WO2016121482A1 - Intake port structure for engine - Google Patents
Intake port structure for engine Download PDFInfo
- Publication number
- WO2016121482A1 WO2016121482A1 PCT/JP2016/050651 JP2016050651W WO2016121482A1 WO 2016121482 A1 WO2016121482 A1 WO 2016121482A1 JP 2016050651 W JP2016050651 W JP 2016050651W WO 2016121482 A1 WO2016121482 A1 WO 2016121482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seat ring
- intake port
- end side
- engine
- rear end
- Prior art date
Links
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 30
- 238000002485 combustion reaction Methods 0.000 claims abstract description 29
- 239000000446 fuel Substances 0.000 abstract description 7
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01L—CYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
- F01L3/00—Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
- F01L3/06—Valve members or valve-seats with means for guiding or deflecting the medium controlled thereby, e.g. producing a rotary motion of the drawn-in cylinder charge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
- F02F1/42—Shape or arrangement of intake or exhaust channels in cylinder heads
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an intake port structure of an engine that enables good combustion in a combustion chamber.
- tumble flow (longitudinal vortex), which is a swirling flow flowing along the axial direction of the cylinder bore, or swirl flow, which is a swirling flow flowing along the circumferential direction of the inner peripheral surface of the cylinder bore, in the combustion chamber of the engine
- swirl flow which is a swirling flow flowing along the circumferential direction of the inner peripheral surface of the cylinder bore
- a technique for generating tumble flow for example, there is a technique for changing the degree of shielding in the intake port by an intake flow control valve provided in the intake port to generate tumble flow (for example, Patent Document 1 below) reference).
- a nozzle that generates tumble flow by ejecting air downward along a wall surface of a valve throat from a nozzle provided in an intake port (for example, see Patent Document 2 below).
- an object of the present invention is to strengthen tumble flow in the fuel chamber without complicating the structure.
- the present invention comprises an intake port connected to a combustion chamber of an engine, and an annular seat ring provided in a region of the intake port facing the combustion chamber;
- the inner surface of the intake port continuing to the upstream side of the inner surface is the inner surface of the seat ring at the rear end side far from the axial center of the cylinder bore in a plan view along the axial direction of the seat ring from the combustion chamber side.
- a flared portion provided with a single inner surface matching portion and projecting to the inner side of the inner surface of the seat ring at any other portion, and the cross-sectional area of the flow path at the location where the flared portion is
- the engine intake port structure was made smaller than the cross-sectional area of the engine.
- the projecting portion is any one of side portions connecting the rear end side and the front end side close to the axial center of the cylinder bore among the inner surfaces of the intake port continuing to the upstream side of the inner surface of the seat ring A configuration provided on the side or both sides of the
- the inner surface matching portion may adopt a configuration provided on the front end side of the inner surface of the intake port continuing on the upstream side of the inner surface of the seat ring.
- a protrusion is provided on the front end side, and a maximum protrusion length of the protrusion of the side portion inward from the inner surface of the seat ring is the inner length from the inner surface of the seat ring in the protrusion on the front end side.
- a configuration set larger than the maximum protrusion length can be adopted.
- the inner surface of the intake port continuing on the upstream side of the inner surface of the seat ring has a maximum diameter in the front-rear direction connecting the front end side and the rear end side in the width direction orthogonal to that A configuration that is set larger than the maximum diameter can be adopted.
- the inner surface of the intake port continuing on the upstream side of the inner surface of the seat ring has an arc-shaped portion around the axial center of the seat ring on the rear end side and the front end side, It is possible to adopt a configuration in which the radius of the arc-shaped portion on the rear end side is set larger than the radius of the arc-shaped portion on the front end side.
- the present invention is characterized in that the inner surface of the intake port continued to the upstream side of the inner surface of the seat ring, and the seat ring on the rear end side far from the axial center of the cylinder bore in plan view along the axial direction of the seat ring from the combustion chamber side. Since the inner surface matching portion flush with the inner surface and the projecting portion protruding inward of the inner surface of the seat ring is provided at any other portion, the tumble ratio, that is, The rotational speed of the tumble flow can be improved while the piston reciprocates one time. As a result, the tumble flow in the fuel chamber can be enhanced without complicating the structure.
- FIG. 1A is a main part enlarged view showing the vicinity of the intake port of the engine of this embodiment.
- FIG. 1B is a modification thereof.
- the arrangement of the combustion chamber 3 of the engine and the shape of the intake port 5 are shown in FIGS. 5A to 5C.
- the engine of this embodiment is a diesel engine for automobiles.
- a piston 2 is accommodated in a cylinder 1 of the engine.
- a combustion chamber 3 is formed by the inner peripheral surface of the cylinder 1, the upper surface of the piston 2, and the like.
- An intake passage 5 for feeding intake air into the combustion chamber 3 of each cylinder, an exhaust port 7 drawn from the combustion chamber 3, and a fuel injection device 9 for injecting fuel into the combustion chamber 3 are provided.
- cylinder 1 In these drawings, members and means directly related to the present invention are mainly shown, and other members and the like are not shown. Further, although only one cylinder 1 is shown in the drawings, the engine may be a single cylinder or may be a multi-cylinder having a plurality of cylinders.
- the intake port 5 branches into two passages in front of the combustion chamber 3.
- the exhaust port 7 also branches into two passages in front of the combustion chamber 3.
- An intake valve hole 5 a which is an opening of each intake port 5 to the combustion chamber 3, is opened and closed by the intake valve 6. Further, exhaust valve holes 7 a, which are openings of the exhaust ports 7 to the combustion chamber 3, are opened and closed by the exhaust valve 8. At this time, the intake valve 6 and the exhaust valve 8 contact with and separate from an annular seat ring 20 provided in a region facing the combustion chamber 3 of the intake port 5 and the exhaust port 7, respectively.
- the intake valve 6 and the exhaust valve 8 open and close the intake valve hole 5a and the exhaust valve hole 7a at a predetermined timing by the rotation of a camshaft provided on the cylinder head 4 side.
- the shaft portions of the intake valve 6 and the exhaust valve 8 are drawn out to the camshaft side in the cylinder head 4 from a shaft insertion portion 5 b opened to the inner surface of the intake port 5 and the exhaust port 7.
- the shaft insertion portion 5b of the intake port 5 opens at a bent portion 5c located on the upstream side of the intake valve hole 5a in the intake port 5, or immediately upstream of the bent portion 5c. .
- the downstream side of the shaft insertion portion 5b supporting the shaft portion of the intake valve 6 and immediately above the seat ring 20 The portion (hereinafter referred to as the seat ring upstream portion 30) located on the side of the cylinder bore has a cylinder bore in a bottom view from the combustion chamber 3 side, that is, a plan view along the axial center direction of the seat ring 20 from the combustion chamber 3 side.
- an inner surface matching portion 32 flush with the inner surface of the seat ring 20 is provided at the rear end side far from the axial center x.
- the rear end portion 31 d of FIG. 1A corresponds to the inner surface matching portion 32.
- the seat ring is provided on the other portion of the seat ring upstream portion 30, that is, on the front end side close to the axial center x of the cylinder bore in the plan view, and on both side portions connecting the front end side and the rear end side.
- a projecting portion 31 is provided which protrudes inward from the inner surface of 20.
- the front end portion 31 c and the side portions 31 a and 31 b of FIG. 1A correspond to the overhanging portion 31.
- the entire sectional shape of the seat ring upstream portion 30 has a so-called oval shape in which the maximum diameter in the front-rear direction connecting the front end side and the rear end side is set larger than the maximum diameter in the width direction orthogonal thereto. It has become.
- each of the rear end portion 31 d and the front end portion 31 c is provided with an arc-shaped portion around the axial center of the seat ring 20.
- the side portions 31a and 31b are linear inner surfaces connecting the rear end 31d and the front end 31c.
- the side portions 31a and 31b may be in the shape of a gentle arc.
- the cross-sectional area of the flow passage of the seat ring upstream portion 30 is smaller than the cross-sectional area of the flow passage of the seat ring 20 by the projecting portion 31. Thereby, the flow velocity of the intake air into the combustion chamber 3 can be increased.
- the overhanging portion 31 is not provided at the rear end portion 31 d of the seat ring upstream portion 30 which is far from the axial center x of the cylinder bore.
- the overhanging portion 31 is provided at a location excluding the rear end 31 d.
- the flow rate of intake can be increased by narrowing the flow path at the other portion, that is, the side provided with the overhang portion 31 while securing the flow rate of intake at the side close to the inner circumferential surface of the cylinder 1 . It has been confirmed by experiments that the tumble ratio can be improved by securing the flow rate at the rear end 31 d and improving the flow velocity on the other side.
- the seat ring upstream portion 30, that is, the inner surface of the intake port 5 continuing on the upstream side of the inner surface of the seat ring 20 is the inner surface of the seat ring 20 among the inner surfaces of the It means the part located immediately above.
- the projecting portion 31 is provided to reduce the cross-sectional area of the flow passage in the intake port 5. For this reason, even if the shaft insertion portion 5 b supporting the shaft portion of the intake valve 6 has a portion that protrudes to the inner surface of the intake port 5, it does not correspond to the overhang portion 31.
- the seat ring upstream portion 30 is located immediately above the seat ring 20, and usually is also a portion where the cross-sectional area of the flow path of the intake port 5 gradually spreads toward the combustion chamber 3.
- FIG. 1B A modification is shown in FIG. 1B.
- the seat ring upstream portion 30 is the same as the above-described example in that the inner side matching portion 32 is provided at the rear end 31d and the projecting portion 31 is provided at the front end 31c and the side portions 31a and 31b.
- the point which equips each of the back end part 31d and the front end part 31c with the arc-shaped part of the circumference of the axial center of the seat ring 20 is also the same.
- the side portions 31a and 31b are linear inner surfaces connecting the rear end 31d and the front end 31c.
- the radius rd of the circular arc portion of the rear end portion 31 d is set larger than the radius rc of the circular arc portion of the front end portion 31 c.
- the maximum projecting lengths a and b of the projecting portions 31 of the side portions 31a and 31b from the inner surface of the seat ring 20 are the same as those of the front end portion 31c. It is desirable to set the projection length 31 to be larger than the maximum inward projection length c from the inner surface of the seat ring 20. The amount of reduction of the flow passage cross-sectional area for improving the flow velocity can be secured larger at the side portions 31a and 31b than at the front end 31c.
- FIG. 1 The effect of the tumble ratio improvement of this invention is shown in FIG.
- the flow rate and the tumble ratio are in a trade-off relationship, and there is a problem that when the flow rate is increased, the tumble ratio is decreased.
- the tumble ratio can be increased while the flow rate is increased, the trade-off relationship between the conventional flow rate and the tumble ratio can be improved.
- FIG. 3A Another embodiment is shown in FIG. 3A.
- the inner surface matching portion 32 is provided on the rear end portion 31d side in the plan view.
- an overhanging portion 31 is provided on the front end portion 31c and the side portions 31a and 31b on both sides.
- the overhanging portions 31 of the side portions 31a and 31b are not linear but are continuous with the arc-like overhanging portions 31 of the front end 31c only in the portion closer to the front end than the axial center o of the seat ring 20
- An arcuate overhang 31 is provided.
- the arc-shaped overhanging portion 31 of the side portions 31a and 31b and the arc-shaped overhanging portion 31 of the front end portion 31c are continuous circles having the same radius rc concentrically, these arcs having different radii. It may be Further, the area rc of the overhanging portion 31 may be increased by making the radius rc of the overhanging portion 31 smaller than the radius rd of the arc-shaped inner surface on the rear end portion 31d side.
- the inner surface matching portion 32 is provided at the rear end portion 31 d and the front end portion 31 c.
- the overhanging portions 31 are provided on the side portions 31a and 31b on both sides.
- the cross-sectional shape of the seat ring upstream portion 30 is a so-called oval in which the maximum diameter in the front-rear direction connecting the front end side and the rear end side is set larger than the maximum diameter in the width direction orthogonal thereto. It is a shape.
- the overhanging portion 31 is provided on both side portions 31a and 31b, but the overhanging portion 31 is provided only on one of the side portions and the other side portion is also used as the inner surface matching portion 32. Good.
- the intake port 5 including the seat ring upstream portion 30 is manufactured together with the cylinder head 4 by casting. Since the cross-sectional shape of the seat ring upstream portion 30 is not a perfect circle due to the existence of the projecting portion 31 and the inner surface matching portion 32, the mold of the casting at the time of casting is made to have such a shape or The member is cut by a three-dimensional machining center or the like.
- the seat ring 20 before processing is press-fit into a portion of the intake port 5 facing the combustion chamber 3 in advance, and is fixed to the intake port 5.
- the throat portion 22 which is gradually expanded toward the combustion chamber 3 is processed on the inner surface of the deep portion of the intake valve hole 5a.
- the throat cutter A is caused to approach a predetermined amount into the intake port 5 along an axial center coinciding with the center line of the intake valve 6.
- the inner surface of the seat ring 20 and the upstream portion 30 of the seat ring are shaved.
- a throat portion 22 formed of a conical surface, a spherical surface or the like is formed continuously from the inner surface of the seat ring 20 to the inner surface of the seat ring upstream portion 30. Therefore, at this time, a part of the overhanging portion 31 and the inner surface matching portion 32 is also cut.
- the valve abutment portion 21 is processed.
- the sheet cutter B is advanced into the seat ring 20 along the axial center coincident with the center line of the intake valve 6 by a predetermined amount.
- the inner surface of the seat ring 20 is cut by rotating the sheet cutter B around the axis.
- the valve contact portion 21 formed of a conical surface or a spherical surface is formed on the inner surface of the seat ring 20.
- the throat portion 22 and the valve contact portion 21 are smoothly continuous, so that a smooth inner surface is formed from the projecting portion 31 and the inner surface matching portion 32 to the inner surface of the seat ring 20. Be done.
- the throat portion 22 may be processed earlier than the valve contact portion 21, and the valve contact portion 21 may be processed earlier than the throat portion 22.
- the configuration of the present invention has been described by taking a diesel engine for a car as an example.
- the present invention can be applied to a four-cycle gasoline engine for a car, other various applications, and various engines.
- Reference Signs List 1 cylinder 2 piston 3 combustion chamber 4 cylinder head 5 intake port 6 intake valve 7 exhaust port 8 exhaust valve 9 fuel injection device 20 seat ring 21 valve contact portion 22 throat portion 30 seat ring upstream portion 31 overhang portion 32 inner surface matching portion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Abstract
Tumble flow in a fuel chamber is strengthened without complicating structure. An intake port structure for an engine has an intake port (5) of an engine which is continuous with the upstream side of the inner surface of an annular seat ring (20) in the intake port (5), the inner surface of the intake port is provided with an inner-surface-matching part (32) that, in plan view along the axial direction of the seat ring (20) from a combustion chamber (3) side, is flush with the inner surface of the seat ring (20) on the rear end side farther from the axial center of a cylinder bore, and any other portion is provided with a projecting part (31) that protrudes farther inward than the inner surface of the seat ring (20).
Description
この発明は、燃焼室内で良好な燃焼を可能とするエンジンの吸気ポート構造に関する。
The present invention relates to an intake port structure of an engine that enables good combustion in a combustion chamber.
従来から、エンジンの燃焼室内に、シリンダボアの軸心方向に沿って流れる旋回流であるタンブル流(縦渦)や、シリンダボアの内周面の周方向に沿って流れる旋回流であるスワール流(横渦)を発生させる種々の技術が知られている。
Conventionally, tumble flow (longitudinal vortex), which is a swirling flow flowing along the axial direction of the cylinder bore, or swirl flow, which is a swirling flow flowing along the circumferential direction of the inner peripheral surface of the cylinder bore, in the combustion chamber of the engine Various techniques for generating vortices) are known.
タンブル流を発生させる技術としては、例えば、吸気ポート内に設けた吸気流制御弁によって、その吸気ポート内の遮蔽度合いを変化させて、タンブル流を生成させるものがある(例えば、下記特許文献1参照)。また、吸気ポート内に設けたノズルから、バルブスロート部の壁面に沿って下向きに空気を噴出することにより、タンブル流を生成させるものもある(例えば、下記特許文献2参照)。
As a technique for generating tumble flow, for example, there is a technique for changing the degree of shielding in the intake port by an intake flow control valve provided in the intake port to generate tumble flow (for example, Patent Document 1 below) reference). In addition, there is also a nozzle that generates tumble flow by ejecting air downward along a wall surface of a valve throat from a nozzle provided in an intake port (for example, see Patent Document 2 below).
さらに、タンブル流を強化するために、吸気ポートの内径を縮小するとともに、その吸気ポートにおけるシリンダボアの軸心から遠い側の内面にエッジ部を設ける技術がある。エッジ部を設けることにより流路断面積が小さくなり、流速の増大を図ることで、タンブル流が強化できるとされている(例えば、下記特許文献3参照)。
Furthermore, in order to strengthen tumble flow, there is a technique of reducing the inner diameter of the intake port and providing an edge portion on the inner surface of the intake port on the side far from the axial center of the cylinder bore. By providing the edge portion, the flow passage cross-sectional area is reduced, and the tumble flow can be strengthened by increasing the flow velocity (see, for example, Patent Document 3 below).
上記のように、燃料室内に吸気のタンブル流を生成する場合、良好な燃焼を確保するために、そのタンブル流をさらに強化したいという要請がある。しかし、タンブル流を強化するために、種々の弁装置やノズルを追加することは、装置の複雑化やコストの増大につながるので限界がある。
As described above, in the case of generating an intake tumble flow in the fuel chamber, there is a demand to further strengthen the tumble flow in order to ensure good combustion. However, the addition of various valve devices and nozzles in order to enhance tumble flow is limited because it leads to complication of the device and increase in cost.
また、特許文献3の技術によれば、吸気ポート内のエッジ部周辺において吸気通路が屈曲するので、流量係数が低下し、逆にタンブル流が弱まってしまう事態も想定される。
Further, according to the technology of Patent Document 3, since the intake passage is bent around the edge portion in the intake port, the flow coefficient may be reduced, and conversely, the tumble flow may be weakened.
そこで、この発明の課題は、構造を複雑にすることなく、燃料室内のタンブル流を強化することである。
Therefore, an object of the present invention is to strengthen tumble flow in the fuel chamber without complicating the structure.
上記の課題を解決するために、この発明は、エンジンの燃焼室に接続される吸気ポートと、前記吸気ポートの前記燃焼室に臨む領域に設けられる環状のシートリングとを備え、前記シートリングの内面の上流側に連続する前記吸気ポートの内面は、前記燃焼室側からの前記シートリングの軸心方向に沿う平面視において、シリンダボアの軸心から遠い後端側に前記シートリングの内面と面一な内面一致部を備え、他のいずれかの部分に前記シートリングの内面よりも内側に突出する張り出し部を備え、前記張り出し部のある箇所の流路の断面積を前記シートリングの流路の断面積よりも小さくしたエンジンの吸気ポート構造を採用した。
In order to solve the above problems, the present invention comprises an intake port connected to a combustion chamber of an engine, and an annular seat ring provided in a region of the intake port facing the combustion chamber; The inner surface of the intake port continuing to the upstream side of the inner surface is the inner surface of the seat ring at the rear end side far from the axial center of the cylinder bore in a plan view along the axial direction of the seat ring from the combustion chamber side. A flared portion provided with a single inner surface matching portion and projecting to the inner side of the inner surface of the seat ring at any other portion, and the cross-sectional area of the flow path at the location where the flared portion is The engine intake port structure was made smaller than the cross-sectional area of the engine.
ここで、前記張り出し部は、前記シートリングの内面の上流側に連続する前記吸気ポートの内面のうち前記後端側とシリンダボアの軸心に近い前端側との間を結ぶ側方部のいずれかの側又は両側に設けられる構成を採用することができる。
Here, the projecting portion is any one of side portions connecting the rear end side and the front end side close to the axial center of the cylinder bore among the inner surfaces of the intake port continuing to the upstream side of the inner surface of the seat ring A configuration provided on the side or both sides of the
さらに、前記内面一致部は、前記シートリングの内面の上流側に連続する吸気ポートの内面のうち前記前端側に設けられる構成を採用することができる。
Further, the inner surface matching portion may adopt a configuration provided on the front end side of the inner surface of the intake port continuing on the upstream side of the inner surface of the seat ring.
あるいは、前記前端側に張り出し部を備え、前記側方部の張り出し部における前記シートリングの内面からの内側への最大突出長さは、前記前端側の張り出し部における前記シートリングの内面からの内側への最大突出長さよりも大きく設定した構成を採用することができる。
Alternatively, a protrusion is provided on the front end side, and a maximum protrusion length of the protrusion of the side portion inward from the inner surface of the seat ring is the inner length from the inner surface of the seat ring in the protrusion on the front end side. A configuration set larger than the maximum protrusion length can be adopted.
これらの各構成において、前記シートリングの内面の上流側に連続する前記吸気ポートの内面は、前記前端側と前記後端側とを結ぶ前後方向への最大径が、それに直交する幅方向への最大径よりも大きく設定される構成を採用することができる。
In each of these configurations, the inner surface of the intake port continuing on the upstream side of the inner surface of the seat ring has a maximum diameter in the front-rear direction connecting the front end side and the rear end side in the width direction orthogonal to that A configuration that is set larger than the maximum diameter can be adopted.
これらの各構成において、前記シートリングの内面の上流側に連続する前記吸気ポートの内面は、前記後端側と前記前端側のそれぞれに前記シートリングの軸心回りの円弧状部を備え、前記後端側の円弧状部の半径を前記前端側の円弧状部の半径よりも大きく設定した構成を採用することができる。
In each of these configurations, the inner surface of the intake port continuing on the upstream side of the inner surface of the seat ring has an arc-shaped portion around the axial center of the seat ring on the rear end side and the front end side, It is possible to adopt a configuration in which the radius of the arc-shaped portion on the rear end side is set larger than the radius of the arc-shaped portion on the front end side.
この発明は、シートリングの内面の上流側に連続する吸気ポートの内面に、燃焼室側からのシートリングの軸心方向に沿う平面視において、シリンダボアの軸心から遠い後端側にシートリングの内面と面一な内面一致部を備え、他のいずれかの部分にシートリングの内面よりも内側に突出する張り出し部を備えたので、吸気の流量を維持又は増加させつつ、タンブル比、すなわち、ピストンが一往復する間のタンブル流の回転数を向上させることができる。このため、構造を複雑にすることなく、燃料室内のタンブル流を強化することができる。
The present invention is characterized in that the inner surface of the intake port continued to the upstream side of the inner surface of the seat ring, and the seat ring on the rear end side far from the axial center of the cylinder bore in plan view along the axial direction of the seat ring from the combustion chamber side. Since the inner surface matching portion flush with the inner surface and the projecting portion protruding inward of the inner surface of the seat ring is provided at any other portion, the tumble ratio, that is, The rotational speed of the tumble flow can be improved while the piston reciprocates one time. As a result, the tumble flow in the fuel chamber can be enhanced without complicating the structure.
この発明の実施形態を、図面に基づいて説明する。図1Aは、この実施形態のエンジンの吸気ポート付近を示す要部拡大図である。図1Bはその変形例である。
An embodiment of the present invention will be described based on the drawings. FIG. 1A is a main part enlarged view showing the vicinity of the intake port of the engine of this embodiment. FIG. 1B is a modification thereof.
エンジンの燃焼室3の配置と吸気ポート5の形状を図5A~図5Cに示す。この実施形態のエンジンは自動車用のディーゼルエンジンである。エンジンのシリンダ1内にはピストン2が収容されている。シリンダ1の内周面、及び、ピストン2の上面等により燃焼室3が形成されている。各シリンダの燃焼室3内に吸気を送り込む吸気通路5、燃焼室3から引き出された排気ポート7、燃焼室3内へ燃料を噴射する燃料噴射装置9等を備えている。
The arrangement of the combustion chamber 3 of the engine and the shape of the intake port 5 are shown in FIGS. 5A to 5C. The engine of this embodiment is a diesel engine for automobiles. A piston 2 is accommodated in a cylinder 1 of the engine. A combustion chamber 3 is formed by the inner peripheral surface of the cylinder 1, the upper surface of the piston 2, and the like. An intake passage 5 for feeding intake air into the combustion chamber 3 of each cylinder, an exhaust port 7 drawn from the combustion chamber 3, and a fuel injection device 9 for injecting fuel into the combustion chamber 3 are provided.
これらの図面では、この発明に直接関係する部材、手段を中心に示し、他の部材等については図示省略している。また、図面では、一つのシリンダ1のみを示しているが、エンジンは単気筒であってもよいし、複数のシリンダを備えた多気筒であってもよい。
In these drawings, members and means directly related to the present invention are mainly shown, and other members and the like are not shown. Further, although only one cylinder 1 is shown in the drawings, the engine may be a single cylinder or may be a multi-cylinder having a plurality of cylinders.
この実施形態では、図5Cに示すように、吸気ポート5は、燃焼室3の手前で2つの通路に分岐している。また、図示していないが、排気ポート7も、燃焼室3の手前で2つの通路に分岐している。
In this embodiment, as shown in FIG. 5C, the intake port 5 branches into two passages in front of the combustion chamber 3. Although not shown, the exhaust port 7 also branches into two passages in front of the combustion chamber 3.
各吸気ポート5の燃焼室3への開口部である吸気弁孔5aは、吸気バルブ6によって開閉される。また、各排気ポート7の燃焼室3への開口部である排気弁孔7aは、排気バルブ8によって開閉される。このとき、吸気バルブ6及び排気バルブ8は、それぞれ吸気ポート5、排気ポート7の燃焼室3に臨む領域に設けられる環状のシートリング20に接離する。
An intake valve hole 5 a, which is an opening of each intake port 5 to the combustion chamber 3, is opened and closed by the intake valve 6. Further, exhaust valve holes 7 a, which are openings of the exhaust ports 7 to the combustion chamber 3, are opened and closed by the exhaust valve 8. At this time, the intake valve 6 and the exhaust valve 8 contact with and separate from an annular seat ring 20 provided in a region facing the combustion chamber 3 of the intake port 5 and the exhaust port 7, respectively.
これらの吸気バルブ6及び排気バルブ8は、シリンダヘッド4側に設けたカムシャフトの回転によって、所定のタイミングで吸気弁孔5a、排気弁孔7aを開閉する。吸気バルブ6及び排気バルブ8の軸部は、吸気ポート5、排気ポート7の内面に開口する軸挿通部5bから、シリンダヘッド4内のカムシャフト側へ引き出されている。吸気ポート5の軸挿通部5bは、図5Bに示すように、吸気ポート5における吸気弁孔5aの上流側に位置する屈曲部5c、又は、その屈曲部5cのすぐ上流側に開口している。
The intake valve 6 and the exhaust valve 8 open and close the intake valve hole 5a and the exhaust valve hole 7a at a predetermined timing by the rotation of a camshaft provided on the cylinder head 4 side. The shaft portions of the intake valve 6 and the exhaust valve 8 are drawn out to the camshaft side in the cylinder head 4 from a shaft insertion portion 5 b opened to the inner surface of the intake port 5 and the exhaust port 7. As shown in FIG. 5B, the shaft insertion portion 5b of the intake port 5 opens at a bent portion 5c located on the upstream side of the intake valve hole 5a in the intake port 5, or immediately upstream of the bent portion 5c. .
図1Aに示すように、シートリング20の内面の上流側に連続する吸気ポート5の内面のうち、吸気バルブ6の軸部を支持する軸挿通部5bより下流側であってシートリング20の直上に位置する部分(以下、シートリング上流部30と称する。)は、燃焼室3側からの下面視、すなわち、燃焼室3側からのシートリング20の軸心方向に沿う平面視において、シリンダボアの軸心xから遠い後端側に、シートリング20の内面と面一な内面一致部32を備える。この実施形態では、図1Aの後端部31dが内面一致部32に相当する。
As shown in FIG. 1A, of the inner surface of the intake port 5 continuous to the upstream side of the inner surface of the seat ring 20, the downstream side of the shaft insertion portion 5b supporting the shaft portion of the intake valve 6 and immediately above the seat ring 20 The portion (hereinafter referred to as the seat ring upstream portion 30) located on the side of the cylinder bore has a cylinder bore in a bottom view from the combustion chamber 3 side, that is, a plan view along the axial center direction of the seat ring 20 from the combustion chamber 3 side. At the rear end side far from the axial center x, an inner surface matching portion 32 flush with the inner surface of the seat ring 20 is provided. In this embodiment, the rear end portion 31 d of FIG. 1A corresponds to the inner surface matching portion 32.
また、シートリング上流部30のうち他の部分、すなわち、前記平面視において、シリンダボアの軸心xに近い前端側と、その前端側と後端側とを結ぶ両側の側方部に、シートリング20の内面よりも内側に突出する張り出し部31を備える。この実施形態では、図1Aの前端部31cと側方部31a、31bが、張り出し部31に相当する。そして、シートリング上流部30全体の断面形状は、前端側と後端側とを結ぶ前後方向への最大径が、それに直交する幅方向への最大径よりも大きく設定された、いわゆるオーバル形状となっている。
In addition, the seat ring is provided on the other portion of the seat ring upstream portion 30, that is, on the front end side close to the axial center x of the cylinder bore in the plan view, and on both side portions connecting the front end side and the rear end side. A projecting portion 31 is provided which protrudes inward from the inner surface of 20. In this embodiment, the front end portion 31 c and the side portions 31 a and 31 b of FIG. 1A correspond to the overhanging portion 31. The entire sectional shape of the seat ring upstream portion 30 has a so-called oval shape in which the maximum diameter in the front-rear direction connecting the front end side and the rear end side is set larger than the maximum diameter in the width direction orthogonal thereto. It has become.
また、後端部31dと前端部31cのそれぞれに、シートリング20の軸心回りの円弧状部を備える。側方部31a、31bは、後端部31dと前端部31cとを結ぶ直線状の内面である。側方部31a、31bを緩やかな円弧状としてもよい。
In addition, each of the rear end portion 31 d and the front end portion 31 c is provided with an arc-shaped portion around the axial center of the seat ring 20. The side portions 31a and 31b are linear inner surfaces connecting the rear end 31d and the front end 31c. The side portions 31a and 31b may be in the shape of a gentle arc.
この張り出し部31によって、シートリング上流部30の流路の断面積は、シートリング20の流路の断面積よりも小さくなる。これにより、吸気の燃焼室3内への流速を高めることができる。
The cross-sectional area of the flow passage of the seat ring upstream portion 30 is smaller than the cross-sectional area of the flow passage of the seat ring 20 by the projecting portion 31. Thereby, the flow velocity of the intake air into the combustion chamber 3 can be increased.
ここで、シートリング上流部30のうち、シリンダボアの軸心xから遠い後端部31dには張り出し部31を設けていない。張り出し部31は、その後端部31dを除く箇所に設けられる。これにより、シリンダ1の内周面に近い側での吸気の流量を確保しつつ、他の部分、すなわち、張り出し部31を設けた側において流路を狭くして吸気の流速を高めることができる。このような、後端部31dでの流量確保と、それ以外の側での流速向上により、タンブル比を向上できることが実験により確認できた。
Here, the overhanging portion 31 is not provided at the rear end portion 31 d of the seat ring upstream portion 30 which is far from the axial center x of the cylinder bore. The overhanging portion 31 is provided at a location excluding the rear end 31 d. As a result, the flow rate of intake can be increased by narrowing the flow path at the other portion, that is, the side provided with the overhang portion 31 while securing the flow rate of intake at the side close to the inner circumferential surface of the cylinder 1 . It has been confirmed by experiments that the tumble ratio can be improved by securing the flow rate at the rear end 31 d and improving the flow velocity on the other side.
ここで、シートリング上流部30、すなわち、シートリング20の内面の上流側に連続する吸気ポート5の内面とは、鋳物等の金属で構成される吸気ポート5の内面のうち、シートリング20の直上に位置する部分を意味する。また、張り出し部31とは、吸気ポート5内の流路の断面積を縮小するために設けられるものである。
このため、吸気バルブ6の軸部を支持する軸挿通部5bは、吸気ポート5の内面に突出する部分を有していても、それは張り出し部31に該当しない。また、屈曲部5cの内面が、前記平面視において、シートリング20の内面から内側に見えていても、その屈曲部5cの内面は流路の断面積を縮小するためのものではないので、張り出し部31には該当しない。シートリング上流部30は、シートリング20の直上にあり、通常は、吸気ポート5の流路の断面積が、燃焼室3に向かって徐々に拡がる部分でもある。 Here, the seat ringupstream portion 30, that is, the inner surface of the intake port 5 continuing on the upstream side of the inner surface of the seat ring 20 is the inner surface of the seat ring 20 among the inner surfaces of the It means the part located immediately above. Further, the projecting portion 31 is provided to reduce the cross-sectional area of the flow passage in the intake port 5.
For this reason, even if theshaft insertion portion 5 b supporting the shaft portion of the intake valve 6 has a portion that protrudes to the inner surface of the intake port 5, it does not correspond to the overhang portion 31. Further, even if the inner surface of the bent portion 5c is seen from the inner surface of the seat ring 20 in the plan view, the inner surface of the bent portion 5c is not for reducing the cross-sectional area of the flow passage, It does not correspond to Part 31. The seat ring upstream portion 30 is located immediately above the seat ring 20, and usually is also a portion where the cross-sectional area of the flow path of the intake port 5 gradually spreads toward the combustion chamber 3.
このため、吸気バルブ6の軸部を支持する軸挿通部5bは、吸気ポート5の内面に突出する部分を有していても、それは張り出し部31に該当しない。また、屈曲部5cの内面が、前記平面視において、シートリング20の内面から内側に見えていても、その屈曲部5cの内面は流路の断面積を縮小するためのものではないので、張り出し部31には該当しない。シートリング上流部30は、シートリング20の直上にあり、通常は、吸気ポート5の流路の断面積が、燃焼室3に向かって徐々に拡がる部分でもある。 Here, the seat ring
For this reason, even if the
図1Bに変形例を示す。図1Bにおいて、シートリング上流部30のうち、後端部31dに内面一致部32を、前端部31cと側方部31a、31bに張り出し部31を備える点は、前述の例と同様である。
A modification is shown in FIG. 1B. In FIG. 1B, the seat ring upstream portion 30 is the same as the above-described example in that the inner side matching portion 32 is provided at the rear end 31d and the projecting portion 31 is provided at the front end 31c and the side portions 31a and 31b.
また、後端部31dと前端部31cのそれぞれに、シートリング20の軸心回りの円弧状部を備える点も同様である。側方部31a、31bは、後端部31dと前端部31cとを結ぶ直線状の内面である点も同様である。
Moreover, the point which equips each of the back end part 31d and the front end part 31c with the arc-shaped part of the circumference of the axial center of the seat ring 20 is also the same. The same applies in that the side portions 31a and 31b are linear inner surfaces connecting the rear end 31d and the front end 31c.
この例では、後端部31dの円弧状部の半径rdを、前端部31cの円弧状部の半径rcよりも大きく設定している。このように、後端部31d側の半径を相対的に大きくすることが後端側での流量確保に効果的であり、また、前端部31c側の半径を相対的に小さくすることが前端側での流速確保に効果的である。
In this example, the radius rd of the circular arc portion of the rear end portion 31 d is set larger than the radius rc of the circular arc portion of the front end portion 31 c. Thus, relatively increasing the radius on the rear end portion 31d side is effective for securing the flow rate on the rear end side, and making the radius on the front end portion 31c side relatively small on the front end side It is effective in securing the flow velocity in
このように、前端部31cに張り出し部31を備える場合において、側方部31a、31bの張り出し部31におけるシートリング20の内面からの内側への最大突出長さa、bは、前端部31cの張り出し部31におけるシートリング20の内面からの内側への最大突出長さcよりも大きく設定することが望ましい。流速向上のための流路断面積の縮小量は、前端部31cよりも側方部31a、31bで大きく確保することが可能である。
Thus, in the case where the projecting portion 31 is provided at the front end portion 31c, the maximum projecting lengths a and b of the projecting portions 31 of the side portions 31a and 31b from the inner surface of the seat ring 20 are the same as those of the front end portion 31c. It is desirable to set the projection length 31 to be larger than the maximum inward projection length c from the inner surface of the seat ring 20. The amount of reduction of the flow passage cross-sectional area for improving the flow velocity can be secured larger at the side portions 31a and 31b than at the front end 31c.
図2に、この発明のタンブル比向上の効果を示す。従来のエンジンでは、流量とタンブル比とはトレードオフの関係にあり、流量を増大させるとタンブル比が減少してしまうという問題があった。しかし、この発明によれば、流量を増加させながらタンブル比を増加させることができるので、従来の流量とタンブル比とのトレードオフの関係を改善できる。
The effect of the tumble ratio improvement of this invention is shown in FIG. In the conventional engine, the flow rate and the tumble ratio are in a trade-off relationship, and there is a problem that when the flow rate is increased, the tumble ratio is decreased. However, according to the present invention, since the tumble ratio can be increased while the flow rate is increased, the trade-off relationship between the conventional flow rate and the tumble ratio can be improved.
他の実施形態を、図3Aに示す。この態様では、前記平面視において、後端部31d側に内面一致部32を備える。また、前端部31cと両側の側方部31a、31bに張り出し部31を備える。ただし、側方部31a、31bの張り出し部31は直線状のものではなく、シートリング20の軸心oよりも前端寄りの部分にのみ、前端部31cの円弧状の張り出し部31に連続する同じく円弧状の張り出し部31を設けている。側方部31a、31bの円弧状の張り出し部31と、前端部31cの円弧状の張り出し部31とは、同心で同一の半径rcからなる連続する円としているが、これらを互いに半径の異なる円弧としてもよい。また、張り出し部31の半径rcを、後端部31d側の円弧状の内面の半径rdよりも小さくして、張り出し部31の面積を増大させてもよい。
Another embodiment is shown in FIG. 3A. In this aspect, the inner surface matching portion 32 is provided on the rear end portion 31d side in the plan view. In addition, an overhanging portion 31 is provided on the front end portion 31c and the side portions 31a and 31b on both sides. However, the overhanging portions 31 of the side portions 31a and 31b are not linear but are continuous with the arc-like overhanging portions 31 of the front end 31c only in the portion closer to the front end than the axial center o of the seat ring 20 An arcuate overhang 31 is provided. The arc-shaped overhanging portion 31 of the side portions 31a and 31b and the arc-shaped overhanging portion 31 of the front end portion 31c are continuous circles having the same radius rc concentrically, these arcs having different radii. It may be Further, the area rc of the overhanging portion 31 may be increased by making the radius rc of the overhanging portion 31 smaller than the radius rd of the arc-shaped inner surface on the rear end portion 31d side.
さらに他の実施形態を、図3Bに示す。この態様では、内面一致部32は、後端部31dと前端部31cに設けられる。張り出し部31は、両側の側方部31a、31bに設けられる。この実施形態も、シートリング上流部30の断面形状は、前端側と後端側とを結ぶ前後方向への最大径が、それに直交する幅方向への最大径よりも大きく設定された、いわゆるオーバル形状である。
Yet another embodiment is shown in FIG. 3B. In this aspect, the inner surface matching portion 32 is provided at the rear end portion 31 d and the front end portion 31 c. The overhanging portions 31 are provided on the side portions 31a and 31b on both sides. Also in this embodiment, the cross-sectional shape of the seat ring upstream portion 30 is a so-called oval in which the maximum diameter in the front-rear direction connecting the front end side and the rear end side is set larger than the maximum diameter in the width direction orthogonal thereto. It is a shape.
これらの各態様では、両方の側方部31a、31bに張り出し部31を設けたが、いずれか一方の側方部にのみ張り出し部31を設け、他方の側方部は内面一致部32としてもよい。
In each of these embodiments, the overhanging portion 31 is provided on both side portions 31a and 31b, but the overhanging portion 31 is provided only on one of the side portions and the other side portion is also used as the inner surface matching portion 32. Good.
つぎに、これらの各態様の吸気ポート構造とするための製造方法(加工方法)について説明する。
Below, the manufacturing method (processing method) for setting it as the intake port structure of these each aspect is demonstrated.
シートリング上流部30を含む吸気ポート5は、鋳造によりシリンダヘッド4とともに製作される。シートリング上流部30の断面形状は、張り出し部31と内面一致部32とが介在することにより真円ではないので、鋳造時の鋳物の型をこのような形状とするか、あるいは、鋳造後の部材を三次元マシニングセンタ等で切削加工する。
The intake port 5 including the seat ring upstream portion 30 is manufactured together with the cylinder head 4 by casting. Since the cross-sectional shape of the seat ring upstream portion 30 is not a perfect circle due to the existence of the projecting portion 31 and the inner surface matching portion 32, the mold of the casting at the time of casting is made to have such a shape or The member is cut by a three-dimensional machining center or the like.
つぎに、吸気弁孔5aのうち、吸気バルブ6が当接する部分の加工を行う。加工前のシートリング20は、吸気ポート5の燃焼室3へ臨む部分に予め圧入されて、その吸気ポート5に固定されているものとする。
Next, the portion of the intake valve hole 5a where the intake valve 6 abuts is processed. The seat ring 20 before processing is press-fit into a portion of the intake port 5 facing the combustion chamber 3 in advance, and is fixed to the intake port 5.
まず、第1の工程では、吸気弁孔5aの奥部内面に、燃焼室3側に向かって徐々に拡がるスロート部22を加工する。図4Aに示すように、スロートカッタAを吸気バルブ6の中心線に一致する軸心に沿って吸気ポート5内へ所定量進入させる。スロートカッタAを軸心周りに回転させることにより、シートリング20の内面及びシートリング上流部30の削り加工を行う。スロートカッタAの加工により、シートリング20の内面からシートリング上流部30の内面に亘って連続する、円錐面又は球面等からなるスロート部22を形成する。したがって、このとき、張り出し部31や内面一致部32の一部も削り加工される。
First, in the first step, the throat portion 22 which is gradually expanded toward the combustion chamber 3 is processed on the inner surface of the deep portion of the intake valve hole 5a. As shown in FIG. 4A, the throat cutter A is caused to approach a predetermined amount into the intake port 5 along an axial center coinciding with the center line of the intake valve 6. By rotating the throat cutter A about the axis, the inner surface of the seat ring 20 and the upstream portion 30 of the seat ring are shaved. By processing the throat cutter A, a throat portion 22 formed of a conical surface, a spherical surface or the like is formed continuously from the inner surface of the seat ring 20 to the inner surface of the seat ring upstream portion 30. Therefore, at this time, a part of the overhanging portion 31 and the inner surface matching portion 32 is also cut.
つぎに、第2の工程では、スロートカッタAを取り外した後、吸気バルブ6が当接する部分、すなわち、バルブ当接部21を加工する。図4Bに示すように、シートカッタBを吸気バルブ6の中心線に一致する軸心に沿ってシートリング20内へ所定量進入させる。シートカッタBを軸心周りに回転させることにより、シートリング20の内面の削り加工を行う。シートカッタBの加工により、シートリング20の内面に、円錐面又は球面等からなるバルブ当接部21を形成する。
Next, in the second step, after the throat cutter A is removed, the portion on which the intake valve 6 abuts, that is, the valve abutment portion 21 is processed. As shown in FIG. 4B, the sheet cutter B is advanced into the seat ring 20 along the axial center coincident with the center line of the intake valve 6 by a predetermined amount. The inner surface of the seat ring 20 is cut by rotating the sheet cutter B around the axis. By processing the sheet cutter B, the valve contact portion 21 formed of a conical surface or a spherical surface is formed on the inner surface of the seat ring 20.
図4Cに示すように、スロート部22とバルブ当接部21とは滑らかに連続しており、したがって、張り出し部31や内面一致部32からシートリング20の内面に亘って、滑らかな内面が形成される。
As shown in FIG. 4C, the throat portion 22 and the valve contact portion 21 are smoothly continuous, so that a smooth inner surface is formed from the projecting portion 31 and the inner surface matching portion 32 to the inner surface of the seat ring 20. Be done.
なお、スロート部22がバルブ当接部21よりも先に加工される場合もあるし、バルブ当接部21がスロート部22よりも先に加工される場合もある。
The throat portion 22 may be processed earlier than the valve contact portion 21, and the valve contact portion 21 may be processed earlier than the throat portion 22.
これらの実施形態では、自動車用のディーゼルエンジンを例に、この発明の構成を説明したが、自動車用の4サイクルガソリンエンジン、その他各種用途、各種使用のエンジンにおいても、この発明を適用できる。
In these embodiments, the configuration of the present invention has been described by taking a diesel engine for a car as an example. However, the present invention can be applied to a four-cycle gasoline engine for a car, other various applications, and various engines.
1 シリンダ
2 ピストン
3 燃焼室
4 シリンダヘッド
5 吸気ポート
6 吸気バルブ
7 排気ポート
8 排気バルブ
9 燃料噴射装置
20 シートリング
21 バルブ当接部
22 スロート部
30 シートリング上流部
31 張り出し部
32 内面一致部 Reference Signs List 1cylinder 2 piston 3 combustion chamber 4 cylinder head 5 intake port 6 intake valve 7 exhaust port 8 exhaust valve 9 fuel injection device 20 seat ring 21 valve contact portion 22 throat portion 30 seat ring upstream portion 31 overhang portion 32 inner surface matching portion
2 ピストン
3 燃焼室
4 シリンダヘッド
5 吸気ポート
6 吸気バルブ
7 排気ポート
8 排気バルブ
9 燃料噴射装置
20 シートリング
21 バルブ当接部
22 スロート部
30 シートリング上流部
31 張り出し部
32 内面一致部 Reference Signs List 1
Claims (6)
- エンジンの燃焼室に接続される吸気ポートと、
前記吸気ポートの前記燃焼室に臨む領域に設けられる環状のシートリングとを備え、
前記シートリングの内面の上流側に連続する前記吸気ポートの内面は、前記燃焼室側からの前記シートリングの軸心方向に沿う平面視において、シリンダボアの軸心から遠い後端側に前記シートリングの内面と面一な内面一致部を備え、他のいずれかの部分に前記シートリングの内面よりも内側に突出する張り出し部を備え、前記張り出し部のある箇所の流路の断面積を前記シートリングの流路の断面積よりも小さくした
エンジンの吸気ポート構造。 An intake port connected to the combustion chamber of the engine;
And an annular seat ring provided in a region of the intake port facing the combustion chamber,
The inner surface of the intake port continued to the upstream side of the inner surface of the seat ring is the seat ring on the rear end side far from the axial center of the cylinder bore in a plan view along the axial direction of the seat ring from the combustion chamber side An overhanging portion which is flush with the inner surface of the seat ring and has an overhanging portion projecting inward of the inner surface of the seat ring in any other portion, and the cross-sectional area of the flow passage at the location where the overhanging portion is Engine intake port structure smaller than the cross-sectional area of the ring flow path. - 前記張り出し部は、前記シートリングの内面の上流側に連続する前記吸気ポートの内面のうち前記後端側とシリンダボアの軸心に近い前端側との間を結ぶ側方部のいずれか一方の側又は両側に設けられる
請求項1に記載のエンジンの吸気ポート構造。 The projecting portion is any one of side surfaces connecting the rear end side and the front end side close to the axial center of the cylinder bore among the inner surfaces of the intake port continuing to the upstream side of the inner surface of the seat ring The engine intake port structure according to claim 1, provided on both sides. - 前記内面一致部は、前記シートリングの内面の上流側に連続する吸気ポートの内面のうち前記前端側に設けられる
請求項2に記載のエンジンの吸気ポート構造。 The engine intake port structure according to claim 2, wherein the inner surface matching portion is provided on the front end side of an inner surface of an intake port continuing to an upstream side of an inner surface of the seat ring. - 前記前端側に張り出し部を備え、
前記側方部の張り出し部における前記シートリングの内面からの内側への最大突出長さは、前記前端側の張り出し部における前記シートリングの内面からの内側への最大突出長さよりも大きく設定される
請求項2に記載のエンジンの吸気ポート構造。 An overhanging portion is provided on the front end side,
The maximum inward projecting length from the inner surface of the seat ring in the projecting portion of the side portion is set larger than the inward projecting length from the inner surface of the seat ring in the projecting portion on the front end side The engine intake port structure according to claim 2. - 前記シートリングの内面の上流側に連続する前記吸気ポートの内面は、前記前端側と前記後端側とを結ぶ前後方向への最大径が、それに直交する幅方向への最大径よりも大きく設定される
請求項1から4の何れか1項に記載のエンジンの吸気ポート構造。 The maximum diameter in the front-rear direction connecting the front end side and the rear end side of the inner surface of the intake port continuing on the upstream side of the inner surface of the seat ring is set larger than the maximum diameter in the width direction orthogonal thereto The engine intake port structure according to any one of claims 1 to 4. - 前記シートリングの内面の上流側に連続する前記吸気ポートの内面は、前記後端側と前記前端側のそれぞれに前記シートリングの軸心回りの円弧状部を備え、
前記後端側の円弧状部の半径を前記前端側の円弧状部の半径よりも大きく設定した
請求項1から5の何れか1項に記載のエンジンの吸気ポート構造。 The inner surface of the intake port continuing on the upstream side of the inner surface of the seat ring has an arc-shaped portion around the axial center of the seat ring on each of the rear end side and the front end side,
The engine intake port structure according to any one of claims 1 to 5, wherein the radius of the rear end side arcuate portion is set larger than the radius of the front end side arcuate portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680007804.1A CN107208569B (en) | 2015-01-29 | 2016-01-12 | The inlet structure of engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015015376A JP6561480B2 (en) | 2015-01-29 | 2015-01-29 | Engine intake port structure |
JP2015-015376 | 2015-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016121482A1 true WO2016121482A1 (en) | 2016-08-04 |
Family
ID=56543102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/050651 WO2016121482A1 (en) | 2015-01-29 | 2016-01-12 | Intake port structure for engine |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6561480B2 (en) |
CN (1) | CN107208569B (en) |
WO (1) | WO2016121482A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7040977B2 (en) * | 2018-03-29 | 2022-03-23 | 本田技研工業株式会社 | Intake port structure |
US11530667B2 (en) * | 2019-01-07 | 2022-12-20 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Cylinder head |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55102028U (en) * | 1979-01-09 | 1980-07-16 | ||
EP0281015A2 (en) * | 1987-02-26 | 1988-09-07 | Motoren-Werke Mannheim Aktiengesellschaft | Sickle-shaped swirl-inducing device for the inlet conduit of an internal-combustion engine |
JPH02125916A (en) * | 1988-11-07 | 1990-05-14 | Toyota Motor Corp | Two cycle internal combustion engine |
JPH0352338U (en) * | 1989-09-29 | 1991-05-21 | ||
JPH08100702A (en) * | 1994-09-30 | 1996-04-16 | Yanmar Diesel Engine Co Ltd | Diesel engine |
JPH0979040A (en) * | 1995-09-11 | 1997-03-25 | Mitsubishi Motors Corp | Cylinder injection type internal combustion engine |
JPH1150852A (en) * | 1997-08-04 | 1999-02-23 | Honda Motor Co Ltd | Internal combustion engine intake device |
JP2007032560A (en) * | 2005-06-20 | 2007-02-08 | Toyota Motor Corp | Gas stream controller |
JP2007046457A (en) * | 2003-09-22 | 2007-02-22 | Toyota Motor Corp | Intake port of internal combustion engine and method of manufacturing the same |
JP2013122188A (en) * | 2011-12-09 | 2013-06-20 | Mitsubishi Motors Corp | Internal combustion engine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4022006B2 (en) * | 1998-06-09 | 2007-12-12 | ヤンマー株式会社 | Intake port shape of internal combustion engine |
JP3676967B2 (en) * | 2000-08-14 | 2005-07-27 | 新潟原動機株式会社 | cylinder head |
AT5484U1 (en) * | 2001-08-02 | 2002-07-25 | Avl List Gmbh | CYLINDER HEAD FOR AN INTERNAL COMBUSTION ENGINE |
JP2013072390A (en) * | 2011-09-28 | 2013-04-22 | Nippon Soken Inc | Internal combustion engine |
-
2015
- 2015-01-29 JP JP2015015376A patent/JP6561480B2/en active Active
-
2016
- 2016-01-12 WO PCT/JP2016/050651 patent/WO2016121482A1/en active Application Filing
- 2016-01-12 CN CN201680007804.1A patent/CN107208569B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55102028U (en) * | 1979-01-09 | 1980-07-16 | ||
EP0281015A2 (en) * | 1987-02-26 | 1988-09-07 | Motoren-Werke Mannheim Aktiengesellschaft | Sickle-shaped swirl-inducing device for the inlet conduit of an internal-combustion engine |
JPH02125916A (en) * | 1988-11-07 | 1990-05-14 | Toyota Motor Corp | Two cycle internal combustion engine |
JPH0352338U (en) * | 1989-09-29 | 1991-05-21 | ||
JPH08100702A (en) * | 1994-09-30 | 1996-04-16 | Yanmar Diesel Engine Co Ltd | Diesel engine |
JPH0979040A (en) * | 1995-09-11 | 1997-03-25 | Mitsubishi Motors Corp | Cylinder injection type internal combustion engine |
JPH1150852A (en) * | 1997-08-04 | 1999-02-23 | Honda Motor Co Ltd | Internal combustion engine intake device |
JP2007046457A (en) * | 2003-09-22 | 2007-02-22 | Toyota Motor Corp | Intake port of internal combustion engine and method of manufacturing the same |
JP2007032560A (en) * | 2005-06-20 | 2007-02-08 | Toyota Motor Corp | Gas stream controller |
JP2013122188A (en) * | 2011-12-09 | 2013-06-20 | Mitsubishi Motors Corp | Internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
CN107208569B (en) | 2019-10-01 |
CN107208569A (en) | 2017-09-26 |
JP6561480B2 (en) | 2019-08-21 |
JP2016138534A (en) | 2016-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1464805B1 (en) | Intake apparatus for internal combustion engine | |
US6915774B2 (en) | Intake apparatus for internal combustion engine | |
JP2007046457A (en) | Intake port of internal combustion engine and method of manufacturing the same | |
EP3517764B1 (en) | Cylinder head of engine, internal combustion engine and method of producing cylinder head | |
JP2016041915A (en) | Internal combustion engine | |
WO2016121482A1 (en) | Intake port structure for engine | |
JP4928135B2 (en) | Intake device and intake manifold of internal combustion engine | |
JP6524726B2 (en) | Engine intake port structure | |
US11225930B2 (en) | Engine | |
US9790845B2 (en) | Internal combustion engine | |
JP2004316609A (en) | Internal combustion engine with intake port for tumble flow formation | |
JP6600947B2 (en) | Engine intake port structure | |
JP6455184B2 (en) | Engine intake port structure | |
JP6524727B2 (en) | Engine intake port structure | |
JP6524728B2 (en) | Engine intake port structure | |
JP4320954B2 (en) | Engine intake structure | |
JP2005330840A (en) | Internal combustion engine and valve seat provided at intake port of internal combustion engine | |
WO2015194383A1 (en) | Cylinder head, cylinder head assembly, engine, core that molds intake port for cylinder head, and die for molding said core | |
JP3194482B2 (en) | Engine intake passage structure | |
JP2003056350A (en) | Cylinder injection type internal combustion engine | |
JP2006329171A (en) | Intake device for engine | |
JP2019044632A (en) | Cylinder head of internal combustion engine | |
JP2010077839A (en) | Intake port structure for engine | |
JP2003262156A (en) | Intake device of engine | |
JP2017180421A (en) | Cylinder head of internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16743086 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16743086 Country of ref document: EP Kind code of ref document: A1 |