WO2016114481A1 - Method for manufacturing color conversion material using nano glass powder, and white light-emitting device - Google Patents
Method for manufacturing color conversion material using nano glass powder, and white light-emitting device Download PDFInfo
- Publication number
- WO2016114481A1 WO2016114481A1 PCT/KR2015/012177 KR2015012177W WO2016114481A1 WO 2016114481 A1 WO2016114481 A1 WO 2016114481A1 KR 2015012177 W KR2015012177 W KR 2015012177W WO 2016114481 A1 WO2016114481 A1 WO 2016114481A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphor
- color conversion
- glass
- conversion material
- glass powder
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 93
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 52
- 239000000843 powder Substances 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 23
- 239000000203 mixture Substances 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 62
- 238000010304 firing Methods 0.000 claims description 30
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 16
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 16
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 13
- 229910052792 caesium Inorganic materials 0.000 claims description 13
- 229910052744 lithium Inorganic materials 0.000 claims description 13
- 229910052700 potassium Inorganic materials 0.000 claims description 13
- 229910052701 rubidium Inorganic materials 0.000 claims description 13
- 229910052708 sodium Inorganic materials 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 8
- 238000000465 moulding Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 3
- 229910004116 SrO 2 Inorganic materials 0.000 claims 2
- 238000001354 calcination Methods 0.000 claims 1
- 239000003086 colorant Substances 0.000 abstract 1
- 239000006132 parent glass Substances 0.000 abstract 1
- 238000007493 shaping process Methods 0.000 abstract 1
- 238000005245 sintering Methods 0.000 abstract 1
- 238000002834 transmittance Methods 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000002845 discoloration Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/078—Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
Definitions
- the present invention relates to a color conversion glass (Phosphor In Glass (PIG)) manufacturing technology for LEDs, and more particularly to a method for producing a color conversion material and a light emitting device having excellent color conversion efficiency and light transmittance using nano glass powder. will be.
- POG Phosphor In Glass
- Phosphors are required for white light emission from LEDs emitting monochromatic light such as blue light.
- the following three methods are mainly used to implement the phosphor.
- the first method is to mold silicon mixed with yellow phosphor on a blue LED chip.
- the white LED package manufactured in such a form there is a problem in that yellowing occurs due to deterioration of the color conversion material at a high temperature, and also serves as a main factor in the deterioration of reliability due to gas and moisture penetration.
- the second is a method of dispersing and molding a yellow phosphor in an organic material such as epoxy. In this case, too, there is a problem that the heat resistance is weak by using an organic material.
- the third method is to mount a color conversion glass (Phosphor In Glass (PIG)) in which a yellow phosphor is dispersed in the glass in a cover form.
- POG Phosphor In Glass
- the high temperature deterioration problem can be solved as described above, and the resistance to gas and moisture penetration is also excellent.
- firing should be performed at a sufficiently high temperature to increase the light transmittance.
- the problem of phosphor degradation often occurs.
- One object of the present invention is to provide a method for producing a color conversion material that can reduce the firing temperature using the nano glass powder to suppress the reaction with the phosphor, and also excellent light transmittance.
- Another object of the present invention is to provide a white light emitting device having excellent color conversion efficiency and light transmittance even when the temperature of the light emitting device is increased to 200 ° C. or more.
- Color conversion material manufacturing method for achieving the above object is a method of manufacturing a color conversion material (Phosphor In Glass (PIG)) is disposed on the front of the LED to convert the color, the average particle diameter of 100nm Forming a nano glass powder which is less than or equal to; Mixing the nano glass powder and the phosphor to form a mixture; Molding the mixture to form a molded body; And firing the molded body.
- POG Phosphor In Glass
- Color conversion material manufacturing method for achieving the above object is a method for manufacturing a color conversion material to convert the color is disposed on the front surface of the LED, forming a nano glass powder having an average particle diameter of 100nm or less Making; Preparing a paste including the nano glass powder and the phosphor; And baking the paste on the substrate glass and then firing the paste.
- the phosphor may be (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75 ⁇ x ⁇ 0.95).
- a white light emitting device for achieving the other object includes an LED and a color conversion material (Phosphor In Glass (PIG)) disposed on the front of the LED, the LED emits blue light, the color
- POG Phosphor In Glass
- the conversion material is a yellow phosphor is dispersed in the glass, the yellow phosphor is characterized in that (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75 ⁇ x ⁇ 0.95).
- the glass in weight%, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less and SrO 2-10%, R 2 O (R Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are not intentionally added It may not be.
- the glass by weight SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less, SrO 2-10%, MgO 5% by weight or less
- the firing temperature can be lowered without lowering the light transmittance, and thus the phosphor reaction. By suppressing this, the fall of the color conversion efficiency can be prevented.
- Figure 1 (Lu 0. 9 Ce 0. 1) shows the characteristics change according to the temperature of 3 Al 5 O 12 phosphor.
- FIG. 2 schematically shows an example of a white light emitting device according to the present invention.
- the method for producing a color conversion material (Phosphor In Glass; PIG) according to the present invention uses a nano glass powder having an average particle diameter of 100 nm or less.
- the glass firing temperature In the case of a glass-based color conversion material, the glass firing temperature must be high enough to suppress the generation of bubbles, thereby obtaining a high light transmittance. However, at such high firing temperatures, color conversion efficiency decreases often due to phosphor deterioration.
- the present invention provides a method for producing a color conversion material having excellent light transmittance and excellent color conversion efficiency by applying such characteristics.
- the color conversion material manufacturing method according to an embodiment of the present invention may use a bulk baking method or a paste baking method.
- a nano glass powder having an average particle diameter of 100 nm or less is formed, and mixed with a phosphor to form a mixture, and then molding, and then firing the molded body.
- the phosphor may be included in an amount of about 3 to 70 wt% based on the total weight of the nano glass powder and the phosphor.
- the content of the phosphor may be adjusted by the thickness of the color conversion material, the LED size, the number of LEDs, and the like.
- a process may include forming a nano glass powder having an average particle diameter of 100 nm or less, preparing a paste including the nano glass powder and the phosphor, applying the paste to the substrate glass, and then firing the paste.
- the paste may include an organic solvent, an organic binder, and the like, and these components are removed in a drying process and a firing process after applying the paste.
- Phosphors can be degraded not only at high temperatures but also by the glass itself.
- SiO 2 contributes to improving the glass stability by forming a three-dimensional network structure.
- the SiO 2 is preferably added at 55 to 70% by weight of the total weight of the glass. When the addition amount of SiO 2 is less than 55% by weight, the addition effect is insufficient. In contrast, if SiO 2 exceeds 70% by weight, there is a problem in the glass softening temperature is too high.
- Al 2 O 3 contributes to glass stabilization.
- the Al 2 O 3 is preferably added at 10 to 22% by weight of the total weight of the glass.
- the addition amount of Al 2 O 3 is less than 10% by weight, the addition effect is insufficient.
- the addition amount of Al 2 O 3 exceeds 22% by weight, the glass fluidity may be greatly reduced.
- B 2 O 3 contributes to the formation of mesh, and contributes to lowering the firing temperature through viscosity reduction.
- the B 2 O 3 is preferably added in 1 to 15% by weight of the total weight of the glass. When the amount of B 2 O 3 added is less than 1% by weight, the effect of addition is insufficient. In contrast, when the amount of B 2 O 3 added exceeds 15% by weight, crystallization of the glass may proceed rapidly.
- CaO and SrO lower the softening temperature of the glass, contributing to lowering the firing temperature for producing color converted glass.
- These components are preferably added in CaO: 10% by weight or less, SrO: 2-10% by weight, and may further include one or more of 5% by weight or less of MgO and 5% by weight or less of BaO.
- the total content of CaO, SrO, MgO, BaO is more preferably 10 to 25% by weight of the total weight of the glass.
- the softening temperature may be lowered without reducing the light transmittance, and when any component exceeds the above range, problems such as reduced fluidity and promotion of crystallization may occur.
- the glass having the composition has a micro size of about 100 ⁇ m
- the glass may be manufactured by baking at about 800 ° C. or more corresponding to a softening temperature or more.
- the firing temperature may be lowered to about 750 °C or more.
- the firing temperature is too high exceeding 980 °C, phosphor discoloration may occur.
- the phosphors were mixed in the same amount and molded in a plate form, and then baked at the firing temperature shown in Table 3 for 30 minutes to prepare a color conversion material.
- a unit is a weight part, and when a total is 100 weight part, it is the same value as weight%.
- the phosphor discoloration did not occur as a whole, although firing was performed at 800 ° C. or higher. However, in case of specimen 42, the phosphor was slightly discolored when firing was performed at an excessively high temperature of 1000 ° C.
- the glass powder having an average particle diameter of 100 ⁇ m is used.
- the firing temperature may be lowered, and thus the effect of preventing phosphor degradation during firing may be further improved.
- the phosphor may be a (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75 ⁇ x ⁇ 0.95) phosphor.
- yellow and blue light emitting phosphor is a YAG phosphor
- SiO 4 phosphor a nitride phosphor is used.
- these phosphors have a characteristic in that when the temperature of the light emitting device rises above 200 ° C by driving the LED, the characteristics thereof deteriorate rapidly.
- FIG. 2 schematically shows an example of a white light emitting device according to the present invention.
- the white light emitting device includes an LED chip 102 and a color conversion material 103.
- the LED chip 102 is mounted on the package body 101 and outputs blue light.
- the color conversion material 103 is disposed in front of the LED, the color conversion material is a yellow phosphor dispersed in the glass, the yellow phosphor as described above (Lu x Ce 1 -x ) 3 Al 5 O 12 (0.75 ⁇ x ⁇ 0.95).
- the firing temperature can be lowered without lowering the light transmittance. Therefore, the fall of color conversion efficiency can be prevented by suppressing fluorescent reaction.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Led Device Packages (AREA)
- Luminescent Compositions (AREA)
- Glass Compositions (AREA)
Abstract
Disclosed are a method for manufacturing a color conversion material using nano glass powder, and a white light-emitting device. The method for manufacturing a color conversion material using nano glass powder according to the present invention is a method for manufacturing a color conversion material (phosphor-in-glass (PiG)) which is disposed on the front side of an LED and converts colors, the method comprising the steps of: crushing parent glass to form nano glass powder with an average grain size equal to or less than 100 nm; mixing the nano glass powder and phosphors to form a mixture; shaping the mixture to form a compact; and sintering the compact.
Description
본 발명은 LED용 색변환 유리(Phosphor In Glass; PIG) 제조 기술에 관한 것으로, 보다 상세하게는 나노 유리 파우더를 이용하여 색변환 효율 및 광투과성이 우수한 색변환 소재 제조 방법 및 백색 발광 장치에 관한 것이다.The present invention relates to a color conversion glass (Phosphor In Glass (PIG)) manufacturing technology for LEDs, and more particularly to a method for producing a color conversion material and a light emitting device having excellent color conversion efficiency and light transmittance using nano glass powder. will be.
청색광과 같이 단색광을 방출하는 LED로부터 백색 발광을 위해서는 형광체가 요구된다.Phosphors are required for white light emission from LEDs emitting monochromatic light such as blue light.
형광체를 구현하는 방법으로는 아래와 같은 주로 3가지 방법이 이용된다. The following three methods are mainly used to implement the phosphor.
첫번째는 청색 LED 칩 상에 황색 형광체가 혼합된 실리콘을 몰딩하는 방법이다. 이러한 형태로 제조된 백색 LED 패키지의 경우, 고온에서 색변환 소재의 열화에 의해 황변 현상이 발생하는 문제점이 있으며, 또한 가스 및 수분 침투로 인하여 신뢰성 저하의 주요인으로 작용하고 있다. The first method is to mold silicon mixed with yellow phosphor on a blue LED chip. In the case of the white LED package manufactured in such a form, there is a problem in that yellowing occurs due to deterioration of the color conversion material at a high temperature, and also serves as a main factor in the deterioration of reliability due to gas and moisture penetration.
두번째는, 에폭시 등과 같은 유기 소재에 황색 형광체를 분산하여 몰딩하는 방법이다. 이 경우 역시, 유기 소재를 이용함으로써 내열성이 취약한 문제점이 있다. The second is a method of dispersing and molding a yellow phosphor in an organic material such as epoxy. In this case, too, there is a problem that the heat resistance is weak by using an organic material.
세번째는, 유리에 황색 형광체를 분산시킨 색변환 유리(Phosphor In Glass; PIG)를 커버 형태로 장착하는 방법이다. 이 경우, 상기와 같은 고온 열화 문제를 해결할 수 있으며, 가스 및 수분 침투에 대한 저항성도 우수하다. 이 경우, 광투과율을 높이기 위해서는 충분히 높은 온도에서 소성이 수행되어야 한다. 그러나, 고온 소성의 경우 형광체 열화 문제가 종종 발생한다. The third method is to mount a color conversion glass (Phosphor In Glass (PIG)) in which a yellow phosphor is dispersed in the glass in a cover form. In this case, the high temperature deterioration problem can be solved as described above, and the resistance to gas and moisture penetration is also excellent. In this case, firing should be performed at a sufficiently high temperature to increase the light transmittance. However, in the case of high temperature firing, the problem of phosphor degradation often occurs.
본 발명에 관련된 배경기술로는 대한민국 공개특허공보 제10-2014-0106332호(2014.09.03. 공개)에 개시된 희토류 이온 함유 유리-형광체 복합체 및 이를 포함하는 발광다이오드가 있다. Background art related to the present invention is a rare earth ion-containing glass-phosphor composite disclosed in Korea Patent Publication No. 10-2014-0106332 (published on September 3, 2014) and a light emitting diode comprising the same.
본 발명의 하나의 목적은 나노 유리파우더를 이용하여 소성 온도를 낮출 수 있어 형광체와의 반응을 억제할 수 있으며, 광투과율 역시 우수한 색변환 소재 제조 방법을 제공하는 것이다. One object of the present invention is to provide a method for producing a color conversion material that can reduce the firing temperature using the nano glass powder to suppress the reaction with the phosphor, and also excellent light transmittance.
본 발명의 다른 목적은 발광 장치 구동시 온도가 200℃ 이상으로 증가하더라도 색변환 효율 및 광투과율이 우수한 백색 발광 장치를 제공하는 것이다. Another object of the present invention is to provide a white light emitting device having excellent color conversion efficiency and light transmittance even when the temperature of the light emitting device is increased to 200 ° C. or more.
상기 하나의 목적을 달성하기 위한 본 발명의 실시예에 따른 색변환 소재 제조 방법은 LED 전면에 배치되어 색을 변환하는 색변환 소재(Phosphor In Glass; PIG)를 제조하는 방법으로서, 평균입경이 100nm 이하인 나노 유리파우더를 형성하는 단계; 상기 나노 유리파우더 및 형광체를 혼합하여 혼합체를 형성하는 단계; 상기 혼합체를 성형하여 성형체를 형성하는 단계; 및 상기 성형체를 소성하는 단계;를 포함하는 것을 특징으로 한다. Color conversion material manufacturing method according to an embodiment of the present invention for achieving the above object is a method of manufacturing a color conversion material (Phosphor In Glass (PIG)) is disposed on the front of the LED to convert the color, the average particle diameter of 100nm Forming a nano glass powder which is less than or equal to; Mixing the nano glass powder and the phosphor to form a mixture; Molding the mixture to form a molded body; And firing the molded body.
상기 하나의 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 색변환 소재 제조 방법은 LED 전면에 배치되어 색을 변환하는 색변환 소재를 제조하는 방법으로서, 평균입경이 100nm 이하인 나노 유리파우더를 형성하는 단계; 상기 나노 유리파우더 및 형광체를 포함하는 페이스트를 제조하는 단계; 및 상기 페이스트를 기판 유리에 도포한 후, 소성하는 단계;를 포함하는 것을 특징으로 한다.Color conversion material manufacturing method according to another embodiment of the present invention for achieving the above object is a method for manufacturing a color conversion material to convert the color is disposed on the front surface of the LED, forming a nano glass powder having an average particle diameter of 100nm or less Making; Preparing a paste including the nano glass powder and the phosphor; And baking the paste on the substrate glass and then firing the paste.
이때, 상기 나노 유리파우더는 중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하 및 SrO 2~10%로 이루어지고, R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것일 수 있다. At this time, the nano glass powder is made of a weight percent, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less and SrO 2-10%, R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are intentionally It may not be added.
또한, 상기 나노 유리파우더는 중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하, SrO 2~10%, MgO 5중량% 이하와 BaO : 5중량% 이하 중 1종 이상으로 이루어지고, R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것일 수 있다. In addition, the nano glass powder is by weight, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less, SrO 2-10%, MgO 5 weight It consists of one or more of% or less and BaO: 5% by weight or less, R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 may not be added intentionally.
또한, 상기 형광체는 (LuxCe1-x)3Al5O12(0.75≤x≤0.95)일 수 있다. In addition, the phosphor may be (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75 ≦ x ≦ 0.95).
상기 다른 목적을 달성하기 위한 본 발명의 실시예에 따른 백색 발광 장치는 LED 및 상기 LED 전면에 배치되는 색변환 소재(Phosphor In Glass; PIG)를 포함하고, 상기 LED는 청색광을 방출하고, 상기 색변환 소재는 유리에 황색 형광체가 분산되어 있되, 상기 황색 형광체가 (LuxCe1-x)3Al5O12(0.75≤x≤0.95)인 것을 특징으로 한다. A white light emitting device according to an embodiment of the present invention for achieving the other object includes an LED and a color conversion material (Phosphor In Glass (PIG)) disposed on the front of the LED, the LED emits blue light, the color The conversion material is a yellow phosphor is dispersed in the glass, the yellow phosphor is characterized in that (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75≤x≤0.95).
이때, 상기 유리는 중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하 및 SrO 2~10%로 이루어지고, R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것일 수 있다. At this time, the glass in weight%, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less and SrO 2-10%, R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are not intentionally added It may not be.
또한, 상기 유리는 중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하, SrO 2~10%, MgO 5중량% 이하와 BaO : 5중량% 이하 중 1종 이상으로 이루어지고, R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것일 수 있다. In addition, the glass by weight, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less, SrO 2-10%, MgO 5% by weight or less And BaO: made of at least one of 5 wt% or less, R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 may not be intentionally added.
본 발명에 따른 나노 유리 파우더를 이용한 색변환 소재 제조 방법에 의하면, 유리 파우더의 사이즈가 나노화됨에 따라 소성온도가 낮아지는 특성을 이용하여, 광투과율 저하없이 소성 온도를 낮출 수 있으며, 이에 따라 형광체 반응을 억제함으로써 색변환 효율 저하를 방지할 수 있다. According to the method of manufacturing a color conversion material using the nano glass powder according to the present invention, by using the characteristic that the firing temperature is lowered as the size of the glass powder is nanoscaled, the firing temperature can be lowered without lowering the light transmittance, and thus the phosphor reaction. By suppressing this, the fall of the color conversion efficiency can be prevented.
아울러, 주로 녹색 형광체로 사용되는 (LuxCe1-x)3Al5O12(0.75≤x≤0.95)를 유리 파우더와 함께 소성하여 색변환 소재를 제조하여 백색 발광 장치에 적용한 결과, 황색 형광체 특성을 발휘하였으며, LED 구동시 온도가 200℃ 이상으로 증가하더라도 형광체 특성 저하가 크지 않아, 고온에서도 광출력 특성 저하가 크지 않은 효과를 발휘할 수 있었다. In addition, (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75≤x≤0.95), which is mainly used as a green phosphor, was calcined together with glass powder to prepare a color conversion material and applied to a white light emitting device. Even if the temperature was increased to 200 ° C. or more during driving of the LED, the deterioration of the phosphor characteristic was not large, and thus the light output characteristic was not deteriorated even at a high temperature.
도 1은 (Lu0
.
9Ce0
.
1)3Al5O12 형광체의 온도에 따른 특성 변화를 나타낸 것이다.Figure 1 (Lu 0. 9 Ce 0. 1) shows the characteristics change according to the temperature of 3 Al 5 O 12 phosphor.
도 2는 본 발명에 따른 백색 발광 장치의 예를 개략적으로 나타낸 것이다.2 schematically shows an example of a white light emitting device according to the present invention.
[부호의 설명][Description of the code]
101 : 패키지 본체 102 : LED 칩101: package body 102: LED chip
103 : 색변환 유리103: color conversion glass
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들 및 도면을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments and drawings described below in detail. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, only the embodiments are to make the disclosure of the present invention complete, it is common in the art It is provided to fully inform those skilled in the art of the scope of the invention, which is to be defined only by the scope of the claims.
이하, 첨부된 도면을 참조하여, 본 발명에 따른 나노 유리 파우더를 이용한 색변환 소재 제조 방법 및 백색 발광 장치에 대하여 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings, a method for manufacturing a color conversion material and a white light emitting device using nano glass powder according to the present invention will be described in detail.
본 발명에 따른 색변환 소재(Phosphor In Glass; PIG) 제조 방법은 평균입경이 100nm 이하인 나노 유리파우더를 이용한다. The method for producing a color conversion material (Phosphor In Glass; PIG) according to the present invention uses a nano glass powder having an average particle diameter of 100 nm or less.
유리 기반의 색변환 소재의 경우, 유리 소성온도가 충분히 높아야 기포 발생이 억제되어 높은 광투과율을 얻을 수 있다. 그러나, 이러한 높은 소성온도의 경우, 형광체 열화에 의해 색변환 효율 저하가 종종 발생한다. In the case of a glass-based color conversion material, the glass firing temperature must be high enough to suppress the generation of bubbles, thereby obtaining a high light transmittance. However, at such high firing temperatures, color conversion efficiency decreases often due to phosphor deterioration.
대한민국 공개특허공보 제10-2009-0032639호의 상세한 설명에 개시되어 있는 바와 같이, 유리 파우더의 경우, 그 크기가 미세할수록 용융도가 증가하여, 그 소성 온도를 낮출 수 있다. 본 발명은 이러한 특성을 응용하여 광투과율이 우수하고, 색변환 효율이 우수한 색변환 소재 제조 방법을 제공한다. As disclosed in the detailed description of Korean Patent Laid-Open Publication No. 10-2009-0032639, in the case of glass powder, the smaller the size thereof, the higher the meltability, and the lower the firing temperature thereof. The present invention provides a method for producing a color conversion material having excellent light transmittance and excellent color conversion efficiency by applying such characteristics.
본 발명의 실시예에 따른 색변환 소재 제조 방법은 벌크 소성 방식 혹은 페이스트 소성 방식을 이용할 수 있다. The color conversion material manufacturing method according to an embodiment of the present invention may use a bulk baking method or a paste baking method.
벌크 소성 방식의 경우, 평균입경이 100nm 이하인 나노 유리파우더를 형성하고, 이를 형광체와 혼합하여 혼합체를 형성하고 성형한 후, 성형체를 소성하는 과정을 포함한다. In the case of the bulk firing method, a nano glass powder having an average particle diameter of 100 nm or less is formed, and mixed with a phosphor to form a mixture, and then molding, and then firing the molded body.
형광체는 나노 유리파우더 및 형광체 전체 중량에 대하여 대략 3~70중량% 정도 포함될 수 있다. 이러한 형광체의 함량은 색변환 소재의 두께, LED 사이즈, LED 개수 등에 의해 조절될 수 있다.The phosphor may be included in an amount of about 3 to 70 wt% based on the total weight of the nano glass powder and the phosphor. The content of the phosphor may be adjusted by the thickness of the color conversion material, the LED size, the number of LEDs, and the like.
페이스트 소성 방식의 경우, 평균입경이 100nm 이하인 나노 유리파우더를 형성하고, 나노 유리파우더 및 형광체를 포함하는 페이스트를 제조한 후, 페이스트를 기판 유리에 도포한 후, 소성하는 과정을 포함할 수도 있다. In the case of the paste firing method, a process may include forming a nano glass powder having an average particle diameter of 100 nm or less, preparing a paste including the nano glass powder and the phosphor, applying the paste to the substrate glass, and then firing the paste.
페이스트에는 유기용매, 유기바인더 등이 포함될 수 있고, 이들 성분은 페이스트 도포 후 건조 과정 및 소성 과정에서 제거된다. The paste may include an organic solvent, an organic binder, and the like, and these components are removed in a drying process and a firing process after applying the paste.
한편, 나노 유리파우더는 중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하 및 SrO 2~10%로 이루어지고, R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것일 수 있다. (유리조성 1)On the other hand, the nano glass powder is composed of weight%, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less and SrO 2-10%, R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are intentionally added It may not be. Glass Composition 1
또한, 나노 유리파우더는 중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하, SrO 2~10%, MgO 5중량% 이하와 BaO : 5중량% 이하 중 1종 이상으로 이루어지고, R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것일 수 있다. (유리조성 2)In addition, nano glass powder is in weight percent, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less, SrO 2-10%, MgO 5% by weight It consists of one or more of the following and BaO: 5% by weight or less, R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 may not be intentionally added. Glass Composition 2
형광체는 고온에서 뿐만 아니라 유리 자체 성분에 의하여도 열화될 수 있다. Phosphors can be degraded not only at high temperatures but also by the glass itself.
상기 유리들의 경우, 형광체와의 화학적인 반응을 보일 수 있는 성분들, 예를 들어 R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3 등의 사용을 원천 방지함으로써 색변환 효율을 극대화시킬 수 있으며, 연화 온도 이상에서 짧은 시간 동안 소성함에 따라 기포 발생을 억제할 수 있고, 이에 따라 광 투과율 및 광 추출 효율을 향상시킬 수 있다.In the case of the glasses, components capable of exhibiting chemical reactions with phosphors, such as R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , By preventing the use of P 2 O 5 , V 2 O 5 , PbO, ZnO, and Bi 2 O 3 , the color conversion efficiency can be maximized and bubbles can be suppressed by firing for a short time above the softening temperature. As a result, light transmittance and light extraction efficiency can be improved.
이하, 상기 각 성분의 역할 및 그 함량에 대하여 설명하기로 한다. Hereinafter, the role of each component and its content will be described.
SiO2는 3차원 망목 구조를 형성하여 유리 안정성을 향상시키는데 기여한다. 상기 SiO2는 유리 전체 중량의 55~70중량%로 첨가되는 것이 바람직하다. SiO2의 첨가량이 55중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, SiO2가 70중량%를 초과하는 경우, 유리 연화온도가 지나치게 높아지는 문제점이 있다.SiO 2 contributes to improving the glass stability by forming a three-dimensional network structure. The SiO 2 is preferably added at 55 to 70% by weight of the total weight of the glass. When the addition amount of SiO 2 is less than 55% by weight, the addition effect is insufficient. In contrast, if SiO 2 exceeds 70% by weight, there is a problem in the glass softening temperature is too high.
Al2O3는 유리 안정화에 기여한다. 상기 Al2O3는 유리 전체 중량의 10~22중량%로 첨가되는 것이 바람직하다. Al2O3의 첨가량이 10중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, Al2O3의 첨가량이 22중량%를 초과하는 경우, 유리 유동성이 크게 저하될 수 있다. Al 2 O 3 contributes to glass stabilization. The Al 2 O 3 is preferably added at 10 to 22% by weight of the total weight of the glass. When the addition amount of Al 2 O 3 is less than 10% by weight, the addition effect is insufficient. On the contrary, when the addition amount of Al 2 O 3 exceeds 22% by weight, the glass fluidity may be greatly reduced.
B2O3는 망목 형성에 기여하며, 점도 저하를 통한 소성 온도를 낮추는데 기여한다. 상기 B2O3는 유리 전체 중량의 1~15중량%로 첨가되는 것이 바람직하다. B2O3의 첨가량이 1중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, B2O3의 첨가량이 15중량%를 초과하는 경우, 유리의 결정화가 빠르게 진행될 수 있다.B 2 O 3 contributes to the formation of mesh, and contributes to lowering the firing temperature through viscosity reduction. The B 2 O 3 is preferably added in 1 to 15% by weight of the total weight of the glass. When the amount of B 2 O 3 added is less than 1% by weight, the effect of addition is insufficient. In contrast, when the amount of B 2 O 3 added exceeds 15% by weight, crystallization of the glass may proceed rapidly.
CaO 및 SrO는 유리의 연화온도를 낮추어, 색변환 유리 제조를 위한 소성 온도를 낮추는데 기여한다. 이들 성분들은 각각 CaO : 10중량% 이하, SrO : 2~10중량%로 첨가되는 것이 바람직하고, 추가로 MgO 5중량% 이하와 BaO : 5중량% 이하 중 1종 이상을 더 포함할 수 있다. 또한 상기 CaO, SrO, MgO, BaO 전체 합산 함량이 유리 전체 중량의 10~25중량%인 것이 보다 바람직하다. 상기 범위에서 광 투과율 감소없이 연화온도를 낮출 수 있으며, 어느 성분이라도 상기 범위를 초과할 경우, 유동성 저하, 결정화 촉진 등의 문제점이 발생할 수 있다.CaO and SrO lower the softening temperature of the glass, contributing to lowering the firing temperature for producing color converted glass. These components are preferably added in CaO: 10% by weight or less, SrO: 2-10% by weight, and may further include one or more of 5% by weight or less of MgO and 5% by weight or less of BaO. In addition, the total content of CaO, SrO, MgO, BaO is more preferably 10 to 25% by weight of the total weight of the glass. In the above range, the softening temperature may be lowered without reducing the light transmittance, and when any component exceeds the above range, problems such as reduced fluidity and promotion of crystallization may occur.
상기 조성을 갖는 유리는 대략 100㎛ 정도의 마이크로 사이즈일 경우, 연화온도 이상에 해당하는 대략 800℃ 이상에서 소성하여 제조될 수 있다. 특히, 나노 사이즈로 미세화될 경우, 소성온도는 대략 750℃ 이상으로 더 낮아질 수 있다. 유리 파우더의 연화온도 미만에서 소성할 경우, 소성된 유리에 기포가 다량 발생하여 광 투과율 및 광 추출 효율이 저하되는 문제점이 있는 바, 유리의 연화온도 이상에서 소성을 수행하는 것이 바람직하다. 다만, 소성온도가 980℃를 초과하여 지나치게 높을 경우, 형광체 변색이 발생할 수 있다.When the glass having the composition has a micro size of about 100 μm, the glass may be manufactured by baking at about 800 ° C. or more corresponding to a softening temperature or more. In particular, when miniaturized to nano size, the firing temperature may be lowered to about 750 ℃ or more. When firing below the softening temperature of the glass powder, there is a problem that a large amount of bubbles are generated in the fired glass to lower the light transmittance and light extraction efficiency, it is preferable to perform the firing above the softening temperature of the glass. However, when the firing temperature is too high exceeding 980 ℃, phosphor discoloration may occur.
상기 유리 조성의 효과를 평가하기 위하여 다음과 같은 실험을 수행하였다.In order to evaluate the effect of the glass composition was carried out the following experiment.
하기 표 1 및 표 2에 기재된 유리 조성을 갖는 유리 파우더에 형광체를 동일한 양으로 혼합하여 플레이트 형태로 성형한 후에 표 3에 기재된 소성 온도에서 30분간 소성하여 색변환 소재를 제조하였다. To the glass powder having a glass composition shown in Table 1 and Table 2, the phosphors were mixed in the same amount and molded in a plate form, and then baked at the firing temperature shown in Table 3 for 30 minutes to prepare a color conversion material.
표 1 및 표 2에서 단위는 중량부이며, 합계가 100중량부인 경우 중량%와 동일한 값이다. In Table 1 and Table 2, a unit is a weight part, and when a total is 100 weight part, it is the same value as weight%.
[표 1]TABLE 1
[표 2]TABLE 2
[표 3]TABLE 3
(2) 유리 조성 1~42가 적용된 기본 색변환 유리에 대하여 육안으로 형광체 반응 여부를 평가하여, 다음과 같은 기준으로 평가하였다.(2) Visually evaluating the phosphor reaction with respect to the basic color conversion glass to which glass compositions 1 to 42 were applied, and evaluated according to the following criteria.
O : 우수 (형광체 변색되지 않음)O: Excellent (no phosphor discoloration)
△ : 보통 (형광체 미세하게 변색됨)(Triangle | delta): Normal (phosphor discolors finely)
X : 적용불가 (형광체 변색) X: Not applicable (phosphor discoloration)
표 3을 참조하면, 본 발명에서 제시한 유리 성분을 만족하는 시편 38~41의 경우, 800℃ 이상에서 소성을 수행하였음에도 불구하고, 전체적으로 형광체 변색이 발생하지 않았다. 다만, 시편 42의 경우, 1000℃의 지나치게 높은 온도에서 소성을 수행한 결과 형광체가 미세하게 변색되었다. Referring to Table 3, in the case of the specimens 38 to 41 satisfying the glass component presented in the present invention, the phosphor discoloration did not occur as a whole, although firing was performed at 800 ° C. or higher. However, in case of specimen 42, the phosphor was slightly discolored when firing was performed at an excessively high temperature of 1000 ° C.
그러나, 본 발명에서 제시한 유리 성분을 만족하지 않은 시편 1~37의 경우, 전체적으로 형광체 변색이 발생하였다.However, in the case of specimens 1 to 37 that did not satisfy the glass component presented in the present invention, phosphor discoloration occurred as a whole.
전술한 예들의 경우, 100㎛의 평균입경을 갖는 유리 파우더를 이용한 것으로, 유리 파우더가 나노 파우더로 미세화될 경우 소성온도가 더 낮아질 수 있으므로, 소성시 형광체 열화 방지 효과가 보다 향상될 수 있다. In the above examples, the glass powder having an average particle diameter of 100 μm is used. When the glass powder is micronized, the firing temperature may be lowered, and thus the effect of preventing phosphor degradation during firing may be further improved.
또한, 형광체는 (LuxCe1-x)3Al5O12(0.75≤x≤0.95) 형광체일 수 있다. 일반적으로 청색 여기 황색 발광 형광체로는 YAG 형광체, (Sr1
.
7Ba0
.
2Eu0
.
1)SiO4 형광체, 질화물 형광체가 이용된다. 그러나 이들 형광체들은 LED 구동에 의해 발광장치가 200℃ 이상으로 온도가 상승할 경우, 그 특성이 급격히 열화되는 특성이 있다. In addition, the phosphor may be a (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75 ≦ x ≦ 0.95) phosphor. In general, where yellow and blue light emitting phosphor is a YAG phosphor, (Sr 1. 7 Ba 0 . 2 Eu 0. 1) SiO 4 phosphor, a nitride phosphor is used. However, these phosphors have a characteristic in that when the temperature of the light emitting device rises above 200 ° C by driving the LED, the characteristics thereof deteriorate rapidly.
(LuxCe1-x)3Al5O12(0.75≤x≤0.95) 형광체의 경우, 주로 청색 여기 녹색 발광 형광체로 사용된다. 그런데, (LuxCe1-x)3Al5O12 형광체를 유리와 같이 소성하여 색변환 소재를 제조한 결과, 백색광이 출력되는 현상이 나타났다. 이는 (LuxCe1
-x)3Al5O12 형광체를 유리와 함께 소성할 경우, 형광체의 발광 파장이 녹색에서 황색으로 색특성이 변환된 결과라 볼 수 있다. In the case of the (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75 ≦ x ≦ 0.95) phosphor, it is mainly used as a blue excited green light emitting phosphor. However, when the (Lu x Ce 1-x ) 3 Al 5 O 12 phosphor was fired like glass to prepare a color conversion material, a phenomenon in which white light was output was shown. This is a result of converting the color characteristics from green to yellow when the (Lu x Ce 1 -x ) 3 Al 5 O 12 phosphor is fired together with the glass.
또한, (LuxCe1
-x)3Al5O12 형광체의 경우, 유리와 함께 소성한 (Lu0
.
9Ce0
.
1)3Al5O12 형광체의 온도에 따른 특성 변화를 나타낸 도 1에 나타난 바와 같이, 200℃ 이상의 고온에서 광출력 특성 저하가 그리 크지 않은 바, 유리와 형광체를 함께 소성할 경우에는 종래 황색 형광체를 대체할 수 있는 형광체로 볼 수 있다. In addition, (Lu x Ce 1 -x) 3 Al 5 O 12 phosphor of the case, (. Lu 0 9 Ce 0 . 1) and then fired together with the glass 3 Al 5 O diagram showing a characteristic variation due to temperature of the first phosphor 12 As shown in the present invention, when the light output characteristics are not significantly reduced at a high temperature of 200 ° C. or higher, when the glass and the phosphor are fired together, the phosphor can be replaced with the conventional yellow phosphor.
도 2는 본 발명에 따른 백색 발광 장치의 예를 개략적으로 나타낸 것이다.2 schematically shows an example of a white light emitting device according to the present invention.
도 2를 참조하면, 본 발명에 따른 백색 발광 장치는 LED칩(102) 및 색변환 소재(103)를 포함한다. LED칩(102)은 패키지 본체(101)에 장착되며, 청색광을 출력한다.Referring to FIG. 2, the white light emitting device according to the present invention includes an LED chip 102 and a color conversion material 103. The LED chip 102 is mounted on the package body 101 and outputs blue light.
색변환 소재(103)는 LED 전면에 배치되며, 상기 색변환 소재는 유리에 황색 형광체가 분산되어 있되, 상기 황색 형광체가 전술한 바와 같은 (LuxCe1
-x)3Al5O12(0.75≤x≤0.95)일 수 있다. The color conversion material 103 is disposed in front of the LED, the color conversion material is a yellow phosphor dispersed in the glass, the yellow phosphor as described above (Lu x Ce 1 -x ) 3 Al 5 O 12 (0.75 ≤ x ≤ 0.95).
이때, 유리는 중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하 및 SrO 2~10%로 이루어지고, R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것일 수 있다. At this time, the glass is by weight, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less and SrO 2-10%, R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are not intentionally added It may be.
또한, 유리는 중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하, SrO 2~10%, MgO 5중량% 이하와 BaO : 5중량% 이하 중 1종 이상으로 이루어지고, R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것일 수 있다. In addition, the glass is in terms of weight%, 55 to 70% SiO 2 , 10 to 22% Al 2 O 3 , 1 to 15% B 2 O 3 , 10% or less CaO, 2 to 10% SrO, 5% to MgO and BaO: made of one or more of 5% by weight or less, R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 may not be intentionally added.
전술한 바와 같이, 본 발명에 따른 나노 유리 파우더를 이용한 색변환 소재 제조 방법에 의하면, 유리 파우더의 사이즈가 나노화됨에 따라 소성온도가 낮아지는 특성을 이용하여, 광투과율 저하없이 소성 온도를 낮출 수 있으며, 이에 따라 형광체 반응을 억제함으로써 색변환 효율 저하를 방지할 수 있다. As described above, according to the method of manufacturing a color conversion material using the nano glass powder according to the present invention, by using the characteristic that the firing temperature is lowered as the size of the glass powder becomes nano, the firing temperature can be lowered without lowering the light transmittance. Therefore, the fall of color conversion efficiency can be prevented by suppressing fluorescent reaction.
아울러, 주로 녹색 형광체로 사용되는 (LuxCe1-x)3Al5O12(0.75≤x≤0.95)를 유리 파우더와 함께 소성하여 색변환 소재를 제조하여 백색 발광 장치에 적용한 결과, 황색 형광체 특성을 발휘함과 더불어 200℃ 이상의 고온에서도 광출력 특성 저하가 크지 않은 효과를 발휘할 수 있다.In addition, (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75≤x≤0.95), which is mainly used as a green phosphor, was calcined together with glass powder to prepare a color conversion material and applied to a white light emitting device. In addition to exhibiting characteristics, even at a high temperature of 200 ° C. or more, the light output characteristic deterioration can be exhibited with little effect.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 변형될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiments and can be modified in various forms, and having ordinary skill in the art to which the present invention pertains. It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
Claims (8)
- LED 전면에 배치되어 색을 변환하는 색변환 소재(Phosphor In Glass; PIG)를 제조하는 방법으로서, As a method of manufacturing a color conversion material (Phosphor In Glass (PIG)) is disposed on the front of the LED to convert the color,평균입경이 100nm 이하인 나노 유리파우더를 형성하는 단계;Forming a nano glass powder having an average particle diameter of 100 nm or less;상기 나노 유리파우더 및 형광체를 혼합하여 혼합체를 형성하는 단계;Mixing the nano glass powder and the phosphor to form a mixture;상기 혼합체를 성형하여 성형체를 형성하는 단계; 및Molding the mixture to form a molded body; And상기 성형체를 소성하는 단계;를 포함하는 것을 특징으로 하는 색변환 소재 제조 방법.Calcining the molded body; color conversion material manufacturing method comprising a.
- LED 전면에 배치되어 색을 변환하는 색변환 소재를 제조하는 방법으로서, As a method of manufacturing a color conversion material disposed on the front of the LED to convert the color,평균입경이 100nm 이하인 나노 유리파우더를 형성하는 단계;Forming a nano glass powder having an average particle diameter of 100 nm or less;상기 나노 유리파우더 및 형광체를 포함하는 페이스트를 제조하는 단계; 및Preparing a paste including the nano glass powder and the phosphor; And상기 페이스트를 기판 유리에 도포한 후, 소성하는 단계;를 포함하는 것을 특징으로 하는 색변환 소재 제조 방법.And applying the paste to the substrate glass and then firing the paste.
- 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,상기 나노 유리파우더는 The nano glass powder중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하 및 SrO 2~10%로 이루어지고,By weight%, consisting of 55 to 70% SiO 2 , 10 to 22% Al 2 O 3 , 1 to 15% B 2 O 3 , CaO 10% or less and SrO 2 to 10%,R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것을 특징으로 하는 색변환 소재 제조 방법.R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are intentionally Color conversion material manufacturing method characterized in that it is not added.
- 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,상기 나노 유리파우더는The nano glass powder중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하, SrO 2~10%, MgO 5중량% 이하와 BaO : 5중량% 이하 중 1종 이상으로 이루어지고,By weight%, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less, SrO 2-10%, MgO 5% by weight or BaO: 5 weight It consists of one or more of% or less,R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것을 특징으로 하는 색변환 소재 제조 방법.R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are intentionally Color conversion material manufacturing method characterized in that it is not added.
- 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,상기 형광체는 (LuxCe1-x)3Al5O12(0.75≤x≤0.95) 형광체인 것을 특징으로 하는 색변환 소재 제조 방법. The phosphor is a (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75≤x≤0.95) phosphor, characterized in that the color conversion material manufacturing method.
- LED 및 상기 LED 전면에 배치되는 색변환 소재(Phosphor In Glass; PIG)를 포함하고,An LED and a color conversion material (Phosphor In Glass; PIG) disposed on the front of the LED,상기 LED는 청색광을 방출하고,The LED emits blue light,상기 색변환 소재는 유리에 황색 형광체가 분산되어 있되, 상기 황색 형광체가 (LuxCe1-x)3Al5O12(0.75≤x≤0.95) 형광체인 것을 특징으로 하는 백색 발광 장치.The color conversion material is a white light emitting device, characterized in that the yellow phosphor is dispersed in the glass, the yellow phosphor is (Lu x Ce 1-x ) 3 Al 5 O 12 (0.75≤x≤0.95) phosphor.
- 제6항에 있어서,The method of claim 6,상기 유리는 The glass is중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하 및 SrO 2~10%로 이루어지고,By weight%, consisting of 55 to 70% SiO 2 , 10 to 22% Al 2 O 3 , 1 to 15% B 2 O 3 , CaO 10% or less and SrO 2 to 10%,R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것을 특징으로 하는 백색 발광 장치.R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are intentionally White light emitting device, characterized in that not added.
- 제6항에 있어서,The method of claim 6,상기 유리는The glass is중량%로, SiO2 55~70%, Al2O3 10~22%, B2O3 1~15%, CaO 10% 이하, SrO 2~10%, MgO 5중량% 이하와 BaO : 5중량% 이하 중 1종 이상으로 이루어지고,By weight%, SiO 2 55-70%, Al 2 O 3 10-22%, B 2 O 3 1-15%, CaO 10% or less, SrO 2-10%, MgO 5% by weight or BaO: 5 weight It consists of one or more of% or less,R2O(R = Li, Na, K, Rb 및 Cs), Sb2O3, F, Cl, SO3, P2O5, V2O5, PbO, ZnO 및 Bi2O3이 의도적으로 첨가되지 않은 것을 특징으로 하는 백색 발광 장치.R 2 O (R = Li, Na, K, Rb and Cs), Sb 2 O 3 , F, Cl, SO 3 , P 2 O 5 , V 2 O 5 , PbO, ZnO and Bi 2 O 3 are intentionally White light emitting device, characterized in that not added.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0006430 | 2015-01-13 | ||
KR1020150006430A KR101631829B1 (en) | 2015-01-13 | 2015-01-13 | Method of manufacturing phosphor in glass using nano glass powder and white light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016114481A1 true WO2016114481A1 (en) | 2016-07-21 |
Family
ID=56353977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/012177 WO2016114481A1 (en) | 2015-01-13 | 2015-11-12 | Method for manufacturing color conversion material using nano glass powder, and white light-emitting device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101631829B1 (en) |
WO (1) | WO2016114481A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11920072B2 (en) * | 2019-04-11 | 2024-03-05 | Nichia Corporation | Method for producing rare earth aluminate sintered body |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102166026B1 (en) * | 2019-12-16 | 2020-10-15 | 한국세라믹기술원 | Glass composition for color converter containing controlled amount and sort of alkali and the manufacturing of the color converter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090026308A (en) * | 2006-07-18 | 2009-03-12 | 쇼와 덴코 가부시키가이샤 | Phosphor, Manufacturing Method and Light-Emitting Device |
KR20100040442A (en) * | 2008-10-10 | 2010-04-20 | 삼성에스디아이 주식회사 | Green phosphor for plasma display panel, green phosphor composition comprising the same and plasma display panel employing the green phosphor |
JP2011108599A (en) * | 2009-11-20 | 2011-06-02 | Toshiba Lighting & Technology Corp | Illumination device |
KR101253381B1 (en) * | 2005-05-11 | 2013-04-11 | 니폰 덴키 가라스 가부시키가이샤 | Fluorescent substance composite glass, fluorescent substance composite glass green sheet, and process for producing fluorescent substance composite glass |
JP2014221706A (en) * | 2013-05-14 | 2014-11-27 | 株式会社オハラ | Composite material and method for producing the same |
-
2015
- 2015-01-13 KR KR1020150006430A patent/KR101631829B1/en active Active
- 2015-11-12 WO PCT/KR2015/012177 patent/WO2016114481A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101253381B1 (en) * | 2005-05-11 | 2013-04-11 | 니폰 덴키 가라스 가부시키가이샤 | Fluorescent substance composite glass, fluorescent substance composite glass green sheet, and process for producing fluorescent substance composite glass |
KR20090026308A (en) * | 2006-07-18 | 2009-03-12 | 쇼와 덴코 가부시키가이샤 | Phosphor, Manufacturing Method and Light-Emitting Device |
KR20100040442A (en) * | 2008-10-10 | 2010-04-20 | 삼성에스디아이 주식회사 | Green phosphor for plasma display panel, green phosphor composition comprising the same and plasma display panel employing the green phosphor |
JP2011108599A (en) * | 2009-11-20 | 2011-06-02 | Toshiba Lighting & Technology Corp | Illumination device |
JP2014221706A (en) * | 2013-05-14 | 2014-11-27 | 株式会社オハラ | Composite material and method for producing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11920072B2 (en) * | 2019-04-11 | 2024-03-05 | Nichia Corporation | Method for producing rare earth aluminate sintered body |
Also Published As
Publication number | Publication date |
---|---|
KR101631829B1 (en) | 2016-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101357308B1 (en) | Phosphor composite material and phosphor composite member | |
JP5633114B2 (en) | SnO-P2O5 glass used for phosphor composite material | |
JP5757238B2 (en) | Phosphor-dispersed glass and method for producing the same | |
KR101253381B1 (en) | Fluorescent substance composite glass, fluorescent substance composite glass green sheet, and process for producing fluorescent substance composite glass | |
JP5483795B2 (en) | Luminescent color conversion material and luminescent color conversion member | |
CN1186282C (en) | Lead- and zinc-free transparent fritted glaze | |
JPWO2011046156A1 (en) | Glass for scattering layer of organic LED element and organic LED element using the same | |
TWI636970B (en) | Phosphor dispersion glass | |
WO2013001971A1 (en) | Glass composition, glass for covering light emitting element, composite material for covering light emitting element, phosphor composite material, light emitting element-covering composite member, and phosphor composite member | |
JP2008094705A (en) | Sealing material | |
JP2013193952A (en) | Glass and wavelength conversion member using the glass | |
WO2016114481A1 (en) | Method for manufacturing color conversion material using nano glass powder, and white light-emitting device | |
WO2015122649A1 (en) | Led color changing material with excellent color change efficiency and light extraction efficiency, and preparation method therefor | |
WO2013172619A1 (en) | Low temperature fired glass composition for supporting a fluorescent substance and a wavelength converter and a light-emitting device including the same | |
CN102020425A (en) | Glass powder and preparation method thereof | |
WO2007052400A1 (en) | Bismuth-containing lead-free glass composition | |
WO2016114480A1 (en) | Color conversion glass for leds having excellent light uniformity | |
KR101679682B1 (en) | Glass Composition for Wavelength Conversion Glasses | |
DE102016124366A1 (en) | Optoelectronic component | |
WO2016043473A1 (en) | Pig for vehicle and manufacturing method therefor | |
KR102165411B1 (en) | Glass composition for color converter characterized by low melting point and the manufacturing method of the red color converter | |
WO2015182963A1 (en) | White led package having low color temperature | |
WO2017135584A1 (en) | Phosphor plate using light diffuser | |
CN1101441C (en) | Luminescent Pigments for Glazes | |
WO2019107918A1 (en) | Method for producing phosphor-in-glass color conversion element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15878125 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.11.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15878125 Country of ref document: EP Kind code of ref document: A1 |