WO2016116647A1 - Sistema de acondicionamiento de construcciones destinadas a alojar instalaciones y método para dicho sistema - Google Patents
Sistema de acondicionamiento de construcciones destinadas a alojar instalaciones y método para dicho sistema Download PDFInfo
- Publication number
- WO2016116647A1 WO2016116647A1 PCT/ES2016/070022 ES2016070022W WO2016116647A1 WO 2016116647 A1 WO2016116647 A1 WO 2016116647A1 ES 2016070022 W ES2016070022 W ES 2016070022W WO 2016116647 A1 WO2016116647 A1 WO 2016116647A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conditioning
- intended
- house
- constructions
- installations
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/10—Combinations of wind motors with apparatus storing energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D15/00—Transmission of mechanical power
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/30—Wind motors specially adapted for installation in particular locations
- F03D9/34—Wind motors specially adapted for installation in particular locations on stationary objects or on stationary man-made structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F7/00—Ventilation
- F24F7/02—Roof ventilation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/728—Onshore wind turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- the present invention relates to a building conditioning system intended to house installations, and to a method for said system.
- the facilities typically comprise telecommunication stations, and the construction is typically an envelope module containing said facilities.
- the electronic installations included in these constructions have limited operating temperature regimes, the majority of electronic components not being able to exceed 55 degrees for example, which is a serious limitation especially in summer and especially in hot and / or very hot locations exposed to solar irradiation, or not being effective electric accumulators below temperate or moderately cold temperatures, which also means a limitation in height and especially in cold seasons, for example in the mountains, in winter very typically.
- US2004071541 refers to a fan assembly that includes a main vertical axis wind turbine associated with a air extraction or air supply fan.
- the main turbine is located above and is coaxially coupled with the fan.
- the fan assembly may also include an auxiliary turbine to provide starting torque for starting the rotation of the main turbine.
- the main turbine is typically a Darrieus or Giromill type turbine and the auxiliary turbine is typically a Savonius type turbine.
- the fan assembly includes a rotation speed regulator to prevent damage to the turbine and / or fan in strong winds. It is used for the renewal of air in built spaces through ducts
- the construction conditioning system for housing facilities of the invention has a constitution that addresses the technical problem posed, obviating the need to oversize autonomous energy supply equipment for facilities contained in the construction, and even being able to cooperate in the supply energy required for these facilities.
- the system comprises: at least one ventilation outlet and at least one renewal air inlet - both applied to the construction - at least one ventilation flow impeller inside the construction from the renewal air inlet to the ventilation outlet, at least one generator, at least one wind turbine associated with the impeller and / or the generator, at least one impeller drive motor, at least selective couplings between the impeller, the generator, the turbine and the motor, at least one energy accumulator At least one air flow regulator, at least some conditioning conditions and accumulated energy level sensors and at least one adaptive control unit.
- any impeller that produces a flow inside the building is understood any impeller that produces a flow inside the building, the impeller itself being able to be installed inside the building, at the entrance or exit of air or in general in any location that effectively produces an air flow through the interior of the building from the renewal air inlet to the ventilation outlet.
- the conditioning of the indoor humidity and temperature conditions is carried out through the air flow generated between the renewal inlet and the ventilation outlet, with the peculiarity that, unlike the cold generation equipment currently used, the energy necessary for the generation of this air flow is much lower, and can also be generated by the system itself, mainly through the wind turbine when it is selectively coupled to the generator, being able to have generation supports, for example by plates photovoltaic
- the surpluses of own production will be stored in favorable periods, for their use in periods of deficit in production, and this stored energy can also feed the equipment of the facilities contained in the construction.
- engine-assisted ventilation it will be selectively coupled to the impeller and fed from the energy produced instantly and / or stored in the accumulator, to generate the flow of ventilation air,
- the action of the external wind on the turbine itself may be sufficient for driving the impeller, the turbine being in such conditions selectively coupled to the impeller, alternatively or in addition to the selective coupling thereof to the generator as mentioned. in the previous paragraph.
- the necessary ventilation flow is parameterized - depending on the conditions collected by the sensors of conditioning conditions and accumulated energy level - by the adaptive control unit, according to the method of the invention, to place the system at the working point suitable. To do this, it can act on the selective couplings between the impeller, the generator, the turbine and the engine, feed the engine, derive the energy produced to the generator, engine or indoor equipment, determine the air flow regulator opening and / or activate the electromechanical brake, the latter for example in conditions of strong outside wind.
- the adaptive control unit is microprocessed, so that it comprises an intelligence of management of the operation of the system.
- the method of the invention comprises the following steps:
- the accumulator is partially discharged and sufficient wind is available for generation, a greater derivation of energy to the accumulator, penalizing ventilation but always maintaining the indoor temperature conditions below the upper value of the operating temperature range of the equipment.
- the flow regulators of the air to reduce the resistance offered by the air flow to the impeller and its rotation speed would be adjusted accordingly, with the lowest possible energy expenditure for ventilation.
- the working point can be placed at a lower temperature, but always within the mentioned range.
- the internal conditions of both temperature and humidity can be regulated very efficiently, since the ventilation does not depend exclusively on the outside wind, and has regulation capabilities at the outlet and at the entrance of the ventilation air flow.
- This regulation is also managed adaptively and intelligently by the control unit based on the wind, temperature and humidity parameters.
- Figure 1 shows a schematic exterior view of a construction for installations that implements the system of the invention; specifically it is a mobile phone station.
- Figure 2 shows a schematic sectional view of the construction shown in Figure 1.
- Figure 3. Shows a variant of the assembly formed by the ventilation outlet, the turbine, the generator, the impeller, motor and brake arranged therein.
- Figure 4. Shows another variant of the assembly formed by the ventilation outlet, the turbine, the generator, the impeller, the motor and the brake arranged therein.
- the generator, motor and brake of electromagnetic type are integrated in a single electric machine.
- FIG. 5 Shows a block diagram of the system control unit.
- the building conditioning system (1) (2) intended to house Installations (75) of the invention comprise (see figs. 1 and 2): at least one ventilation outlet (3) applied to the construction (2); at least one inlet (4) of renewal air applied to the construction (2); at least one impeller (5) of a ventilation flow through the interior of the construction (2) from the inlet (4) of the renewal air to the ventilation outlet (3); at least one generator (6); at least one wind turbine (7) associated with the impeller (5) and / or the generator (6); at least one impeller drive motor (8)
- the turbine (7) can be coupled to the impeller (5) and even to the generator (6) if there is sufficient wind power available, or only to be coupled to the generator (6) if it is not necessary to act on the impeller (5).
- the previous couplings are made through a common shaft (70), so that the implementation of a fourth selective coupling (13) between the turbine (7) and the shaft (7) is also necessary. 70).
- the interleaving of a multiplier / demultiplicator box, not shown, in the third selective coupling (12) is provided, so that the most suitable speed for the generator can be selected
- the interleaving of a multiplier / demultiplier box not shown, in the second selective coupling (1 1), is provided so that the most suitable speed for the impeller (5) can be selected as a function of wind speed and the need for ventilation.
- the impeller (5) is preferably arranged in at least one ventilation outlet (3), typically it is a chimney as seen in the embodiment example shown in the figures, working the system in depression. It could also be arranged in the input (4) or existing inputs, working the system in overpressure, or even simultaneously in the inputs (4) and outputs (3) deemed necessary.
- the system (1) can be sized so that it is even capable of supplying the energy produced and / or stored by it to the equipment or facilities (75) contained in the construction (2).
- the energy accumulator (14) has connections (76) for supplying said facilities (75).
- the motor (8) can have speed variation by any known means (voltage adjustment, frequency variation, change of number of poles), so that its speed can be regulated as a first form of regulate the flow of indoor air.
- Another second intended way of regulating this flow is through the air flow regulator (15), which in this example (see fig. 2) comprises automatic actuating flaps (15a) arranged in the renewal air inlets (4) , although they could also be arranged in the ventilation outlets (3) and / or both.
- a second embodiment of the regulator would comprise step variators, not shown, of the impeller blades (5) and / or the turbine (7).
- a third embodiment of the air flow regulator (15) could comprise a brake (18), preferably of an electromagnetic type, to slow down the impeller (5).
- This brake can be implemented directly on the impeller, and / or indirectly on the turbine (7) and / or generator (6) in the system configurations where these last two elements are coupled to the impeller (5).
- the brake (18) could be of the mechanical type, but if it is of the electromagnetic type it is allowed that the generator (6), motor (8) and brake (18) of the electromagnetic type can be integrated into a single electric machine as seen in Figure 4. In this case the first selective coupling (10) and the third selective coupling (12) coincide.
- the described variants of speed regulation are not mutually exclusive, and may be coexisting in some variant embodiment of the invention.
- the turbine (7) preferably comprises a giromill turbine, while it is envisioned that the generator (6) can comprise at least one controller (6a) of its excitation current, in order to accurately vary the energy produced regardless of the speed of rotation.
- the generator comprises inductor coils for the generation of magnetic fields, which can be of independent excitation or self-excitation.
- the levels of flow of the excitation current of the coils can be adjusted adaptively, both with respect to the weather conditions and with the consumption needs of the constructions destined to house facilities . This circumstance gives it a clear technical advantage over permanent magnet generators, through which the generated energy cannot be regulated.
- the conditioning condition sensors ideally comprise indoor and / or outdoor temperature sensors (20), indoor and / or outdoor humidity sensors (21) and / or an outdoor anemometer (22).
- the invention has provided that additionally at least one heating element (25) can be arranged inside the construction (2), to regulate the temperature and humidity in cold places and / or seasons and adapt to the optimum temperature of the Equipment and accumulators.
- Said heating element (25) ideally comprises radiant plates with compensation of the power factor and intelligent regulation.
- at least one support cooling element (26) inside the construction (2), which will come into operation if the air flow is unable to maintain the temperature within its upper margin.
- This cooling element (26) preferably comprises an evaporator of an air conditioning unit whose external condenser (26a) can be seen in fig 1, and will require a much lower power (of the order of 1 KW) to the air conditioning equipment that is currently have (of the order of 3 KW).
- the provision of photovoltaic panels (27) of support in generation, associated with the control unit (17) and the energy accumulator (14) and the motor (8), is provided so that its production can be, according to the needs, derived by the control unit towards the accumulator (14) or the engine (8).
- the system (1) preferably comprises at least two batteries or accumulators (14) in parallel, which can operate in alternative charge and discharge, charging one and at the same time taking advantage of the previously charged electrical energy and stored in the other.
- the photovoltaic panels (27) comprise at least one solar panel which can be of any of the fixed types (such as monocrystalline, polycrystalline or other known types) and / or flexible (such as organic, amorphous or other known types).
- Another feature of the system of the invention includes the provision of protections against water ingress (28) in the ventilation outlets (3) and / or in the inlets (4) of renewal air, where it is anticipated that this incidence may occur, to prevent the entry of water.
- at least one drain manifold (29) of incoming water may be provided at the ventilation outlets (3) and / or in the inlets (4) of the renewal air.
- control unit (17) comprises at least one microcontroller (17a), an external communication interface (17b) and a memory (17c) for storage of operating and operating parameters. data obtained during operation.
- the control unit (17) performs the readings of all operating parameters (temperatures, humidity, wind force and direction, solar activity, voltage at the battery terminals, etc., activates the elements system executives (actuators to handle the flow of charge between accumulator (14), generator (6) and photovoltaic panels (27), for opening regulation of air flow regulators (15), for the engine (8) of impeller (5), selective couplings (10, 1 1, 12, 13), brake (18), controller (6a) of generator excitation current (6), connection of heating elements (25) and / or coolers (26), etc., but also through the interface (17b) it can communicate with a centralized control, not shown, for control, configuration and fault detection.
- the interface (17b) can be prepared to communicate with the centralized control. through the network itself supported by the installation is (75), since in this
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
- Ventilation (AREA)
Abstract
Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75), que comprende: una salida (3) de ventilación y una entrada (4) de aire de renovación aplicadas a la construcción (2); un impulsor (5) de ventilación; un generador (6); una turbina (7) eólica asociada al impulsor (5) y/o al generador (6); un motor (8) para el impulsor (5); unos acoplamientos selectivos (10, 11, 12, 13) entre el impulsor (5), el generador (6), la turbina (7) y el motor (8); un acumulador (14)de energía; un regulador (15) del flujo de aire; unos sensores (20, 21, 22) de condiciones de acondicionamiento y nivel de energía acumulada; y una unidad de control (17). El método comprende la determinación de un punto de trabajo del sistema (1), en función de los caudales necesarios para ventilación, del nivel de energía disponible en el acumulador (14) y de la disponibilidad de captación de energía.
Description
SISTEMA DE ACONDICIONAMIENTO DE CONSTRUCCIONES DESTINADAS A ALOJAR INSTALACIONES Y METODO PARA DICHO SISTEMA
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN La presente invención se refiere a un sistema de acondicionamiento de construcciones destinadas a alojar instalaciones, y a un método para dicho sistema. Las instalaciones típicamente comprenden estaciones de telecomunicaciones, y la construcción típicamente es un módulo envolvente que contiene dichas instalaciones. ANTECEDENTES DE LA INVENCIÓN
En la actualidad existen diversas instalaciones con elementos electrónicos que precisan ubicarse distribuidas por diversos puntos de la geografía, y muchas veces en emplazamientos aislados y sin servicios de ningún tipo, como en laderas o crestas de montañas, en el monte o campo, etc.
Las instalaciones electrónicas incluidas en estas construcciones tienen unos regímenes limitados de temperaturas de funcionamiento, no pudiendo sobrepasar por ejemplo los 55 grados la mayoría de los componentes electrónicos, lo que supone una grave limitación sobre todo en verano y especialmente en emplazamientos calurosos y/o muy expuestos a la irradiación solar, o no siendo eficaces los acumuladores eléctricos por debajo de temperaturas templadas o moderadamente frías, lo que igualmente supone una limitación en altura y especialmente en estaciones frías, por ejemplo en montaña, en invierno muy típicamente.
Dado también que estos equipos electrónicos deben quedar protegidos de los agentes atmosféricos y de actos vandálicos, su implementación en el interior de construcciones con propiedades adecuadas de resistencia y aislamiento es necesaria, pero perjudica las condiciones de ventilación, y por tanto el mantenimiento de unos adecuados límites de temperatura y humedad. Esto obliga a implementar en estas construcciones equipos de
acondicionamiento, normalmente equipos autónomos de aire acondicionado, cuadruplicando el consumo nominal de energía eléctrica de los equipos electrónicos de estas estaciones. Dada la ubicación aislada de las mismas, la provisión de energía eléctrica se realiza mediante generadores autónomos, que al necesitar suministrar puntualmente mucha mayor potencia, requieren un sobredimensionamiento que aumenta los costes, el volumen y el consumo de los mismos.
En relación con algunos elementos que se citan en el sistema que el presente documento propone para subsanar el problema técnico planteado, se conoce por ejemplo la patente US2004071541 que se refiere a un conjunto de ventilador que incluye una turbina eólica principal de eje vertical asociada a una extracción de aire o ventilador de suministro de aire. La turbina principal se encuentra arriba y está acoplada coaxialmente con el ventilador. El conjunto de ventilador también puede incluir una turbina auxiliar para proveer par de arranque para iniciar la rotación de la turbina principal. La turbina principal es típicamente una turbina Darrieus o de tipo Giromill y la turbina auxiliar es típicamente una turbina de tipo Savonius. En las realizaciones preferidas, el conjunto de ventilador incluye un regulador de velocidad de rotación para evitar daños a la turbina y/o ventilador en fuertes vientos. Sirve para la renovación de aire de espacios edificados a través de conductos
También se conoce por ejemplo la patente EP1985847 referente a un generador de cubierta accionado por viento, que incluye una turbina eólica asociada a un generador, donde la turbina eólica es impulsada por el viento, y un eje de la misma hace girar el rotor del generador, estando conectado el generador a una unidad de almacenamiento de electricidad para almacenar la energía generada por el generador.
DESCRIPCIÓN DE LA INVENCIÓN
El sistema de acondicionamiento de construcciones destinadas a alojar instalaciones de la invención tiene una constitución que subsana el problema técnico planteado, obviando la necesidad de sobredimensionar los equipos autónomos de suministro de energía para las instalaciones contenidas en la construcción, e incluso pudiendo cooperar en el suministro energético necesario para dichas instalaciones. De acuerdo con la invención, el sistema comprende: al menos, una salida de ventilación y
al menos, una entrada de aire de renovación -ambas aplicadas a la construcción-, al menos un impulsor de flujo de ventilación por el interior de la construcción desde la entrada de aire de renovación hasta la salida de ventilación, al menos, un generador, al menos, una turbina eólica asociada al impulsor y/o al generador, al menos, un motor de accionamiento del impulsor, al menos, unos acoplamientos selectivos entre el impulsor, el generador, la turbina y el motor, al menos un acumulador de energía, al menos, un regulador del flujo de aire, al menos, unos sensores de condiciones de acondicionamiento y nivel de energía acumulada y, al menos, una unidad de control adaptativa. En el presente texto como impulsor de flujo de ventilación por el interior de la construcción se entiende cualquier impulsor que produce un flujo por el interior de la edificación, pudiendo el impulsor propiamente dicho instalarse por el interior de la edificación, en la entrada o salida de aire o en general en cualquier ubicación que produzca efectivamente un flujo de aire por el interior de la edificación desde la entrada de aire de renovación hasta la salida de ventilación.
El acondicionamiento de las condiciones de humedad y temperatura interiores se realiza a través del flujo de aire generado entre la entrada de renovación y la salida de ventilación, con la particularidad de que, a diferencia de los equipos de generación de frío utilizados actualmente, la energía necesaria para la generación de este flujo de aire es muy inferior, y además puede ser generada por el propio sistema, a través principalmente de la turbina eólica cuando ésta se encuentra acoplada selectivamente al generador, pudiendo disponer de apoyos de generación, por ejemplo mediante placas fotovoltaicas. Mediante el acumulador se almacenarán los excedentes de producción propia en periodos propicios, para su utilización en periodos deficitarios en producción, pudiendo además esta energía almacenada alimentar a los equipos de las instalaciones contenidas en la construcción. Cuando se requiera ventilación asistida por el motor, se acoplará selectivamente éste al impulsor y se alimentará de la energía producida instantáneamente y/o almacenada en el acumulador, para generar el flujo de aire de ventilación,
Además, en determinadas condiciones, la propia acción del viento exterior sobre la turbina puede ser suficiente para el accionamiento del impulsor, estando en dichas condiciones la turbina acoplada selectivamente al impulsor, alternativa o complementariamente al acoplamiento selectivo de la misma al generador como se ha citado en el párrafo anterior.
El caudal de ventilación necesario está parametrizado -en función de las condiciones recogidas por los sensores de condiciones de acondicionamiento y nivel de energía acumulada- por la unidad de control adaptativa, según el método de la invención, para situar al sistema en el punto de trabajo adecuado. Para ello puede actuar sobre los acoplamientos selectivos entre el impulsor, el generador, la turbina y el motor, alimentar el motor, derivar la energía producida al generador, motor o equipos interiores, determinar la apertura del regulador del flujo de aire y/o activar el freno electromecánico, esto último por ejemplo en condiciones de fuerte viento exterior. La unidad de control adaptativa es microprocesada, de forma que comprenda una inteligencia de gestión del funcionamiento del sistema.
Por su parte, el método de la invención comprende las siguientes etapas:
-cálculo del caudal de ventilación máximo y mínimo necesarios, y determinación de la necesidad de suministro adicional de frió o calor en función de la temperatura y humedad en el interior y el exterior de la construcción, dado que la prioridad es el ajuste de las condiciones interiores de temperatura y humedad mediante el flujo de ventilación, -lectura del nivel de energía existente en el acumulador,
-lectura de la disponibilidad de captación de energía en función de la irradiación solar y de la velocidad del viento existentes.
-determinación del punto de trabajo del sistema en función de los caudales calculados, del nivel de energía disponible en el acumulador y de la disponibilidad de captación de energía,
-configuración de los acoplamientos selectivos, regulador del flujo de aire y elementos de conmutación dispuestos entre, al menos, el motor, generador y acumulador para alcanzar el punto de trabajo, y
-repetición de los pasos anteriores.
Para determinar el punto de trabajo, y dado que los equipos electrónicos contenidos en la construcción tienen unos rangos de temperaturas válidas de funcionamiento, si por ejemplo el acumulador está parcialmente descargado y se dispone de viento suficiente para generación, se podrá buscar una mayor derivación de energía hacia el acumulador, penalizando la ventilación pero siempre manteniendo las condiciones de temperatura interior por debajo del valor superior del rango de temperaturas de funcionamiento de los equipos. Por ejemplo en este caso se abrirían completamente los reguladores de flujo de
aire para reducir la resistencia ofrecida por el flujo de aire al impulsor y se ajustaría la velocidad de giro de éste en consecuencia, con el menor gasto energético posible para ventilación. Por el contrario, si el acumulador está completamente cargado, se puede situar el punto de trabajo a menor temperatura, pero siempre dentro del mencionado rango.
De esta forma se puede regular de forma muy eficiente las condiciones interiores tanto de temperatura como de humedad, ya que la ventilación no depende exclusivamente del viento exterior, y tiene capacidades de regulación en la salida y en la entrada del flujo de aire de ventilación. Esta regulación además es gestionada de modo adaptativo e inteligente por la unidad de control en función de los parámetros de viento, temperatura y humedad.
DESCRIPCIÓN DE LOS DIBUJOS
La figura 1.- Muestra una vista esquemática exterior de una construcción para instalaciones que implementa el sistema de la invención; concretamente se trata de una estación de telefonía móvil. La figura 2.- Muestra una vista esquemática seccionada de la construcción mostrada en la figura 1.
La figura 3.- Muestra una variante de realización del conjunto formado por la salida de ventilación, la turbina, el generador, el impulsor, motor y freno dispuestos en la misma.
La figura 4.- Muestra otra variante de realización del conjunto formado por la salida de ventilación, la turbina, el generador, el impulsor, motor y freno dispuestos en la misma. En esta variante el generador, motor y freno de tipo electromagnético se encuentran integrados en una única máquina eléctrica.
La figura 5.- Muestra un diagrama de bloques de la unidad de control del sistema. REALIZACIÓN PREFERENTE DE LA INVENCIÓN El sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar
instalaciones (75) de la invención comprende (ver figs. 1 y 2): al menos, una salida (3) de ventilación aplicada a la construcción (2); al menos una entrada (4) de aire de renovación aplicada a la construcción (2); al menos un impulsor (5) de un flujo de ventilación por el interior de la construcción (2) desde la entrada (4) de aire de renovación hasta la salida (3) de ventilación; al menos, un generador (6); al menos, una turbina (7) eólica asociada al impulsor (5) y/o al generador (6); al menos, un motor (8) de accionamiento del impulsor
(5) ; al menos, unos acoplamientos selectivos (10, 1 1 , 12, 13) entre el impulsor (5), el generador (6), la turbina (7) y el motor (8); al menos un acumulador (14) de energía; al menos, un regulador (15) del flujo de aire; al menos, unos sensores (20, 21 , 22) de condiciones de acondicionamiento y nivel de energía acumulada; y, al menos, una unidad de control (17) adaptativa.
Se ha previsto la disposición de, al menos, un primer acoplamiento selectivo (10) (ver fig. 3) entre el motor (8) y el impulsor (5), y/o un segundo acoplamiento selectivo (1 1) entre la turbina (7) y el impulsor (5) y/o un tercer acoplamiento selectivo (12) entre la turbina (7) y el generador (6). De esta forma, a la hora de determinar el punto de trabajo se puede acoplar el motor (8) al impulsor (5) si se precisa ventilación y no hay viento exterior suficiente, incluso desacoplando totalmente la turbina (7) del impulsor (5) si no hay en absoluto ningún aprovechamiento posible de viento exterior. Si se dispone de viento exterior suficiente se puede acoplar la turbina (7) al impulsor (5) e incluso al generador (6) si hay energía eólica disponible suficiente, o únicamente acoplarla al generador (6) si no es necesario actuar sobre el impulsor (5). En la realización que aparece en las figuras, los acoplamientos anteriores se realizan a través de un eje común (70), por lo que también es necesaria la implementación de un cuarto acoplamiento selectivo (13) entre la turbina (7) y el eje (70). Complementariamente se ha previsto la intercalación de una caja multiplicadora/desmultiplicadora, no representada, en el tercer acoplamiento selectivo (12), de forma que se pueda seleccionar la velocidad más adecuada para el generador
(6) en función de la velocidad del viento y de la necesidad de carga. Asimismo, complementariamente se ha previsto la intercalación de una caja multiplicadora/desmultiplicadora no representada, en el segundo acoplamiento selectivo (1 1), de forma que se pueda seleccionar la velocidad más adecuada para el impulsor (5) en función de la velocidad del viento y de la necesidad de ventilación.
El impulsor (5) se encuentra preferentemente dispuesto en, al menos, una salida (3) de ventilación, típicamente es una chimenea como se ve en el ejemplo de realización
mostrado en las figuras, trabajando el sistema en depresión. Podría igualmente disponerse en la entrada (4) o entradas existentes, trabajando el sistema en sobrepresión, o incluso simultáneamente en las entradas (4) y salidas (3) que se considere necesario.
La invención igualmente ha previsto que se pueda dimensionar el sistema (1) de forma que sea capaz incluso de suministrar la energía producida y/o almacenada por el mismo a los equipos o instalaciones (75) contenidas en la construcción (2). Para ello, en este ejemplo de realización el acumulador (14) de energía dispone de conexiones (76) para alimentación de dichas instalaciones (75).
Adicionalmente se ha previsto que el motor (8) pueda disponer de variación de velocidad por cualquier medio conocido (ajuste de tensión, variación de frecuencia, cambio de n° de polos), de forma que se pueda regular su velocidad como una primera forma de regular el flujo de aire interior. Otra segunda forma prevista de regular este flujo es a través del regulador (15) del flujo de aire, que en este ejemplo (ver fig. 2) comprende trampillas (15a) de accionamiento automático dispuestas en las entradas (4) de aire de renovación, si bien igualmente podrían disponerse en las salidas (3) de ventilación y/o en ambas. Una segunda realización del regulador comprendería variadores del paso, no representados, de los álabes del impulsor (5) y/o de la turbina (7). Una tercera realización del regulador (15) del flujo de aire podría comprender un freno (18), preferentemente de tipo electromagnético, para ralentizar el giro del impulsor (5). Este freno puede implementarse directamente en el impulsor, y/o indirectamente en la turbina (7) y/o generador (6) en las configuraciones del sistema donde estos dos últimos elementos están acoplados al impulsor (5). Igualmente el freno (18) podría ser de tipo mecánico, pero si es de tipo electromagnético se permite que el generador (6), motor (8) y freno (18) de tipo electromagnético se puedan integrar en una única máquina eléctrica como se ve en la figura 4. En este caso el primer acoplamiento selectivo (10) y el tercer acoplamiento selectivo (12) coinciden. En cualquier caso, las variantes descritas de regulación de velocidad no son excluyentes entre sí, y pueden ser coexistentes en alguna variante de realización de la invención.
En cuanto a la turbina (7) comprende preferentemente una turbina giromill, mientras que se ha previsto que el generador (6) pueda comprender, al menos, un controlador (6a) de su corriente de excitación, para variar de forma precisa la energía producida
independientemente de la velocidad de rotación.
En esta realización preferente, se entiende que el generador comprende bobinas inductoras para la generación de campos magnéticos, que pueden ser de excitación independiente o autoexcitación. Los niveles de flujo de la corriente de excitación de las bobinas (y por tanto, la energía generada por el generador) pueden regularse de forma adaptativa, tanto respecto a las condiciones meteorológicas como respecto a las necesidades de consumo de las construcciones destinadas a alojar instalaciones. Esta circunstancia, le otorga una clara ventaja técnica respecto a los generadores de imanes permanentes, mediante los cuales no puede regularse la energía generada.
Por su parte, los sensores de condiciones de acondicionamiento comprenden idealmente sensores de temperatura (20) interior y/o exterior, sensores de humedad (21) interior y/o exterior y/o un anemómetro (22) exterior.
La invención ha previsto que adicionalmente se pueda disponer, al menos, un elemento calefactor (25) por el interior de la construcción (2), para regular la temperatura y humedad en emplazamientos y/o estaciones frías y adaptar a la temperatura óptima de los equipos y acumuladores. Dicho elemento calefactor (25) comprende idealmente unas placas radiantes con compensación del factor de potencia y regulación inteligente. De la misma forma se ha previsto la posible inclusión de, al menos, un elemento enfriador (26) de apoyo por el interior de la construcción (2), que entrará en funcionamiento si el flujo de aire es incapaz de mantener la temperatura dentro de su margen superior. Este elemento enfriador (26) comprende preferentemente una evaporadora de un equipo de aire acondicionado cuya condensadora (26a) exterior se aprecia en la fig 1 , y precisará una potencia muy inferior (del orden de 1 KW) a los equipos de aire acondicionado que se disponen actualmente (del orden de 3 KW).
Adicionalmente se ha previsto la disposición de placas fotovoltáicas (27) de apoyo en generación, asociadas a la unidad de control (17) y al acumulador (14) de energía y al motor (8), de forma que su producción pueda ser, según las necesidades, derivada por la unidad de control hacia el acumulador (14) o al motor (8). En cuanto a la acumulación de energía, el sistema (1) comprende preferentemente, al menos, dos baterías o acumuladores (14) en paralelo, que pueden funcionar en carga y descarga alternativa, cargando uno y al mismo tiempo aprovechando el energía eléctrica previamente cargada
y almacenada en el otro. También puede implementarse un control de estado de salud de los acumuladores (14), que detectará cuándo baja el rendimiento de los mismos y cuándo se precisa su sustitución En una realización preferente, las placas fotovoltaicas (27), comprenden al menos, un panel solar que puede ser de cualquiera de los tipos fijo (como por ejemplo monocristalino, policristalino u otros tipos conocidos) y/o flexible (como por ejemplo orgánico, amorfo u otros tipos conocidos). Otra prestación del sistema de la invención comprende la disposición de protecciones contra entrada de agua (28) en las salidas (3) de ventilación y/o en las entradas (4) de aire de renovación, donde se prevea que pueda darse esta incidencia, para evitar la entrada de agua. Además, con el mismo fin se ha previsto que se pueda disponer, al menos, un colector de desagüe (29) de agua entrante en las salidas (3) de ventilación y/o en las entradas (4) de aire de renovación.
Respecto a la unidad de control (17), como se ve en la figura 5 comprende, al menos, un microcontrolador (17a), una interfaz (17b) de comunicación exterior y una memoria (17c) de almacenamiento de parametrizaciones de funcionamiento y de datos obtenidos durante el funcionamiento. A través de la interfaz (17b) la unidad de control (17) realiza las lecturas de todos los parámetros de funcionamiento (temperaturas, humedad, fuerza y dirección del viento, actividad solar, tensión en los bornes de baterías, etc, acciona los elementos ejecutivos del sistema (actuadores para manejar el flujo de carga entre acumulador (14), generador (6) y placas fotovoltáicas (27), para regulación de apertura de los reguladores (15) de flujo de aire, para el motor (8) del impulsor (5), acoplamientos selectivos (10, 1 1 , 12, 13), freno (18), controlador (6a) de la corriente de excitación del generador (6), conexión de los elementos calefactores (25) y/o enfriadores (26), etc, pero también a través de la interfaz (17b) puede comunicarse con un control centralizado, no representado, para control, configuración y detección de averías,. La interfaz (17b) puede estar preparada para comunicarse con el control centralizado a través de la propia red soportada por las instalaciones (75), dado que en este caso se trata de una estación de telefonía y datos.
En cuanto al método, comprende las siguientes etapas:
-cálculo del caudal de ventilación máximo y mínimo necesarios, y determinación de la
necesidad de suministro adicional de frió o calor en función de la temperatura y humedad en el interior y el exterior de la construcción (2).
-lectura del nivel de energía existente en el acumulador (14).
-lectura de la disponibilidad de captación de energía en función de la irradiación solar y de la velocidad del viento existentes.
-determinación del punto de trabajo del sistema (1),
-configuración de los acoplamientos selectivos (10, 1 1 , 12, 13), regulador (15) del flujo de aire y elementos de conmutación dispuestos entre, al menos, el motor (8), generador (6), acumulador (17) para alcanzar el punto de trabajo, y
-repetición de los pasos anteriores.
Las etapas anteriores a la de configuración de los acoplamientos selectivos (10, 1 1 , 12, 13), regulador (15) del flujo de aire y elementos de conmutación pueden darse en cualquier orden, no únicamente en el propuesto
Descrita suficientemente la naturaleza de la invención, se indica que la descripción de la misma y de su forma de realización preferente debe interpretarse de modo no limitativo, y que abarca la totalidad de las posibles variantes de realización que se deduzcan del contenido de la presente memoria y de las reivindicaciones.
Claims
1. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) caracterizado porque comprende: al menos, una salida (3) de ventilación aplicada a la construcción (2); al menos una entrada (4) de aire de renovación aplicada a la construcción (2); al menos un impulsor (5) de flujo de ventilación por el interior de la construcción (2) desde la entrada (4) de aire de renovación hasta la salida (3) de ventilación; al menos, un generador (6); al menos, una turbina (7) eólica asociada al impulsor (5) y/o al generador (6); al menos, un motor (8) de accionamiento del impulsor (5); al menos, unos acoplamientos selectivos (10, 1 1 , 12, 13) entre el impulsor (5), el generador (6), la turbina (7) y el motor (8); al menos un acumulador (14) de energía; al menos, un regulador (15) del flujo de aire; al menos, unos sensores (20, 21 , 22) de condiciones de acondicionamiento y nivel de energía acumulada; y, al menos, una unidad de control (17) adaptativa.
2. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 1 caracterizado porque comprende un primer acoplamiento selectivo (10) entre el motor (8) y el impulsor (5).
3. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque comprende un segundo acoplamiento selectivo (1 1) entre la turbina (7) y el impulsor (5).
4. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 3 caracterizado porque en el segundo acoplamiento selectivo (1 1) se encuentra intercalada una caja multiplicadora/desmultiplicadora.
5. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque comprende un tercer acoplamiento selectivo (12) entre la turbina (7) y el generador (6).
6. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 5 caracterizado porque en el tercer acoplamiento selectivo (12) se encuentra intercalada una caja multiplicadora/desmultiplicadora.
7. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones 2 a 6 caracterizado porque el primer, segundo, y tercer acoplamientos selectivos se realizan a través de un eje común (70), comprendiendo un cuarto acoplamiento selectivo (13) entre la turbina (7) y dicho eje común (70).
8. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque el impulsor (5) se encuentra dispuesto en, al menos, una salida (3) de ventilación.
9. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque el acumulador (14) de energía dispone de conexiones (76) para alimentación de las instalaciones (75) dispuestas en la construcción (2).
10. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque el motor (8) dispone de accionamiento por variación de frecuencia.
1 1.- Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque el regulador (15) del flujo de aire comprende trampillas (15a) de accionamiento automático.
12.- Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 1 1 caracterizado porque las trampillas (15a) se encuentran dispuestas en las salidas (3) de ventilación y/o en las entradas (4) de aire de renovación.
13.- Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar
instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque el regulador (15) del flujo de aire comprende variadores del paso de los álabes del impulsor (5) y/o de la turbina (7).
14.- Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque el regulador (15) del flujo de aire comprende un freno (18) dispuesto en el impulsor (5) y/o turbina (7) y/o generador (6).
15.- Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 14 caracterizado porque el freno (18) es de tipo electromagnético.
16. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 15 caracterizado porque el generador (6), motor (8) y freno (18) de tipo electromagnético se encuentran integrados en una única máquina eléctrica.
17. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 14 caracterizado porque el freno (18) es de tipo mecánico.
18. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque la turbina (7) comprende una turbina giromill.
19. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque el generador (6) comprende, al menos, un controlador (6a) de su corriente de excitación.
20. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque el generador (6) comprende bobinas inductoras para la generación de campo magnético.
21. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 20 caracterizado porque las bobinas inductoras del generador pueden ser de excitación independiente o autoexcitación.
22. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque los sensores de condiciones de acondicionamiento comprenden sensores de temperatura (20) interior y/o exterior; y/o sensores de humedad (21) interior y/o exterior; y/o un anemómetro (22) exterior.
23. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque adicionalmente comprende, al menos, un elemento calefactor (25) dispuesto por el interior de la construcción (2).
24. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 23 caracterizado porque el elemento calefactor (25) comprende placas radiantes con compensación del factor de potencia y regulación inteligente.
25. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque adicionalmente comprende, al menos, un elemento enfriador (26) dispuesto por el interior de la construcción (2).
26. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según la reivindicación 25 caracterizado porque el elemento enfriador (26) comprende una evaporadora de un equipo de aire acondicionado.
27. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque adicionalmente comprende una disposición de placas fotovoltaicas (27) de apoyo en generación.
28. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar
instalaciones (75) según la reivindicación 27 en el que las placas fotovoltaicas (27) comprenden, al menos, un panel solar que puede ser de cualquiera de los tipos fijo y/o flexible.
5 29. -Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque comprende, al menos, dos acumuladores (14) en paralelo, con posibilidad de funcionamiento en carga y descarga alternativa.
10 30.- Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque comprende un control de estado de salud de los acumuladores (14).
31. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar 15 instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque adicionalmente comprende protecciones contra entrada de agua (28) dispuestas en las salidas (3) de ventilación y/o en las entradas (4) de aire de renovación
32. - Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar 20 instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque adicionalmente comprende, al menos, un colector de desagüe (29) de agua entrante dispuesto en las salidas (3) de ventilación y/o en las entradas (4) de aire de renovación.
25 33.- Sistema (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) según cualquiera de las reivindicaciones anteriores caracterizado porque la unidad de control (17) comprende, al menos, un microcontrolador (17a), una interfaz (17b) y una memoria (17c) de almacenamiento de parametrizaciones de funcionamiento y de datos obtenidos durante el funcionamiento.
30
34.- Método (1) de acondicionamiento de construcciones (2) destinadas a alojar instalaciones (75) caracterizado porque comprende las siguientes etapas:
-cálculo del caudal de ventilación máximo y mínimo necesarios, y determinación de la necesidad de suministro adicional de frió o calor en función de la temperatura y humedad 35 en el interior y el exterior de la construcción (2).
-lectura del nivel de energía existente en el acumulador (14).
-lectura de la disponibilidad de captación de energía en función de la irradiación solar y de la velocidad del viento existentes.
-determinación del punto de trabajo del sistema (1), en función de los caudales calculados, del nivel de energía disponible en el acumulador (14) y de la disponibilidad de captación de energía,
-configuración de los acoplamientos selectivos (10, 1 1 , 12, 13), regulador (15) del flujo de aire y elementos de conmutación dispuestos entre, al menos, el motor (8), generador (6), acumulador (17) para alcanzar el punto de trabajo, y
-repetición de los pasos anteriores.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES201530067A ES2580328B1 (es) | 2015-01-20 | 2015-01-20 | Sistema de acondicionamiento de construcciones destinadas a alojar instalaciones y metodo para dicho sistema |
ESP201530067 | 2015-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016116647A1 true WO2016116647A1 (es) | 2016-07-28 |
Family
ID=56416464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/ES2016/070022 WO2016116647A1 (es) | 2015-01-20 | 2016-01-19 | Sistema de acondicionamiento de construcciones destinadas a alojar instalaciones y método para dicho sistema |
Country Status (2)
Country | Link |
---|---|
ES (1) | ES2580328B1 (es) |
WO (1) | WO2016116647A1 (es) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023108202A1 (en) * | 2021-12-14 | 2023-06-22 | Iswirl Pty Ltd | Solar powered roof ventilator |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6302778B1 (en) * | 1999-05-13 | 2001-10-16 | Gabriel Andrews | Turbine roof ventilator |
WO2010085988A2 (en) * | 2009-01-30 | 2010-08-05 | Dewind, Inc. | Wind turbine with lvrt capabilities |
US8368240B1 (en) * | 2008-11-24 | 2013-02-05 | Bob Burkett | Roof installed wind turbine vent and solar panel electric power generation system |
US20140105743A1 (en) * | 2009-11-05 | 2014-04-17 | Clifford E. Bassett | Conical fan assembly for use in a wind turbine for the generation of power |
US8726586B1 (en) * | 2012-01-04 | 2014-05-20 | Kirk Russell Stevens | Energy-efficient building structure having a dynamic thermal enclosure |
-
2015
- 2015-01-20 ES ES201530067A patent/ES2580328B1/es not_active Expired - Fee Related
-
2016
- 2016-01-19 WO PCT/ES2016/070022 patent/WO2016116647A1/es active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6302778B1 (en) * | 1999-05-13 | 2001-10-16 | Gabriel Andrews | Turbine roof ventilator |
US8368240B1 (en) * | 2008-11-24 | 2013-02-05 | Bob Burkett | Roof installed wind turbine vent and solar panel electric power generation system |
WO2010085988A2 (en) * | 2009-01-30 | 2010-08-05 | Dewind, Inc. | Wind turbine with lvrt capabilities |
US20140105743A1 (en) * | 2009-11-05 | 2014-04-17 | Clifford E. Bassett | Conical fan assembly for use in a wind turbine for the generation of power |
US8726586B1 (en) * | 2012-01-04 | 2014-05-20 | Kirk Russell Stevens | Energy-efficient building structure having a dynamic thermal enclosure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023108202A1 (en) * | 2021-12-14 | 2023-06-22 | Iswirl Pty Ltd | Solar powered roof ventilator |
Also Published As
Publication number | Publication date |
---|---|
ES2580328A1 (es) | 2016-08-23 |
ES2580328B1 (es) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2842180T3 (es) | Enfriador de aire solar | |
EP1785675B1 (en) | Ventilation arrangements | |
US8368240B1 (en) | Roof installed wind turbine vent and solar panel electric power generation system | |
US8123142B2 (en) | Solar powered smart ventilation system | |
US8915778B2 (en) | Hybrid solar attic vent | |
US7793467B1 (en) | Passively cooled and heated electrical components and power building | |
US20140214213A1 (en) | Utility control of hvac with integral electrical storage unit | |
MX2014003029A (es) | Sistema de ventilacion de cumbrera multiuso. | |
CN101725151A (zh) | 包含电力和控制设备的风力涡轮机塔架基础 | |
KR20140104073A (ko) | 친환경 다기능 폐열회수형 공조시스템 | |
US20220372951A1 (en) | Wind turbine and wind power station based thereon | |
WO2016116647A1 (es) | Sistema de acondicionamiento de construcciones destinadas a alojar instalaciones y método para dicho sistema | |
KR101266271B1 (ko) | 신재생에너지를 전력 피크시 전력원으로 사용하는 빌딩 자동제어장치 | |
KR20130074335A (ko) | 제로에너지 무동력 흡출기 | |
JP2000241031A (ja) | 太陽熱利用空調ユニット | |
ES1151134U (es) | Climatizador para casetas de instalaciones | |
KR200412634Y1 (ko) | 태양광 발전장치를 이용한 창문 난방용 블라인더형 커텐 | |
JP6932706B2 (ja) | ソーラー一体型チラーの方法およびシステム | |
JP2009266556A (ja) | 蓄電装置及び熱利用システム | |
CN110242502A (zh) | 一种基于发电空调风光互补发电系统 | |
KR101353951B1 (ko) | 풍력 발전기 | |
WO2017033285A1 (ja) | 電力制御装置 | |
KR101043277B1 (ko) | 건물벽면설치용 풍력발전장치 및 이를 구비한 난방시스템 | |
KR20110094845A (ko) | 지열 교환기와 수직축 집 풍기를 갖는 풍력 발전기의 하이브리드 냉 또는 온수 생산 방식 | |
KR101409507B1 (ko) | 신재생에너지 플랜트용 천장형 냉난방기 모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16739822 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16739822 Country of ref document: EP Kind code of ref document: A1 |