WO2016121507A1 - Film - Google Patents
Film Download PDFInfo
- Publication number
- WO2016121507A1 WO2016121507A1 PCT/JP2016/050967 JP2016050967W WO2016121507A1 WO 2016121507 A1 WO2016121507 A1 WO 2016121507A1 JP 2016050967 W JP2016050967 W JP 2016050967W WO 2016121507 A1 WO2016121507 A1 WO 2016121507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- mass
- vinyl
- hydroxymethyl group
- range
- Prior art date
Links
- 239000010408 film Substances 0.000 claims abstract description 183
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 60
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 claims abstract description 48
- 239000012788 optical film Substances 0.000 claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 45
- 238000007127 saponification reaction Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 abstract description 14
- 239000004372 Polyvinyl alcohol Substances 0.000 description 53
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 36
- 239000000178 monomer Substances 0.000 description 31
- 238000006116 polymerization reaction Methods 0.000 description 31
- 229920001567 vinyl ester resin Polymers 0.000 description 23
- -1 methanol and ethanol Chemical class 0.000 description 19
- 238000011282 treatment Methods 0.000 description 19
- 239000007864 aqueous solution Substances 0.000 description 18
- 239000011550 stock solution Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000002834 transmittance Methods 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 14
- 238000004043 dyeing Methods 0.000 description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000975 dye Substances 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 12
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 11
- 239000004327 boric acid Substances 0.000 description 11
- 229910052740 iodine Inorganic materials 0.000 description 11
- 239000011630 iodine Substances 0.000 description 11
- 230000008961 swelling Effects 0.000 description 11
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 10
- 230000010287 polarization Effects 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 238000001035 drying Methods 0.000 description 9
- 239000004014 plasticizer Substances 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 238000004132 cross linking Methods 0.000 description 8
- 239000003431 cross linking reagent Substances 0.000 description 8
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 7
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000003505 polymerization initiator Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 150000000185 1,3-diols Chemical group 0.000 description 5
- FKAKGSJLTBVQOP-UHFFFAOYSA-N 2-(acetyloxymethyl)prop-2-enyl acetate Chemical compound CC(=O)OCC(=C)COC(C)=O FKAKGSJLTBVQOP-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- 238000005562 fading Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 238000007334 copolymerization reaction Methods 0.000 description 4
- ZQMIGQNCOMNODD-UHFFFAOYSA-N diacetyl peroxide Chemical compound CC(=O)OOC(C)=O ZQMIGQNCOMNODD-UHFFFAOYSA-N 0.000 description 4
- 150000002148 esters Chemical group 0.000 description 4
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001639 boron compounds Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- UZKWTJUDCOPSNM-UHFFFAOYSA-N 1-ethenoxybutane Chemical compound CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N Tetraethylene glycol, Natural products OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 239000003945 anionic surfactant Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 238000012662 bulk polymerization Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000010556 emulsion polymerization method Methods 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000012966 redox initiator Substances 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 2
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- OYTMDOROMQJKMQ-UHFFFAOYSA-N (2-acetyloxy-3-ethenoxypropyl) acetate Chemical compound CC(=O)OCC(OC(C)=O)COC=C OYTMDOROMQJKMQ-UHFFFAOYSA-N 0.000 description 1
- JHPBZFOKBAGZBL-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylprop-2-enoate Chemical group CC(C)C(O)C(C)(C)COC(=O)C(C)=C JHPBZFOKBAGZBL-UHFFFAOYSA-N 0.000 description 1
- KAKVFSYQVNHFBS-UHFFFAOYSA-N (5-hydroxycyclopenten-1-yl)-phenylmethanone Chemical compound OC1CCC=C1C(=O)C1=CC=CC=C1 KAKVFSYQVNHFBS-UHFFFAOYSA-N 0.000 description 1
- FFJCNSLCJOQHKM-CLFAGFIQSA-N (z)-1-[(z)-octadec-9-enoxy]octadec-9-ene Chemical compound CCCCCCCC\C=C/CCCCCCCCOCCCCCCCC\C=C/CCCCCCCC FFJCNSLCJOQHKM-CLFAGFIQSA-N 0.000 description 1
- LPMBTLLQQJBUOO-KTKRTIGZSA-N (z)-n,n-bis(2-hydroxyethyl)octadec-9-enamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)N(CCO)CCO LPMBTLLQQJBUOO-KTKRTIGZSA-N 0.000 description 1
- BEQKKZICTDFVMG-UHFFFAOYSA-N 1,2,3,4,6-pentaoxepane-5,7-dione Chemical compound O=C1OOOOC(=O)O1 BEQKKZICTDFVMG-UHFFFAOYSA-N 0.000 description 1
- LAYAKLSFVAPMEL-UHFFFAOYSA-N 1-ethenoxydodecane Chemical compound CCCCCCCCCCCCOC=C LAYAKLSFVAPMEL-UHFFFAOYSA-N 0.000 description 1
- QJJDJWUCRAPCOL-UHFFFAOYSA-N 1-ethenoxyoctadecane Chemical compound CCCCCCCCCCCCCCCCCCOC=C QJJDJWUCRAPCOL-UHFFFAOYSA-N 0.000 description 1
- OVGRCEFMXPHEBL-UHFFFAOYSA-N 1-ethenoxypropane Chemical compound CCCOC=C OVGRCEFMXPHEBL-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- STMDPCBYJCIZOD-UHFFFAOYSA-N 2-(2,4-dinitroanilino)-4-methylpentanoic acid Chemical compound CC(C)CC(C(O)=O)NC1=CC=C([N+]([O-])=O)C=C1[N+]([O-])=O STMDPCBYJCIZOD-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- DIBCJRYCOGXPAM-UHFFFAOYSA-N 2-(propanoyloxymethyl)prop-2-enyl propanoate Chemical compound CCC(=O)OCC(=C)COC(=O)CC DIBCJRYCOGXPAM-UHFFFAOYSA-N 0.000 description 1
- PFHOSZAOXCYAGJ-UHFFFAOYSA-N 2-[(2-cyano-4-methoxy-4-methylpentan-2-yl)diazenyl]-4-methoxy-2,4-dimethylpentanenitrile Chemical compound COC(C)(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)(C)OC PFHOSZAOXCYAGJ-UHFFFAOYSA-N 0.000 description 1
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 1
- PGYJSURPYAAOMM-UHFFFAOYSA-N 2-ethenoxy-2-methylpropane Chemical compound CC(C)(C)OC=C PGYJSURPYAAOMM-UHFFFAOYSA-N 0.000 description 1
- FVSAFCHCUDOKSI-UHFFFAOYSA-N 2-methylprop-2-enamide;propane-1-sulfonic acid Chemical compound CC(=C)C(N)=O.CCCS(O)(=O)=O FVSAFCHCUDOKSI-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- OSDWBNJEKMUWAV-UHFFFAOYSA-N Allyl chloride Chemical compound ClCC=C OSDWBNJEKMUWAV-UHFFFAOYSA-N 0.000 description 1
- 241000605059 Bacteroidetes Species 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- FYNSNUPSLNJASE-UHFFFAOYSA-N C(C(=C)C)(=O)N1CC1C.C(C(=C)C)(=O)N Chemical class C(C(=C)C)(=O)N1CC1C.C(C(=C)C)(=O)N FYNSNUPSLNJASE-UHFFFAOYSA-N 0.000 description 1
- 229920006051 Capron® Polymers 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- HETCEOQFVDFGSY-UHFFFAOYSA-N Isopropenyl acetate Chemical compound CC(=C)OC(C)=O HETCEOQFVDFGSY-UHFFFAOYSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- AOMUHOFOVNGZAN-UHFFFAOYSA-N N,N-bis(2-hydroxyethyl)dodecanamide Chemical compound CCCCCCCCCCCC(=O)N(CCO)CCO AOMUHOFOVNGZAN-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229920006197 POE laurate Polymers 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000746 allylic group Chemical group 0.000 description 1
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N alpha-methyl toluene Natural products CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 1
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium peroxydisulfate Substances [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 1
- VAZSKTXWXKYQJF-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)OOS([O-])=O VAZSKTXWXKYQJF-UHFFFAOYSA-N 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000002928 artificial marble Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- DBUPOCYLUHVFHU-UHFFFAOYSA-N carboxyoxy 2,2-diethoxyethyl carbonate Chemical compound CCOC(OCC)COC(=O)OOC(O)=O DBUPOCYLUHVFHU-UHFFFAOYSA-N 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- BSVQJWUUZCXSOL-UHFFFAOYSA-N cyclohexylsulfonyl ethaneperoxoate Chemical compound CC(=O)OOS(=O)(=O)C1CCCCC1 BSVQJWUUZCXSOL-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 229940105990 diglycerin Drugs 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- YRIUSKIDOIARQF-UHFFFAOYSA-N dodecyl benzenesulfonate Chemical compound CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 YRIUSKIDOIARQF-UHFFFAOYSA-N 0.000 description 1
- 229940071161 dodecylbenzenesulfonate Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 1
- LPUZTLKYAOOFDX-QXMHVHEDSA-N ethenyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC=C LPUZTLKYAOOFDX-QXMHVHEDSA-N 0.000 description 1
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 1
- WNMORWGTPVWAIB-UHFFFAOYSA-N ethenyl 2-methylpropanoate Chemical compound CC(C)C(=O)OC=C WNMORWGTPVWAIB-UHFFFAOYSA-N 0.000 description 1
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 description 1
- CMDXMIHZUJPRHG-UHFFFAOYSA-N ethenyl decanoate Chemical compound CCCCCCCCCC(=O)OC=C CMDXMIHZUJPRHG-UHFFFAOYSA-N 0.000 description 1
- GLVVKKSPKXTQRB-UHFFFAOYSA-N ethenyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OC=C GLVVKKSPKXTQRB-UHFFFAOYSA-N 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- UJRIYYLGNDXVTA-UHFFFAOYSA-N ethenyl hexadecanoate Chemical compound CCCCCCCCCCCCCCCC(=O)OC=C UJRIYYLGNDXVTA-UHFFFAOYSA-N 0.000 description 1
- AFSIMBWBBOJPJG-UHFFFAOYSA-N ethenyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC=C AFSIMBWBBOJPJG-UHFFFAOYSA-N 0.000 description 1
- QBDADGJLZNIRFQ-UHFFFAOYSA-N ethenyl octanoate Chemical compound CCCCCCCC(=O)OC=C QBDADGJLZNIRFQ-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 108010025899 gelatin film Proteins 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002497 iodine compounds Chemical class 0.000 description 1
- 229940031957 lauric acid diethanolamide Drugs 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- WFKDPJRCBCBQNT-UHFFFAOYSA-N n,2-dimethylprop-2-enamide Chemical compound CNC(=O)C(C)=C WFKDPJRCBCBQNT-UHFFFAOYSA-N 0.000 description 1
- 229940088644 n,n-dimethylacrylamide Drugs 0.000 description 1
- YLGYACDQVQQZSW-UHFFFAOYSA-N n,n-dimethylprop-2-enamide Chemical compound CN(C)C(=O)C=C YLGYACDQVQQZSW-UHFFFAOYSA-N 0.000 description 1
- OMNKZBIFPJNNIO-UHFFFAOYSA-N n-(2-methyl-4-oxopentan-2-yl)prop-2-enamide Chemical compound CC(=O)CC(C)(C)NC(=O)C=C OMNKZBIFPJNNIO-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- ZIWDVJPPVMGJGR-UHFFFAOYSA-N n-ethyl-2-methylprop-2-enamide Chemical compound CCNC(=O)C(C)=C ZIWDVJPPVMGJGR-UHFFFAOYSA-N 0.000 description 1
- SWPMNMYLORDLJE-UHFFFAOYSA-N n-ethylprop-2-enamide Chemical compound CCNC(=O)C=C SWPMNMYLORDLJE-UHFFFAOYSA-N 0.000 description 1
- YPHQUSNPXDGUHL-UHFFFAOYSA-N n-methylprop-2-enamide Chemical compound CNC(=O)C=C YPHQUSNPXDGUHL-UHFFFAOYSA-N 0.000 description 1
- UZZYXUGECOQHPU-UHFFFAOYSA-M n-octyl sulfate Chemical compound CCCCCCCCOS([O-])(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-M 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229920002114 octoxynol-9 Polymers 0.000 description 1
- 229940067739 octyl sulfate Drugs 0.000 description 1
- HVAMZGADVCBITI-UHFFFAOYSA-M pent-4-enoate Chemical compound [O-]C(=O)CCC=C HVAMZGADVCBITI-UHFFFAOYSA-M 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- POSICDHOUBKJKP-UHFFFAOYSA-N prop-2-enoxybenzene Chemical compound C=CCOC1=CC=CC=C1 POSICDHOUBKJKP-UHFFFAOYSA-N 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- KOUDKOMXLMXFKX-UHFFFAOYSA-N sodium oxido(oxo)phosphanium hydrate Chemical compound O.[Na+].[O-][PH+]=O KOUDKOMXLMXFKX-UHFFFAOYSA-N 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical class [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- UZZYXUGECOQHPU-UHFFFAOYSA-N sulfuric acid monooctyl ester Natural products CCCCCCCCOS(O)(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-N 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- NMOALOSNPWTWRH-UHFFFAOYSA-N tert-butyl 7,7-dimethyloctaneperoxoate Chemical compound CC(C)(C)CCCCCC(=O)OOC(C)(C)C NMOALOSNPWTWRH-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/06—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
- C08F216/04—Acyclic compounds
- C08F216/06—Polyvinyl alcohol ; Vinyl alcohol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/12—Hydrolysis
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
- C08L29/02—Homopolymers or copolymers of unsaturated alcohols
- C08L29/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
Definitions
- the present invention relates to a film useful as a raw film for producing an optical film such as a polarizing film, which contains a specific hydroxymethyl group-containing vinyl alcohol polymer having a 1,3-diol structure, and uses the same
- the present invention relates to a method for producing an optical film.
- a polarizing plate having a light transmission and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes a polarization state of light.
- LCD liquid crystal display
- Many polarizing plates have a structure in which a protective film such as cellulose triacetate (TAC) film is bonded to the surface of the polarizing film in order to prevent the polarizing film from fading or to prevent the polarizing film from shrinking.
- TAC cellulose triacetate
- a vinyl alcohol polymer film (hereinafter, “vinyl alcohol polymer” may be referred to as “PVA”) is uniaxially stretched into a matrix formed with an iodine dye (I 3 - and I 5 -, etc.) or a dichroic dye such as dichroic organic dyes has become mainstream those adsorbed.
- LCDs have come to be used in a wide range of small devices such as calculators and watches, mobile phones, notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, in-vehicle navigation systems, and measurement devices used indoors and outdoors.
- reduction in thickness and weight has been demanded.
- thinning of each member of the LCD has progressed, and there is concern about the deterioration of the function of preventing the fading of the polarizing film and preventing the shrinking of the polarizing film with the thinning of the protective film of the polarizing plate.
- a polarizing film that maintains the conventional characteristics of high polarization and transparency and excellent optical properties, has low fading, excellent durability, and reduced shrinkage.
- a polyvinyl alcohol film for a polarizing film made of a specific PVA containing 0.01 to 1 mol% of a hydrophilic functional group such as a carboxylic acid group or an ⁇ -hydroxy- ⁇ -olefin group is stretched and oriented. It is known that it has excellent processability and adsorption processability of dichroic substances, and exhibits good optical performance (see Patent Document 1 and the like).
- a specific optical PVA film containing a specific PVA containing a 1,2-glycol bond in the side chain is excellent in optical properties and stretchability (see Patent Document 2).
- an object of the present invention is to provide a film that can easily produce an optical film excellent in optical characteristics, durability, and shrinkage reduction, and a method for producing an optical film using the film.
- the main chain contains a specific structural unit having a 1,3-diol structure and the 1,2-glycol bond amount is in a specific range.
- the film containing hydroxymethyl group-containing PVA it was found that the above-mentioned problems can be solved, and further studies were made based on the findings to complete the present invention.
- a film capable of easily producing an optical film excellent in optical properties, durability performance and shrinkage reduction, and a method for producing an optical film using the film are provided.
- the film of the present invention contains a vinyl alcohol unit and a hydroxymethyl group-containing PVA containing a structural unit represented by the following formula (1) and having a 1,2-glycol bond amount of 1.5 mol% or less.
- the film of the present invention has improved stretchability because the hydroxymethyl group-containing PVA contained therein contains a structural unit having a 1,3-diol structure represented by the above formula (1). According to this, an optical film having excellent optical properties can be easily produced. Moreover, it has the characteristic that the shrinkage force of an optical film reduces.
- the present invention is not limited in any way, the reason why the above-described advantages can be obtained is that the crystallinity is lowered by the structural unit represented by the formula (1) and the high based on the 1,3-diol structure. The influence of hydrogen bonding force is considered.
- the content of the structural unit represented by the formula (1) in the hydroxymethyl group-containing PVA is not particularly limited, but is 0.1 to 2 when the number of moles of all structural units constituting the hydroxymethyl group-containing PVA is 100 mol%. It is preferably in the range of mol%, more preferably in the range of 0.2 to 1.9 mol%, still more preferably in the range of 0.3 to 1.8 mol%.
- the content is 0.1 mol% or more, the stretchability of the film is further improved, and an optical film that is excellent by reducing the shrinkage force can be obtained.
- the content is 2 mol% or less, dissolution of the film during the production of the optical film can be more effectively prevented, and an optical film excellent in optical properties can be obtained.
- the structural unit refers to a repeating unit constituting a polymer.
- the 1,2-glycol bond amount of the hydroxymethyl group-containing PVA is 1.5 mol% or less, an optical film with less fading and excellent durability performance can be obtained.
- the 1,2-glycol bond amount is preferably 1.4 mol% or less, more preferably 1.2 mol% or less, and further preferably 1.0 mol% or less.
- the lower the 1,2-glycol bond amount the better the durability of the resulting polarizing film.
- the modified PVA having a 1,2-glycol bond amount in the above range is a vinyl ester monomer of less than 50 ° C., preferably less than 40 ° C., more preferably less than 30 ° C., and even more preferably less than 20 ° C.
- the lower limit of the industrially possible polymerization temperature is about ⁇ 50 ° C.
- the lower limit of the 1,2-glycol bond amount of the hydroxymethyl group-containing PVA is about 0.5 mol% is the limit.
- the 1,2-glycol bond amount of the hydroxymethyl group-containing PVA can be determined by a known NMR measurement method.
- the degree of polymerization of the hydroxymethyl group-containing PVA is preferably in the range of 1,500 to 6,000, more preferably in the range of 1,800 to 5,000, and 2,000 to 4,000. More preferably, it is in the range.
- the degree of polymerization is 1,500 or more, the durability of an optical film such as a polarizing film obtained by uniaxially stretching the film can be further improved.
- the degree of polymerization is 6,000 or less, it is possible to suppress an increase in manufacturing cost, poor process passability during film formation, and the like.
- the polymerization degree of the hydroxymethyl group-containing PVA in the present specification means an average polymerization degree measured according to the description of JIS K6726-1994.
- the saponification degree of the hydroxymethyl group-containing PVA is preferably 95 mol% or more, more preferably 96 mol% or more from the viewpoint of water resistance of an optical film such as a polarizing film obtained by uniaxially stretching the film. Preferably, it is 98 mol% or more.
- the degree of saponification of hydroxymethyl group-containing PVA is a structural unit (typical) of hydroxymethyl group-containing PVA that can be converted into vinyl alcohol units (—CH 2 —CH (OH) —) by saponification. Is the ratio (mol%) of the number of moles of the vinyl alcohol unit to the total number of moles of the vinyl ester unit) and the vinyl alcohol unit.
- the degree of saponification can be measured according to the description of JIS K6726-1994, taking into consideration the amount of the structural unit represented by formula (1) and its derivatives.
- the method for producing the hydroxymethyl group-containing PVA is not particularly limited.
- a vinyl ester copolymer obtained by copolymerizing a vinyl ester monomer and an unsaturated monomer copolymerizable therewith and convertible to the structural unit represented by the formula (1) are converted to vinyl alcohol units, while structural units derived from unsaturated monomers that can be converted to structural units represented by formula (1) are converted to structural units represented by formula (1).
- a method is mentioned.
- a specific example of the unsaturated monomer that can be converted into the structural unit represented by the formula (1) is shown in the following formula (2).
- R represents an alkyl group having 1 to 10 carbon atoms.
- the structure of R is not particularly limited, and may partially have a branched or cyclic structure. Moreover, a part may be substituted with other functional groups.
- R is preferably an alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, Examples thereof include a linear or branched alkyl group such as a pentyl group. Examples of the substituent that R may have include an alkoxy group, a halogen atom, and a hydroxyl group. A plurality of R may be the same or different from each other.
- Examples of the unsaturated monomer represented by the formula (2) include 1,3-diacetoxy-2-methylenepropane, 1,3-dipropionyloxy-2-methylenepropane, and 1,3-dibutyryloxy-2. -Methylenepropane and the like. Of these, 1,3-diacetoxy-2-methylenepropane is preferably used from the viewpoint of ease of production.
- the unsaturated monomer represented by the formula (2) is a vinyl ester monomer compared with other allylic unsaturated monomers (for example, allyl glycidyl ether) generally used for modification of PVA.
- the copolymerization reaction proceeds easily. Therefore, there are few restrictions on the amount of modification and the degree of polymerization during polymerization, and a hydroxymethyl group-containing PVA having a high degree of modification and a high degree of polymerization can be easily obtained.
- the hydroxymethyl group-containing PVA in the present invention is excellent in terms of environment and cost during industrial production. Yes.
- the vinyl ester monomer used for the production of the hydroxymethyl group-containing PVA is not particularly limited.
- vinyl acidate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl oleate, and vinyl benzoate from the economical viewpoint, vinyl acetate is preferred.
- the polymerization method for copolymerizing the unsaturated monomer represented by formula (2) and the vinyl ester monomer may be any method such as batch polymerization, semi-batch polymerization, continuous polymerization, and semi-continuous polymerization.
- the polymerization method known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method can be applied.
- a bulk polymerization method or a solution polymerization method in which polymerization is allowed to proceed in a solvent-free or solvent such as alcohol is usually employed.
- an emulsion polymerization method is also preferred.
- the solvent of the solution polymerization method is not particularly limited, for example, alcohol.
- the alcohol used as the solvent for the solution polymerization method is, for example, a lower alcohol such as methanol, ethanol, or propanol.
- the amount of solvent used in the polymerization system may be selected in consideration of the chain transfer of the solvent in accordance with the degree of polymerization of the target hydroxymethyl group-containing PVA. For example, when the solvent is methanol, it is included in the solvent and the polymerization system.
- the polymerization initiator used for copolymerization of the unsaturated monomer represented by the formula (2) and the vinyl ester monomer is a known polymerization initiator such as an azo initiator or a peroxide initiator.
- the redox initiator may be selected according to the polymerization method.
- Examples of the azo initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4- Dimethylvaleronitrile).
- peroxide initiator examples include percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate; t-butyl peroxyneodecanate, ⁇ - Perester compounds such as cumylperoxyneodecanate; acetylcyclohexylsulfonyl peroxide; 2,4,4-trimethylpentyl-2-peroxyphenoxyacetate; acetyl peroxide. Potassium persulfate, ammonium persulfate, hydrogen peroxide, or the like may be combined with the above initiator to form a polymerization initiator.
- percarbonate compounds such as diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethyl peroxydicarbonate
- the redox initiator is, for example, a polymerization initiator in which the peroxide initiator is combined with a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, or longalite.
- a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, or longalite.
- the amount of the polymerization initiator used varies depending on the type of the polymerization initiator and cannot be determined unconditionally, but may be selected according to the polymerization rate. For example, when 2,2′-azobisisobutyronitrile or acetyl peroxide is used as the polymerization initiator, 0.01 to 0.2 mol% is preferable with respect to the vinyl ester monomer, and 0.02 to 0 More preferred is 15 mol%.
- the copolymerization of the unsaturated monomer represented by the formula (2) and the vinyl ester monomer may be performed in the presence of a chain transfer agent.
- the chain transfer agent include aldehydes such as acetaldehyde and propionaldehyde; ketones such as acetone and methyl ethyl ketone; mercaptans such as 2-hydroxyethanethiol; and phosphinic acid salts such as sodium phosphinate monohydrate. Of these, aldehydes and ketones are preferably used.
- the amount of chain transfer agent used can be determined according to the chain transfer coefficient of the chain transfer agent to be used and the degree of polymerization of the target hydroxymethyl group-containing PVA. The amount is preferably 0.1 to 10 parts by mass.
- the above hydroxymethyl group-containing PVA can be obtained by saponifying a vinyl ester copolymer obtained by copolymerization of an unsaturated monomer represented by formula (2) and a vinyl ester monomer. .
- the vinyl ester unit in the vinyl ester copolymer is converted to a vinyl alcohol unit.
- the ester bond of the structural unit derived from the unsaturated monomer represented by the formula (2) is also saponified and converted into a structural unit having a 1,3-diol structure represented by the formula (1). Therefore, the hydroxymethyl group-containing PVA can be produced without further reaction such as hydrolysis after saponification.
- the saponification of the vinyl ester copolymer can be performed in a state where the vinyl ester copolymer is dissolved in, for example, alcohol or hydrous alcohol.
- the alcohol used for saponification include lower alcohols such as methanol and ethanol, preferably methanol.
- the alcohol used for saponification may contain other solvents such as acetone, methyl acetate, ethyl acetate, and benzene at a ratio of 40% by mass or less of the mass, for example.
- the catalyst used for saponification is, for example, an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide, an alkali catalyst such as sodium methylate, or an acid catalyst such as mineral acid.
- the temperature at which saponification is performed is not limited, but is preferably within the range of 20 to 60 ° C.
- the product is pulverized, washed and dried to obtain a hydroxymethyl group-containing PVA.
- the saponification method is not limited to the method described above, and a known method can be applied.
- the hydroxymethyl group-containing PVA can further include other structural units other than the structural unit represented by the formula (1), the vinyl alcohol unit, and the vinyl ester unit.
- the other structural unit include a structural unit derived from an ethylenically unsaturated monomer copolymerizable with a vinyl ester monomer.
- the proportion of the total of the structural unit represented by the formula (1), the vinyl alcohol unit and the vinyl ester unit is 100 mol% of the number of moles of all the structural units constituting the hydroxymethyl group-containing PVA. 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more, and may be 99 mol% or more.
- ethylenically unsaturated monomer examples include ⁇ -olefins such as ethylene, propylene, n-butene, isobutylene and 1-hexene; acrylic acid and salts thereof; unsaturated monomer having an acrylate group.
- Body methacrylic acid and salts thereof; unsaturated monomer having methacrylic ester group; acrylamide; N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and salts thereof Acrylamide derivatives such as acrylamidepropyldimethylamine and salts thereof (for example, quaternary salts); methacrylamide; N-methyl methacrylamide, N-ethyl methacrylamide, methacrylamide propane sulfonic acid and salts thereof, methacrylamide propylene Methacrylamide derivatives such as dimethylamine and its salts (eg quaternary salts); methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether , Vinyl
- an unsaturated dicarboxylic acid and a salt or ester thereof; vinylsilyl compounds such as vinyltrimethoxysilane; and isopropenyl acetate since the stretchability is improved and the film can be stretched at a higher temperature, the occurrence of troubles such as breakage of the stretch during the production of the optical film is reduced, and the productivity of the optical film is further improved. preferable.
- the hydroxymethyl group-containing PVA contains an ethylene unit
- the content of the ethylene unit is 100 in terms of the number of moles of all structural units constituting the hydroxymethyl group-containing PVA from the viewpoints of stretchability and stretchable temperature as described above.
- the mol% is preferably 1 to 4 mol%, particularly preferably 2 to 3 mol%.
- the arrangement order of the structural unit represented by the formula (1) in the hydroxymethyl group-containing PVA, the vinyl alcohol unit, and other arbitrary structural units is not particularly limited, and may be any of random, block, alternating, and the like.
- the film of the present invention can contain a plasticizer in addition to the hydroxymethyl group-containing PVA.
- Preferred plasticizers include polyhydric alcohols, and specific examples include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane, and the like.
- the film of the present invention can contain one or more of these plasticizers. Among these, glycerin is preferable in terms of the effect of improving stretchability.
- the plasticizer content in the film of the present invention is preferably in the range of 1 to 20 parts by mass, preferably in the range of 3 to 17 parts by mass with respect to 100 parts by mass of the hydroxymethyl group-containing PVA contained therein. More preferably, the content is in the range of 5 to 15 parts by mass. When the content is 1 part by mass or more, the stretchability of the film is further improved. On the other hand, when the content is 20 parts by mass or less, it is possible to prevent the film from becoming too flexible and handling properties from being lowered.
- the film of the present invention further includes a filler, a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a flame retardant, and other heat.
- a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, a flame retardant, and other heat.
- Additives such as plastic resins, lubricants, fragrances, defoamers, deodorants, extenders, release agents, mold release agents, reinforcing agents, crosslinking agents, fungicides, preservatives, crystallization rate retarders, It can mix
- the proportion of the total of the hydroxymethyl group-containing PVA and the plasticizer in the film of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more based on the mass of the film, and 95% by mass. % Or more is more preferable.
- the degree of swelling of the film of the present invention is preferably in the range of 160 to 240%, more preferably in the range of 170 to 230%, and particularly preferably in the range of 180 to 220%.
- the degree of swelling is 160% or more, the crystallization can be prevented from proceeding extremely, and the film can be stably stretched to a higher magnification.
- the degree of swelling is 240% or less, dissolution during stretching is suppressed, and stretching is possible even under higher temperature conditions.
- the degree of swelling of the film is a value obtained by dividing the mass when the film is immersed in distilled water at 30 ° C. for 30 minutes by the mass after drying at 105 ° C. for 16 hours. It means percentage, and can be specifically measured by the method described later in Examples.
- the thickness of the film of the present invention is not particularly limited, but is generally 1 to 100 ⁇ m, more preferably 5 to 75 ⁇ m, and particularly preferably about 10 to 60 ⁇ m.
- the thickness is too thin, there is a tendency that stretching breakage is likely to occur during uniaxial stretching treatment for producing an optical film such as a polarizing film.
- the said thickness is too thick, at the time of the uniaxial stretching process for manufacturing an optical film, it will become easy to generate
- the width of the film of the present invention is not particularly limited, and can be determined according to the use of the optical film to be produced. In recent years, liquid crystal televisions and liquid crystal monitors have been increasing in screen size, so that the film width of 3 m or more is suitable for these applications. On the other hand, if the width of the film is too large, it is difficult to uniformly carry out uniaxial stretching per se when an optical film is produced with an apparatus that has been put into practical use. Therefore, the width of the film is preferably 7 m or less. .
- the production method of the film of the present invention is not particularly limited, and a production method in which the thickness and width of the film after film formation are more uniform can be preferably employed.
- the above-described hydroxymethyl group-containing PVA constituting the film And, if necessary, a film-forming stock solution in which one or more of the plasticizers, additives, and surfactants described later are dissolved in a liquid medium, and a hydroxymethyl group-containing PVA, In addition, if necessary, it is produced using a film-forming stock solution containing one or more of plasticizers, additives, surfactants, liquid media, etc., in which the hydroxymethyl group-containing PVA is melted. can do.
- the film-forming stock solution contains at least one of a plasticizer, an additive, and a surfactant, it is preferable that these components are uniformly mixed.
- liquid medium used for the preparation of the membrane forming stock solution examples include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol. , Trimethylolpropane, ethylenediamine, diethylenetriamine and the like, and one or more of them can be used. Among these, water is preferable from the viewpoint of environmental load and recoverability.
- the volatile fraction of the film-forming stock solution (content ratio in the film-forming stock solution of volatile components such as liquid media removed by volatilization or evaporation during film formation) varies depending on the film-forming method, film-forming conditions, etc. Specifically, it is preferably in the range of 50 to 95% by mass, more preferably in the range of 55 to 90% by mass, and still more preferably in the range of 60 to 85% by mass.
- the film-forming stock solution has a volatile content of 50% by mass or more, so that the viscosity of the film-forming stock solution does not become too high, and filtration and defoaming are smoothly performed during the preparation of the film-forming stock solution, and there are few foreign substances and defects. Is easy to manufacture.
- the volatile fraction of the film-forming stock solution is 95% by mass or less, the concentration of the film-forming stock solution does not become too low, and industrial film production is facilitated.
- the film forming stock solution preferably contains a surfactant.
- a surfactant By including the surfactant, the film-forming property is improved and the occurrence of uneven thickness of the film is suppressed, and the film is easily peeled off from the metal roll or belt used for film formation.
- the film may contain a surfactant.
- the kind of said surfactant is not specifically limited, From a viewpoint of the peelability from a metal roll or a belt, an anionic surfactant or a nonionic surfactant is preferable.
- anionic surfactant for example, a carboxylic acid type such as potassium laurate; a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate are suitable.
- a carboxylic acid type such as potassium laurate
- a sulfuric acid ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate
- a sulfonic acid type such as dodecylbenzene sulfonate
- Nonionic surfactants include, for example, alkyl ether types such as polyoxyethylene oleyl ether; alkylphenyl ether types such as polyoxyethylene octylphenyl ether; alkyl ester types such as polyoxyethylene laurate; polyoxyethylene laurylamino Alkylamine type such as ether; alkylamide type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; alkanolamide type such as lauric acid diethanolamide and oleic acid diethanolamide; polyoxy An allyl phenyl ether type such as alkylene allyl phenyl ether is preferred.
- surfactants can be used alone or in combination of two or more.
- the content thereof is preferably in the range of 0.01 to 0.5 parts by weight with respect to 100 parts by weight of the hydroxymethyl group-containing PVA contained in the film-forming stock solution.
- the content is more preferably in the range of 0.02 to 0.3 parts by mass, and particularly preferably in the range of 0.05 to 0.1 parts by mass.
- the content is 0.01 mass part or more, film forming property and peelability improve more.
- the content is 0.5 parts by mass or less, it is possible to prevent the surfactant from bleeding out on the surface of the film to cause blocking and lowering the handleability.
- Examples of the film forming method for forming a film using the above-described film forming stock solution include a cast film forming method, an extrusion film forming method, a wet film forming method, and a gel film forming method. These film forming methods may be used alone or in combination of two or more. Among these film forming methods, the cast film forming method and the extrusion film forming method are preferable because a film having a uniform thickness and width and excellent physical properties can be obtained. The formed film can be dried or heat-treated as necessary.
- a T-type slit die, a hopper plate, an I-die, a lip coater die or the like is used to rotate the above film forming stock solution on the most upstream side.
- the ingredients are evaporated to dryness, followed by further drying on the circumference of one or more rotating heated rolls located downstream thereof, or by passing through a hot air drying apparatus for further drying.
- a method of winding with a winding device can be preferably employed industrially. Drying with a heated roll and drying with a hot air dryer may be performed in an appropriate combination.
- the use of the film of the present invention is not particularly limited.
- an optical film excellent in optical properties, durability, and shrinkage reduction can be easily produced, and thus an optical film is produced.
- Examples of such an optical film include a polarizing film and a retardation film, and a polarizing film is preferable.
- Such an optical film can be produced, for example, by subjecting the film of the present invention to a treatment such as uniaxial stretching.
- the method for producing a polarizing film using the film of the present invention is not particularly limited, and any method conventionally employed may be employed.
- dyeing and uniaxial stretching may be performed on the film of the present invention, or uniaxial stretching may be performed on the film of the present invention containing a dye.
- a method of subjecting the film of the present invention to swelling, dyeing, uniaxial stretching, and, if necessary, crosslinking treatment, fixing treatment, drying, heat treatment, etc. Is mentioned.
- the order of each treatment such as swelling, dyeing, crosslinking treatment, uniaxial stretching, and fixing treatment is not particularly limited, and one or two or more treatments can be performed simultaneously. Also, one or more of each process can be performed twice or more.
- Swelling can be performed by immersing the film in water.
- the temperature of the water when immersed in water is preferably in the range of 20 to 40 ° C., more preferably in the range of 22 to 38 ° C., and preferably in the range of 25 to 35 ° C. Further preferred.
- the time for immersion in water is preferably in the range of 0.1 to 5 minutes, for example, and more preferably in the range of 0.5 to 3 minutes.
- the water at the time of immersing in water is not limited to pure water, The aqueous solution in which various components melt
- Dyeing can be performed by bringing a dichroic dye into contact with the film.
- a dichroic dye an iodine dye is generally used.
- the dyeing time may be any stage before uniaxial stretching, during uniaxial stretching, or after uniaxial stretching.
- Dyeing is generally performed by immersing the film in a solution (particularly an aqueous solution) containing iodine-potassium iodide as a dyeing bath, and such a dyeing method is also preferably used in the present invention.
- the iodine concentration in the dyeing bath is preferably in the range of 0.01 to 0.5% by mass, and the potassium iodide concentration is preferably in the range of 0.01 to 10% by mass.
- the temperature of the dyeing bath is preferably 20 to 50 ° C., particularly 25 to 40 ° C.
- the crosslinking treatment is preferably performed after the treatment for bringing the dichroic dye into contact and before the uniaxial stretching.
- the crosslinking treatment can be performed by immersing the film in an aqueous solution containing a crosslinking agent.
- a crosslinking agent one or more of boron compounds such as boric acid and borate such as borax can be used.
- the concentration of the crosslinking agent in the aqueous solution containing the crosslinking agent is preferably in the range of 1 to 15% by mass, more preferably in the range of 2 to 7% by mass, and in the range of 3 to 6% by mass. More preferably. Sufficient stretchability can be maintained when the concentration of the crosslinking agent is in the range of 1 to 15% by mass.
- the aqueous solution containing a crosslinking agent may contain an auxiliary agent such as potassium iodide.
- the temperature of the aqueous solution containing the crosslinking agent is preferably in the range of 20 to 50 ° C., particularly in the range of 25 to 40 ° C. By setting the temperature within the range of 20 to 50 ° C., crosslinking can be performed efficiently.
- Uniaxial stretching may be performed by either a wet stretching method or a dry stretching method.
- the wet stretching method it can be carried out in an aqueous solution containing boric acid, or can be carried out in the dyeing bath described above or in a fixing treatment bath described later.
- the stretching may be performed at room temperature, may be performed while heating, or may be performed in the air using a film after water absorption.
- the wet stretching method is preferable, and uniaxial stretching is more preferable in an aqueous solution containing boric acid.
- the concentration of boric acid in the boric acid aqueous solution is preferably within the range of 0.5 to 6.0% by mass, more preferably within the range of 1.0 to 5.0% by mass, It is particularly preferably within the range of ⁇ 4.0% by mass. Further, the aqueous boric acid solution may contain potassium iodide, and its concentration is preferably in the range of 0.01 to 10% by mass.
- the stretching temperature in the uniaxial stretching is preferably in the range of 30 to 90 ° C, more preferably in the range of 40 to 80 ° C, and particularly preferably in the range of 50 to 70 ° C.
- the draw ratio in uniaxial stretching is preferably 6.8 times or more, more preferably 6.9 times or more, and 7.0 times or more from the viewpoint of the polarizing performance of the obtained polarizing film. Is particularly preferred.
- the upper limit of the draw ratio is not particularly limited, but the draw ratio is preferably 8 times or less.
- Uniaxial stretching in the longitudinal direction is preferred. Uniaxial stretching in the longitudinal direction can be performed by changing the peripheral speed between the rolls using a stretching apparatus including a plurality of rolls parallel to each other. On the other hand, lateral uniaxial stretching can be performed using a tenter type stretching machine.
- the fixing treatment bath used for the fixing treatment an aqueous solution containing one or more of boron compounds such as boric acid and borax can be used. Moreover, you may add an iodine compound and a metal compound in a fixed treatment bath as needed.
- the concentration of the boron compound in the fixing treatment bath is generally about 2 to 15% by mass, particularly about 3 to 10% by mass. By setting the concentration within the range of 2 to 15% by mass, the adsorption of the dichroic dye can be further strengthened.
- the temperature of the fixing treatment bath is preferably 15 to 60 ° C., particularly 25 to 40 ° C.
- Drying conditions are not particularly limited, but it is preferable to perform the drying at a temperature within the range of 30 to 150 ° C, particularly within the range of 50 to 130 ° C.
- a polarizing film excellent in dimensional stability can be easily obtained by drying at a temperature in the range of 30 to 150 ° C.
- the polarizing film obtained as described above is usually used as a polarizing plate by attaching an optically transparent protective film having mechanical strength to both sides or one side.
- an optically transparent protective film having mechanical strength to both sides or one side.
- a cellulose triacetate (TAC) film, a cycloolefin polymer (COP) film, an acetic acid / cellulose butyrate (CAB) film, an acrylic film, a polyester film, or the like is used.
- the adhesive for bonding include PVA adhesives and urethane adhesives, among which PVA adhesives are suitable.
- the polarizing plate obtained as described above can be used as an LCD component after being coated with an acrylic adhesive or the like and bonded to a glass substrate. At the same time, it may be bonded to a retardation film, a viewing angle improving film, a brightness improving film, or the like.
- the primary structure of PVA used in the following examples, reference examples and comparative examples is 400 MHz 1 H-NMR. And analyzed. Deuterated DMSO was used as a solvent for the 1 H-NMR measurement.
- the length was 1.1 times (2.6 times in total) while being immersed in an aqueous solution (crosslinking bath) (temperature 30 ° C.) containing 3% by weight of boric acid and 3% by weight of potassium iodide. Uniaxially stretched in the direction. Further, while being immersed in an aqueous solution (stretching bath) containing 4% by mass of boric acid and 6% by mass of potassium iodide, the film is uniaxially stretched in the length direction until it is cut, and is cut with respect to the length of the film before stretching.
- the ratio of the length of time was defined as the limit draw ratio. However, the temperature of the stretching bath was changed by 1 ° C. from an appropriate temperature, the limiting stretching ratio was measured, and the temperature at which the limiting stretching ratio was the highest was selected.
- Optical properties of polarizing film (dichroic ratio) (1) Measurement of transmittance Ts Two 2 cm samples were taken in the length direction of the polarizing film from the central part of the polarizing film obtained in the following Examples, Reference Examples or Comparative Examples, and the spectrophotometer with integrating sphere Using a meter (“V7100” manufactured by JASCO Corporation), in accordance with JIS Z 8722 (measuring method of object color), the visibility correction in the visible light region of C light source and 2 ° field of view is performed, and one sample The light transmittance when tilted by + 45 ° with respect to the length direction and the light transmittance when tilted by ⁇ 45 ° were measured, and the average value Ts1 (%) was obtained.
- V7100 manufactured by JASCO Corporation
- Ts1 and Ts2 were averaged by the following formula (4) to obtain the transmittance Ts (%) of the polarizing film.
- Ts (Ts1 + Ts2) / 2 (4)
- the transmittance Ts (%) and the degree of polarization V (%) were determined for each of these four polarizing films by the method described above, and the transmittance Ts (%) was plotted on the horizontal axis for each example, reference example, and comparative example.
- the points were plotted on a graph to obtain an approximate curve, and the degree of polarization V 44 (%) when the transmittance Ts (%) was 44% was obtained from the approximate curve.
- a rectangular sample of 12 cm in the length direction of the polarizing film and 1.5 cm in the width direction was collected from the central portion of the polarizing film obtained in the examples, reference examples or comparative examples below the shrinkage force of the polarizing film. Humidity was adjusted for 18 hours under the conditions of 20 ° C. and 20% relative humidity. Next, this sample was fixed to an autograph “AG-X” manufactured by Shimadzu Corporation so that the length direction was fixed at 5 cm between chucks, and 1 mm / min under conditions of a temperature of 40 ° C. and a relative humidity of 5%. Stretching in the length direction at a speed, when the tension reaches 2N, the stretching is stopped and held, and in that state, the temperature is raised to 80 ° C., and the tension is measured after 4 hours. Power.
- Example 1 (1) Hydroxymethyl group-containing PVA100 shown in Table 1 obtained by saponifying a copolymer obtained by copolymerizing vinyl acetate and 1,3-diacetoxy-2-methylenepropane at a polymerization temperature of 40 ° C.
- the length was 1.1 times (2.6 times in total) while being immersed in an aqueous solution (crosslinking bath) (temperature 30 ° C.) containing 3% by weight of boric acid and 3% by weight of potassium iodide. Uniaxially stretched in the direction. Further, while dipping in an aqueous solution (stretching bath) containing 4% by mass of boric acid and 6% by mass of potassium iodide (a temperature at which the limiting stretch ratio determined in the above “film stretchability” is the highest), The film was uniaxially stretched in the length direction to a magnification 0.2 times lower than the limit draw ratio.
- Example 2 Reference Example 1, Comparative Examples 1 and 2
- PVA hydroxymethyl group-containing PVA shown in Table 1 obtained by saponifying a copolymer obtained by copolymerizing vinyl acetate and 1,3-diacetoxy-2-methylenepropane at a polymerization temperature of 20 ° C.
- Example 2 Hydroxymethyl shown in Table 1 obtained by saponifying a copolymer obtained by copolymerizing vinyl acetate and 1,3-diacetoxy-2-methylenepropane at a polymerization temperature of 60 ° C.
- Group-containing PVA Unmodified PVA shown in Table 1 obtained by saponifying a polymer obtained by polymerizing vinyl acetate at a polymerization temperature of 60 ° C. (Comparative Example 1); Polymerizing vinyl acetate A film and a film were obtained in the same manner as in Example 1 except that unmodified PVA (Comparative Example 2) shown in Table 1 obtained by saponifying a polymer obtained by polymerization at a temperature of 40 ° C. was used. It manufactures polarizing film were carried each measured or evaluated. The results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Polarising Elements (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
[1]ビニルアルコール単位、及び下記式(1)で示される構造単位を含み、1,2-グリコール結合量が1.5モル%以下であるヒドロキシメチル基含有PVAを含むフィルム; That is, the present invention
[1] A film containing a vinyl alcohol unit and a hydroxymethyl group-containing PVA containing a structural unit represented by the following formula (1) and having a 1,2-glycol bond amount of 1.5 mol% or less;
[3]前記ヒドロキシメチル基含有PVAのけん化度が95モル%以上である、[1]または[2]に記載のフィルム;
[4]光学フィルム製造用原反フィルムである、[1]~[3]のいずれか1つに記載のフィルム;
[5]光学フィルムが偏光フィルムである、[4]に記載のフィルム;
[6][4]または[5]に記載のフィルムを用いて一軸延伸する工程を有する、光学フィルムの製造方法;
に関する。 [2] The film according to [1], wherein the content of the structural unit represented by the formula (1) in the hydroxymethyl group-containing PVA is 0.1 to 2 mol%;
[3] The film according to [1] or [2], wherein the hydroxymethyl group-containing PVA has a saponification degree of 95 mol% or more;
[4] The film according to any one of [1] to [3], which is a raw film for producing an optical film;
[5] The film according to [4], wherein the optical film is a polarizing film;
[6] A method for producing an optical film, comprising a step of uniaxially stretching using the film according to [4] or [5];
About.
なお、1,2-グリコール結合量が上記範囲にある変性PVAは、ビニルエステル系単量体を50℃未満、好ましくは40℃未満、より好ましくは30℃未満、さらに好ましくは20℃未満、特に好ましくは5℃未満の温度で重合することにより、容易に製造することができる。ビニルエステル系単量体の重合速度の点から工業的に可能な重合温度の下限は-50℃程度であり、この観点からは、ヒドロキシメチル基含有PVAの1,2-グリコール結合量の下限は0.5モル%程度が限度である。ヒドロキシメチル基含有PVAの1,2-グリコール結合量は公知のNMR測定法により求めることができる。 Further, when the 1,2-glycol bond amount of the hydroxymethyl group-containing PVA is 1.5 mol% or less, an optical film with less fading and excellent durability performance can be obtained. The 1,2-glycol bond amount is preferably 1.4 mol% or less, more preferably 1.2 mol% or less, and further preferably 1.0 mol% or less. The lower the 1,2-glycol bond amount, the better the durability of the resulting polarizing film.
Note that the modified PVA having a 1,2-glycol bond amount in the above range is a vinyl ester monomer of less than 50 ° C., preferably less than 40 ° C., more preferably less than 30 ° C., and even more preferably less than 20 ° C. Preferably, it can be easily produced by polymerization at a temperature of less than 5 ° C. From the viewpoint of the polymerization rate of the vinyl ester monomer, the lower limit of the industrially possible polymerization temperature is about −50 ° C. From this viewpoint, the lower limit of the 1,2-glycol bond amount of the hydroxymethyl group-containing PVA is About 0.5 mol% is the limit. The 1,2-glycol bond amount of the hydroxymethyl group-containing PVA can be determined by a known NMR measurement method.
一軸延伸における延伸温度は、30~90℃の範囲内であることが好ましく、40~80℃の範囲内であることがより好ましく、50~70℃の範囲内であることが特に好ましい。
また、一軸延伸における延伸倍率は、得られる偏光フィルムの偏光性能の点から6.8倍以上であることが好ましく、6.9倍以上であることがより好ましく、7.0倍以上であることが特に好ましい。延伸倍率の上限は特に制限されないが、延伸倍率は8倍以下であることが好ましい。 Uniaxial stretching may be performed by either a wet stretching method or a dry stretching method. In the case of the wet stretching method, it can be carried out in an aqueous solution containing boric acid, or can be carried out in the dyeing bath described above or in a fixing treatment bath described later. In the case of the dry stretching method, the stretching may be performed at room temperature, may be performed while heating, or may be performed in the air using a film after water absorption. Among these, the wet stretching method is preferable, and uniaxial stretching is more preferable in an aqueous solution containing boric acid. The concentration of boric acid in the boric acid aqueous solution is preferably within the range of 0.5 to 6.0% by mass, more preferably within the range of 1.0 to 5.0% by mass, It is particularly preferably within the range of ˜4.0% by mass. Further, the aqueous boric acid solution may contain potassium iodide, and its concentration is preferably in the range of 0.01 to 10% by mass.
The stretching temperature in the uniaxial stretching is preferably in the range of 30 to 90 ° C, more preferably in the range of 40 to 80 ° C, and particularly preferably in the range of 50 to 70 ° C.
Further, the draw ratio in uniaxial stretching is preferably 6.8 times or more, more preferably 6.9 times or more, and 7.0 times or more from the viewpoint of the polarizing performance of the obtained polarizing film. Is particularly preferred. The upper limit of the draw ratio is not particularly limited, but the draw ratio is preferably 8 times or less.
以下の実施例、参考例及び比較例で使用したPVAの一次構造(変性種の構造単位の含有率、1,2-グリコール結合量及びけん化度)は、400MHz 1H-NMRを用いて分析した。1H-NMR測定時の溶媒は重水素化DMSOを用いた。 Primary structure of PVA The primary structure of PVA used in the following examples, reference examples and comparative examples (contents of structural units of modified species, 1,2-glycol bond amount and saponification degree) is 400 MHz 1 H-NMR. And analyzed. Deuterated DMSO was used as a solvent for the 1 H-NMR measurement.
以下の実施例、参考例または比較例で得られたフィルムを1.5gとなるようにカットし、30℃の蒸留水中に30分間浸漬した。30分間浸漬後に当該フィルムを取り出し、ろ紙で表面の水を取り、質量「N」を求めた。続いてそのフィルムを105℃の乾燥機で16時間乾燥した後、質量「M」を求めた。得られた質量「N」及び「M」から、下記式(3)によりフィルムの膨潤度を算出した。
膨潤度(%) = 100 × N/M (3)
Films obtained in Examples, Reference Examples or Comparative Examples below the degree of swelling of the film were cut to 1.5 g, and immersed in distilled water at 30 ° C. for 30 minutes. After immersion for 30 minutes, the film was taken out, the surface water was taken out with a filter paper, and the mass “N” was determined. Subsequently, the film was dried with a dryer at 105 ° C. for 16 hours, and then the mass “M” was determined. From the obtained masses “N” and “M”, the degree of swelling of the film was calculated by the following formula (3).
Swelling degree (%) = 100 × N / M (3)
以下の実施例、参考例または比較例で得られたフィルムの幅方向中央部から、幅5cm×長さ5cmの範囲が一軸延伸できるように幅5cm×長さ8cmのサンプルをカットした。このサンプルを30℃の純水に浸漬しつつ1.5倍に長さ方向に一軸延伸した。続いてヨウ素を0.03質量%及びヨウ化カリウムを3.0質量%の割合で含有する水溶液(染色浴)(温度30℃)に60秒間浸漬しつつ1.6倍(全体で2.4倍)に長さ方向に一軸延伸してヨウ素を吸着させた。次いで、ホウ酸を3質量%及びヨウ化カリウムを3質量%の割合で含有する水溶液(架橋浴)(温度30℃)に浸漬しつつ1.1倍(全体で2.6倍)に長さ方向に一軸延伸した。さらにホウ酸を4質量%及びヨウ化カリウムを6質量%の割合で含有する水溶液(延伸浴)に浸漬しつつ、切断するまで長さ方向に一軸延伸し、延伸前のフィルムの長さに対する切断時の長さの倍率を限界延伸倍率とした。ただし、延伸浴の温度については、適当な温度から1℃ずつ変更して限界延伸倍率を測定し、限界延伸倍率が最も高くなる温度を選択した。 Stretchability of film Cut samples of width 5cm x length 8cm so that the range of width 5cm x length 5cm can be uniaxially stretched from the center in the width direction of the film obtained in the following examples, reference examples or comparative examples. did. This sample was uniaxially stretched in the length direction by a factor of 1.5 while being immersed in pure water at 30 ° C. Subsequently, while being immersed in an aqueous solution (dyeing bath) (temperature 30 ° C.) containing 0.03% by mass of iodine and 3.0% by mass of potassium iodide for 60 seconds, the ratio is 1.6 times (2.4 in total). Uniaxially stretching in the length direction to adsorb iodine. Next, the length was 1.1 times (2.6 times in total) while being immersed in an aqueous solution (crosslinking bath) (temperature 30 ° C.) containing 3% by weight of boric acid and 3% by weight of potassium iodide. Uniaxially stretched in the direction. Further, while being immersed in an aqueous solution (stretching bath) containing 4% by mass of boric acid and 6% by mass of potassium iodide, the film is uniaxially stretched in the length direction until it is cut, and is cut with respect to the length of the film before stretching. The ratio of the length of time was defined as the limit draw ratio. However, the temperature of the stretching bath was changed by 1 ° C. from an appropriate temperature, the limiting stretching ratio was measured, and the temperature at which the limiting stretching ratio was the highest was selected.
(1)透過率Tsの測定
以下の実施例、参考例または比較例で得られた偏光フィルムの中央部から、偏光フィルムの長さ方向に2cmのサンプルを2枚採取し、積分球付き分光光度計(日本分光株式会社製「V7100」)を用いて、JIS Z 8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行い、1枚のサンプルについて、長さ方向に対して+45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値Ts1(%)を求めた。もう1枚のサンプルについても同様にして、+45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値Ts2(%)を求めた。下記式(4)によりTs1とTs2を平均し、偏光フィルムの透過率Ts(%)とした。
Ts = (Ts1+Ts2)/2 (4)
Optical properties of polarizing film (dichroic ratio)
(1) Measurement of transmittance Ts Two 2 cm samples were taken in the length direction of the polarizing film from the central part of the polarizing film obtained in the following Examples, Reference Examples or Comparative Examples, and the spectrophotometer with integrating sphere Using a meter (“V7100” manufactured by JASCO Corporation), in accordance with JIS Z 8722 (measuring method of object color), the visibility correction in the visible light region of C light source and 2 ° field of view is performed, and one sample The light transmittance when tilted by + 45 ° with respect to the length direction and the light transmittance when tilted by −45 ° were measured, and the average value Ts1 (%) was obtained. Similarly, with respect to the other sample, the light transmittance when tilted by + 45 ° and the light transmittance when tilted by −45 ° were measured, and an average value Ts2 (%) thereof was obtained. Ts1 and Ts2 were averaged by the following formula (4) to obtain the transmittance Ts (%) of the polarizing film.
Ts = (Ts1 + Ts2) / 2 (4)
上記透過率Tsの測定で採取した2枚のサンプルを、その長さ方向が平行になるように重ねた場合の光の透過率T∥(%)、長さ方向が直交するように重ねた場合の光の透過率T⊥(%)を、上記「(1)透過率Tsの測定」の場合と同様にして測定し、下記式(5)により偏光度V(%)を求めた。
V = {(T∥-T⊥)/(T∥+T⊥)}1/2×100 (5)
(2) Measurement of degree of polarization V Light transmittance T∥ (%) and length direction when two samples collected in the measurement of transmittance Ts are stacked so that their length directions are parallel. Are measured in the same manner as in the case of “(1) Measurement of transmittance Ts”, and the degree of polarization V ( %).
V = {(T∥−T⊥) / (T∥ + T⊥)} 1/2 × 100 (5)
以下の各実施例、参考例及び比較例において、染色浴におけるヨウ素の濃度を0.02~0.04質量%及びヨウ化カリウムの濃度を2.0~4.0質量%の各範囲内で4回変更(ただし、ヨウ素の濃度:ヨウ化カリウムの濃度=1:100とする)して同様の操作を行い、各実施例、参考例または比較例で製造した偏光フィルムとは二色性色素の吸着量の異なる4枚の偏光フィルムを製造した。これら4枚の偏光フィルムのそれぞれについて上記した方法で透過率Ts(%)及び偏光度V(%)を求め、各実施例、参考例及び比較例毎に、透過率Ts(%)を横軸、偏光度V(%)を縦軸として、各実施例、参考例または比較例で得られた偏光フィルムの透過率Ts(%)及び偏光度V(%)に基づく1点も含めた合計5点をグラフにプロットして近似曲線を求め、当該近似曲線から、透過率Ts(%)が44%であるときの偏光度V44(%)を求めた。
得られた偏光度V44(%)から、下記式(6)により透過率44%時の二色性比を求めて、偏光性能の指標とした。
透過率44%時の二色性比 = log(44/100-44/100×V44/100)/log(44/100+44/100×V44/100) (6)
(3) Calculation of the dichroic ratio at a transmittance of 44% In each of the following Examples, Reference Examples and Comparative Examples, the iodine concentration in the dyeing bath was 0.02 to 0.04 mass% and the potassium iodide concentration Was changed four times within each range of 2.0 to 4.0% by mass (however, iodine concentration: potassium iodide concentration = 1: 100), and the same operation was performed. Four polarizing films having different dichroic dye adsorption amounts were produced from the polarizing films produced in Examples or Comparative Examples. The transmittance Ts (%) and the degree of polarization V (%) were determined for each of these four polarizing films by the method described above, and the transmittance Ts (%) was plotted on the horizontal axis for each example, reference example, and comparative example. In addition, a total of 5 including one point based on the transmittance Ts (%) and the degree of polarization V (%) of the polarizing film obtained in each example, reference example or comparative example, with the degree of polarization V (%) as the vertical axis. The points were plotted on a graph to obtain an approximate curve, and the degree of polarization V 44 (%) when the transmittance Ts (%) was 44% was obtained from the approximate curve.
From the obtained degree of polarization V 44 (%), the dichroic ratio at a transmittance of 44% was determined by the following formula (6) and used as an index of polarization performance.
Dichroic ratio when the transmittance 44% = log (44 / 100-44 / 100 × V 44/100) / log (44/100 + 44/100 × V 44/100) (6)
以下の実施例、参考例または比較例で得られた偏光フィルム2枚をそれぞれ金属枠に固定し、クロスニコルに重ね合わせ、初期(0時間)の吸光度A(波長610nmでの値)を分光光度計で測定した。さらに、金属枠に固定した偏光フィルムを60℃・90%RHの雰囲気下で8時間保管した後、クロスニコルに重ね合わせ、8時間後の吸光度B(波長610nmでの値)を分光光度計で測定した。吸光度B/吸光度A×100の値を残存率(PVA-ヨウ素錯体由来の色の退色の指標)とした。 Durability of polarizing film Two polarizing films obtained in Examples, Reference Examples or Comparative Examples below were fixed to a metal frame, overlapped with crossed Nicols, and the initial absorbance (at 0 hours) (wavelength 610 nm). Value) was measured with a spectrophotometer. Further, the polarizing film fixed to the metal frame was stored for 8 hours in an atmosphere of 60 ° C. and 90% RH, and then superimposed on crossed Nicols, and the absorbance B (value at a wavelength of 610 nm) after 8 hours was measured with a spectrophotometer. It was measured. The value of absorbance B / absorbance A × 100 was defined as the residual rate (an index of color fading from the PVA-iodine complex).
以下の実施例、参考例または比較例で得られた偏光フィルムの中央部から、偏光フィルムの長さ方向に12cm、幅方向に1.5cmの矩形のサンプルを採取し、温度20℃、相対湿度20%の条件下で18時間調湿した。次いでこのサンプルをチャック間5cmで長さ方向が固定されるように株式会社島津製作所製のオートグラフ「AG-X」に固定し、温度40℃、相対湿度5%の条件下、1mm/分の速度で長さ方向に延伸し、張力が2Nに達したときに延伸を停止して保持し、その状態で80℃に昇温して4時間後の張力を測定し、これを偏光フィルムの収縮力とした。 A rectangular sample of 12 cm in the length direction of the polarizing film and 1.5 cm in the width direction was collected from the central portion of the polarizing film obtained in the examples, reference examples or comparative examples below the shrinkage force of the polarizing film. Humidity was adjusted for 18 hours under the conditions of 20 ° C. and 20% relative humidity. Next, this sample was fixed to an autograph “AG-X” manufactured by Shimadzu Corporation so that the length direction was fixed at 5 cm between chucks, and 1 mm / min under conditions of a temperature of 40 ° C. and a relative humidity of 5%. Stretching in the length direction at a speed, when the tension reaches 2N, the stretching is stopped and held, and in that state, the temperature is raised to 80 ° C., and the tension is measured after 4 hours. Power.
(1)酢酸ビニルと1,3-ジアセトキシ-2-メチレンプロパンとを重合温度40℃で共重合して得られた共重合体をけん化することにより得られた表1に示すヒドロキシメチル基含有PVA100質量部、可塑剤としてグリセリン10質量部、及び界面活性剤としてポリオキシエチレンラウリルエーテル硫酸ナトリウム0.1質量部を含み、ヒドロキシメチル基含有PVAの含有率が10質量%である水溶液を製膜原液として用いて、これを80℃の金属ロール上で乾燥し、得られたフィルムを熱風乾燥機中で所定の温度で1分間熱処理をすることにより膨潤度を200%に調整して、厚みが30μmのフィルムを製造した。
得られたフィルムを用いて、上記した方法により延伸性を評価した。結果を表1に示した。 [Example 1]
(1) Hydroxymethyl group-containing PVA100 shown in Table 1 obtained by saponifying a copolymer obtained by copolymerizing vinyl acetate and 1,3-diacetoxy-2-methylenepropane at a polymerization temperature of 40 ° C. An aqueous solution containing 10 parts by mass of glycerin as a plasticizer and 0.1 parts by mass of sodium polyoxyethylene lauryl ether sulfate as a surfactant and having a hydroxymethyl group-containing PVA content of 10% by mass The film was dried on a metal roll at 80 ° C., and the resulting film was heat-treated at a predetermined temperature for 1 minute in a hot air dryer to adjust the degree of swelling to 200%, and the thickness was 30 μm. The film was manufactured.
Using the obtained film, stretchability was evaluated by the method described above. The results are shown in Table 1.
その後、ヨウ化カリウムを3質量%の割合で含有する水溶液(洗浄浴)(温度30℃)に5秒間浸漬し、最後に60℃で4分間乾燥して偏光フィルムを製造した。なお、各測定ないし評価ができるように、同様の偏光フィルムを複数製造した。
得られた偏光フィルムを用いて、上記した方法により偏光フィルムの光学特性(二色性比)、耐久性能及び収縮力を測定または評価した。結果を表1に示した。 (2) A sample having a width of 5 cm and a length of 8 cm was cut from the central portion in the width direction of the film obtained in the above (1) so that the range of width 5 cm × length 5 cm could be uniaxially stretched. This sample was uniaxially stretched in the length direction by a factor of 1.5 while being immersed in pure water at 30 ° C. Subsequently, while being immersed in an aqueous solution (dyeing bath) (temperature 30 ° C.) containing 0.03% by mass of iodine and 3.0% by mass of potassium iodide for 60 seconds, the ratio is 1.6 times (2.4 in total). Uniaxially stretching in the length direction to adsorb iodine. Next, the length was 1.1 times (2.6 times in total) while being immersed in an aqueous solution (crosslinking bath) (temperature 30 ° C.) containing 3% by weight of boric acid and 3% by weight of potassium iodide. Uniaxially stretched in the direction. Further, while dipping in an aqueous solution (stretching bath) containing 4% by mass of boric acid and 6% by mass of potassium iodide (a temperature at which the limiting stretch ratio determined in the above “film stretchability” is the highest), The film was uniaxially stretched in the length direction to a magnification 0.2 times lower than the limit draw ratio.
Thereafter, it was immersed in an aqueous solution (cleaning bath) containing 3% by mass of potassium iodide (temperature 30 ° C.) for 5 seconds, and finally dried at 60 ° C. for 4 minutes to produce a polarizing film. A plurality of similar polarizing films were produced so that each measurement or evaluation could be performed.
Using the obtained polarizing film, the optical properties (dichroic ratio), durability performance and shrinkage force of the polarizing film were measured or evaluated by the method described above. The results are shown in Table 1.
PVAとして、酢酸ビニルと1,3-ジアセトキシ-2-メチレンプロパンとを重合温度20℃で共重合して得られた共重合体をけん化することにより得られた表1に示すヒドロキシメチル基含有PVA(実施例2);酢酸ビニルと1,3-ジアセトキシ-2-メチレンプロパンとを重合温度60℃で共重合して得られた共重合体をけん化することにより得られた表1に示すヒドロキシメチル基含有PVA(参考例1);酢酸ビニルを重合温度60℃で重合して得られた重合体をけん化することにより得られた表1に示す未変性PVA(比較例1);酢酸ビニルを重合温度40℃で重合して得られた重合体をけん化することにより得られた表1に示す未変性PVA(比較例2)をそれぞれ用いたこと以外は、実施例1と同様にしてフィルム及び偏光フィルムを製造して、各測定または評価を行った。
結果を表1に示した。 [Example 2, Reference Example 1, Comparative Examples 1 and 2]
As PVA, hydroxymethyl group-containing PVA shown in Table 1 obtained by saponifying a copolymer obtained by copolymerizing vinyl acetate and 1,3-diacetoxy-2-methylenepropane at a polymerization temperature of 20 ° C. Example 2 Hydroxymethyl shown in Table 1 obtained by saponifying a copolymer obtained by copolymerizing vinyl acetate and 1,3-diacetoxy-2-methylenepropane at a polymerization temperature of 60 ° C. Group-containing PVA (Reference Example 1): Unmodified PVA shown in Table 1 obtained by saponifying a polymer obtained by polymerizing vinyl acetate at a polymerization temperature of 60 ° C. (Comparative Example 1); Polymerizing vinyl acetate A film and a film were obtained in the same manner as in Example 1 except that unmodified PVA (Comparative Example 2) shown in Table 1 obtained by saponifying a polymer obtained by polymerization at a temperature of 40 ° C. was used. It manufactures polarizing film were carried each measured or evaluated.
The results are shown in Table 1.
Claims (6)
- ビニルアルコール単位、及び下記式(1)で示される構造単位を含み、1,2-グリコール結合量が1.5モル%以下であるヒドロキシメチル基含有ビニルアルコール系重合体を含むフィルム。
- 前記ヒドロキシメチル基含有ビニルアルコール系重合体における前記式(1)で示される構造単位の含有率が0.1~2モル%である、請求項1に記載のフィルム。 The film according to claim 1, wherein the content of the structural unit represented by the formula (1) in the hydroxymethyl group-containing vinyl alcohol polymer is 0.1 to 2 mol%.
- 前記ヒドロキシメチル基含有ビニルアルコール系重合体のけん化度が95モル%以上である、請求項1または2に記載のフィルム。 The film according to claim 1 or 2, wherein the hydroxymethyl group-containing vinyl alcohol polymer has a saponification degree of 95 mol% or more.
- 光学フィルム製造用原反フィルムである、請求項1~3のいずれか1項に記載のフィルム。 The film according to any one of claims 1 to 3, which is a raw film for producing an optical film.
- 光学フィルムが偏光フィルムである、請求項4に記載のフィルム。 The film according to claim 4, wherein the optical film is a polarizing film.
- 請求項4または5に記載のフィルムを用いて一軸延伸する工程を有する、光学フィルムの製造方法。
The manufacturing method of an optical film which has the process of carrying out uniaxial stretching using the film of Claim 4 or 5.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680007468.0A CN107250180A (en) | 2015-01-27 | 2016-01-14 | membrane |
JP2016571920A JP6776129B2 (en) | 2015-01-27 | 2016-01-14 | the film |
KR1020177020732A KR102467101B1 (en) | 2015-01-27 | 2016-01-14 | Film |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-013000 | 2015-01-27 | ||
JP2015013000 | 2015-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121507A1 true WO2016121507A1 (en) | 2016-08-04 |
Family
ID=56543126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/050967 WO2016121507A1 (en) | 2015-01-27 | 2016-01-14 | Film |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6776129B2 (en) |
KR (1) | KR102467101B1 (en) |
CN (1) | CN107250180A (en) |
TW (1) | TWI741974B (en) |
WO (1) | WO2016121507A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108248349A (en) * | 2018-01-31 | 2018-07-06 | 张转 | Solve the device and method that automobile can't see traffic lights because of strong light direct beam |
KR20220074860A (en) * | 2019-10-08 | 2022-06-03 | 주식회사 쿠라레 | Film for manufacturing optical film, manufacturing method of optical film, and optical film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08201626A (en) * | 1995-01-23 | 1996-08-09 | Kuraray Co Ltd | Polyvinyl alcohol film for polarizing film |
JP2002174726A (en) * | 2000-12-06 | 2002-06-21 | Kuraray Co Ltd | Polarizing film |
JP2013177576A (en) * | 2012-02-10 | 2013-09-09 | Kuraray Co Ltd | Hydroxymethyl group-containing vinyl alcohol-based polymer |
WO2015020044A1 (en) * | 2013-08-09 | 2015-02-12 | 株式会社クラレ | Original film for manufacturing optical film |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4800269B2 (en) | 2007-07-19 | 2011-10-26 | 日本合成化学工業株式会社 | Polyvinyl alcohol film for polarizing film, polarizing film, and polarizing plate |
-
2016
- 2016-01-14 KR KR1020177020732A patent/KR102467101B1/en active Active
- 2016-01-14 CN CN201680007468.0A patent/CN107250180A/en active Pending
- 2016-01-14 JP JP2016571920A patent/JP6776129B2/en active Active
- 2016-01-14 WO PCT/JP2016/050967 patent/WO2016121507A1/en active Application Filing
- 2016-01-25 TW TW105102155A patent/TWI741974B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08201626A (en) * | 1995-01-23 | 1996-08-09 | Kuraray Co Ltd | Polyvinyl alcohol film for polarizing film |
JP2002174726A (en) * | 2000-12-06 | 2002-06-21 | Kuraray Co Ltd | Polarizing film |
JP2013177576A (en) * | 2012-02-10 | 2013-09-09 | Kuraray Co Ltd | Hydroxymethyl group-containing vinyl alcohol-based polymer |
WO2015020044A1 (en) * | 2013-08-09 | 2015-02-12 | 株式会社クラレ | Original film for manufacturing optical film |
Also Published As
Publication number | Publication date |
---|---|
CN107250180A (en) | 2017-10-13 |
TWI741974B (en) | 2021-10-11 |
JPWO2016121507A1 (en) | 2017-11-02 |
JP6776129B2 (en) | 2020-10-28 |
TW201634494A (en) | 2016-10-01 |
KR102467101B1 (en) | 2022-11-14 |
KR20170108013A (en) | 2017-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6420153B2 (en) | Vinyl alcohol polymer film | |
JP6408989B2 (en) | Raw film for optical film production | |
JP6788673B2 (en) | Polarizing film and its manufacturing method | |
JP6383664B2 (en) | Raw film for optical film production | |
JP5931125B2 (en) | Manufacturing method of polarizing film | |
WO2021070622A1 (en) | Film for production of optical film, method for producing optical film, and optical film | |
WO2019146678A1 (en) | Polarizing film and method for manufacturing same | |
JP6776129B2 (en) | the film | |
JP2018004707A (en) | Manufacturing method for optical films | |
JP2023056678A (en) | Polyvinyl alcohol film, method of producing polyvinyl alcohol film, stretched film and polarizing film | |
JP6255300B2 (en) | Method for producing polyvinyl alcohol resin | |
JP6792456B2 (en) | the film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743111 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016571920 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177020732 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16743111 Country of ref document: EP Kind code of ref document: A1 |