイオードPDに入力された光量に基づいて、レーザ光源11から出力されるレーザ光のパワーをフィードバック制御するフィードバック制御回路がドライバD11に設けられ、ドライバD11を介して制御部100によりレーザ光源11から出力されるレーザ光の平均パワーが調整される。尚、分波器24の位置は後段のファイバ増幅器30の出力側に設けられていてもよく、より好ましくは固体増幅器50の出力側に設けられていてもよい。
 出力停止状態で固体増幅器50から出力される光の平均パワーが、出力許容状態で固体増幅器50から出力される光の平均パワーと略等しくなるように、レーザ光源11から出力され固体増幅器50に入力されるレーザ光の平均パワーを調整することができれば、フィードバック制御回路は必須ではない。レーザ光源11から出力されるレーザ光の平均パワーとは、レーザ光が連続光であればそのパワーであり、パルス光であれば時間平均値である。
 出力停止状態では、レーザ光源11から出力されるレーザ光に加えて前段のファイバ増幅器20,30で生じたASEノイズが光スイッチ素子40を介して固体増幅器50に伝播する。このときに固体増幅器50から出力される光の平均パワーが出力許容状態で固体増幅器50から出力される光の平均パワーと略等しくなるように、レーザ光源11から出力され固体増幅器50に入力されるレーザ光のパワーが調整される。
 その結果、励起用の光源51によって励起され出力許容状態で放出される固体増幅器50の活性領域のエネルギーと同等のエネルギーが出力停止状態でも放出されるようになり、固体増幅器50に対する励起光のパワーが維持された状態で出力許容状態から出力停止状態に切り替わった場合でも、固体増幅器50が過剰に発熱して温度上昇を招くようなことが回避できる。
 図1に示したように、レーザ光源11からの出力光が光スイッチ素子40の上流側で種光源10から出力されるパルス光と合波されるように構成されているので、出力停止状態に移行したときにレーザ光源11を光スイッチ素子40と同期して発振または停止制御する必要は無く、単にレーザ光源11を発振制御するだけでよい。
 種光源10からのパルス光の出力期間に光スイッチ素子40によってレーザ光源11からの出力光の伝播が阻止され、種光源10からのパルス光の出力期間と異なる期間に光スイッチ素子40によってレーザ光源11からの出力光の伝播が許容されるので、レーザ光源11に対する制御が容易になる。
 出力許容状態で、制御部100によって光スイッチ素子40がオン制御される「種光源からのパルス光の出力期間」とは、種光源からパルス光が出力されている全期間のみを意味するのではなく、非線形光学素子により波長変換されたパルス光のピークパワーが適切な値を示す範囲であれば一部期間であってもよく、また種光源からパルス光が出力されている期間の前後の僅かな期間も含まれるような概念である。
 出力許容状態で、制御部100によって光スイッチ素子40がオフ制御される「種光源からのパルス光の出力期間と異なる期間」とは、隣接するパルス光の各出力期間の間の全期間、つまりパルス光が存在しない全期間のみを意味するのではなく、励起用光源によって励起された固体増幅器の活性領域のエネルギーがASEノイズで無駄に消費されることが低減できる範囲であれば、その一部期間も含まれるような概念である。
 出力停止状態で、制御部100によって光スイッチ素子40がオフ制御される「種光源からのパルス光の出力期間」とは、種光源からパルス光が出力されている全期間のみを意味するのではなく、非線形光学素子により波長変換されたパルス光が微弱であれば一部期間であってもよく、また種光源からパルス光が出力されている期間の前後の僅かな期間も含まれるような概念である。
 出力停止状態で、制御部100によって光スイッチ素子40がオン制御される「種光源からのパルス光の出力期間と異なる期間」とは、隣接するパルス光の各出力期間の間の全期間、つまりパルス光が存在しない全期間のみを意味するのではなく、固体増幅器の過度な励起状態がASEノイズで解消される範囲であれば、その一部期間も含まれるような概念であり、複数のパルス光の各出力期間の間の毎期間ではなく、複数回に一回の期間も含まれるような概念である。
 図6には、制御部100によって実行される種光源10、レーザ光源11及び光スイッチ素子40に対する制御タイミングチャートが例示されている。
 出力許容状態では、基準とする時刻t0で光スイッチ素子40のRFドライバD2に対してゲート信号を出力し、所定の遅延時間の後、時刻t3で種光源10のドライバD1に対するトリガ信号をオン出力する。時刻t4で緩和振動が発生した後の所定時刻t5でトリガ信号をオフすることによって所定のパルス幅のパルス光S1が得られ、ファイバ増幅器20,30で増幅されたパルス光S3が得られる。このパルス光S3は広帯域化され、さらにASEノイズが重畳されている。
 尚、制御部100が時刻t5でトリガ信号をオフして種光源10のレーザ発振を停止させるのではなく、緩和振動が発生した種光源10に対してドライバD1が所定時刻t5で種光源10のレーザ発振を停止させるように構成されていてもよい。この場合、トリガ信号のオフタイミングは任意に設定すればよい。
 時刻t0でオン出力されたゲート信号によって光スイッチ素子40が時刻t2でオンし、時刻t1でオフされたゲート信号によって光スイッチ素子40が時刻t6でオフする。光スイッチ素子40がオンする時刻t2からt6の間に、ファイバ増幅器30で増幅され光スイッチ素子40を通過した出力光S4、つまり種光源10から出力されたパルス光S4が固体増幅器50に伝播する。
 そして、光スイッチ素子40がオフする時刻t6からt9の間には、ASEノイズの固体増幅器50への伝播が阻止されるので、固体増幅器50の活性領域に蓄積された励起エネルギーが無駄に消費されることが回避されるようになる。
 出力停止状態では、基準とする時刻t1で光スイッチ素子40のRFドライバD2に対してゲート信号を出力し、所定の遅延時間の後、時刻t3で種光源10のドライバD1に対するトリガ信号をオン出力する。時刻t4で緩和振動が発生した後の所定時刻t5でトリガ信号をオフすることによって所定のパルス幅のパルス光S1が得られ、ファイバ増幅器20,30で増幅されたパルス光S3が得られる。
 時刻t1でオン出力されたゲート信号によって光スイッチ素子40が時刻t6でオンし、時刻t7でオフされたゲート信号によって光スイッチ素子40が時刻t9でオフする。光スイッチ素子40がオンする時刻t6からt9の間に、ファイバ増幅器30から出力されたASEノイズとレーザ光源11から出力されたレーザ光が合波された出力光S4´が光スイッチ素子40を通過して固体増幅器50に伝播する。種光源10から出力され、ファイバ増幅器20,30で増幅されたパルス光S3は、時刻t2からt6でオフする光スイッチ素子40により固体増幅器50への伝播が阻止される。
 レーザ光源11は、出力停止状態に移行した時刻t1または時刻t6で発振制御され、出力許容状態に移行するまでの間その状態が維持される。この間、レーザ光源11からレーザ光が出力される。尚、レーザ光源11から出力されるレーザ光は連続光でなく、パルス光であってもよい。何れの場合でも出力停止状態で固体増幅器50から出力される光の平均パワーが、出力許容状態で固体増幅器50から出力される光の平均パワーと略等しくなるように、固体増幅器50に入力される光のパワーが調整されていればよい。
 このとき固体増幅器50には種光源10からのパルス光が入力されることはなく、ASEノイズ及びレーザ光源11からのレーザ光のみが入力される。固体増幅器50の活性領域に蓄積された励起エネルギーがこれらの光によって放出されるようになり、次に出力許容状態に移行した際でもジャイアントパルスの発生及び出力の変動が回避されるようになる。
 図6で説明した例では、出力許容状態での光スイッチ素子40に対するゲート信号は出力停止状態でのゲート信号と位相が180度反転するため、出力停止状態での光スイッチ素子40のオン状態とオフ状態とは基本的には反転している。
 尚、図6では、RF信号が入力されて光スイッチ素子40に回折格子が形成され、回折された光が固体増幅器50へ伝播する状態をオンと表記し、光スイッチ素子40に回折格子が形成されず、光が固体増幅器50へ伝播することなく、零次光がダンパで減衰される状態をオフと表記している。光スイッチ素子40へ出力する制御信号の論理は正論理及び負論理の何れであってもよい。
 上述の例では、出力停止状態において、種光源10から繰り返し出力される複数のパルス光の各出力期間の間の期間の全域で光スイッチ素子40がオンされる態様を説明したが、固体増幅器50から出力される光の平均パワーが出力許容状態で固体増幅器から出力される光の平均パワーと略等しくなるように、固体増幅器50に入力されるレーザ光源11のパワーが調整される場合には、種光源10から繰り返し出力される複数のパルス光の各出力期間の間の期間の一部期間にのみ光スイッチ素子40がオンされる態様であってもよい。
 さらに、種光源10から繰り返し出力される複数のパルス光の各出力期間の間の期間に光スイッチ素子40がオンとオフを繰り返すように制御される態様であってもよい。このように制御すれば、光スイッチ素子40を構成するAOMの発熱が低減できるようになる。
 図6で説明した例では、制御部100は、光スイッチ素子40に対する制御信号(ゲート信号)を基準に種光源10を制御するトリガ信号を出力するように構成されている。このように構成すれば、種光源10から出力されるパルス光の応答性よりも光スイッチ素子40の応答性が遅い場合であっても、光スイッチ素子40に対する制御信号を基準に種光源10を制御する制御信号を生成することで、適正に光スイッチ素子40を駆動することができるようになる。
 尚、種光源10から出力されるパルス光の応答性よりも光スイッチ素子40の応答性が十分に速い場合には、当然のことながら種光源10に対する制御信号を基準に光スイッチ素子40を制御することも可能である。
 つまり、上述した制御部100によって、非線形光学素子60,70からのパルス光の出力を停止する場合に、ファイバ増幅器30と固体増幅器50との間に配置された光スイッチ素子40を制御して、種光源10からのパルス光の出力期間に光の伝播を阻止し、種光源10からのパルス光の出力期間と異なる期間に光の伝播を許容するとともに、固体増幅器50の上流側に配置され種光源10から出力されるパルス光と合波されたレーザ光源11を、少なくとも種光源10からのパルス光の出力期間と異なる期間に発振制御するレーザパルス光生成方法が実行される。
 同様に、上述した制御部100によって、非線形光学素子60,70からのパルス光の出力を許容する場合に、光スイッチ素子40を制御して、種光源10からのパルス光の出力期間に光の伝播を許容し、種光源10からのパルス光の出力期間と異なる期間に光の伝播を阻止するとともに、レーザ光源11の発振を停止制御するレーザパルス光生成方法が実行される。
 本発明は、DFBレーザを含む半導体レーザに対して、数百メガヘルツ以下の周波数で、且つ、数ナノ秒以下、好ましくは数百ピコ秒以下のパルス幅で駆動するように構成された種光源を備えたレーザ光源装置に広く適用可能である。
 以下、本発明の別実施形態を説明する。
 上述した実施形態では、レーザ光源11からの出力光が光スイッチ素子40の上流側で種光源10から出力されるパルス光と合波されるように構成された例として、前段のファイバ増幅器20の入力側で合波された態様を示したが、二段のファイバ増幅器20,30の間、または後段のファイバ増幅器30の出力側で合波される態様であってもよい。
 上述した実施形態では、出力停止状態で固体増幅器50から出力される光の平均パワーが、出力許容状態で固体増幅器50から出力される光の平均パワーと略等しくなるように、レーザ光源11から出力され固体増幅器50に入力されるレーザ光のパワーを調整する例を説明したが、レーザ光源11から出力されるレーザ光のパワーを一定に維持しつつ出力時間を調整してもよいし、パワーと出力時間の双方を調整してもよい。
 レーザ光源11から出力されるレーザ光の出力時間を調整する場合には、レーザ光源11からレーザ光が出力される駆動時間を制御する態様や、光スイッチ素子40を制御してレーザ光源11から出力されるレーザ光が固体増幅器50に伝播する時間を制御する態様を採用することができる。
 また、レーザ光源11は、固体増幅器50の上流側に配置され種光源10から出力されるパルス光と合波されるように構成されていればよく、光スイッチ素子40の下流側で種光源10から出力されるパルス光と合波されるように構成されていてもよい。
 先の実施形態では、出力停止状態に移行した後に、光スイッチ素子40を介して固体増幅器50に伝播するASEノイズとレーザ光源11から出力されたレーザ光の双方の連続光を用いて、固体増幅器50の活性領域に蓄積されるエネルギーを放出させる例を説明したが、レーザ光源11が光スイッチ素子40の下流側で種光源10から出力されるパルス光と合波されるように構成されている場合には、レーザ光源11から出力されるレーザ光のみで固体増幅器50の活性領域に蓄積されるエネルギーを放出させることも可能である。
 この場合には、非線形光学素子60,70からパルス光の出力を停止するために、ファイバ増幅器30からの出力光が固体増幅器50に伝播しないように光スイッチ素子40を常時オフ状態に制御してもよい。
 上述した実施形態に加えて、ファイバ増幅器20,30の後段にチャーピング現象や光ファイバ内の自己位相変調やラマン散乱等によって広帯域化したパルス光を狭帯域化するバンドパスフィルタを設けてもよい。
 種光源10と光アイソレータISL1とファイバ増幅器20との間にバンドパスフィルタを設けて、種光源へのASEノイズの反射を回避するように構成してもよい。
 上述した実施形態では、光スイッチ素子40として超音波トランデューサのオンまたはオフによって1次回折光をオンまたはオフする音響光学素子を用いた例を説明したが、光スイッチ素子40としてEO変調の強度変調を利用して電界により光をオンオフする電気光学素子を用いることも可能である。
 さらに光スイッチ素子40としてマイクロマシーニング技術で製作した微少な搖動ミラー(MEMS(Micro Electro Mechanical Systems)で構成されたミラー)を用いて、ファイバ増幅器30の出力が固体増幅器50に伝播するか否かを微少な搖動ミラーの搖動角度によって切り替えるように構成してもよい。また、偏光状態を動的に切替えて光の透過と遮断を制御可能な偏光デバイスを用いてもよい。つまり、光スイッチ素子が動的光学素子で構成されていればよい。
 上述した実施形態では、非線形光学素子60,70からのパルス光の出力を許容する場合に、種光源10からのパルス光の出力タイミングで光の伝播を許容し、当該出力タイミングと異なるタイミングで光の伝播を阻止するように光スイッチ素子10を制御する制御部100を備えた例を説明したが、本発明によるレーザ光源装置の制御部100は、少なくとも、非線形光学素子からのパルス光の出力を停止する場合に、種光源10からのパルス光の出力タイミングで光の伝播を阻止し、当該出力タイミングと異なるタイミングで光の伝播を許容するように光スイッチ素子10を制御するとともに、レーザ光源11を発振制御するように構成されていればよい。
 上述した実施形態では、種光源10からのパルス光の固体増幅器50への伝播を阻止して非線形光学素子60,70からパルス光の出力を停止する出力停止状態を生成するために、ファイバ増幅器30と固体増幅器50との間に光スイッチ素子40を備えた構成を説明したが、本発明はこの様な態様に限定されるものではない。
 例えば、種光源10からの出力を停止するとともに、ファイバ増幅器20,30の励起用光源21,31を停止することにより、光スイッチ素子40を用いずに出力停止状態を生成することも可能である。
 レーザ光源11から出力される連続光或いは種光源10から出力されるパルス光の時間幅より長いパルス光の増幅後のピークパワーは、種光源10から出力されるパルス光のピークパワーよりも十分に低いため、非線形光学素子60,70による波長変換効率が低く、従って加工対象物を加工可能なパワーで出力される可能性は極めて低い。
 しかし、固体増幅器50の励起光のパワーが十分に大きい場合に、出力停止状態でレーザ光源11から出力され固体増幅器50で増幅されたレーザ光が非線形光学素子60,70に入力されると、無視できないパワーの波長変換光が出力される虞もある。
 そのような場合には、出力許容状態のときにのみ非線形光学素子60,70から所定パワーの波長変換光が出力されるように、固体増幅器50の励起光のパワー及びレーザ光源11から出力されるレーザ光のパワーを調整することも可能である。
 また、固体増幅器50と非線形光学素子60,70との間に、固体増幅器50から非線形光学素子60,70への光の伝播を許容または阻止する光スイッチ素子をさらに備え、制御部100が当該光スイッチ素子を制御して出力停止状態で固体増幅器50から非線形光学素子60,70への光の伝播を阻止するように構成することも可能である。当該光スイッチ素子も、上述した光スイッチ素子40と同様の素子を用いることができる。
 上述した実施形態では、種光源としてDFBレーザを用いて、DFBレーザにゲインスイッチング法を適用することによって、単一縦モードで定常状態よりも高いパワーのパルス光を生成する例を説明したが、本発明は種光源として半導体レーザを用いるものであればよく、DFBレーザ以外の一般的なファブリペロー型の半導体レーザを用いることも可能である。
 また、本発明は、発振波長が1064nmとなる種光源に限定されるものでもなく、例えば、1030nm、1550nm、976nm等、用途によって適宜異なる波長の種光源を選択することが可能である。さらに、非線形光学素子を介してこれらの波長を基本波とする高調波、和周波、差周波を発生させることも可能である。非線形光学素子として、上述以外の非線形光学素子を用いることも可能である。例えば、CLBO結晶に代えて、BBO結晶、KBBF結晶、SBBO結晶、KABO結晶、BABO結晶等を用いることができる。
 上述した複数の実施形態は、何れも本発明の一実施態様の説明であり、該記載により本発明の範囲が限定されるものではない。また、各部の具体的な回路構成や回路に使用する光学素子は、本発明の作用効果が奏される範囲で適宜選択し、或いは変更設計可能であることはいうまでもない。
1:レーザ光源装置
10:種光源(第1光源)
11:レーザ光源(第2光源)
20,30:ファイバ増幅器
40:光スイッチ素子
50:固体増幅器
60,70:非線形光学素子
100:制御部
 

Claims (15)

  1.  ゲインスイッチング法でパルス光を出力する第1光源と、前記第1光源から出力されるパルス光を増幅するファイバ増幅器と、前記ファイバ増幅器から出力されるパルス光を増幅する固体増幅器と、前記固体増幅器から出力されるパルス光を波長変換して出力する非線形光学素子と、を備えているレーザ光源装置であって、
     前記固体増幅器の上流側に配置され前記種光源から出力されるパルス光と合波可能なレーザ光を出力する第2光源と、
     前記非線形光学素子からパルス光が出力される出力許容状態から、前記固体増幅器に対する励起光のパワーが維持された状態で、前記第1光源からのパルス光の前記固体増幅器への伝播を阻止して前記非線形光学素子からパルス光の出力を停止する出力停止状態を生成するとともに、当該出力停止状態で前記第2光源を発振制御するように構成されている制御部と、を備えているレーザ光源装置。
  2.  前記ファイバ増幅器と前記固体増幅器との間に、前記ファイバ増幅器から前記固体増幅器への光の伝播を許容または阻止する光スイッチ素子をさらに備え、
     前記制御部は、少なくとも前記第1光源からのパルス光の出力期間に光の伝播を阻止するように前記光スイッチ素子を制御することにより、前記非線形光学素子からパルス光の出力を停止する出力停止状態を生成するとともに、前記出力停止状態で前記第2光源を発振制御するように構成されている請求項1記載のレーザ光源装置。
  3.  前記制御部は、前記出力停止状態でさらに前記第1光源からのパルス光の出力期間と異なる期間に光の伝播を許容するように前記光スイッチ素子を制御し、前記出力停止状態で少なくとも前記第1光源からのパルス光の出力期間と異なる期間に前記第2光源を発振制御するように構成されている請求項2記載のレーザ光源装置。
  4.  前記制御部は、前記第1光源からのパルス光の出力期間に光の伝播を許容し、前記第1光源からのパルス光の出力期間と異なる期間に光の伝播を阻止するように前記光スイッチ素子を制御することにより、前記非線形光学素子からのパルス光の出力を許容する出力許容状態を生成するとともに、前記出力許容状態で前記第2光源の発振を停止制御するように構成されている請求項2または3記載のレーザ光源装置。
  5.  前記第2光源から出力されるレーザ光が前記光スイッチ素子の上流側で前記第1光源から出力されるパルス光と合波可能に構成され、前記制御部は前記出力停止状態で第2光源を発振制御するように構成されている請求項3または4記載のレーザ光源装置。
  6.  前記制御部は、前記出力停止状態で前記固体増幅器から出力される光の平均パワーが、前記出力許容状態で前記固体増幅器から出力される光の平均パワーと略等しくなるように、前記第2光源から出力され前記固体増幅器に入力されるレーザ光のパワーを調整するように構成されている請求項1から5の何れかに記載のレーザ光源装置。
  7.  前記出力許容状態のときにのみ前記非線形光学素子から所定パワーの波長変換光が出力されるように、前記固体増幅器の励起光のパワー及び/またはパルス光の繰返し周波数が調整されている請求項1から6の何れかに記載のレーザ光源装置。
  8.  前記固体増幅器と前記非線形光学素子との間に、前記固体増幅器から前記非線形光学素子への光の伝播を許容または阻止する光スイッチ素子をさらに備え、
     前記制御部は、当該光スイッチ素子を制御して前記出力停止状態で前記固体増幅器から前記非線形光学素子への光の伝播を阻止するように構成されている請求項1から6の何れかに記載のレーザ光源装置。
  9.  前記第2光源の発振波長は、前記第1光源から出力されるパルス光を増幅可能な前記固体増幅器の増幅帯域に設定されている請求項1から8の何れかに記載のレーザ光源装置。
  10.  前記第2光源の発振波長は、前記固体増幅器の増幅帯域のうち、前記第1光源から出力されるパルス光を増幅可能な増幅帯域以外の増幅帯域に設定されている請求項1から8の何れかに記載のレーザ光源装置。
  11.  前記光スイッチ素子が音響光学素子または電気光学素子を含む動的光学素子で構成されている請求項1から10の何れかに記載のレーザ光源装置。
  12.  前記第1光源がDFBレーザで構成され、前記制御部は前記DFBレーザを数メガヘルツ以下の周波数で、且つ、数ナノ秒以下のパルス幅で駆動するように構成されている請求項1から11の何れかに記載のレーザ光源装置。
  13.  ゲインスイッチング法で第1光源から出力されたパルス光をファイバ増幅器及び固体増幅器で順次増幅し、増幅後のパルス光を非線形光学素子で波長変換して出力するレーザパルス光生成方法であって、
     前記非線形光学素子からのパルス光の出力を停止する場合に、
     前記増幅器に対する励起光のパワーが維持された状態で、前記第1光源からのパルス光の前記固体増幅器への伝播を阻止するとともに、
     前記固体増幅器の上流側に配置され前記第1光源から出力されるパルス光と合波可能なレーザ光を出力する第2光源を発振制御するレーザパルス光生成方法。
  14.  前記ファイバ増幅器と前記固体増幅器との間に配置された光スイッチ素子を制御して、前記第1光源からのパルス光の出力期間に光の伝播を阻止し、前記第1光源からのパルス光の出力期間と異なる期間に光の伝播を許容するとともに、
     前記固体増幅器の上流側に配置され前記第1光源から出力されるパルス光と合波可能なレーザ光を出力する第2光源を、少なくとも前記第1光源からのパルス光の出力期間と異なる期間に発振制御する請求項13記載のレーザパルス光生成方法。
  15.  前記非線形光学素子からのパルス光の出力を許容する場合に、
     前記光スイッチ素子を制御して、前記第1光源からのパルス光の出力期間に光の伝播を許容し、前記第1光源からのパルス光の出力期間と異なる期間に光の伝播を阻止するとともに、前記第2光源の発振を停止制御する請求項14記載のレーザパルス光生成方法。
PCT/JP2016/060369 2015-02-06 2016-03-30 レーザ光源装置及びレーザパルス光生成方法 WO2016125917A2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/549,360 US10256599B2 (en) 2015-02-06 2016-03-30 Laser light-source apparatus and laser pulse light generating method
EP16746745.5A EP3309912B1 (en) 2015-02-06 2016-03-30 Laser light-source apparatus and laser pulse light generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015022467A JP6588707B2 (ja) 2015-02-06 2015-02-06 レーザ光源装置及びレーザパルス光生成方法
JP2015-022467 2015-10-13

Publications (3)

Publication Number Publication Date
WO2016125917A2 true WO2016125917A2 (ja) 2016-08-11
WO2016125917A3 WO2016125917A3 (ja) 2016-10-06
WO2016125917A8 WO2016125917A8 (ja) 2016-11-24

Family

ID=56564845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060369 WO2016125917A2 (ja) 2015-02-06 2016-03-30 レーザ光源装置及びレーザパルス光生成方法

Country Status (4)

Country Link
US (1) US10256599B2 (ja)
EP (1) EP3309912B1 (ja)
JP (1) JP6588707B2 (ja)
WO (1) WO2016125917A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684688A (zh) * 2017-02-22 2017-05-17 中国科学院光电研究院 一种脉冲能量和时间间隔可调节的再生放大装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201903633D0 (en) * 2019-03-15 2019-05-01 Spi Lasers Uk Ltd Apparatus for providing optical radiation
CN114342195A (zh) * 2019-09-06 2022-04-12 松下知识产权经营株式会社 激光振荡装置
JP2022121108A (ja) * 2021-02-08 2022-08-19 スペクトロニクス株式会社 レーザ電子光発生装置およびレーザ光源装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3353243B2 (ja) * 1995-03-08 2002-12-03 日本電信電話株式会社 雑音指数測定方法
US6339604B1 (en) * 1998-06-12 2002-01-15 General Scanning, Inc. Pulse control in laser systems
US6414980B1 (en) * 1999-10-12 2002-07-02 Coherent, Inc. Laser rod thermalization
CN101496320B (zh) 2006-07-27 2012-07-18 伊雷克托科学工业股份有限公司 串接光放大器
US7885298B2 (en) * 2008-01-16 2011-02-08 Deep Photonics Corporation Method and apparatus for producing arbitrary pulsetrains from a harmonic fiber laser
WO2009093425A1 (ja) * 2008-01-21 2009-07-30 Nikon Corporation 広帯域光増幅器、光パルス発生装置及び光学機器
JP5338334B2 (ja) * 2009-01-21 2013-11-13 オムロン株式会社 レーザ光源装置およびレーザ加工装置
JP5240526B2 (ja) 2010-03-15 2013-07-17 オムロン株式会社 レーザ加工装置、レーザ光源装置、および、レーザ光源装置の制御方法
JP2013065804A (ja) * 2010-12-20 2013-04-11 Gigaphoton Inc レーザ装置およびそれを備える極端紫外光生成システム
JP5795682B2 (ja) * 2011-04-28 2015-10-14 クヮンジュ・インスティテュート・オブ・サイエンス・アンド・テクノロジー パルスレーザー装置、これを用いた制御方法、及び可変バストモード制御方法
US8774236B2 (en) * 2011-08-17 2014-07-08 Veralas, Inc. Ultraviolet fiber laser system
JP2015122375A (ja) * 2013-12-20 2015-07-02 富士通株式会社 部品実装方法及び実装部品
JP6367569B2 (ja) * 2014-02-13 2018-08-01 スペクトロニクス株式会社 レーザ光源装置
EP3131163B1 (en) * 2014-02-13 2021-09-22 Spectronix Corporation Laser light-source apparatus and laser pulse light generating method
CN105940575A (zh) * 2014-02-13 2016-09-14 斯佩克卓尼克斯株式会社 激光光源装置以及激光器脉冲光生成方法
JP6338879B2 (ja) * 2014-02-13 2018-06-06 スペクトロニクス株式会社 レーザ光源装置
WO2015140901A1 (ja) * 2014-03-17 2015-09-24 ギガフォトン株式会社 レーザシステム
JP6687999B2 (ja) * 2015-02-06 2020-04-28 スペクトロニクス株式会社 レーザ光源装置及びレーザパルス光生成方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684688A (zh) * 2017-02-22 2017-05-17 中国科学院光电研究院 一种脉冲能量和时间间隔可调节的再生放大装置
CN106684688B (zh) * 2017-02-22 2019-04-09 中国科学院光电研究院 一种脉冲能量和时间间隔可调节的再生放大装置

Also Published As

Publication number Publication date
US10256599B2 (en) 2019-04-09
EP3309912B1 (en) 2022-11-02
US20180278010A1 (en) 2018-09-27
WO2016125917A8 (ja) 2016-11-24
WO2016125917A3 (ja) 2016-10-06
JP2018056147A (ja) 2018-04-05
EP3309912A2 (en) 2018-04-18
EP3309912A4 (en) 2019-06-19
JP6588707B2 (ja) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6309032B2 (ja) レーザ光源装置及びレーザパルス光生成方法
US9859675B2 (en) Laser light-source apparatus and laser pulse light generating method
JP5232782B2 (ja) 精密に制御された波長変換平均出力を有する光源の制御方法、および波長変換システム
JP6456250B2 (ja) レーザ装置およびレーザ加工機
WO2016125917A2 (ja) レーザ光源装置及びレーザパルス光生成方法
JP6367569B2 (ja) レーザ光源装置
JP6338879B2 (ja) レーザ光源装置
JP6687999B2 (ja) レーザ光源装置及びレーザパルス光生成方法
US11316320B2 (en) Laser light-source apparatus and laser pulse light generating method
JP6571943B2 (ja) レーザ光源装置及びレーザパルス光生成方法
JP7079953B2 (ja) 波長変換方法、波長変換装置及びレーザ光源装置
JP2012156175A (ja) ファイバレーザ光源装置およびそれを用いた波長変換レーザ光源装置
JP2007096039A (ja) 光源装置
JP6903325B2 (ja) レーザ光源装置及び波長変換方法
HK1232675A1 (en) Laser light-source apparatus and laser pulse light generating method
HK1232676A1 (en) Laser light-source apparatus and laser pulse light generating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746745

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016746745

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15549360

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP