WO2016109920A1 - 径向线馈电介质谐振天线阵列 - Google Patents
径向线馈电介质谐振天线阵列 Download PDFInfo
- Publication number
- WO2016109920A1 WO2016109920A1 PCT/CN2015/070107 CN2015070107W WO2016109920A1 WO 2016109920 A1 WO2016109920 A1 WO 2016109920A1 CN 2015070107 W CN2015070107 W CN 2015070107W WO 2016109920 A1 WO2016109920 A1 WO 2016109920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dielectric
- antenna array
- slit
- resonant antenna
- waveguide
- Prior art date
Links
- 239000002184 metal Substances 0.000 claims abstract description 60
- 239000000523 sample Substances 0.000 claims abstract description 24
- 239000003989 dielectric material Substances 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 239000012526 feed medium Substances 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 16
- 238000000034 method Methods 0.000 abstract description 4
- 230000010287 polarization Effects 0.000 description 29
- 238000005388 cross polarization Methods 0.000 description 14
- 230000005684 electric field Effects 0.000 description 11
- 230000005284 excitation Effects 0.000 description 8
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
Definitions
- the present invention relates to the field of microwave communications, and more particularly to a single fed radial line waveguide excitation dielectric resonant antenna array.
- the dielectric resonant antenna has the advantages of high radiation efficiency, low loss, small size, and large design freedom, so it has been extensively studied and applied to practical work.
- the antenna array composed of a dielectric resonator is fed by an energy feed in a probe-coupled rectangular waveguide, a slot feed on a substrate integrated waveguide, a coupling energy from a dielectric waveguide, and a microstrip patch-coupled feed.
- the probe coupling feeding mode requires one probe per array unit, and it is necessary to adjust the distance of each probe deep into the waveguide to adjust the coupling degree; the substrate integrated waveguide slot feeding and the coupling energy from the dielectric waveguide
- the methods are mainly working on high frequency, and the low frequency has no big advantage.
- the microstrip patch coupling feeding mode will cause the loss on the feeding due to the increase of the microstrip line.
- the commonly used microwave communication high-gain antennas are horn antennas, microstrip antenna arrays, reflective array antennas, and radial line antennas, wherein the horn antenna and the reflective array antenna are large in size and susceptible to environmental influence, and the microstrip antenna array is used as a high-gain antenna.
- the feed loss and dielectric loss are severe, resulting in reduced antenna efficiency.
- Radial line antennas have been widely studied as high-gain antennas. The main direction of research is to optimize the distribution of gaps and gap lengths on the aperture to enhance the efficiency of the antenna. The radial antennas are loaded with other types of antennas to optimize the radiation gain and aperture efficiency. There are few studies on radiation efficiency.
- the radial line feed dielectric resonant antenna array provided by the present invention includes a surface slit radial line waveguide, a feed probe, and a dielectric resonant antenna array.
- the surface-slit radial wire waveguide comprises an upper layered metal plate, a lower metal floor and an intermediate air layer, and the surface-slit radial wire waveguide has a cylindrical structure as a whole, and the height is less than one-half of the waveguide wave. long.
- the upper surface of the upper slit metal plate is provided with a series of slits, and a through hole is formed at the center of the lower metal bottom plate.
- the feeding probe comprises a metal rod and a radio antenna joint connected with the metal rod, the feeding probe is located at the axial center position of the surface slit radial line waveguide, and one end of the radio antenna joint protrudes from the surface to open the outer side of the radial line waveguide, the metal One end of the rod penetrates the surface of the lower metal backing plate into the surface of the radial wire waveguide.
- the dielectric resonant antenna array includes a plurality of unit dielectric resonators directly above the upper slit metal plate. A dielectric resonant antenna array is fed by the feed probe through a slotted radial line waveguide.
- the array of dielectric resonant antennas is arranged in the same manner as the slits of the surface of the upper slotted metal sheet.
- the arrangement of the dielectric resonant antenna array unit and the upper slotted metal plate slot is adjusted, and the radial line feed dielectric resonant antenna array is radiated linearly or circularly polarized.
- the surface-slit radial wire waveguide further includes a waveguide sidewall, which is a cylindrical metal plate structure, and forms a cylindrical waveguide with the upper slit metal plate and the lower metal substrate.
- the surface-slit radial wire waveguide further includes a dielectric layer composed of a cylindrical low-k dielectric material filled in the surface-slit radial wire waveguide and the dielectric resonator antenna array.
- the slit (or slot unit) of the upper slotted metal sheet adjacent the sidewall is from the cylindrical or sidewall quarter waveguide wavelength of the surface radial line waveguide.
- the slits of the upper slit metal sheets of the surface-slit radial wire waveguide are arranged in a multi-turn annular manner, and for each turn, the inclination angles of the long sides of the slits are sequentially increased at the same rate.
- the dielectric resonant antenna array is a two-dimensional planar array or a three-dimensional array; the array unit of the dielectric resonant antenna array may be constructed by a single dielectric resonator or a plurality of dielectric resonators stacked or combined, the dielectric resonance
- the device can be a rectangular rectangle, a cylinder or other shape.
- the dielectric resonator of the dielectric resonant antenna array may be selected from dielectric materials suitable for dielectric constants as needed.
- the feed probe is cylindrical, conical or other shape.
- the radial line feed dielectric resonant antenna array provided by the present invention adopts a single feed radial line waveguide to circulate the entire excitation medium resonant antenna array, which solves the problem of complicated structure of the multi-feed end of the array antenna. And achieved high gain, high caliber efficiency. Linear or circularly polarized antenna performance can be obtained by adjusting the gap and the arrangement of the dielectric resonant antenna array.
- FIG. 1 is a front cross-sectional view of an embodiment of a radial line feed dielectric resonant antenna array provided by the present invention
- FIG. 2 is a schematic diagram showing a linear polarization arrangement of a unit dielectric resonator of Embodiment 1 of a radial line feed dielectric resonant antenna array according to the present invention
- FIG. 3 is a schematic diagram showing a circular polarization arrangement of a unit dielectric resonator of Embodiment 2 of a radial line feed dielectric resonant antenna array according to the present invention
- FIG. 4 is a schematic structural view of a dielectric resonator unit of a radial line feed dielectric resonant antenna array embodiment and a feed gap thereof according to the present invention
- FIG. 5 is a schematic structural diagram of a dielectric resonant antenna array unit of Embodiment 1 of a radial line feed dielectric resonant antenna array according to the present invention
- 6a is a three-dimensional spherical coordinate of a radial line feed dielectric resonant antenna array according to Embodiment 1 of the present invention at an operating frequency of 5 GHz; Normalized radiation pattern of main polarization and cross-polarization field components of ⁇ from -180° to 180°;
- 6b is a three-dimensional spherical coordinate at a 5 GHz operating frequency of a radial line feed dielectric resonant antenna array according to Embodiment 1 of the present invention; a normalized radiation pattern of a principal polarization field component and a cross polarization field component of ⁇ from -180° to 180°;
- FIG. 7 is a schematic structural diagram of a dielectric resonant antenna array unit of Embodiment 2 of a radial line feed dielectric resonant antenna array according to the present invention.
- the radial line feed dielectric resonant antenna array includes a surface slit radial line waveguide 1, a feed probe 2, a dielectric resonant antenna array 3, and a dielectric layer 4.
- the surface-slit radial wire waveguide 1 includes an upper slit metal plate 1a, a lower metal base plate 1b, and a waveguide side wall 1c.
- the surface-slit radial wire waveguide 1 has a cylindrical structure as a whole and has a height less than one-half of the waveguide wavelength.
- the upper surface of the upper slit metal plate 1a is opened with a series of slits, and the dielectric resonant antenna array 3 is located directly above the upper slit metal plate 1a.
- the dielectric resonant antenna array 3 is composed of a plurality of unit dielectric resonators, and a dielectric resonator is arranged directly above each slit. Therefore, the arrangement of the unit dielectric resonators is arranged in the same manner as the gaps of the upper unsealed metal sheets 1a, and the arrangement manner thereof can be See Figure 2 and Figure 3.
- the feed probe 2 includes a metal bar 2a and a radio antenna connector 2b connected to the metal bar 2a.
- the feed probe 2 is located at the axial center of the surface slit radial line waveguide 1, and a through hole is formed at the center of the lower metal base plate 1b, and one end of the radio antenna joint 2b protrudes from the through hole at the center of the lower metal base plate 1b.
- the outside of the slotted radial wire waveguide 1 is connected to the feed coaxial cable; the metal bar 2a penetrates the surface to open the radial wire waveguide 1 to excite the waveguide.
- the dielectric layer 4 is composed of a cylindrical low dielectric constant dielectric material, and is filled in the gaps of the surface slit radial line waveguide 1 and the dielectric resonant antenna array 3.
- the dielectric resonant antenna array 3 is fed by the feed probe 2 through the surface slit radial line waveguide 1.
- the feed probe 2 is connected to the radio antenna connector 2b, and the electromagnetic energy is converted from the coaxial mode to the radial propagation mode. Since the height of the surface-slit radial wire waveguide 1 is less than half the waveguide wavelength, the electromagnetic wave propagating in the waveguide 1 is a TEM (transverse electromagnetic mode) mode, and the electromagnetic wave of the TEM mode has neither an electric field component in the radial propagation direction. There is also no magnetic field component such that the current in the waveguide propagates along the direction of the waveguide radius.
- TEM transverse electromagnetic mode
- the dielectric resonator is briefly structured by: slitting the metal plate to disturb the current propagating along the upper metal plate of the waveguide, so that the inside of the waveguide Energy flows out of the waveguide, thereby exciting the dielectric resonant antenna array 3.
- the feed probe 2, the side wall 1c, the lower metal plate 1b and the upper slit metal plate 1a together constitute a feed of the excitation medium resonant antenna array.
- the energy is coupled to the dielectric resonant antenna array 3 through the above-mentioned feed source, and then the array radiation is polarized by the change of the arrangement of the unit dielectric resonators (linear polarization or circular polarization is the polarization mode of the antenna, and the description is along The direction of the antenna electromagnetic wave propagation toward the antenna, the path of the end of the electric field vector, the end point of the linearly polarized electric field vector changes along a line perpendicular to the plane of propagation, and the end of the circularly polarized electric field vector is along a vertical A circular change in the direction of the propagation direction) or a circularly polarized high-gain electromagnetic wave.
- linear polarization or circular polarization is the polarization mode of the antenna, and the description is along The direction of the antenna electromagnetic wave propagation toward the antenna, the path of the end of the electric field vector, the end point of the linearly polarized electric field vector changes along a line perpendicular to the plane of propagation, and the
- the upper-layer slit metal plate 1a has a current along the radial direction (the current in FIG. 4).
- the slit generates an electric field at the narrow side of the slit (ie, along the short side of the Y-axis) by cutting off the current flowing therethrough, and produces a wide electric field at the wide side of the slit (ie, along the long side of the X-axis).
- the magnetic field, the electric field and the magnetic field can be replaced by the equivalent current element (along the narrow side of the slit) and the equivalent magnetic flux element (along the wide side of the slit), and the gap width is smaller than the slit length and the operating wavelength, so the equivalent
- the current element is negligible, considering only the action of the equivalent magnetic current element, the gap is equivalent to a magnetic current along the X-axis direction.
- the dielectric resonator is located directly above the slit and is subjected to the action of the lower gap, that is, the magnetic current, and the magnetic field is excited inside the dielectric resonator to radiate electromagnetic waves to the free space.
- the slit itself can be radiated
- the slit is radiated as a magnetic flux element with a length of one-half of the wavelength
- the structure of the slot-coupled dielectric resonator is one-half the wavelength of the waveguide divided by the dielectric resonator.
- the opening of the dielectric constant reduces the cell size.
- the internal electromagnetic field mode can be changed, and electromagnetic waves of different modes are radiated, and the degree of freedom is greater.
- Fig. 2 shows an arrangement of radiation-polarized electromagnetic waves of a radial line feed dielectric resonant antenna array. Since the arrangement of the dielectric resonator antenna array is the same as that of the upper unsealed metal plate, only the arrangement of the dielectric resonant antenna array will be described here.
- each circle includes a plurality of array elements, and in the radial direction, each waveguide array unit is separated by a waveguide wavelength.
- a circle of array elements near the edge is separated from the surface by a quarter of the waveguide wavelength of the sidewall of the radial line waveguide.
- each array unit is composed of two mutually perpendicular three-dimensional rectangular dielectric resonators, which are respectively set as A dielectric resonator and B dielectric resonator, and A dielectric resonator is separated from B dielectric resonator by half waveguide wavelength.
- each of them is arranged in a circle, whether for A dielectric resonator or B dielectric resonator, their arrangement in the circle also shows a certain law, that is, the inclination of the long side of each dielectric resonator is pressed at the same rate.
- the order is increased or decreased one by one: the inclination angle of the long side of the A dielectric resonator in the circle is investigated. If the inclination of a dielectric resonator A is ⁇ , the inclination of the adjacent pair of dielectric resonators A is ⁇ .
- the inclination of the next set of adjacent dielectric resonators A is ⁇ ⁇ 2 ⁇ , followed by ⁇ ⁇ 3 ⁇ , ⁇ ⁇ 4 ⁇ , ⁇ ⁇ 5 ⁇ , etc., and so on.
- the magnitude of the alpha value is inversely proportional to the number of dielectric resonators A in the coil.
- the arrangement of the B dielectric resonators follows the same pattern.
- the dielectric resonant antenna array is located on the XOY plane, wherein a pair of dielectric resonators are located at an angle to the X-axis.
- the distance from the center of the circle is ⁇ 1 and ⁇ 2
- the angles with the axis are ⁇ 1 and ⁇ 2 , respectively .
- the energy of the waveguide surface slit coupled into the dielectric resonator is related to the field inside the waveguide and the angle ⁇ between the dielectric resonator and the radial direction, which can be expressed as equation (1):
- the X-axis direction is the main polarization (the linear polarization electric field component always follows a direction in a plane perpendicular to the electromagnetic wave propagation direction, and the direction is the main polarization direction, and if the antenna electromagnetic wave propagation direction is the Z-axis direction, The electric field component is always along the X-axis direction, then the X-axis direction is the main polarization direction), and the Y-axis direction is the cross-polarization (the cross-polarized electric field component of the antenna is the linear polarization mode working antenna, and the antenna electromagnetic wave propagation direction In the vertical plane, the electric field component in the direction perpendicular to the main polarization field component is set according to the main polarization direction, and the Y-axis direction is the cross-polarization direction), then a
- the two dielectric resonators in the array unit should be half a waveguide wavelength to achieve a phase difference of 0 or ⁇ , and the distance between the array elements should be a waveguide wavelength to achieve in-phase excitation.
- the above requirements are necessary for the radiation-polarized electromagnetic waves of the radial line feed dielectric resonant antenna array.
- the arrangement of the radial line feed dielectric resonant antenna array unit and the upper slotted metal plate gap is also increased by some optimization as described above. condition.
- the surface-slit radial wire waveguide 1 is composed of upper and lower cylindrical metal plates having a radius of 206 mm and a distance of 8 mm.
- the upper slit metal plate 1a has a slit length of 15 mm and a width of 2 mm;
- the feeding probe 2 adopts a cylindrical feeding metal rod with a diameter of 1 mm, and penetrates into the waveguide 7 mm;
- the dielectric resonant antenna array 3 is a plurality of high dielectric constant unit dielectric resonators, each unit dielectric resonator is a Rogers RO3010 material having a dielectric constant of 10.2, length 15 mm, width 5 mm, height 2 mm, according to surface open diameter
- the arrangement of the slits of the upper slit metal plate 1a of the wire waveguide is arranged in the above manner: a four-turn dielectric resonator unit is used, and the dielectric resonators of the adjacent rings are separated by 41 mm, and the dielectric resonator of each ring unit is The number is optimized to be 10, 20, 30 and 40 respectively;
- the dielectric layer 4 is a Teflon material having a dielectric constant of 2.1.
- the dielectric resonant antenna array 3 is fed by the surface slit radial line waveguides 1a, 1b, 1c.
- FIGS. 6a and 6b are the normalized radiation directions of the main polarization field component and the cross polarization field component of the antenna array of the present embodiment at the 5 GHz operating frequency on the two main working planes, respectively.
- Figure 6a is in three-dimensional spherical coordinates
- the normalized radiation pattern of the main polarization and cross-polarization field components with ⁇ from -180° to 180° on the surface shows that the cross-polarization field component is 40 dB lower than the main polarization field component, achieving good results.
- Figure 6b is in three-dimensional spherical coordinates
- the normalized radiation pattern of the principal polarization field component and the cross-polarization field component of ⁇ from -180° to 180° on the surface shows that the cross-polarization field component is 20 dB lower than the main polarization field component.
- the radial line feed dielectric resonant antenna array achieved good linear polarization radiation, and obtained 22dB gain, 24.438dB directionality and 59.7% aperture efficiency.
- the solution proposed by the present invention has a good use prospect.
- Figure 3 shows an arrangement of the radial line feed dielectric resonant antenna array radiating circularly polarized electromagnetic waves. Similarly, the dielectric resonator antenna array is arranged in the same manner as the gap of the upper unsealed metal plate, and only the arrangement of the dielectric resonant antenna array is described here.
- the dielectric resonant antenna array is also composed of a series of array units, and each array unit includes two mutually perpendicular three-dimensional rectangular dielectric resonators. The difference is that the two mutually perpendicular dielectric resonators are close to each other. If the center of each dielectric resonator is connected to the center of the circle, the angle between the long sides of the two mutually perpendicular dielectric resonators and the respective concentric lines the same.
- a plurality of array elements having the above characteristics are arranged in a spiral manner from the inside to the outside, and two adjacent array units are separated by a half waveguide wavelength.
- the circularly polarized electromagnetic wave is synthesized by two electromagnetic waves having the same amplitude and orthogonal phases.
- the condition that the two dielectric resonators in the circularly polarized array unit are close to each other and the same angle as the center of the circle can be approximated by the same amplitude of the energy coupled to the two dielectric resonators, and the amplitude of the radiated electromagnetic waves is the same.
- the mutually perpendicular conditions ensure that the radiated electromagnetic waves are spatially orthogonal.
- FIG. 7 is a schematic view showing the arrangement of circularly polarized array elements.
- FIG. 7 includes two array units, the dielectric resonator 1 and the dielectric resonator 2 constitute an array unit, and the dielectric resonator 3 and the dielectric resonator 4 constitute an array unit, and the dielectric resonator 1 and the dielectric resonator 2 are taken as an example.
- the dielectric resonator 1 and the dielectric resonator 2 are perpendicular to each other, the position of the dielectric resonator 1 is determined to be ⁇ 1 , and the position ⁇ 1 ' of the dielectric resonator 2 is determined by the formula (1).
- Equation (10) from the center of the [rho] 1 of a first set of dielectric resonator array unit 1, from the center ⁇ 1 'is set at another dielectric resonator 2 array of cells;
- the energy propagating within the waveguide is coupled to the energy coupled to the dielectric resonator 1,
- the energy propagating within the waveguide is coupled to the energy coupled to the medium 2;
- the phase (1) is obtained by determining the position of the dielectric resonator 1 in a group of array elements, and obtaining a constraint condition corresponding to the position ⁇ 1 ' of the dielectric resonator 2 whose phase difference of the coupling energy is 90 degrees.
- the center of the dielectric resonator 1 and the dielectric resonator 2 are connected to the center of the circle, and the angle ⁇ 1 between the line and the long side of the respective dielectric resonator is determined by the formula (11).
- l is the length of the medium
- ⁇ is the distance between the dielectric resonator 1 and the dielectric resonator 2 in a pair of array units.
- the internal formula of the internal dielectric resonator of the adjacent unit is the same as the above formula, and the position of the adjacent array unit is determined by the formula (13) and the formula (14).
- the dielectric resonant antenna array may be a two-dimensional or three-dimensional planar array; the unit dielectric resonator may be a solid rectangular, cylindrical or other shape; the dielectric dielectric block of the dielectric resonant antenna array may be a single dielectric resonator or multiple The dielectric resonators are stacked or combined; the dielectric resonators of the unit may also be selected from dielectric materials suitable for dielectric constants.
- the radial line feed dielectric resonant antenna array adopts a single feed radial line waveguide to circulate the entire excitation medium resonant antenna array, which solves the problem of complicated structure of the multi-feed end of the array antenna. And achieved high gain, high caliber efficiency, and by adjusting the gap And the arrangement of the dielectric resonant antenna array can obtain linear or circularly polarized antenna performance.
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种径向线馈电介质谐振天线阵列,包括表面开缝径向线波导(1)、馈电探针(2)、介质谐振天线阵列(3);表面开缝径向线波导(1)包括上层开缝金属板(1a)和下层金属底板(1b),馈电探针(2)包括金属棒(2a)及与金属棒(2a)连接的无线电天线接头(2b),馈电探针(2)位于表面开缝径向线波导(1)的轴心位置,无线电天线接头(2b)一端伸出表面开缝径向线波导(1)外部,介质谐振天线阵列(3)位于上层开缝金属板(1a)的正上方,介质谐振天线阵列(3)包括多个单元介质谐振器。本发明提供的径向线馈电介质谐振天线阵列采用单一馈电方式实现线极化或圆极化电磁波辐射,构造简单并获得了高增益及高口径效率。
Description
本发明涉及微波通信领域,更具体涉及一种单一馈电的径向线波导激励介质谐振天线阵列。
介质谐振天线具有高辐射效率、低损耗、体积小和设计自由度大等优点,所以被广泛的研究并应用到实际工作中。目前,介质谐振器组成的天线阵的馈电方式有探针耦合矩形波导内的能量馈电、基片集成波导上开缝馈电、从介质波导上耦合能量和微带贴片耦合馈电等。其中,探针耦合馈电方式每个阵列单元需要一个探针,且需要调节每个探针深入波导的距离以调整耦合度;基片集成波导开缝馈电和从介质波导耦合能量的馈电方式均主要工作于高频情况,低频没有较大优势。当阵元数较多高增益工作时,采用微带贴片耦合馈电方式,会由于微带线的增加而造成馈电上的损耗。
目前常用的微波通信高增益天线为喇叭天线、微带天线阵列、反射阵天线和径向线天线,其中喇叭天线和反射阵天线尺寸很大且易受环境影响,微带天线阵列作为高增益天线应用时馈电损耗和介质损耗比较严重,导致天线效率降低。径向线天线作为高增益天线得到了广泛的研究,研究的主要方向是优化口径上缝隙的分布和缝隙长度以增强天线的效率,使用其他类型天线加载径向线天线从而优化辐射增益、口径效率和辐射效率的研究较少。
发明内容
有鉴于此,本发明的目的在于提出一种高增益的径向线馈电介质谐振天线阵列。
基于上述目的本发明提供的径向线馈电介质谐振天线阵列,包括表面开缝径向线波导、馈电探针、介质谐振天线阵列。
表面开缝径向线波导包括上层开缝金属板、下层金属底板及中间的空气层,表面开缝径向线波导整体呈圆柱形结构,其高度小于二分之一波导波
长。所述上层开缝金属板的上表面开有一系列缝隙,下层金属底板的中心处设有一通孔。馈电探针包括金属棒及与金属棒连接的无线电天线接头,馈电探针位于表面开缝径向线波导的轴心位置,无线电天线接头一端伸出表面开缝径向线波导外部,金属棒一端自所述下层金属底板中心的通孔深入表面开缝径向线波导内部。介质谐振天线阵列包括多个单元介质谐振器、位于上层开缝金属板的正上方。介质谐振天线阵列由所述馈电探针通过开缝径向线波导馈电。
在一些实施方式中,所述介质谐振天线阵列的排列方式与上层开缝金属板表面缝隙的排列方式相同。
在一些实施方式中,调整所述介质谐振天线阵列单元及所述上层开缝金属板缝隙的排列方式,径向线馈电介质谐振天线阵列辐射线极化或圆极化电磁波。
在一些实施方式中,表面开缝径向线波导还包括波导侧壁,波导侧壁为圆柱面金属板结构,与上层开缝金属板及下层金属底板构成一个圆柱形波导。
在一些实施方式中,表面开缝径向线波导还包括介质层,介质层由圆柱状的低介电常数的介电材料构成,填充于表面开缝径向线波导以及介质谐振天线阵列的空隙。
在一些实施方式中,上层开缝金属板靠近侧壁的缝隙(或缝隙单元)距离表面径向线波导的圆柱面或侧壁四分之一波导波长。
在一些实施方式中,所述表面开缝径向线波导的上层开缝金属板的缝隙按照多圈环形方式排列,就每一圈而言,缝隙长边的倾角以相同的速率按次序逐个增大或减小,即:一圈中,令某一缝隙的倾角为β,则与该缝隙相邻的一对缝隙的倾角为β±α,与该对缝隙相邻的下一对缝隙的倾角为β±2α,依次类推;且所述α值与该圈缝隙的数量成反比。
在一些实施方式中,介质谐振天线阵列为二维平面阵列或三维立体阵列;所述介质谐振天线阵列的阵列单元可采用单一介质谐振器或者多个介质谐振器堆叠或组合构成,所述介质谐振器可为立体矩形、圆柱形或其他形状。
在一些实施方式中,介质谐振天线阵列的单元介质谐振器,可根据需要选用适合介电常数的介电材料。
在一些实施方式中,馈电探针为圆柱状、圆锥状或其他形状。
从上面所述可以看出,本发明提供的径向线馈电介质谐振天线阵列采用单一馈电径向线波导的方式整个激励介质谐振天线阵列,解决了阵列天线多馈电端的构造复杂的问题,并获得了高增益、高口径效率。通过调整缝隙以及介质谐振天线阵列的排列方式,即可获得线极化或者圆极化的天线性能。
图1为本发明提供的径向线馈电介质谐振天线阵列实施例的主视剖面图;
图2为本发明提供的径向线馈电介质谐振天线阵列实施例1的单元介质谐振器的线极化排列方式示意图;
图3为本发明提供的径向线馈电介质谐振天线阵列实施例2的单元介质谐振器的圆极化排列方式示意图;
图4本发明提供的径向线馈电介质谐振天线阵列实施例的介质谐振器单元与其馈电缝隙的结构示意图;
图5为本发明提供的径向线馈电介质谐振天线阵列实施例1的介质谐振天线阵列单元的排列结构图;
图7为本发明提供的径向线馈电介质谐振天线阵列实施例2的介质谐振天线阵列单元的排列结构图。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
如图1及图2所示,所述的径向线馈电介质谐振天线阵列,包括表面开缝径向线波导1、馈电探针2、介质谐振天线阵列3及介质层4。
表面开缝径向线波导1包括上层开缝金属板1a、下层金属底板1b及波导侧壁1c。表面开缝径向线波导1整体呈圆柱形结构,其高度小于二分之一波导波长。上层开缝金属板1a的上表面开有一系列缝隙,介质谐振天线阵列3位于上层开缝金属板1a的正上方。介质谐振天线阵列3由若干个单元介质谐振器组成,每个缝隙正上方布置有一个介质谐振器,因此单元介质谐振器的排列方式与上层开封金属板1a的缝隙排列方式相同,其排列方式可参见图2及图3。
馈电探针2包括金属棒2a及与金属棒2a连接的无线电天线接头2b。馈电探针2位于表面开缝径向线波导1的轴心位置,下层金属底板1b的中心处设有一通孔,无线电天线接头2b一端自所述下层金属底板1b中心的通孔伸出表面开缝径向线波导1外部与馈电同轴电缆相连;金属棒2a深入表面开缝径向线波导1激励波导。
介质层4由圆柱状的低介电常数的介电材料构成,填充于表面开缝径向线波导1以及介质谐振天线阵列3的空隙。介质谐振天线阵列3由所述馈电探针2通过表面开缝径向线波导1馈电。
馈电探针2连接无线电天线接头2b,电磁能量由同轴模式转换为径向传播模式。由于表面开缝径向线波导1的高度小于半个波导波长,波导1中传播的电磁波为TEM(transverse electromagnetic mode,横向电磁波模式)模式,TEM模式的电磁波在径向传播方向上既无电场分量也无磁场分量,从而使得波导内电流的传播沿着波导半径的方向。表面开缝径向线波导1的上层开缝金属板1a开缝激励单元介质谐振器的简要原理是:通过在金属板上开缝,扰动沿着波导上层金属板传播的电流,使波导内的能量流出波导,从而激励介质谐振天线阵列3。馈电探针2、侧壁1c、下层金属板1b与上层开缝金属板1a共同构成激励介质谐振天线阵列的馈源。通过上述馈源耦合能量到介质谐振天线阵列3,再通过单元介质谐振器排列方式的变化,使阵列辐射线极化(线极化或者圆极化都是天线的极化方式,描述的是沿着天线电磁波传播方向向天线看去,电场矢量端点所走的路径,线极化的电场矢量端点沿着一条垂直于传播方向的面上的直线变化,圆极化的电场矢量端点沿着一个垂直于传播方向的面上的圆变化)或圆极化的高增益电磁波。
图4为介质谐振器单元与其馈电缝隙的结构示意图,图中缝隙和介质谐振器均平行于X轴:上层开缝金属板1a上有沿着径向的电流(图4中电流
沿着Y轴方向),缝隙通过切断流过的电流从而在缝隙的窄边(即沿着Y轴的短边)产生电场,而在缝隙的宽边(即沿着X轴的长边)产生磁场,电场和磁场可以用等效电流元(沿缝隙窄边)和等效磁流元(沿缝隙宽边)来代替,又由于缝隙宽度相较于缝隙长度和工作波长较小,所以等效电流元可忽略不计,只考虑等效磁流元的作用,则缝隙等效为一个沿着X轴方向的磁流。介质谐振器位于缝隙正上方,受到下方缝隙即磁流的作用,在介质谐振器内部激励起磁场,从而向自由空间辐射电磁波。虽然缝隙本身也是可以辐射的,但是缝隙作为磁流元辐射时其长度是二分之一的波长,而采用缝隙耦合介质谐振器的结构,其长度为二分之一波导波长除以介质谐振器介电常数的开方,缩减了单元尺寸。除此之外,通过选择介质谐振器的尺寸可以改变其内部电磁场模式,辐射不同模式的电磁波,自由度更大。
实施例1
图2示出了径向线馈电介质谐振天线阵列辐射线极化电磁波的一种排列方案。由于介质谐振器天线阵列的排列方式与上层开封金属板的缝隙排列方式相同,这里仅描述介质谐振天线阵列的排列方式。
可以看出,图2中介质谐振天线阵列的阵列单元按照多圈方式排列(图中为4圈),每圈包括若干个阵列单元,在径向上,每圈阵列单元之间间隔一个波导波长,靠近边缘的一圈阵列单元距表面开缝径向线波导的侧壁四分之一个波导波长。每一圈中,每个阵列单元又由两个相互垂直的立体矩形介质谐振器组成,分别设为A介质谐振器及B介质谐振器,A介质谐振器与B介质谐振器相距半个波导波长且各自成圈排列,无论对于A介质谐振器还是B介质谐振器而言,他们各自在圈内的排列方式也呈现出一定的规律,即每个介质谐振器长边的倾角以相同的速率按次序逐个增大或减小:考察该圈内A介质谐振器长边的倾角,若令某一介质谐振器A的倾角为β,则相邻一对介质谐振器A的倾角为β±α,下一组相邻的介质谐振器A的倾角为β±2α,之后分别为β±3α、β±4α、β±5α……,以此类推。且α值的大小与该圈内介质谐振器A的数量成反比。B介质谐振器的排列方式遵从相同的规律。
下面对该介质谐振天线阵列的线极化排列方案进行推导和验证。
如图5所示,介质谐振天线阵列位于XOY平面上,其中一对介质谐振器位于与X轴呈角度的轴线上,分别距圆心的距离为ρ1与ρ2,与轴线的夹角分别为φ1与φ2。波导表面开缝耦合入介质谐振器的能量与波导内部的场和
介质谐振器与径向的夹角φ有关,可以表示为式(1):
C=e-jkρsin(φ) (1)
k=2π/λ (2)
其中,C为介质谐振器耦合的能量,k为波数,ρ为介质谐振器距圆心的距离,λg为波导波长。设以X轴方向为主极化(线极化电场分量始终沿着与电磁波传播方向相垂直的面内的一个方向,该方向即为主极化方向,若天线电磁波传播方向为Z轴方向,电场分量始终沿着X轴方向,则X轴方向为主极化方向),Y轴方向为交叉极化(天线的交叉极化电场分量为线极化方式工作天线中,在与天线电磁波传播方向相垂直的面内,与主极化场分量相垂直的方向上的电场分量,按上述主极化方向设定,则Y轴方向为交叉极化方向),则单独一个介质谐振器沿着主极化方向的辐射场为式(3),沿着交叉极化方向的辐射场为式(4):
β=sin(φ) (5)
从式(3)和式(4)也可以看出,由于阵列选择排布方式为环形排布,则阵列单元只选择一个介质谐振器时,在交叉极化方向上会存在场分量,一般不能实现线极化的极化方式(通过改变介质谐振器的形状和尺寸,选择合适的介质谐振器内部激励模式,阵列单元有可能使用一个介质谐振器且抑制交叉极化)。当使用一对介质谐振器作为阵列单元时,由上述辐射场公式可得一个单元的主极化的辐射场为式(6),交叉极化方向的辐射场为式(7):
根据线极化场的要求,主极化分量为1,交叉极化分量为0。将上述条件带入式(6)和式(7)可得单元介质谐振器与轴线的夹角,式(8)和式(9):
推出φ2-φ1=π/2,即阵列单元中两个介质谐振器之间为垂直关系。此
外,阵列单元中两个介质谐振器相距应为半个波导波长,以达到相差0或π的相位,而阵列单元之间相距应为一个波导波长,以达到同相激励。
以上要求是径向线馈电介质谐振天线阵列辐射线极化电磁波的必要条件。为了充分利用空间,实现高增益及高口径效率,图2的排列方式中,关于径向线馈电介质谐振天线阵列单元和上层开缝金属板缝隙的排列方式还增加了如前所述的一些优化条件。
实验验证:
表面开缝径向线波导1,由半径为206mm、相距8mm的上下层圆柱形金属板构成。上层开缝金属板1a缝隙长15mm,宽2mm;
馈电探针2采用直径1mm的圆柱馈电金属棒,深入波导内7mm;
介质谐振天线阵列3,为多个高介电常数的单元介质谐振器,每个单元介质谐振器为介电常数为10.2的罗杰斯RO3010材料,长15mm,宽5mm,高2mm,按照表面开缝径向线波导的上层开缝金属板1a的缝隙的排列方式排列,排列方式为上文所述:采用四圈介质谐振器单元,相邻圈的介质谐振器相隔41mm,每圈单元介质谐振器的个数经过优化分别为10、20、30和40;
介质层4为介电常数为2.1的特氟龙材料。
介质谐振天线阵列3由表面开缝径向线波导1a、1b、1c馈电。
如图6所示,图6a和6b分别为本实施例中的天线阵列在5GHz工作频率上、在两个主要工作平面上的主极化场分量和交叉极化场分量的归一化辐射方向图。
以上实验中,径向线馈电介质谐振天线阵列实现了良好的线极化辐射,且得到22dB的增益,24.438dB的定向性和59.7%的口径效率。作为线极化天线,本发明提出的方案具有较好的使用前景。
实施例2
图3示出了该径向线馈电介质谐振天线阵列辐射圆极化电磁波的一种排列方案。同样,介质谐振器天线阵列的排列方式与上层开封金属板的缝隙排列方式相同,这里仅描述介质谐振天线阵列的排列方式。
与图2特征相类似,该排列方式中,介质谐振天线阵列也是由一系列阵列单元组成,且每个阵列单元中包含两个互相垂直的立体矩形介质谐振器。不同的是,这两个相互垂直的介质谐振器相距较近,若将每个介质谐振器的中心与圆心相连,这两个相互垂直的介质谐振器的长边与各自连心线的夹角相同。
多个具有上述特征的阵列单元按照螺旋线方式由内向外延伸排列,两两相邻阵列单元之间相距半个波导波长。
该介质谐振天线阵列的圆极化排列方案的推导过程以及原理分析如下:
圆极化电磁波由两个振幅相同,相位正交的电磁波合成。圆极化阵列单元中两个介质谐振器相距较近且与圆心夹角相同的条件可以近似为两个介质谐振器上耦合的能量的振幅相同,辐射的电磁波振幅相同。相互垂直的条件保证辐射电磁波在空间上是正交的。
图7为圆极化阵列单元排列方式示意图。图7中包含两个阵列单元,介质谐振器1与介质谐振器2构成一个阵列单元,介质谐振器3与介质谐振器4构成一个阵列单元,以介质谐振器1与介质谐振器2为例说明,介质谐振器1与介质谐振器2相互垂直,确定介质谐振器1的位置为ρ1,介质谐振器2的位置ρ1'由公式(1)确定。
公式(10)中,距圆心ρ1处为一组阵列单元的第一个介质谐振器1,距圆心ρ1'处为一组阵列单元的另一个介质谐振器2;为波导内传播的能量耦合到介质谐振器1上耦合的能量,为波导内传播的能量耦合到介质2上耦合的能量;为求的相位,为求的相位;公式(1)是通过确定一组阵列单元中介质谐振器1的位置,得出与其相对应的、耦合能量相位差90度的介质谐振器2的位置ρ1'的约束条件。
将介质谐振器1和介质谐振器2中心与圆心相连,该连线与各自介质谐振器长边的夹角φ1,由公式(11)确定。
ρ1'sin(φ1)-ρ1cos(φ1)=l/2+δ (11)
公式(11)中,l是介质的长度,δ是一对阵列单元内介质谐振器1和介质谐振器2的距离。
可见,在该排列方式中,当阵列单元中的一个介质谐振器的相对于圆心的位置ρ1确定后,该阵列单元的所有相对关系便已确定。
相邻单元内部介质谐振器的内部公式与上述公式相同,相邻阵列单元的位置由公式(13)及公式(14)决定。
以上分析表明,在实际产品设计中,由于要求阵列单元中两介质谐振器距离较近,δ值一定,在上层开缝金属板及介质的尺寸选定后,阵列单元的排布随着圆心距ρ的逐渐增大,阵列单元中一个介质谐振器相对于另外一个介质谐振器转过的角度将逐渐减小,两个介质谐振器的长边与他们各自与圆心连线的夹角φ也随之减小。
至此,一个辐射圆极化电磁波的介质谐振天线阵列在圆形口径面上的排列情况已经完全确定。一个单元内的两个介质谐振器由于具有振幅相同、相位正交的激励,且相互垂直,将辐射圆极化电磁波,由于相邻单元之间间距是固定的,将以同等相位的形式叠加每个单元辐射的圆极化电磁波,从而形成高增益的一个辐射圆极化波的天线阵列。
在实际应用中,介质谐振天线阵列可以为二维或者三维平面阵列;单元介质谐振器可为立体矩形、圆柱形或其他形状;介质谐振天线阵列的单元介质块可采用单一介质谐振器或者多个介质谐振器堆叠或组合构成;单元介质谐振器亦可根据需要选用适合介电常数的介电材料。
从上述实施例中可以看出,所述的径向线馈电介质谐振天线阵列采用单一馈电径向线波导的方式整个激励介质谐振天线阵列,解决了阵列天线多馈电端的构造复杂的问题,并获得了高增益、高口径效率,且通过调整缝隙以
及介质谐振天线阵列的排列方式,可获得线极化或者圆极化的天线性能。
所属领域的普通技术人员应当理解:以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种径向线馈电介质谐振天线阵列,其特征在于,包括表面开缝径向线波导(1)、馈电探针(2)、介质谐振天线阵列(3);表面开缝径向线波导(1)包括上层开缝金属板(1a)、下层金属底板(1b)及中间的空气层,表面开缝径向线波导(1)整体呈圆柱形结构,其高度小于二分之一波导波长,所述上层开缝金属板(1a)的上表面开有一系列缝隙,下层金属底板(1b)的中心处设有一通孔,馈电探针(2)包括金属棒(2a)及与金属棒(2a)连接的无线电天线接头(2b),馈电探针(2)位于表面开缝径向线波导(1)的轴心位置,无线电天线接头(2b)一端自所述下层金属底板(1b)中心的通孔伸出表面开缝径向线波导(1)外部,金属棒(2a)一端深入表面开缝径向线波导(1)内部,介质谐振天线阵列(3)包括多个单元介质谐振器、位于上层开缝金属板(1a)的正上方;介质谐振天线阵列(4)由所述馈电探针(2)通过开缝径向线波导(1)馈电。
- 根据权利要求1所述的径向线馈电介质谐振天线阵列,其特征在于,介质谐振天线阵列(3)的排列方式与上层开缝金属板(1a)表面缝隙的排列方式相同。
- 根据权利要求1或2所述的径向线馈电介质谐振天线阵列,其特征在于,调整所述介质谐振天线阵列单元及所述上层开缝金属板(1a)上缝隙的排列方式,径向线馈电介质谐振天线阵列辐射线极化或圆极化电磁波。
- 根据权利要求3任意一项所述的径向线馈电介质谐振天线阵列,其特征在于,表面开缝径向线波导(1)还包括波导侧壁(1c),波导侧壁1c为圆柱面金属板结构,与上层开缝金属板(1a)及下层金属底板(1b)构成一个圆柱形波导。
- 根据权利要求3任意一项所述的径向线馈电介质谐振天线阵列,其特征在于,表面开缝径向线波导(1)还包括介质层(4),介质层(4)由圆柱状的低介电常数的介电材料构成,填充于表面开缝径向线波导(1)以及介质谐振天线阵列(3)的空隙。
- 根据权利要求3所述的径向线馈电介质谐振天线阵列,其特征在于,上层开缝金属板(1a)靠近侧壁(1c)的缝隙(或缝隙单元)距离表面径向线波导(1)的圆柱面或侧壁(1c)四分之一波导波长。
- 根据权利要求3所述的径向线馈电介质谐振天线阵列,其特征在于,所述表面开缝径向线波导(1)的上层开缝金属板(1a)的缝隙按照多圈环形方式排列,就每一圈而言,缝隙长边的倾角以相同的速率按次序逐个增大或减小,即:一圈中,令某一缝隙的倾角为β,则与该缝隙相邻的一对缝隙的倾角为β±α,与该对缝隙相邻的下一对缝隙的倾角为β±2α,依次类推;且所述α值与该圈缝隙的数量成反比。
- 根据权利要求3所述的径向线馈电介质谐振天线阵列,其特征在于,介质谐振天线阵列(3)为二维平面阵列或三维立体阵列;所述介质谐振天线阵列(3)的阵列单元可采用单一介质谐振器或者多个介质谐振器堆叠或组合构成,所述介质谐振器可为立体矩形、圆柱形或其他形状。
- 根据权利要求3所述的径向线馈电介质谐振天线阵列,其特征在于,介质谐振天线阵列(3)的单元介质谐振器,可根据需要选用适合介电常数的介电材料。
- 根据权利要求3所述的径向线馈电介质谐振天线阵列,其特征在于,馈电探针(2)为圆柱状、圆锥状或其他形状。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/070107 WO2016109920A1 (zh) | 2015-01-05 | 2015-01-05 | 径向线馈电介质谐振天线阵列 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/070107 WO2016109920A1 (zh) | 2015-01-05 | 2015-01-05 | 径向线馈电介质谐振天线阵列 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016109920A1 true WO2016109920A1 (zh) | 2016-07-14 |
Family
ID=56355384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/070107 WO2016109920A1 (zh) | 2015-01-05 | 2015-01-05 | 径向线馈电介质谐振天线阵列 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016109920A1 (zh) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106711601A (zh) * | 2016-11-18 | 2017-05-24 | 北京凌波微步信息技术有限公司 | 一种采用双抛物柱面馈电的宽带毫米波波导缝隙天线 |
CN107819194A (zh) * | 2017-11-30 | 2018-03-20 | 苏州优函信息科技有限公司 | 方向可重构共型机载天线、馈电网络及无人机 |
CN108539414A (zh) * | 2018-03-29 | 2018-09-14 | 中国电子科技集团公司第三十八研究所 | 一种结构紧凑的轻质高效缝隙天线及天线阵 |
CN110059376A (zh) * | 2019-04-01 | 2019-07-26 | 中国电子科技集团公司第三十八研究所 | 一种基于圆柱面共形阵列快速优化设计方法及系统 |
CN111585028A (zh) * | 2020-05-26 | 2020-08-25 | 华南理工大学 | 一种数字编码全息天线及其调控方法 |
CN112467389A (zh) * | 2020-11-24 | 2021-03-09 | 维沃移动通信有限公司 | 电子设备 |
CN112531353A (zh) * | 2020-11-27 | 2021-03-19 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | 一种双极化共口径阵列天线 |
CN112838358A (zh) * | 2020-12-31 | 2021-05-25 | 华南理工大学 | 一种基于3d打印技术的双向辐射同旋向双圆极化天线 |
CN112909518A (zh) * | 2019-11-19 | 2021-06-04 | 北京道古视界科技有限公司 | 方向图可编程超材料天线阵列设计方法 |
CN113036440A (zh) * | 2021-03-10 | 2021-06-25 | 复旦大学 | 宽带宽角扫描开口波导相控阵列天线 |
CN113161736A (zh) * | 2021-04-02 | 2021-07-23 | 曲阜师范大学 | 一种双频圆极化介质谐振器天线 |
CN113964536A (zh) * | 2021-10-27 | 2022-01-21 | 中国电子科技集团公司第三十八研究所 | 一种圆极化两维宽角相扫天线单元及相控阵天线阵列 |
CN114142231A (zh) * | 2021-12-30 | 2022-03-04 | 中国人民解放军空军工程大学 | 一种低耦合低剖面宽带天线 |
CN114530702A (zh) * | 2022-01-26 | 2022-05-24 | 天津大学 | 面向雷达目标的二维探测线阵 |
CN114824809A (zh) * | 2022-04-02 | 2022-07-29 | 中山大学 | 一种具有平顶方向图特性的介质谐振器天线 |
CN115000686A (zh) * | 2022-06-17 | 2022-09-02 | 华南理工大学 | 基于辐射金属块的滤波天线阵列 |
CN115173051A (zh) * | 2022-08-01 | 2022-10-11 | 曲阜师范大学 | 一种宽带高增益圆极化天线阵列 |
CN115332810A (zh) * | 2022-07-28 | 2022-11-11 | 西安空间无线电技术研究所 | 一种平顶波束径向波导缝隙阵列天线及平顶波束生成方法 |
CN116093634A (zh) * | 2022-12-08 | 2023-05-09 | 西北工业大学 | 一种用于飞行器的收发同时的天线阵列 |
CN116845587A (zh) * | 2023-08-11 | 2023-10-03 | 成都辰星迅联科技有限公司 | 一种扫描范围扩展的离散型victs天线单元 |
CN119726137A (zh) * | 2025-02-27 | 2025-03-28 | 成都中宇微芯科技有限公司 | 一种可调毫米波缝隙天线 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004096286A (ja) * | 2002-08-30 | 2004-03-25 | Mitsubishi Electric Corp | アレーアンテナ装置 |
CN102694231A (zh) * | 2011-03-22 | 2012-09-26 | 电子科技大学 | 一种新型高功率微波天线 |
CN202949040U (zh) * | 2012-10-25 | 2013-05-22 | 中国传媒大学 | 起始缝隙距离中心小于一个波导波长的圆极化径向缝隙天线 |
CN103337714A (zh) * | 2013-06-06 | 2013-10-02 | 广州科技贸易职业学院 | 一种基于电磁带隙材料技术的介质谐振天线阵 |
-
2015
- 2015-01-05 WO PCT/CN2015/070107 patent/WO2016109920A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004096286A (ja) * | 2002-08-30 | 2004-03-25 | Mitsubishi Electric Corp | アレーアンテナ装置 |
CN102694231A (zh) * | 2011-03-22 | 2012-09-26 | 电子科技大学 | 一种新型高功率微波天线 |
CN202949040U (zh) * | 2012-10-25 | 2013-05-22 | 中国传媒大学 | 起始缝隙距离中心小于一个波导波长的圆极化径向缝隙天线 |
CN103337714A (zh) * | 2013-06-06 | 2013-10-02 | 广州科技贸易职业学院 | 一种基于电磁带隙材料技术的介质谐振天线阵 |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106711601A (zh) * | 2016-11-18 | 2017-05-24 | 北京凌波微步信息技术有限公司 | 一种采用双抛物柱面馈电的宽带毫米波波导缝隙天线 |
CN106711601B (zh) * | 2016-11-18 | 2023-08-29 | 北京凌波微步信息技术有限公司 | 一种采用双抛物柱面馈电的宽带毫米波波导缝隙天线 |
CN107819194A (zh) * | 2017-11-30 | 2018-03-20 | 苏州优函信息科技有限公司 | 方向可重构共型机载天线、馈电网络及无人机 |
CN107819194B (zh) * | 2017-11-30 | 2024-05-03 | 台州安奇灵智能科技有限公司 | 方向可重构共型机载天线、馈电网络及无人机 |
CN108539414A (zh) * | 2018-03-29 | 2018-09-14 | 中国电子科技集团公司第三十八研究所 | 一种结构紧凑的轻质高效缝隙天线及天线阵 |
CN108539414B (zh) * | 2018-03-29 | 2023-11-14 | 中国电子科技集团公司第三十八研究所 | 一种结构紧凑的轻质高效缝隙天线及天线阵 |
CN110059376A (zh) * | 2019-04-01 | 2019-07-26 | 中国电子科技集团公司第三十八研究所 | 一种基于圆柱面共形阵列快速优化设计方法及系统 |
CN110059376B (zh) * | 2019-04-01 | 2023-04-18 | 中国电子科技集团公司第三十八研究所 | 一种基于圆柱面共形阵列快速优化设计方法及系统 |
CN112909518A (zh) * | 2019-11-19 | 2021-06-04 | 北京道古视界科技有限公司 | 方向图可编程超材料天线阵列设计方法 |
CN111585028A (zh) * | 2020-05-26 | 2020-08-25 | 华南理工大学 | 一种数字编码全息天线及其调控方法 |
CN111585028B (zh) * | 2020-05-26 | 2023-09-19 | 华南理工大学 | 一种数字编码全息天线及其调控方法 |
CN112467389A (zh) * | 2020-11-24 | 2021-03-09 | 维沃移动通信有限公司 | 电子设备 |
CN112467389B (zh) * | 2020-11-24 | 2023-09-05 | 维沃移动通信有限公司 | 电子设备 |
CN112531353A (zh) * | 2020-11-27 | 2021-03-19 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | 一种双极化共口径阵列天线 |
CN112838358A (zh) * | 2020-12-31 | 2021-05-25 | 华南理工大学 | 一种基于3d打印技术的双向辐射同旋向双圆极化天线 |
CN113036440A (zh) * | 2021-03-10 | 2021-06-25 | 复旦大学 | 宽带宽角扫描开口波导相控阵列天线 |
CN113161736A (zh) * | 2021-04-02 | 2021-07-23 | 曲阜师范大学 | 一种双频圆极化介质谐振器天线 |
CN113964536A (zh) * | 2021-10-27 | 2022-01-21 | 中国电子科技集团公司第三十八研究所 | 一种圆极化两维宽角相扫天线单元及相控阵天线阵列 |
CN113964536B (zh) * | 2021-10-27 | 2023-08-22 | 中国电子科技集团公司第三十八研究所 | 一种圆极化两维宽角相扫天线单元及相控阵天线阵列 |
CN114142231A (zh) * | 2021-12-30 | 2022-03-04 | 中国人民解放军空军工程大学 | 一种低耦合低剖面宽带天线 |
CN114530702A (zh) * | 2022-01-26 | 2022-05-24 | 天津大学 | 面向雷达目标的二维探测线阵 |
CN114824809A (zh) * | 2022-04-02 | 2022-07-29 | 中山大学 | 一种具有平顶方向图特性的介质谐振器天线 |
CN114824809B (zh) * | 2022-04-02 | 2023-07-18 | 中山大学 | 一种具有平顶方向图特性的介质谐振器天线 |
CN115000686A (zh) * | 2022-06-17 | 2022-09-02 | 华南理工大学 | 基于辐射金属块的滤波天线阵列 |
CN115332810A (zh) * | 2022-07-28 | 2022-11-11 | 西安空间无线电技术研究所 | 一种平顶波束径向波导缝隙阵列天线及平顶波束生成方法 |
CN115173051B (zh) * | 2022-08-01 | 2023-08-15 | 曲阜师范大学 | 一种宽带高增益圆极化天线阵列 |
CN115173051A (zh) * | 2022-08-01 | 2022-10-11 | 曲阜师范大学 | 一种宽带高增益圆极化天线阵列 |
CN116093634A (zh) * | 2022-12-08 | 2023-05-09 | 西北工业大学 | 一种用于飞行器的收发同时的天线阵列 |
CN116845587A (zh) * | 2023-08-11 | 2023-10-03 | 成都辰星迅联科技有限公司 | 一种扫描范围扩展的离散型victs天线单元 |
CN116845587B (zh) * | 2023-08-11 | 2023-12-29 | 成都辰星迅联科技有限公司 | 一种扫描范围扩展的离散型victs天线单元 |
CN119726137A (zh) * | 2025-02-27 | 2025-03-28 | 成都中宇微芯科技有限公司 | 一种可调毫米波缝隙天线 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016109920A1 (zh) | 径向线馈电介质谐振天线阵列 | |
CN104600419B (zh) | 径向线馈电介质谐振天线阵列 | |
EP3335276B1 (en) | Patch antenna with peripheral parasitic monopole circular arrays | |
Wang et al. | Compact circularly polarized patch antenna with wide axial-ratio beamwidth | |
Ng et al. | 60 GHz plated through hole printed magneto-electric dipole antenna | |
CN110021823A (zh) | 介质谐振器天线 | |
Parizi | Bandwidth enhancement techniques | |
JP7168752B2 (ja) | スロット付きパッチアンテナ | |
US20130201070A1 (en) | Wireless communications device having loop waveguide transducer with spaced apart coupling points and associated methods | |
Rana et al. | Microstrip line fed wideband circularly-polarized dielectric resonator antenna array for microwave image sensing | |
US20130201066A1 (en) | Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods | |
US20190198998A1 (en) | Compact integrated three-broadside-mode patch antenna | |
CN105870637A (zh) | 径向线介质谐振天线阵列 | |
Sahal et al. | Review of circular polarization techniques for design of microstrip patch antenna | |
US20130201065A1 (en) | Wireless communications device having loop antenna with four spaced apart coupling points and associated methods | |
Kabiri et al. | Gain-bandwidth enhancement of 60GHz single-layer Fabry-Perot cavity antennas using sparse-array | |
Cuenca et al. | Self-aligned microstrip-fed spherical dielectric resonator antenna | |
De et al. | A reactively coupled bi-directional dual CP antenna | |
Shafai et al. | Circularly polarized antennas | |
Zhang et al. | The New C‐Shaped Parasitic Strip for the Single‐Feed Circularly Polarized (CP) Microstrip Antenna Design | |
Lou et al. | Circularly polarized leaky wave array with wide axial ratio beamwidth and low sidelobe | |
Qing et al. | Omnidirectional antennas | |
Shafai et al. | Circularly polarized antennas | |
Parvathi et al. | A Novel Low‐profile Rectangular Dielectric Resonator Antenna with enhanced gain for 5G New Radio band applications | |
JPH06120729A (ja) | アンテナ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15876431 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 30.11.2017 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15876431 Country of ref document: EP Kind code of ref document: A1 |