[go: up one dir, main page]

WO2016108573A1 - Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method - Google Patents

Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method Download PDF

Info

Publication number
WO2016108573A1
WO2016108573A1 PCT/KR2015/014400 KR2015014400W WO2016108573A1 WO 2016108573 A1 WO2016108573 A1 WO 2016108573A1 KR 2015014400 W KR2015014400 W KR 2015014400W WO 2016108573 A1 WO2016108573 A1 WO 2016108573A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
service
information
signaling
field
Prior art date
Application number
PCT/KR2015/014400
Other languages
French (fr)
Korean (ko)
Inventor
오세진
고우석
홍성룡
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2016108573A1 publication Critical patent/WO2016108573A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/015High-definition television systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/08Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division

Definitions

  • the present invention relates to a broadcast signal transmission apparatus, a broadcast signal reception apparatus, and a broadcast signal transmission and reception method.
  • the digital broadcast signal may include a larger amount of video / audio data than the analog broadcast signal, and may further include various types of additional data as well as the video / audio data.
  • the digital broadcasting system may provide high definition (HD) images, multichannel audio, and various additional services.
  • HD high definition
  • data transmission efficiency for a large amount of data transmission, robustness of a transmission / reception network, and network flexibility in consideration of a mobile receiving device should be improved.
  • a method for processing broadcast signal transmission includes generating one or more first layer data units including first level signaling data and broadcast data for a broadcast service; Generating one or more second layer data units including the one or more first layer data units and second level signaling data; and generating a broadcast signal comprising the one or more second layer data units;
  • the first level signaling data includes information describing the broadcast service
  • the second level signaling data includes information necessary to acquire a channel scan and the first level signaling data.
  • the second level signaling data includes bootstrap mode information identifying a bootstrap mode indicating a signaling structure used to obtain one or more components included in the broadcast service. do.
  • the bootstrap mode information identifies whether the bootstrap mode corresponds to a first bootstrap mode or a second bootstrap mode, and the first bootstrap mode corresponds to the second level signaling data.
  • the one The second component may be a mode for acquiring the at least one component
  • the second bootstrap mode may be a mode for acquiring the at least one component by using information included in the second level signaling data.
  • the second level signaling data includes service identification information for uniquely identifying the broadcast service, and And component number information indicating the number of components included in the broadcast service identified by the service identification information.
  • the second level signaling data includes a transmission session in which a packet including component identification information uniquely identifying a component included in the broadcast service and data of a component identified by the component identification information is transmitted.
  • the method may further include identifying component transmission session identification information.
  • the second level signaling data may further include component data pipe identification information for identifying a data pipe of a physical layer for transmitting a packet including data of the component.
  • said second level signaling data further comprises a transport parameter descriptor containing a transport protocol parameter for said packet comprising data of said component.
  • the broadcast signal transmission processing apparatus for solving the above technical problem is a first layer for generating one or more first layer data units including first level signaling data and broadcast data for a broadcast service.
  • Generate a broadcast signal comprising an encoder, a second layer encoder generating the one or more second layer data units comprising the one or more first layer data units and the second level signaling data and the one or more second layer data units
  • a broadcast signal generator wherein the first level signaling data includes information describing the broadcast service, and the second level signaling data includes information necessary to acquire a channel scan and the first level signaling data. It is characterized by including.
  • the second level signaling data includes bootstrap mode information identifying a bootstrap mode indicating a signaling structure used to obtain one or more components included in the broadcast service. do.
  • the bootstrap mode information identifies whether the bootstrap mode corresponds to a first bootstrap mode or a second bootstrap mode, and the first bootstrap mode corresponds to the second level signaling data.
  • the one The second component may be a mode for acquiring the at least one component
  • the second bootstrap mode may be a mode for acquiring the at least one component by using information included in the second level signaling data.
  • the second level signaling data includes service identification information for uniquely identifying the broadcast service, and And component number information indicating the number of components included in the broadcast service identified by the service identification information.
  • the second level signaling data includes a transmission session in which a packet including component identification information uniquely identifying a component included in the broadcast service and data of a component identified by the component identification information is transmitted.
  • the method may further include identifying component transmission session identification information.
  • the second level signaling data may further include component data pipe identification information for identifying a data pipe of a physical layer for transmitting a packet including data of the component.
  • said second level signaling data further comprises a transport parameter descriptor containing a transport protocol parameter for said packet comprising data of said component.
  • the present invention can provide various broadcast services by processing data according to service characteristics to control a quality of service (QoS) for each service or service component.
  • QoS quality of service
  • the present invention can achieve transmission flexibility by transmitting various broadcast services through the same radio frequency (RF) signal bandwidth.
  • RF radio frequency
  • the present invention can improve data transmission efficiency and robustness of transmission and reception of broadcast signals using a multiple-input multiple-output (MIMO) system.
  • MIMO multiple-input multiple-output
  • the present invention it is possible to provide a broadcast signal transmission and reception method and apparatus capable of receiving a digital broadcast signal without errors even when using a mobile reception device or in an indoor environment.
  • location information of an associated component may be provided.
  • service layer signaling may be selectively parsed using filtering information.
  • FIG. 1 shows a structure of a broadcast signal transmission apparatus for a next generation broadcast service according to an embodiment of the present invention.
  • FIG 2 illustrates an input formatting block according to an embodiment of the present invention.
  • FIG 3 illustrates an input formatting block according to another embodiment of the present invention.
  • BICM bit interleaved coding & modulation
  • FIG. 5 illustrates a BICM block according to another embodiment of the present invention.
  • FIG. 6 illustrates a frame building block according to an embodiment of the present invention.
  • FIG 7 illustrates an orthogonal frequency division multiplexing (OFDM) generation block according to an embodiment of the present invention.
  • OFDM orthogonal frequency division multiplexing
  • FIG. 8 illustrates a structure of a broadcast signal receiving apparatus for a next generation broadcast service according to an embodiment of the present invention.
  • FIG. 9 shows a frame structure according to an embodiment of the present invention.
  • FIG. 10 illustrates a signaling hierarchy structure of a frame according to an embodiment of the present invention.
  • FIG 11 illustrates preamble signaling data according to an embodiment of the present invention.
  • FIG 13 illustrates PLS2 data according to an embodiment of the present invention.
  • FIG 14 illustrates PLS2 data according to another embodiment of the present invention.
  • FIG. 15 illustrates a logical structure of a frame according to an embodiment of the present invention.
  • PLS 16 illustrates physical layer signaling (PLS) mapping according to an embodiment of the present invention.
  • EAC emergency alert channel
  • FEC forward error correction
  • 21 illustrates the basic operation of a twisted row-column block interleaver according to an embodiment of the present invention.
  • FIG. 22 illustrates an operation of a twisted row-column block interleaver according to another embodiment of the present invention.
  • FIG. 23 illustrates a diagonal read pattern of a twisted row-column block interleaver according to an embodiment of the present invention.
  • FIG. 24 illustrates XFECBLOCKs interleaved from each interleaving array according to an embodiment of the present invention.
  • FIG. 25 illustrates signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • FIG. 26 is a diagram illustrating FI schemes for FSS in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • FIG. 27 illustrates an operation of a reset mode for FES in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • FIG. 28 is a diagram for mathematically representing an input and an output of a frequency interleaver in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • 29 is a view illustrating equations of a logical operation mechanism of frequency interleaving according to FI scheme # 1 and FI scheme # 2 in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention. Indicates.
  • FIG. 30 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • 31 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • 32 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • 33 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • FIG. 34 illustrates operation of a frequency deinterleaver in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • 35 is a conceptual diagram illustrating a variable data-rate system according to another embodiment of the present invention.
  • FIG. 39 is a equation illustrating a reading operation after virtual FEC blocks are inserted according to an embodiment of the present invention.
  • 40 is a flowchart illustrating a process of time interleaving according to an embodiment of the present invention.
  • FIG. 41 is an equation illustrating a process of determining a shift value and a size of a maximum TI block according to an embodiment of the present invention.
  • 44 is a view illustrating a result of a skip operation performed in a reading operation according to an embodiment of the present invention.
  • 45 illustrates a writing process of time deinterleaving according to an embodiment of the present invention.
  • FIG. 47 is a equation illustrating reading operation of time deinterleaving according to another embodiment of the present invention.
  • 48 is a flowchart illustrating a process of time deinterleaving according to an embodiment of the present invention.
  • FIG. 49 is a table showing interleaving types applied according to the number of PLPs.
  • 50 is a block diagram including the first embodiment of the above-described hybrid time interleaver structure.
  • 51 is a block diagram including a second embodiment of the above-described hybrid time interleaver structure.
  • 52 is a block diagram including the first embodiment of the structure of the hybrid time deinterleaver.
  • 53 is a block diagram including the second embodiment of the structure of the hybrid time deinterleaver.
  • FIG. 54 is a diagram illustrating a hybrid broadcast reception device according to an embodiment of the present invention.
  • 55 is a block diagram of a hybrid broadcast receiver according to an embodiment of the present invention.
  • 57 shows a structure of a transport frame delivered to a physical layer of a next generation broadcast transmission system according to an embodiment of the present invention.
  • 58 illustrates a transport packet of an application layer transport protocol according to an embodiment of the present invention.
  • FIG. 59 is a diagram illustrating a method for transmitting signaling data by a next generation broadcast system according to one embodiment of the present invention.
  • 60 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
  • 61 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
  • FIG. 62 is a view illustrating a method of signaling a location of service layer signaling through FIC, which is a signaling for fast service scan and acquisition, and obtaining service layer signaling from the location according to an embodiment of the present invention.
  • FIG. 63 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
  • FIG. 64 is a view illustrating a method of signaling a location of service layer signaling through FIC, which is a signaling for fast service scan and acquisition, and obtaining service layer signaling from the location according to another embodiment of the present invention.
  • 65 is a diagram illustrating a service signaling message format of a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 66 illustrates a service signaling table used in a next generation broadcast system according to an embodiment of the present invention.
  • 67 is a diagram illustrating a service mapping table used in a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 68 shows a service signaling table of a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 69 illustrates a component mapping table used in the next generation broadcast system according to an embodiment of the present invention.
  • 70 illustrates a component mapping table description according to an embodiment of the present invention.
  • 71 illustrates syntax of a component mapping table of a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 72 is a view illustrating a method for delivering signaling associated with each service through a broadband network in a next generation broadcast system according to an embodiment of the present invention. .
  • 73 illustrates a method for signaling MPD in a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 74 illustrates the syntax of an MPD delivery table of a next generation broadcast system according to an embodiment of the present invention.
  • 75 illustrates a transport session instance description of a next generation broadcast system according to an embodiment of the present invention.
  • 76 is a view illustrating a source flow element of a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 77 shows an EFDT of a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 78 is a view illustrating a method for transmitting an ISDT used by a next generation broadcast system according to an embodiment of the present invention.
  • 79 illustrates a delivery structure of a signaling message of a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 80 illustrates signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
  • FIG. 81 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
  • 82 illustrates a component mapping table description according to an embodiment of the present invention.
  • 83 illustrates a component mapping table description according to an embodiment of the present invention.
  • 84 and 85 illustrate a component mapping table description according to an embodiment of the present invention.
  • 86 illustrates a component mapping table description according to an embodiment of the present invention.
  • 87 is a view illustrating common attributes and elements of an MPD according to an embodiment of the present invention.
  • FIG. 88 illustrates a transport session instance description according to an embodiment of the present invention.
  • 89 is a view illustrating a source flow element of a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 90 is a diagram showing signaling data transmitted by a next generation broadcast system according to another embodiment of the present invention for a quick broadcast service scan of a receiver.
  • 91 is a diagram showing signaling data transmitted by a next generation broadcast system according to another embodiment of the present invention for a quick broadcast service scan of a receiver.
  • 92 is a view illustrating a method of obtaining service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • 93 illustrates a method of acquiring service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 94 illustrates a method of obtaining service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • 95 illustrates a method of acquiring service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 96 illustrates a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • 97 is a diagram illustrating a method for transmitting service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • 98 illustrates a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • 99 is a view showing a method of transmitting service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • 100 illustrates a method of transmitting service layer signaling of a next generation broadcast system according to an embodiment of the present invention.
  • 101 is a view showing a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
  • FIG. 102 is a diagram illustrating syntax of a header of a signaling message according to another embodiment of the present invention.
  • FIG. 102 is a diagram illustrating syntax of a header of a signaling message according to another embodiment of the present invention.
  • FIG. 103 is a diagram illustrating a protocol stack for processing a DASH Initialization Segment according to an embodiment of the present invention.
  • FIG. 104 illustrates a portion of a Layered Coding Transport (LCT) Session Instance Descriptor (LSID) according to an embodiment of the present invention.
  • LCT Layered Coding Transport
  • LSID Session Instance Descriptor
  • FIG. 105 is a diagram illustrating a Signaling Object Description (SOD) for providing information for filtering a service signaling message according to an embodiment of the present invention.
  • SOD Signaling Object Description
  • 106 is a diagram illustrating an object including a signaling message according to an embodiment of the present invention.
  • TCD TOI Configuration Description
  • FIG. 108 is a diagram illustrating a payload format element of a transport packet according to an embodiment of the present invention.
  • FIG. 109 illustrates a TOI Configuration Instance Description (TCID) according to an embodiment of the present invention.
  • FIG. 110 is a diagram illustrating syntax of a payload of a fast information channel (FIC) according to an embodiment of the present invention.
  • FIG. 111 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention.
  • 112 is a diagram illustrating syntax of service level signaling according to another embodiment of the present invention.
  • FIG. 113 is a diagram illustrating a component mapping description according to another embodiment of the present invention.
  • FIG. 114 is a diagram illustrating syntax of a URL signaling description according to another embodiment of the present invention.
  • FIG. 114 is a diagram illustrating syntax of a URL signaling description according to another embodiment of the present invention.
  • 115 is a view showing a SourceFlow element according to another embodiment of the present invention.
  • 116 is a diagram illustrating a process of acquiring signaling information through a broadcasting network according to another embodiment of the present invention.
  • 117 is a diagram illustrating a process of acquiring signaling information through a broadcasting network and a broadband network according to another embodiment of the present invention.
  • 118 is a diagram illustrating a process of acquiring signaling information through a broadband network according to another embodiment of the present invention.
  • 119 is a diagram illustrating a process of acquiring an electronic service guide (ESG) through a broadcasting network according to another embodiment of the present invention.
  • ESG electronic service guide
  • 120 is a diagram illustrating a process of acquiring a video segment and an audio segment of a broadcast service through a broadcast network according to another embodiment of the present invention.
  • 121 is a diagram illustrating a process of acquiring a video segment of a broadcast service through a broadcast network and acquiring an audio segment of the broadcast service through a broadband network according to another embodiment of the present invention.
  • FIG. 122 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention.
  • FIG. 122 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention.
  • 123 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention.
  • 124 is a diagram showing a transport_parameter_descriptor according to an embodiment of the present invention.
  • 125 is a diagram illustrating a signaling structure in the process of acquiring a broadcast service in a receiver according to another embodiment of the present invention.
  • 126 is a flowchart illustrating a broadcast signal transmission process according to an embodiment of the present invention.
  • 127 is a diagram illustrating a broadcast signal processing apparatus according to an embodiment of the present invention.
  • the term “signaling” refers to transmitting / receiving service information (SI) provided by a broadcasting system, an internet broadcasting system, and / or a broadcasting / internet convergence system.
  • the service information includes broadcast service information (eg, ATSC-SI and / or DVB-SI) provided in each broadcast system that currently exists.
  • the term 'broadcast signal' refers to bidirectional communication such as internet broadcasting, broadband broadcasting, communication broadcasting, data broadcasting, and / or video on demand, in addition to terrestrial broadcasting, cable broadcasting, satellite broadcasting, and / or mobile broadcasting. This is defined as a concept including a signal and / or data provided in a broadcast.
  • 'PLP' refers to a certain unit for transmitting data belonging to a physical layer. Therefore, the content named "PLP” in this specification may be renamed to "data unit” or "data pipe.”
  • DTV digital broadcasting
  • the hybrid broadcasting service allows a user to transmit enhancement data related to broadcasting A / V (Audio / Video) content or a portion of broadcasting A / V content transmitted through a terrestrial broadcasting network in real time through an internet network. Lets you experience various contents.
  • the present invention provides an apparatus and method for transmitting and receiving broadcast signals for next generation broadcast services.
  • the next generation broadcast service includes a terrestrial broadcast service, a mobile broadcast service, a UHDTV service, and the like.
  • a broadcast signal for a next generation broadcast service may be processed through a non-multiple input multiple output (MIMO) or MIMO scheme.
  • MIMO multiple input multiple output
  • the non-MIMO scheme may include a multiple input single output (MISO) scheme, a single input single output (SISO) scheme, and the like.
  • the MISO or MIMO scheme uses two antennas, but the present invention can be applied to a system using two or more antennas.
  • the present invention can define three physical profiles (base, handheld, advanced) that are optimized to minimize receiver complexity while achieving the performance required for a particular application. have.
  • the physical profile is a subset of all the structures that the corresponding receiver must implement.
  • the three physical profiles share most of the functional blocks, but differ slightly in certain blocks and / or parameters. Further physical profiles can be defined later.
  • a future profile may be multiplexed with a profile present in a single radio frequency (RF) channel through a future extension frame (FEF). Details of each physical profile will be described later.
  • RF radio frequency
  • FEF future extension frame
  • the base profile mainly indicates the main use of a fixed receiving device in connection with a roof-top antenna.
  • the base profile can be moved to any place but can also include portable devices that fall into a relatively stationary reception category.
  • the use of the base profile can be extended for handheld devices or vehicles with some improved implementation, but such use is not expected in base profile receiver operation.
  • the target signal-to-noise ratio range of reception is approximately 10-20 dB, which includes the 15 dB signal-to-noise ratio receiving capability of existing broadcast systems (eg, ATSC A / 53). Receiver complexity and power consumption are not as important as in battery powered handheld devices that will use the handheld profile. Key system parameters for the base profile are listed in Table 1 below.
  • the handheld profile is designed for use in battery powered handheld and in-vehicle devices.
  • the device may move at pedestrian or vehicle speed.
  • the power consumption as well as the receiver complexity is very important for the implementation of the device of the handheld profile.
  • the target signal-to-noise ratio range of the handheld profile is approximately 0-10 dB, but can be set to reach below 0 dB if intended for lower indoor reception.
  • the advance profile provides higher channel capability in exchange for greater execution complexity.
  • the profile requires the use of MIMO transmission and reception, and the UHDTV service is a target use, for which the profile is specifically designed.
  • the enhanced capability may also be used to allow for an increase in the number of services at a given bandwidth, for example multiple SDTV or HDTV services.
  • the target signal to noise ratio range of the advanced profile is approximately 20 to 30 dB.
  • MIMO transmissions initially use existing elliptic polarization transmission equipment and can later be extended to full power cross polarization transmissions. Key system parameters for the advance profile are listed in Table 3 below.
  • the base profile may be used as a profile for both terrestrial broadcast service and mobile broadcast service. That is, the base profile can be used to define the concept of a profile that includes a mobile profile. Also, the advanced profile can be divided into an advanced profile for the base profile with MIMO and an advanced profile for the handheld profile with MIMO. The three profiles can be changed according to the designer's intention.
  • Auxiliary stream A sequence of cells carrying data of an undefined modulation and coding that can be used as a future extension or as required by a broadcaster or network operator.
  • Base data pipe a data pipe that carries service signaling data
  • Baseband Frame (or BBFRAME): A set of Kbch bits that form the input for one FEC encoding process (BCH and LDPC encoding).
  • Coded block one of an LDPC encoded block of PLS1 data or an LDPC encoded block of PLS2 data
  • Data pipe a logical channel in the physical layer that carries service data or related metadata that can carry one or more services or service components
  • Data pipe unit A basic unit that can allocate data cells to data pipes in a frame
  • Data symbol OFDM symbol in a frame that is not a preamble symbol (frame signaling symbols and frame edge symbols are included in the data symbols)
  • DP_ID This 8-bit field uniquely identifies a data pipe within the system identified by SYSTEM_ID.
  • Dummy cell A cell that carries a pseudo-random value used to fill the remaining unused capacity for physical layer signaling (PLS) signaling, data pipes, or auxiliary streams.
  • PLS physical layer signaling
  • FAC Emergency alert channel
  • Frame A physical layer time slot starting with a preamble and ending with a frame edge symbol.
  • Frame repetition unit A set of frames belonging to the same or different physical profile that contains an FEF that is repeated eight times in a super-frame.
  • FEC Fast information channel
  • FECBLOCK set of LDPC encoded bits of data pipe data
  • FFT size The nominal FFT size used for a particular mode equal to the active symbol period Ts expressed in cycles of the fundamental period T.
  • Frame signaling symbol The higher pilot density used at the start of a frame in a particular combination of FFT size, guard interval, and scattered pilot pattern, which carries a portion of the PLS data. Having OFDM symbol
  • Frame edge symbol An OFDM symbol with a higher pilot density used at the end of the frame in a particular combination of FFT size, guard interval, and scatter pilot pattern.
  • Frame-group set of all frames with the same physical profile type in a superframe
  • Future extention frame A physical layer time slot within a super frame that can be used for future expansion, starting with a preamble.
  • Futurecast UTB system A proposed physical layer broadcast system whose input is one or more MPEG2-TS or IP (Internet protocol) or generic streams and the output is an RF signal.
  • Input stream A stream of data for the coordination of services delivered to the end user by the system.
  • Normal data symbols data symbols except frame signaling symbols and frame edge symbols
  • PHY profile A subset of all structures that the corresponding receiver must implement
  • PLS physical layer signaling data consisting of PLS1 and PLS2
  • PLS1 The first set of PLS data carried in a frame signaling symbol (FSS) with fixed size, coding, and modulation that conveys basic information about the system as well as the parameters needed to decode PLS2.
  • FSS frame signaling symbol
  • PLS2 The second set of PLS data sent to the FSS carrying more detailed PLS data about data pipes and systems.
  • PLS2 dynamic data PLS2 data that changes dynamically from frame to frame
  • PLS2 static data PLS2 data that is static during the duration of a frame group
  • Preamble signaling data signaling data carried by the preamble symbol and used to identify the basic mode of the system
  • Preamble symbol a fixed length pilot symbol carrying basic PLS data and positioned at the beginning of a frame
  • Preamble symbols are primarily used for fast initial band scans to detect system signals, their timings, frequency offsets, and FFT sizes.
  • Superframe set of eight frame repeat units
  • Time interleaving block A set of cells in which time interleaving is performed, corresponding to one use of time interleaver memory.
  • Time interleaving group A unit in which dynamic capacity allocation is performed for a particular data pipe, consisting of an integer, the number of XFECBLOCKs that change dynamically.
  • a time interleaving group can be directly mapped to one frame or mapped to multiple frames.
  • the time interleaving group may include one or more time interleaving blocks.
  • Type 1 DP A data pipe in a frame where all data pipes are mapped to frames in a time division multiplexing (TDM) manner
  • Type 2 DPs Types of data pipes in a frame where all data pipes are mapped to frames in an FDM fashion.
  • XFECBLOCK set of N cells cells carrying all the bits of one LDPC FECBLOCK
  • FIG. 1 shows a structure of a broadcast signal transmission apparatus for a next generation broadcast service according to an embodiment of the present invention.
  • a broadcast signal transmission apparatus for a next generation broadcast service includes an input format block 1000, a bit interleaved coding & modulation (BICM) block 1010, and a frame building block 1020, orthogonal frequency division multiplexing (OFDM) generation block (OFDM generation block) 1030, and signaling generation block 1040. The operation of each block of the broadcast signal transmission apparatus will be described.
  • BICM bit interleaved coding & modulation
  • OFDM generation block orthogonal frequency division multiplexing
  • signaling generation block 1040 The operation of each block of the broadcast signal transmission apparatus will be described.
  • IP streams / packets and MPEG2-TS are the main input formats and other stream types are treated as general streams.
  • management information is input to control the scheduling and allocation of the corresponding bandwidth for each input stream.
  • One or multiple TS streams, IP streams and / or general stream inputs are allowed at the same time.
  • the input format block 1000 can demultiplex each input stream into one or multiple data pipes to which independent coding and modulation is applied.
  • the data pipe is the basic unit for controlling robustness, which affects the quality of service (QoS).
  • QoS quality of service
  • One or multiple services or service components may be delivered by one data pipe. Detailed operations of the input format block 1000 will be described later.
  • a data pipe is a logical channel at the physical layer that carries service data or related metadata that can carry one or multiple services or service components.
  • the data pipe unit is a basic unit for allocating data cells to data pipes in one frame.
  • parity data is added for error correction and the encoded bit stream is mapped to a complex value constellation symbol.
  • the symbols are interleaved over the specific interleaving depth used for that data pipe.
  • MIMO encoding is performed at BICM block 1010 and additional data paths are added to the output for MIMO transmission. Detailed operations of the BICM block 1010 will be described later.
  • the frame building block 1020 may map data cells of an input data pipe to OFDM solid balls within one frame. After mapping, frequency interleaving is used for frequency domain diversity, in particular to prevent frequency selective fading channels. Detailed operations of the frame building block 1020 will be described later.
  • the OFDM generation block 1030 can apply existing OFDM modulation having a cyclic prefix as the guard interval.
  • a distributed MISO scheme is applied across the transmitter.
  • a peak-to-average power ratio (PAPR) scheme is implemented in the time domain.
  • PAPR peak-to-average power ratio
  • the proposal provides a variety of FFT sizes, guard interval lengths, and sets of corresponding pilot patterns. Detailed operations of the OFDM generation block 1030 will be described later.
  • the signaling generation block 1040 may generate physical layer signaling information used for the operation of each functional block.
  • the signaling information is also transmitted such that the service of interest is properly recovered at the receiver side. Detailed operations of the signaling generation block 1040 will be described later.
  • 2 illustrates an input format block according to an embodiment of the present invention. 2 shows an input format block when the input signal is a single input stream.
  • the input format block illustrated in FIG. 2 corresponds to an embodiment of the input format block 1000 described with reference to FIG. 1.
  • Input to the physical layer may consist of one or multiple data streams. Each data stream is carried by one data pipe.
  • the mode adaptation module slices the input data stream into a data field of a baseband frame (BBF).
  • BBF baseband frame
  • the system supports three types of input data streams: MPEG2-TS, IP, and GS (generic stream).
  • MPEG2-TS features a fixed length (188 bytes) packet where the first byte is a sync byte (0x47).
  • An IP stream consists of variable length IP datagram packets signaled in IP packet headers.
  • the system supports both IPv4 and IPv6 for IP streams.
  • the GS may consist of variable length packets or constant length packets signaled in the encapsulation packet header.
  • (a) shows a mode adaptation block 2000 and a stream adaptation (stream adaptation) 2010 for a signal data pipe
  • PLS generation block 2020 and PLS scrambler 2030 are shown. The operation of each block will be described.
  • the input stream splitter splits the input TS, IP, GS streams into multiple service or service component (audio, video, etc.) streams.
  • the mode adaptation module 2010 is composed of a CRC encoder, a baseband (BB) frame slicer, and a BB frame header insertion block.
  • the CRC encoder provides three types of CRC encoding, CRC-8, CRC-16, and CRC-32, for error detection at the user packet (UP) level.
  • the calculated CRC byte is appended after the UP.
  • CRC-8 is used for the TS stream
  • CRC-32 is used for the IP stream. If the GS stream does not provide CRC encoding, then the proposed CRC encoding should be applied.
  • the BB Frame Slicer maps the input to an internal logical bit format.
  • the first receive bit is defined as MSB.
  • the BB frame slicer allocates the same number of input bits as the available data field capacity. In order to allocate the same number of input bits as the BBF payload, the UP stream is sliced to fit the data field of the BBF.
  • the BB frame header insertion block can insert a 2 bytes fixed length BBF header before the BB frame.
  • the BBF header consists of STUFFI (1 bit), SYNCD (13 bit), and RFU (2 bit).
  • the BBF may have an extension field (1 or 3 bytes) at the end of the 2-byte BBF header.
  • Stream adaptation 2010 consists of a stuffing insertion block and a BB scrambler.
  • the stuffing insertion block may insert the stuffing field into the payload of the BB frame. If the input data for the stream adaptation is sufficient to fill the BB frame, STUFFI is set to 0, and the BBF has no stuffing field. Otherwise, STUFFI is set to 1 and the stuffing field is inserted immediately after the BBF header.
  • the stuffing field includes a 2-byte stuffing field header and variable sized stuffing data.
  • the BB scrambler scrambles the complete BBF for energy dissipation.
  • the scrambling sequence is synchronized with the BBF.
  • the scrambling sequence is generated by the feedback shift register.
  • the PLS generation block 2020 may generate PLS data.
  • PLS provides a means by which a receiver can connect to a physical layer data pipe.
  • PLS data consists of PLS1 data and PLS2 data.
  • PLS1 data is the first set of PLS data delivered to the FSS in frames with fixed size, coding, and modulation that convey basic information about the system as well as the parameters needed to decode the PLS2 data.
  • PLS1 data provides basic transmission parameters including the parameters required to enable reception and decoding of PLS2 data.
  • the PLS1 data is constant during the duration of the frame group.
  • PLS2 data is the second set of PLS data sent to the FSS that carries more detailed PLS data about the data pipes and systems.
  • PLS2 contains parameters that provide enough information for the receiver to decode the desired data pipe.
  • PLS2 signaling further consists of two types of parameters: PLS2 static data (PLS2-STAT data) and PLS2 dynamic data (PLS2-DYN data).
  • PLS2 static data is PLS2 data that is static during the duration of a frame group
  • PLS2 dynamic data is PLS2 data that changes dynamically from frame to frame.
  • the PLS scrambler 2030 may scramble PLS data generated for energy distribution.
  • the aforementioned blocks may be omitted or may be replaced by blocks having similar or identical functions.
  • FIG 3 illustrates an input format block according to another embodiment of the present invention.
  • the input format block illustrated in FIG. 3 corresponds to an embodiment of the input format block 1000 described with reference to FIG. 1.
  • FIG. 3 illustrates a mode adaptation block of an input format block when the input signal corresponds to a multi input stream.
  • a mode adaptation block of an input format block for processing multi input streams may independently process multiple input streams.
  • a mode adaptation block for processing a multi input stream may be an input stream splitter 3000 or an input stream synchro.
  • Each block of the mode adaptation block will be described.
  • Operations of the CRC encoder 3050, the BB frame slicer 3060, and the BB header insertion block 3070 correspond to the operations of the CRC encoder, the BB frame slicer, and the BB header insertion block described with reference to FIG. Is omitted.
  • the input stream splitter 3000 splits the input TS, IP, and GS streams into a plurality of service or service component (audio, video, etc.) streams.
  • the input stream synchronizer 3010 may be called ISSY.
  • ISSY can provide suitable means to ensure constant bit rate (CBR) and constant end-to-end transmission delay for any input data format.
  • CBR constant bit rate
  • ISSY is always used in the case of multiple data pipes carrying TS, and optionally in multiple data pipes carrying GS streams.
  • Compensating delay block 3020 may delay the split TS packet stream following the insertion of ISSY information to allow TS packet recombination mechanisms without requiring additional memory at the receiver. have.
  • the null packet deletion block 3030 is used only for the TS input stream. Some TS input streams or split TS streams may have a large number of null packets present to accommodate variable bit-rate (VBR) services in the CBR TS stream. In this case, to avoid unnecessary transmission overhead, null packets may be acknowledged and not transmitted. At the receiver, the discarded null packet can be reinserted in the exact place it originally existed with reference to the deleted null-packet (DNP) counter inserted in the transmission, ensuring CBR and time stamp (PCR) updates. There is no need.
  • VBR variable bit-rate
  • the header compression block 3040 can provide packet header compression to increase transmission efficiency for the TS or IP input stream. Since the receiver may have a priori information for a particular portion of the header, this known information may be deleted at the transmitter.
  • the receiver may have a priori information about the sync byte configuration (0x47) and the packet length (188 bytes). If the input TS delivers content with only one PID, that is, one service component (video, audio, etc.) or service subcomponent (SVC base layer, SVC enhancement layer, MVC base view, or MVC dependent view) Only, TS packet header compression may (optionally) be applied to the TS. TS packet header compression is optionally used when the input stream is an IP stream. The block may be omitted or replaced with a block having similar or identical functions.
  • FIG. 4 illustrates a BICM block according to an embodiment of the present invention.
  • the BICM block illustrated in FIG. 4 corresponds to an embodiment of the BICM block 1010 described with reference to FIG. 1.
  • the broadcast signal transmission apparatus for the next generation broadcast service may provide a terrestrial broadcast service, a mobile broadcast service, a UHDTV service, and the like.
  • the BICM block according to an embodiment of the present invention can independently process each data pipe by independently applying the SISO, MISO, and MIMO schemes to the data pipes corresponding to the respective data paths.
  • the apparatus for transmitting broadcast signals for the next generation broadcast service according to an embodiment of the present invention may adjust QoS for each service or service component transmitted through each data pipe.
  • the BICM block shared by the base profile and the handheld profile and the BICM block of the advanced profile may include a plurality of processing blocks for processing each data pipe.
  • the processing block 5000 of the BICM block for the base profile and the handheld profile includes a data FEC encoder 5010, a bit interleaver 5020, a constellation mapper 5030, a signal space diversity (SSD) encoding block ( 5040, and a time interleaver 5050.
  • a data FEC encoder 5010 a bit interleaver 5020
  • a constellation mapper 5030 a signal space diversity (SSD) encoding block ( 5040, and a time interleaver 5050.
  • SSD signal space diversity
  • the data FEC encoder 5010 performs FEC encoding on the input BBF to generate the FECBLOCK procedure using outer coding (BCH) and inner coding (LDPC).
  • Outer coding (BCH) is an optional coding method. The detailed operation of the data FEC encoder 5010 will be described later.
  • the bit interleaver 5020 may interleave the output of the data FEC encoder 5010 while providing a structure that can be efficiently realized to achieve optimized performance by a combination of LDPC codes and modulation schemes. The detailed operation of the bit interleaver 5020 will be described later.
  • Constellation mapper 5030 can be QPSK, QAM-16, non-uniform QAM (NUQ-64, NUQ-256, NUQ-1024) or non-uniform constellation (NUC-16, NUC-64, NUC-256, NUC-1024)
  • NUQ-64, NUQ-256, NUQ-1024 non-uniform QAM
  • NUC-16, NUC-64, NUC-256, NUC-1024 A constellation point whose power is normalized by modulating each cell word from the bit interleaver 5020 in the base and handheld profiles or the cell word from the cell word demultiplexer 5010-1 in the advanced profile. e l can be provided.
  • the constellation mapping applies only to data pipes. It is observed that NUQ has any shape, while QAM-16 and NUQ have a square shape. If each constellation is rotated by a multiple of 90 degrees, the rotated constellation overlaps exactly with the original. Due to the rotational symmetry characteristic, the real and imaginary components have the same capacity and average power. Both NUQ and N
  • the time interleaver 5050 may operate at the data pipe level.
  • the parameters of time interleaving can be set differently for each data pipe. The specific operation of the time interleaver 5050 will be described later.
  • the processing block 5000-1 of the BICM block for the advanced profile may include a data FEC encoder, a bit interleaver, a constellation mapper, and a time interleaver.
  • the processing block 5000-1 is distinguished from the processing block 5000 in that it further includes a cell word demultiplexer 5010-1 and a MIMO encoding block 5020-1.
  • operations of the data FEC encoder, the bit interleaver, the constellation mapper, and the time interleaver in the processing block 5000-1 may be performed by the data FEC encoder 5010, the bit interleaver 5020, and the constellation mapper 5030. Since this corresponds to the operation of the time interleaver 5050, the description thereof will be omitted.
  • Cell word demultiplexer 5010-1 is used by an advanced profile data pipe to separate a single cell word stream into a dual cell word stream for MIMO processing. A detailed operation of the cell word demultiplexer 5010-1 will be described later.
  • the MIMO encoding block 5020-1 may process the output of the cell word demultiplexer 5010-1 using the MIMO encoding scheme.
  • MIMO encoding scheme is optimized for broadcast signal transmission. MIMO technology is a promising way to gain capacity, but depends on the channel characteristics. Especially for broadcast, the difference in received signal power between two antennas due to different signal propagation characteristics or the strong LOS component of the channel makes it difficult to obtain capacity gains from MIMO.
  • the proposed MIMO encoding scheme overcomes this problem by using phase randomization and rotation based precoding of one of the MIMO output signals.
  • MIMO encoding is intended for a 2x2 MIMO system that requires at least two antennas at both the transmitter and the receiver.
  • Two MIMO encoding modes are defined in this proposal, full-rate spatial multiplexing (FR-SM) and full-rate full-diversity spatial multiplexing (FRFD-SM).
  • FR-SM encoding provides increased capacity with a relatively small complexity increase at the receiver side, while FRFD-SM encoding provides increased capacity and additional diversity gain with a larger complexity increase at the receiver side.
  • the proposed MIMO encoding scheme does not limit the antenna polarity arrangement.
  • MIMO processing is required for the advanced profile frame, which means that all data pipes in the advanced profile frame are processed by the MIMO encoder. MIMO processing is applied at the data pipe level.
  • the pair of constellation mapper outputs, NUQ (e 1, i and e 2, i ), are fed to the input of the MIMO encoder.
  • MIMO encoder output pairs g1, i and g2, i are transmitted by the same carrier k and OFDM symbol l of each transmit antenna.
  • FIG. 5 illustrates a BICM block according to another embodiment of the present invention.
  • the BICM block illustrated in FIG. 5 corresponds to an embodiment of the BICM block 1010 described with reference to FIG. 1.
  • the EAC is part of a frame carrying EAS information data
  • the FIC is a logical channel in a frame carrying mapping information between a service and a corresponding base data pipe. Detailed description of the EAC and FIC will be described later.
  • a BICM block for protecting PLS, EAC, and FIC may include a PLS FEC encoder 6000, a bit interleaver 6010, and a constellation mapper 6020.
  • the PLS FEC encoder 6000 may include a scrambler, a BCH encoding / zero insertion block, an LDPC encoding block, and an LDPC parity puncturing block. Each block of the BICM block will be described.
  • the PLS FEC encoder 6000 may encode scrambled PLS 1/2 data, EAC and FIC sections.
  • the scrambler may scramble PLS1 data and PLS2 data before BCH encoding and shortening and punctured LDPC encoding.
  • the BCH encoding / zero insertion block may perform outer encoding on the scrambled PLS 1/2 data using the shortened BCH code for PLS protection, and insert zero bits after BCH encoding. For PLS1 data only, the output bits of zero insertion can be permutated before LDPC encoding.
  • the LDPC encoding block may encode the output of the BCH encoding / zero insertion block using the LDPC code.
  • C ldpc and parity bits P ldpc are encoded systematically from each zero-inserted PLS information block I ldpc and appended after it.
  • LDPC code parameters for PLS1 and PLS2 are shown in Table 4 below.
  • the LDPC parity puncturing block may perform puncturing on the PLS1 data and the PLS2 data.
  • LDPC parity bits are punctured after LDPC encoding.
  • the LDPC parity bits of PLS2 are punctured after LDPC encoding. These punctured bits are not transmitted.
  • the bit interleaver 6010 may interleave each shortened and punctured PLS1 data and PLS2 data.
  • the constellation mapper 6020 may map bit interleaved PLS1 data and PLS2 data to constellations.
  • FIG. 6 illustrates a frame building block according to an embodiment of the present invention.
  • the frame building block illustrated in FIG. 7 corresponds to an embodiment of the frame building block 1020 described with reference to FIG. 1.
  • the frame building block may include a delay compensation block 7000, a cell mapper 7010, and a frequency interleaver 7020. have. Each block of the frame building block will be described.
  • the delay compensation block 7000 adjusts the timing between the data pipes and the corresponding PLS data to ensure co-time between the data pipes and the corresponding PLS data at the transmitter. have.
  • PLS data is delayed by the data pipe.
  • the delay of the BICM block is mainly due to the time interleaver 5050.
  • In-band signaling data may cause information of the next time interleaving group to be delivered one frame ahead of the data pipe to be signaled.
  • the delay compensation block delays the in-band signaling data accordingly.
  • the cell mapper 7010 may map a PLS, an EAC, an FIC, a data pipe, an auxiliary stream, and a dummy cell to an active carrier of an OFDM symbol in a frame.
  • the basic function of the cell mapper 7010 is to activate the data cells generated by time interleaving for each data pipe, PLS cell, and EAC / FIC cell, if any, corresponding to each OFDM symbol in one frame. (active) mapping to an array of OFDM cells.
  • Service signaling data (such as program specific information (PSI) / SI) may be collected separately and sent by a data pipe.
  • PSI program specific information
  • SI program specific information
  • the frequency interleaver 7020 may randomly interleave data cells received by the cell mapper 7010 to provide frequency diversity.
  • the frequency interleaver 7020 may operate in an OFDM symbol pair consisting of two sequential OFDM symbols using different interleaving seed order to obtain the maximum interleaving gain in a single frame.
  • FIG 7 illustrates an OFDM generation block according to an embodiment of the present invention.
  • the OFDM generation block illustrated in FIG. 7 corresponds to an embodiment of the OFDM generation block 1030 described with reference to FIG. 1.
  • the OFDM generation block modulates the OFDM carrier by inserting a pilot by the cell generated by the frame building block, inserts a pilot, and generates a time domain signal for transmission.
  • the block sequentially inserts a guard interval and applies a PAPR reduction process to generate a final RF signal.
  • the OFDM generation block includes a pilot and reserved tone insertion block (8000), a 2D-single frequency network (eSFN) encoding block 8010, an inverse fast fourier transform (IFFT).
  • Block 8020 PAPR reduction block 8030, guard interval insertion block 8040, preamble insertion block 8050, other system insertion block 8060, and DAC block ( 8070).
  • the other system insertion block 8060 may multiplex signals of a plurality of broadcast transmission / reception systems in a time domain so that data of two or more different broadcast transmission / reception systems providing a broadcast service may be simultaneously transmitted in the same RF signal band.
  • two or more different broadcast transmission / reception systems refer to a system that provides different broadcast services.
  • Different broadcast services may refer to terrestrial broadcast services or mobile broadcast services.
  • FIG. 8 illustrates a structure of a broadcast signal receiving apparatus for a next generation broadcast service according to an embodiment of the present invention.
  • the broadcast signal receiving apparatus for the next generation broadcast service may correspond to the broadcast signal transmitting apparatus for the next generation broadcast service described with reference to FIG. 1.
  • An apparatus for receiving broadcast signals for a next generation broadcast service includes a synchronization & demodulation module 9000, a frame parsing module 9010, a demapping and decoding module a demapping & decoding module 9020, an output processor 9030, and a signaling decoding module 9040. The operation of each module of the broadcast signal receiving apparatus will be described.
  • the synchronization and demodulation module 9000 receives an input signal through m reception antennas, performs signal detection and synchronization on a system corresponding to the broadcast signal receiving apparatus, and performs a reverse process of the procedure performed by the broadcast signal transmitting apparatus. Demodulation can be performed.
  • the frame parsing module 9010 may parse an input signal frame and extract data in which a service selected by a user is transmitted.
  • the frame parsing module 9010 may execute deinterleaving corresponding to the reverse process of interleaving. In this case, positions of signals and data to be extracted are obtained by decoding the data output from the signaling decoding module 9040, so that the scheduling information generated by the broadcast signal transmission apparatus may be restored.
  • the demapping and decoding module 9020 may convert the input signal into bit region data and then deinterleave the bit region data as necessary.
  • the demapping and decoding module 9020 can perform demapping on the mapping applied for transmission efficiency, and correct an error generated in the transmission channel through decoding. In this case, the demapping and decoding module 9020 can obtain transmission parameters necessary for demapping and decoding by decoding the data output from the signaling decoding module 9040.
  • the output processor 9030 may perform a reverse process of various compression / signal processing procedures applied by the broadcast signal transmission apparatus to improve transmission efficiency.
  • the output processor 9030 may obtain necessary control information from the data output from the signaling decoding module 9040.
  • the output of the output processor 8300 corresponds to a signal input to the broadcast signal transmission apparatus and may be MPEG-TS, IP stream (v4 or v6), and GS.
  • the signaling decoding module 9040 may obtain PLS information from the signal demodulated by the synchronization and demodulation module 9000. As described above, the frame parsing module 9010, the demapping and decoding module 9200, and the output processor 9300 may execute the function using data output from the signaling decoding module 9040.
  • FIG. 9 shows a frame structure according to an embodiment of the present invention.
  • FIG. 9 shows a structural example of a frame time and a frame repetition unit (FRU) in a super frame.
  • (a) shows a super frame according to an embodiment of the present invention
  • (b) shows a FRU according to an embodiment of the present invention
  • (c) shows a frame of various physical profile (PHY profile) in the FRU
  • (D) shows the structure of the frame.
  • Super frame may consist of eight FRUs.
  • the FRU is the basic multiplexing unit for the TDM of the frame and is repeated eight times in the super frame.
  • Each frame in the FRU belongs to one of the physical profiles (base, handheld, advanced profile) or FEF.
  • the maximum allowable number of frames in a FRU is 4, and a given physical profile may appear any number of times from 0 to 4 times in the FRU (eg, base, base, handheld, advanced).
  • the physical profile definition may be extended using the reserved value of PHY_PROFILE in the preamble if necessary.
  • the FEF portion is inserted at the end of the FRU if included. If the FEF is included in the FRU, the maximum number of FEFs is 8 in a super frame. It is not recommended that the FEF parts be adjacent to each other.
  • One frame is further separated into multiple OFDM symbols and preambles. As shown in (d), the frame includes a preamble, one or more FSS, normal data symbols, and FES.
  • the preamble is a special symbol that enables fast Futurecast UTB system signal detection and provides a set of basic transmission parameters for efficient transmission and reception of the signal. Details of the preamble will be described later.
  • the main purpose of the FSS is to carry PLS data.
  • the FSS For fast synchronization and channel estimation, and hence for fast decoding of PLS data, the FSS has a higher density pilot pattern than normal data symbols.
  • the FES has a pilot that is exactly the same as the FSS, which allows frequency only interpolation and temporal interpolation within the FES without extrapolation for symbols immediately preceding the FES.
  • FIG. 10 illustrates a signaling hierarchy structure of a frame according to an embodiment of the present invention.
  • PLS 10 shows a signaling hierarchy, which is divided into three main parts: preamble signaling data 11000, PLS1 data 11010, and PLS2 data 11020.
  • the purpose of the preamble carried by the preamble signal every frame is to indicate the basic transmission parameters and transmission type of the frame.
  • PLS1 allows the receiver to access and decode PLS2 data that includes parameters for connecting to the data pipe of interest.
  • PLS2 is delivered every frame and divided into two main parts, PLS2-STAT data and PLS2-DYN data. The static and dynamic parts of the PLS2 data are followed by padding if necessary.
  • FIG 11 illustrates preamble signaling data according to an embodiment of the present invention.
  • the preamble signaling data carries 21 bits of information needed to enable the receiver to access the PLS data and track the data pipes within the frame structure. Details of the preamble signaling data are as follows.
  • PHY_PROFILE This 3-bit field indicates the physical profile type of the current frame. The mapping of different physical profile types is given in Table 5 below.
  • FFT_SIZE This 2-bit field indicates the FFT size of the current frame in the frame group as described in Table 6 below.
  • GI_FRACTION This 3-bit field indicates a guard interval fraction value in the current super frame as described in Table 7 below.
  • EAC_FLAG This 1-bit field indicates whether EAC is provided in the current frame. If this field is set to 1, EAS is provided in the current frame. If this field is set to 0, EAS is not delivered in the current frame. This field may be converted to dynamic within a super frame.
  • PILOT_MODE This 1-bit field indicates whether the pilot mode is a mobile mode or a fixed mode for the current frame in the current frame group. If this field is set to 0, mobile pilot mode is used. If the field is set to '1', fixed pilot mode is used.
  • PAPR_FLAG This 1-bit field indicates whether PAPR reduction is used for the current frame in the current frame group. If this field is set to 1, tone reservation is used for PAPR reduction. If this field is set to 0, no PAPR reduction is used.
  • This 3-bit field indicates the physical profile type configuration of the FRU present in the current super frame. In the corresponding field in all preambles in the current super frame, all profile types carried in the current super frame are identified. The 3-bit field is defined differently for each profile as shown in Table 8 below.
  • PLS1 data provides basic transmission parameters including the parameters needed to enable the reception and decoding of PLS2. As mentioned above, the PLS1 data does not change during the entire duration of one frame group. A detailed definition of the signaling field of the PLS1 data is as follows.
  • PREAMBLE_DATA This 20-bit field is a copy of the preamble signaling data excluding EAC_FLAG.
  • NUM_FRAME_FRU This 2-bit field indicates the number of frames per FRU.
  • PAYLOAD_TYPE This 3-bit field indicates the format of payload data carried in the frame group. PAYLOAD_TYPE is signaled as shown in Table 9.
  • NUM_FSS This 2-bit field indicates the number of FSS in the current frame.
  • SYSTEM_VERSION This 8-bit field indicates the version of the signal format being transmitted. SYSTEM_VERSION is separated into two 4-bit fields: major and minor.
  • the 4-bit MSB in the SYSTEM_VERSION field indicates major version information. Changes in the major version field indicate incompatible changes. The default value is 0000. For the version described in that standard, the value is set to 0000.
  • Minor Version A 4-bit LSB in the SYSTEM_VERSION field indicates minor version information. Changes in the minor version field are compatible.
  • CELL_ID This is a 16-bit field that uniquely identifies a geographic cell in an ATSC network. ATSC cell coverage may consist of one or more frequencies depending on the number of frequencies used per Futurecast UTB system. If the value of CELL_ID is unknown or not specified, this field is set to zero.
  • NETWORK_ID This is a 16-bit field that uniquely identifies the current ATSC network.
  • SYSTEM_ID This 16-bit field uniquely identifies a Futurecast UTB system within an ATSC network.
  • Futurecast UTB systems are terrestrial broadcast systems whose input is one or more input streams (TS, IP, GS) and the output is an RF signal.
  • the Futurecast UTB system conveys the FEF and one or more physical profiles, if present.
  • the same Futurecast UTB system can carry different input streams and use different RFs in different geographic regions, allowing for local service insertion.
  • Frame structure and scheduling are controlled in one place and are the same for all transmissions within a Futurecast UTB system.
  • One or more Futurecast UTB systems may have the same SYSTEM_ID meaning that they all have the same physical structure and configuration.
  • the following loop is composed of FRU_PHY_PROFILE, FRU_FRAME_LENGTH, FRU_GI_FRACTION, and RESERVED indicating the length and FRU configuration of each frame type.
  • the loop size is fixed such that four physical profiles (including FFEs) are signaled within the FRU. If NUM_FRAME_FRU is less than 4, the unused fields are filled with zeros.
  • FRU_PHY_PROFILE This 3-bit field indicates the physical profile type of the (i + 1) th frame (i is a loop index) of the associated FRU. This field uses the same signaling format as shown in Table 8.
  • FRU_FRAME_LENGTH This 2-bit field indicates the length of the (i + 1) th frame of the associated FRU. Using FRU_FRAME_LENGTH with FRU_GI_FRACTION, the exact value of frame duration can be obtained.
  • FRU_GI_FRACTION This 3-bit field indicates the guard interval partial value of the (i + 1) th frame of the associated FRU.
  • FRU_GI_FRACTION is signaled according to Table 7.
  • the following fields provide parameters for decoding PLS2 data.
  • PLS2_FEC_TYPE This 2-bit field indicates the FEC type used by the PLS2 protection.
  • the FEC type is signaled according to Table 10. Details of the LDPC code will be described later.
  • PLS2_MOD This 3-bit field indicates the modulation type used by PLS2.
  • the modulation type is signaled according to Table 11.
  • PLS2_SIZE_CELL This 15-bit field indicates C total _partial_block which is the size (specified by the number of QAM cells) of all coding blocks for PLS2 carried in the current frame group. This value is constant for the entire duration of the current frame-group.
  • PLS2_STAT_SIZE_BIT This 14-bit field indicates the size, in bits, of the PLS2-STAT for the current frame-group. This value is constant for the entire duration of the current frame-group.
  • PLS2_DYN_SIZE_BIT This 14-bit field indicates the size, in bits, of the PLS2-DYN for the current frame-group. This value is constant for the entire duration of the current frame-group.
  • PLS2_REP_FLAG This 1-bit flag indicates whether the PLS2 repeat mode is used in the current frame group. If the value of this field is set to 1, PLS2 repeat mode is activated. If the value of this field is set to 0, PLS2 repeat mode is deactivated.
  • PLS2_REP_SIZE_CELL This 15-bit field indicates C total_partial_block , which is the size (specified by the number of QAM cells) of the partial coding block for PLS2 delivered every frame of the current frame group when PLS2 repetition is used. If iteration is not used, the value of this field is equal to zero. This value is constant for the entire duration of the current frame-group.
  • PLS2_NEXT_FEC_TYPE This 2-bit field indicates the FEC type used for PLS2 delivered in every frame of the next frame-group.
  • the FEC type is signaled according to Table 10.
  • PLS2_NEXT_MOD This 3-bit field indicates the modulation type used for PLS2 delivered in every frame of the next frame-group.
  • the modulation type is signaled according to Table 11.
  • PLS2_NEXT_REP_FLAG This 1-bit flag indicates whether the PLS2 repeat mode is used in the next frame group. If the value of this field is set to 1, PLS2 repeat mode is activated. If the value of this field is set to 0, PLS2 repeat mode is deactivated.
  • PLS2_NEXT_REP_SIZE_CELL This 15-bit field indicates C total_full_block , which is the size (specified in the number of QAM cells) of the entire coding block for PLS2 delivered every frame of the next frame-group when PLS2 repetition is used. If iteration is not used in the next frame-group, the value of this field is equal to zero. This value is constant for the entire duration of the current frame-group.
  • PLS2_NEXT_REP_STAT_SIZE_BIT This 14-bit field indicates the size, in bits, of the PLS2-STAT for the next frame-group. The value is constant in the current frame group.
  • PLS2_NEXT_REP_DYN_SIZE_BIT This 14-bit field indicates the size of the PLS2-DYN for the next frame-group, in bits. The value is constant in the current frame group.
  • PLS2_AP_MODE This 2-bit field indicates whether additional parity is provided for PLS2 in the current frame group. This value is constant for the entire duration of the current frame-group. Table 12 below provides the values for this field. If the value of this field is set to 00, no additional parity is used for PLS2 in the current frame group.
  • PLS2_AP_SIZE_CELL This 15-bit field indicates the size (specified by the number of QAM cells) of additional parity bits of PLS2. This value is constant for the entire duration of the current frame-group.
  • PLS2_NEXT_AP_MODE This 2-bit field indicates whether additional parity is provided for PLS2 signaling for every frame of the next frame-group. This value is constant for the entire duration of the current frame-group. Table 12 defines the values of this field.
  • PLS2_NEXT_AP_SIZE_CELL This 15-bit field indicates the size (specified by the number of QAM cells) of additional parity bits of PLS2 for every frame of the next frame-group. This value is constant for the entire duration of the current frame-group.
  • RESERVED This 32-bit field is reserved for future use.
  • FIG 13 illustrates PLS2 data according to an embodiment of the present invention.
  • PLS2-STAT data of the PLS2 data.
  • PLS2-STAT data is the same within a frame group, while PLS2-DYN data provides specific information about the current frame.
  • FIC_FLAG This 1-bit field indicates whether the FIC is used in the current frame group. If the value of this field is set to 1, the FIC is provided in the current frame. If the value of this field is set to 0, FIC is not delivered in the current frame. This value is constant for the entire duration of the current frame-group.
  • AUX_FLAG This 1-bit field indicates whether the auxiliary stream is used in the current frame group. If the value of this field is set to 1, the auxiliary stream is provided in the current frame. If the value of this field is set to 0, the auxiliary frame is not transmitted in the current frame. This value is constant for the entire duration of the current frame-group.
  • NUM_DP This 6-bit field indicates the number of data pipes carried in the current frame. The value of this field is between 1 and 64, and the number of data pipes is NUM_DP + 1.
  • DP_ID This 6-bit field uniquely identifies within the physical profile.
  • DP_TYPE This 3-bit field indicates the type of data pipe. This is signaled according to Table 13 below.
  • DP_GROUP_ID This 8-bit field identifies the data pipe group with which the current data pipe is associated. This can be used to connect to the data pipe of the service component associated with a particular service that the receiver will have the same DP_GROUP_ID.
  • BASE_DP_ID This 6-bit field indicates a data pipe that carries service signaling data (such as PSI / SI) used in the management layer.
  • the data pipe indicated by BASE_DP_ID may be a normal data pipe for delivering service signaling data together with service data or a dedicated data pipe for delivering only service signaling data.
  • DP_FEC_TYPE This 2-bit field indicates the FEC type used by the associated data pipe.
  • the FEC type is signaled according to Table 14 below.
  • DP_COD This 4-bit field indicates the code rate used by the associated data pipe.
  • the code rate is signaled according to Table 15 below.
  • DP_MOD This 4-bit field indicates the modulation used by the associated data pipe. Modulation is signaled according to Table 16 below.
  • DP_SSD_FLAG This 1-bit field indicates whether the SSD mode is used in the associated data pipe. If the value of this field is set to 1, the SSD is used. If the value of this field is set to 0, the SSD is not used.
  • DP_MIMO This 3-bit field indicates what type of MIMO encoding processing is applied to the associated data pipe.
  • the type of MIMO encoding process is signaled according to Table 17 below.
  • DP_TI_TYPE This 1-bit field indicates the type of time interleaving. A value of 0 indicates that one time interleaving group corresponds to one frame and includes one or more time interleaving blocks. A value of 1 indicates that one time interleaving group is delivered in more than one frame and contains only one time interleaving block.
  • DP_TI_LENGTH The use of this 2-bit field (only allowed values are 1, 2, 4, 8) is determined by the value set in the DP_TI_TYPE field as follows.
  • N TI the number of time interleaving block per time interleaving group
  • This 2-bit field represents the frame interval (I JUMP ) within the frame group for the associated data pipe, and allowed values are 1, 2, 4, 8 (the corresponding 2-bit fields are 00, 01, 10, 11). For data pipes that do not appear in every frame of a frame group, the value of this field is equal to the interval between sequential frames. For example, if a data pipe appears in frames 1, 5, 9, 13, etc., the value of this field is set to 4. For data pipes that appear in every frame, the value of this field is set to 1.
  • DP_TI_BYPASS This 1-bit field determines the availability of time interleaver 5050. If time interleaving is not used for the data pipe, this field value is set to 1. On the other hand, if time interleaving is used, the corresponding field value is set to zero.
  • DP_FIRST_FRAME_IDX This 5-bit field indicates the index of the first frame of the super frame in which the current data pipe occurs.
  • the value of DP_FIRST_FRAME_IDX is between 0 and 31.
  • DP_NUM_BLOCK_MAX This 10-bit field indicates the maximum value of DP_NUM_BLOCKS for the data pipe. The value of this field has the same range as DP_NUM_BLOCKS.
  • DP_PAYLOAD_TYPE This 2-bit field indicates the type of payload data carried by a given data pipe. DP_PAYLOAD_TYPE is signaled according to Table 19 below.
  • DP_INBAND_MODE This 2-bit field indicates whether the current data pipe carries in-band signaling information. In-band signaling type is signaled according to Table 20 below.
  • DP_PROTOCOL_TYPE This 2-bit field indicates the protocol type of the payload carried by the given data pipe.
  • the protocol type of payload is signaled according to Table 21 below when the input payload type is selected.
  • DP_CRC_MODE This 2-bit field indicates whether CRC encoding is used in the input format block. CRC mode is signaled according to Table 22 below.
  • DNP_MODE This 2-bit field indicates the null packet deletion mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). DNP_MODE is signaled according to Table 23 below. If DP_PAYLOAD_TYPE is not TS ('00'), DNP_MODE is set to a value of 00.
  • ISSY_MODE This 2-bit field indicates the ISSY mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). ISSY_MODE is signaled according to Table 24 below. If DP_PAYLOAD_TYPE is not TS ('00'), ISSY_MODE is set to a value of 00.
  • HC_MODE_TS This 2-bit field indicates the TS header compression mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). HC_MODE_TS is signaled according to Table 25 below.
  • HC_MODE_IP This 2-bit field indicates the IP header compression mode when DP_PAYLOAD_TYPE is set to IP ('01'). HC_MODE_IP is signaled according to Table 26 below.
  • PID This 13-bit field indicates the number of PIDs for TS header compression when DP_PAYLOAD_TYPE is set to TS ('00') and HC_MODE_TS is set to 01 or 10.
  • FIC_VERSION This 8-bit field indicates the version number of the FIC.
  • FIC_LENGTH_BYTE This 13-bit field indicates the length of the FIC in bytes.
  • NUM_AUX This 4-bit field indicates the number of auxiliary streams. Zero indicates that no auxiliary stream is used.
  • AUX_CONFIG_RFU This 8-bit field is reserved for future use.
  • AUX_STREAM_TYPE This 4 bits is reserved for future use to indicate the type of the current auxiliary stream.
  • AUX_PRIVATE_CONFIG This 28-bit field is reserved for future use for signaling the secondary stream.
  • FIG 14 illustrates PLS2 data according to another embodiment of the present invention.
  • the value of the PLS2-DYN data may change during the duration of one frame group, while the size of the field is constant.
  • FRAME_INDEX This 5-bit field indicates the frame index of the current frame within the super frame. The index of the first frame of the super frame is set to zero.
  • PLS_CHANGE_COUNTER This 4-bit field indicates the number of super frames before the configuration changes. The next super frame whose configuration changes is indicated by the value signaled in that field. If the value of this field is set to 0000, this means that no scheduled change is expected. For example, a value of 1 indicates that there is a change in the next super frame.
  • FIC_CHANGE_COUNTER This 4-bit field indicates the number of super frames before the configuration (i.e., the content of the FIC) changes. The next super frame whose configuration changes is indicated by the value signaled in that field. If the value of this field is set to 0000, this means that no scheduled change is expected. For example, a value of 0001 indicates that there is a change in the next super frame.
  • NUM_DP NUM_DP that describes the parameters related to the data pipe carried in the current frame.
  • DP_ID This 6-bit field uniquely represents a data pipe within the physical profile.
  • DP_START This 15-bit (or 13-bit) field indicates the first starting position of the data pipe using the DPU addressing technique.
  • the DP_START field has a length different according to the physical profile and the FFT size as shown in Table 27 below.
  • DP_NUM_BLOCK This 10-bit field indicates the number of FEC blocks in the current time interleaving group for the current data pipe.
  • the value of DP_NUM_BLOCK is between 0 and 1023.
  • the next field indicates the FIC parameter associated with the EAC.
  • EAC_FLAG This 1-bit field indicates the presence of an EAC in the current frame. This bit is equal to EAC_FLAG in the preamble.
  • EAS_WAKE_UP_VERSION_NUM This 8-bit field indicates the version number of the automatic activation indication.
  • EAC_FLAG field If the EAC_FLAG field is equal to 1, the next 12 bits are allocated to the EAC_LENGTH_BYTE field. If the EAC_FLAG field is equal to 0, the next 12 bits are allocated to EAC_COUNTER.
  • EAC_LENGTH_BYTE This 12-bit field indicates the length of the EAC in bytes.
  • EAC_COUNTER This 12-bit field indicates the number of frames before the frame in which the EAC arrives.
  • AUX_PRIVATE_DYN This 48-bit field is reserved for future use for signaling the secondary stream. The meaning of this field depends on the value of AUX_STREAM_TYPE in configurable PLS2-STAT.
  • CRC_32 32-bit error detection code that applies to the entire PLS2.
  • FIG. 15 illustrates a logical structure of a frame according to an embodiment of the present invention.
  • the PLS, EAC, FIC, data pipe, auxiliary stream, and dummy cell are mapped to the active carrier of the OFDM symbol in the frame.
  • PLS1 and PLS2 are initially mapped to one or more FSS. Then, if there is an EAC, the EAC cell is mapped to the immediately following PLS field. If there is an FIC next, the FIC cell is mapped.
  • the data pipes are mapped after the PLS or, if present, after the EAC or FIC. Type 1 data pipes are mapped first, and type 2 data pipes are mapped next. Details of the type of data pipe will be described later. In some cases, the data pipe may carry some special data or service signaling data for the EAS.
  • auxiliary stream or stream if present, is mapped to the data pipe next, followed by a dummy cell in turn. Mapping all together in the order described above, namely PLS, EAC, FIC, data pipe, auxiliary stream, and dummy cell, will correctly fill the cell capacity in the frame.
  • FIG 16 illustrates PLS mapping according to an embodiment of the present invention.
  • the PLS cell is mapped to an active carrier of the FSS. According to the number of cells occupied by the PLS, one or more symbols are designated as FSS, and the number N FSS of the FSS is signaled by NUM_FSS in PLS1.
  • FSS is a special symbol that carries a PLS cell. Since alertness and latency are critical issues in PLS, the FSS has a high pilot density, enabling fast synchronization and interpolation only on frequencies within the FSS.
  • the PLS cell is mapped to an active carrier of the FSS from the top down as shown in the example of FIG.
  • PLS1 cells are initially mapped in ascending order of cell index from the first cell of the first FSS.
  • the PLS2 cell follows immediately after the last cell of PLS1 and the mapping continues downward until the last cell index of the first FSS. If the total number of required PLS cells exceeds the number of active carriers of one FSS, the mapping proceeds to the next FSS and continues in exactly the same way as the first FSS.
  • EAC, FIC or both are present in the current frame, EAC and FIC are placed between the PLS and the normal data pipe.
  • FIG 17 illustrates EAC mapping according to an embodiment of the present invention.
  • the EAC is a dedicated channel for delivering EAS messages and is connected to the data pipes for the EAS. EAS support is provided, but the EAC itself may or may not be present in every frame. If there is an EAC, the EAC is mapped immediately after the PLS2 cell. Except for PLS cells, none of the FIC, data pipes, auxiliary streams or dummy cells are located before the EAC. The mapping procedure of the EAC cell is exactly the same as that of the PLS.
  • EAC cells are mapped in ascending order of cell index from the next cell of PLS2 as shown in the example of FIG. Depending on the EAS message size, as shown in FIG. 17, the EAC cell may occupy few symbols.
  • the EAC cell follows immediately after the last cell of PLS2 and the mapping continues downward until the last cell index of the last FSS. If the total number of required EAC cells exceeds the number of remaining active carriers of the last FSS, the EAC mapping proceeds to the next symbol and continues in exactly the same way as the FSS. In this case, the next symbol to which the EAC is mapped is a normal data symbol, which has more active carriers than the FSS.
  • the FIC is passed next if present. If no FIC is sent (as signaling in the PLS2 field), the data pipe follows immediately after the last cell of the EAC.
  • FIC is a dedicated channel that carries cross-layer information to enable fast service acquisition and channel scan.
  • the information mainly includes channel binding information between data pipes and services of each broadcaster.
  • the receiver can decode the FIC and obtain information such as broadcaster ID, number of services, and BASE_DP_ID.
  • BASE_DP_ID For high-speed service acquisition, not only the FIC but also the base data pipe can be decoded using BASE_DP_ID. Except for the content that the base data pipe transmits, the base data pipe is encoded and mapped to the frame in exactly the same way as a normal data pipe. Thus, no further explanation of the base data pipe is needed.
  • FIC data is generated and consumed at the management layer. The content of the FIC data is as described in the management layer specification.
  • FIC data is optional and the use of FIC is signaled by the FIC_FLAG parameter in the static part of the PLS2. If FIC is used, FIC_FLAG is set to 1 and the signaling field for FIC is defined in the static part of PLS2. Signaled in this field is FIC_VERSION, FIC_LENGTH_BYTE. FIC uses the same modulation, coding, and time interleaving parameters as PLS2. The FIC shares the same signaling parameters as PLS2_MOD and PLS2_FEC. FIC data is mapped after PLS2 if present, or immediately after EAC if EAC is present. None of the normal data pipes, auxiliary streams, or dummy cells are located before the FIC. The method of mapping the FIC cells is exactly the same as the EAC, which in turn is identical to the PLS.
  • the FIC cells are mapped in ascending order of cell index from the next cell of PLS2 as shown in the example of (a).
  • FIC cells are mapped for several symbols.
  • the FIC cell follows immediately after the last cell of PLS2 and the mapping continues downward until the last cell index of the last FSS. If the total number of required FIC cells exceeds the number of remaining active carriers of the last FSS, the mapping of the remaining FIC cells proceeds to the next symbol, which continues in exactly the same way as the FSS. In this case, the next symbol to which the FIC is mapped is a normal data symbol, which has more active carriers than the FSS.
  • the EAC is mapped before the FIC and the FIC cells are mapped in ascending order of cell index from the next cell of the EAC as shown in (b).
  • one or more data pipes are mapped, followed by auxiliary streams and dummy cells if present.
  • FIG 19 shows an FEC structure according to an embodiment of the present invention.
  • the data FEC encoder may perform FEC encoding on the input BBF to generate the FECBLOCK procedure using outer coding (BCH) and inner coding (LDPC).
  • BCH outer coding
  • LDPC inner coding
  • the illustrated FEC structure corresponds to FECBLOCK.
  • the FECBLOCK and FEC structures have the same value corresponding to the length of the LDPC codeword.
  • N ldpc 64800 bits (long FECBLOCK) or 16200 bits (short FECBLOCK).
  • Tables 28 and 29 below show the FEC encoding parameters for the long FECBLOCK and the short FECBLOCK, respectively.
  • a 12-error correcting BCH code is used for the outer encoding of the BBF.
  • the BBF-generated polynomials for short FECBLOCK and long FECBLOCK are obtained by multiplying all polynomials.
  • LDPC codes are used to encode the output of the outer BCH encoding.
  • ldpc P parity bits
  • I ldpc - is systematically encoded from the (BCH encoded BBF), it is attached to the I ldpc.
  • the finished B ldpc (FECBLOCK) is expressed by the following equation.
  • N ldpc for long FECBLOCK - specific procedures for calculating the K ldpc parity bits is as follows.
  • x represents the address of the parity bit accumulator corresponding to the first bit i 0
  • Q ldpc is a code rate dependent constant specified in the address of the parity check matrix.
  • Equation 6 x represents the address of the parity bit accumulator corresponding to information bit i 360 , that is, the entry of the second row of the parity check matrix.
  • the final parity bits are obtained as follows.
  • the corresponding LDPC encoding procedure for short FECBLOCK is t LDPC for long FECBLOCK.
  • the time interleaver operates at the data pipe level.
  • the parameters of time interleaving can be set differently for each data pipe.
  • DP_TI_TYPE (allowed values: 0 or 1): Represents the time interleaving mode.
  • 0 indicates a mode with multiple time interleaving blocks (one or more time interleaving blocks) per time interleaving group. In this case, one time interleaving group is directly mapped to one frame (without interframe interleaving).
  • 1 indicates a mode having only one time interleaving block per time interleaving group. In this case, the time interleaving block is spread over one or more frames (interframe interleaving).
  • DP_NUM_BLOCK_MAX (allowed values: 0 to 1023): Represents the maximum number of XFECBLOCKs per time interleaving group.
  • DP_FRAME_INTERVAL (allowed values: 1, 2, 4, 8): Represents the number of frames I JUMP between two sequential frames carrying the same data pipe of a given physical profile.
  • DP_TI_BYPASS (allowed values: 0 or 1): If time interleaving is not used for the data frame, this parameter is set to one. If time interleaving is used, it is set to zero.
  • the parameter DP_NUM_BLOCK from the PLS2-DYN data indicates the number of XFECBLOCKs carried by one time interleaving group of the data group.
  • each time interleaving group is a set of integer number of XFECBLOCKs, and will contain a dynamically varying number of XFECBLOCKs.
  • N xBLOCK_Group (n) The number of XFECBLOCKs in the time interleaving group at index n is represented by N xBLOCK_Group (n) and signaled as DP_NUM_BLOCK in the PLS2-DYN data.
  • N xBLOCK_Group (n) may vary from the minimum value 0 to the maximum value N xBLOCK_Group_MAX (corresponding to DP_NUM_BLOCK_MAX ) having the largest value 1023.
  • Each time interleaving group is either mapped directly to one frame or spread over P I frames.
  • Each time interleaving group is further divided into one or more (N TI ) time interleaving blocks.
  • each time interleaving block corresponds to one use of the time interleaver memory.
  • the time interleaving block in the time interleaving group may include some other number of XFECBLOCKs. If the time interleaving group is divided into multiple time interleaving blocks, the time interleaving group is directly mapped to only one frame. As shown in Table 32 below, there are three options for time interleaving (except for the additional option of omitting time interleaving).
  • the time interleaver will also act as a buffer for the data pipe data before the frame generation process. This is accomplished with two memory banks for each data pipe.
  • the first time interleaving block is written to the first bank.
  • the second time interleaving block is written to the second bank while reading from the first bank.
  • Time interleaving is a twisted row-column block interleaver.
  • the number of columns N c is equal to N xBLOCK_TI (n, s)
  • 21 illustrates the basic operation of a twisted row-column block interleaver according to an embodiment of the present invention.
  • Fig. 21A shows a write operation in the time interleaver
  • Fig. 21B shows a read operation in the time interleaver.
  • the first XFECBLOCK is written in the column direction to the first column of the time interleaving memory
  • the second XFECBLOCK is written to the next column, followed by this operation.
  • the cells are read diagonally.
  • Cells are read. Specifically, Assuming that this is a time interleaving memory cell position to be read sequentially, the read operation in this interleaving array is a row index as in the equation below. Column index Related twist parameters Is executed by calculating.
  • the cell position to be read is coordinate Calculated by
  • FIG. 22 illustrates an operation of a twisted row-column block interleaver according to another embodiment of the present invention.
  • FIG. 22 Denotes an interleaving array in the time interleaving memory for each time interleaving group including the virtual XFECBLOCK.
  • the interleaving array for twisted row-column block interleaver inserts a virtual XFECBLOCK into the time interleaving memory. It is set to the size of, and the reading process is made as follows.
  • the number of time interleaving groups is set to three.
  • the maximum number of XFECBLOCKs is signaled in PLS2-STAT data by NxBLOCK_Group_MAX, which Leads to.
  • Figure 23 illustrates a diagonal read pattern of a twisted row-column block interleaver according to one embodiment of the present invention.
  • FIG. 25 illustrates signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • the frequency interleaver according to the present invention performs interleaving using different interleaving sequences for each OFDM symbol, but the frequency deinterleaver may perform single memory deinterleaving on the received OFDM symbol.
  • the present invention proposes a method in which a frequency deinterleaver can perform single memory deinterleaving regardless of whether the number of OFDM symbols in a frame is even or odd.
  • the above-described structure of the frequency interleaver may operate differently depending on whether the number of OFDM symbols is even or odd.
  • signaling information related thereto may be further defined in the aforementioned preamble and / or PLS (Physical Layer Signaling).
  • PLS Physical Layer Signaling
  • the PLS may be included in the frame starting symbol (FSS) of each frame and transmitted.
  • the PLS may be included in the first OFDM symbol and transmitted.
  • signaling corresponding to the PLS may be included in the preamble and transmitted.
  • signaling information corresponding to the preamble and / or the PLS may be included in the bootstrap information and transmitted.
  • the bootstrap information may be an information part located in front of the preamble.
  • FI_mode field As information on a processing operation used in the frequency interleaver of the transmitter, there may be a FI_mode field and an N_sym field.
  • the FI_mode field may be a 1-bit field that may be located in the preamble.
  • the FI_mode field may indicate an interleaving scheme used for the frame starting symbol (FSS) or the first OFDM symbol of each frame.
  • Interleaving schemes indicated by the FI_mode field may include FI scheme # 1 and FI scheme # 2.
  • FI scheme # 1 may refer to a case in which the frequency interleaver performs a linear reading operation on the FSS after performing a random writing operation on the FSS. This case may correspond to a case where the FI_mode field value is 0.
  • random write and linear read operations may be performed in the memory.
  • the linear read may mean an operation of sequentially reading.
  • FI scheme # 2 may mean a case in which the frequency interleaver performs a random reading operation after performing a linear writing operation on the FSS at the transmitting side. This case may correspond to a case where the FI_mode field value is 1. Similarly, linear write and random read operations can be performed in a memory using values generated by an arbitrary random sequence generator using PRBS. In this case, the linear writing may mean performing a writing operation sequentially.
  • the FI_mode field may indicate an interleaving scheme used for the frame edge symbol (FES) or the last OFDM symbol of each frame.
  • the interleaving scheme applied to the FES may be indicated differently according to the value of the N_sym field transmitted by the PLS. That is, the interleaving scheme indicated by the FI_mode field may vary depending on whether the number of OFDM symbols is odd or even.
  • the relationship between the two fields may be previously defined as a table on the transmitting and receiving side.
  • the FI_mode field may be defined and transmitted in another part of the frame in addition to the preamble.
  • the N_sym field may be a field that may be located in the PLS part.
  • the number of bits of the N_sym field may vary according to an embodiment.
  • the N_sym field may indicate the number of OFDM symbols included in one frame. Accordingly, the receiving side can determine whether the number of OFDM symbols is even or odd.
  • the operation of the frequency deinterleaver corresponding to the frequency interleaver irrespective of the number of OFDM symbols in one frame described above is as follows.
  • the frequency deinterleaver may perform single memory deinterleaving using the proposed signaling fields regardless of whether the number of OFDM symbols is even or odd.
  • the frequency deinterleaver may perform frequency deinterleaving on the FSS using information of the FI_mode field of the preamble. This is because the frequency interleaving scheme utilized for the FSS is indicated by FI_mode.
  • the frequency deinterleaver may perform frequency deinterleaving on the FES using signaling information of the FI_mode field and signaling information of the N_sym field of the PLS. At this time, the relationship between the two fields may be grasped using a predefined table.
  • the predefined table will be described later.
  • the overall deinterleaving process of the other symbols may be performed in the reverse order of the interleaving process of the transmitter. That is, the frequency deinterleaver may perform deinterleaving by using one interleaving sequence with respect to a pair of input OFDM symbols.
  • one interleaving sequence may be an interleaving sequence used by the corresponding frequency interleaver for reading and writing.
  • the frequency deinterleaver may perform the read & write process in reverse order using the interleaving sequence.
  • the frequency deinterleaver according to the present invention may not use a ping pong structure using a double memory.
  • the frequency deinterleaver may perform deinterleaving using a single memory for successive input OFDM symbols. This can increase the memory usage efficiency of the frequency deinterleaver.
  • FIG. 26 is a diagram illustrating FI schemes for FSS in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • An interleaving scheme applied in the frequency interleaving process may be determined using the aforementioned FI_mode field and the N_sym field.
  • FI scheme # 1 may be performed on the FSS regardless of the FI_mode field value.
  • FI scheme # 1 When the number of OFDM symbols indicated by the N_sym field is odd, if the FI_mode field has a value of 0, FI scheme # 1 is applied to the FSS, and if it has a value of 1, FI scheme # 2 may be applied to the FSS. That is, when the number of OFDM symbols is odd, FI schemes # 1 and # 2 may be alternately applied to the FSS in frequency interleaving.
  • FIG. 27 illustrates an operation of a reset mode for FES in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • the aforementioned symbol offset generator may introduce a new concept called a reset mode.
  • the reset mode may mean a mode in which a symbol offset value generated by the symbol offset generator is '0'.
  • the reset mode of the symbol offset generator may not be operated regardless of the value of the FI_mode field.
  • the symbol offset generator may operate according to the reset mode (on).
  • the reset mode of the symbol offset generator may not operate. That is, when the number of OFDM symbols is an odd number, the reset mode may be alternately turned on / off in frequency interleaving.
  • FIG. 28 is a diagram for mathematically representing an input and an output of a frequency interleaver in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • interleaving may utilize a variety of other interleaving seeds generated by one main interleaving seed being cyclic-shifted.
  • the interleaving seed may be referred to as an interleaving sequence.
  • the interleaving seed may be referred to as an interleaving address value, an address value, or an interleaving address.
  • the term interleaving address value may be used to indicate a plurality of objects in the meaning of a set of a plurality of address values, or may be used to indicate a singular object in the meaning of an interleaving seed. That is, according to the embodiment, the interleaving address value may mean each address value of H (p) or may mean H (p) itself.
  • An input of frequency interleaving to be interleaved in one OFDM symbol may be denoted by O m, l (t50010).
  • each of the data cells may be represented by x m, l, 0 ,... X m, l, Ndata-1 .
  • p may mean a cell index
  • l may mean an OFDM symbol index
  • m may mean an index of a frame. That is, x m, l, p may refer to the p th data cell of the m th frame, the l th OFDM symbol.
  • N data may mean the number of data cells.
  • N sym may mean the number of symbols (frame signaling symbol, normal data symbol, frame edge symbol).
  • Data cells after interleaving by the above operation may be denoted by P m, l (t50020).
  • Each interleaved data cell may be denoted by v m, l, 0 ,... V m, l, Ndata-1 .
  • p, l, m may have the same index value as described above.
  • 29 is a view illustrating equations of a logical operation mechanism of frequency interleaving according to FI scheme # 1 and FI scheme # 2 in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention. Indicates.
  • frequency interleaving may be performed using an interleaving sequence (interleaving address) of each memory bank.
  • frequency interleaving may be performed using an interleaving sequence (interleaving address) to obtain an output v.
  • the p th input data x may be mixed in order to be equal to the H (p) th output data v.
  • a random write process may be performed first using an interleaving sequence, and then a linear read process may be sequentially read again.
  • the interleaving sequence (interleaving address) may be a value generated by an arbitrary random sequence generator using PRBS.
  • frequency interleaving may be performed using an interleaving sequence (interleaving address) to obtain an output v.
  • the H (p) th input data x may be mixed in order to be equal to the pth output data v. That is, when compared to the interleaving process for even-numbered symbols, the interleaving sequence (interleaving address) may be applied inversely (inversely, inverse).
  • a linear write operation of writing data to a memory in order may be performed first, and then a random read process may be performed to read randomly using an interleaving sequence.
  • the interleaving sequence (interleaving address) may be a value generated by any random sequence generator using PRBS or the like.
  • a random read operation may be performed after the linear write operation with respect to the even number symbol according to the illustrated equation (t51020).
  • a linear read operation may be performed after the random write operation according to the equation (t51010). Details are the same as described in FI Scheme # 1.
  • Symbol index l is 0, 1, ..., N sym -1
  • cell index p is 0, 1, ..., N data -1 It can be expressed as.
  • frequency interleaving schemes for even-numbered symbols and odd-numbered symbols may be reversed.
  • frequency interleaving schemes according to FI scheme # 1 and FI scheme # 2 may be reversed.
  • FIG. 30 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • the N_sym field may indicate that the number of OFDM is even in one frame. In this embodiment, it is assumed that one frame has one preamble and eight OFDM symbols.
  • the bootstrap information may be further included in front of the preamble. Bootstrap information is not shown.
  • one frame may include one FSS and FES, respectively. It is assumed here that the lengths of the FSS and the FES are the same.
  • the frequency deinterleaver may check this after FSS decoding.
  • decoding for the N_sym field is completed before the operation for FES is performed.
  • the value of the symbol offset generator can be reset to zero.
  • each first and second symbol can be processed by the same interleaving sequence.
  • the sequence # 0 may be used for operation again at the beginning of each frame.
  • the sequence # 1 and # 2 may be used to operate the frequency interleaver / deinterleaver.
  • 31 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • the FSS In the first frame, information on how the FSS is interleaved can be obtained from the FI_mode field of the preamble. In this embodiment, since the OFDM symbols are even, only FI scheme # 1 may be used.
  • the FSS may be decoded to obtain N_sym information. It can be seen from the N_sym information that the number of symbols in the frame is even. Thereafter, when the frequency deinterleaver decodes the FES, decoding may be performed using the obtained FI_mode information and N_sym information. Since the number of symbols is an even number, the symbol offset generator does not operate according to the above-described reset mode. That is, the reset mode may be in an off state.
  • the frequency deinterleaver may operate in the same manner. That is, the FI scheme to be used in the FSS is FI scheme # 1, and the reset mode to be used in the FES may be in an off state.
  • 32 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • the N_sym field may indicate that the number of OFDM is odd in one frame. In this embodiment, it is assumed that one frame has one preamble and seven OFDM symbols.
  • the bootstrap information may be further included in front of the preamble. Bootstrap information is not shown.
  • one frame may include one FSS and FES, respectively. It is assumed here that the lengths of the FSS and the FES are the same.
  • the frequency deinterleaver since the information of the N_sym field is included in the PLS part and transmitted, the frequency deinterleaver may check this after FSS decoding. In addition, in the present embodiment, it is assumed that decoding for the N_sym field is completed before the operation for FES is performed.
  • the value of the symbol offset generator can be reset to zero.
  • the symbol offset generator may operate according to the reset mode according to the values of the FI_mode field and the N_sym field.
  • the value of the symbol offset generator may or may not be reset to zero. This reset process may be performed alternately every frame.
  • a reset of the symbol offset generator may occur at the last symbol of the first frame shown, FES.
  • the interleaving sequence can be reset to the # 0 sequence.
  • the frequency interleaver / deinterleaver may process the corresponding FES according to the sequence # 0 (t54010).
  • the symbol offset generator is reset again so that the # 0 sequence may be used (t54010).
  • a reset may not occur in the FES of the second frame (frame # 1), but again, a reset may occur in the FES of the third frame (frame # 2).
  • 33 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • FI scheme # 1 In the first frame, information on how the FSS is interleaved can be obtained from the FI_mode field of the preamble. Since the number of OFDM symbols is odd, FI scheme # 1 and FI scheme # 2 may be used. In the first frame of this embodiment, FI scheme # 1 is used.
  • the FSS may be decoded to obtain N_sym information. It can be seen from the N_sym information that the number of symbols in the frame is odd. Thereafter, when the frequency deinterleaver decodes the FES, decoding may be performed using the obtained FI_mode information and N_sym information. Since the number of symbols is an odd number and the FI scheme # 1 is used, the FI_mode field value is 0. Since FI_mode is 0, the symbol offset generator may operate according to the above-described reset mode. That is, the reset mode may be in an on state.
  • the symbol offset generator can be reset to zero. Since the value of the FI_mode field is 1 in the second frame, it can be seen that the FSS has been processed by the FI scheme # 2. Again, it can be seen that the number of symbols is odd through the N_sym field. In the case of the second frame, since the FI_mode field value is 1 and the number of symbols is odd, the symbol offset generator may not operate according to the reset mode.
  • the FI scheme to be used in the FSS can be set alternately between the FI schemes # 1 and # 2.
  • the reset mode to be used in the FES can be set alternately on and off. In some embodiments, the setting may not change every frame.
  • FIG. 34 illustrates operation of a frequency deinterleaver in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
  • the frequency deinterleaver may perform frequency deinterleaving using information of the FI_mode field and / or the N_sym field defined above. As described above, the frequency deinterleaver may operate using a single memory. Basically, frequency deinterleaving may be a process of performing an inverse process of the frequency interleaving process performed by the transmitter so that the original data may be restored.
  • the frequency deinterleaving for the FSS may be operated based on the information about the FI scheme obtained by using the FI_mode field and the N_sym field of the preamble.
  • Frequency deinterleaving for FES may be operated based on whether the reset mode is operated through the FI_mode field and the N_sym field.
  • the frequency deinterleaver may perform a reverse process of the read / write operation of the frequency interleaver with respect to the pair of OFDM symbols input. In this process, one interleaving sequence may be used.
  • the frequency interleaver follows a ping-pong structure using a double memory, but the frequency deinterleaver may perform deinterleaving with a single memory.
  • This single memory frequency deinterleaving may be performed using information of the FI_mode field and the N_sym field. With this information, single memory frequency deinterleaving may be possible even for a frame having an odd number of OFDM symbols without being affected by the number of OFDM symbols.
  • the frequency interleaver according to the present invention can perform frequency interleaving on all data cells of an OFDM symbol.
  • the frequency interleaver may perform an operation of mapping data cells to an available data carrier of each symbol.
  • the frequency interleaver according to the present invention may operate in different interleaving modes according to the FFT size. For example, if the FFT size is 32K, the frequency interleaver performs random write / linear read operation on the even symbol and linear write / random read operation on the odd symbol as in the FI scheme # 1 described above. can do. In addition, when the FFT size is 16K or 8K, the frequency interleaver may perform a linear read / random write operation on all symbols regardless of even / odd.
  • the FFT size for determining the interleaving mode switching may be changed according to an embodiment. That is, in the case of 32K and 16K, the operation may be performed as in FI scheme # 1, and in the case of 8K, an even / odd independent operation may be performed. In addition, it may operate like FI scheme # 1 for all FFT sizes, and may perform an even / odd independent operation for all FFT sizes. In addition, according to an embodiment, the specific FFT size may operate as FI scheme # 2.
  • Such frequency interleaving may be performed using the above-described interleaving sequence (interleaving address).
  • the interleaving sequence may be variously generated using the offset value as described above.
  • an address check may be performed to generate various interleaving sequences.
  • 35 is a conceptual diagram illustrating a variable data-rate system according to another embodiment of the present invention.
  • one transmission super frame shown in this figure is composed of NTI_NUM TI groups, and each TI group may include N BLOCK_TI FEC blocks.
  • the number of FEC blocks included in each TI group may be different.
  • the TI group according to an embodiment of the present invention may be defined as a block for performing time interleaving and may be used in the same meaning as the above-described TI block or IF.
  • interleaving the TI groups using one twisted row-column block interleaving rule is performed. For example. This allows the receiver to perform deinterleaving using a single memory.
  • VBR variable bit-rate
  • Equation shown in the figure represents block interleaving applied to each TI group unit.
  • the shift value may be calculated when the number of FEC blocks included in the TI group is odd and even. That is, in the block interleaving according to an embodiment of the present invention, the number of FEC blocks is made odd and the shift value can be calculated.
  • the time interleaver may determine parameters related to interleaving based on a TI group having the largest number of FEC blocks in a super frame. This allows the receiver to perform deinterleaving using a single memory. In this case, virtual FEC blocks corresponding to the number of insufficient FEC blocks may be added to the TI group having fewer FEC blocks than the number of FEC blocks of the TI group including the most determined FEC blocks.
  • Virtual FEC blocks according to an embodiment of the present invention may be inserted before actual FEC blocks. Subsequently, the time interleaver according to an embodiment of the present invention performs interleaving for TI groups using one twisted row-column block interleaving rule in consideration of virtual FEC blocks. Can be done. In addition, the time interleaver according to an embodiment of the present invention may perform the skip operation described above when a memory-index corresponding to virtual FEC blocks occurs in a reading operation. After writing, the number of FEC blocks of the input TI group and the number of FEC blocks of the output TI group match when reading.
  • the left side of the figure shows a parameter and a number of virtual FEC blocks indicating the difference between the number of maximum FEC blocks and the number of actual FEC blocks included in the TI group and the number of maximum FEC blocks and the number of actual FEC blocks.
  • the equation is shown.
  • the right side of the figure shows an embodiment in which virtual FEC blocks are inserted into a TI group.
  • virtual FEC blocks may be inserted before the actual FEC block.
  • FIG. 39 is a equation illustrating a reading operation after virtual FEC blocks are inserted according to an embodiment of the present invention.
  • the skip operation shown in the figure may play a role of skipping virtual FEC blocks in a reading operation.
  • 40 is a flowchart illustrating a process of time interleaving according to an embodiment of the present invention.
  • the time interleaver according to an embodiment of the present invention may set an initial value (S67000).
  • the time interleaver may write actual FEC blocks in consideration of virtual FEC blocks (S67100).
  • the time interleaver may generate a temporal TI address (S67200).
  • the time interleaver according to an embodiment of the present invention may evaluate the availability of the generated TI reading address (S67300). Thereafter, the time interleaver according to the embodiment of the present invention may generate a final TI reading address (S67400).
  • time interleaver may read actual FEC blocks (S67500).
  • FIG. 41 is an equation illustrating a process of determining a shift value and a size of a maximum TI block according to an embodiment of the present invention.
  • the figure shows an embodiment in which there are two TI groups, the number of cells in the TI group is 30, the number of FEC blocks included in the first TI group is 5, and the number of FEC blocks included in the second TI block is 6. Indicates.
  • the number of maximum FEC blocks is 6, but is even, so that the number of adjusted maximum FEC blocks for obtaining the shift value can be 7, and the shift value can be calculated as four.
  • 42 to 44 are diagrams illustrating the TI process of the above-described embodiment in the previous figure.
  • This figure shows the writing operations for the two TI groups described in the previous figures.
  • the block shown on the left side of the figure represents a TI memory address array, and the block shown on the right side of the figure shows two and one virtual FEC blocks, respectively, for two consecutive TI groups. Represents a writing operation when a dog is inserted. Since the number of adjusted maximum FEC blocks is 7 as described above, two virtual FEC blocks are inserted into the first TI group, and one virtual FEC block is inserted into the second TI group.
  • the block shown on the left side of the figure represents a TI memory address array, and the block shown on the right side of the figure shows two and one virtual FEC blocks, respectively, for two consecutive TI groups.
  • 44 is a view illustrating a result of a skip operation performed in a reading operation according to an embodiment of the present invention.
  • virtual FEC blocks may be skipped in two TI groups.
  • FIG. 45 shows time deinterleaving for the first TI group
  • FIG. 46 shows time deinterleaving for the second TI group.
  • 45 illustrates a writing process of time deinterleaving according to an embodiment of the present invention.
  • the block shown on the left side of the figure represents a TI memory address array
  • the block shown in the middle of the figure represents the first TI group input to the time deinterleaver
  • the block shown on the right side of the figure represents the first consecutive A writing process performed taking into account virtual FEC blocks skipped for a TI group is shown.
  • two virtual FEC blocks that are skipped in the TI process may be restored in the writing process for accurate reading operation.
  • the location and amount of the two virtual FEC blocks that were skipped can be estimated through any algorithm.
  • the block shown on the left side of the figure represents a TI memory address array
  • the block shown in the middle of the figure represents the second TI group input to the time deinterleaver
  • the block shown on the right side of the figure represents the second consecutive.
  • a writing process performed taking into account virtual FEC blocks skipped for a TI group is shown.
  • one virtual FEC blocks skipped in the TI process may be restored in the writing process for accurate reading operation.
  • the location and amount of one virtual FEC blocks that were skipped can be estimated through any algorithm.
  • FIG. 47 is a equation illustrating reading operation of time deinterleaving according to another embodiment of the present invention.
  • the TDI shift value used in the receiver may be determined by the shift value used in the transmitter, and the skip operation plays a role of skipping virtual FEC blocks in a reading operation similar to the transmitter. Can be.
  • 48 is a flowchart illustrating a process of time deinterleaving according to an embodiment of the present invention.
  • the time deinterleaver according to an embodiment of the present invention may set an initial value (S75000).
  • the time interleaver may write actual FEC blocks in consideration of virtual FEC blocks (S75100).
  • the time interleaver may generate a temporal TDI address (S75200).
  • the time interleaver according to an embodiment of the present invention may evaluate the availability of the generated TDI reading address (S75300). Thereafter, the time interleaver according to an embodiment of the present invention may generate a final TDI reading address (S75400).
  • time interleaver may read actual FEC blocks (S75500).
  • FIG. 49 is a table showing interleaving types applied according to the number of PLPs.
  • an interleaving type may be determined based on the value of PLP_NUM.
  • PLP_NUM is a signaling field indicating the PLP mode. If the value of PLP_NUM is 1, the PLP mode is a single PLP.
  • a single PLP according to an embodiment of the present invention may apply only a convolutional interleaver (CI).
  • the PLP mode is multiple PLPs.
  • a convolutional interleaver (CI) and a block interleaver (BI) may be applied.
  • the convolution interleaver may perform inter frame interleaving
  • the block interleaver may perform intra frame interleaving. Details of inter frame interleaving and intra frame interleaving are the same as those described above.
  • the hybrid time interleaver according to the first embodiment may include a block interleaver (BI) and a convolution interleaver (CI).
  • the time interleaver of the present invention may be located between a BICM chain block and a frame builder.
  • the BICM chain block illustrated in FIGS. 50 to 51 may include blocks excluding the time interleaver 5050 of the processing block 5000 of the BICM block illustrated in FIG. 5.
  • the frame builders illustrated in FIGS. 50 to 51 may perform the same role as the block building block 1020 of FIG. 1.
  • 51 is a block diagram including a second embodiment of the above-described hybrid time interleaver structure.
  • each block included in the second embodiment of the hybrid time interleaver structure is the same as the content described with reference to FIG. 50.
  • Whether to apply the block interleaver according to the second embodiment of the hybrid time interleaver structure may be determined according to the PLP_NUM value.
  • Each block of the hybrid time interleaver according to the second embodiment may perform operations according to the embodiment of the present invention.
  • 52 is a block diagram including the first embodiment of the structure of the hybrid time deinterleaver.
  • the hybrid time deinterleaver according to the first embodiment may perform an operation corresponding to the reverse operation of the hybrid time interleaver according to the first embodiment described above. Accordingly, the hybrid time deinterleaver according to the first embodiment of FIG. 52 may include a convolutional deinterleaver (CDI) and a block deinterleaver (BDI).
  • CDI convolutional deinterleaver
  • BDI block deinterleaver
  • the convolutional deinterleaver of the hybrid time deinterleaver may perform inter frame deinterleaving, and the block deinterleaver may perform intra frame deinterleaving. Details of inter frame deinterleaving and intra frame deinterleaving are the same as those described above.
  • the BICM decoding block illustrated in FIGS. 52 to 53 may perform a reverse operation of the BICM chain block of FIGS. 50 to 51.
  • 53 is a block diagram including the second embodiment of the structure of the hybrid time deinterleaver.
  • the hybrid time deinterleaver according to the second embodiment may perform an operation corresponding to the reverse operation of the hybrid time interleaver according to the second embodiment. Operation of each block included in the second embodiment of the hybrid time deinterleaver structure may be the same as the content described with reference to FIG. 52.
  • Whether the block deinterleaver according to the second embodiment of the hybrid time deinterleaver structure is applied may be determined according to a PLP_NUM value.
  • Each block of the hybrid time deinterleaver according to the second embodiment may perform operations according to the embodiment of the present invention.
  • the hybrid broadcasting system may transmit a broadcast signal by interworking a terrestrial broadcasting network and an internet network.
  • the hybrid broadcast reception device may receive a broadcast signal through a terrestrial broadcast network (broadcast) and an internet network (broadband).
  • the hybrid broadcast receiver includes a physical layer module, a physical layer I / F module, a service / content acquisition controller, an internet access control module, a signaling decoder, a service signaling manager, a service guide manager, an application signaling manager, an alarm signal manager, an alarm signal parser, Targeting signal parser, streaming media engine, non-real time file processor, component synchronizer, targeting processor, application processor, A / V processor, device manager, data sharing and communication unit, redistribution module, companion device and / or external modules can do.
  • the physical layer module (s) may receive and process a broadcast-related signal through a terrestrial broadcast channel, convert it into an appropriate form, and deliver the signal to a physical layer I / F module.
  • the physical layer I / F module may obtain an IP datagram from information obtained from the physical layer module.
  • the physical layer I / F module may convert the obtained IP datagram into a specific frame (eg, RS Frame, GSE, etc.).
  • the service / content acquisition controller may perform a control operation for acquiring service, content, and signaling data related thereto through broadcast and / or broadband channels.
  • the Internet Access Control Module (s) may control a receiver operation for acquiring a service, content, or the like through a broadband channel.
  • the signaling decoder may decode signaling information obtained through a broadcast channel.
  • the service signaling manager may extract, parse, and manage signaling information related to service scan and service / content from an IP datagram.
  • the service guide manager may extract announcement information from an IP datagram, manage an SG database, and provide a service guide.
  • the App Signaling Manager may extract, parse and manage signaling information related to application acquisition from an IP datagram.
  • Alert Signaling Parser can extract, parse and manage signaling information related to alerting from IP datagram.
  • Targeting Signaling Parser can extract, parse and manage signaling information related to service / content personalization or targeting from IP datagram.
  • the targeting signal parser may deliver the parsed signaling information to the targeting processor.
  • the streaming media engine can extract and decode audio / video data for A / V streaming from IP datagrams.
  • the non-real time file processor can extract, decode and manage file type data such as NRT data and applications from IP datagrams.
  • the Component Synchronizer can synchronize content and services such as streaming audio / video data and NRT data.
  • the targeting processor may process an operation related to personalization of a service / content based on the targeting signaling data received from the targeting signal parser.
  • the App Processor may process application related information, downloaded application status, and display parameters.
  • the A / V Processor may perform audio / video rendering related operations based on decoded audio, video data, and application data.
  • the device manager may perform a connection and data exchange operation with an external device.
  • the device manager may perform management operations on external devices, such as adding, deleting, and updating external devices that can be interworked.
  • the data sharing & communication unit can process information related to data transmission and exchange between the hybrid broadcast receiver and an external device.
  • the data that can be transmitted and exchanged may be signaling, A / V data, or the like.
  • the redistribution module (s) may obtain relevant information about next-generation broadcast services and contents when the broadcast receiver does not directly receive the terrestrial broadcast signal.
  • the redistribution module may support the acquisition of broadcast services and content by the next generation broadcast system when the broadcast receiver does not directly receive the terrestrial broadcast signal.
  • Companion device (s) may be connected to the broadcast receiver of the present invention to share audio, video, or signaling inclusion data.
  • the companion device may refer to an external device connected to the broadcast receiver.
  • the external module may refer to a module for providing a broadcast service / content and may be, for example, a next generation broadcast service / content server.
  • the external module may refer to an external device connected to the broadcast receiver.
  • 55 is a block diagram of a hybrid broadcast receiver according to an embodiment of the present invention.
  • the hybrid broadcast receiver may receive a hybrid broadcast service through interlocking terrestrial broadcast and broadband in a DTV service of a next generation broadcast system.
  • the hybrid broadcast receiver may receive broadcast audio / video (Audio / Video, A / V) content transmitted through terrestrial broadcast, and receive enhancement data or a part of broadcast A / V content related thereto in real time through broadband.
  • broadcast audio / video (A / V) content may be referred to as media content.
  • Hybrid broadcast receivers include Physical Layer Controller (D55010), Tuner (Tuner, D55020), Physical Frame Parser (D55030), Link Layer Frame Parser (D55040), IP / UDP Datagram Filter (IP / UDP Datagram Filter, D55050), ATSC 3.0 Digital Television Control Engine (ATSC 3.0 DTV Control Engine, D55060), ALC / LCT + Client (ALC / LCT + Client, D55070), Timing Control (D55080), Signaling Signaling Parser (D55090), DASH Client (Dynamic Adaptive Streaming over HTTP Client, DASH Client, D55100), HTTP Access Client (HTTP Access Client, D55110), ISO BMFF Parser (ISO Base Media File Format Parser, ISO BMFF Parser, D55120) and / or a media decoder D55130.
  • D55010 Physical Layer Controller
  • Tuner Tuner
  • D55030 Physical Frame Parser
  • Link Layer Frame Parser D55040
  • the physical layer controller D55010 may control operations of the tuner D55020 and the physical frame parser D55030 using radio frequency (RF) information of a terrestrial broadcast channel intended to be received by the hybrid broadcast receiver. .
  • RF radio frequency
  • the tuner D55020 may receive and process a broadcast-related signal through a terrestrial broadcast channel and convert it to an appropriate form. For example, the tuner D55020 may convert the received terrestrial broadcast signal into a physical frame.
  • the physical frame parser D55030 may obtain a link layer frame through parsing the received physical frame and processing related thereto.
  • the link layer parser D55040 may perform a related operation for acquiring link layer signaling or the like from an link layer frame or for acquiring an IP / UDP datagram or an MPEG-2 TS.
  • the connection layer parser D55040 may output at least one or more IP / UDP datagrams.
  • the IP / UDP datagram filter D55050 may filter a specific IP / UDP datagram from the received at least one IP / UDP datagram. That is, the IP / UDP datagram filter D55050 selectively selects the IP / UDP datagram selected by the ATSC 3.0 digital television control engine D55060 among at least one IP / UDP datagram output from the connection layer parser D55040. You can filter.
  • the IP / UDP datagram filter D55050 may output an application layer transport protocol packet such as ALC / LCT +.
  • the ATSC 3.0 digital television control engine (D55060) may be responsible for the interface between the modules included in each hybrid broadcast receiver. In addition, the ATSC 3.0 digital television control engine (D55060) transmits the parameters required for each module to each module, thereby controlling the operation of each module. In the present invention, the ATSC 3.0 digital television control engine D55060 may deliver a media presentation description (MPD) and / or an MPD URL to the DASH client D55100. Also, in the present invention, the ATSC 3.0 digital television control engine D55060 may transmit a delivery mode and / or a transport session identifier (TSI) to the ALC / LCT + client D55070.
  • MPD media presentation description
  • TSI transport session identifier
  • TSI may indicate an identifier of a session for transmitting a transport packet including a signaling message such as MPD or MPD URL related signaling, for example, an ALC / LCT + session or FLUTE session, which is an application layer transport protocol.
  • the transport session identifier may correspond to an asset id of the MMT.
  • the ALC / LCT + client D55070 may generate one or more ISO Base Media File Format (ISOBMFF) objects by processing application layer transport protocol packets such as ALC / LCT + and collecting and processing a plurality of packets.
  • the application layer transport protocol packet may include an ALC / LCT packet, an ALC / LCT + packet, a ROUTE packet, and / or an MMTP packet.
  • the timing controller D55080 may process a packet including system time information and control the system clock accordingly.
  • the signaling parser D55090 may acquire and parse DTV broadcast service related signaling, and generate and manage a channel map or the like based on the parsed signaling.
  • the signaling parser may parse extended MPD or MPD related information from signaling information.
  • the DASH client D55100 may perform operations related to real-time streaming or adaptive streaming.
  • the DASH client D55100 may receive the DASH content from the HTTP server through the HTTP connection client D55110.
  • the DASH client D55100 may output the ISO Base Media File Format object by processing the received DASH segment.
  • the DASH client D55100 may transmit the full Representation ID (Fully qualified Representation ID) or the segment URL to the ATSC 3.0 digital television control engine (D55060).
  • the entire Representation ID may mean, for example, an ID combining the MPD URL, period @ id, and representation @ id.
  • the DASH client D55100 may also receive an MPD or MPD URL from the ATSC 3.0 digital television control engine D55060.
  • the DASH client D55100 may receive a desired media stream or DASH segment from the HTTP server using the received MPD or MPD URL.
  • the DASH client D55100 may be referred to as a processor.
  • the HTTP access client D55110 may request specific information from the HTTP server, and receive and process a response from the HTTP server.
  • the HTTP server may process a request received from an HTTP connection client and provide a response thereto.
  • the ISO BMFF parser D55120 may extract audio / video data from an ISO Base Media File Format object.
  • the media decoder D55130 may decode the received audio and / or video data and perform processing for presenting the decoded audio / video data.
  • an extension or modification of the MPD is required.
  • the above-mentioned terrestrial broadcasting system may transmit an extended or modified MPD, and the hybrid broadcast receiver may receive content through broadcast or broadband using the extended or modified MPD. That is, the hybrid broadcast receiver may receive the extended or modified MPD through terrestrial broadcasting and receive content through terrestrial broadcasting or broadband based on the MPD.
  • the following describes elements and attributes that should be additionally included in the extended or modified MPD compared to the existing MPD.
  • an extended or modified MPD may be described as an MPD.
  • MPD can be extended or modified to represent ATSC 3.0 services.
  • the extended or modified MPD may additionally include MPD @ anchorPresentationTime, Common @ presentable, Common.Targeting, Common.TargetDevice and / or Common @ associatedTo.
  • the MPD @ anchorPresentationTime may indicate an anchor of the presentation time of the segments included in the MPD, that is, the time at which it is based.
  • MPD @ anchorPresentationTime may be used as an effective time of the MPD.
  • MPD @ anchorPresentationTime may indicate the earliest playback time point among segments included in the MPD.
  • the MPD may further include common attributes and elements. Common attributes and elements can be applied to AdaptionSet, Representation, SubRepresentation, etc. in MPD. Common @ presentable may indicate that the media described by the MPD is a component that can be presented.
  • Targeting may indicate targeting properties and / or personalization properties of media described by the MPD.
  • TargetDevice may represent a target device or target devices of the media described by the MPD.
  • Common @ associatedTo may indicate an adaptationSet and / or representation related to the media described by the MPD.
  • MPD @ id, Period @ id and AdaptationSet @ id included in the MPD may be required to specify the media content described by the MPD. That is, the DASH client may specify the content to be received based on the MPD as MPD @ id, Period @ id, and AdaptationSet @ id, and deliver the content to the ATSC 3.0 digital television control engine.
  • the ATSC 3.0 digital television control engine can also receive the content and deliver it to the DASH client.
  • next generation broadcast transmission system supporting IP-based hybrid broadcasting may encapsulate audio or video data of a broadcast service in an ISO Base Media File Format (hereinafter referred to as ISO BMFF).
  • ISO BMFF ISO Base Media File Format
  • the encapsulation may use a form such as DASH Segment or MPU (Media Processing Unit) of MMT.
  • MPU Media Processing Unit
  • the next generation broadcasting system may transmit the encapsulated data to the broadcasting network and the Internet network in the same manner or differently according to the properties of each transmission network.
  • the next generation broadcast system may transmit the encapsulated data using at least one of broadcast or broadband.
  • the broadcast system may transmit data encapsulated in the form of ISO Base Media File (hereinafter referred to as ISO BMFF) through an application layer transport protocol packet supporting real-time object transmission.
  • ISO BMFF ISO Base Media File
  • a broadcast system may encapsulate a real-time object delivery over unidirectional transport (hereinafter referred to as ROUTE) or a transport packet of an MMTP.
  • ROUTE unidirectional transport
  • the broadcast system may generate the encapsulated data as an IP / UDP datagram and then load the encapsulated data into a broadcast signal.
  • the broadcasting system may deliver the encapsulated data to the receiver based on a streaming technique such as DASH.
  • the broadcast system may transmit signaling information of a broadcast service in the following method.
  • the broadcast system may transmit signaling information through the next-generation broadcast transmission system and the physical layer of the broadcast network according to signaling properties.
  • the broadcast system may transmit signaling information through a specific data pipe (hereinafter referred to as DP) of a transport frame included in the broadcast signal.
  • DP specific data pipe
  • the signaling form transmitted through broadcast may be encapsulated into a bit stream or an IP / UDP datagram.
  • the broadcast system may return signaling data in response to a request of a receiver and transmit the signaling data.
  • the broadcast system may transmit ESG or NRT content of a broadcast service in the following manner.
  • the broadcast system may encapsulate the ESG or NRT content using an application layer transport protocol packet, for example, Real-Time Object Delivery over Unidirectional Transport (ROUTE), MMTP transport packet, and the like.
  • the encapsulated ESG or NRT content can be generated as an IP / UDP datagram and loaded on a broadcast signal for transmission.
  • the broadcast system may return ESG or NRT content and the like as a response to the request of the receiver and transmit the same.
  • the next generation broadcast system may transmit a transport frame using broadcast.
  • P1 located at the front of the transmission frame may mean a symbol including information for transport signal detection.
  • P1 may include tuning information and the receiver may decode the L1 part located after P1 based on a parameter included in the P1 symbol.
  • the broadcast system may include information on a transport frame configuration and characteristics of each DP (data pipe) in the L1 part. That is, the receiver may decode the L1 part to obtain information about the transport frame configuration and the characteristics of each DP (data pipe).
  • the receiver may acquire information that should be shared between DPs through a common DP.
  • a transport frame may not include a common DP.
  • components such as audio, video, and data are included in the interleaved DP region composed of DP1 to n and transmitted.
  • DP each component constituting each service (channel) is transmitted may be signaled through L1 or common PLP.
  • next generation broadcasting system may transmit information for quickly obtaining information about a service included in a transmission frame. That is, the next generation broadcast system may allow the next generation broadcast receiver to quickly acquire broadcast service and content related information included in a transport frame. In addition, when there is a service / content generated by one or more broadcasting stations in the corresponding frame, the receiver can efficiently recognize the service / content according to the broadcasting station. That is, the next generation broadcast system may transmit service list information about a service included in a transport frame by including the same in a transport frame.
  • the broadcast system may transmit broadcast service related information through a separate channel, for example, a fast information channel (FIC), so that the receiver can quickly scan a broadcast service and content within a corresponding frequency.
  • a separate channel for example, a fast information channel (FIC)
  • the broadcast system may include information for scan and acquisition of a broadcast service in a transport frame and transmit the information.
  • an area including information on scan and acquisition for a broadcast service may be referred to as an FIC.
  • the receiver may acquire information on broadcast services generated and transmitted by one or more broadcasting stations through the FIC, and thus, the receiver may easily and quickly scan the broadcast services available on the receiver.
  • a specific DP included in a transport frame may operate as a base DP capable of quickly and robustly transmitting signaling for broadcast service and content transmitted in a corresponding transport frame.
  • Data transmitted through each DP of the transport frame of the physical layer may be the same as the bottom of FIG. That is, the link layer signaling or the IP datagram may be transmitted through the DP after being encapsulated into a specific type of generic packet.
  • the generic packet may include signaling data.
  • the link (low) layer signaling may include fast service scan / acquisition, context information of IP header compression, signaling related to emergency alert, and the like.
  • the application layer transport session may consist of a combination of IP address and port number.
  • the application layer transport protocol is Real-Time Object Delivery over Unidirectional Transport (ROUTE)
  • the ROUTE session may be composed of one or more Layered Coding Transport (LCT) sessions.
  • LCT Layered Coding Transport
  • one media component for example, DASH Representation, etc.
  • one or more media components may be multiplexed and transmitted through one application transmission session.
  • transport objects may be delivered through one LCT transport session, and each transport object may be a DASH segment associated with a DASH representation delivered through the transport session.
  • the transport packet may be configured as follows.
  • the transport packet may include an LCT header, a ROUTE header, and payload data, and the plurality of fields included in the transport packet may be as follows.
  • the LCT header may include the following fields.
  • the V (version) field may indicate version information of a corresponding transport protocol packet.
  • the C field may indicate a flag associated with the length of the Congestion Control Information field described below.
  • the PSI field is protocol-specific information and may indicate information specific to a corresponding protocol.
  • the S field may indicate a flag associated with the length of a transport session identifier (TSI) field.
  • the O field may indicate a flag associated with the length of the transport object identifier (TOI) field.
  • the H field may represent whether half-word (16 bits) is added to the length of the TSI and TOI fields.
  • a (Close Session flag) field may represent that the session is terminated or is about to be terminated.
  • the B (Close Object flag) field may represent that the object being transmitted is closed or the end is imminent.
  • the code point field may indicate information related to encoding or decoding a payload of a corresponding packet.
  • the payload type may correspond to this.
  • the Congestion Control Information field may include information associated with congestion control.
  • the information associated with the congestion control may be a current time slot index (CTSI), a channel number, or a packet sequence number within a corresponding channel.
  • CTSI current time slot index
  • the Transport Session Identifier field may indicate an identifier of a transport session.
  • the Transport Object Identifier field may indicate an identifier of an object transmitted through a transport session.
  • the ROUTE (ALC) Header may include transmission of additional information of the preceding LCT header, such as a payload identifier associated with the Forward Error correction scheme.
  • Payload data may indicate a substantial data portion of the payload of the packet.
  • FIG. 59 is a diagram illustrating a method for transmitting signaling data by a next generation broadcast system according to one embodiment of the present invention.
  • Signaling data of the next generation broadcast system may be transmitted as shown.
  • the next generation broadcast transmission system may deliver signaling data for a broadcast service delivered by a corresponding physical layer frame through a fast information channel (hereinafter referred to as FIC).
  • FIC may mean information on a service list. If a separate FIC does not exist, it may be transmitted through a path through which link layer signaling is carried.
  • signaling information including information on a service and components (audio, video, etc.) in the service may be encapsulated and transmitted as an IP / UDP datagram through one or more DPs in a physical layer frame.
  • signaling information about a service and a service component may be encapsulated and transmitted in an application layer transport packet (for example, a ROUTE packet or an MMTP packet).
  • FIG. 59 shows an example of the case where the signaling data described above is delivered through the FIC and one or more DPs.
  • signaling data to support fast service scan / acquisition is delivered through FIC, and signaling data including detailed information about a service is encapsulated into an IP datagram, and can be delivered through a specific DP.
  • signaling data including detailed information about a service may be referred to as service layer signaling.
  • the interruption of FIG. 59 shows an example of the case where the signaling data described above is delivered through the FIC and one or more DPs.
  • signaling data to support fast service scan / acquisition is delivered through FIC, and signaling data including detailed information about a service is encapsulated into an IP datagram, and can be delivered through a specific DP.
  • a part of signaling data including information on a specific component included in the service may be delivered through one or more transport sessions in the application layer transport protocol. For example, some of the signaling data may be delivered via one or more transport sessions in the ROUTE session.
  • FIG. 59 shows an example of the case where the signaling data described above is delivered through the FIC and one or more DPs.
  • signaling data for supporting fast service scan / acquisition is delivered through FIC, and signaling data including detailed information about a service, etc., can be delivered through one or more transport sessions in a ROUTE session.
  • 60 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
  • the present specification proposes signaling information for scanning and obtaining a broadcast service by a next generation broadcast receiving apparatus.
  • broadcast services and contents generated by one or more broadcasting stations within a specific frequency may be transmitted.
  • the receiver may use the above-described signaling information to quickly and easily scan a broadcast station existing within a corresponding frequency and a service / content of the broadcast station. This can be represented by a syntax as shown, which can be represented in other formats, such as XML.
  • Signaling information for fast service scan and acquisition may be delivered in a fast information channel (FIC), which is a separate channel in a physical layer transport frame.
  • FIC fast information channel
  • the above-described signaling information may be delivered through a common DP, which may deliver information that may be shared between data pipes of a physical layer. It may also be delivered through a path through which signaling of the link layer is delivered.
  • the aforementioned signaling information may be encapsulated into an IP datagram and transmitted through a specific DP.
  • the above-described signaling information may be delivered through a service signaling channel through which service signaling is delivered or a transport session of an application layer.
  • Signaling information (FIC information) for fast service scan and acquisition may include at least one of the following fields.
  • the FIC information may be referred to as service acquisition information.
  • the FIC_portocol_version field may indicate a protocol version of FIC signaling information.
  • the TSID field may indicate an identifier of the overall broadcast stream.
  • the FIC_data_version field may indicate a data version of this FIC instance.
  • the FIC_data_version field may be increased when there is a change in the content of the FIC.
  • the num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions.
  • Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster.
  • the partition_protocol_version field may indicate the version of the above-described partition structure.
  • the base_DP_ID field may indicate an identifier for the base DP of the corresponding partition.
  • the base DP may include a service signaling table.
  • the service signaling table may include a list of all services in the corresponding partition. That is, the service signaling table may list the services to be transmitted. You can also define default attributes for each service.
  • the base DP may be a robust DP in the partition and may include other signaling tables for the partition.
  • the base_DP_version field may indicate version information indicating a change in data transmitted through the corresponding base DP.
  • the base_DP_version field may increase by one.
  • the num_services field may indicate the number of at least one service belonging to a corresponding partition.
  • the service_id field may indicate an identifier for a service.
  • the channel_number field may indicate a channel number associated with a corresponding service.
  • the service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like.
  • the short_service_name_length field may indicate the length of a name representing the corresponding service.
  • the short_Service_name field may indicate a name representing a corresponding service.
  • the service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value.
  • the service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated.
  • the sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag.
  • the FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the FIC information may be represented in a binary format but may be represented in another format such as XML according to an embodiment.
  • the FIC information may include the following fields.
  • the FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC).
  • the TSID field may indicate an identifier of the overall broadcast stream.
  • the FIC_data_version field may indicate a data version of this FIC instance.
  • the FIC_data_version field may be increased when there is a change in the content of the FIC.
  • the num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster.
  • the partition_id field may indicate an identifier of a corresponding partition.
  • the partition_protocol_version field may indicate the version of the above-described partition structure.
  • the num_services field may indicate the number of at least one component belonging to the corresponding partition.
  • the service_id field may indicate an identifier for a service.
  • the service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service.
  • the service_data_version field may increase by 1 whenever a change occurs in the included service data.
  • the receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field.
  • the channel_number field may indicate a channel number associated with a corresponding service.
  • the service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like.
  • the short_service_name_length field may indicate the length of a name representing the corresponding service.
  • the short_service_name field may indicate a name representing a corresponding service.
  • the service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value.
  • the service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated.
  • the sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag.
  • the IP_version_flag field may indicate the following IP address format.
  • the source_IP_address_flag field may indicate whether to include source_IP_addr. If the corresponding field value is 1, it may represent that source_IP_addr exists.
  • the num_transport_session field may indicate the number of transport sessions (eg, ROUTE or MMTP sessions) for transmitting component data of a corresponding service in a broadcast stream.
  • the source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service when the above-described source_IP_address_flag value is 1.
  • the dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service.
  • the dest_UDP_port field may indicate a UDP port number of a UDP datagram including component data of a corresponding service.
  • the LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session. In this case, the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE.
  • the service_signaling_flag field may indicate whether a transport session transmits service signaling.
  • the transport session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field.
  • the transport session descriptors field may include descriptors of a transport session level.
  • the service descriptors field may include descriptors of a service level.
  • the Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster.
  • the FIC session descriptors field may include descriptors of the FIC level. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
  • FIC based signaling may be referred to herein as service acquisition information or service acquisition signaling.
  • the physical layer signaling may include a field for service acquisition information.
  • the field for the service acquisition information may inform the receiver whether or not the service acquisition information (FIC) is parsed.
  • the receiver may determine whether data of service signaling is changed through service_data_version information by parsing service acquisition information.
  • the broadcast signal receiver may check the data pipe identifier of the physical layer that delivers signaling including detailed information about the transport session using the LSID_DP field.
  • the broadcast receiver may parse the DP indicated by the corresponding DP identifier and check detailed information about the transport session. That is, the signaling method of the next generation broadcast system includes a procedure in which physical layer signaling signals whether service acquisition information is parsed and service acquisition information signals a location of detailed information about a transport session to confirm detailed information about the transport session. can do.
  • the detailed information about the transport session may include an MPD transport table, an application signaling table, a transport session descriptor (LSID), and / or a component mapping table (CMT).
  • the FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the FIC information may be represented in a binary format but may be represented in another format such as XML according to an embodiment.
  • the FIC information may include the following fields.
  • the FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC).
  • the TSID field may indicate an identifier of the overall broadcast stream.
  • the FIC_data_version field may indicate a data version of this FIC instance.
  • the FIC_data_version field may be increased when there is a change in the content of the FIC.
  • the num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster.
  • the partition_id field may indicate an identifier of a corresponding partition.
  • the partition_protocol_version field may indicate the version of the above-described partition structure.
  • the num_services field may indicate the number of at least one component belonging to the corresponding partition.
  • the service_id field may indicate an identifier for a service.
  • the service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service.
  • the service_data_version field may increase by 1 whenever a change occurs in the included service data.
  • the receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field.
  • the channel_number field may indicate a channel number associated with a corresponding service.
  • the service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like.
  • the short_service_name_length field may indicate the length of a name representing the corresponding service.
  • the short_service_name field may indicate a name representing a corresponding service.
  • the service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value.
  • the service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated.
  • the sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag.
  • the IP_version_flag field may indicate the following IP address format.
  • the source_IP_address_flag field may indicate whether to include source_IP_addr. If the corresponding field value is 1, it may represent that source_IP_addr exists.
  • the num_transport_session field may indicate the number of transport sessions (eg, ROUTE or MMTP sessions) for transmitting component data of a corresponding service in a broadcast stream.
  • the source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service when the above-described source_IP_address_flag value is 1.
  • the dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service.
  • the dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service.
  • the LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session. In this case, the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE.
  • the service_signaling_flag field may indicate whether a transport session transmits service signaling.
  • the signaling_data_version field may indicate a change of associated service signaling data. Each time a change occurs in the service signaling data, the corresponding field may be increased by one. The receiver may detect a change in signaling related to the corresponding service using the signaling_data_version field.
  • the signaling_DP field may indicate a data pipe identifier of a physical layer that carries service signaling.
  • the transport session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field.
  • Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field.
  • the transport session descriptors field may include descriptors of a transport session level.
  • the service descriptors field may include descriptors of a service level.
  • the Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster.
  • the FIC session descriptors field may include descriptors of the FIC level. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
  • FIC based signaling may be referred to herein as service acquisition information or service acquisition signaling.
  • the physical layer signaling may include a field for service acquisition information.
  • the field for the service acquisition information may inform the receiver whether or not the service acquisition information (FIC) is parsed.
  • the receiver may determine whether data of service signaling is changed through service_data_version information by parsing service acquisition information.
  • the broadcast signal receiver may acquire an LSID or LSID table including detailed information on the transport session through the DP identified from the LSID_DP field using the LSID_DP field.
  • the receiver may recognize a change in the signaling data using information such as service_signaling_flag, signaling_data_version, signaling_DP, etc., and acquire signaling data through the DP identified from the signaling_example.
  • the signaling method of the next generation broadcast system includes a procedure in which physical layer signaling signals whether service acquisition information is parsed and service acquisition information signals a location of detailed information about a transport session to confirm detailed information about the transport session.
  • the detailed information about the transport session may include an MPD transport table, an application signaling table, a transport session descriptor (LSID), and / or a component mapping table (CMT).
  • LSID transport session descriptor
  • CMT component mapping table
  • Each detail information about the transport session may be described by different examples. Can be delivered.
  • the service signaling message may be referred to as signaling data or service layer signaling including detailed information about a service.
  • the service signaling message may have a structure including a signaling message header and a signaling message.
  • the signaling message may be expressed in binary or XML format. This may be transmitted as a payload of an IP datagram or an application layer transport packet (eg, ROUTE or MMTP).
  • the syntax of the signaling message header may be as follows, which may be expressed in other formats such as XML.
  • the signaling message header may include the following fields.
  • the signaling_id field may indicate an identifier of a signaling message.
  • the signaling_length field may indicate the length of an included signaling message.
  • the signaling_id_extension field may indicate extension information of an identifier for a signaling message.
  • the signaling_id_extension field may be used as information for identifying signaling together with the signaling_id field.
  • the signaling_id_extension field may include a protocol version of a signaling message.
  • the version_number field may indicate version information of a signaling message.
  • the version_number field may be changed when contents included in the corresponding signaling message change.
  • the current_next_indicator field may indicate whether an included signaling message is currently available.
  • this field may indicate that the currently included signaling message is currently available. If the value of this field is '0', this may indicate that a signaling message that is not currently available and that a signaling message including the same signaling_id, signaling_id_extension, or fragment_number may be available later.
  • the fragmentation_indicator field may indicate whether a corresponding signaling message is fragmented. If the value of this field is '1', this indicates that the message is fragmented. In this case, it may indicate that signaling_message_data () includes a part of signaling data. When the value of this field is '0', it may represent that signaling_message_data () includes all signaling data.
  • the payload_format_indicator field may indicate whether a current payload_format value is included in a signaling message header part. If the value of this field is '1', this may indicate that the payload_format value is included in the signaling message header part.
  • the expiration_indicator field may indicate whether an expiration value is currently included in a signaling message header part. When the value of this field is '1', this may indicate that an expiration value is included in a signaling message header part.
  • the fragment_number field may indicate the fragment number of the current signaling message when one signaling message is divided into several fragments and transmitted.
  • the last_fragment_number field may indicate the number of a fragment including the last data of the signaling message when one signaling message is divided into multiple fragments and transmitted.
  • the payload_format field may indicate the format of signaling message data included in the payload. As an example, it may represent binary, XML, or the like.
  • the expiration field may indicate the valid time of the signaling message included in the payload.
  • the service signaling table / message and the like usable in the next generation broadcasting network may be as follows and may be signaled by including the following information.
  • Information included in each table / message may be divided into different tables and transmitted separately, and is not limited by the illustrated embodiment.
  • signaling information belonging to different tables may be merged into one table and transmitted.
  • the service mapping table may include attributes of the service and information associated with the service.
  • the attribute information of the service may include, for example, information such as an ID, a name, a category, and the like, and the information associated with the service may include path information for acquiring the service.
  • the MPD Delivery Table may include a DASH MPD associated with a service / content or path information for acquiring the DASH MPD.
  • the component mapping table may include component information in a service and information associated with a component.
  • the component information may include associated DASH representation information and the like, and the information associated with the component may include path information for acquiring the component.
  • the LSID table may include information about a transport session for transmitting a service / component, a configuration of a transport packet, and the like.
  • the initialization segment delivery table may include initialization segment information on a DASH Representation associated with a component in a service or information on a path for obtaining the segment.
  • the application parameter table may include detailed information about an application associated with a broadcast service and related information such as a path for obtaining the same.
  • a signaling message / table When such a signaling message / table is transmitted through a broadcasting network, it may be transmitted through a fast information channel (FIC), a service signaling channel (SSC), or an application layer transport session (eg, a ROUTE or MMTP session). Furthermore, it can be transmitted through the Internet network (broadband).
  • FOC fast information channel
  • SSC service signaling channel
  • application layer transport session eg, a ROUTE or MMTP session
  • Internet network Broadband
  • 67 is a diagram illustrating a service mapping table used in a next generation broadcast system according to an embodiment of the present invention. Content to be described below may be included in the service signaling message part located behind the signaling message header and transmitted.
  • the service mapping table may include information on service mapping signaling and may be expressed in an XML form or a binary form.
  • the service mapping table which is one of service signaling, may include a service identifier (id), a service type, a service name, a channel number, ROUTE session related information, MPD related information, and component signaling location information.
  • the service identifier may indicate information for identifying a service and may be expressed by an id attribute.
  • the service type information may be information indicating a type of a service and may be expressed by a serviceType attribute.
  • the service name information may be information representing a name of a service and may be expressed by a serviceName attribute.
  • the channel number information may be information indicating a channel number associated with a service and may be expressed by a channelNumber attribute.
  • the ROUTE session related information may include a sourceIP attribute, a destinationIP attribute, and a destinationPort attribute.
  • the sourceIP attribute may indicate the source address of IP datagrams containing associated data.
  • the destinationIP attribute may indicate a destination address of IP datagrams including associated data.
  • the destinationPort attribute may indicate a destination port number of a UDP packet header in an IP datagram including associated data.
  • the ROUTE session related information may include detailed information (LSID) of transport sessions, for example, may include each LSID location information and delivery mode information of each LSID location information.
  • the detailed information (LSID) for transport sessions may include bootstrap information.
  • the bootstrap information included in the LSID may include bootstrap information of the LSID according to the delivery mode. The attributes included in the bootstrap information are described in detail below.
  • the MPD related information may include information about the MPD or the MPD signaling location.
  • the information on the MPD may include a version attribute and may indicate a version of the MPD.
  • the MPD signaling location information may indicate a location from which signaling associated with the MPD or the MPD URL may be obtained.
  • the delivery mode information included in the MPD signaling location may indicate the delivery mode of the MPD location signaling.
  • the bootstrap information information included in the MPD signaling location may include bootstrap information of the MPD or the MPD URL according to the delivery mode.
  • the component signaling location related information may include a delivery mode attribute.
  • the delivery mode attribute may indicate a delivery mode of corresponding component signaling location information.
  • the bootstrap information included in the MPD signaling location may include bootstrap information of the corresponding component location signaling according to the delivery mode.
  • the bootstrap information may include at least one of the following attributes according to the delivery mode.
  • the sourceIP attribute may indicate the source address of IP datagrams containing associated data.
  • the destinationIP attribute may indicate a destination address of IP datagrams including associated data.
  • the destinationPort attribute may indicate a destination port number of a UDP packet header including associated data.
  • the tsi attribute may indicate an identifier for a transport session for transmitting transport packets including associated data.
  • the URL attribute may indicate a URL from which associated data can be obtained.
  • the packetid may indicate an identifier of transport packets including associated data.
  • broadcast service signaling may be provided to enable a receiver to receive broadcast service and content. This allows the receiver to obtain the associated signaling when the signaling data is transmitted via the same transport session identifier (TSI).
  • the service signaling table may be represented in a binary format as shown, and may be represented in another form such as XML according to an embodiment.
  • the service signaling table may be encapsulated in the above-described signaling message format.
  • the service signaling table may include the following fields.
  • the SST_portocol_version field may indicate the version of the service signaling table.
  • the partition_id field may indicate an identifier of a corresponding partition.
  • the SST_data_version field may indicate the data version of the corresponding service signaling table.
  • the num_services field may indicate the number of at least one service included in a corresponding partition.
  • the service_id field may indicate an identifier of a corresponding service.
  • the service_name field may indicate the name of a corresponding service.
  • the MPD_availability field may indicate whether the MPD can be obtained through broadcast, cellular network, and / or wifi / Ethernet.
  • the CMT_availability field may indicate whether a Component Mapping Table (CMT) is available through broadcast, cellular network, and / or wifi / Ethernet.
  • the ASL_availability field may indicate whether an Application Signaling Table (AST) is available through broadcast, cellular network, and / or wifi / Ethernet.
  • the DP_ID field may indicate an identifier of a DP that delivers MPD, CMT, and / or ASL through broadcast.
  • the LCT_IP_address field may indicate an IP address of an LCT channel that carries an MPD, a CMT, and / or an ASL.
  • the LCT_UDP_port field may indicate that a UDP port of an LCT channel carrying MPD, CMT, and / or ASL may be indicated.
  • the LCT_TSI field may indicate a transport session identifier (TSI) of an LCT channel that carries an MPD, a CMT, and / or an ASL.
  • TSI transport session identifier
  • the MPD_TOI field may indicate a transport object identifier of an application transport packet that carries the MPD when the MPD is delivered through broadcast.
  • the CMT TOI field may indicate a transport object identifier of an application transport packet carrying the CMT when the CMT is delivered through broadcast.
  • the AST_TOI field may indicate a transport object identifier of an application transport packet that delivers the AST when the AST is delivered through broadcast.
  • the MPD_URL field may indicate URL information for acquiring the MPD through broadband.
  • the CMT_URL field may indicate URL information for acquiring a CMT through broadband.
  • the AST_URL may indicate URL information for obtaining an AST through broadband.
  • the component mapping table may include information on component mapping signaling and may be expressed in an XML form or a binary form.
  • the component mapping table which is one of service signaling, may include the following fields.
  • the Signaling_id field may include an identifier indicating that the corresponding table is a component mapping table.
  • the protocol_version field may indicate a protocol version of a component mapping table such as component mapping table syntax.
  • the Signaling_version field may indicate a change in signaling data of a component mapping table.
  • the Service_id field may indicate an identifier for a service associated with corresponding components.
  • the Num_component field may indicate the number of components included in a corresponding service.
  • the Mpd_id field may indicate a DASH MPD identifier associated with a component.
  • the Period_id field may indicate a DASH period identifier associated with a component.
  • the representation_id field may indicate a DASH representation identifier associated with a component.
  • the Source_IP field may indicate a source IP address of an IP / UDP datagram including corresponding component data.
  • the Dest_IP field may indicate a destination IP address of an IP / UDP datagram including corresponding component data.
  • the port field may indicate a port number of an IP / UDP datagram including corresponding component data.
  • the tsi field may indicate an identifier of an application layer transport session including corresponding component data.
  • the DP_id field may indicate an identifier of a physical layer data pipe that carries corresponding component data.
  • the component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form.
  • the component mapping table description may include the following elements and attributes.
  • the service_id attribute may represent an identifier of a service associated with a component.
  • BroadcastComp may represent one or more components transmitted through the same broadcast stream. BroadcastComp may include at least one of mpdID, perID, reptnID, baseURL, and / or datapipeID.
  • the mpdID attribute may indicate a DASH MPD identifier associated with BroadcastComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate a base URL associated with a DASH segment associated with the corresponding component.
  • the datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in a broadcast stream.
  • the BBComp may represent one or more components transmitted through a broadband network.
  • the BBComp may include at least one of mpdID, perID, reptnID, and / or baseURL.
  • the mpdID attribute may indicate a DASH MPD identifier associated with BBComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate a base URL associated with a DASH segment associated with the corresponding component.
  • ForeignComp may represent one or more components transmitted through another broadcast stream.
  • ForeignComp may include at least one of mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, and / or destUDPPort.
  • the mpdID attribute may indicate a DASH MPD identifier associated with ForeignComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL property may indicate the base URL of the DASH segment associated with the corresponding component.
  • transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data.
  • the sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data.
  • the destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data.
  • the destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data.
  • the datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in the corresponding broadcast stream.
  • the above Component Mapping Description can be encapsulated in one XML file or the above-mentioned signaling message format and transmitted. As shown in the lower part of FIG. 70, the signaling message header may follow the above-described form, and a component mapping description or part thereof may be included in the service message part.
  • the CMT may define components related to each service and inform the receiver of a location or a path for receiving information related to the corresponding components.
  • the next generation broadcast system may signal a component mapping table (CMT) to allow a receiver to acquire a component of a broadcast service.
  • CMT component mapping table
  • This may be expressed in other forms such as binary or XML, and may be encapsulated in the aforementioned signaling message format.
  • the component mapping table may include the following fields.
  • the CMT_portocol_version field may indicate the version of the structure of the Component Mapping Tabe (CMT).
  • the service_id field may indicate an identifier of a service related to a component location provided by a corresponding CMT.
  • the CMT_data_version field may indicate the data version of the corresponding CMT.
  • the num_broadcast_streams field may indicate the number of broadcast streams including at least one component associated with a corresponding service.
  • the TSID field may indicate a transport session identifier of the corresponding broadcast stream.
  • the num_partitions field may indicate the number of partitions of a broadcast stream including at least one component related to a corresponding service.
  • the CMT may include a plurality of partitions.
  • the partition_id field may indicate an identifier of a corresponding partition.
  • the num_data_pipes field may indicate the number of data pipes in a partition including at least one component related to a corresponding service.
  • the DP_ID field may indicate an identifier of each data pipe.
  • the num_ROUTE_sessions field may indicate the number of transport sessions (eg, ROUTE sessions) included in each data pipe. Each data pipe may include at least one component associated with a corresponding service.
  • the IP_address field may indicate an IP address of each transport session.
  • the UDP_port field may indicate a UDP port of each transport session.
  • the num_LCT_channels field may indicate the number of LCT channels in a transport session including a component related to a corresponding service.
  • the LCT_TSI field may indicate a transport session identifier (TSI).
  • the Representation_ID field may indicate an identifier of the DASH Representation carried by the corresponding LCT channel.
  • the component mapping table may further include an MPD id field and a period id field.
  • a globally unique ID may be obtained by combining the MPD id, the period id, and the representation id.
  • the Internet_availability field may be an identifier indicating whether a corresponding Representation can also be received through the Internet or broadband.
  • the num_internet_only_reptns field may indicate the number of representations that can be received only through the Internet or broadband.
  • the Representation_ID field may indicate an identifier of a DASH Representation that can be received only through the Internet or broadband within a loop of num_internet_only_reptns.
  • a globally unique identifier may be configured by combining MPD id, Period id, and Representation id.
  • the CMT may define components related to each service and inform the receiver of a location or a path where the components can be received.
  • the next generation broadcasting system may deliver signaling associated with a service to a receiver through a broadband network.
  • the next generation broadcasting system may transmit signaling to a receiver through a broadband network using a URL signaling table description. This can be represented in other forms, such as XML or binary.
  • the URL Signaling Table Description may include the following attributes.
  • the service_id attribute may indicate an identifier of a service associated with signaling.
  • the mpdURL attribute may indicate the URL of the broadband MPD.
  • the cstURL attribute may indicate the URL of the broadband CMT.
  • the CMT may include information on a component data acquisition path in a broadcast service.
  • the astURL attribute may indicate the URL of the broadband AST.
  • the AST may include information about an application associated with a broadcast service.
  • the receiver may receive the description and receive the corresponding signaling based on the URL for each signaling.
  • the above URL Signaling Table Description can be encapsulated in one XML file or the previously proposed signaling message format and transmitted. As shown at the bottom of the figure, the signaling message header may follow the previously proposed form, and may include a URL signaling table description or part thereof after the header.
  • the signaling message for the MPD of the broadcast service available in the next generation broadcasting network may include a signaling message header and a signaling message as shown in the upper part of the figure.
  • the signaling message header may follow the above-described form, and the MPD delivery table information may include the following information.
  • Signaling_id information may identify that the signaling message is a signaling message including the MPD or path information for acquiring the MPD.
  • the protocol_version information may indicate a protocol version of the MPD delivery table such as syntax of the corresponding signaling message.
  • the signaling_version information may indicate a change in signaling data of the MPD delivery table.
  • the service_id information may indicate a service identifier associated with corresponding signaling information.
  • the Mpd_id information may indicate an identifier of the DASH MPD associated with the signaling message.
  • the MPD_version information may indicate version information indicating a change of the corresponding MPD.
  • the delivery_mode information may indicate information on whether the signaling message includes the corresponding MPD or is delivered through another path.
  • the MPD_data () information may include the MPD data itself when the corresponding signaling message includes the MPD.
  • the MPD_path information may include information about a path from which an MPD can be obtained. For example, the path may represent a URL or the like.
  • the MPD delivery table description may include the following information.
  • the service_id attribute may indicate an identifier of a service associated with signaling.
  • the MPD_id attribute may indicate identification of the MPD.
  • MPD_version may indicate version information that may indicate change information of the MPD.
  • the MPD_URL attribute may include URL information for acquiring the MPD.
  • the MPD element may include MPD information.
  • the MPD Delivery Table Description may be encapsulated in one XML file or the signaling message format proposed above and transmitted. That is, the signaling message header may follow the previously proposed form, and may include an MPD Delivery Table Description or a part thereof.
  • the 74 illustrates the syntax of an MPD delivery table of a next generation broadcast system according to an embodiment of the present invention.
  • the information of the MPD delivery table or a part thereof may be included, and the information of the MPD delivery table may include the following fields.
  • the service_id field may indicate an identifier of an associated broadcast service.
  • the MPD_id_length field may indicate the length of the following MPD_id_bytes ().
  • the MPD_id_bytes field may indicate an identifier of the MPD file included in the signaling message.
  • the MPD_version field may indicate version information such as a change of data of the corresponding MPD.
  • the MPD_URL_availabilty field may indicate whether there is URL information of the MPD in the corresponding signaling table / message.
  • the MPD_data_availabilty field may indicate whether the MPD itself is included in the signaling table / message. If the value is '1', this may indicate that the MPD itself is included in the signaling table / message.
  • the MPD_URL_length field may indicate the length of the following MPD_URL_bytes ().
  • the MPD_URL_bytes field may indicate an MPD URL included in a signaling message.
  • the MPD_coding field may indicate an encoding method of an MPD file included in a corresponding signaling message.
  • the MPD file is encoded in different types of encoding schemes according to a value.
  • the value of the MPD_coding field is '0x00', this may indicate that the MPD file itself expressed in XML is included.
  • the value is '0x01', this may indicate that an MPD file compressed with gzip is included.
  • the MPD_bytes () can be concatenated and then ungzipd.
  • the MPD_byte_length field may indicate the length of the following MPD_bytes ().
  • the MPD_bytes field may include actual data of the MPD file included in the signaling message according to the encoding scheme specified in MPD_coding.
  • the next generation broadcast system enables a receiver to receive or acquire an MPD associated with a service through the MPD delivery table including the above-described fields.
  • the ROUTE session may consist of one or more Layered Coding Transport (LCT) sessions.
  • LCT Layered Coding Transport
  • LSID LCT Session Instance Description
  • the transport session instance description may define what is conveyed by each LCT transport session that constitutes a ROUTE session.
  • Each transport session may be uniquely identified by a transport session identifier (TSI).
  • TSI transport session identifier
  • a transport session instance description may describe all transport sessions transmitted through that session.
  • the LSID may describe a mode LCT session carried by a ROUTE session.
  • the transport session instance description may be delivered in the same ROUTE session as the transport sessions, or may be delivered in different ROUTE sessions or unicasts.
  • the transport session instance description may be updated using at least one of a version number, validity information or expiration information.
  • the transport session instance description may be represented by a bitstream or the like in addition to the illustrated form.
  • the transport session instance description may include a version attribute, a validFrom attribute, and an expiration attribute, and may include TSI attribute, SourceFlow, and RepairFlow information for each transport session.
  • the version attribute may indicate version information of a corresponding transport session instance description, and the version information may increase whenever the contents are updated.
  • the transport session instance description with the highest version number may indicate that it is the latest valid version.
  • the validFrom attribute may indicate when the corresponding transport session instance description is valid. According to an embodiment, the validFrom attribute may not be included in the transport session instance description, and in this case, the transport session instance description may indicate that the transport session instance description is valid upon receipt.
  • the expiration attribute may indicate when the corresponding transport session instance description expires.
  • the expiration attribute may not be included in the transport session instance description, and in this case, it may represent that the transport session instance description is continuously valid. If a transport session instance description with an expiration attribute is received, the corresponding expiration attribute can be followed.
  • the TSI attribute may indicate a transport session identifier.
  • the SourceFlow element provides information of a source flow transmitted to a corresponding TSI. Details are described below.
  • the RepairFlow element may provide information of the repair flow transmitted to the corresponding TSI.
  • the source flow element may include an EFDT element, an idRef attribute, a realtime attribute, a minBufferSize attribute, an Application Idendtifier element, and a PayloadFormat element.
  • the EFDT element may include detailed information of the file delivery data.
  • the EFDT may represent an extended file delivery table (FDT) instance, which will be described below.
  • the idRef attribute may indicate an identifier of the EFDT and may be represented by a URI by a corresponding transport session.
  • the realtime attribute may indicate that corresponding LCT packets include an extension header.
  • the extension header may include a time stamp indicating the presentation time of the delivery object.
  • the minBufferSize property can define the maximum amount of data needed to be stored in the receiver.
  • the Application Idendtifier element may provide additional information that may be mapped to an application carried by the corresponding transport session. For example, the Representation ID of the DASH content or the Adaptation Set parameter of the DASH representation for selecting a transport session for rendering may be provided as additional information.
  • the PayloadFormat element can define the payload format of the ROUTE packet carrying the object of the sourceflow.
  • the PayloadFormat element may include a codePoint attribute, deliveryObjectFormat attribute, fragmentation attribute, deliveryOrder attribute, sourceFecPayloadID attribute and / or FECParameters element.
  • the codePoint attribute may define a packet structure of a codepoint value used in a corresponding payload.
  • the deliveryObjectFormat attribute may indicate the payload format of the corresponding delivery object.
  • the fragmentation attribute may define a fragmentation rule when an object is transmitted divided into one or more transport packets.
  • the deliveryOrder attribute may indicate a delivery order of content included in each transport packet delivering one transport object.
  • the sourceFecPayloadID attribute may define the format of the source FEC payload identifier.
  • the FECParameters element may define FEC parameters. This may include an FEC encoding id, an instance id, and the like.
  • the EFDT may include detailed information of file delivery data.
  • the EFDT may include an idRef attribute, a version attribute, a maxExpiresDelta attribute, a maxTransportSize attribute, and a FileTemplate element.
  • the idRef attribute may indicate an identifier of the EFDT.
  • the version attribute may indicate the version of the EFDT instance descriptor. This property can be incremented by one when the EFDT is updated. It may indicate that the EFDT having the highest version number among the received EFDTs is currently a valid version.
  • the maxExpiresDelta attribute may indicate the maximum expiry time of the object after transmitting the first packet associated with the object.
  • the maxTransportSize attribute may indicate the maximum transport size of an object described by the corresponding EFDT.
  • the FileTemplate element can specify the file URL or file template of the body part.
  • the aforementioned transport session instance descriptor (LSID) element may be transmitted by a transport session instance descriptor table (LSID Table) at the bottom of the figure.
  • the LSID Table may be delivered by the aforementioned signaling message, which may be divided into a signaling message header and a signaling message data part.
  • the signaling message data portion may include a transport session instance descriptor (LSID) or part thereof.
  • the signaling message data may include a transport session instance descriptor (LSID) table, and may include the following fields.
  • the Signaling_id field may indicate identifier information indicating that the signaling table includes a transport session instance descriptor (LSID).
  • the protocol_version field may indicate a protocol version of signaling such as a signaling syntax including a transport session instance descriptor (LSID).
  • the Signaling_version field may indicate a change in signaling data including a transport session instance descriptor (LSID).
  • the transport session instance descriptor table may further include the contents of the above described transport session instance descriptor (LSID) element.
  • the next generation broadcast system may transmit signaling information on an initialization segment of DASH Representation associated with a component in a broadcast service by transmitting an initialization segment delivery table (ISDT).
  • the signaling message for the initialization segment of the DASH Representation associated with the component in the broadcast service may include a header and data.
  • the signaling message header may follow the above-described form, and the signaling message data may include initialization segment delivery information or part thereof.
  • the initialization segment delivery information may include the following information.
  • Signaling_id information can identify that it is a signaling message including an initialization segment or its path information.
  • the protocol_version information may indicate a protocol version of an initialization segment delivery table such as syntax of a corresponding signaling message. Sequence_number information may indicate an identifier for an instance of an initialization segment delivery table. Signaling_version information may indicate a change in signaling data of an initialization segment delivery table.
  • the service_id information may identify a service associated with the corresponding component.
  • the Mpd_id information may indicate an associated DASH MPD identifier associated with the corresponding component.
  • the period_id information may indicate an associated DASH Period identifier associated with the corresponding component.
  • the representation_id information may indicate a DASH representation identifier associated with the corresponding component.
  • the Initialization_segment_version information may be version information indicating a change of the corresponding MPD.
  • the delivery_mode information may indicate information about whether the corresponding initialization segment is included or delivered through another path.
  • the initialization_segment _data () information may include initialization segment data itself.
  • the initialization segment path information may include information on a path for obtaining an initialization segment, such as a URL for the initialization segment. Through such an ISDT, the receiver may receive information on an initialization segment of the DASH Representation associated with the component.
  • the signaling data may be delivered as shown. That is, some signaling may be transmitted through a fast information channel in order to support fast scan. Part of the signaling may be transmitted through a specific transport session and may also be mixed with component data.
  • Signaling information for supporting fast scan and acquisition may be received in a channel separate from the transport session.
  • the separate channel may mean a separate data pipe (DP).
  • the information transmitted through the designated transport session may include an MPD delivery table, an application signaling table, a transport session instance description table, and / or a component mapping table.
  • some signaling information may be delivered together with the component data in the transport session. For example, an initialization segment delivery table may be delivered together with the component data.
  • the lower part of the figure shows an embodiment of acquiring a broadcast service in a next generation broadcasting network.
  • the receiver can tune the broadcast and obtain and parse information for fast service scan and acquisition. Then, if the location of the service layer signaling or transport session instance description (eg, LSID) is determined from the information for fast service scan and acquisition, the corresponding description may be obtained and parsed.
  • the receiver can identify the transport session including signaling, obtain and parse the time-running table from it, and determine the desired component. This process allows you to present the components you want. That is, the broadcast service may be provided to a user by acquiring information on a transport session from information for fast service scan and acquisition, and identifying a location of a desired component from information on the transport session and playing the corresponding component.
  • the FIC information for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the FIC information may be represented in a binary format but may be represented in another format such as XML according to an embodiment.
  • the FIC information may include the following fields.
  • the FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC).
  • the TSID field may indicate an identifier of the overall broadcast stream.
  • the FIC_data_version field may indicate a data version of this FIC instance.
  • the FIC_data_version field may be increased when there is a change in the content of the FIC.
  • the num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster.
  • the partition_id field may indicate an identifier of a corresponding partition.
  • the partition_protocol_version field may indicate the version of the above-described partition structure.
  • the num_services field may indicate the number of at least one component belonging to the corresponding partition.
  • the service_id field may indicate an identifier for a service.
  • the service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service.
  • the service_data_version field may increase by 1 whenever a change occurs in the included service data.
  • the receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field.
  • the channel_number field may indicate a channel number associated with a corresponding service.
  • the service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like.
  • the short_service_name_length field may indicate the length of a name representing the corresponding service.
  • the short_service_name field may indicate a name representing a corresponding service.
  • the service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value.
  • the service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated.
  • the sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag.
  • the IP_version_flag field may indicate the following IP address format.
  • the source_IP_address_flag field may indicate whether to include source_IP_addr. If the corresponding field value is 1, it may represent that source_IP_addr exists.
  • the num_transport_session field may indicate the number of transport sessions (eg, ROUTE or MMTP sessions) for transmitting component data of a corresponding service in a broadcast stream.
  • the source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service when the above-described source_IP_address_flag value is 1.
  • the dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service.
  • the dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service.
  • the LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session.
  • the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE.
  • the LSID_tsi field may indicate an identifier of a transport session in which a transport session instance description, which is a signaling including detailed information about the transport session, is transmitted.
  • the session instance description may be an LSID in the case of an LCT transport session.
  • service signaling associated with a corresponding service may be delivered through a transport session through which a transport session instance description is transmitted.
  • the service_signaling_flag field may indicate whether a transport session transmits service signaling. If the service_signaling_flag value is 1, this may indicate that a DP including service signaling exists.
  • the signaling_data_version field may indicate a change of associated service signaling data. Each time a change occurs in the service signaling data, the corresponding field may be increased by one. The receiver may detect a change in signaling related to the corresponding service using the signaling_data_version field.
  • the signaling_DP field may indicate a data pipe identifier of a physical layer that carries service signaling.
  • the signaling_tsi field may indicate an identifier of a transport session for delivering service signaling.
  • the transport session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field.
  • the transport session descriptors field may include descriptors of a transport session level.
  • the service descriptors field may include descriptors of a service level.
  • the Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster.
  • the FIC session descriptors field may include descriptors of the FIC level. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
  • the FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the FIC information may be represented in a binary format but may be represented in another format such as XML according to an embodiment.
  • the FIC information may include the following fields.
  • the FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC).
  • the TSID field may indicate an identifier of the overall broadcast stream.
  • the num_partitions field may indicate the number of partitions of the broadcast stream.
  • each broadcast stream can be transmitted divided into one or more partitions.
  • Each partition may include a plurality of DPs by one broadcaster.
  • Each partition may represent a portion of the broadcast stream used by one broadcaster.
  • the partition_id field may indicate an identifier of a corresponding partition.
  • the partition_protocol_version field may indicate the version of the above-described partition structure.
  • the num_services field may indicate the number of at least one service belonging to a corresponding partition.
  • Each service may include a plurality of signaling tables.
  • DASH MPD including information about components and their segments, CMT including identifiers for components included in broadband and other broadcast streams, AST and MPD, which are application signaling tables, among CMT, AST. It may include a URL signaling table (UST) including at least one URL. These signaling tables may be included in a signaling channel of a corresponding service.
  • the service_id field may indicate an identifier for a service.
  • the service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service.
  • the service_data_version field may increase by 1 whenever a change occurs in the included service data.
  • the receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field.
  • the service_channel_number field may indicate a channel number associated with a corresponding service.
  • the service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like.
  • the service_short_name_length field may indicate the length of a name representing the corresponding service.
  • the service_short_name field may indicate a name representing a corresponding service.
  • the service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value.
  • the service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated.
  • the sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag.
  • the IP_version_flag field may indicate the following IP address format.
  • num_ROUTE_sessions may indicate the number of transport sessions for transmitting component data of a corresponding service in a broadcast stream.
  • the transport session may be a ROUTE session.
  • the following information may be set for each ROUTE session.
  • the source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service.
  • the dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service.
  • the dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service.
  • the LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session.
  • the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE.
  • the LSID_tsi field may indicate an identifier of a transport session in which a transport session instance description, which is a signaling including detailed information about the transport session, is transmitted.
  • the session instance description may be an LSID in the case of an LCT transport session.
  • service signaling associated with a corresponding service may be delivered through a transport session through which a transport session instance description is transmitted.
  • the component_signaling_flag field may indicate whether a transport session carries component signaling of a service.
  • service signaling eg, DASH Media Presentation Description (MPD), CMT, etc.
  • the CMT may include identifiers of components delivered through broadband as component mapping tables, and may also include information on components included in other broadcast streams.
  • Each service may include a service signaling channel, and the service signaling channel may include MPD, CMT, AST, and / or UST.
  • the service signaling channel may be one signaling channel of a plurality of route sessions for a service, and may indicate whether there is a component through a component signaling flag.
  • the ROUTE session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field.
  • the transport session descriptors field may include descriptors of a transport session level.
  • the service descriptors field may include descriptors of a service level.
  • the Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster.
  • the FIC descriptors field may include descriptors of the FIC level.
  • each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
  • the component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form.
  • the component mapping table description may include the following elements and attributes.
  • the service_id attribute may represent an identifier of a service associated with a component.
  • BroadcastComp may represent one or more components transmitted through the same broadcast stream. BroadcastComp may include at least one of mpdID, perID, reptnID, baseURL, and / or datapipeID.
  • the mpdID attribute may indicate a DASH MPD identifier associated with BroadcastComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • the datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in a broadcast stream.
  • the BBComp may represent one or more components transmitted through a broadband network.
  • the BBComp may include at least one of mpdID, perID, reptnID, and / or baseURL.
  • the mpdID attribute may indicate a DASH MPD identifier associated with BBComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • ForeignComp may represent one or more components transmitted through another broadcast stream.
  • ForeignComp may include at least one of mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort and / or datapipeID.
  • the mpdID attribute may indicate a DASH MPD identifier associated with ForeignComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data.
  • the sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data.
  • the destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data.
  • the destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data.
  • the datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in the corresponding broadcast stream.
  • the aforementioned sourceIPAddr attribute, destIPAddr attribute, destUDPPort attribute, and datapipeID attribute may be optional attributes and may be selectively included in the CMT according to an embodiment.
  • the above Component Mapping Description can be encapsulated in one XML file or the above-mentioned signaling message format and transmitted.
  • the signaling message header may follow the above-described form, and a component mapping description or part thereof may be included in the service message part.
  • the CMT may define components related to each service and inform the receiver of a location or a path for receiving information related to the corresponding components.
  • the component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form.
  • the component mapping table description may include the following elements and attributes.
  • the service_id attribute may represent an identifier of a service associated with a component.
  • BroadcastComp may represent one or more components transmitted through the same broadcast stream. BroadcastComp may include at least one of mpdID, perID, reptnID, baseURL, tsi, and / or datapipeID.
  • the mpdID attribute may indicate a DASH MPD identifier associated with BroadcastComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • the tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in a broadcast stream.
  • the datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in a broadcast stream.
  • the BBComp may represent one or more components transmitted through a broadband network.
  • the BBComp may include at least one of mpdID, perID, reptnID, and / or baseURL.
  • the mpdID attribute may indicate a DASH MPD identifier associated with BBComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • ForeignComp may represent one or more components transmitted through another broadcast stream.
  • ForeignComp may include at least one of mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi and / or datapipeID.
  • the mpdID attribute may indicate a DASH MPD identifier associated with ForeignComp.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data.
  • the sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data.
  • the destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data.
  • the destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data.
  • the tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in a broadcast stream.
  • the datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in the corresponding broadcast stream.
  • the aforementioned sourceIPAddr attribute, destIPAddr attribute, destUDPPort attribute, and datapipeID attribute may be optional attributes and may be selectively included in the CMT according to an embodiment.
  • the above Component Mapping Description can be encapsulated in one XML file or the above-mentioned signaling message format and transmitted.
  • the signaling message header may follow the above-described form, and a component mapping description or part thereof may be included in the service message part.
  • the CMT may define components related to each service and inform the receiver of a location or a path for receiving information related to the corresponding components.
  • the component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form.
  • the component mapping table may include a delivery parameter element and a payload format element along with a DASH-related identifier.
  • the component mapping table description may include the following elements and attributes.
  • the service_id attribute may represent an identifier of a service associated with a component.
  • the component element may indicate a component in a corresponding broadcast service.
  • the component element may include at least one of mpdID, perID, reptnID, baseURL attribute, DeliveryParameter element, and / or PayloadFormat element.
  • the mpdID attribute may indicate a DASH MPD identifier associated with the component.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • the DeliveryParameter element may include detailed information about a path on which the corresponding component is delivered.
  • the DeliveryParameter element may include at least one of transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi, datapipeID, and / or URL.
  • transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data.
  • the sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data.
  • the destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data.
  • the destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data.
  • the tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in the corresponding broadcast stream.
  • the datapipeID attribute may indicate an identifier of a physical layer data pipe in which corresponding component data is transmitted in the corresponding broadcast stream.
  • the URL attribute may indicate URL information for obtaining corresponding component data through an internet network.
  • the aforementioned sourceIPAddr attribute, destIPAddr attribute, destUDPPort attribute, datapipeID attribute and / or URL attribute may be optional attributes and may be optionally included in a DeliveryParameter element.
  • the PayloadFormat element may include detailed information on the payload type of a packet for transmitting corresponding component data.
  • the PayloadFormat element may include a codePoint attribute, deliveryObjectFormat attribute, fragmentation attribute, deliveryOrder attribute, sourceFecPayloadID attribute and / or FECParameters element.
  • the codePoint attribute can define the codepoint used in the payload. This may indicate the value of the CP field of the LCT header. This may be an index to a subsequent set of deliveryObjectFormat attribute, fragmentation attribute, deliveryOrder attribute, and sourceFecPayloadID attribute values.
  • the deliveryObjectFormat attribute may indicate the payload format of the corresponding delivery object.
  • the fragmentation attribute may define the type of fragmentation.
  • the deliveryOrder attribute may indicate a delivery order of objects.
  • the sourceFecPayloadID attribute may define the format of the source FEC payload identifier.
  • the FECParameters element may define FEC parameters. This may include an FEC encoding id,
  • the component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form.
  • the component mapping table description may include a service_id attribute, mpd_id attribute, per_id attribute, BroadcastComp element, BBComp element, and ForeignComp element.
  • the component mapping table description may include the following elements and attributes.
  • the service_id attribute may represent an identifier of a service associated with a component.
  • the CMT description may include the mpdID attribute and the perID attribute at the same level as the service_id attribute.
  • the mpdID attribute and the perID attribute which are commonly applied to the BroadcastComp element, the BBComp element, and the ForeignComp element can be described at the same level as the service_id attribute without overlapping them.
  • the mpdID attribute may indicate a DASH MPD identifier associated with the corresponding service.
  • the perID attribute may indicate an associated period identifier in the corresponding MPD.
  • BroadcastComp may represent one or more components transmitted through the same broadcast stream.
  • BroadcastComp may include at least one of reptnID, baseURL, tsi, and / or datapipeID.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • the tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in a broadcast stream.
  • the datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in a broadcast stream.
  • the BBComp element may represent one or more components transmitted over a broadband network.
  • the BBComp may include at least one of reptnID and / or baseURL.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • ForeignComp may represent one or more components transmitted through another broadcast stream.
  • ForeignComp may include at least one of reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi, and / or datapipeID.
  • the reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component.
  • the baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
  • transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data.
  • the sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data.
  • the destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data.
  • the destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data.
  • the tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in the corresponding broadcast stream.
  • the datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in the corresponding broadcast stream.
  • the aforementioned sourceIPAddr attribute, destIPAddr attribute, destUDPPort attribute, tsi attribute and datapipeID attribute may be optional attributes and may be selectively included in the CMT according to an embodiment.
  • the above Component Mapping Description can be encapsulated in one XML file or the above-mentioned signaling message format and transmitted. Through the above information, the CMT may define components related to each service and inform the receiver of a location or a path for receiving information related to the corresponding components.
  • the next generation broadcast system may provide a DASH-based hybrid broadcast service.
  • the next generation broadcast system may indicate that segments associated with Representation and the like in the DASH MPD are transmitted through different distribution paths.
  • Common attributes and elements of the MPD may be common to the adaptation set, representation and sub-representation elements, and may include location information of the associated representation as shown.
  • the next generation broadcast system may enable the DASH client to know the location of the associated representation or segment using the location information of the associated representation included in the elements and elements of the MPD.
  • Common attributes and elements of the MPD may include the following attributes and elements.
  • the @profiles attribute may indicate the profile of the associated representation as a profile attribute.
  • the @width attribute may indicate a horizontal visual presentation size of the video media type to be displayed.
  • the @height attribute may indicate the vertical visual presentation size of the video media type to be displayed.
  • the @sar attribute may indicate a sample aspect ratio of a video media component type.
  • the @frameRate attribute can indicate the output frame rate of the representation.
  • the @audioSamplingRate attribute may indicate the sampling rate of the audio media component type.
  • the @mimeType attribute may indicate the MIME type of concatenation of the initialization segment.
  • the @segmentProfiles attribute may indicate the profiles of the segments necessary to process the representation.
  • the @codecs attribute may indicate a codec used in the representation.
  • the @maximumSAPPeriod attribute may indicate the maximum stream access point (SAP) interval of an included media stream.
  • the @startWithSAP attribute can indicate the number of each media segment starting with SAP.
  • the @maxPlayoutRate attribute may indicate the maximum playout rate.
  • the @codingDependency attribute may indicate whether there is at least one access unit that depends on one or more other access units for decoding.
  • the @scanType attribute may indicate the scan type of the source material of the video media component type.
  • the FramePacking element may indicate frame-packing information of the video media component type.
  • the AudioChannelConfiguration element may indicate an audio channel configuration of an audio media component type.
  • the ContentProtection element may indicate information about the content protection scheme used for the associated representation.
  • the EssentialProperty element can represent information about an element that is considered essential for processing.
  • the SupplementalProperty element may contain additional information used to optimize processing.
  • the InbandEventStream element may indicate whether an inband event stream exists in the associated representation.
  • the Location element may include location information from which an associated representation can be obtained.
  • the Location element may contain information about the broadcast stream or physical layer data pipes carrying the associated representation.
  • the DASH client or the next generation broadcast reception device may obtain an associated representation by using a Location element. That is, the apparatus for receiving a next generation broadcast system may acquire information on the location of the associated representation using location information included in the common attributes and elements of the MPD without obtaining the above-described CMT, and obtain the associated representation based on the location information. .
  • the above-described representation may be described as a component according to an embodiment.
  • next generation broadcast system may allocate information on a transmission path such as associated Representation to the @servicelocation attribute of the Base URL element in the DASH MPD.
  • the next generation broadcasting system can use the @servicelocation attribute to enable the DASH client to know the information on the paths through which segments associated with the representation are delivered.
  • the ROUTE session may consist of one or more Layered Coding Transport (LCT) sessions.
  • LCT Layered Coding Transport
  • LSID LCT Session Instance Description
  • the transport session instance description may define what is conveyed by each LCT transport session that constitutes a ROUTE session.
  • Each transport session may be uniquely identified by a transport session identifier (TSI).
  • TSI transport session identifier
  • the transport session identifier may be included in the LCT header.
  • a transport session instance description may describe all transport sessions transmitted through that session.
  • the LSID may describe a mode LCT session carried by a ROUTE session.
  • the transport session instance description may be delivered in the same ROUTE session as the transport sessions, or may be delivered in different ROUTE sessions or unicasts.
  • the transport session instance description may be updated using at least one of a version number, validity information or expiration information.
  • the transport session instance description may be represented by a bitstream or the like in addition to the illustrated form.
  • the transport session instance description may include a version attribute, a validFrom attribute, and an expiration attribute, and may include a TSI attribute, a SourceFlow element, a RepairFlow element, and a TransportSessionProperty element for each transport session.
  • the version attribute may indicate version information of a corresponding transport session instance description, and the version information may increase whenever the contents are updated.
  • the transport session instance description with the highest version number may indicate that it is the latest valid version.
  • the validFrom attribute may indicate when the corresponding transport session instance description is valid. According to an embodiment, the validFrom attribute may not be included in the transport session instance description, and in this case, the transport session instance description may indicate that the transport session instance description is valid upon receipt.
  • the expiration attribute may indicate when the corresponding transport session instance description expires.
  • the expiration attribute may not be included in the transport session instance description, and in this case, it may represent that the transport session instance description is continuously valid. If a transport session instance description with an expiration attribute is received, the corresponding expiration attribute can be followed.
  • the TSI attribute may indicate a transport session identifier.
  • the SourceFlow element provides information of a source flow transmitted to a corresponding TSI. Details are described below.
  • the RepairFlow element may provide information of the repair flow transmitted to the corresponding TSI.
  • the TransportSessionProperty element may include additional property information for the transport session.
  • the transport session instance description may include additional attribute information for the transport session in the TransportSessionProperty element. For example, the additional information may include service signaling information for the transport session.
  • the source flow element may include an EFDT element, an idRef attribute, a realtime attribute, a minBufferSize attribute, an Application Idendtifier element, a PayloadFormat element, and / or a SourceFlowProperty element.
  • the EFDT element may include detailed information of the file delivery data.
  • the EFDT may represent an extended file delivery table (FDT) instance, which will be described below.
  • the idRef attribute may indicate an identifier of the EFDT and may be represented by a URI by a corresponding transport session.
  • the realtime attribute may indicate that corresponding LCT packets include an extension header.
  • the extension header may include a time stamp indicating the presentation time of the delivery object.
  • the minBufferSize property can define the maximum amount of data needed to be stored in the receiver.
  • the Application Idendtifier element may provide additional information that may be mapped to an application carried by the corresponding transport session. For example, the Representation ID of the DASH content or the Adaptation Set parameter of the DASH representation for selecting a transport session for rendering may be provided as additional information.
  • the PayloadFormat element can define the payload format of the ROUTE packet carrying the object of the sourceflow.
  • the PayloadFormat element may include a codePoint attribute, deliveryObjectFormat attribute, fragmentation attribute, deliveryOrder attribute, sourceFecPayloadID attribute and / or FECParameters element.
  • the codePoint attribute can define the codepoint used in the payload. This may indicate the value of the CP field of the LCT header.
  • the deliveryObjectFormat attribute may indicate the payload format of the corresponding delivery object.
  • the fragmentation attribute may define the type of fragmentation.
  • the deliveryOrder attribute may indicate a delivery order of objects.
  • the sourceFecPayloadID attribute may define the format of the source FEC payload identifier.
  • the FECParameters element may define FEC parameters. This may include an FEC encoding id, an instance id, and the like.
  • the SourceFlowProperty element may provide property information on the corresponding source flow. For example, the attribute information may include location information of a broadcast carrying corresponding source flow data.
  • the location information of the broadcast may include information about a data pipe or a physical layer pipe (PLP) in the broadcast stream.
  • the stream information may include a broadcast stream identifier, a data pipe or a physical layer pipe (PLP) in the stream.
  • the illustrated service acquisition information may further include information on link layer signaling in the aforementioned service acquisition information.
  • the information on link layer signaling may include flag information indicating whether link layer signaling is present, version information of link layer signaling data, and information on a data pipe or PLP through which link layer signaling is transmitted.
  • the FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the system acquisition information may be expressed in a binary format, but may be represented in other formats such as XML according to an embodiment.
  • the system acquisition information may include the following fields.
  • the FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC).
  • the TSID field may indicate an identifier of the overall broadcast stream.
  • the FIC_data_version field may indicate a data version of this FIC instance.
  • the FIC_data_version field may be increased when there is a change in the content of the FIC.
  • the num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions.
  • Each partition may include a plurality of DPs by one broadcaster.
  • Each partition may represent a portion of the broadcast stream used by one broadcaster.
  • the partition_id field may indicate an identifier of a corresponding partition.
  • the partition_protocol_version field may indicate the version of the above-described partition structure.
  • the num_services field may indicate the number of at least one component belonging to the corresponding partition.
  • the service_id field may indicate an identifier for a service.
  • the service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service.
  • the service_data_version field may increase by 1 whenever a change occurs in the included service data.
  • the receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field.
  • the channel_number field may indicate a channel number associated with a corresponding service.
  • the service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like.
  • the short_service_name_length field may indicate the length of a name representing the corresponding service.
  • the short_service_name field may indicate a name representing a corresponding service.
  • the service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value.
  • the service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document.
  • the sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag.
  • the IP_version_flag field may indicate the following IP address format. If the corresponding field value is 0, it may represent that the IPv4 format is used, and when 1, the IPv6 address format is used.
  • the source_IP_address_flag field may indicate whether to include source_IP_addr. If the corresponding field value is 1, it may represent that source_IP_addr exists.
  • the num_transport_session field may indicate the number of transport sessions (eg, ROUTE or MMTP sessions) for transmitting component data of a corresponding service in a broadcast stream.
  • the source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service when the above-described source_IP_address_flag value is 1.
  • the dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service.
  • the dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service.
  • the LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session.
  • the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE.
  • the LSID_tsi field may indicate an identifier of a transport session in which a transport session instance description, which is a signaling including detailed information about the transport session, is transmitted.
  • the session instance description may be an LSID in the case of an LCT transport session.
  • service signaling associated with a corresponding service may be delivered through a transport session through which a transport session instance description is transmitted.
  • the service_signaling_flag field may indicate whether a transport session transmits service signaling.
  • the service_signaling_flag value is 1, this may indicate that a DP including service signaling exists.
  • the signaling_data_version field may indicate a change of associated service signaling data. Each time a change occurs in the service signaling data, the corresponding field may be increased by one. The receiver may detect a change in signaling related to the corresponding service using the signaling_data_version field.
  • the signaling_DP field may indicate a data pipe identifier of a physical layer that carries service signaling.
  • the signaling_tsi field may indicate an identifier of a transport session for delivering service signaling.
  • the link_layer_signaling_flag may indicate whether service acquisition information transmits link layer (or low layer) signaling.
  • link_layer_signaling_data_version may indicate a change of associated link layer (or low layer) signaling data. This field may increase by 1 whenever a change occurs in the link layer signaling data. Using this, the receiver can detect a change in link layer (or low layer) signaling.
  • the link_layer_signaling_DP may indicate a data pipe identifier of the physical layer that delivers link layer (or low layer) signaling that can be used in the L2 layer.
  • the transport session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field.
  • Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field.
  • the transport session descriptors field may include descriptors of a transport session level.
  • the service descriptors field may include descriptors of a service level.
  • the Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster.
  • the FIC session descriptors field may include descriptors of the FIC level. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
  • the FIC information for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data.
  • the service acquisition information may further include information on link layer signaling. As shown, the service acquisition information may be represented in a binary format, but may be represented in other formats such as XML according to an embodiment.
  • the service acquisition information may include the following fields.
  • the FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC).
  • the TSID field may indicate an identifier of the overall broadcast stream.
  • the num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions.
  • Each partition may include a plurality of DPs by one broadcaster.
  • Each partition may represent a portion of the broadcast stream used by one broadcaster.
  • the partition_id field may indicate an identifier of a corresponding partition.
  • the partition_protocol_version field may indicate the version of the above-described partition structure.
  • the num_services field may indicate the number of at least one service belonging to a corresponding partition.
  • Each service may include a plurality of signaling tables.
  • DASH MPD including information about components and their segments
  • CMT including identifiers for components included in broadband and other broadcast streams
  • AST and MPD which are application signaling tables, among CMT, AST.
  • It may include a URL signaling table (UST) including at least one URL.
  • UST URL signaling table
  • These signaling tables may be included in a signaling channel of a corresponding service.
  • the service_id field may indicate an identifier for a service.
  • the service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service.
  • the service_data_version field may increase by 1 whenever a change occurs in the included service data. For example, if there is a change in the FIC, MPD, CMT, AST or UST, it may increase by one.
  • the receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field.
  • the service_channel_number field may indicate a channel number associated with a corresponding service.
  • the service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like.
  • the service_short_name_length field may indicate the length of a name representing the corresponding service.
  • the service_short_name field may indicate a name representing a corresponding service.
  • the service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value.
  • the service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated.
  • the sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag.
  • the IP_version_flag field may indicate the following IP address format.
  • num_ROUTE_sessions may indicate the number of transport sessions for transmitting component data of a corresponding service in a broadcast stream.
  • the transport session may be a ROUTE session.
  • the following information may be set for each ROUTE session.
  • the source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service.
  • the dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service.
  • the dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service.
  • the LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session.
  • the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE.
  • the LSID_tsi field may indicate an identifier of a transport session in which a transport session instance description, which is a signaling including detailed information about the transport session, is transmitted.
  • the session instance description may be an LSID in the case of an LCT transport session.
  • service signaling associated with a corresponding service may be delivered through a transport session through which a transport session instance description is transmitted.
  • the component_signaling_flag field may indicate whether a transport session carries component signaling of a service.
  • this may indicate that service signaling (eg, DASH Media Presentation Description (MPD), CMT, etc.) is included among data transmitted through the corresponding transport session.
  • service signaling eg, DASH Media Presentation Description (MPD), CMT, etc.
  • the CMT may include identifiers of components delivered through broadband as component mapping tables, and may also include information on components included in other broadcast streams.
  • Each service may include a service signaling channel, and the service signaling channel may include MPD, CMT, AST, and / or UST.
  • the service signaling channel may be one signaling channel of a plurality of route sessions for a service, and may indicate whether there is a component through a component signaling flag.
  • the link_layer_signaling_flag may indicate whether service acquisition information transmits link layer (or low layer) signaling.
  • link_layer_signaling_data_version may indicate a change of associated link layer (or low layer) signaling data. This field may increase by 1 whenever a change occurs in the link layer signaling data. Using this, the receiver can detect a change in link layer (or low layer) signaling.
  • the link_layer_signaling_DP may indicate a data pipe identifier of the physical layer that delivers link layer (or low layer) signaling that can be used in the L2 layer.
  • the ROUTE session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field.
  • the transport session descriptors field may include descriptors of a transport session level.
  • the service descriptors field may include descriptors of a service level.
  • the Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster.
  • the FIC descriptors field may include descriptors of the FIC level.
  • each field included in the above-described service acquisition information may be included in the broadcast signal and transmitted along with other information than the service acquisition information.
  • encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), application transport protocol (e.g. ROUTE or MMTP) header (ATPH), signaling It may include a message header (SMH) and a signaling message.
  • GPH generic packet header
  • IPH IP packet header
  • UDPH UDP datagram header
  • ATPH application transport protocol
  • SMSH message header
  • SMS message header
  • the broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame.
  • the broadcast signal frame may include physical layer signaling.
  • the information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed.
  • the receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling.
  • the broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame.
  • the quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered.
  • the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein.
  • the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
  • service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • GPH generic packet header
  • IPH IP packet header
  • UDPH UDP datagram header
  • ATPH application transport protocol
  • SMH signaling message header
  • the signaling message may include an MPD delivery description, a component mapping description, or a URL signaling description according to the type of the message delivered by the service layer signaling.
  • the transport session instance descriptor may have the encapsulation form described above. That is, the format of the transport session instance descriptor is a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and a signaling message.
  • GPH generic packet header
  • IPH IP packet header
  • UDPH UDP datagram header
  • ATPH application transport protocol
  • SMSH signaling message header
  • the signaling message may include a transport session instance descriptor.
  • the transport session instance descriptor may be included in one of service layer signaling and delivered.
  • the broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame.
  • the broadcast signal frame may include physical layer signaling.
  • the information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed.
  • the receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling.
  • the broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame.
  • the quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP.
  • the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
  • service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • GPH generic packet header
  • IPH IP packet header
  • UDPH UDP datagram header
  • ATPH application transport protocol
  • SMH signaling message header
  • the signaling message may include an MPD delivery description, a component mapping description, or a URL signaling description according to the type of the message delivered by the service layer signaling.
  • the transport session instance descriptor may have the encapsulation form described above. That is, the format of the transport session instance descriptor is a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and a signaling message.
  • GPH generic packet header
  • IPH IP packet header
  • UDPH UDP datagram header
  • ATPH application transport protocol
  • SMSH signaling message header
  • the signaling message may include a transport session instance descriptor.
  • the transport session instance descriptor may be included in one of service layer signaling and delivered.
  • the quick service acquisition information may include information on a data pipe or PLP through which link layer signaling is carried. That is, the receiver may identify a PLP through which link layer signaling is transmitted using data pipe or PLP identifier information included in fast service acquisition information, and acquire link layer signaling included therein.
  • the format of transport link layer signaling may include a generic packet header (GPH) and a signaling message.
  • the signaling message may include information on link layer signaling.
  • the receiver may acquire link layer signaling (or low layer signaling) through a data pipe and the like, and may acquire service / component signaling such as a component mapping table through an application transport protocol.
  • the service layer signaling may include User Service Bundle Description (USBD), MPD, Session Description Protocol, and may further include a transport session instance description.
  • the broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame.
  • the broadcast signal frame may include physical layer signaling.
  • the information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information.
  • the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed.
  • the receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling.
  • the broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame.
  • the quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein.
  • service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • the signaling message may include a User Service Bundle Description (USBD), an MPD, and a Session Description Protocol according to the type of the message transmitted by the service layer signaling.
  • the transport session instance descriptor may have the encapsulation form described above. That is, the format of the transport session instance descriptor is a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and a signaling message.
  • GPH generic packet header
  • IPH IP packet header
  • UDPH UDP datagram header
  • ATPH application transport protocol
  • SMSH signaling message header
  • the signaling message may include a transport session instance descriptor.
  • the transport session instance descriptor may be included in one of service layer signaling and delivered.
  • the broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame.
  • the broadcast signal frame may include physical layer signaling.
  • the information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed.
  • the receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling.
  • the broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame.
  • the quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP.
  • the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
  • service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • the signaling message may include a User Service Bundle Description (USBD), an MPD, and a Session Description Protocol according to the type of the message transmitted by the service layer signaling.
  • the transport session instance descriptor may have the encapsulation form described above. That is, the format of the transport session instance descriptor is a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and a signaling message.
  • GPH generic packet header
  • IPH IP packet header
  • UDPH UDP datagram header
  • ATPH application transport protocol
  • SMSH signaling message header
  • the signaling message may include a transport session instance descriptor.
  • the transport session instance descriptor may be included in one of service layer signaling and delivered.
  • the quick service acquisition information may include information on a data pipe or PLP through which link layer signaling is carried. That is, the receiver may identify a PLP through which link layer signaling is transmitted using data pipe or PLP identifier information included in fast service acquisition information, and acquire link layer signaling included therein.
  • the format of transport link layer signaling may include a generic packet header (GPH) and a signaling message.
  • the signaling message may include information on link layer signaling.
  • the receiver may acquire link layer signaling (or low layer signaling) through a data pipe and the like, and may acquire service / component signaling such as a component mapping table through an application transport protocol. That is, the next generation broadcast system may include signaling information for a data pipe or PLP including link layer signaling in a physical layer frame.
  • encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), and application transport protocol (e.g. ROUTE or MMTP). ) header (ATPH) and a signaling message combination.
  • the encapsulated service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), and an application transport protocol (e.g.
  • ATPH may also include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling. The receiver may use this to determine whether to receive and parse service layer signaling.
  • the broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame.
  • the broadcast signal frame may include physical layer signaling.
  • the information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed.
  • the receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling.
  • the broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame.
  • the quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP.
  • the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
  • service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • the signaling message may include an MPD delivery description, a component mapping description, or a URL signaling description according to the type of the message delivered by the service layer signaling.
  • ATPH may include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
  • service layer signaling including the MPD delivery description may have a value of 0xF1 as a signaling id.
  • the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of the MPD delivery description which is a signaling message of the corresponding service layer signaling.
  • the service layer signaling including the component mapping description may have a value of 0xF2 as a signaling id.
  • the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of the component mapping description which is a signaling message of the corresponding service layer signaling.
  • service layer signaling including a URL signaling description may have a value of 0xF3 as a signaling id.
  • the version information may have a value of 0x01 and the version information may be changed when there is a change in the content of the URL signaling description which is a signaling message of the corresponding service layer signaling.
  • the receiver may filter desired service layer signaling by using signaling id and version information, which is filtering information included in an application transport protocol header of service layer signaling.
  • the service layer signaling having the signaling id 0xF1 may be received. Also, at this time, the service layer signaling may be parsed only when the version information is checked and updated compared to the received MPD delivery description. This allows the receiver to reduce unnecessary parsing operations for service layer signaling and to reduce processing overhead. As described above, the next generation broadcast system may support the receiver to filter desired information by including the signaling ID and the version information in the header of the transport protocol of the service layer signaling.
  • Service layer signaling used in the next generation broadcast system of the present invention may be encapsulation.
  • encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), application transport protocol (e.g. ROUTE or MMTP) header (ATPH), and It may consist of a combination of signaling messages.
  • encapsulated service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g.
  • ATPH may also include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
  • the broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame.
  • the broadcast signal frame may include physical layer signaling.
  • the information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed.
  • the receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling.
  • the broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame.
  • the quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP.
  • the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
  • service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • the signaling message may include an MPD delivery description, a component mapping description, or a URL signaling description according to the type of the message delivered by the service layer signaling.
  • ATPH may include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
  • service layer signaling including the MPD delivery description may have a value of 0xF1 as a signaling id.
  • the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of the MPD delivery description which is a signaling message of the corresponding service layer signaling.
  • the service layer signaling including the component mapping description may have a value of 0xF2 as a signaling id.
  • the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of the component mapping description which is a signaling message of the corresponding service layer signaling.
  • service layer signaling including a URL signaling description may have a value of 0xF3 as a signaling id.
  • the version information may have a value of 0x01 and the version information may be changed when there is a change in the content of the URL signaling description which is a signaling message of the corresponding service layer signaling.
  • the receiver may filter desired service layer signaling by using signaling id and version information, which is filtering information included in an application transport protocol header of service layer signaling.
  • the service layer signaling having the signaling id 0xF1 may be received. Also, at this time, the service layer signaling may be parsed only when the version information is checked and updated compared to the received MPD delivery description. This allows the receiver to reduce unnecessary parsing operations for service layer signaling and to reduce processing overhead. As described above, the next generation broadcast system may support the receiver to filter desired information by including the signaling ID and the version information in the header of the transport protocol of the service layer signaling.
  • the quick service acquisition information may include information on a data pipe or PLP through which link layer signaling is carried. That is, the receiver may identify a PLP through which link layer signaling is transmitted using data pipe or PLP identifier information included in fast service acquisition information, and acquire link layer signaling included therein.
  • the format of transport link layer signaling may include a generic packet header (GPH) and a signaling message.
  • the signaling message may include information on link layer signaling.
  • the receiver may acquire link layer signaling (or low layer signaling) through a data pipe and the like, and may acquire service / component signaling such as a component mapping table through an application transport protocol. That is, the next generation broadcast system may include signaling information for a data pipe or PLP including link layer signaling in a physical layer frame.
  • Service layer signaling used in the next generation broadcast system of the present invention may be encapsulation.
  • encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), application transport protocol (e.g. ROUTE or MMTP) header (ATPH), and It may consist of a combination of signaling messages.
  • encapsulated service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header.
  • ATPH may also include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
  • the broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame.
  • the broadcast signal frame may include physical layer signaling.
  • the information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed.
  • the receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling.
  • the broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame.
  • the quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP.
  • the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
  • service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • the signaling message may include a User Service Bundle Description (USBD), an MPD, and a Session Description Protocol according to the type of the message transmitted by the service layer signaling.
  • ATPH may include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
  • service layer signaling including a User Service Bundle Description may have a value of 0xF4 as a signaling id.
  • the version information may have a value of 0x01 and the version information may be changed when there is a change in the content of the User Service Bundle Description which is a signaling message of the corresponding service layer signaling.
  • the service layer signaling including the Session Description Protocol may have a value of 0xF5 as a signaling id.
  • the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of Session Description Protocol, which is a signaling message of the corresponding service layer signaling.
  • the service layer signaling including the MPD may have a value of 0xF6 as a signaling id.
  • the version information may have a value of 0x02, and the version information may be changed when there is a change in the content of the MPD, which is a signaling message of the corresponding service layer signaling.
  • the receiver may filter desired service layer signaling by using signaling id and version information, which is filtering information included in an application transport protocol header of service layer signaling.
  • service layer signaling having signaling id 0xF4 may be received.
  • the corresponding service layer signaling may be parsed only when the version information is updated and compared with the received User Service Bundle Description. This allows the receiver to reduce unnecessary parsing operations for service layer signaling and to reduce processing overhead.
  • the next generation broadcast system may support the receiver to filter desired information by including the signaling ID and the version information in the header of the transport protocol of the service layer signaling.
  • Service layer signaling used in the next generation broadcast system of the present invention may be encapsulation.
  • encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), application transport protocol (e.g. ROUTE or MMTP) header (ATPH), and It may consist of a combination of signaling messages.
  • encapsulated service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g.
  • ATPH may also include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
  • the broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame.
  • the broadcast signal frame may include physical layer signaling.
  • the information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed.
  • the receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling.
  • the broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame.
  • the quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP.
  • the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
  • service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • the signaling message may include a User Service Bundle Description (USBD), an MPD, and a Session Description Protocol according to the type of the message transmitted by the service layer signaling.
  • ATPH may include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
  • service layer signaling including a User Service Bundle Description may have a value of 0xF4 as a signaling id.
  • the version information may have a value of 0x01 and the version information may be changed when there is a change in the content of the User Service Bundle Description which is a signaling message of the corresponding service layer signaling.
  • the service layer signaling including the Session Description Protocol may have a value of 0xF5 as a signaling id.
  • the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of Session Description Protocol, which is a signaling message of the corresponding service layer signaling.
  • the service layer signaling including the MPD may have a value of 0xF6 as a signaling id.
  • the version information may have a value of 0x02, and the version information may be changed when there is a change in the content of the MPD, which is a signaling message of the corresponding service layer signaling.
  • the receiver may filter desired service layer signaling by using signaling id and version information, which is filtering information included in an application transport protocol header of service layer signaling.
  • service layer signaling having signaling id 0xF4 may be received.
  • the corresponding service layer signaling may be parsed only when the version information is updated and compared with the received User Service Bundle Description. This allows the receiver to reduce unnecessary parsing operations for service layer signaling and to reduce processing overhead.
  • the next generation broadcast system may support the receiver to filter desired information by including the signaling ID and the version information in the header of the transport protocol of the service layer signaling.
  • the quick service acquisition information may include information on a data pipe or PLP through which link layer signaling is carried. That is, the receiver may identify a PLP through which link layer signaling is transmitted using data pipe or PLP identifier information included in fast service acquisition information, and acquire link layer signaling included therein.
  • the format of transport link layer signaling may include a generic packet header (GPH) and a signaling message.
  • the signaling message may include information on link layer signaling.
  • the receiver may acquire link layer signaling (or low layer signaling) through a data pipe and the like, and may acquire service / component signaling such as a component mapping table through an application transport protocol. That is, the next generation broadcast system may include signaling information for a data pipe or PLP including link layer signaling in a physical layer frame.
  • Service layer signaling may include the aforementioned signaling or 3GPP eMBMS signaling.
  • signaling data for supporting fast service scan and acquisition may be transmitted through a common data pipe, a data pipe, or a PLP in a physical frame.
  • signaling data related to rapid service scan and acquisition may be encapsulated in a link (or low) layer signaling form and may be transmitted together with other link (or low) layer signaling. That is, the PLP in the frame may deliver signaling data including service acquisition information.
  • the service / component signaling may be transmitted.
  • the signaling includes a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g., ROUTE or MMTP) header (ATPH), a signaling message header (SMH). ) And a signaling message.
  • GPH generic packet header
  • IPH IP packet header
  • UDPH UDP datagram header
  • ATPH application transport protocol
  • ATPH e.g., ROUTE or MMTP
  • SMSH signaling message header
  • ATPH may include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
  • the lower figure illustrates a method of acquiring service layer signaling using service acquisition information included in link layer signaling.
  • the PLP of the broadcast signal frame may include link layer signaling.
  • Link layer signaling may include the fast service scan and acquisition information described above.
  • the quick service scan and acquisition information may include a service identifier and PLP identifier information including service layer signaling for the corresponding service.
  • the PLP indicated by the corresponding PLP identifier may include service layer signaling.
  • the service layer signaling includes a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g., ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message.
  • the signaling message of the service layer signaling may include a transport session instance description, an MPD delivery description, a component mapping description, or a URL signaling description.
  • the next generation broadcast signal receiver may parse service layer signaling to obtain a
  • Service layer signaling may include the aforementioned signaling or 3GPP eMBMS signaling.
  • the PLP of the broadcast signal frame may include link layer signaling.
  • Link layer signaling may include the fast service scan and acquisition information described above.
  • the quick service scan and acquisition information may include a service identifier and PLP identifier information including service layer signaling for the corresponding service.
  • the PLP indicated by the corresponding PLP identifier may include service layer signaling.
  • Service layer signaling includes a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g.
  • the signaling message of the service layer signaling may include a transport session instance description, an MPD delivery description, a component mapping description, or a URL signaling description.
  • the next generation broadcast signal receiver may parse service layer signaling to obtain a desired service.
  • ATPH may include a filtering index for service layer signaling.
  • the filtering index may include a signaling id and a version.
  • the signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling. The method of filtering the service layer signaling by using the filtering index has been described above.
  • FIG. 102 is a diagram illustrating syntax of a header of a signaling message according to another embodiment of the present invention.
  • FIG. 102 is a diagram illustrating syntax of a header of a signaling message according to another embodiment of the present invention.
  • the signaling message according to another embodiment of the present invention may be expressed in an XML form.
  • the signaling information included in the XML-type signaling message may correspond to the above-described or the above-described signaling information.
  • a header of a signaling message includes signaling_id information, signaling_length information, signaling_id_extension information, version_number information, current_next_indicator information, indicator_flags information, fragmentation_indicator information, payload_format_indicator information, expiration_indicator information, validfrom_indicator information, fragment_numberment information, last_fragment_number information , payload_format information, validfrom information, and / or expiration information.
  • the description of the signaling information having the same or similar name as the signaling information included in the header of the signaling message described above is replaced with the above description.
  • the validfrom_indicator information may indicate whether a value of validfrom information is included in a header portion of the signaling message. For example, when the value of validfrom_indicator information is '1', this may indicate that validfrom information is included in a header portion of the signaling message.
  • the validfrom information may indicate an available start time of the signaling message included in the payload.
  • the receiver may recognize an available start time of the signaling included in the payload, and use the data included in the payload as the signaling information from that time.
  • the payload may indicate an area within a broadcast signal including data of a broadcast service or broadcast content (broadcast service data). That is, in general, signaling information is generally transmitted through a region physically or logically separated from broadcast service data in a broadcast signal. However, according to the present invention, when there is a spare area in the payload area or when it is necessary to transmit a greater amount of signaling information than the size of the allocated area for transmission of the signaling information, the payload area in the broadcast signal is determined. Signaling information can be transmitted through the system.
  • FIG. 103 is a diagram illustrating a protocol stack for processing a DASH Initialization Segment according to an embodiment of the present invention.
  • the DASH initialization segment may be transmitted in a form such as the Initialization Segment Delivery Table described above or in an XML form.
  • An initialization segment is a segment that contains metadata (signaling information) necessary to express an encapsulated media stream (broadcast signal or broadcast signal) into a plurality of segments.
  • the segment is a unit of data associated with the HTTP-URL.
  • a segment includes data for a broadcast service or broadcast content.
  • Representation is a data unit that includes one or more media streams in a transport format. The presentation may include one or more segments.
  • the DASH initialization segment may be processed according to the protocol stack shown at the transmitter or receiver.
  • the DASH initialization segment may be sent over one or more paths on a Protocol Stack.
  • a 'signaling channel (signaling channel), a data pipe (DP)' may correspond to a first layer, and a 'FIC, link layer frame' may correspond to a second layer.
  • IP Internet Protocol
  • UDP User Datagram Protocol
  • ROUTE may correspond to the fifth layer.
  • the link layer frame may include the link layer packet described herein.
  • the protocol stack in which the DASH initialization segment is processed such as the path shown in (1), when signaling data such as initialization segment (Initialization Segment) is directly uploaded and transmitted to the IP / UDP, such as the proposed Initialization Segment Delivery Table.
  • the information may be transmitted in the form of information, or the initialization segment itself may be transmitted through a protocol stack in the form of an IP datagram.
  • the above information for service signaling and / or component signaling may be transmitted together in the path of (1) shown.
  • the DASH initialization segment is a media session for transmitting signaling data, such as path (2), or media session data in a session for transmitting component data, such as path (3).
  • signaling data such as path (2)
  • media session data in a session for transmitting component data, such as path (3).
  • a real-time object delivery over unidirectional transport may be used as the application transport protocol.
  • the ROUTE session may include a session for transmitting signaling information and / or a session for transmitting data for broadcast media.
  • the broadcast system may identify a session for transmitting signaling information by fixing the value of the TSI to a constant value, so that the data transmitted through the session having the value of the TSI by the receiver is signaling information.
  • signaling information data
  • data such as Initialization Segment
  • data of the aforementioned signaling message format, initialization in a transport stream or transport object, etc. is initialized.
  • Information for identifying where a segment is located, and / or information for distinguishing data of a signaling message format or an initialization segment from data transmitted together includes a field in a transport protocol packet, Or it may be provided in a separate signaling form.
  • FIG. 104 illustrates a portion of a Layered Coding Transport (LCT) Session Instance Descriptor (LSID) according to an embodiment of the present invention.
  • LCT Layered Coding Transport
  • LSID Session Instance Descriptor
  • the LCT session instance descriptor may include data of a signaling message format, information identifying which part of an initialization segment is located in a broadcast signal, and / or data of a signaling message format. Information may be provided for distinguishing an initialization segment from among data transmitted together.
  • the LCT session instance descriptor may include a PayloadFormat element.
  • the PayloadFormat element may include @codePoint information, @deliveryObjectFormat information, @fragmentation information, @deliveryOrder information, and / or @sourceFecPayloadID information.
  • the broadcast receiver or broadcast transmitter may use @deliveryObjectFormat information (or field) of the PayloadFormat element in the SourceFlow element of the LSID to identify a ROUTE packet including an initialization segment. have.
  • the @deliveryObjectFormat information when the value of @deliveryObjectFormat information is '0', the @deliveryObjectFormat information may indicate that the corresponding ROUTE packet includes a signaling message format. If the value of @deliveryObjectFormat information is '0', a ROUTE packet having a code point (CP) of the same value in the LCT packet header and the value of the @codePoint information assigned to this PayloadFormat element is the signaling message format described above. format) data may be transmitted.
  • the initialization segment may be transmitted as included in the signaling message format, and other signaling data such as service signaling and component signaling may also be included in the signaling message format in the same manner. It can be identified that is being transmitted via.
  • the @deliveryObjectFormat field may indicate that the corresponding ROUTE packet includes metadata (signaling information) including an initialization segment. If the value of the @deliveryObjectFormat field is '4', the @deliveryObjectFormat information indicates that the metadata format including the initialization segment is transmitted through the ROUTE packet, or the initialization segment directly sends the ROUTE packet. It may indicate that it is being transmitted.
  • a broadcast system (broadcast receiver and / or transmitter) assigns a new value (e.g., a value of '5' or more) to @deliveryObjectFormat information, thereby providing service signaling (service level signaling information).
  • service signaling service level signaling information
  • And / or other signaling data such as component signaling (component level signaling) may be signaled to be transmitted directly through the ROUTE packet.
  • the broadcast system may display signaling data such as an initialization segment through other fields or new additional fields in the LSID. It may also identify the transmitted ROUTE packet.
  • FIG. 105 is a diagram illustrating a Signaling Object Description (SOD) for providing information for filtering a service signaling message according to an embodiment of the present invention.
  • SOD Signaling Object Description
  • the signaling object description may include @protocolVersion information, @dataVersion information, @validFrom information, @expiration information, Signaling Object element, @toi information, @type information, @version information, @instance Id information, It may include @validFrom information, @expiration information, and / or @payloadFormat information.
  • the @protocolVersion information indicates the version of the signaling object description.
  • @dataVersion information indicates the version of an instance of a signaling object description. @DataVersion may change when the contents included in the signaling object description change.
  • the @validFrom information may indicate an available start time of an instance of the signaling object description. Using this, the receiver may recognize an available start time of the signaling object description and use the information included in the signaling object description from that time.
  • the @expiration information may indicate an available completion time of an instance of the signaling object description.
  • the receiver can recognize the available completion time of the signaling object description, and can manage the information of the signaling object description using this.
  • the Signaling Object element represents an object including signaling information.
  • the signaling object description may include signaling information about one or more signaling objects.
  • @toi information represents a Transmission Object Identifier (TOI) assigned to a signaling object.
  • the @toi information can be used to identify the packet associated with the signaling object.
  • the receiver may map @toi information to the TOI of the LCT packet to identify the following information such as the type, and / or version of the signaling message transmitted by each object.
  • @type information is information for identifying the type of signaling message included in the object. For example, if the value of the @type information is 0, the LST Session Instance Description (LSID), the value of the @type information is 1, the component mapping description (CMD), and the value of the @type information is 2, the application signaling Description), if the value of @type information is 3, MPD (Media Presentation Description), if the value of @type information is 4, USD (URL Signaling Description), if the value of @type information is 5, IS (Initialization Segment) It may indicate that a signaling message is transmitted within.
  • @version information is information indicating a version of a signaling message.
  • the receiver may identify a change in the signaling message through a change in this field value.
  • @instance Id information is information for identifying an instance of a signaling message. This information may be used by the receiver to distinguish between instances of signaling messages that may exist in a single service, such as an Initialization Segment.
  • the @validFrom information may indicate an available start time of the signaling message included in the object. Using this, the receiver may recognize an available start time of the signaling included in the object and use the signaling included in the object from that time.
  • the @expiration information may indicate the valid time of the signaling message included in the object. Using this, the receiver can recognize the available completion time of the signaling included in the object and can manage the signaling message using this.
  • the @payloadFormat information may indicate the format of signaling message data included in the object.
  • the signaling message may be provided in the form of binary or XML, and the @payloadFormat information indicates this format.
  • each signaling message may be set as an object and processed.
  • the signaling message may be filtered by mapping signaling message related information such as version and type to each TOI.
  • a signaling object description provides filtering information of signaling objects corresponding to one transport session.
  • the signaling object description may be transmitted through internal or external means of the session for transmitting the signaling.
  • the receiver identifies the signaling object description with a unique TOI value (e.g., a value such as 0 or 0xFFFF) and interprets the signaling object description prior to other signaling messages sent together.
  • the signaling object description is transmitted to the outside, the signaling object description is transmitted through a means such as a fast information channel (FIC), a service list table (SLT), a separate IP datagram, or another ROUTE session, and delivered in the session.
  • a means such as a fast information channel (FIC), a service list table (SLT), a separate IP datagram, or another ROUTE session, and delivered in the session.
  • FOC fast information channel
  • SLT service list table
  • the receiver may acquire information of a signaling message in advance.
  • 106 is a diagram illustrating an object including a signaling message according to an embodiment of the present invention.
  • each signaling message When the signaling message is transmitted through an LCT-based protocol such as ROUTE, each signaling message may be set as an object and processed.
  • an object can be identified by its unique TOI.
  • the receiver may filter signaling messages by mapping signaling message related information such as version and / or type to each TOI. Different TOIs may be assigned to objects containing different contents. In this case, all objects may be uniquely identified in the broadcast system, and thus signaling signals may be processed in a manner compatible with existing object processing methods.
  • the illustrated figure shows an embodiment in which a part of the TOI field is used for describing a fixed length signaling message related information.
  • a 32-bit TOI field is used, and the type and version of the above-described signaling data transmitted through the object may be identified through the 16-bit Type and Version fields, respectively.
  • additional information of the sequence number information, valid from information, expiration information, and / or payload format information described above may also be assigned by assigning a part of the TOI field as a fixed length field, such as Type and Version in the present embodiment. I can deliver it.
  • the object may include: v element, c element, PSI element, S element, O element, H element, A element, B element, HDR_LEN element, Codepoint element, Congestion Control Information element, Transport Session Identifier (TSI) element, Transport Object Identifier (TOI) element, Header Extensions element, FEC payload ID element, and / or Encoding Symbols element.
  • TSI Transport Session Identifier
  • TOI Transport Object Identifier
  • Header Extensions element FEC payload ID element
  • Encoding Symbols element e.g., the element may be named as information or a field.
  • the PSI element may comprise an X element and / or a Y element.
  • the TOI element may include a Type element and / or a Version element.
  • the v element indicates the version number of the packet.
  • the v element may indicate a version of ALC / LCT.
  • the v element may indicate that a packet conforming to ALC / LCT + is transmitted through this object.
  • the c element corresponds to the Congestion control flag.
  • the c element may indicate the length of the Congestion Control Information (CCI) element.
  • CCI Congestion Control Information
  • the c element has a CCI value of 0, the CCI length is 32 bits, the c element has a value of 1, the CCI length is 64 bits, and the c element has a value of CCI. If the length of 96 bits, the value of the c element is 3, it can represent that the length of the CCI is 128 bits.
  • the PSI element may correspond to Protocol-Specific Indication (PSI).
  • PSI Protocol-Specific Indication
  • the PSI element may be used as a specific purpose indicator for the higher protocol of ALC / LCT +.
  • the PSI element may indicate whether the current packet corresponds to the source packet or the FEC repair packet.
  • the X element may correspond to information indicating a source packet.
  • FEC payload ID formats are used for source and repair data, if the value of this element is '1', it indicates that the FEC payload ID format is for source data. If the value of this element is '0', repair data is used. Indicates that the FEC payload ID format for the. Or, if the value of this element is set to '0' at the transmitter, the receiver may ignore this element or this packet and not process it.
  • the S element may correspond to a Transport Session Identifier flag.
  • the S element indicates the length of the Transport Session Identifier element.
  • the O element may correspond to a Transport Object Identifier flag.
  • the O element may indicate the length of the Transport Object Identifier element.
  • An object may mean one file, and the TOI is identification information of each object, and a file having a TOI of 0 may include signaling information related to a file.
  • the H element may correspond to a half-word flag.
  • the H element indicates whether to add half-word (16 bits) to the length of the TSI and TOI fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

A method for processing broadcast signal transmission according to an embodiment of the present invention comprises the steps of: generating one or more first layer data units including first level signaling data and broadcast data for a broadcast service; generating one or more second layer data units including the one or more first layer data units and second level signaling data; and generating a broadcast signal including the one or more second layer data units, wherein the first level signaling data includes information that describes the broadcast service, and the second level signaling data includes a channel scan and information required to acquire the first level signaling data.

Description

방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법A broadcast signal transmitting device, a broadcast signal receiving device, a broadcast signal transmitting method, and a broadcast signal receiving method
본 발명은 방송 신호 송신 장치, 방송 신호 수신 장치, 및 방송 신호 송수신 방법에 관한 것이다.The present invention relates to a broadcast signal transmission apparatus, a broadcast signal reception apparatus, and a broadcast signal transmission and reception method.
아날로그 방송 신호 송신이 종료됨에 따라, 디지털 방송 신호를 송수신하기 위한 다양한 기술이 개발되고 있다. 디지털 방송 신호는 아날로그 방송 신호에 비해 더 많은 양의 비디오/오디오 데이터를 포함할 수 있고, 비디오/오디오 데이터뿐만 아니라 다양한 종류의 부가 데이터를 더 포함할 수 있다.As analog broadcast signal transmission is terminated, various techniques for transmitting and receiving digital broadcast signals have been developed. The digital broadcast signal may include a larger amount of video / audio data than the analog broadcast signal, and may further include various types of additional data as well as the video / audio data.
즉, 디지털 방송 시스템은 HD(High Definition) 이미지, 멀티채널(multi channel, 다채널) 오디오, 및 다양한 부가 서비스를 제공할 수 있다. 그러나, 디지털 방송을 위해서는, 많은 양의 데이터 전송에 대한 데이터 전송 효율, 송수신 네트워크의 견고성(robustness), 및 모바일 수신 장치를 고려한 네트워크 유연성(flexibility)이 향상되어야 한다.That is, the digital broadcasting system may provide high definition (HD) images, multichannel audio, and various additional services. However, for digital broadcasting, data transmission efficiency for a large amount of data transmission, robustness of a transmission / reception network, and network flexibility in consideration of a mobile receiving device should be improved.
전술한 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른, 방송 신호 송신 처리 방법은 제 1 레벨 시그널링 데이터 및 방송 서비스를 위한 방송 데이터를 포함하는 하나 이상의 제 1 계층 데이터 유닛들을 생성하는 단계, 상기 하나 이상의 제 1 계층 데이터 유닛들과 제 2 레벨 시그널링 데이터를 포함하는 하나 이상의 제 2 계층 데이터 유닛들을 생성하는 단계 및 상기 하나 이상의 제 2 계층 데이터 유닛들을 포함하는 방송 신호를 생성하는 단계를 포함하고, 상기 제 1 레벨 시그널링 데이터는, 상기 방송 서비스를 설명하는 정보를 포함하고, 상기 제 2 레벨 시그널링 데이터는, 채널 스캔과 상기 제 1 레벨 시그널링 데이터를 획득하는데 필요한 정보를 포함하는 것을 특징으로 한다.According to one or more exemplary embodiments, a method for processing broadcast signal transmission includes generating one or more first layer data units including first level signaling data and broadcast data for a broadcast service; Generating one or more second layer data units including the one or more first layer data units and second level signaling data; and generating a broadcast signal comprising the one or more second layer data units; The first level signaling data includes information describing the broadcast service, and the second level signaling data includes information necessary to acquire a channel scan and the first level signaling data.
바람직하게는, 상기 제 2 레벨 시그널링 데이터는, 상기 방송 서비스에 포함되는 하나 이상의 컴포넌트들을 획득하는데 사용되는 시그널링 구조를 가리키는 부트스트랩 모드 (bootstrap mode) 를 식별하는 부트스트랩 모드 정보를 포함하는 것을 특징으로 한다.Preferably, the second level signaling data includes bootstrap mode information identifying a bootstrap mode indicating a signaling structure used to obtain one or more components included in the broadcast service. do.
바람직하게는, 상기 부트스트랩 모드 정보는, 상기 부트스트랩 모드가, 제 1 부트스트랩 모드 또는 제 2 부트스트랩 모드에 해당되는지를 식별하고, 상기 제 1 부트스트랩 모드는, 상기 제 2 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 제 1 레벨 시그널링 데이터가 전송되는 위치를 식별하고, 상기 위치에서 상기 제 1 레벨 시그널링 데이터를 획득하고, 상기 제 1 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 하나 이상의 컴포넌트를 획득하는 모드이고, 상기 제 2 부트스트랩 모드는, 상기 제 2 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 하나 이상의 컴포넌트를 획득하는 모드인 것을 특징으로 한다.Preferably, the bootstrap mode information identifies whether the bootstrap mode corresponds to a first bootstrap mode or a second bootstrap mode, and the first bootstrap mode corresponds to the second level signaling data. Using the information included, identifying the location where the first level signaling data is transmitted, obtaining the first level signaling data at the location, and using the information included in the first level signaling data, the one The second component may be a mode for acquiring the at least one component, and the second bootstrap mode may be a mode for acquiring the at least one component by using information included in the second level signaling data.
바람직하게는, 상기 부트스트랩 모드 정보가, 상기 부트스트랩 모드가 상기 제 1 부트스트랩 모드에 해당됨을 식별하는 경우, 상기 제 2 레벨 시그널링 데이터는, 상기 방송 서비스를 고유하게 식별하는 서비스 식별 정보, 및 상기 서비스 식별 정보에 의하여 식별되는 방송 서비스에 포함되는 컴포넌트들의 개수를 나타내는 컴포넌트 개수 정보를 포함하는 것을 특징으로 한다.Preferably, when the bootstrap mode information identifies that the bootstrap mode corresponds to the first bootstrap mode, the second level signaling data includes service identification information for uniquely identifying the broadcast service, and And component number information indicating the number of components included in the broadcast service identified by the service identification information.
바람직하게는, 상기 제 2 레벨 시그널링 데이터는, 상기 방송 서비스에 포함되는 컴포넌트를 고유하게 식별하는 컴포넌트 식별 정보, 및 상기 컴포넌트 식별 정보에 의하여 식별되는 컴포넌트의 데이터를 포함하는 패킷이 전송되는 전송 세션을 식별하는 컴포넌트 전송 세션 식별 정보를 더 포함하는 것을 특징으로 한다.Preferably, the second level signaling data includes a transmission session in which a packet including component identification information uniquely identifying a component included in the broadcast service and data of a component identified by the component identification information is transmitted. The method may further include identifying component transmission session identification information.
바람직하게는, 상기 제 2 레벨 시그널링 데이터는, 상기 컴포넌트의 데이터를 포함하는 패킷을 전송하는 물리적 계층의 데이터 파이프를 식별하는 컴포넌트 데이터파이프 식별 정보를 더 포함하는 것을 특징으로 한다.Preferably, the second level signaling data may further include component data pipe identification information for identifying a data pipe of a physical layer for transmitting a packet including data of the component.
바람직하게는, 상기 제 2 레벨 시그널링 데이터는, 상기 컴포넌트의 데이터를 포함하는 상기 패킷에 대한 전송 프로토콜 파라미터를 포함하는 전송 파라미터 디스크립터를 더 포함하는 것을 특징으로 한다.Advantageously, said second level signaling data further comprises a transport parameter descriptor containing a transport protocol parameter for said packet comprising data of said component.
전술한 기술적 과제를 해결하기 위한 본 발명의 일 실시예에 따른 방송 신호 송신 처리 장치는 제 1 레벨 시그널링 데이터 및 방송 서비스를 위한 방송 데이터를 포함하는 하나 이상의 제 1 계층 데이터 유닛들을 생성하는 제 1 계층 인코더, 상기 하나 이상의 제 1 계층 데이터 유닛들과 제 2 레벨 시그널링 데이터를 포함하는 하나 이상의 제 2 계층 데이터 유닛들을 생성하는 제 2 계층 인코더 및 상기 하나 이상의 제 2 계층 데이터 유닛들을 포함하는 방송 신호를 생성하는 방송 신호 생성기를 포함하고, 상기 제 1 레벨 시그널링 데이터는, 상기 방송 서비스를 설명하는 정보를 포함하고, 상기 제 2 레벨 시그널링 데이터는, 채널 스캔과 상기 제 1 레벨 시그널링 데이터를 획득하는데 필요한 정보를 포함하는 것을 특징으로 한다.The broadcast signal transmission processing apparatus according to an embodiment of the present invention for solving the above technical problem is a first layer for generating one or more first layer data units including first level signaling data and broadcast data for a broadcast service. Generate a broadcast signal comprising an encoder, a second layer encoder generating the one or more second layer data units comprising the one or more first layer data units and the second level signaling data and the one or more second layer data units And a broadcast signal generator, wherein the first level signaling data includes information describing the broadcast service, and the second level signaling data includes information necessary to acquire a channel scan and the first level signaling data. It is characterized by including.
바람직하게는, 상기 제 2 레벨 시그널링 데이터는, 상기 방송 서비스에 포함되는 하나 이상의 컴포넌트들을 획득하는데 사용되는 시그널링 구조를 가리키는 부트스트랩 모드 (bootstrap mode) 를 식별하는 부트스트랩 모드 정보를 포함하는 것을 특징으로 한다.Preferably, the second level signaling data includes bootstrap mode information identifying a bootstrap mode indicating a signaling structure used to obtain one or more components included in the broadcast service. do.
바람직하게는, 상기 부트스트랩 모드 정보는, 상기 부트스트랩 모드가, 제 1 부트스트랩 모드 또는 제 2 부트스트랩 모드에 해당되는지를 식별하고, 상기 제 1 부트스트랩 모드는, 상기 제 2 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 제 1 레벨 시그널링 데이터가 전송되는 위치를 식별하고, 상기 위치에서 상기 제 1 레벨 시그널링 데이터를 획득하고, 상기 제 1 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 하나 이상의 컴포넌트를 획득하는 모드이고, 상기 제 2 부트스트랩 모드는, 상기 제 2 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 하나 이상의 컴포넌트를 획득하는 모드인 것을 특징으로 한다.Preferably, the bootstrap mode information identifies whether the bootstrap mode corresponds to a first bootstrap mode or a second bootstrap mode, and the first bootstrap mode corresponds to the second level signaling data. Using the information included, identifying the location where the first level signaling data is transmitted, obtaining the first level signaling data at the location, and using the information included in the first level signaling data, the one The second component may be a mode for acquiring the at least one component, and the second bootstrap mode may be a mode for acquiring the at least one component by using information included in the second level signaling data.
바람직하게는, 상기 부트스트랩 모드 정보가, 상기 부트스트랩 모드가 상기 제 1 부트스트랩 모드에 해당됨을 식별하는 경우, 상기 제 2 레벨 시그널링 데이터는, 상기 방송 서비스를 고유하게 식별하는 서비스 식별 정보, 및 상기 서비스 식별 정보에 의하여 식별되는 방송 서비스에 포함되는 컴포넌트들의 개수를 나타내는 컴포넌트 개수 정보를 포함하는 것을 특징으로 한다.Preferably, when the bootstrap mode information identifies that the bootstrap mode corresponds to the first bootstrap mode, the second level signaling data includes service identification information for uniquely identifying the broadcast service, and And component number information indicating the number of components included in the broadcast service identified by the service identification information.
바람직하게는, 상기 제 2 레벨 시그널링 데이터는, 상기 방송 서비스에 포함되는 컴포넌트를 고유하게 식별하는 컴포넌트 식별 정보, 및 상기 컴포넌트 식별 정보에 의하여 식별되는 컴포넌트의 데이터를 포함하는 패킷이 전송되는 전송 세션을 식별하는 컴포넌트 전송 세션 식별 정보를 더 포함하는 것을 특징으로 한다.Preferably, the second level signaling data includes a transmission session in which a packet including component identification information uniquely identifying a component included in the broadcast service and data of a component identified by the component identification information is transmitted. The method may further include identifying component transmission session identification information.
바람직하게는, 상기 제 2 레벨 시그널링 데이터는, 상기 컴포넌트의 데이터를 포함하는 패킷을 전송하는 물리적 계층의 데이터 파이프를 식별하는 컴포넌트 데이터파이프 식별 정보를 더 포함하는 것을 특징으로 한다.Preferably, the second level signaling data may further include component data pipe identification information for identifying a data pipe of a physical layer for transmitting a packet including data of the component.
바람직하게는, 상기 제 2 레벨 시그널링 데이터는, 상기 컴포넌트의 데이터를 포함하는 상기 패킷에 대한 전송 프로토콜 파라미터를 포함하는 전송 파라미터 디스크립터를 더 포함하는 것을 특징으로 한다.Advantageously, said second level signaling data further comprises a transport parameter descriptor containing a transport protocol parameter for said packet comprising data of said component.
본 발명은 서비스 특성에 따라 데이터를 처리하여 각 서비스 또는 서비스 컴포넌트에 대한 QoS (Quality of Service)를 제어함으로써 다양한 방송 서비스를 제공할 수 있다.The present invention can provide various broadcast services by processing data according to service characteristics to control a quality of service (QoS) for each service or service component.
본 발명은 동일한 RF (radio frequency) 신호 대역폭을 통해 다양한 방송 서비스를 전송함으로써 전송 유연성(flexibility)을 달성할 수 있다.The present invention can achieve transmission flexibility by transmitting various broadcast services through the same radio frequency (RF) signal bandwidth.
본 발명은 MIMO (Multiple-Input Multiple-Output) 시스템을 이용하여 데이터 전송 효율 및 방송 신호의 송수신 견고성(Robustness)을 향상시킬 수 있다.The present invention can improve data transmission efficiency and robustness of transmission and reception of broadcast signals using a multiple-input multiple-output (MIMO) system.
본 발명에 따르면, 모바일 수신 장치를 사용하거나 실내 환경에 있더라도, 에러 없이 디지털 방송 신호를 수신할 수 있는 방송 신호 송신 및 수신 방법 및 장치를 제공할 수 있다.According to the present invention, it is possible to provide a broadcast signal transmission and reception method and apparatus capable of receiving a digital broadcast signal without errors even when using a mobile reception device or in an indoor environment.
본 발명에 따르면, 신속한 서비스 스캔 및 서비스 획득을 제공할 수 있다.According to the present invention, it is possible to provide rapid service scan and service acquisition.
본 발명에 따르면, 연관된 컴포넌트의 위치 정보를 제공할 수 있다. According to the present invention, location information of an associated component may be provided.
본 발명에 따르면, 필터링 정보를 이용하여 서비스 레이어 시그널링을 선택적으로 파싱할 수 있다. According to the present invention, service layer signaling may be selectively parsed using filtering information.
본 발명에 대해 더욱 이해하기 위해 포함되며 본 출원에 포함되고 그 일부를 구성하는 첨부된 도면은 본 발명의 원리를 설명하는 상세한 설명과 함께 본 발명의 실시예를 나타낸다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a part of this application for further understanding of the invention, illustrate embodiments of the invention, together with a detailed description that illustrates the principles of the invention.
도 1은 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치의 구조를 나타낸다.1 shows a structure of a broadcast signal transmission apparatus for a next generation broadcast service according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 인풋 포맷팅(Input formatting, 입력 포맷) 블록을 나타낸다.2 illustrates an input formatting block according to an embodiment of the present invention.
도 3은 본 발명의 다른 일 실시예에 따른 인풋 포맷팅(Input formatting, 입력 포맷) 블록을 나타낸다.3 illustrates an input formatting block according to another embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 BICM (bit interleaved coding & modulation) 블록을 나타낸다.4 illustrates a bit interleaved coding & modulation (BICM) block according to an embodiment of the present invention.
도 5는 본 발명의 다른 일 실시예에 따른 BICM 블록을 나타낸다.5 illustrates a BICM block according to another embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 프레임 빌딩(Frame Building, 프레임 생성) 블록을 나타낸다.6 illustrates a frame building block according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 OFDM (orthogonal frequency division multiplexing) 제너레이션(generation, 생성) 블록을 나타낸다.7 illustrates an orthogonal frequency division multiplexing (OFDM) generation block according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 수신 장치의 구조를 나타낸다.8 illustrates a structure of a broadcast signal receiving apparatus for a next generation broadcast service according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 프레임 구조를 나타낸다.9 shows a frame structure according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 프레임의 시그널링 계층 구조를 나타낸다.10 illustrates a signaling hierarchy structure of a frame according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 프리앰블 시그널링 데이터를 나타낸다.11 illustrates preamble signaling data according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 PLS1 데이터를 나타낸다.12 illustrates PLS1 data according to an embodiment of the present invention.
도 13은 본 발명의 일 실시예에 따른 PLS2 데이터를 나타낸다.13 illustrates PLS2 data according to an embodiment of the present invention.
도 14는 본 발명의 다른 일 실시예에 따른 PLS2 데이터를 나타낸다.14 illustrates PLS2 data according to another embodiment of the present invention.
도 15는 본 발명의 일 실시예에 따른 프레임의 로지컬(logical, 논리) 구조를 나타낸다.15 illustrates a logical structure of a frame according to an embodiment of the present invention.
도 16은 본 발명의 일 실시예에 따른 PLS (physical layer signalling) 매핑을 나타낸다.16 illustrates physical layer signaling (PLS) mapping according to an embodiment of the present invention.
도 17은 본 발명의 일 실시예에 따른 EAC (emergency alert channel) 매핑을 나타낸다.17 illustrates an emergency alert channel (EAC) mapping according to an embodiment of the present invention.
도 18은 본 발명의 일 실시예에 따른 FIC (fast information channel) 매핑을 나타낸다.18 illustrates FIC mapping according to an embodiment of the present invention.
도 19는 본 발명의 일 실시예에 따른 FEC (forward error correction) 구조를 나타낸다.19 shows a forward error correction (FEC) structure according to an embodiment of the present invention.
도 20은 본 발명의 일 실시예에 따른 타임 인터리빙을 나타낸다.20 illustrates time interleaving according to an embodiment of the present invention.
도 21은 본 발명의 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 기본 동작을 나타낸다.21 illustrates the basic operation of a twisted row-column block interleaver according to an embodiment of the present invention.
도 22는 본 발명의 다른 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 동작을 나타낸다.22 illustrates an operation of a twisted row-column block interleaver according to another embodiment of the present invention.
도 23은 본 발명의 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 대각선 방향 읽기 패턴을 나타낸다.23 illustrates a diagonal read pattern of a twisted row-column block interleaver according to an embodiment of the present invention.
도 24는 본 발명의 일 실시예에 따른 각 인터리빙 어레이(array)로부터 인터리빙된 XFECBLOCK을 나타낸다.24 illustrates XFECBLOCKs interleaved from each interleaving array according to an embodiment of the present invention.
도 25 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링을 도시한 도면이다. FIG. 25 illustrates signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 26 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링에 있어서, FSS 를 위한 FI 스킴들을 도시한 도면이다. FIG. 26 is a diagram illustrating FI schemes for FSS in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 27 는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링에 있어서, FES 를 위한 리셋 모드의 동작을 도시한 도면이다.FIG. 27 illustrates an operation of a reset mode for FES in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 28 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 주파수 인터리버의 입력과 출력을 수학식으로 표시한 도면이다.FIG. 28 is a diagram for mathematically representing an input and an output of a frequency interleaver in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 29 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, FI 스킴 #1 및 FI 스킴 #2 에 따른 주파수 인터리빙의 논리적 동작 매커니즘의 수학식을 나타낸다.29 is a view illustrating equations of a logical operation mechanism of frequency interleaving according to FI scheme # 1 and FI scheme # 2 in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention. Indicates.
도 30 는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 짝수인 경우의 실시예를 도시한 도면이다. 30 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 31 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 짝수인 경우의 실시예를 도시한 도면이다. 31 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 32 는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 홀수인 경우의 실시예를 도시한 도면이다. 32 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 33 는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 홀수인 경우의 실시예를 도시한 도면이다. 33 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 34 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 주파수 디인터리버의 동작을 도시한 도면이다. FIG. 34 illustrates operation of a frequency deinterleaver in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
도 35는 본 발명의 다른 실시예에 따른 variable data-rate 시스템을 나타낸 개념도이다.35 is a conceptual diagram illustrating a variable data-rate system according to another embodiment of the present invention.
도 36은 본 발명의 블록 인터리빙의 라이팅(writing) 및 리딩 (reading) 오퍼레이션의 일 실시예를 나타낸다. 이에 대한 구체적인 내용은 전술하였다.36 illustrates an embodiment of writing and reading operations of block interleaving of the present invention. Details thereof have been described above.
도 37은 본 발명의 일 실시예에 따른 블록 인터리빙을 나타낸 수학식이다. 37 illustrates equations for block interleaving according to an embodiment of the present invention.
도 38는 본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들을 나타낸 도면이다.38 illustrates virtual FEC blocks according to an embodiment of the present invention.
도 39은 본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들이 삽입된 이후 리딩 (reading) 동작을 나타낸 수학식이다. FIG. 39 is a equation illustrating a reading operation after virtual FEC blocks are inserted according to an embodiment of the present invention. FIG.
도 40는 본 발명의 일 실시예에 따른 타임 인터리빙의 프로세스를 나타낸 순서도이다.40 is a flowchart illustrating a process of time interleaving according to an embodiment of the present invention.
도 41은 본 발명의 일 실시예에 따른 시프트 밸류 및 맥시멈 TI 블록의 크기를 결정하는 과정을 나타낸 수학식이다.FIG. 41 is an equation illustrating a process of determining a shift value and a size of a maximum TI block according to an embodiment of the present invention. FIG.
도 42은 본 발명의 일 실시예에 따른 라이팅 (writing) 오퍼레이션을 나타낸다.42 illustrates a writing operation according to an embodiment of the present invention.
도 43은 본 발명의 일 실시예에 따른 리딩 (reading) 오퍼레이션을 나타낸다.43 illustrates a reading operation according to an embodiment of the present invention.
도 44은 본 발명의 일 실시예에 따른 리딩 (reading) 오퍼레이션에서 스킵 오퍼레이션이 수행된 결과를 나타낸다.44 is a view illustrating a result of a skip operation performed in a reading operation according to an embodiment of the present invention.
도 45는 본 발명의 일 실시예에 따른 타임 디인터리빙의 라이팅 (writing) 과정을 나타낸다. 45 illustrates a writing process of time deinterleaving according to an embodiment of the present invention.
도 46는 본 발명의 다른 실시예에 따른 타임 디인터리빙의 라이팅 (writing) 과정을 나타낸다. 46 illustrates a writing process of time deinterleaving according to another embodiment of the present invention.
도 47은 본 발명의 다른 실시예에 따른 타임 디인터리빙의 리딩 (reading) 오퍼레이션을 나타내는 수학식이다.FIG. 47 is a equation illustrating reading operation of time deinterleaving according to another embodiment of the present invention. FIG.
도 48은 본 발명의 일 실시예에 따른 타임 디인터리빙의 프로세스를 나타낸 순서도이다.48 is a flowchart illustrating a process of time deinterleaving according to an embodiment of the present invention.
도 49는 PLP 개수에 따라 적용하는 인터리빙 타입을 표로 도시한 도면이다.FIG. 49 is a table showing interleaving types applied according to the number of PLPs.
도 50은 상술한 하이브리드 타임 인터리버 구조의 제 1 실시예를 포함하는 블록도이다.50 is a block diagram including the first embodiment of the above-described hybrid time interleaver structure.
도 51은 상술한 하이브리드 타임 인터리버 구조의 제 2 실시예를 포함하는 블록도이다.51 is a block diagram including a second embodiment of the above-described hybrid time interleaver structure.
도 52는 하이브리드 타임 디인터리버의 구조의 제 1 실시예를 포함하는 블록도이다.52 is a block diagram including the first embodiment of the structure of the hybrid time deinterleaver.
도 53은 하이브리드 타임 디인터리버의 구조의 제 2 실시예를 포함하는 블록도이다.53 is a block diagram including the second embodiment of the structure of the hybrid time deinterleaver.
도 54는 본 발명의 일 실시예에 따른 하이브리드 방송 수신 장치를 나타낸 도면이다. 54 is a diagram illustrating a hybrid broadcast reception device according to an embodiment of the present invention.
도 55는 본 발명의 일 실시예에 따른 하이브리드 방송 수신기의 블록도를 나타낸 도면이다. 55 is a block diagram of a hybrid broadcast receiver according to an embodiment of the present invention.
도 56은 본 발명의 일 실시예에 따른 차세대 하이브리드 방송 시스템의 프로토콜 스택을 나타낸다. 56 shows a protocol stack of a next generation hybrid broadcast system according to an embodiment of the present invention.
도 57은 본 발명의 일 실시예에 따른 차세대 방송 전송 시스템의 physical layer 에 전달되는 전송 프레임의 구조를 나타낸다. 57 shows a structure of a transport frame delivered to a physical layer of a next generation broadcast transmission system according to an embodiment of the present invention.
도 58은 본 발명의 일 실시예에 따른 어플리케이션 계층 전송 프로토콜의 전송 패킷을 나타낸 도면이다. 58 illustrates a transport packet of an application layer transport protocol according to an embodiment of the present invention.
도 59는 본 발명의 일 실시예에 따른 차세대 방송 시스템이 시그널링 데이터를 전송하는 방법을 나타낸다. 59 is a diagram illustrating a method for transmitting signaling data by a next generation broadcast system according to one embodiment of the present invention.
도 60은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 60 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
도 61은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다.61 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
도 62는 본 발명의 일 실시예에 따른 빠른 서비스 스캔 및 획득을 위한 시그널링인 FIC 을 통하여 서비스 레이어 시그널링의 위치를 시그널링하고, 해당 위치로부터 서비스 레이어 시그널링을 획득하는 방법을 나타낸다. 62 is a view illustrating a method of signaling a location of service layer signaling through FIC, which is a signaling for fast service scan and acquisition, and obtaining service layer signaling from the location according to an embodiment of the present invention.
도 63은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다.63 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
도 64는 본 발명의 다른 실시예에 따른 빠른 서비스 스캔 및 획득을 위한 시그널링인 FIC 을 통하여 서비스 레이어 시그널링의 위치를 시그널링하고, 해당 위치로부터 서비스 레이어 시그널링을 획득하는 방법을 나타낸다. 64 is a view illustrating a method of signaling a location of service layer signaling through FIC, which is a signaling for fast service scan and acquisition, and obtaining service layer signaling from the location according to another embodiment of the present invention.
도 65는 본 발명의 일 실시예에 따른 차세대 방송 시스템의 서비스 시그널링 메시지 포맷을 나타낸 도면이다.65 is a diagram illustrating a service signaling message format of a next generation broadcast system according to an embodiment of the present invention.
도 66은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 사용하는 서비스 시그널링 테이블을 나타낸다. 66 illustrates a service signaling table used in a next generation broadcast system according to an embodiment of the present invention.
도 67은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 사용되는 서비스 매핑 테이블을 나타낸 도면이다. 67 is a diagram illustrating a service mapping table used in a next generation broadcast system according to an embodiment of the present invention.
도 68은 본 발명의 일 실시예에 따른 차세대 방송 시스템의 서비스 시그널링 테이블을 나타낸다. 68 shows a service signaling table of a next generation broadcast system according to an embodiment of the present invention.
도 69는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 사용되는 컴포넌트 매핑 테이블을 나타낸 도면이다.69 illustrates a component mapping table used in the next generation broadcast system according to an embodiment of the present invention.
도 70은 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 70 illustrates a component mapping table description according to an embodiment of the present invention.
도 71은 본 발명의 일 실시예에 따른 차세대 방송 시스템의 컴포넌트 매핑 테이블의 신택스를 나타낸다. 71 illustrates syntax of a component mapping table of a next generation broadcast system according to an embodiment of the present invention.
도 72는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 각 서비스와 연관된 시그널링을 브로드밴드망을 통해 전달하는 방법을 나타낸다. .72 is a view illustrating a method for delivering signaling associated with each service through a broadband network in a next generation broadcast system according to an embodiment of the present invention. .
도 73은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 MPD를 시그널링하는 방안을 나타낸다.73 illustrates a method for signaling MPD in a next generation broadcast system according to an embodiment of the present invention.
도 74는 본 발명의 일 실시예에 따른 차세대 방송 시스템의 MPD 딜리버리 테이블의 신택스를 나타낸다. 74 illustrates the syntax of an MPD delivery table of a next generation broadcast system according to an embodiment of the present invention.
도 75는 본 발명의 일 실시예에 따른 차세대 방송 시스템의 전송 세션 인스턴스 디스크립션을 나타낸다.75 illustrates a transport session instance description of a next generation broadcast system according to an embodiment of the present invention.
도 76은 본 발명의 일 실시예에 다른 차세대 방송 시스템의 소스 플로우(SourceFlow) 엘리먼트를 나타낸다. 76 is a view illustrating a source flow element of a next generation broadcast system according to an embodiment of the present invention.
도 77은 본 발명의 일 실시예에 따른 차세대 방송 시스템의 EFDT를 나타낸다. 77 shows an EFDT of a next generation broadcast system according to an embodiment of the present invention.
도 78은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 사용하는 ISDT를 전송하는 방법을 나타낸다. 78 is a view illustrating a method for transmitting an ISDT used by a next generation broadcast system according to an embodiment of the present invention.
도 79는 본 발명의 일 실시예에 따른 차세대 방송 시스템의 시그널링 메시지의 딜리버리 구조를 나타낸다. 79 illustrates a delivery structure of a signaling message of a next generation broadcast system according to an embodiment of the present invention.
도 80은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다.80 illustrates signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
도 81은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다.81 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver.
도 82는 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 82 illustrates a component mapping table description according to an embodiment of the present invention.
도 83은 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 83 illustrates a component mapping table description according to an embodiment of the present invention.
도 84 및 도 85는 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다.84 and 85 illustrate a component mapping table description according to an embodiment of the present invention.
도 86은 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 86 illustrates a component mapping table description according to an embodiment of the present invention.
도 87은 본 발명의 일 실시예에 따른 MPD의 공통 속성 및 엘리먼트들을 나타낸 도면이다.87 is a view illustrating common attributes and elements of an MPD according to an embodiment of the present invention.
도 88은 본 발명의 일 실시예에 따는 전송 세션 인스턴스 디스크립션을 나타낸 도면이다. 88 illustrates a transport session instance description according to an embodiment of the present invention.
도 89는 본 발명의 일 실시예에 다른 차세대 방송 시스템의 소스 플로우(SourceFlow) 엘리먼트를 나타낸다.89 is a view illustrating a source flow element of a next generation broadcast system according to an embodiment of the present invention.
도 90은 본 발명의 다른 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다.90 is a diagram showing signaling data transmitted by a next generation broadcast system according to another embodiment of the present invention for a quick broadcast service scan of a receiver.
도 91은 본 발명의 다른 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 91 is a diagram showing signaling data transmitted by a next generation broadcast system according to another embodiment of the present invention for a quick broadcast service scan of a receiver.
도 92는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 획득하는 방법을 나타낸다. 92 is a view illustrating a method of obtaining service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 93은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링 및 링크 레이어 시그널링을 획득하는 방법을 나타낸다. 93 illustrates a method of acquiring service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 94는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 획득하는 방법을 나타낸다. 94 illustrates a method of obtaining service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 95는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링 및 링크 레이어 시그널링을 획득하는 방법을 나타낸다. 95 illustrates a method of acquiring service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 96은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 전달하는 방법을 나타낸다.96 illustrates a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 97은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링 및 링크 레이어 시그널링을 전송하는 방법을 나타낸 도면이다. 97 is a diagram illustrating a method for transmitting service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 98은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 전달하는 방법을 나타낸다. 98 illustrates a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 99는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링 및 링크 레이어 시그널링을 전송하는 방법을 나타낸 도면이다. 99 is a view showing a method of transmitting service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 100은 본 발명의 일 실시예에 따른 차세대 방송 시스템의 서비스 레이어 시그널링을 전송하는 방법을 나타낸 도면이다.100 illustrates a method of transmitting service layer signaling of a next generation broadcast system according to an embodiment of the present invention.
도 101은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 전달하는 방법을 나타낸 도면이다.101 is a view showing a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention.
도 102 은 본 발명의 다른 실시예에 따른, 시그널링 메시지 (signaling message) 의 헤더 (header) 의 신택스 (syntax)를 나타낸 도면이다.FIG. 102 is a diagram illustrating syntax of a header of a signaling message according to another embodiment of the present invention. FIG.
도 103 는 본 발명의 일 실시예에 따른, DASH Initialization Segment (DASH 초기화 세그먼트)를 처리하는 프로토콜 스택 (Protocol Stack) 을 나타낸 도면이다.FIG. 103 is a diagram illustrating a protocol stack for processing a DASH Initialization Segment according to an embodiment of the present invention.
도 104 은 본 발명의 일 실시예에 따른, LCT (Layered Coding Transport) 세션 인스턴스 디스크립터 (LCT Session Instance Description; LSID)의 일부를 나타낸 도면이다.FIG. 104 illustrates a portion of a Layered Coding Transport (LCT) Session Instance Descriptor (LSID) according to an embodiment of the present invention.
도 105는 본 발명의 일 실시예에 따른, 서비스 시그널링 메시지를 필터링 (filtering) 하기 위한 정보를 제공하는 시그널링 오브젝트 디스크립션 (Signaling Object Description; SOD) 를 나타낸 도면이다.FIG. 105 is a diagram illustrating a Signaling Object Description (SOD) for providing information for filtering a service signaling message according to an embodiment of the present invention.
도 106은 본 발명의 일 실시예에 따른, 시그널링 메시지를 포함하는 오브젝트를 나타낸 도면이다.106 is a diagram illustrating an object including a signaling message according to an embodiment of the present invention.
도 107 는 본 발명의 일 실시예에 따른, TOI 구성 디스크립션 (TOI Configuration Description; TCD)를 나타낸 도면이다.107 illustrates a TOI Configuration Description (TCD) according to an embodiment of the present invention.
도 108은 본 발명의 일 실시예에 따른, 전송 패킷의 페이로드 (Payload) 포맷 (Format) 엘레먼트를 나타낸 도면이다.FIG. 108 is a diagram illustrating a payload format element of a transport packet according to an embodiment of the present invention. FIG.
도 109는 본 발명의 일 실시예에 따른, TOI 구성 인스턴스 디스크립션 (TOI Configuration Instance Description; TCID) 를 나타낸 도면이다.FIG. 109 illustrates a TOI Configuration Instance Description (TCID) according to an embodiment of the present invention.
도 110은 본 발명의 일 실시예에 따른, FIC (Fast Information Channel) 의 페이로드의 신택스 (syntax)를 나타낸 도면이다.FIG. 110 is a diagram illustrating syntax of a payload of a fast information channel (FIC) according to an embodiment of the present invention.
도 111은 본 발명의 다른 실시예에 따른, FIC의 페이로드의 신택스 (syntax)를 나타낸 도면이다.FIG. 111 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention. FIG.
도 112는 본 발명의 다른 실시예에 따른, 서비스 레벨 시그널링의 신택스 (syntax)를 나타낸 도면이다.112 is a diagram illustrating syntax of service level signaling according to another embodiment of the present invention.
도 113은 본 발명의 다른 실시예에 따른, 컴포넌트 맵핑 디스크립션 (component mapping description) 을 나타낸 도면이다.FIG. 113 is a diagram illustrating a component mapping description according to another embodiment of the present invention.
도 114는 본 발명의 다른 실시예에 따른, URL 시그널링 디스크립션 (URL signaling description) 의 신택스 (syntax)를 나타낸 도면이다.FIG. 114 is a diagram illustrating syntax of a URL signaling description according to another embodiment of the present invention. FIG.
도 115는 본 발명의 다른 실시예에 따른, SourceFlow 엘레먼트를 나타낸 도면이다.115 is a view showing a SourceFlow element according to another embodiment of the present invention.
도 116은 본 발명의 다른 실시예에 따른, 시그널링 정보를 방송망을 통하여 획득하는 과정을 나타낸 도면이다.116 is a diagram illustrating a process of acquiring signaling information through a broadcasting network according to another embodiment of the present invention.
도 117은 본 발명의 다른 실시예에 따른, 시그널링 정보를 방송망과 브로드밴드망을 통하여 획득하는 과정을 나타낸 도면이다.117 is a diagram illustrating a process of acquiring signaling information through a broadcasting network and a broadband network according to another embodiment of the present invention.
도 118은 본 발명의 다른 실시예에 따른, 시그널링 정보를 브로드밴드망을 통하여 획득하는 과정을 나타낸 도면이다.118 is a diagram illustrating a process of acquiring signaling information through a broadband network according to another embodiment of the present invention.
도 119는 본 발명의 다른 실시예에 따른, ESG (Electronic Service Guide)를 방송망을 통하여 획득하는 과정을 나타낸 도면이다.119 is a diagram illustrating a process of acquiring an electronic service guide (ESG) through a broadcasting network according to another embodiment of the present invention.
도 120은 본 발명의 다른 실시예에 따른, 방송 서비스의 비디오 세그먼트 및 오디오 세그먼트를 방송망을 통하여 획득하는 과정을 나타낸 도면이다.120 is a diagram illustrating a process of acquiring a video segment and an audio segment of a broadcast service through a broadcast network according to another embodiment of the present invention.
도 121은 본 발명의 다른 실시예에 따른, 방송 서비스의 비디오 세그먼트는 방송망을 통하여 획득하고, 방송 서비스의 오디오 세그먼트는 브로드밴드망을 통하여 획득하는 과정을 나타낸 도면이다.121 is a diagram illustrating a process of acquiring a video segment of a broadcast service through a broadcast network and acquiring an audio segment of the broadcast service through a broadband network according to another embodiment of the present invention.
도 122는 본 발명의 다른 실시예에 따른, FIC의 페이로드의 신택스 (syntax)를 나타낸 도면이다.FIG. 122 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention. FIG.
도 123은 본 발명의 다른 실시예에 따른, FIC의 페이로드의 신택스 (syntax)를 나타낸 도면이다.123 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention.
도 124는 본 발명의 일 실시예에 따른, transport_parameter_descriptor 를 나타낸 도면이다.124 is a diagram showing a transport_parameter_descriptor according to an embodiment of the present invention.
도 125는 본 발명의 다른 실시예에 따른, 수신기에서 방송 서비스를 획득하는 과정에서의 시그널링 구조를 나타낸 도면이다.125 is a diagram illustrating a signaling structure in the process of acquiring a broadcast service in a receiver according to another embodiment of the present invention.
도 126은 본 발명의 일 실시예에 따른, 방송 신호 송신 처리 과정을 나타낸 순서도 이다.126 is a flowchart illustrating a broadcast signal transmission process according to an embodiment of the present invention.
도 127은 본 발명의 일 실시예에 따른, 방송 신호 처리 장치를 나타낸 도면이다.127 is a diagram illustrating a broadcast signal processing apparatus according to an embodiment of the present invention.
이하 첨부 도면들 및 첨부 도면들에 기재된 내용들을 참조하여 본 발명의 실시예를 상세하게 설명하지만, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings and the contents described in the accompanying drawings, but the present invention is not limited or limited to the embodiments.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 이는 당분야에 종사하는 기술자의 의도 또는 관례 또는 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 그 의미를 기재할 것이다. 따라서 본 명세서에서 사용되는 용어는, 단순한 용어의 명칭이 아닌 그 용어가 가지는 실질적인 의미와 본 명세서의 전반에 걸친 내용을 토대로 해석되어야 함을 밝혀두고자 한다.The terminology used herein is a general term that is widely used as possible while considering functions in the present invention, but may vary according to the intention or custom of a person skilled in the art or the emergence of a new technology. In addition, in certain cases, there is a term arbitrarily selected by the applicant, and in this case, the meaning will be described in the corresponding description of the invention. Therefore, it is to be understood that the terminology used herein is to be interpreted based on the actual meaning of the term and the contents throughout the specification, rather than simply on the name of the term.
본 명세서에서 ‘시그널링 (signaling)’ 이라 함은 방송 시스템, 인터넷 방송 시스템 및/또는 방송/인터넷 융합 시스템에서 제공되는 서비스 정보 (Service Information; SI)를 전송/수신하는 것을 나타낸다. 서비스 정보는 현재 존재하는 각 방송 시스템에서 제공되는 방송 서비스 정보 (예를 들면, ATSC-SI 및/또는 DVB-SI)를 포함한다. In the present specification, the term “signaling” refers to transmitting / receiving service information (SI) provided by a broadcasting system, an internet broadcasting system, and / or a broadcasting / internet convergence system. The service information includes broadcast service information (eg, ATSC-SI and / or DVB-SI) provided in each broadcast system that currently exists.
본 명세서에서 ‘방송 신호’ 라 함은, 지상파 방송, 케이블 방송, 위성 방송, 및/또는 모바일 방송 이외에도, 인터넷 방송, 브로드밴드 방송, 통신 방송, 데이터 방송 및/또는 VOD (Video On Demand) 등의 양방향 방송에서 제공되는 신호 및/또는 데이터를 포함하는 개념으로 정의한다.In the present specification, the term 'broadcast signal' refers to bidirectional communication such as internet broadcasting, broadband broadcasting, communication broadcasting, data broadcasting, and / or video on demand, in addition to terrestrial broadcasting, cable broadcasting, satellite broadcasting, and / or mobile broadcasting. This is defined as a concept including a signal and / or data provided in a broadcast.
본 명세서에서 ‘PLP’ 라 함은, 물리적 계층에 속하는 데이터를 전송하는 일정한 유닛을 의미한다. 따라서, 본 명세서에서 ‘PLP’로 명명된 내용은, ‘데이터 유닛’ 또는 ‘데이터 파이프 (data pipe)’ 로 바꾸어 명명될 수도 있다.In the present specification, 'PLP' refers to a certain unit for transmitting data belonging to a physical layer. Therefore, the content named "PLP" in this specification may be renamed to "data unit" or "data pipe."
디지털 방송 (DTV) 서비스에서 활용될 유력한 어플리케이션 (application) 중의 하나로, 방송 망과 인터넷 망과의 연동을 통한 하이브리드 방송 서비스를 꼽을 수 있다. 하이브리드 방송 서비스는 지상파 방송망을 통해서 전송되는 방송 A/V (Audio/Video) 컨텐츠와 연관된 인핸스먼트 데이터 (enhancement data) 혹은 방송 A/V 컨텐츠의 일부를 인터넷 망을 통하여 실시간으로 전송함으로써, 사용자로 하여금 다양한 컨텐츠를 경험할 수 있도록 한다.One of the potential applications to be used in digital broadcasting (DTV) service is a hybrid broadcasting service through interworking with a broadcasting network and an internet network. The hybrid broadcasting service allows a user to transmit enhancement data related to broadcasting A / V (Audio / Video) content or a portion of broadcasting A / V content transmitted through a terrestrial broadcasting network in real time through an internet network. Lets you experience various contents.
본 발명은 차세대 방송 서비스에 대한 방송 신호 송신 및 수신 장치 및 방법을 제공한다. 본 발명의 일 실시예에 따른 차세대 방송 서비스는 지상파 방송 서비스, 모바일 방송 서비스, UHDTV 서비스 등을 포함한다. 본 발명은 일 실시예에 따라 비-MIMO (non-Multiple Input Multiple Output) 또는 MIMO 방식을 통해 차세대 방송 서비스에 대한 방송 신호를 처리할 수 있다. 본 발명의 일 실시예에 따른 비-MIMO 방식은 MISO (Multiple Input Single Output) 방식, SISO (Single Input Single Output) 방식 등을 포함할 수 있다.The present invention provides an apparatus and method for transmitting and receiving broadcast signals for next generation broadcast services. The next generation broadcast service according to an embodiment of the present invention includes a terrestrial broadcast service, a mobile broadcast service, a UHDTV service, and the like. According to an embodiment of the present invention, a broadcast signal for a next generation broadcast service may be processed through a non-multiple input multiple output (MIMO) or MIMO scheme. The non-MIMO scheme according to an embodiment of the present invention may include a multiple input single output (MISO) scheme, a single input single output (SISO) scheme, and the like.
이하에서는 설명의 편의를 위해 MISO 또는 MIMO 방식은 두 개의 안테나를 사용하지만, 본 발명은 두 개 이상의 안테나를 사용하는 시스템에 적용될 수 있다. 본 발명은 특정 용도에 요구되는 성능을 달성하면서 수신기 복잡도를 최소화하기 위해 최적화된 세 개의 피지컬 프로파일(PHY profile) (베이스(base), 핸드헬드(handheld), 어드벤스(advanced) 프로파일)을 정의할 수 있다. 피지컬 프로파일은 해당하는 수신기가 구현해야 하는 모든 구조의 서브셋이다.Hereinafter, for convenience of description, the MISO or MIMO scheme uses two antennas, but the present invention can be applied to a system using two or more antennas. The present invention can define three physical profiles (base, handheld, advanced) that are optimized to minimize receiver complexity while achieving the performance required for a particular application. have. The physical profile is a subset of all the structures that the corresponding receiver must implement.
세 개의 피지컬 프로파일은 대부분의 기능 블록을 공유하지만, 특정 블록 및/또는 파라미터에서는 약간 다르다. 추후에 추가로 피지컬 프로파일이 정의될 수 있다. 시스템 발전을 위해, 퓨처 프로파일은 FEF (future extension frame)을 통해 단일 RF (radio frequency) 채널에 존재하는 프로파일과 멀티플렉싱 될 수도 있다. 각 피지컬 프로파일에 대한 자세한 내용은 후술한다.The three physical profiles share most of the functional blocks, but differ slightly in certain blocks and / or parameters. Further physical profiles can be defined later. For system development, a future profile may be multiplexed with a profile present in a single radio frequency (RF) channel through a future extension frame (FEF). Details of each physical profile will be described later.
1. 베이스 프로파일1. Base Profile
베이스 프로파일은 주로 루프 톱(roof-top) 안테나와 연결되는 고정된 수신 장치의 주된 용도를 나타낸다. 베이스 프로파일은 어떤 장소로 이동될 수 있지만 비교적 정지된 수신 범주에 속하는 휴대용 장치도 포함할 수 있다. 베이스 프로파일의 용도는 약간의 개선된 실행에 의해 핸드헬드 장치 또는 차량용으로 확장될 수 있지만, 이러한 사용 용도는 베이스 프로파일 수신기 동작에서는 기대되지 않는다.The base profile mainly indicates the main use of a fixed receiving device in connection with a roof-top antenna. The base profile can be moved to any place but can also include portable devices that fall into a relatively stationary reception category. The use of the base profile can be extended for handheld devices or vehicles with some improved implementation, but such use is not expected in base profile receiver operation.
수신의 타겟 신호 대 잡음비 범위는 대략 10 내지 20 dB인데, 이는 기존 방송 시스템(예를 들면, ATSC A/53)의 15 dB 신호 대 잡음비 수신 능력을 포함한다. 수신기 복잡도 및 소비 전력은 핸드헬드 프로파일을 사용할 배터리로 구동되는 핸드헬드 장치에서만큼 중요하지 않다. 베이스 프로파일에 대한 중요 시스템 파라미터가 아래 표 1에 기재되어 있다.The target signal-to-noise ratio range of reception is approximately 10-20 dB, which includes the 15 dB signal-to-noise ratio receiving capability of existing broadcast systems (eg, ATSC A / 53). Receiver complexity and power consumption are not as important as in battery powered handheld devices that will use the handheld profile. Key system parameters for the base profile are listed in Table 1 below.
표 1
Figure PCTKR2015014400-appb-T000001
Table 1
Figure PCTKR2015014400-appb-T000001
2. 핸드헬드 프로파일2. Handheld Profile
핸드헬드 프로파일은 배터리 전원으로 구동되는 핸드헬드 및 차량용 장치에서의 사용을 위해 설계된다. 해당 장치는 보행자 또는 차량 속도로 이동할 수 있다. 수신기 복잡도뿐만 아니라 소비 전력은 핸드헬드 프로파일의 장치의 구현을 위해 매우 중요하다. 핸드헬드 프로파일의 타겟 신호 대 잡음비 범위는 대략 0 내지 10 dB이지만, 더 낮은 실내 수신을 위해 의도된 경우 0 dB 아래에 달하도록 설정될 수 있다.The handheld profile is designed for use in battery powered handheld and in-vehicle devices. The device may move at pedestrian or vehicle speed. The power consumption as well as the receiver complexity is very important for the implementation of the device of the handheld profile. The target signal-to-noise ratio range of the handheld profile is approximately 0-10 dB, but can be set to reach below 0 dB if intended for lower indoor reception.
저 신호 대 잡음비 능력뿐만 아니라, 수신기 이동성에 의해 나타난 도플러 효과에 대한 복원력은 핸드헬드 프로파일의 가장 중요한 성능 속성이다. 핸드헬드 프로파일에 대한 중요 시스템 파라미터가 아래 표 2에 기재되어 있다.In addition to the low signal-to-noise ratio capability, the resilience to the Doppler effect exhibited by receiver mobility is the most important performance attribute of the handheld profile. Key system parameters for the handheld profile are listed in Table 2 below.
표 2
Figure PCTKR2015014400-appb-T000002
TABLE 2
Figure PCTKR2015014400-appb-T000002
3. 어드벤스 프로파일3. Advanced Profile
어드벤스 프로파일은 더 큰 실행 복잡도에 대한 대가로 더 높은 채널 능력을 제공한다. 해당 프로파일은 MIMO 송신 및 수신을 사용할 것을 요구하며, UHDTV 서비스는 타겟 용도이고, 이를 위해 해당 프로파일이 특별히 설계된다. 향상된 능력은 주어진 대역폭에서 서비스 수의 증가, 예를 들면, 다수의 SDTV 또는 HDTV 서비스를 허용하는 데도 사용될 수 있다.The advance profile provides higher channel capability in exchange for greater execution complexity. The profile requires the use of MIMO transmission and reception, and the UHDTV service is a target use, for which the profile is specifically designed. The enhanced capability may also be used to allow for an increase in the number of services at a given bandwidth, for example multiple SDTV or HDTV services.
어드벤스 프로파일의 타겟 신호 대 잡음비 범위는 대략 20 내지 30 dB이다. MIMO 전송은 초기에는 기존의 타원 분극 전송 장비를 사용하고, 추후에 전출력 교차 분극 전송으로 확장될 수 있다. 어드벤스 프로파일에 대한 중요 시스템 파라미터가 아래 표 3에 기재되어 있다.The target signal to noise ratio range of the advanced profile is approximately 20 to 30 dB. MIMO transmissions initially use existing elliptic polarization transmission equipment and can later be extended to full power cross polarization transmissions. Key system parameters for the advance profile are listed in Table 3 below.
표 3
Figure PCTKR2015014400-appb-T000003
TABLE 3
Figure PCTKR2015014400-appb-T000003
이 경우, 베이스 프로파일은 지상파 방송 서비스 및 모바일 방송 서비스 모두에 대한 프로파일로 사용될 수 있다. 즉, 베이스 프로파일은 모바일 프로파일을 포함하는 프로파일의 개념을 정의하기 위해 사용될 수 있다. 또한, 어드벤스 프로파일은 MIMO을 갖는 베이스 프로파일에 대한 어드벤스 프로파일 및 MIMO을 갖는 핸드헬드 프로파일에 대한 어드벤스 프로파일로 구분될 수 있다. 그리고 해당 세 프로파일은 설계자의 의도에 따라 변경될 수 있다.In this case, the base profile may be used as a profile for both terrestrial broadcast service and mobile broadcast service. That is, the base profile can be used to define the concept of a profile that includes a mobile profile. Also, the advanced profile can be divided into an advanced profile for the base profile with MIMO and an advanced profile for the handheld profile with MIMO. The three profiles can be changed according to the designer's intention.
다음의 용어 및 정의는 본 발명에 적용될 수 있다. 다음의 용어 및 정의는 설계에 따라 변경될 수 있다.The following terms and definitions may apply to the present invention. The following terms and definitions may change depending on the design.
보조 스트림: 퓨처 익스텐션(future extension, 추후 확장) 또는 방송사나 네트워크 운영자에 의해 요구됨에 따라 사용될 수 있는 아직 정의되지 않은 변조 및 코딩의 데이터를 전달하는 셀의 시퀀스Auxiliary stream: A sequence of cells carrying data of an undefined modulation and coding that can be used as a future extension or as required by a broadcaster or network operator.
베이스 데이터 파이프(base data pipe): 서비스 시그널링 데이터를 전달하는 데이터 파이프Base data pipe: a data pipe that carries service signaling data
베이스밴드 프레임 (또는 BBFRAME): 하나의 FEC 인코딩 과정 (BCH 및 LDPC 인코딩)에 대한 입력을 형성하는 Kbch 비트의 집합Baseband Frame (or BBFRAME): A set of Kbch bits that form the input for one FEC encoding process (BCH and LDPC encoding).
셀(cell): OFDM 전송의 하나의 캐리어에 의해 전달되는 변조값Cell: modulation value carried by one carrier of an OFDM transmission
코딩 블록(coded block): PLS1 데이터의 LDPC 인코딩된 블록 또는 PLS2 데이터의 LDPC 인코딩된 블록들 중 하나Coded block: one of an LDPC encoded block of PLS1 data or an LDPC encoded block of PLS2 data
데이터 파이프(data pipe): 하나 또는 다수의 서비스 또는 서비스 컴포넌트를 전달할 수 있는 서비스 데이터 또는 관련된 메타데이터를 전달하는 물리 계층(physical layer)에서의 로지컬 채널Data pipe: a logical channel in the physical layer that carries service data or related metadata that can carry one or more services or service components
데이터 파이프 유닛(DPU, data pipe unit): 데이터 셀을 프레임에서의 데이터 파이프에 할당할 수 있는 기본 유닛Data pipe unit (DPU): A basic unit that can allocate data cells to data pipes in a frame
데이터 심볼(data symbol): 프리앰블 심볼이 아닌 프레임에서의 OFDM 심볼 (프레임 시그널링 심볼 및 프레임 엣지(edge) 심볼은 데이터 심볼에 포함된다.)Data symbol: OFDM symbol in a frame that is not a preamble symbol (frame signaling symbols and frame edge symbols are included in the data symbols)
DP_ID: 해당 8비트 필드는 SYSTEM_ID에 의해 식별된 시스템 내에서 데이터 파이프를 유일하게 식별한다.DP_ID: This 8-bit field uniquely identifies a data pipe within the system identified by SYSTEM_ID.
더미 셀(dummy cell): PLS (physical layer signalling) 시그널링, 데이터 파이프, 또는 보조 스트림을 위해 사용되지 않은 남아 있는 용량을 채우는 데 사용되는 의사 랜덤값을 전달하는 셀Dummy cell: A cell that carries a pseudo-random value used to fill the remaining unused capacity for physical layer signaling (PLS) signaling, data pipes, or auxiliary streams.
FAC (emergency alert channel, 비상 경보 채널): EAS 정보 데이터를 전달하는 프레임 중 일부Emergency alert channel (FAC): The part of a frame that carries EAS information data.
프레임(frame): 프리앰블로 시작해서 프레임 엣지 심볼로 종료되는 물리 계층(physical layer) 타임 슬롯Frame: A physical layer time slot starting with a preamble and ending with a frame edge symbol.
프레임 리피티션 유닛(frame repetition unit, 프레임 반복 단위): 슈퍼 프레임(super-frame)에서 8회 반복되는 FEF를 포함하는 동일한 또는 다른 피지컬 프로파일에 속하는 프레임의 집합Frame repetition unit: A set of frames belonging to the same or different physical profile that contains an FEF that is repeated eight times in a super-frame.
FIC (fast information channel, 고속 정보 채널): 서비스와 해당 베이스 데이터 파이프 사이에서의 매핑 정보를 전달하는 프레임에서 로지컬 채널Fast information channel (FIC): A logical channel in a frame that carries mapping information between a service and its base data pipe.
FECBLOCK: 데이터 파이프 데이터의 LDPC 인코딩된 비트의 집합FECBLOCK: set of LDPC encoded bits of data pipe data
FFT 사이즈: 기본 주기 T의 사이클로 표현된 액티브 심볼 주기 Ts와 동일한 특정 모드에 사용되는 명목상의 FFT 사이즈FFT size: The nominal FFT size used for a particular mode equal to the active symbol period Ts expressed in cycles of the fundamental period T.
프레임 시그널링 심볼(frame signaling symbol): PLS 데이터의 일부를 전달하는, FFT 사이즈, 가드 인터벌(guard interval), 및 스캐터(scattered) 파일럿 패턴의 특정 조합에서 프레임의 시작에서 사용되는 더 높은 파일럿 밀도를 갖는 OFDM 심볼Frame signaling symbol: The higher pilot density used at the start of a frame in a particular combination of FFT size, guard interval, and scattered pilot pattern, which carries a portion of the PLS data. Having OFDM symbol
프레임 엣지 심볼(frame edge symbol): FFT 사이즈, 가드 인터벌, 및 스캐터 파일럿 패턴의 특정 조합에서 프레임의 끝에서 사용되는 더 높은 파일럿 밀도를 갖는 OFDM 심볼Frame edge symbol: An OFDM symbol with a higher pilot density used at the end of the frame in a particular combination of FFT size, guard interval, and scatter pilot pattern.
프레임 그룹(frame-group): 슈퍼 프레임에서 동일한 피지컬 프로파일 타입을 갖는 모든 프레임의 집합Frame-group: set of all frames with the same physical profile type in a superframe
퓨쳐 익스텐션 프레임(future extention frame, 추후 확장 프레임): 프리앰블로 시작하는, 추후 확장에 사용될 수 있는 슈퍼 프레임 내에서 물리 계층(physical layer) 타임 슬롯Future extention frame: A physical layer time slot within a super frame that can be used for future expansion, starting with a preamble.
퓨처캐스트(futurecast) UTB 시스템: 입력이 하나 이상의 MPEG2-TS 또는 IP (Internet protocol) 또는 일반 스트림이고 출력이 RF 시그널인 제안된 물리 계층(physical layer) 방송 시스템Futurecast UTB system: A proposed physical layer broadcast system whose input is one or more MPEG2-TS or IP (Internet protocol) or generic streams and the output is an RF signal.
인풋 스트림(input stream, 입력 스트림): 시스템에 의해 최종 사용자에게 전달되는 서비스의 조화(ensemble)를 위한 데이터의 스트림Input stream: A stream of data for the coordination of services delivered to the end user by the system.
노멀(normal) 데이터 심볼: 프레임 시그널링 심볼 및 프레임 엣지 심볼을 제외한 데이터 심볼Normal data symbols: data symbols except frame signaling symbols and frame edge symbols
피지컬 프로파일(PHY profile): 해당하는 수신기가 구현해야 하는 모든 구조의 서브셋PHY profile: A subset of all structures that the corresponding receiver must implement
PLS: PLS1 및 PLS2로 구성된 물리 계층(physical layer) 시그널링 데이터PLS: physical layer signaling data consisting of PLS1 and PLS2
PLS1: PLS2를 디코딩하는 데 필요한 파라미터뿐만 아니라 시스템에 관한 기본 정보를 전달하는 고정된 사이즈, 코딩, 변조를 갖는 FSS (frame signalling symbol)로 전달되는 PLS 데이터의 첫 번째 집합PLS1: The first set of PLS data carried in a frame signaling symbol (FSS) with fixed size, coding, and modulation that conveys basic information about the system as well as the parameters needed to decode PLS2.
NOTE: PLS1 데이터는 프레임 그룹의 듀레이션(duration) 동안 일정하다.NOTE: PLS1 data is constant during the duration of the frame group.
PLS2: 데이터 파이프 및 시스템에 관한 더욱 상세한 PLS 데이터를 전달하는 FSS로 전송되는 PLS 데이터의 두 번째 집합PLS2: The second set of PLS data sent to the FSS carrying more detailed PLS data about data pipes and systems.
PLS2 다이나믹(dynamic, 동적) 데이터: 프레임마다 다이나믹(dynamic, 동적)으로 변화하는 PLS2 데이터PLS2 dynamic data: PLS2 data that changes dynamically from frame to frame
PLS2 스태틱(static, 정적) 데이터: 프레임 그룹의 듀레이션 동안 스태틱(static, 정적)인 PLS2 데이터PLS2 static data: PLS2 data that is static during the duration of a frame group
프리앰블 시그널링 데이터(preamble signaling data): 프리앰블 심볼에 의해 전달되고 시스템의 기본 모드를 확인하는 데 사용되는 시그널링 데이터Preamble signaling data: signaling data carried by the preamble symbol and used to identify the basic mode of the system
프리앰블 심볼(preamble symbol): 기본 PLS 데이터를 전달하고 프레임의 시작에 위치하는 고정된 길이의 파일럿 심볼Preamble symbol: a fixed length pilot symbol carrying basic PLS data and positioned at the beginning of a frame
NOTE: 프리앰블 심볼은 시스템 신호, 그 타이밍, 주파수 오프셋, 및 FFT 사이즈를 검출하기 위해 고속 초기 밴드 스캔에 주로 사용된다.NOTE: Preamble symbols are primarily used for fast initial band scans to detect system signals, their timings, frequency offsets, and FFT sizes.
추후 사용(future use)을 위해 리저브드(reserved): 현재 문서에서 정의되지 않지만 추후에 정의될 수 있음Reserved for future use: not defined in the current document, but may be defined later
슈퍼 프레임(superframe): 8개의 프레임 반복 단위의 집합Superframe: set of eight frame repeat units
타임 인터리빙 블록(time interleaving block, TI block): 타임 인터리버 메모리의 하나의 용도에 해당하는, 타임 인터리빙이 실행되는 셀의 집합Time interleaving block (TI block): A set of cells in which time interleaving is performed, corresponding to one use of time interleaver memory.
타임 인터리빙 그룹(time interleaving group, TI group): 정수, 다이나믹(dynamic, 동적)으로 변화하는 XFECBLOCK의 수로 이루어진, 특정 데이터 파이프에 대한 다이나믹(dynamic, 동적) 용량 할당이 실행되는 단위Time interleaving group (TI group): A unit in which dynamic capacity allocation is performed for a particular data pipe, consisting of an integer, the number of XFECBLOCKs that change dynamically.
NOTE: 타임 인터리빙 그룹은 하나의 프레임에 직접 매핑되거나 다수의 프레임에 매핑될 수 있다. 타임 인터리빙 그룹은 하나 이상의 타임 인터리빙 블록을 포함할 수 있다.NOTE: A time interleaving group can be directly mapped to one frame or mapped to multiple frames. The time interleaving group may include one or more time interleaving blocks.
타입 1 데이터 파이프(Type 1 DP): 모든 데이터 파이프가 프레임에 TDM (time division multiplexing) 방식으로 매핑되는 프레임의 데이터 파이프 Type 1 DP (Type 1 DP): A data pipe in a frame where all data pipes are mapped to frames in a time division multiplexing (TDM) manner
타입 2 데이터 파이프(Type 2 DP): 모든 데이터 파이프가 프레임에 FDM 방식으로 매핑되는 프레임의 데이터 파이프 Type 2 DPs: Types of data pipes in a frame where all data pipes are mapped to frames in an FDM fashion.
XFECBLOCK: 하나의 LDPC FECBLOCK의 모든 비트를 전달하는 Ncells 셀들의 집합XFECBLOCK: set of N cells cells carrying all the bits of one LDPC FECBLOCK
도 1은 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치의 구조를 나타낸다.1 shows a structure of a broadcast signal transmission apparatus for a next generation broadcast service according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치는 인풋 포맷 블록 (Input Format block) (1000), BICM (bit interleaved coding & modulation) 블록(1010), 프레임 빌딩 블록 (Frame building block) (1020), OFDM (orthogonal frequency division multiplexing) 제너레이션 블록 (OFDM generation block)(1030), 및 시그널링 생성 블록(1040)을 포함할 수 있다. 방송 신호 송신 장치의 각 블록의 동작에 대해 설명한다.A broadcast signal transmission apparatus for a next generation broadcast service according to an embodiment of the present invention includes an input format block 1000, a bit interleaved coding & modulation (BICM) block 1010, and a frame building block 1020, orthogonal frequency division multiplexing (OFDM) generation block (OFDM generation block) 1030, and signaling generation block 1040. The operation of each block of the broadcast signal transmission apparatus will be described.
IP 스트림/패킷 및 MPEG2-TS은 주요 입력 포맷이고, 다른 스트림 타입은 일반 스트림으로 다루어진다. 이들 데이터 입력에 추가로, 관리 정보가 입력되어 각 입력 스트림에 대한 해당 대역폭의 스케줄링 및 할당을 제어한다. 하나 또는 다수의 TS 스트림, IP 스트림 및/또는 일반 스트림 입력이 동시에 허용된다.IP streams / packets and MPEG2-TS are the main input formats and other stream types are treated as general streams. In addition to these data inputs, management information is input to control the scheduling and allocation of the corresponding bandwidth for each input stream. One or multiple TS streams, IP streams and / or general stream inputs are allowed at the same time.
인풋 포맷 블록(1000)은 각각의 입력 스트림을 독립적인 코딩 및 변조가 적용되는 하나 또는 다수의 데이터 파이프로 디멀티플렉싱 할 수 있다. 데이터 파이프는 견고성(robustness) 제어를 위한 기본 단위이며, 이는 QoS (Quality of Service)에 영향을 미친다. 하나 또는 다수의 서비스 또는 서비스 컴포넌트가 하나의 데이터 파이프에 의해 전달될 수 있다. 인풋 포맷 블록(1000)의 자세한 동작은 후술한다.The input format block 1000 can demultiplex each input stream into one or multiple data pipes to which independent coding and modulation is applied. The data pipe is the basic unit for controlling robustness, which affects the quality of service (QoS). One or multiple services or service components may be delivered by one data pipe. Detailed operations of the input format block 1000 will be described later.
데이터 파이프는 하나 또는 다수의 서비스 또는 서비스 컴포넌트를 전달할 수 있는 서비스 데이터 또는 관련 메타데이터를 전달하는 물리 계층(physical layer)에서의 로지컬 채널이다.A data pipe is a logical channel at the physical layer that carries service data or related metadata that can carry one or multiple services or service components.
또한, 데이터 파이프 유닛은 하나의 프레임에서 데이터 셀을 데이터 파이프에 할당하기 위한 기본 유닛이다.In addition, the data pipe unit is a basic unit for allocating data cells to data pipes in one frame.
인풋 포맷 블록(1000)에서, 패리티(parity) 데이터는 에러 정정을 위해 추가되고, 인코딩된 비트 스트림은 복소수값 컨스텔레이션 심볼에 매핑된다. 해당 심볼은 해당 데이터 파이프에 사용되는 특정 인터리빙 깊이에 걸쳐 인터리빙 된다. 어드벤스 프로파일에 있어서, BICM 블록(1010)에서 MIMO 인코딩이 실행되고 추가 데이터 경로가 MIMO 전송을 위해 출력에 추가된다. BICM 블록(1010)의 자세한 동작은 후술한다.In input format block 1000, parity data is added for error correction and the encoded bit stream is mapped to a complex value constellation symbol. The symbols are interleaved over the specific interleaving depth used for that data pipe. For the advanced profile, MIMO encoding is performed at BICM block 1010 and additional data paths are added to the output for MIMO transmission. Detailed operations of the BICM block 1010 will be described later.
프레임 빌딩 블록(1020)은 하나의 프레임 내에서 입력 데이터 파이프의 데이터 셀을 OFDM 실볼로 매핑할 수 있다. 매핑 후, 주파수 영역 다이버시티를 위해, 특히 주파수 선택적 페이딩 채널을 방지하기 위해 주파수 인터리빙이 이용된다. 프레임 빌딩 블록(1020)의 자세한 동작은 후술한다.The frame building block 1020 may map data cells of an input data pipe to OFDM solid balls within one frame. After mapping, frequency interleaving is used for frequency domain diversity, in particular to prevent frequency selective fading channels. Detailed operations of the frame building block 1020 will be described later.
프리앰블을 각 프레임의 시작에 삽입한 후, OFDM 제너레이션 블록(1030)은 사이클릭 프리픽스(cyclic prefix)을 가드 인터벌로 갖는 기존의 OFDM 변조를 적용할 수 있다. 안테나 스페이스 다이버시티를 위해, 분산된(distributed) MISO 방식이 송신기에 걸쳐 적용된다. 또한, PAPR (peak-to-average power ratio) 방식이 시간 영역에서 실행된다. 유연한 네트워크 방식을 위해, 해당 제안은 다양한 FFT 사이즈, 가드 인터벌 길이, 해당 파일럿 패턴의 집합을 제공한다. OFDM 제너레이션 블록(1030)의 자세한 동작은 후술한다.After inserting the preamble at the beginning of each frame, the OFDM generation block 1030 can apply existing OFDM modulation having a cyclic prefix as the guard interval. For antenna space diversity, a distributed MISO scheme is applied across the transmitter. In addition, a peak-to-average power ratio (PAPR) scheme is implemented in the time domain. For a flexible network approach, the proposal provides a variety of FFT sizes, guard interval lengths, and sets of corresponding pilot patterns. Detailed operations of the OFDM generation block 1030 will be described later.
시그널링 생성 블록(1040)은 각 기능 블록의 동작에 사용되는 물리 계층(physical layer) 시그널링 정보를 생성할 수 있다. 해당 시그널링 정보는 또한 관심 있는 서비스가 수신기 측에서 적절히 복구되도록 전송된다. 시그널링 생성 블록(1040)의 자세한 동작은 후술한다.The signaling generation block 1040 may generate physical layer signaling information used for the operation of each functional block. The signaling information is also transmitted such that the service of interest is properly recovered at the receiver side. Detailed operations of the signaling generation block 1040 will be described later.
도 2, 3, 4는 본 발명의 실시예에 따른 인풋 포맷 블록(1000)을 나타낸다. 각 도면에 대해 설명한다.2, 3, and 4 illustrate an input format block 1000 according to an embodiment of the present invention. Each drawing is demonstrated.
도 2는 본 발명의 일 실시예에 따른 인풋 포맷 블록을 나타낸다. 도 2는 입력 신호가 단일 입력 스트림(single input stream)일 때의 인풋 포맷 블록을 나타낸다.2 illustrates an input format block according to an embodiment of the present invention. 2 shows an input format block when the input signal is a single input stream.
도 2에 도시된 인풋 포맷 블록은 도 1을 참조하여 설명한 인풋 포맷 블록(1000)의 일 실시예에 해당한다.The input format block illustrated in FIG. 2 corresponds to an embodiment of the input format block 1000 described with reference to FIG. 1.
물리 계층(physical layer)으로의 입력은 하나 또는 다수의 데이터 스트림으로 구성될 수 있다. 각각의 데이터 스트림은 하나의 데이터 파이프에 의해 전달된다. 모드 어댑테이션(mode adaptaion, 모드 적응) 모듈은 입력되는 데이터 스트림을 BBF (baseband frame)의 데이터 필드로 슬라이스한다. 해당 시스템은 세 가지 종류의 입력 데이터 스트림, 즉 MPEG2-TS, IP, GS (generic stream)을 지원한다. MPEG2-TS는 첫 번째 바이트가 동기 바이트(0x47)인 고정된 길이(188 바이트)의 패킷을 특징으로 한다. IP 스트림은 IP 패킷 헤더 내에서 시그널링 되는 가변 길이 IP 데이터그램 패킷으로 구성된다. 해당 시스템은 IP 스트림에 대해 IPv4와 IPv6을 모두 지원한다. GS는 캡슐화 패킷 헤더 내에서 시그널링되는 가변 길이 패킷 또는 일정 길이 패킷으로 구성될 수 있다.Input to the physical layer may consist of one or multiple data streams. Each data stream is carried by one data pipe. The mode adaptation module slices the input data stream into a data field of a baseband frame (BBF). The system supports three types of input data streams: MPEG2-TS, IP, and GS (generic stream). MPEG2-TS features a fixed length (188 bytes) packet where the first byte is a sync byte (0x47). An IP stream consists of variable length IP datagram packets signaled in IP packet headers. The system supports both IPv4 and IPv6 for IP streams. The GS may consist of variable length packets or constant length packets signaled in the encapsulation packet header.
(a)는 신호 데이터 파이프에 대한 모드 어댑테이션(mode adaptaion, 모드 적응) 블록(2000) 및 스트림 어댑테이션(stream adaptation, 스트림 적응)(2010)을 나타내고, (b)는 PLS 데이터를 생성 및 처리하기 위한 PLS 생성 블록(2020) 및 PLS 스크램블러(2030)를 나타낸다. 각 블록의 동작에 대해 설명한다.(a) shows a mode adaptation block 2000 and a stream adaptation (stream adaptation) 2010 for a signal data pipe, and (b) shows a method for generating and processing PLS data. PLS generation block 2020 and PLS scrambler 2030 are shown. The operation of each block will be described.
입력 스트림 스플리터는 입력된 TS, IP, GS 스트림을 다수의 서비스 또는 서비스 컴포넌트(오디오, 비디오 등) 스트림으로 분할한다. 모드 어댑테이션(mode adaptaion, 모드 적응) 모듈(2010)은 CRC 인코더, BB (baseband) 프레임 슬라이서, 및 BB 프레임 헤더 삽입 블록으로 구성된다.The input stream splitter splits the input TS, IP, GS streams into multiple service or service component (audio, video, etc.) streams. The mode adaptation module 2010 is composed of a CRC encoder, a baseband (BB) frame slicer, and a BB frame header insertion block.
CRC 인코더는 유저 패킷 (user packet, UP)레벨에서의 에러 검출을 위한 세 종류의 CRC 인코딩, 즉 CRC-8, CRC-16, CRC-32를 제공한다. 산출된 CRC 바이트는 UP 뒤에 첨부된다. CRC-8은 TS 스트림에 사용되고, CRC-32는 IP 스트림에 사용된다. GS 스트림이 CRC 인코딩을 제공하지 않으면, 제안된 CRC 인코딩이 적용되어야 한다.The CRC encoder provides three types of CRC encoding, CRC-8, CRC-16, and CRC-32, for error detection at the user packet (UP) level. The calculated CRC byte is appended after the UP. CRC-8 is used for the TS stream, and CRC-32 is used for the IP stream. If the GS stream does not provide CRC encoding, then the proposed CRC encoding should be applied.
BB 프레임 슬라이서는 입력을 내부 로지컬 비트 포맷에 매핑한다. 첫 번째 수신 비트는 MSB라고 정의한다. BB 프레임 슬라이서는 가용 데이터 필드 용량과 동일한 수의 입력 비트를 할당한다. BBF 페이로드와 동일한 수의 입력 비트를 할당하기 위해, UP 스트림이 BBF의 데이터 필드에 맞게 슬라이스된다.The BB Frame Slicer maps the input to an internal logical bit format. The first receive bit is defined as MSB. The BB frame slicer allocates the same number of input bits as the available data field capacity. In order to allocate the same number of input bits as the BBF payload, the UP stream is sliced to fit the data field of the BBF.
BB 프레임 헤더 삽입 블록은 2바이트의 고정된 길이의 BBF 헤더를 BB 프레임의 앞에 삽입할 수 있다. BBF 헤더는 STUFFI (1비트), SYNCD (13비트), 및 RFU (2비트)로 구성된다. 고정된 2바이트 BBF 헤더뿐만 아니라, BBF는 2바이트 BBF 헤더 끝에 확장 필드(1 또는 3바이트)를 가질 수 있다.The BB frame header insertion block can insert a 2 bytes fixed length BBF header before the BB frame. The BBF header consists of STUFFI (1 bit), SYNCD (13 bit), and RFU (2 bit). In addition to the fixed 2-byte BBF header, the BBF may have an extension field (1 or 3 bytes) at the end of the 2-byte BBF header.
스트림 어댑테이션(stream adaptation, 스트림 적응)(2010)은 스터핑(stuffing) 삽입 블록 및 BB 스크램블러로 구성된다. 스터핑 삽입 블록은 스터핑 필드를 BB 프레임의 페이로드에 삽입할 수 있다. 스트림 어댑테이션(stream adaptation, 스트림 적응)에 대한 입력 데이터가 BB 프레임을 채우기에 충분하면, STUFFI는 0으로 설정되고, BBF는 스터핑 필드를 갖지 않는다. 그렇지 않으면, STUFFI는 1로 설정되고, 스터핑 필드는 BBF 헤더 직후에 삽입된다. 스터핑 필드는 2바이트의 스터핑 필드 헤더 및 가변 사이즈의 스터핑 데이터를 포함한다. Stream adaptation 2010 consists of a stuffing insertion block and a BB scrambler. The stuffing insertion block may insert the stuffing field into the payload of the BB frame. If the input data for the stream adaptation is sufficient to fill the BB frame, STUFFI is set to 0, and the BBF has no stuffing field. Otherwise, STUFFI is set to 1 and the stuffing field is inserted immediately after the BBF header. The stuffing field includes a 2-byte stuffing field header and variable sized stuffing data.
BB 스크램블러는 에너지 분산을 위해 완전한 BBF를 스크램블링한다. 스크램블링 시퀀스는 BBF와 동기화된다. 스크램블링 시퀀스는 피드백 시프트 레지스터에 의해 생성된다.The BB scrambler scrambles the complete BBF for energy dissipation. The scrambling sequence is synchronized with the BBF. The scrambling sequence is generated by the feedback shift register.
PLS 생성 블록(2020)은 PLS 데이터를 생성할 수 있다. PLS는 수신기에서 피지컬 레이어(physical layer) 데이터 파이프에 접속할 수 있는 수단을 제공한다. PLS 데이터는 PLS1 데이터 및 PLS2 데이터로 구성된다.The PLS generation block 2020 may generate PLS data. PLS provides a means by which a receiver can connect to a physical layer data pipe. PLS data consists of PLS1 data and PLS2 data.
PLS1 데이터는 PLS2 데이터를 디코딩하는 데 필요한 파라미터뿐만 아니라 시스템에 관한 기본 정보를 전달하는 고정된 사이즈, 코딩, 변조를 갖는 프레임에서 FSS로 전달되는 PLS 데이터의 첫 번째 집합이다. PLS1 데이터는 PLS2 데이터의 수신 및 디코딩을 가능하게 하는 데 요구되는 파라미터를 포함하는 기본 송신 파라미터를 제공한다. 또한, PLS1 데이터는 프레임 그룹의 듀레이션 동안 일정하다.PLS1 data is the first set of PLS data delivered to the FSS in frames with fixed size, coding, and modulation that convey basic information about the system as well as the parameters needed to decode the PLS2 data. PLS1 data provides basic transmission parameters including the parameters required to enable reception and decoding of PLS2 data. In addition, the PLS1 data is constant during the duration of the frame group.
PLS2 데이터는 데이터 파이프 및 시스템에 관한 더욱 상세한 PLS 데이터를 전달하는 FSS로 전송되는 PLS 데이터의 두 번째 집합이다. PLS2는 수신기가 원하는 데이터 파이프를 디코딩하는 데 충분한 정보를 제공하는 파라미터를 포함한다. PLS2 시그널링은 PLS2 스태틱(static, 정적) 데이터(PLS2-STAT 데이터) 및 PLS2 다이나믹(dynamic, 동적) 데이터(PLS2-DYN 데이터)의 두 종류의 파라미터로 더 구성된다. PLS2 스태틱(static, 정적) 데이터는 프레임 그룹의 듀레이션 동안 스태틱(static, 정적)인 PLS2 데이터이고, PLS2 다이나믹(dynamic, 동적) 데이터는 프레임마다 다이나믹(dynamic, 동적)으로 변화하는 PLS2 데이터이다.PLS2 data is the second set of PLS data sent to the FSS that carries more detailed PLS data about the data pipes and systems. PLS2 contains parameters that provide enough information for the receiver to decode the desired data pipe. PLS2 signaling further consists of two types of parameters: PLS2 static data (PLS2-STAT data) and PLS2 dynamic data (PLS2-DYN data). PLS2 static data is PLS2 data that is static during the duration of a frame group, and PLS2 dynamic data is PLS2 data that changes dynamically from frame to frame.
PLS 데이터에 대한 자세한 내용은 후술한다.Details of the PLS data will be described later.
PLS 스크램블러(2030)는 에너지 분산을 위해 생성된 PLS 데이터를 스크램블링 할 수 있다.The PLS scrambler 2030 may scramble PLS data generated for energy distribution.
전술한 블록은 생략될 수도 있고 유사 또는 동일 기능을 갖는 블록에 의해 대체될 수도 있다.The aforementioned blocks may be omitted or may be replaced by blocks having similar or identical functions.
도 3은 본 발명의 다른 일 실시예에 따른 인풋 포맷 블록을 나타낸다.3 illustrates an input format block according to another embodiment of the present invention.
도 3에 도시된 인풋 포맷 블록은 도 1을 참조하여 설명한 인풋 포맷 블록(1000)의 일 실시예에 해당한다.The input format block illustrated in FIG. 3 corresponds to an embodiment of the input format block 1000 described with reference to FIG. 1.
도 3은 입력 신호가 멀티 인풋 스트림(multi input stream, 다수의 입력 스트림)에 해당하는 경우 인풋 포맷 블록의 모드 어댑테이션(mode adaptaion, 모드 적응) 블록을 나타낸다.FIG. 3 illustrates a mode adaptation block of an input format block when the input signal corresponds to a multi input stream.
멀티 인풋 스트림(multi input stream, 다수의 입력 스트림)을 처리하기 위한 인풋 포맷 블록의 모드 어댑테이션(mode adaptaion, 모드 적응) 블록은 다수 입력 스트림을 독립적으로 처리할 수 있다.A mode adaptation block of an input format block for processing multi input streams may independently process multiple input streams.
도 3을 참조하면, 멀티 인풋 스트림(multi input stream, 다수의 입력 스트림)을 각각 처리하기 위한 모드 어댑테이션(mode adaptaion, 모드 적응) 블록은 인풋 스트림 스플리터 (input stream splitter) (3000), 인풋 스트림 싱크로나이저 (input stream synchronizer) (3010), 컴펜세이팅 딜레이(compensatin delay, 보상 지연) 블록(3020), 널 패킷 딜리션 블록 (null packet deletion block) (3030), 헤더 컴프레션 블록 (header compression block) (3040), CRC 인코더 (CRC encoder) (3050), BB 프레임 슬라이서(BB frame slicer) (3060), 및 BB 헤더 삽입 블록 (BB header insertion block) (3070)을 포함할 수 있다. 모드 어댑테이션(mode adaptaion, 모드 적응) 블록의 각 블록에 대해 설명한다.Referring to FIG. 3, a mode adaptation block for processing a multi input stream may be an input stream splitter 3000 or an input stream synchro. Input stream synchronizer (3010), compensating delay block (3020), null packet deletion block (3030), header compression block ( 3040, a CRC encoder 3050, a BB frame slicer 3060, and a BB header insertion block 3070. Each block of the mode adaptation block will be described.
CRC 인코더(3050), BB 프레임 슬라이서(3060), 및 BB 헤더 삽입 블록(3070)의 동작은 도 2를 참조하여 설명한 CRC 인코더, BB 프레임 슬라이서, 및 BB 헤더 삽입 블록의 동작에 해당하므로, 그 설명은 생략한다.Operations of the CRC encoder 3050, the BB frame slicer 3060, and the BB header insertion block 3070 correspond to the operations of the CRC encoder, the BB frame slicer, and the BB header insertion block described with reference to FIG. Is omitted.
인풋 스트림 스플리터(3000)는 입력된 TS, IP, GS 스트림을 다수의 서비스 또는 서비스 컴포넌트(오디오, 비디오 등) 스트림으로 분할한다.The input stream splitter 3000 splits the input TS, IP, and GS streams into a plurality of service or service component (audio, video, etc.) streams.
인풋 스트림 싱크로나이저(3010)는 ISSY라 불릴 수 있다. ISSY는 어떠한 입력 데이터 포맷에 대해서도 CBR (constant bit rate) 및 일정한 종단간 전송(end-to-end transmission) 지연을 보장하는 적합한 수단을 제공할 수 있다. ISSY는 TS를 전달하는 다수의 데이터 파이프의 경우에 항상 이용되고, GS 스트림을 전달하는 다수의 데이터 파이프에 선택적으로 이용된다.The input stream synchronizer 3010 may be called ISSY. ISSY can provide suitable means to ensure constant bit rate (CBR) and constant end-to-end transmission delay for any input data format. ISSY is always used in the case of multiple data pipes carrying TS, and optionally in multiple data pipes carrying GS streams.
컴펜세이팅 딜레이(compensatin delay, 보상 지연) 블록(3020)은 수신기에서 추가로 메모리를 필요로 하지 않고 TS 패킷 재결합 메커니즘을 허용하기 위해 ISSY 정보의 삽입에 뒤따르는 분할된 TS 패킷 스트림을 지연시킬 수 있다.Compensating delay block 3020 may delay the split TS packet stream following the insertion of ISSY information to allow TS packet recombination mechanisms without requiring additional memory at the receiver. have.
널 패킷 딜리션 블록(3030)은 TS 입력 스트림 경우에만 사용된다. 일부 TS 입력 스트림 또는 분할된 TS 스트림은 VBR (variable bit-rate) 서비스를 CBR TS 스트림에 수용하기 위해 존재하는 많은 수의 널 패킷을 가질 수 있다. 이 경우, 불필요한 전송 오버헤드를 피하기 위해, 널 패킷은 확인되어 전송되지 않을 수 있다. 수신기에서, 제거된 널 패킷은 전송에 삽입된 DNP(deleted null-packet, 삭제된 널 패킷) 카운터를 참조하여 원래 존재했던 정확한 장소에 재삽입될 수 있어, CBR이 보장되고 타임 스탬프(PCR) 갱신의 필요가 없어진다.The null packet deletion block 3030 is used only for the TS input stream. Some TS input streams or split TS streams may have a large number of null packets present to accommodate variable bit-rate (VBR) services in the CBR TS stream. In this case, to avoid unnecessary transmission overhead, null packets may be acknowledged and not transmitted. At the receiver, the discarded null packet can be reinserted in the exact place it originally existed with reference to the deleted null-packet (DNP) counter inserted in the transmission, ensuring CBR and time stamp (PCR) updates. There is no need.
헤더 컴프레션 블록(3040)은 TS 또는 IP 입력 스트림에 대한 전송 효율을 증가시키기 위해 패킷 헤더 압축을 제공할 수 있다. 수신기는 헤더의 특정 부분에 대한 선험적인(a priori) 정보를 가질 수 있기 때문에, 이 알려진 정보(known information)는 송신기에서 삭제될 수 있다.The header compression block 3040 can provide packet header compression to increase transmission efficiency for the TS or IP input stream. Since the receiver may have a priori information for a particular portion of the header, this known information may be deleted at the transmitter.
TS에 대해, 수신기는 동기 바이트 구성(0x47) 및 패킷 길이(188 바이트)에 관한 선험적인 정보를 가질 수 있다. 입력된 TS가 하나의 PID만을 갖는 콘텐트를 전달하면, 즉, 하나의 서비스 컴포넌트(비디오, 오디오 등) 또는 서비스 서브 컴포넌트(SVC 베이스 레이어, SVC 인헨스먼트 레이어, MVC 베이스 뷰, 또는 MVC 의존 뷰)에 대해서만, TS 패킷 헤더 압축이 TS에 (선택적으로) 적용될 수 있다. TS 패킷 헤더 압축은 입력 스트림이 IP 스트림인 경우 선택적으로 사용된다. 상기 블록은 생략되거나 유사 또는 동일 기능을 갖는 블록으로 대체될 수 있다.For the TS, the receiver may have a priori information about the sync byte configuration (0x47) and the packet length (188 bytes). If the input TS delivers content with only one PID, that is, one service component (video, audio, etc.) or service subcomponent (SVC base layer, SVC enhancement layer, MVC base view, or MVC dependent view) Only, TS packet header compression may (optionally) be applied to the TS. TS packet header compression is optionally used when the input stream is an IP stream. The block may be omitted or replaced with a block having similar or identical functions.
도 4는 본 발명의 일 실시예에 따른 BICM 블록을 나타낸다.4 illustrates a BICM block according to an embodiment of the present invention.
도 4에 도시된 BICM 블록은 도 1을 참조하여 설명한 BICM 블록(1010)의 일 실시예에 해당한다.The BICM block illustrated in FIG. 4 corresponds to an embodiment of the BICM block 1010 described with reference to FIG. 1.
전술한 바와 같이, 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치는 지상파 방송 서비스, 모바일 방송 서비스, UHDTV 서비스 등을 제공할 수 있다.As described above, the broadcast signal transmission apparatus for the next generation broadcast service according to an embodiment of the present invention may provide a terrestrial broadcast service, a mobile broadcast service, a UHDTV service, and the like.
QoS가 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치에 의해 제공되는 서비스의 특성에 의존하므로, 각각의 서비스에 해당하는 데이터는 서로 다른 방식을 통해 처리되어야 한다. 따라서, 본 발명의 일 실시예에 따른 BICM 블록은 SISO, MISO, MIMO 방식을 각각의 데이터 경로에 해당하는 데이터 파이프에 독립적으로 적용함으로써 각데이터 파이프를 독립적으로 처리할 수 있다. 결과적으로, 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치는 각각의 데이터 파이프를 통해 전송되는 각 서비스 또는 서비스 컴포넌트에 대한 QoS를 조절할 수 있다.Since QoS depends on the characteristics of the service provided by the broadcast signal transmission apparatus for the next generation broadcast service according to an embodiment of the present invention, data corresponding to each service should be processed in different ways. Accordingly, the BICM block according to an embodiment of the present invention can independently process each data pipe by independently applying the SISO, MISO, and MIMO schemes to the data pipes corresponding to the respective data paths. As a result, the apparatus for transmitting broadcast signals for the next generation broadcast service according to an embodiment of the present invention may adjust QoS for each service or service component transmitted through each data pipe.
(a)는 베이스 프로파일 및 핸드헬드 프로파일에 의해 공유되는 BICM 블록을 나타내고, (b)는 어드벤스 프로파일의 BICM 블록을 나타낸다.(a) shows the BICM block shared by the base profile and the handheld profile, and (b) shows the BICM block of the advanced profile.
베이스 프로파일 및 핸드헬드 프로파일에 의해 공유되는 BICM 블록 및 어드벤스 프로파일의 BICM 블록은 각각의 데이터 파이프를 처리하기 위한 복수의 처리 블록을 포함할 수 있다.The BICM block shared by the base profile and the handheld profile and the BICM block of the advanced profile may include a plurality of processing blocks for processing each data pipe.
베이스 프로파일 및 핸드헬드 프로파일에 대한 BICM 블록 및 어드벤스 프로파일에 대한 BICM 블록의 각각의 처리 블록에 대해 설명한다.Each processing block of the BICM block for the base profile and the handheld profile and the BICM block for the advanced profile will be described.
베이스 프로파일 및 핸드헬드 프로파일에 대한 BICM 블록의 처리 블록(5000)은 데이터 FEC 인코더(5010), 비트 인터리버(5020), 컨스텔레이션 매퍼(mapper)(5030), SSD (signal space diversity) 인코딩 블록(5040), 타임 인터리버(5050)를 포함할 수 있다.The processing block 5000 of the BICM block for the base profile and the handheld profile includes a data FEC encoder 5010, a bit interleaver 5020, a constellation mapper 5030, a signal space diversity (SSD) encoding block ( 5040, and a time interleaver 5050.
데이터 FEC 인코더(5010)는 외부 코딩(BCH) 및 내부 코딩(LDPC)을 이용하여 FECBLOCK 절차를 생성하기 위해 입력 BBF에 FEC 인코딩을 실행한다. 외부 코딩(BCH)은 선택적인 코딩 방법이다. 데이터 FEC 인코더(5010)의 구체적인 동작에 대해서는 후술한다.The data FEC encoder 5010 performs FEC encoding on the input BBF to generate the FECBLOCK procedure using outer coding (BCH) and inner coding (LDPC). Outer coding (BCH) is an optional coding method. The detailed operation of the data FEC encoder 5010 will be described later.
비트 인터리버(5020)는 효율적으로 실현 가능한 구조를 제공하면서 데이터 FEC 인코더(5010)의 출력을 인터리빙하여 LDPC 코드 및 변조 방식의 조합으로 최적화된 성능을 달성할 수 있다. 비트 인터리버(5020)의 구체적인 동작에 대해서는 후술한다.The bit interleaver 5020 may interleave the output of the data FEC encoder 5010 while providing a structure that can be efficiently realized to achieve optimized performance by a combination of LDPC codes and modulation schemes. The detailed operation of the bit interleaver 5020 will be described later.
컨스텔레이션 매퍼(5030)는 QPSK, QAM-16, 불균일 QAM (NUQ-64, NUQ-256, NUQ-1024) 또는 불균일 컨스텔레이션 (NUC-16, NUC-64, NUC-256, NUC-1024)을 이용해서 베이스 및 핸드헬드 프로파일에서 비트 인터리버(5020)로부터의 각각의 셀 워드를 변조하거나 어드벤스 프로파일에서 셀 워드 디멀티플렉서(5010-1)로부터의 셀 워드를 변조하여 파워가 정규화된 컨스텔레이션 포인트 el을 제공할 수 있다. 해당 컨스텔레이션 매핑은 데이터 파이프에 대해서만 적용된다. NUQ가 임의의 형태를 갖는 반면, QAM-16 및 NUQ는 정사각형 모양을 갖는 것이 관찰된다. 각각의 컨스텔레이션이 90도의 배수만큼 회전되면, 회전된 컨스텔레이션은 원래의 것과 정확히 겹쳐진다. 회전 대칭 특성으로 인해 실수 및 허수 컴포넌트의 용량 및 평균 파워가 서로 동일해진다. NUQ 및 NUC는 모두 각 코드 레이트(code rate)에 대해 특별히 정의되고, 사용되는 특정 하나는 PLS2 데이터에 보관된 파라미터 DP_MOD에 의해 시그널링 된다. Constellation mapper 5030 can be QPSK, QAM-16, non-uniform QAM (NUQ-64, NUQ-256, NUQ-1024) or non-uniform constellation (NUC-16, NUC-64, NUC-256, NUC-1024) A constellation point whose power is normalized by modulating each cell word from the bit interleaver 5020 in the base and handheld profiles or the cell word from the cell word demultiplexer 5010-1 in the advanced profile. e l can be provided. The constellation mapping applies only to data pipes. It is observed that NUQ has any shape, while QAM-16 and NUQ have a square shape. If each constellation is rotated by a multiple of 90 degrees, the rotated constellation overlaps exactly with the original. Due to the rotational symmetry characteristic, the real and imaginary components have the same capacity and average power. Both NUQ and NUC are specifically defined for each code rate, and the particular one used is signaled by the parameter DP_MOD stored in the PLS2 data.
타임 인터리버(5050)는 데이터 파이프 레벨에서 동작할 수 있다. 타임 인터리빙의 파라미터는 각각의 데이터 파이프에 대해 다르게 설정될 수 있다. 타임 인터리버(5050)의 구체적인 동작에 관해서는 후술한다.The time interleaver 5050 may operate at the data pipe level. The parameters of time interleaving can be set differently for each data pipe. The specific operation of the time interleaver 5050 will be described later.
어드벤스 프로파일에 대한 BICM 블록의 처리 블록(5000-1)은 데이터 FEC 인코더, 비트 인터리버, 컨스텔레이션 매퍼, 및 타임 인터리버를 포함할 수 있다.The processing block 5000-1 of the BICM block for the advanced profile may include a data FEC encoder, a bit interleaver, a constellation mapper, and a time interleaver.
단, 처리 블록(5000-1)은 셀 워드 디멀티플렉서(5010-1) 및 MIMO 인코딩 블록(5020-1)을 더 포함한다는 점에서 처리 블록(5000)과 구별된다.However, the processing block 5000-1 is distinguished from the processing block 5000 in that it further includes a cell word demultiplexer 5010-1 and a MIMO encoding block 5020-1.
또한, 처리 블록(5000-1)에서의 데이터 FEC 인코더, 비트 인터리버, 컨스텔레이션 매퍼, 타임 인터리버의 동작은 전술한 데이터 FEC 인코더(5010), 비트 인터리버(5020), 컨스텔레이션 매퍼(5030), 타임 인터리버(5050)의 동작에 해당하므로, 그 설명은 생략한다.In addition, operations of the data FEC encoder, the bit interleaver, the constellation mapper, and the time interleaver in the processing block 5000-1 may be performed by the data FEC encoder 5010, the bit interleaver 5020, and the constellation mapper 5030. Since this corresponds to the operation of the time interleaver 5050, the description thereof will be omitted.
셀 워드 디멀티플렉서(5010-1)는 어드벤스 프로파일의 데이터 파이프가 MIMO 처리를 위해 단일 셀 워드 스트림을 이중 셀 워드 스트림으로 분리하는 데 사용된다. 셀 워드 디멀티플렉서(5010-1)의 구체적인 동작에 관해서는 후술한다.Cell word demultiplexer 5010-1 is used by an advanced profile data pipe to separate a single cell word stream into a dual cell word stream for MIMO processing. A detailed operation of the cell word demultiplexer 5010-1 will be described later.
MIMO 인코딩 블록(5020-1)은 MIMO 인코딩 방식을 이용해서 셀 워드 디멀티플렉서(5010-1)의 출력을 처리할 수 있다. MIMO 인코딩 방식은 방송 신호 송신을 위해 최적화되었다. MIMO 기술은 용량 증가를 얻기 위한 유망한 방식이지만, 채널 특성에 의존한다. 특별히 방송에 대해서, 서로 다른 신호 전파 특성으로 인한 두 안테나 사이의 수신 신호 파워 차이 또는 채널의 강한 LOS 컴포넌트는 MIMO로부터 용량 이득을 얻는 것을 어렵게 한다. 제안된 MIMO 인코딩 방식은 MIMO 출력 신호 중 하나의 위상 랜덤화 및 회전 기반 프리코딩을 이용하여 이 문제를 극복한다.The MIMO encoding block 5020-1 may process the output of the cell word demultiplexer 5010-1 using the MIMO encoding scheme. MIMO encoding scheme is optimized for broadcast signal transmission. MIMO technology is a promising way to gain capacity, but depends on the channel characteristics. Especially for broadcast, the difference in received signal power between two antennas due to different signal propagation characteristics or the strong LOS component of the channel makes it difficult to obtain capacity gains from MIMO. The proposed MIMO encoding scheme overcomes this problem by using phase randomization and rotation based precoding of one of the MIMO output signals.
MIMO 인코딩은 송신기 및 수신기 모두에서 적어도 두 개의 안테나를 필요로 하는 2x2 MIMO 시스템을 위해 의도된다. 두 개의 MIMO 인코딩 모드는 본 제안인 FR-SM (full-rate spatial multiplexing) 및 FRFD-SM (full-rate full-diversity spatial multiplexing)에서 정의된다. FR-SM 인코딩은 수신기 측에서의 비교적 작은 복잡도 증가로 용량 증가를 제공하는 반면, FRFD-SM 인코딩은 수신기 측에서의 큰 복잡도 증가로 용량 증가 및 추가적인 다이버시티 이득을 제공한다. 제안된 MIMO 인코딩 방식은 안테나 극성 배치를 제한하지 않는다.MIMO encoding is intended for a 2x2 MIMO system that requires at least two antennas at both the transmitter and the receiver. Two MIMO encoding modes are defined in this proposal, full-rate spatial multiplexing (FR-SM) and full-rate full-diversity spatial multiplexing (FRFD-SM). FR-SM encoding provides increased capacity with a relatively small complexity increase at the receiver side, while FRFD-SM encoding provides increased capacity and additional diversity gain with a larger complexity increase at the receiver side. The proposed MIMO encoding scheme does not limit the antenna polarity arrangement.
MIMO 처리는 어드벤스 프로파일 프레임에 요구되는데, 이는 어드벤스 프로파일 프레임에서의 모든 데이터 파이프가 MIMO 인코더에 의해 처리된다는 것을 의미한다. MIMO 처리는 데이터 파이프 레벨에서 적용된다. 컨스텔레이션 매퍼 출력의 페어(pair, 쌍)인 NUQ (e1,i 및 e2,i)는 MIMO 인코더의 입력으로 공급된다. MIMO 인코더 출력 페어(pair, 쌍)(g1,i 및 g2,i)은 각각의 송신 안테나의 동일한 캐리어 k 및 OFDM 심볼 l에 의해 전송된다.MIMO processing is required for the advanced profile frame, which means that all data pipes in the advanced profile frame are processed by the MIMO encoder. MIMO processing is applied at the data pipe level. The pair of constellation mapper outputs, NUQ (e 1, i and e 2, i ), are fed to the input of the MIMO encoder. MIMO encoder output pairs g1, i and g2, i are transmitted by the same carrier k and OFDM symbol l of each transmit antenna.
전술한 블록은 생략되거나 유사 또는 동일 기능을 갖는 블록으로 대체될 수 있다.The aforementioned blocks may be omitted or replaced with blocks having similar or identical functions.
도 5는 본 발명의 다른 실시예에 따른 BICM 블록을 나타낸다.5 illustrates a BICM block according to another embodiment of the present invention.
도 5에 도시된 BICM 블록은 도 1을 참조하여 설명한 BICM 블록(1010)의 일 실시예에 해당한다.The BICM block illustrated in FIG. 5 corresponds to an embodiment of the BICM block 1010 described with reference to FIG. 1.
도 5는 PLS, EAC, 및 FIC의 보호를 위한 BICM 블록을 나타낸다. EAC는 EAS 정보 데이터를 전달하는 프레임의 일부이고, FIC는 서비스와 해당하는 베이스 데이터 파이프 사이에서 매핑 정보를 전달하는 프레임에서의 로지컬 채널이다. EAC 및 FIC에 대한 상세한 설명은 후술한다.5 shows a BICM block for protection of PLS, EAC, and FIC. The EAC is part of a frame carrying EAS information data, and the FIC is a logical channel in a frame carrying mapping information between a service and a corresponding base data pipe. Detailed description of the EAC and FIC will be described later.
도 5를 참조하면, PLS, EAC, 및 FIC의 보호를 위한 BICM 블록은 PLS FEC 인코더(6000), 비트 인터리버(6010), 및 컨스텔레이션 매퍼(6020)를 포함할 수 있다.Referring to FIG. 5, a BICM block for protecting PLS, EAC, and FIC may include a PLS FEC encoder 6000, a bit interleaver 6010, and a constellation mapper 6020.
또한, PLS FEC 인코더(6000)는 스크램블러, BCH 인코딩/제로 삽입 블록, LDPC 인코딩 블록, 및 LDPC 패리티 펑처링(puncturing) 블록을 포함할 수 있다. BICM 블록의 각 블록에 대해 설명한다.In addition, the PLS FEC encoder 6000 may include a scrambler, a BCH encoding / zero insertion block, an LDPC encoding block, and an LDPC parity puncturing block. Each block of the BICM block will be described.
PLS FEC 인코더(6000)는 스크램블링된 PLS 1/2 데이터, EAC 및 FIC 섹션을 인코딩할 수 있다.The PLS FEC encoder 6000 may encode scrambled PLS 1/2 data, EAC and FIC sections.
스크램블러는 BCH 인코딩 및 쇼트닝(shortening) 및 펑처링된 LDPC 인코딩 전에 PLS1 데이터 및 PLS2 데이터를 스크램블링 할 수 있다.The scrambler may scramble PLS1 data and PLS2 data before BCH encoding and shortening and punctured LDPC encoding.
BCH 인코딩/제로 삽입 블록은 PLS 보호를 위한 쇼트닝된 BCH 코드를 이용하여 스크램블링된 PLS 1/2 데이터에 외부 인코딩을 수행하고, BCH 인코딩 후에 제로 비트를 삽입할 수 있다. PLS1 데이터에 대해서만, 제로 삽입의 출력 비트가 LDPC 인코딩 전에 퍼뮤테이션(permutation) 될 수 있다.The BCH encoding / zero insertion block may perform outer encoding on the scrambled PLS 1/2 data using the shortened BCH code for PLS protection, and insert zero bits after BCH encoding. For PLS1 data only, the output bits of zero insertion can be permutated before LDPC encoding.
LDPC 인코딩 블록은 LDPC 코드를 이용하여 BCH 인코딩/제로 삽입 블록의 출력을 인코딩할 수 있다. 완전한 코딩 블록을 생성하기 위해, Cldpc 및 패리티 비트 Pldpc는 각각의 제로가 삽입된 PLS 정보 블록 Ildpc로부터 조직적으로 인코딩되고, 그 뒤에 첨부된다.The LDPC encoding block may encode the output of the BCH encoding / zero insertion block using the LDPC code. To generate a complete coding block, C ldpc and parity bits P ldpc are encoded systematically from each zero-inserted PLS information block I ldpc and appended after it.
수학식 1
Figure PCTKR2015014400-appb-M000001
Equation 1
Figure PCTKR2015014400-appb-M000001
PLS1 및 PLS2에 대한 LDPC 코드 파라미터는 다음의 표 4와 같다.LDPC code parameters for PLS1 and PLS2 are shown in Table 4 below.
표 4
Figure PCTKR2015014400-appb-T000004
Table 4
Figure PCTKR2015014400-appb-T000004
LDPC 패리티 펑처링 블록은 PLS1 데이터 및 PLS2 데이터에 대해 펑처링을 수행할 수 있다.The LDPC parity puncturing block may perform puncturing on the PLS1 data and the PLS2 data.
쇼트닝이 PLS1 데이터 보호에 적용되면, 일부 LDPC 패리티 비트는 LDPC 인코딩 후에 펑처링된다. 또한, PLS2 데이터 보호를 위해, PLS2의 LDPC 패리티 비트가 LDPC 인코딩 후에 펑처링된다. 이들 펑처링된 비트는 전송되지 않는다.If shortening is applied to PLS1 data protection, some LDPC parity bits are punctured after LDPC encoding. In addition, for PLS2 data protection, the LDPC parity bits of PLS2 are punctured after LDPC encoding. These punctured bits are not transmitted.
비트 인터리버(6010)는 각각의 쇼트닝 및 펑처링된 PLS1 데이터 및 PLS2 데이터를 인터리빙할 수 있다.The bit interleaver 6010 may interleave each shortened and punctured PLS1 data and PLS2 data.
컨스텔레이션 매퍼(6020)는 비트 인터리빙된 PLS1 데이터 및 PLS2 데이터를 컨스텔레이션에 매핑할 수 있다.The constellation mapper 6020 may map bit interleaved PLS1 data and PLS2 data to constellations.
전술한 블록은 생략되거나 유사 또는 동일 기능을 갖는 블록으로 대체될 수 있다.The aforementioned blocks may be omitted or replaced with blocks having similar or identical functions.
도 6은 본 발명의 일 실시예에 따른 프레임 빌딩 블록(frame building block)을 나타낸다.6 illustrates a frame building block according to an embodiment of the present invention.
도 7에 도시한 프레임 빌딩 블록은 도 1을 참조하여 설명한 프레임 빌딩 블록(1020)의 일 실시예에 해당한다.The frame building block illustrated in FIG. 7 corresponds to an embodiment of the frame building block 1020 described with reference to FIG. 1.
도 6을 참조하면, 프레임 빌딩 블록은 딜레이 컴펜세이션(delay compensation, 지연보상) 블록(7000), 셀 매퍼 (cell mapper) (7010), 및 프리퀀시 인터리버 (frequency interleaver) (7020)를 포함할 수 있다. 프레임 빌딩 블록의 각 블록에 관해 설명한다.Referring to FIG. 6, the frame building block may include a delay compensation block 7000, a cell mapper 7010, and a frequency interleaver 7020. have. Each block of the frame building block will be described.
딜레이 컴펜세이션(delay compensation, 지연보상) 블록(7000)은 데이터 파이프와 해당하는 PLS 데이터 사이의 타이밍을 조절하여 송신기 측에서 데이터 파이프와 해당하는 PLS 데이터 간의 동시성(co-time)을 보장할 수 있다. 인풋 포맷 블록 및 BICM 블록으로 인한 데이터 파이프의 지연을 다룸으로써 PLS 데이터는 데이터 파이프만큼 지연된다. BICM 블록의 지연은 주로 타임 인터리버(5050)로 인한 것이다. 인 밴드(In-band) 시그널링 데이터는 다음 타임 인터리빙 그룹의 정보를 시그널링될 데이터 파이프보다 하나의 프레임 앞서 전달되도록 할 수 있다. 딜레이 컴펜세이션(delay compensation, 지연보상) 블록은 그에 맞추어 인 밴드(In-band) 시그널링 데이터를 지연시킨다. The delay compensation block 7000 adjusts the timing between the data pipes and the corresponding PLS data to ensure co-time between the data pipes and the corresponding PLS data at the transmitter. have. By dealing with the delay in data pipes due to input format blocks and BICM blocks, PLS data is delayed by the data pipe. The delay of the BICM block is mainly due to the time interleaver 5050. In-band signaling data may cause information of the next time interleaving group to be delivered one frame ahead of the data pipe to be signaled. The delay compensation block delays the in-band signaling data accordingly.
셀 매퍼(7010)는 PLS, EAC, FIC, 데이터 파이프, 보조 스트림, 및 더미 셀을 프레임 내에서 OFDM 심볼의 액티브(active) 캐리어에 매핑할 수 있다. 셀 매퍼(7010)의 기본 기능은 각각의 데이터 파이프, PLS 셀, 및 EAC/FIC 셀에 대한 타임 인터리빙에 의해 생성된 데이터 셀을, 존재한다면, 하나의 프레임 내에서 각각의 OFDM 심볼에 해당하는 액티브(active) OFDM 셀의 어레이에 매핑하는 것이다. (PSI(program specific information)/SI와 같은) 서비스 시그널링 데이터는 개별적으로 수집되어 데이터 파이프에 의해 보내질 수 있다. 셀 매퍼는 프레임 구조의 구성 및 스케줄러에 의해 생성된 다이나믹 인포메이션(dynamic information, 동적 정보)에 따라 동작한다. 프레임에 관한 자세한 내용은 후술한다.The cell mapper 7010 may map a PLS, an EAC, an FIC, a data pipe, an auxiliary stream, and a dummy cell to an active carrier of an OFDM symbol in a frame. The basic function of the cell mapper 7010 is to activate the data cells generated by time interleaving for each data pipe, PLS cell, and EAC / FIC cell, if any, corresponding to each OFDM symbol in one frame. (active) mapping to an array of OFDM cells. Service signaling data (such as program specific information (PSI) / SI) may be collected separately and sent by a data pipe. The cell mapper operates according to the structure of the frame structure and the dynamic information generated by the scheduler. Details of the frame will be described later.
주파수 인터리버(7020)는 셀 매퍼(7010)로부터 의해 수신된 데이터 셀을 랜덤하게 인터리빙하여 주파수 다이버시티를 제공할 수 있다. 또한, 주파수 인터리버(7020)는 단일 프레임에서 최대의 인터리빙 이득을 얻기 위해 다른 인터리빙 시드(seed) 순서를 이용하여 두 개의 순차적인 OFDM 심볼로 구성된 OFDM 심볼 페어(pair, 쌍)에서 동작할 수 있다.The frequency interleaver 7020 may randomly interleave data cells received by the cell mapper 7010 to provide frequency diversity. In addition, the frequency interleaver 7020 may operate in an OFDM symbol pair consisting of two sequential OFDM symbols using different interleaving seed order to obtain the maximum interleaving gain in a single frame.
전술한 블록은 생략되거나 유사 또는 동일 기능을 갖는 블록으로 대체될 수 있다.The aforementioned blocks may be omitted or replaced with blocks having similar or identical functions.
도 7은 본 발명의 일 실시예에 따른 OFDM 제너레이션 블록을 나타낸다.7 illustrates an OFDM generation block according to an embodiment of the present invention.
도 7에 도시된 OFDM 제너레이션 블록은 도 1을 참조하여 설명한 OFDM 제너레이션 블록(1030)의 일 실시예에 해당한다.The OFDM generation block illustrated in FIG. 7 corresponds to an embodiment of the OFDM generation block 1030 described with reference to FIG. 1.
OFDM 제너레이션 블록은 프레임 빌딩 블록에 의해 생성된 셀에 의해 OFDM 캐리어를 변조하고, 파일럿을 삽입하고, 전송을 위한 시간 영역 신호를 생성한다. 또한, 해당 블록은 순차적으로 가드 인터벌을 삽입하고, PAPR 감소 처리를 적용하여 최종 RF 신호를 생성한다.The OFDM generation block modulates the OFDM carrier by inserting a pilot by the cell generated by the frame building block, inserts a pilot, and generates a time domain signal for transmission. In addition, the block sequentially inserts a guard interval and applies a PAPR reduction process to generate a final RF signal.
도 8을 참조하면, OFDM 제너레이션 블록은 파일럿 및 리저브드 톤 삽입 블록 (pilot and revserved tone insertion block) (8000), 2D-eSFN (single frequency network) 인코딩 블록(8010), IFFT (inverse fast Fourier transform) 블록(8020), PAPR 감소 블록(8030), 가드 인터벌 삽입 블록 (guard interval insertion block)(8040), 프리앰블 삽입 블록 (preamble insertion block)(8050), 기타 시스템 삽입 블록(8060), 및 DAC 블록(8070)을 포함할 수 있다. Referring to FIG. 8, the OFDM generation block includes a pilot and reserved tone insertion block (8000), a 2D-single frequency network (eSFN) encoding block 8010, an inverse fast fourier transform (IFFT). Block 8020, PAPR reduction block 8030, guard interval insertion block 8040, preamble insertion block 8050, other system insertion block 8060, and DAC block ( 8070).
기타 시스템 삽입 블록(8060)은 방송 서비스를 제공하는 둘 이상의 서로 다른 방송 송신/수신 시스템의 데이터가 동일한 RF 신호 대역에서 동시에 전송될 수 있도록 시간 영역에서 복수의 방송 송신/수신 시스템의 신호를 멀티플렉싱 할 수 있다. 이 경우, 둘 이상의 서로 다른 방송 송신/수신 시스템은 서로 다른 방송 서비스를 제공하는 시스템을 말한다. 서로 다른 방송 서비스는 지상파 방송 서비스, 모바일 방송 서비스 등을 의미할 수 있다. The other system insertion block 8060 may multiplex signals of a plurality of broadcast transmission / reception systems in a time domain so that data of two or more different broadcast transmission / reception systems providing a broadcast service may be simultaneously transmitted in the same RF signal band. Can be. In this case, two or more different broadcast transmission / reception systems refer to a system that provides different broadcast services. Different broadcast services may refer to terrestrial broadcast services or mobile broadcast services.
도 8은 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 수신 장치의 구조를 나타낸다.8 illustrates a structure of a broadcast signal receiving apparatus for a next generation broadcast service according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 수신 장치는 도 1을 참조하여 설명한 차세대 방송 서비스에 대한 방송 신호 송신 장치에 대응할 수 있다.The broadcast signal receiving apparatus for the next generation broadcast service according to an embodiment of the present invention may correspond to the broadcast signal transmitting apparatus for the next generation broadcast service described with reference to FIG. 1.
본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 수신 장치는 동기 및 복조 모듈 (synchronization & demodulation module) (9000), 프레임 파싱 모듈 (frame parsing module) (9010), 디매핑 및 디코딩 모듈 (demapping & decoding module) (9020), 출력 프로세서 (output processor) (9030), 및 시그널링 디코딩 모듈 (signaling decoding module) (9040)을 포함할 수 있다. 방송 신호 수신 장치의 각 모듈의 동작에 대해 설명한다.An apparatus for receiving broadcast signals for a next generation broadcast service according to an embodiment of the present invention includes a synchronization & demodulation module 9000, a frame parsing module 9010, a demapping and decoding module a demapping & decoding module 9020, an output processor 9030, and a signaling decoding module 9040. The operation of each module of the broadcast signal receiving apparatus will be described.
동기 및 복조 모듈(9000)은 m개의 수신 안테나를 통해 입력 신호를 수신하고, 방송 신호 수신 장치에 해당하는 시스템에 대해 신호 검출 및 동기화를 실행하고, 방송 신호 송신 장치에 의해 실행되는 절차의 역과정에 해당하는 복조를 실행할 수 있다.The synchronization and demodulation module 9000 receives an input signal through m reception antennas, performs signal detection and synchronization on a system corresponding to the broadcast signal receiving apparatus, and performs a reverse process of the procedure performed by the broadcast signal transmitting apparatus. Demodulation can be performed.
프레임 파싱 모듈(9010)은 입력 신호 프레임을 파싱하고, 사용자에 의해 선택된 서비스가 전송되는 데이터를 추출할 수 있다. 방송 신호 송신 장치가 인터리빙을 실행하면, 프레임 파싱 모듈(9010)은 인터리빙의 역과정에 해당하는 디인터리빙을 실행할 수 있다. 이 경우, 추출되어야 하는 신호 및 데이터의 위치가 시그널링 디코딩 모듈(9040)로부터 출력된 데이터를 디코딩함으로써 획득되어, 방송 신호 송신 장치에 의해 생성된 스케줄링 정보가 복원될 수 있다.The frame parsing module 9010 may parse an input signal frame and extract data in which a service selected by a user is transmitted. When the broadcast signal transmission apparatus performs interleaving, the frame parsing module 9010 may execute deinterleaving corresponding to the reverse process of interleaving. In this case, positions of signals and data to be extracted are obtained by decoding the data output from the signaling decoding module 9040, so that the scheduling information generated by the broadcast signal transmission apparatus may be restored.
디매핑 및 디코딩 모듈(9020)은 입력 신호를 비트 영역 데이터로 변환한 후, 필요에 따라 비트 영역 데이터들을 디인터리빙할 수 있다. 디매핑 및 디코딩 모듈(9020)은 전송 효율을 위해 적용된 매핑에 대한 디매핑을 실행하고, 디코딩을 통해 전송 채널에서 발생한 에러를 정정할 수 있다. 이 경우, 디매핑 및 디코딩 모듈(9020)은 시그널링 디코딩 모듈(9040)로부터 출력된 데이터를 디코딩함으로써 디매핑 및 디코딩을 위해 필요한 전송 파라미터를 획득할 수 있다.The demapping and decoding module 9020 may convert the input signal into bit region data and then deinterleave the bit region data as necessary. The demapping and decoding module 9020 can perform demapping on the mapping applied for transmission efficiency, and correct an error generated in the transmission channel through decoding. In this case, the demapping and decoding module 9020 can obtain transmission parameters necessary for demapping and decoding by decoding the data output from the signaling decoding module 9040.
출력 프로세서(9030)는 전송 효율을 향상시키기 위해 방송 신호 송신 장치에 의해 적용되는 다양한 압축/신호 처리 절차의 역과정을 실행할 수 있다. 이 경우, 출력 프로세서(9030)는 시그널링 디코딩 모듈(9040)로부터 출력된 데이터에서 필요한 제어 정보를 획득할 수 있다. 출력 프로세서(8300)의 출력은 방송 신호 송신 장치에 입력되는 신호에 해당하고, MPEG-TS, IP 스트림 (v4 또는 v6) 및 GS일 수 있다.The output processor 9030 may perform a reverse process of various compression / signal processing procedures applied by the broadcast signal transmission apparatus to improve transmission efficiency. In this case, the output processor 9030 may obtain necessary control information from the data output from the signaling decoding module 9040. The output of the output processor 8300 corresponds to a signal input to the broadcast signal transmission apparatus and may be MPEG-TS, IP stream (v4 or v6), and GS.
시그널링 디코딩 모듈(9040)은 동기 및 복조 모듈(9000)에 의해 복조된 신호로부터 PLS 정보를 획득할 수 있다. 전술한 바와 같이, 프레임 파싱 모듈(9010), 디매핑 및 디코딩 모듈(9200), 출력 프로세서(9300)는 시그널링 디코딩 모듈(9040)로부터 출력된 데이터를 이용하여 그 기능을 실행할 수 있다.The signaling decoding module 9040 may obtain PLS information from the signal demodulated by the synchronization and demodulation module 9000. As described above, the frame parsing module 9010, the demapping and decoding module 9200, and the output processor 9300 may execute the function using data output from the signaling decoding module 9040.
도 9는 본 발명의 일 실시예에 따른 프레임 구조를 나타낸다.9 shows a frame structure according to an embodiment of the present invention.
도 9는 프레임 타임의 구성예 및 슈퍼 프레임에서의 FRU (frame repetition unit, 프레임 반복 단위)를 나타낸다. (a)는 본 발명의 일 실시예에 따른 슈퍼 프레임을 나타내고, (b)는 본 발명의 일 실시예에 따른 FRU를 나타내고, (c)는 FRU에서의 다양한 피지컬 프로파일(PHY profile)의 프레임을 나타내고, (d)는 프레임의 구조를 나타낸다.9 shows a structural example of a frame time and a frame repetition unit (FRU) in a super frame. (a) shows a super frame according to an embodiment of the present invention, (b) shows a FRU according to an embodiment of the present invention, (c) shows a frame of various physical profile (PHY profile) in the FRU (D) shows the structure of the frame.
슈퍼 프레임은 8개의 FRU로 구성될 수 있다. FRU는 프레임의 TDM에 대한 기본 멀티플렉싱 단위이고, 슈퍼 프레임에서 8회 반복된다.Super frame may consist of eight FRUs. The FRU is the basic multiplexing unit for the TDM of the frame and is repeated eight times in the super frame.
FRU에서 각 프레임은 피지컬 프로파일(베이스, 핸드헬드, 어드벤스 프로파일) 중 하나 또는 FEF에 속한다. FRU에서 프레임의 최대 허용수는 4이고, 주어진 피지컬 프로파일은 FRU에서 0회 내지 4회 중 어느 횟수만큼 나타날 수 있다(예를 들면, 베이스, 베이스, 핸드헬드, 어드벤스). 피지컬 프로파일 정의는 필요시 프리앰블에서의 PHY_PROFILE의 리저브드 값을 이용하여 확장될 수 있다.Each frame in the FRU belongs to one of the physical profiles (base, handheld, advanced profile) or FEF. The maximum allowable number of frames in a FRU is 4, and a given physical profile may appear any number of times from 0 to 4 times in the FRU (eg, base, base, handheld, advanced). The physical profile definition may be extended using the reserved value of PHY_PROFILE in the preamble if necessary.
FEF 부분은 포함된다면 FRU의 끝에 삽입된다. FEF가 FRU에 포함되는 경우, FEF의 최대수는 슈퍼 프레임에서 8이다. FEF 부분들이 서로 인접할 것이 권장되지 않는다.The FEF portion is inserted at the end of the FRU if included. If the FEF is included in the FRU, the maximum number of FEFs is 8 in a super frame. It is not recommended that the FEF parts be adjacent to each other.
하나의 프레임은 다수의 OFDM 심볼 및 프리앰블로 더 분리된다. (d)에 도시한 바와 같이, 프레임은 프리앰블, 하나 이상의 FSS, 노멀 데이터 심볼, FES를 포함한다.One frame is further separated into multiple OFDM symbols and preambles. As shown in (d), the frame includes a preamble, one or more FSS, normal data symbols, and FES.
프리앰블은 고속 퓨처캐스트 UTB 시스템 신호 검출을 가능하게 하고, 신호의 효율적인 송신 및 수신을 위한 기본 전송 파라미터의 집합을 제공하는 특별한 심볼이다. 프리앰블에 대한 자세한 내용은 후술한다.The preamble is a special symbol that enables fast Futurecast UTB system signal detection and provides a set of basic transmission parameters for efficient transmission and reception of the signal. Details of the preamble will be described later.
FSS의 주된 목적은 PLS 데이터를 전달하는 것이다. 고속 동기화 및 채널 추정을 위해, 이에 따른 PLS 데이터의 고속 디코딩을 위해, FSS는 노멀 데이터 심볼보다 고밀도의 파일럿 패턴을 갖는다. FES는 FSS와 완전히 동일한 파일럿을 갖는데, 이는 FES에 바로 앞서는 심볼에 대해 외삽(extrapolation) 없이 FES 내에서의 주파수만의 인터폴레이션(interpolation, 보간) 및 시간적 보간(temporal interpolation)을 가능하게 한다.The main purpose of the FSS is to carry PLS data. For fast synchronization and channel estimation, and hence for fast decoding of PLS data, the FSS has a higher density pilot pattern than normal data symbols. The FES has a pilot that is exactly the same as the FSS, which allows frequency only interpolation and temporal interpolation within the FES without extrapolation for symbols immediately preceding the FES.
도 10은 본 발명의 일 실시예에 따른 프레임의 시그널링 계층 구조(signaling hierarchy structure) 를 나타낸다.10 illustrates a signaling hierarchy structure of a frame according to an embodiment of the present invention.
도 10은 시그널링 계층 구조를 나타내는데, 이는 세 개의 주요 부분인 프리앰블 시그널링 데이터(11000), PLS1 데이터(11010), 및 PLS2 데이터(11020)로 분할된다. 매 프레임마다 프리앰블 신호에 의해 전달되는 프리앰블의 목적은 프레임의 기본 전송 파라미터 및 전송 타입을 나타내는 것이다. PLS1은 수신기가 관심 있는 데이터 파이프에 접속하기 위한 파라미터를 포함하는 PLS2 데이터에 접속하여 디코딩할 수 있게 한다. PLS2는 매 프레임마다 전달되고, 두 개의 주요 부분인 PLS2-STAT 데이터와 PLS2-DYN 데이터로 분할된다. PLS2 데이터의 스태틱(static, 정적) 및 다이나믹(dynamic, 동적) 부분에는 필요시 패딩이 뒤따른다.10 shows a signaling hierarchy, which is divided into three main parts: preamble signaling data 11000, PLS1 data 11010, and PLS2 data 11020. The purpose of the preamble carried by the preamble signal every frame is to indicate the basic transmission parameters and transmission type of the frame. PLS1 allows the receiver to access and decode PLS2 data that includes parameters for connecting to the data pipe of interest. PLS2 is delivered every frame and divided into two main parts, PLS2-STAT data and PLS2-DYN data. The static and dynamic parts of the PLS2 data are followed by padding if necessary.
도 11은 본 발명의 일 실시예에 따른 프리앰블 시그널링 데이터를 나타낸다.11 illustrates preamble signaling data according to an embodiment of the present invention.
프리앰블 시그널링 데이터는 수신기가 프레임 구조 내에서 PLS 데이터에 접속하고 데이터 파이프를 추적할 수 있게 하기 위해 필요한 21비트의 정보를 전달한다. 프리앰블 시그널링 데이터에 대한 자세한 내용은 다음과 같다.The preamble signaling data carries 21 bits of information needed to enable the receiver to access the PLS data and track the data pipes within the frame structure. Details of the preamble signaling data are as follows.
PHY_PROFILE: 해당 3비트 필드는 현 프레임의 피지컬 프로파일 타입을 나타낸다. 서로 다른 피지컬 프로파일 타입의 매핑은 아래 표 5에 주어진다.PHY_PROFILE: This 3-bit field indicates the physical profile type of the current frame. The mapping of different physical profile types is given in Table 5 below.
표 5
Figure PCTKR2015014400-appb-T000005
Table 5
Figure PCTKR2015014400-appb-T000005
FFT_SIZE: 해당 2비트 필드는 아래 표 6에서 설명한 바와 같이 프레임 그룹 내에서 현 프레임의 FFT 사이즈를 나타낸다.FFT_SIZE: This 2-bit field indicates the FFT size of the current frame in the frame group as described in Table 6 below.
표 6
Figure PCTKR2015014400-appb-T000006
Table 6
Figure PCTKR2015014400-appb-T000006
GI_FRACTION: 해당 3비트 필드는 아래 표 7에서 설명한 바와 같이 현 슈퍼 프레임에서의 가드 인터벌 일부(fraction) 값을 나타낸다.GI_FRACTION: This 3-bit field indicates a guard interval fraction value in the current super frame as described in Table 7 below.
표 7
Figure PCTKR2015014400-appb-T000007
TABLE 7
Figure PCTKR2015014400-appb-T000007
EAC_FLAG: 해당 1비트 필드는 EAC가 현 프레임에 제공되는지 여부를 나타낸다. 해당 필드가 1로 설정되면, EAS가 현 프레임에 제공된다. 해당 필드가 0으로 설정되면, EAS가 현 프레임에서 전달되지 않는다. 해당 필드는 슈퍼 프레임 내에서 다이나믹(dynamic, 동적)으로 전환될 수 있다.EAC_FLAG: This 1-bit field indicates whether EAC is provided in the current frame. If this field is set to 1, EAS is provided in the current frame. If this field is set to 0, EAS is not delivered in the current frame. This field may be converted to dynamic within a super frame.
PILOT_MODE: 해당 1비트 필드는 현 프레임 그룹에서 현 프레임에 대해 파일럿 모드가 모바일 모드인지 또는 고정 모드인지 여부를 나타낸다. 해당 필드가 0으로 설정되면, 모바일 파일럿 모드가 사용된다. 해당 필드가 1로 설정되면, 고정 파일럿 모드가 사용된다.PILOT_MODE: This 1-bit field indicates whether the pilot mode is a mobile mode or a fixed mode for the current frame in the current frame group. If this field is set to 0, mobile pilot mode is used. If the field is set to '1', fixed pilot mode is used.
PAPR_FLAG: 해당 1비트 필드는 현 프레임 그룹에서 현 프레임에 대해 PAPR 감소가 사용되는지 여부를 나타낸다. 해당 필드가 1로 설정되면, 톤 예약(tone reservation)이 PAPR 감소를 위해 사용된다. 해당 필드가 0으로 설정되면, PAPR 감소가 사용되지 않는다.PAPR_FLAG: This 1-bit field indicates whether PAPR reduction is used for the current frame in the current frame group. If this field is set to 1, tone reservation is used for PAPR reduction. If this field is set to 0, no PAPR reduction is used.
FRU_CONFIGURE: 해당 3비트 필드는 현 슈퍼 프레임에서 존재하는 FRU의 피지컬 프로파일 타입 구성을 나타낸다. 현 슈퍼 프레임에서 모든 프리앰블에서의 해당 필드에서, 현 슈퍼 프레임에서 전달되는 모든 프로파일 타입이 식별된다. 해당 3비트 필드는 아래 표 8에 나타낸 바와 같이 각각의 프로파일에 대해 다르게 정의된다.FRU_CONFIGURE: This 3-bit field indicates the physical profile type configuration of the FRU present in the current super frame. In the corresponding field in all preambles in the current super frame, all profile types carried in the current super frame are identified. The 3-bit field is defined differently for each profile as shown in Table 8 below.
표 8
Figure PCTKR2015014400-appb-T000008
Table 8
Figure PCTKR2015014400-appb-T000008
RESERVED: 해당 7비트 필드는 추후 사용을 위해 리저브드(reserved)된다.RESERVED: This 7-bit field is reserved for future use.
도 12는 본 발명의 일 실시예에 따른 PLS1 데이터를 나타낸다.12 illustrates PLS1 data according to an embodiment of the present invention.
PLS1 데이터는 PLS2의 수신 및 디코딩을 가능하게 하기 위해 필요한 파라미터를 포함한 기본 전송 파라미터를 제공한다. 전술한 바와 같이, PLS1 데이터는 하나의 프레임 그룹의 전체 듀레이션 동안 변화하지 않는다. PLS1 데이터의 시그널링 필드의 구체적인 정의는 다음과 같다.PLS1 data provides basic transmission parameters including the parameters needed to enable the reception and decoding of PLS2. As mentioned above, the PLS1 data does not change during the entire duration of one frame group. A detailed definition of the signaling field of the PLS1 data is as follows.
PREAMBLE_DATA: 해당 20비트 필드는 EAC_FLAG를 제외한 프리앰블 시그널링 데이터의 카피이다.PREAMBLE_DATA: This 20-bit field is a copy of the preamble signaling data excluding EAC_FLAG.
NUM_FRAME_FRU: 해당 2비트 필드는 FRU당 프레임 수를 나타낸다.NUM_FRAME_FRU: This 2-bit field indicates the number of frames per FRU.
PAYLOAD_TYPE: 해당 3비트 필드는 프레임 그룹에서 전달되는 페이로드 데이터의 포맷을 나타낸다. PAYLOAD_TYPE은 표 9에 나타낸 바와 같이 시그널링 된다.PAYLOAD_TYPE: This 3-bit field indicates the format of payload data carried in the frame group. PAYLOAD_TYPE is signaled as shown in Table 9.
표 9
Figure PCTKR2015014400-appb-T000009
Table 9
Figure PCTKR2015014400-appb-T000009
NUM_FSS: 해당 2비트 필드는 현 프레임에서 FSS의 수를 나타낸다.NUM_FSS: This 2-bit field indicates the number of FSS in the current frame.
SYSTEM_VERSION: 해당 8비트 필드는 전송되는 신호 포맷의 버전을 나타낸다. SYSTEM_VERSION은 주 버전 및 부 버전의 두 개의 4비트 필드로 분리된다.SYSTEM_VERSION: This 8-bit field indicates the version of the signal format being transmitted. SYSTEM_VERSION is separated into two 4-bit fields: major and minor.
주 버전: SYSTEM_VERSION 필드의 MSB인 4비트는 주 버전 정보를 나타낸다. 주 버전 필드에서의 변화는 호환이 불가능한 변화를 나타낸다. 디폴트 값은 0000이다. 해당 표준에서 서술된 버전에 대해, 값이 0000으로 설정된다.Major Version: The 4-bit MSB in the SYSTEM_VERSION field indicates major version information. Changes in the major version field indicate incompatible changes. The default value is 0000. For the version described in that standard, the value is set to 0000.
부 버전: SYSTEM_VERSION 필드의 LSB인 4비트는 부 버전 정보를 나타낸다. 부 버전 필드에서의 변화는 호환이 가능하다.Minor Version: A 4-bit LSB in the SYSTEM_VERSION field indicates minor version information. Changes in the minor version field are compatible.
CELL_ID: 이는 ATSC 네트워크에서 지리적 셀을 유일하게 식별하는 16비트 필드이다. ATSC 셀 커버리지는 퓨처캐스트 UTB 시스템당 사용되는 주파수 수에 따라 하나 이상의 주파수로 구성될 수 있다. CELL_ID의 값이 알려지지 않거나 특정되지 않으면, 해당 필드는 0으로 설정된다.CELL_ID: This is a 16-bit field that uniquely identifies a geographic cell in an ATSC network. ATSC cell coverage may consist of one or more frequencies depending on the number of frequencies used per Futurecast UTB system. If the value of CELL_ID is unknown or not specified, this field is set to zero.
NETWORK_ID: 이는 현 ATSC 네트워크를 유일하게 식별하는 16비트 필드이다.NETWORK_ID: This is a 16-bit field that uniquely identifies the current ATSC network.
SYSTEM_ID: 해당 16비트 필드는 ATSC 네트워크 내에서 퓨처캐스트 UTB 시스템을 유일하게 식별한다. 퓨처캐스트 UTB 시스템은 입력이 하나 이상의 입력 스트림(TS, IP, GS)이고 출력이 RF 신호인 지상파 방송 시스템이다. 퓨처캐스트 UTB 시스템은 존재한다면 FEF 및 하나 이상의 피지컬 프로파일을 전달한다. 동일한 퓨처캐스트 UTB 시스템은 서로 다른 입력 스트림을 전달하고 서로 다른 지리적 영역에서 서로 다른 RF를 사용할 수 있어, 로컬 서비스 삽입을 허용한다. 프레임 구조 및 스케줄링은 하나의 장소에서 제어되고, 퓨처캐스트 UTB 시스템 내에서 모든 전송에 대해 동일하다. 하나 이상의 퓨처캐스트 UTB 시스템은 모두 동일한 피지컬 구조 및 구성을 갖는다는 동일한 SYSTEM_ID 의미를 가질 수 있다.SYSTEM_ID: This 16-bit field uniquely identifies a Futurecast UTB system within an ATSC network. Futurecast UTB systems are terrestrial broadcast systems whose input is one or more input streams (TS, IP, GS) and the output is an RF signal. The Futurecast UTB system conveys the FEF and one or more physical profiles, if present. The same Futurecast UTB system can carry different input streams and use different RFs in different geographic regions, allowing for local service insertion. Frame structure and scheduling are controlled in one place and are the same for all transmissions within a Futurecast UTB system. One or more Futurecast UTB systems may have the same SYSTEM_ID meaning that they all have the same physical structure and configuration.
다음의 루프(loop)는 각 프레임 타입의 길이 및 FRU 구성을 나타내는 FRU_PHY_PROFILE, FRU_FRAME_LENGTH, FRU_GI_FRACTION, RESERVED로 구성된다. 루프(loop) 사이즈는 FRU 내에서 4개의 피지컬 프로파일(FEF 포함)이 시그널링되도록 고정된다. NUM_FRAME_FRU가 4보다 작으면, 사용되지 않는 필드는 제로로 채워진다.The following loop is composed of FRU_PHY_PROFILE, FRU_FRAME_LENGTH, FRU_GI_FRACTION, and RESERVED indicating the length and FRU configuration of each frame type. The loop size is fixed such that four physical profiles (including FFEs) are signaled within the FRU. If NUM_FRAME_FRU is less than 4, the unused fields are filled with zeros.
FRU_PHY_PROFILE: 해당 3비트 필드는 관련된 FRU의 (i+1)번째 프레임(i는 루프(loop) 인덱스)의 피지컬 프로파일 타입을 나타낸다. 해당 필드는 표 8에 나타낸 것과 동일한 시그널링 포맷을 사용한다.FRU_PHY_PROFILE: This 3-bit field indicates the physical profile type of the (i + 1) th frame (i is a loop index) of the associated FRU. This field uses the same signaling format as shown in Table 8.
FRU_FRAME_LENGTH: 해당 2비트 필드는 관련된 FRU의 (i+1)번째 프레임의 길이를 나타낸다. FRU_GI_FRACTION와 함께 FRU_FRAME_LENGTH를 사용하면, 프레임 듀레이션의 정확한 값이 얻어질 수 있다.FRU_FRAME_LENGTH: This 2-bit field indicates the length of the (i + 1) th frame of the associated FRU. Using FRU_FRAME_LENGTH with FRU_GI_FRACTION, the exact value of frame duration can be obtained.
FRU_GI_FRACTION: 해당 3비트 필드는 관련된 FRU의 (i+1)번째 프레임의 가드 인터벌 일부 값을 나타낸다. FRU_GI_FRACTION은 표 7에 따라 시그널링 된다.FRU_GI_FRACTION: This 3-bit field indicates the guard interval partial value of the (i + 1) th frame of the associated FRU. FRU_GI_FRACTION is signaled according to Table 7.
RESERVED: 해당 4비트 필드는 추후 사용을 위해 리저브드(reserved)된다.RESERVED: This 4-bit field is reserved for future use.
다음의 필드는 PLS2 데이터를 디코딩하기 위한 파라미터를 제공한다.The following fields provide parameters for decoding PLS2 data.
PLS2_FEC_TYPE: 해당 2비트 필드는 PLS2 보호에 의해 사용되는 FEC 타입을 나타낸다. FEC 타입은 표 10에 따라 시그널링 된다. LDPC 코드에 대한 자세한 내용은 후술한다.PLS2_FEC_TYPE: This 2-bit field indicates the FEC type used by the PLS2 protection. The FEC type is signaled according to Table 10. Details of the LDPC code will be described later.
표 10
Figure PCTKR2015014400-appb-T000010
Table 10
Figure PCTKR2015014400-appb-T000010
PLS2_MOD: 해당 3비트 필드는 PLS2에 의해 사용되는 변조 타입을 나타낸다. 변조 타입은 표 11에 따라 시그널링 된다.PLS2_MOD: This 3-bit field indicates the modulation type used by PLS2. The modulation type is signaled according to Table 11.
표 11
Figure PCTKR2015014400-appb-T000011
Table 11
Figure PCTKR2015014400-appb-T000011
PLS2_SIZE_CELL: 해당 15비트 필드는 현 프레임 그룹에서 전달되는 PLS2에 대한 모든 코딩 블록의 사이즈(QAM 셀의 수로 특정됨)인 Ctotal _partial_block를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.PLS2_SIZE_CELL: This 15-bit field indicates C total _partial_block which is the size (specified by the number of QAM cells) of all coding blocks for PLS2 carried in the current frame group. This value is constant for the entire duration of the current frame-group.
PLS2_STAT_SIZE_BIT: 해당 14비트 필드는 현 프레임 그룹에 대한 PLS2-STAT의 사이즈를 비트수로 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.PLS2_STAT_SIZE_BIT: This 14-bit field indicates the size, in bits, of the PLS2-STAT for the current frame-group. This value is constant for the entire duration of the current frame-group.
PLS2_DYN_SIZE_BIT: 해당 14비트 필드는 현 프레임 그룹에 대한 PLS2-DYN의 사이즈를 비트수로 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.PLS2_DYN_SIZE_BIT: This 14-bit field indicates the size, in bits, of the PLS2-DYN for the current frame-group. This value is constant for the entire duration of the current frame-group.
PLS2_REP_FLAG: 해당 1비트 플래그는 PLS2 반복 모드가 현 프레임 그룹에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, PLS2 반복 모드는 활성화된다. 해당 필드의 값이 0으로 설정되면, PLS2 반복 모드는 비활성화된다.PLS2_REP_FLAG: This 1-bit flag indicates whether the PLS2 repeat mode is used in the current frame group. If the value of this field is set to 1, PLS2 repeat mode is activated. If the value of this field is set to 0, PLS2 repeat mode is deactivated.
PLS2_REP_SIZE_CELL: 해당 15비트 필드는 PLS2 반복이 사용되는 경우 현 프레임 그룹의 매 프레임마다 전달되는 PLS2에 대한 부분 코딩 블록의 사이즈(QAM 셀의 수로 특정됨)인 Ctotal_partial_block를 나타낸다. 반복이 사용되지 않는 경우, 해당 필드의 값은 0과 동일하다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.PLS2_REP_SIZE_CELL: This 15-bit field indicates C total_partial_block , which is the size (specified by the number of QAM cells) of the partial coding block for PLS2 delivered every frame of the current frame group when PLS2 repetition is used. If iteration is not used, the value of this field is equal to zero. This value is constant for the entire duration of the current frame-group.
PLS2_NEXT_FEC_TYPE: 해당 2비트 필드는 다음 프레임 그룹의 매 프레임에서 전달되는 PLS2에 사용되는 FEC 타입을 나타낸다. FEC 타입은 표 10에 따라 시그널링 된다.PLS2_NEXT_FEC_TYPE: This 2-bit field indicates the FEC type used for PLS2 delivered in every frame of the next frame-group. The FEC type is signaled according to Table 10.
PLS2_NEXT_MOD: 해당 3비트 필드는 다음 프레임 그룹의 매 프레임에서 전달되는 PLS2에 사용되는 변조 타입을 나타낸다. 변조 타입은 표 11에 따라 시그널링 된다.PLS2_NEXT_MOD: This 3-bit field indicates the modulation type used for PLS2 delivered in every frame of the next frame-group. The modulation type is signaled according to Table 11.
PLS2_NEXT_REP_FLAG: 해당 1비트 플래그는 PLS2 반복 모드가 다음 프레임 그룹에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, PLS2 반복 모드는 활성화된다. 해당 필드의 값이 0으로 설정되면, PLS2 반복 모드는 비활성화된다.PLS2_NEXT_REP_FLAG: This 1-bit flag indicates whether the PLS2 repeat mode is used in the next frame group. If the value of this field is set to 1, PLS2 repeat mode is activated. If the value of this field is set to 0, PLS2 repeat mode is deactivated.
PLS2_NEXT_REP_SIZE_CELL: 해당 15비트 필드는 PLS2 반복이 사용되는 경우 다음 프레임 그룹의 매 프레임마다 전달되는 PLS2에 대한 전체 코딩 블록의 사이즈(QAM 셀의 수로 특정됨)인 Ctotal_full_block를 나타낸다. 다음 프레임 그룹에서 반복이 사용되지 않는 경우, 해당 필드의 값은 0과 동일하다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.PLS2_NEXT_REP_SIZE_CELL: This 15-bit field indicates C total_full_block , which is the size (specified in the number of QAM cells) of the entire coding block for PLS2 delivered every frame of the next frame-group when PLS2 repetition is used. If iteration is not used in the next frame-group, the value of this field is equal to zero. This value is constant for the entire duration of the current frame-group.
PLS2_NEXT_REP_STAT_SIZE_BIT: 해당 14비트 필드는 다음 프레임 그룹에 대한 PLS2-STAT의 사이즈를 비트수로 나타낸다. 해당 값은 현 프레임 그룹에서 일정하다.PLS2_NEXT_REP_STAT_SIZE_BIT: This 14-bit field indicates the size, in bits, of the PLS2-STAT for the next frame-group. The value is constant in the current frame group.
PLS2_NEXT_REP_DYN_SIZE_BIT: 해당 14비트 필드는 다음 프레임 그룹에 대한 PLS2-DYN의 사이즈를 비트수로 나타낸다. 해당 값은 현 프레임 그룹에서 일정하다.PLS2_NEXT_REP_DYN_SIZE_BIT: This 14-bit field indicates the size of the PLS2-DYN for the next frame-group, in bits. The value is constant in the current frame group.
PLS2_AP_MODE: 해당 2비트 필드는 현 프레임 그룹에서 PLS2에 대해 추가 패리티가 제공되는지 여부를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다. 아래의 표 12는 해당 필드의 값을 제공한다. 해당 필드의 값이 00으로 설정되면, 현 프레임 그룹에서 추가 패리티가 PLS2에 대해 사용되지 않는다.PLS2_AP_MODE: This 2-bit field indicates whether additional parity is provided for PLS2 in the current frame group. This value is constant for the entire duration of the current frame-group. Table 12 below provides the values for this field. If the value of this field is set to 00, no additional parity is used for PLS2 in the current frame group.
표 12
Figure PCTKR2015014400-appb-T000012
Table 12
Figure PCTKR2015014400-appb-T000012
PLS2_AP_SIZE_CELL: 해당 15비트 필드는 PLS2의 추가 패리티 비트의 사이즈(QAM 셀의 수로 특정됨)를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.PLS2_AP_SIZE_CELL: This 15-bit field indicates the size (specified by the number of QAM cells) of additional parity bits of PLS2. This value is constant for the entire duration of the current frame-group.
PLS2_NEXT_AP_MODE: 해당 2비트 필드는 다음 프레임 그룹의 매 프레임마다 PLS2 시그널링에 대해 추가 패리티가 제공되는지 여부를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다. 표 12는 해당 필드의 값을 정의한다.PLS2_NEXT_AP_MODE: This 2-bit field indicates whether additional parity is provided for PLS2 signaling for every frame of the next frame-group. This value is constant for the entire duration of the current frame-group. Table 12 defines the values of this field.
PLS2_NEXT_AP_SIZE_CELL: 해당 15비트 필드는 다음 프레임 그룹의 매 프레임마다 PLS2의 추가 패리티 비트의 사이즈(QAM 셀의 수로 특정됨)를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.PLS2_NEXT_AP_SIZE_CELL: This 15-bit field indicates the size (specified by the number of QAM cells) of additional parity bits of PLS2 for every frame of the next frame-group. This value is constant for the entire duration of the current frame-group.
RESERVED: 해당 32비트 필드는 추후 사용을 위해 리저브드(reserved)된다.RESERVED: This 32-bit field is reserved for future use.
CRC_32: 전체 PLS1 시그널링에 적용되는 32비트 에러 검출 코드CRC_32: 32-bit error detection code that applies to full PLS1 signaling
도 13은 본 발명의 일 실시예에 따른 PLS2 데이터를 나타낸다.13 illustrates PLS2 data according to an embodiment of the present invention.
도 13은 PLS2 데이터의 PLS2-STAT 데이터를 나타낸다. PLS2-STAT 데이터는 프레임 그룹 내에서 동일한 반면, PLS2-DYN 데이터는 현 프레임에 대해 특정한 정보를 제공한다.13 shows PLS2-STAT data of the PLS2 data. PLS2-STAT data is the same within a frame group, while PLS2-DYN data provides specific information about the current frame.
PLS2-STAT 데이터의 필드에 대해 다음에 구체적으로 설명한다.The field of PLS2-STAT data is demonstrated concretely next.
FIC_FLAG: 해당 1비트 필드는 FIC가 현 프레임 그룹에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, FIC는 현 프레임에서 제공된다. 해당 필드의 값이 0으로 설정되면, FIC는 현 프레임에서 전달되지 않는다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.FIC_FLAG: This 1-bit field indicates whether the FIC is used in the current frame group. If the value of this field is set to 1, the FIC is provided in the current frame. If the value of this field is set to 0, FIC is not delivered in the current frame. This value is constant for the entire duration of the current frame-group.
AUX_FLAG: 해당 1비트 필드는 보조 스트림이 현 프레임 그룹에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, 보조 스트림은 현 프레임에서 제공된다. 해당 필드의 값이 0으로 설정되면, 보조 프레임은 현 프레임에서 전달되지 않는다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.AUX_FLAG: This 1-bit field indicates whether the auxiliary stream is used in the current frame group. If the value of this field is set to 1, the auxiliary stream is provided in the current frame. If the value of this field is set to 0, the auxiliary frame is not transmitted in the current frame. This value is constant for the entire duration of the current frame-group.
NUM_DP: 해당 6비트 필드는 현 프레임 내에서 전달되는 데이터 파이프의 수를 나타낸다. 해당 필드의 값은 1에서 64 사이이고, 데이터 파이프의 수는 NUM_DP+1이다.NUM_DP: This 6-bit field indicates the number of data pipes carried in the current frame. The value of this field is between 1 and 64, and the number of data pipes is NUM_DP + 1.
DP_ID: 해당 6비트 필드는 피지컬 프로파일 내에서 유일하게 식별한다.DP_ID: This 6-bit field uniquely identifies within the physical profile.
DP_TYPE: 해당 3비트 필드는 데이터 파이프의 타입을 나타낸다. 이는 아래의 표 13에 따라 시그널링 된다.DP_TYPE: This 3-bit field indicates the type of data pipe. This is signaled according to Table 13 below.
표 13
Figure PCTKR2015014400-appb-T000013
Table 13
Figure PCTKR2015014400-appb-T000013
DP_GROUP_ID: 해당 8비트 필드는 현 데이터 파이프가 관련되어 있는 데이터 파이프 그룹을 식별한다. 이는 수신기가 동일한 DP_GROUP_ID를 갖게 되는 특정 서비스와 관련되어 있는 서비스 컴포넌트의 데이터 파이프에 접속하는 데 사용될 수 있다.DP_GROUP_ID: This 8-bit field identifies the data pipe group with which the current data pipe is associated. This can be used to connect to the data pipe of the service component associated with a particular service that the receiver will have the same DP_GROUP_ID.
BASE_DP_ID: 해당 6비트 필드는 관리 계층에서 사용되는 (PSI/SI와 같은) 서비스 시그널링 데이터를 전달하는 데이터 파이프를 나타낸다. BASE_DP_ID에 의해 나타내는 데이터 파이프는 서비스 데이터와 함께 서비스 시그널링 데이터를 전달하는 노멀 데이터 파이프이거나, 서비스 시그널링 데이터만을 전달하는 전용 데이터 파이프일 수 있다.BASE_DP_ID: This 6-bit field indicates a data pipe that carries service signaling data (such as PSI / SI) used in the management layer. The data pipe indicated by BASE_DP_ID may be a normal data pipe for delivering service signaling data together with service data or a dedicated data pipe for delivering only service signaling data.
DP_FEC_TYPE: 해당 2비트 필드는 관련된 데이터 파이프에 의해 사용되는 FEC 타입을 나타낸다. FEC 타입은 아래의 표 14에 따라 시그널링 된다.DP_FEC_TYPE: This 2-bit field indicates the FEC type used by the associated data pipe. The FEC type is signaled according to Table 14 below.
표 14
Figure PCTKR2015014400-appb-T000014
Table 14
Figure PCTKR2015014400-appb-T000014
DP_COD: 해당 4비트 필드는 관련된 데이터 파이프에 의해 사용되는 코드 레이트(code rate)을 나타낸다. 코드 레이트(code rate)은 아래의 표 15에 따라 시그널링 된다.DP_COD: This 4-bit field indicates the code rate used by the associated data pipe. The code rate is signaled according to Table 15 below.
표 15
Figure PCTKR2015014400-appb-T000015
Table 15
Figure PCTKR2015014400-appb-T000015
DP_MOD: 해당 4비트 필드는 관련된 데이터 파이프에 의해 사용되는 변조를 나타낸다. 변조는 아래의 표 16에 따라 시그널링 된다.DP_MOD: This 4-bit field indicates the modulation used by the associated data pipe. Modulation is signaled according to Table 16 below.
표 16
Figure PCTKR2015014400-appb-T000016
Table 16
Figure PCTKR2015014400-appb-T000016
DP_SSD_FLAG: 해당 1비트 필드는 SSD 모드가 관련된 데이터 파이프에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, SSD는 사용된다. 해당 필드의 값이 0으로 설정되면, SSD는 사용되지 않는다.DP_SSD_FLAG: This 1-bit field indicates whether the SSD mode is used in the associated data pipe. If the value of this field is set to 1, the SSD is used. If the value of this field is set to 0, the SSD is not used.
다음의 필드는 PHY_PROFILE가 어드벤스 프로파일을 나타내는 010과 동일할 때에만 나타난다.The following fields appear only when PHY_PROFILE is equal to 010, which represents the advanced profile.
DP_MIMO: 해당 3비트 필드는 어떤 타입의 MIMO 인코딩 처리가 관련된 데이터 파이프에 적용되는지 나타낸다. MIMO 인코딩 처리의 타입은 아래의 표 17에 따라 시그널링 된다.DP_MIMO: This 3-bit field indicates what type of MIMO encoding processing is applied to the associated data pipe. The type of MIMO encoding process is signaled according to Table 17 below.
표 17
Figure PCTKR2015014400-appb-T000017
Table 17
Figure PCTKR2015014400-appb-T000017
DP_TI_TYPE: 해당 1비트 필드는 타임 인터리빙의 타입을 나타낸다. 0의 값은 하나의 타임 인터리빙 그룹이 하나의 프레임에 해당하고 하나 이상의 타임 인터리빙 블록을 포함하는 것을 나타낸다. 1의 값은 하나의 타임 인터리빙 그룹이 하나보다 많은 프레임으로 전달되고 하나의 타임 인터리빙 블록만을 포함하는 것을 나타낸다.DP_TI_TYPE: This 1-bit field indicates the type of time interleaving. A value of 0 indicates that one time interleaving group corresponds to one frame and includes one or more time interleaving blocks. A value of 1 indicates that one time interleaving group is delivered in more than one frame and contains only one time interleaving block.
DP_TI_LENGTH: 해당 2비트 필드(허용된 값은 1, 2, 4, 8뿐이다)의 사용은 다음과 같은 DP_TI_TYPE 필드 내에서 설정되는 값에 의해 결정된다.DP_TI_LENGTH: The use of this 2-bit field (only allowed values are 1, 2, 4, 8) is determined by the value set in the DP_TI_TYPE field as follows.
DP_TI_TYPE의 값이 1로 설정되면, 해당 필드는 각각의 타임 인터리빙 그룹이 매핑되는 프레임의 수인 PI를 나타내고, 타임 인터리빙 그룹당 하나의 타임 인터리빙 블록이 존재한다 (NTI=1). 해당 2비트 필드로 허용되는 PI의 값은 아래의 표 18에 정의된다.When the value of DP_TI_TYPE is set to 1, this field indicates P I , which is the number of frames to which each time interleaving group is mapped, and there is one time interleaving block per time interleaving group (N TI = 1). The values of P I allowed in this 2-bit field are defined in Table 18 below.
DP_TI_TYPE의 값이 0으로 설정되면, 해당 필드는 타임 인터리빙 그룹당 타임 인터리빙 블록의 수 NTI를 나타내고, 프레임당 하나의 타임 인터리빙 그룹이 존재한다 (PI=1). 해당 2비트 필드로 허용되는 PI의 값은 아래의 표 18에 정의된다.If the value of DP_TI_TYPE is set to 0, this field indicates the number N TI of time interleaving blocks per time interleaving group, and there is one time interleaving group per frame (P I = 1). The values of P I allowed in this 2-bit field are defined in Table 18 below.
표 18
Figure PCTKR2015014400-appb-T000018
Table 18
Figure PCTKR2015014400-appb-T000018
DP_FRAME_INTERVAL: 해당 2비트 필드는 관련된 데이터 파이프에 대한 프레임 그룹 내에서 프레임 간격(IJUMP)을 나타내고, 허용된 값은 1, 2, 4, 8 (해당하는 2비트 필드는 각각 00, 01, 10, 11)이다. 프레임 그룹의 모든 프레임에 나타나지 않는 데이터 파이프에 대해, 해당 필드의 값은 순차적인 프레임 사이의 간격과 동일하다. 예를 들면, 데이터 파이프가 1, 5, 9, 13 등의 프레임에 나타나면, 해당 필드의 값은 4로 설정된다. 모든 프레임에 나타나는 데이터 파이프에 대해, 해당 필드의 값은 1로 설정된다.DP_FRAME_INTERVAL: This 2-bit field represents the frame interval (I JUMP ) within the frame group for the associated data pipe, and allowed values are 1, 2, 4, 8 (the corresponding 2-bit fields are 00, 01, 10, 11). For data pipes that do not appear in every frame of a frame group, the value of this field is equal to the interval between sequential frames. For example, if a data pipe appears in frames 1, 5, 9, 13, etc., the value of this field is set to 4. For data pipes that appear in every frame, the value of this field is set to 1.
DP_TI_BYPASS: 해당 1비트 필드는 타임 인터리버(5050)의 가용성을 결정한다. 데이터 파이프에 대해 타임 인터리빙이 사용되지 않으면, 해당 필드 값은 1로 설정된다. 반면, 타임 인터리빙이 사용되면, 해당 필드 값은 0으로 설정된다.DP_TI_BYPASS: This 1-bit field determines the availability of time interleaver 5050. If time interleaving is not used for the data pipe, this field value is set to 1. On the other hand, if time interleaving is used, the corresponding field value is set to zero.
DP_FIRST_FRAME_IDX: 해당 5비트 필드는 현 데이터 파이프가 발생하는 슈퍼 프레임의 첫 번째 프레임의 인덱스를 나타낸다. DP_FIRST_FRAME_IDX의 값은 0에서 31 사이다.DP_FIRST_FRAME_IDX: This 5-bit field indicates the index of the first frame of the super frame in which the current data pipe occurs. The value of DP_FIRST_FRAME_IDX is between 0 and 31.
DP_NUM_BLOCK_MAX: 해당 10비트 필드는 해당 데이터 파이프에 대한 DP_NUM_BLOCKS의 최대값을 나타낸다. 해당 필드의 값은 DP_NUM_BLOCKS와 동일한 범위를 갖는다.DP_NUM_BLOCK_MAX: This 10-bit field indicates the maximum value of DP_NUM_BLOCKS for the data pipe. The value of this field has the same range as DP_NUM_BLOCKS.
DP_PAYLOAD_TYPE: 해당 2비트 필드는 주어진 데이터 파이프에 의해 전달되는 페이로드 데이터의 타입을 나타낸다. DP_PAYLOAD_TYPE은 아래의 표 19에 따라 시그널링 된다.DP_PAYLOAD_TYPE: This 2-bit field indicates the type of payload data carried by a given data pipe. DP_PAYLOAD_TYPE is signaled according to Table 19 below.
표 19
Figure PCTKR2015014400-appb-T000019
Table 19
Figure PCTKR2015014400-appb-T000019
DP_INBAND_MODE: 해당 2비트 필드는 현 데이터 파이프가 인 밴드(In-band) 시그널링 정보를 전달하는지 여부를 나타낸다. 인 밴드(In-band) 시그널링 타입은 아래의 표 20에 따라 시그널링 된다.DP_INBAND_MODE: This 2-bit field indicates whether the current data pipe carries in-band signaling information. In-band signaling type is signaled according to Table 20 below.
표 20
Figure PCTKR2015014400-appb-T000020
Table 20
Figure PCTKR2015014400-appb-T000020
DP_PROTOCOL_TYPE: 해당 2비트 필드는 주어진 데이터 파이프에 의해 전달되는 페이로드의 프로토콜 타입을 나타낸다. 페이로드의 프로토콜 타입은 입력 페이로드 타입이 선택되면 아래의 표 21에 따라 시그널링 된다.DP_PROTOCOL_TYPE: This 2-bit field indicates the protocol type of the payload carried by the given data pipe. The protocol type of payload is signaled according to Table 21 below when the input payload type is selected.
표 21
Figure PCTKR2015014400-appb-T000021
Table 21
Figure PCTKR2015014400-appb-T000021
DP_CRC_MODE: 해당 2비트 필드는 CRC 인코딩이 인풋 포맷 블록에서 사용되는지 여부를 나타낸다. CRC 모드는 아래의 표 22에 따라 시그널링 된다.DP_CRC_MODE: This 2-bit field indicates whether CRC encoding is used in the input format block. CRC mode is signaled according to Table 22 below.
표 22
Figure PCTKR2015014400-appb-T000022
Table 22
Figure PCTKR2015014400-appb-T000022
DNP_MODE: 해당 2비트 필드는 DP_PAYLOAD_TYPE이 TS ('00')로 설정되는 경우에 관련된 데이터 파이프에 의해 사용되는 널 패킷 삭제 모드를 나타낸다. DNP_MODE는 아래의 표 23에 따라 시그널링 된다. DP_PAYLOAD_TYPE이 TS ('00')가 아니면, DNP_MODE는 00의 값으로 설정된다.DNP_MODE: This 2-bit field indicates the null packet deletion mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). DNP_MODE is signaled according to Table 23 below. If DP_PAYLOAD_TYPE is not TS ('00'), DNP_MODE is set to a value of 00.
표 23
Figure PCTKR2015014400-appb-T000023
Table 23
Figure PCTKR2015014400-appb-T000023
ISSY_MODE: 해당 2비트 필드는 DP_PAYLOAD_TYPE이 TS ('00')로 설정되는 경우에 관련된 데이터 파이프에 의해 사용되는 ISSY 모드를 나타낸다. ISSY_MODE는 아래의 표 24에 따라 시그널링 된다. DP_PAYLOAD_TYPE이 TS ('00')가 아니면, ISSY_MODE는 00의 값으로 설정된다.ISSY_MODE: This 2-bit field indicates the ISSY mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). ISSY_MODE is signaled according to Table 24 below. If DP_PAYLOAD_TYPE is not TS ('00'), ISSY_MODE is set to a value of 00.
표 24
Figure PCTKR2015014400-appb-T000024
Table 24
Figure PCTKR2015014400-appb-T000024
HC_MODE_TS: 해당 2비트 필드는 DP_PAYLOAD_TYPE이 TS ('00')로 설정되는 경우에 관련된 데이터 파이프에 의해 사용되는 TS 헤더 압축 모드를 나타낸다. HC_MODE_TS는 아래의 표 25에 따라 시그널링 된다.HC_MODE_TS: This 2-bit field indicates the TS header compression mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). HC_MODE_TS is signaled according to Table 25 below.
표 25
Figure PCTKR2015014400-appb-T000025
Table 25
Figure PCTKR2015014400-appb-T000025
HC_MODE_IP: 해당 2비트 필드는 DP_PAYLOAD_TYPE이 IP ('01')로 설정되는 경우에 IP 헤더 압축 모드를 나타낸다. HC_MODE_IP는 아래의 표 26에 따라 시그널링 된다.HC_MODE_IP: This 2-bit field indicates the IP header compression mode when DP_PAYLOAD_TYPE is set to IP ('01'). HC_MODE_IP is signaled according to Table 26 below.
표 26
Figure PCTKR2015014400-appb-T000026
Table 26
Figure PCTKR2015014400-appb-T000026
PID: 해당 13비트 필드는 DP_PAYLOAD_TYPE이 TS ('00')로 설정되고 HC_MODE_TS가 01 또는 10으로 설정되는 경우에 TS 헤더 압축을 위한 PID 수를 나타낸다.PID: This 13-bit field indicates the number of PIDs for TS header compression when DP_PAYLOAD_TYPE is set to TS ('00') and HC_MODE_TS is set to 01 or 10.
RESERVED: 해당 8비트 필드는 추후 사용을 위해 리저브드(reserved)된다.RESERVED: This 8-bit field is reserved for future use.
다음 필드는 FIC_FLAG가 1과 동일할 때만 나타난다.The next field appears only when FIC_FLAG is equal to one.
FIC_VERSION: 해당 8비트 필드는 FIC의 버전 넘버를 나타낸다.FIC_VERSION: This 8-bit field indicates the version number of the FIC.
FIC_LENGTH_BYTE: 해당 13비트 필드는 FIC의 길이를 바이트 단위로 나타낸다.FIC_LENGTH_BYTE: This 13-bit field indicates the length of the FIC in bytes.
RESERVED: 해당 8비트 필드는 추후 사용을 위해 리저브드(reserved)된다.RESERVED: This 8-bit field is reserved for future use.
다음 필드는 AUX_FLAG가 1과 동일할 때만 나타난다.The next field only appears when AUX_FLAG is equal to 1.
NUM_AUX: 해당 4비트 필드는 보조 스트림의 수를 나타낸다. 제로는 보조 스트림이 사용되지 않는 것을 나타낸다.NUM_AUX: This 4-bit field indicates the number of auxiliary streams. Zero indicates that no auxiliary stream is used.
AUX_CONFIG_RFU: 해당 8비트 필드는 추후 사용을 위해 리저브드(reserved)된다.AUX_CONFIG_RFU: This 8-bit field is reserved for future use.
AUX_STREAM_TYPE: 해당 4비트는 현 보조 스트림의 타입을 나타내기 위한 추후 사용을 위해 리저브드(reserved)된다.AUX_STREAM_TYPE: This 4 bits is reserved for future use to indicate the type of the current auxiliary stream.
AUX_PRIVATE_CONFIG: 해당 28비트 필드는 보조 스트림을 시그널링 하기 위한 추후 사용을 위해 리저브드(reserved)된다.AUX_PRIVATE_CONFIG: This 28-bit field is reserved for future use for signaling the secondary stream.
도 14는 본 발명의 다른 일 실시예에 따른 PLS2 데이터를 나타낸다.14 illustrates PLS2 data according to another embodiment of the present invention.
도 14는 PLS2 데이터의 PLS2-DYN을 나타낸다. PLS2-DYN 데이터의 값은 하나의 프레임 그룹의 듀레이션 동안 변화할 수 있는 반면, 필드의 사이즈는 일정하다.14 shows PLS2-DYN of PLS2 data. The value of the PLS2-DYN data may change during the duration of one frame group, while the size of the field is constant.
PLS2-DYN 데이터의 필드의 구체적인 내용은 다음과 같다.Details of the fields of the PLS2-DYN data are as follows.
FRAME_INDEX: 해당 5비트 필드는 슈퍼 프레임 내에서 현 프레임의 프레임 인덱스를 나타낸다. 슈퍼 프레임의 첫 번째 프레임의 인덱스는 0으로 설정된다.FRAME_INDEX: This 5-bit field indicates the frame index of the current frame within the super frame. The index of the first frame of the super frame is set to zero.
PLS_CHANGE_COUNTER: 해당 4비트 필드는 구성이 변화하기 전의 슈퍼 프레임의 수를 나타낸다. 구성이 변화하는 다음 슈퍼 프레임은 해당 필드 내에서 시그널링 되는 값에 의해 나타낸다. 해당 필드의 값이 0000으로 설정되면, 이는 어떠한 예정된 변화도 예측되지 않는 것을 의미한다. 예를 들면, 1의 값은 다음 슈퍼 프레임에 변화가 있다는 것을 나타낸다.PLS_CHANGE_COUNTER: This 4-bit field indicates the number of super frames before the configuration changes. The next super frame whose configuration changes is indicated by the value signaled in that field. If the value of this field is set to 0000, this means that no scheduled change is expected. For example, a value of 1 indicates that there is a change in the next super frame.
FIC_CHANGE_COUNTER: 해당 4비트 필드는 구성(즉, FIC의 콘텐츠)이 변화하기 전의 슈퍼 프레임의 수를 나타낸다. 구성이 변화하는 다음 슈퍼 프레임은 해당 필드 내에서 시그널링 되는 값에 의해 나타낸다. 해당 필드의 값이 0000으로 설정되면, 이는 어떠한 예정된 변화도 예측되지 않는 것을 의미한다. 예를 들면, 0001의 값은 다음 슈퍼 프레임에 변화가 있다는 것을 나타낸다.FIC_CHANGE_COUNTER: This 4-bit field indicates the number of super frames before the configuration (i.e., the content of the FIC) changes. The next super frame whose configuration changes is indicated by the value signaled in that field. If the value of this field is set to 0000, this means that no scheduled change is expected. For example, a value of 0001 indicates that there is a change in the next super frame.
RESERVED: 해당 16비트 필드는 추후 사용을 위해 리저브드(reserved)된다.RESERVED: This 16-bit field is reserved for future use.
다음 필드는 현 프레임에서 전달되는 데이터 파이프와 관련된 파라미터를 설명하는 NUM_DP에서의 루프(loop)에 나타난다.The next field appears in a loop in NUM_DP that describes the parameters related to the data pipe carried in the current frame.
DP_ID: 해당 6비트 필드는 피지컬 프로파일 내에서 데이터 파이프를 유일하게 나타낸다.DP_ID: This 6-bit field uniquely represents a data pipe within the physical profile.
DP_START: 해당 15비트 (또는 13비트) 필드는 DPU 어드레싱(addressing) 기법을 사용하여 데이터 파이프의 첫 번째의 시작 위치를 나타낸다. DP_START 필드는 아래의 표 27에 나타낸 바와 같이 피지컬 프로파일 및 FFT 사이즈에 따라 다른 길이를 갖는다.DP_START: This 15-bit (or 13-bit) field indicates the first starting position of the data pipe using the DPU addressing technique. The DP_START field has a length different according to the physical profile and the FFT size as shown in Table 27 below.
표 27
Figure PCTKR2015014400-appb-T000027
Table 27
Figure PCTKR2015014400-appb-T000027
DP_NUM_BLOCK: 해당 10비트 필드는 현 데이터 파이프에 대한 현 타임 인터리빙 그룹에서 FEC 블록의 수를 나타낸다. DP_NUM_BLOCK의 값은 0에서 1023 사이에 있다.DP_NUM_BLOCK: This 10-bit field indicates the number of FEC blocks in the current time interleaving group for the current data pipe. The value of DP_NUM_BLOCK is between 0 and 1023.
RESERVED: 해당 8비트 필드는 추후 사용을 위해 리저브드(reserved)된다.RESERVED: This 8-bit field is reserved for future use.
다음의 필드는 EAC와 관련된 FIC 파라미터를 나타낸다.The next field indicates the FIC parameter associated with the EAC.
EAC_FLAG: 해당 1비트 필드는 현 프레임에서 EAC의 존재를 나타낸다. 해당 비트는 프리앰블에서 EAC_FLAG와 같은 값이다.EAC_FLAG: This 1-bit field indicates the presence of an EAC in the current frame. This bit is equal to EAC_FLAG in the preamble.
EAS_WAKE_UP_VERSION_NUM: 해당 8비트 필드는 자동 활성화 지시의 버전 넘버를 나타낸다.EAS_WAKE_UP_VERSION_NUM: This 8-bit field indicates the version number of the automatic activation indication.
EAC_FLAG 필드가 1과 동일하면, 다음의 12비트가 EAC_LENGTH_BYTE 필드에 할당된다. EAC_FLAG 필드가 0과 동일하면, 다음의 12비트가 EAC_COUNTER에 할당된다.If the EAC_FLAG field is equal to 1, the next 12 bits are allocated to the EAC_LENGTH_BYTE field. If the EAC_FLAG field is equal to 0, the next 12 bits are allocated to EAC_COUNTER.
EAC_LENGTH_BYTE: 해당 12비트 필드는 EAC의 길이를 바이트로 나타낸다.EAC_LENGTH_BYTE: This 12-bit field indicates the length of the EAC in bytes.
EAC_COUNTER: 해당 12비트 필드는 EAC가 도달하는 프레임 전의 프레임의 수를 나타낸다.EAC_COUNTER: This 12-bit field indicates the number of frames before the frame in which the EAC arrives.
다음 필드는 AUX_FLAG 필드가 1과 동일한 경우에만 나타난다.The following fields appear only if the AUX_FLAG field is equal to one.
AUX_PRIVATE_DYN: 해당 48비트 필드는 보조 스트림을 시그널링 하기 위한 추후 사용을 위해 리저브드(reserved)된다. 해당 필드의 의미는 설정 가능한 PLS2-STAT에서 AUX_STREAM_TYPE의 값에 의존한다.AUX_PRIVATE_DYN: This 48-bit field is reserved for future use for signaling the secondary stream. The meaning of this field depends on the value of AUX_STREAM_TYPE in configurable PLS2-STAT.
CRC_32: 전체 PLS2에 적용되는 32비트 에러 검출 코드.CRC_32: 32-bit error detection code that applies to the entire PLS2.
도 15는 본 발명의 일 실시예에 따른 프레임의 로지컬(logical) 구조를 나타낸다.15 illustrates a logical structure of a frame according to an embodiment of the present invention.
전술한 바와 같이, PLS, EAC, FIC, 데이터 파이프, 보조 스트림, 더미 셀은 프레임에서 OFDM 심볼의 액티브(active) 캐리어에 매핑된다. PLS1 및 PLS2는 처음에 하나 이상의 FSS에 매핑된다. 그 후, EAC가 존재한다면 EAC 셀은 바로 뒤따르는 PLS 필드에 매핑된다. 다음에 FIC가 존재한다면 FIC 셀이 매핑된다. 데이터 파이프는 PLS 다음에 매핑되거나, EAC 또는 FIC가 존재하는 경우, EAC 또는 FIC 이후에 매핑된다. 타입 1 데이터 파이프가 처음에 매핑되고, 타입 2 데이터 파이프가 다음에 매핑된다. 데이터 파이프의 타입의 구체적인 내용은 후술한다. 일부 경우, 데이터 파이프는 EAS에 대한 일부 특수 데이터 또는 서비스 시그널링 데이터를 전달할 수 있다. 보조 스트림 또는 스트림은 존재한다면 데이터 파이프를 다음에 매핑되고 여기에는 차례로 더미 셀이 뒤따른다. 전술한 순서, 즉, PLS, EAC, FIC, 데이터 파이프, 보조 스트림, 및 더미 셀의 순서로 모두 함께 매핑하면 프레임에서 셀 용량을 정확히 채운다.As described above, the PLS, EAC, FIC, data pipe, auxiliary stream, and dummy cell are mapped to the active carrier of the OFDM symbol in the frame. PLS1 and PLS2 are initially mapped to one or more FSS. Then, if there is an EAC, the EAC cell is mapped to the immediately following PLS field. If there is an FIC next, the FIC cell is mapped. The data pipes are mapped after the PLS or, if present, after the EAC or FIC. Type 1 data pipes are mapped first, and type 2 data pipes are mapped next. Details of the type of data pipe will be described later. In some cases, the data pipe may carry some special data or service signaling data for the EAS. The auxiliary stream or stream, if present, is mapped to the data pipe next, followed by a dummy cell in turn. Mapping all together in the order described above, namely PLS, EAC, FIC, data pipe, auxiliary stream, and dummy cell, will correctly fill the cell capacity in the frame.
도 16은 본 발명의 일 실시예에 따른 PLS 매핑을 나타낸다.16 illustrates PLS mapping according to an embodiment of the present invention.
PLS 셀은 FSS의 액티브(active) 캐리어에 매핑된다. PLS가 차지하는 셀의 수에 따라, 하나 이상의 심볼이 FSS로 지정되고, FSS의 수 NFSS는 PLS1에서의 NUM_FSS에 의해 시그널링된다. FSS는 PLS 셀을 전달하는 특수한 심볼이다. 경고성 및 지연 시간(latency)은 PLS에서 중대한 사안이므로, FSS는 높은 파일럿 밀도를 가지고 있어 고속 동기화 및 FSS 내에서의 주파수만의 인터폴레이션(interpoloation, 보간)을 가능하게 한다.The PLS cell is mapped to an active carrier of the FSS. According to the number of cells occupied by the PLS, one or more symbols are designated as FSS, and the number N FSS of the FSS is signaled by NUM_FSS in PLS1. FSS is a special symbol that carries a PLS cell. Since alertness and latency are critical issues in PLS, the FSS has a high pilot density, enabling fast synchronization and interpolation only on frequencies within the FSS.
PLS 셀은 도 16의 예에 나타낸 바와 같이 하향식으로 FSS의 액티브(active) 캐리어에 매핑된다. PLS1 셀은 처음에 첫 FSS의 첫 셀부터 셀 인덱스의 오름차순으로 매핑된다. PLS2 셀은 PLS1의 마지막 셀 직후에 뒤따르고, 매핑은 첫 FSS의 마지막 셀 인덱스까지 아래방향으로 계속된다. 필요한 PLS 셀의 총 수가 하나의 FSS의 액티브(active) 캐리어의 수를 초과하면, 매핑은 다음 FSS로 진행되고 첫 FSS와 완전히 동일한 방식으로 계속된다.The PLS cell is mapped to an active carrier of the FSS from the top down as shown in the example of FIG. PLS1 cells are initially mapped in ascending order of cell index from the first cell of the first FSS. The PLS2 cell follows immediately after the last cell of PLS1 and the mapping continues downward until the last cell index of the first FSS. If the total number of required PLS cells exceeds the number of active carriers of one FSS, the mapping proceeds to the next FSS and continues in exactly the same way as the first FSS.
PLS 매핑이 완료된 후, 데이터 파이프가 다음에 전달된다. EAC, FIC 또는 둘 다 현 프레임에 존재하면, EAC 및 FIC는PLS와 노멀 데이터 파이프 사이에 배치된다.After the PLS mapping is complete, the data pipe is passed next. If EAC, FIC or both are present in the current frame, EAC and FIC are placed between the PLS and the normal data pipe.
도 17은 본 발명의 일 실시예에 따른 EAC 매핑을 나타낸다.17 illustrates EAC mapping according to an embodiment of the present invention.
EAC는 EAS 메시지를 전달하는 전용 채널이고 EAS에 대한 데이터 파이프에 연결된다. EAS 지원은 제공되지만, EAC 자체는 모든 프레임에 존재할 수도 있고 존재하지 않을 수도 있다. EAC가 존재하는 경우, EAC는 PLS2 셀의 직후에 매핑된다. PLS 셀을 제외하고 FIC, 데이터 파이프, 보조 스트림 또는 더미 셀 중 어느 것도 EAC 앞에 위치하지 않는다. EAC 셀의 매핑 절차는 PLS와 완전히 동일하다.The EAC is a dedicated channel for delivering EAS messages and is connected to the data pipes for the EAS. EAS support is provided, but the EAC itself may or may not be present in every frame. If there is an EAC, the EAC is mapped immediately after the PLS2 cell. Except for PLS cells, none of the FIC, data pipes, auxiliary streams or dummy cells are located before the EAC. The mapping procedure of the EAC cell is exactly the same as that of the PLS.
EAC 셀은 도 17의 예에 나타낸 바와 같이 PLS2의 다음 셀부터 셀 인덱스의 오름차순으로 매핑된다. EAS 메시지 크기에 따라, 도 17에 나타낸 바와 같이 EAC 셀은 적은 심볼을 차지할 수 있다.EAC cells are mapped in ascending order of cell index from the next cell of PLS2 as shown in the example of FIG. Depending on the EAS message size, as shown in FIG. 17, the EAC cell may occupy few symbols.
EAC 셀은 PLS2의 마지막 셀 직후에 뒤따르고, 매핑은 마지막 FSS의 마지막 셀 인덱스까지 아래방향으로 계속된다. 필요한 EAC 셀의 총 수가 마지막 FSS의 남아 있는 액티브(active) 캐리어의 수를 초과하면, EAC 매핑은 다음 심볼로 진행되며, FSS와 완전히 동일한 방식으로 계속된다. 이 경우 EAC의 매핑이 이루어지는 다음 심볼은 노멀 데이터 심볼이고, 이는 FSS보다 더 많은 액티브(active) 캐리어를 갖는다.The EAC cell follows immediately after the last cell of PLS2 and the mapping continues downward until the last cell index of the last FSS. If the total number of required EAC cells exceeds the number of remaining active carriers of the last FSS, the EAC mapping proceeds to the next symbol and continues in exactly the same way as the FSS. In this case, the next symbol to which the EAC is mapped is a normal data symbol, which has more active carriers than the FSS.
EAC 매핑이 완료된 후, 존재한다면 FIC가 다음에 전달된다. FIC가 전송되지 않으면(PLS2 필드에서 시그널링으로), 데이터 파이프가 EAC의 마지막 셀 직후에 뒤따른다.After the EAC mapping is complete, the FIC is passed next if present. If no FIC is sent (as signaling in the PLS2 field), the data pipe follows immediately after the last cell of the EAC.
도 18은 본 발명의 일 실시예에 따른 FIC 매핑을 나타낸다.18 illustrates FIC mapping according to an embodiment of the present invention.
(a)는 EAC 없이 FIC 셀의 매핑의 예를 나타내고, (b)는 EAC와 함께 FIC 셀의 매핑의 예를 나타낸다.(a) shows an example of mapping of FIC cells without EAC, and (b) shows an example of mapping of FIC cells with EAC.
FIC는 고속 서비스 획득 및 채널 스캔을 가능하게 하기 위해 계층간 정보(cross-layer information)를 전달하는 전용 채널이다. 해당 정보는 주로 데이터 파이프 사이의 채널 바인딩 (channel binding) 정보 및 각 방송사의 서비스를 포함한다. 고속 스캔을 위해, 수신기는 FIC를 디코딩하고 방송사 ID, 서비스 수, BASE_DP_ID와 같은 정보를 획득할 수 있다. 고속 서비스 획득을 위해, FIC뿐만 아니라 베이스 데이터 파이프도 BASE_DP_ID를 이용해서 디코딩 될 수 있다. 베이스 데이터 파이프가 전송하는 콘텐트를 제외하고, 베이스 데이터 파이프는 노멀 데이터 파이프와 정확히 동일한 방식으로 인코딩되어 프레임에 매핑된다. 따라서, 베이스 데이터 파이프에 대한 추가 설명이 필요하지 않다. FIC 데이터가 생성되어 관리 계층에서 소비된다. FIC 데이터의 콘텐트는 관리 계층 사양에 설명된 바와 같다.FIC is a dedicated channel that carries cross-layer information to enable fast service acquisition and channel scan. The information mainly includes channel binding information between data pipes and services of each broadcaster. For high speed scan, the receiver can decode the FIC and obtain information such as broadcaster ID, number of services, and BASE_DP_ID. For high-speed service acquisition, not only the FIC but also the base data pipe can be decoded using BASE_DP_ID. Except for the content that the base data pipe transmits, the base data pipe is encoded and mapped to the frame in exactly the same way as a normal data pipe. Thus, no further explanation of the base data pipe is needed. FIC data is generated and consumed at the management layer. The content of the FIC data is as described in the management layer specification.
FIC 데이터는 선택적이고, FIC의 사용은 PLS2의 스태틱(static, 정적)인 부분에서 FIC_FLAG 파라미터에 의해 시그널링 된다. FIC가 사용되면, FIC_FLAG는 1로 설정되고, FIC에 대한 시그널링 필드는 PLS2의 스태틱(static, 정적)인 부분에서 정의된다. 해당 필드에서 시그널링되는 것은 FIC_VERSION이고, FIC_LENGTH_BYTE. FIC는 PLS2와 동일한 변조, 코딩, 타임 인터리빙 파라미터를 사용한다. FIC는 PLS2_MOD 및 PLS2_FEC와 같은 동일한 시그널링 파라미터를 공유한다. FIC 데이터는 존재한다면 PLS2 후에 매핑되거나, EAC가 존재하는 경우 EAC 직후에 매핑된다. 노멀 데이터 파이프, 보조 스트림, 또는 더미 셀 중 어느 것도 FIC 앞에 위치하지 않는다. FIC 셀을 매핑하는 방법은 EAC와 완전히 동일하고, 이는 다시 PLS와 동일하다.FIC data is optional and the use of FIC is signaled by the FIC_FLAG parameter in the static part of the PLS2. If FIC is used, FIC_FLAG is set to 1 and the signaling field for FIC is defined in the static part of PLS2. Signaled in this field is FIC_VERSION, FIC_LENGTH_BYTE. FIC uses the same modulation, coding, and time interleaving parameters as PLS2. The FIC shares the same signaling parameters as PLS2_MOD and PLS2_FEC. FIC data is mapped after PLS2 if present, or immediately after EAC if EAC is present. None of the normal data pipes, auxiliary streams, or dummy cells are located before the FIC. The method of mapping the FIC cells is exactly the same as the EAC, which in turn is identical to the PLS.
PLS 후의 EAC가 존재하지 않는 경우, FIC 셀은 (a)의 예에 나타낸 바와 같이 PLS2의 다음 셀부터 셀 인덱스의 오름차순으로 매핑된다. FIC 데이터 사이즈에 따라, (b)에 나타낸 바와 같이, FIC 셀은 수 개의 심볼에 대해서 매핑된다.If there is no EAC after PLS, the FIC cells are mapped in ascending order of cell index from the next cell of PLS2 as shown in the example of (a). Depending on the FIC data size, as shown in (b), FIC cells are mapped for several symbols.
FIC 셀은 PLS2의 마지막 셀 직후에 뒤따르고, 매핑은 마지막 FSS의 마지막 셀 인덱스까지 아래방향으로 계속된다. 필요한 FIC 셀의 총 수가 마지막 FSS의 남아 있는 액티브(active) 캐리어의 수를 초과하면, 나머지 FIC 셀의 매핑은 다음 심볼로 진행되며 이는 FSS와 완전히 동일한 방식으로 계속된다. 이 경우, FIC가 매핑되는 다음 심볼은 노멀 데이터 심볼이며, 이는 FSS보다 더 많은 액티브(active) 캐리어를 갖는다.The FIC cell follows immediately after the last cell of PLS2 and the mapping continues downward until the last cell index of the last FSS. If the total number of required FIC cells exceeds the number of remaining active carriers of the last FSS, the mapping of the remaining FIC cells proceeds to the next symbol, which continues in exactly the same way as the FSS. In this case, the next symbol to which the FIC is mapped is a normal data symbol, which has more active carriers than the FSS.
EAS 메시지가 현 프레임에서 전송되면, EAC는 FIC 보다 먼저 매핑되고 (b)에 나타낸 바와 같이 EAC의 다음 셀부터 FIC 셀은 셀 인덱스의 오름차순으로 매핑된다.If the EAS message is transmitted in the current frame, the EAC is mapped before the FIC and the FIC cells are mapped in ascending order of cell index from the next cell of the EAC as shown in (b).
FIC 매핑이 완료된 후, 하나 이상의 데이터 파이프가 매핑되고, 이후 존재한다면 보조 스트림, 더미 셀이 뒤따른다.After the FIC mapping is completed, one or more data pipes are mapped, followed by auxiliary streams and dummy cells if present.
도 19는 본 발명의 일 실시예에 따른 FEC 구조를 나타낸다.19 shows an FEC structure according to an embodiment of the present invention.
도 19는 비트 인터리빙 전의 본 발명의 일 실시예에 따른 FEC 구조를 나타낸다. 전술한 바와 같이, 데이터 FEC 인코더는 외부 코딩(BCH) 및 내부 코딩(LDPC)을 이용하여 FECBLOCK 절차를 생성하기 위해 입력 BBF에 FEC 인코딩을 실행할 수 있다. 도시된 FEC 구조는 FECBLOCK에 해당한다. 또한, FECBLOCK 및 FEC 구조는 LDPC 코드워드의 길이에 해당하는 동일한 값을 갖는다.19 shows an FEC structure according to an embodiment of the present invention before bit interleaving. As mentioned above, the data FEC encoder may perform FEC encoding on the input BBF to generate the FECBLOCK procedure using outer coding (BCH) and inner coding (LDPC). The illustrated FEC structure corresponds to FECBLOCK. In addition, the FECBLOCK and FEC structures have the same value corresponding to the length of the LDPC codeword.
도 19에 도시된 바와 같이, BCH 인코딩이 각각의 BBF(Kbch 비트)에 적용된 후, LDPC 인코딩이 BCH - 인코딩된 BBF(Kldpc 비트 = Nbch 비트)에 적용된다.As shown in FIG. 19, after BCH encoding is applied to each BBF (K bch bits), LDPC encoding is applied to BCH-encoded BBF (K ldpc bits = N bch bits).
Nldpc의 값은 64800 비트 (롱 FECBLOCK) 또는 16200 비트 (쇼트 FECBLOCK)이다.The value of N ldpc is 64800 bits (long FECBLOCK) or 16200 bits (short FECBLOCK).
아래의 표 28 및 표 29는 롱 FECBLOCK 및 쇼트 FECBLOCK 각각에 대한 FEC 인코딩 파라미터를 나타낸다.Tables 28 and 29 below show the FEC encoding parameters for the long FECBLOCK and the short FECBLOCK, respectively.
표 28
Figure PCTKR2015014400-appb-T000028
Table 28
Figure PCTKR2015014400-appb-T000028
표 29
Figure PCTKR2015014400-appb-T000029
Table 29
Figure PCTKR2015014400-appb-T000029
BCH 인코딩 및 LDPC 인코딩의 구체적인 동작은 다음과 같다.Specific operations of BCH encoding and LDPC encoding are as follows.
12-에러 정정 BCH 코드가 BBF의 외부 인코딩에 사용된다. 쇼트 FECBLOCK 및 롱 FECBLOCK에 대한 BBF 생성 다항식은 모든 다항식을 곱함으로써 얻어진다.A 12-error correcting BCH code is used for the outer encoding of the BBF. The BBF-generated polynomials for short FECBLOCK and long FECBLOCK are obtained by multiplying all polynomials.
LDPC 코드는 외부 BCH 인코딩의 출력을 인코딩하는 데 사용된다. 완성된 Bldpc (FECBLOCK)를 생성하기 위해, Pldpc (패리티 비트)가 각각의 Ildpc (BCH - 인코딩된 BBF)로부터 조직적으로 인코딩되고, Ildpc에 첨부된다. 완성된 Bldpc (FECBLOCK)는 다음의 수학식으로 표현된다.LDPC codes are used to encode the output of the outer BCH encoding. To produce a finished B ldpc (FECBLOCK), ldpc P (parity bits) are each I ldpc - is systematically encoded from the (BCH encoded BBF), it is attached to the I ldpc. The finished B ldpc (FECBLOCK) is expressed by the following equation.
수학식 2
Figure PCTKR2015014400-appb-M000002
Equation 2
Figure PCTKR2015014400-appb-M000002
롱 FECBLOCK 및 쇼트 FECBLOCK에 대한 파라미터는 위의 표 28 및 29에 각각 주어진다.The parameters for long FECBLOCK and short FECBLOCK are given in Tables 28 and 29 above, respectively.
롱 FECBLOCK에 대해 Nldpc - Kldpc 패리티 비트를 계산하는 구체적인 절차는 다음과 같다.N ldpc for long FECBLOCK - specific procedures for calculating the K ldpc parity bits is as follows.
1) 패리티 비트 초기화1) Parity bit initialization
수학식 3
Figure PCTKR2015014400-appb-M000003
Equation 3
Figure PCTKR2015014400-appb-M000003
2) 패리티 체크 매트릭스의 어드레스의 첫 번째 행에서 특정된 패리티 비트 어드레스에서 첫 번째 정보 비트 i0 누산(accumulate). 패리티 체크 매트릭스의 어드레스의 상세한 내용은 후술한다. 예를 들면, 비율 13/15에 대해,2) Accumulate the first information bit i 0 at the parity bit address specified in the first row of the address of the parity check matrix. Details of the address of the parity check matrix will be described later. For example, for ratio 13/15,
수학식 4
Figure PCTKR2015014400-appb-M000004
Equation 4
Figure PCTKR2015014400-appb-M000004
3) 다음 359개의 정보 비트 is, s=1, 2, …, 359에 대해, 다음의 수학식을 이용하여 패리티 비트 어드레스에서 is 누산(accumulate).3) next 359 information bits i s , s = 1, 2,... For 359, accumulate i s at parity bit address using the following equation.
수학식 5
Figure PCTKR2015014400-appb-M000005
Equation 5
Figure PCTKR2015014400-appb-M000005
여기서, x는 첫 번째 비트 i0에 해당하는 패리티 비트 누산기의 어드레스를 나타내고, Qldpc는 패리티 체크 매트릭스의 어드레서에서 특정된 코드 레이트(code rate) 의존 상수이다. 상기 예인, 비율 13/15에 대한, 따라서 정보 비트 i1에 대한 Qldpc = 24에 계속해서, 다음 동작이 실행된다.Here, x represents the address of the parity bit accumulator corresponding to the first bit i 0 , and Q ldpc is a code rate dependent constant specified in the address of the parity check matrix. Subsequent to the above example, Q ldpc = 24 for the ratio 13/15 and thus for information bit i 1 , the next operation is executed.
수학식 6
Figure PCTKR2015014400-appb-M000006
Equation 6
Figure PCTKR2015014400-appb-M000006
4) 361번째 정보 비트 i360에 대해, 패리티 비트 누산기의 어드레스는 패리티 체크 매트릭스의 어드레스의 두 번째 행에 주어진다. 마찬가지 방식으로, 다음 359개의 정보 비트 is, s= 361, 362, …, 719에 대한 패리티 비트 누산기의 어드레스는 수학식 6을 이용하여 얻어진다. 여기서, x는 정보 비트 i360에 해당하는 패리티 비트 누산기의 어드레스, 즉 패리티 체크 매트릭스의 두 번째 행의 엔트리를 나타낸다.4) For the 361th information bit i 360 , the address of the parity bit accumulator is given in the second row of the address of the parity check matrix. In the same way, the next 359 information bits i s , s = 361, 362,... The address of the parity bit accumulator for 719 is obtained using Equation 6. Here, x represents the address of the parity bit accumulator corresponding to information bit i 360 , that is, the entry of the second row of the parity check matrix.
5) 마찬가지 방식으로, 360개의 새로운 정보 비트의 모든 그룹에 대해, 패리티 체크 매트릭스의 어드레스로부터의 새로운 행은 패리티 비트 누산기의 어드레스를 구하는 데 사용된다.5) Similarly, for every group of 360 new information bits, a new row from the address of the parity check matrix is used to find the address of the parity bit accumulator.
모든 정보 비트가 이용된 후, 최종 패리티 비트가 다음과 같이 얻어진다.After all the information bits are used, the final parity bits are obtained as follows.
6) i=1로 시작해서 다음 동작을 순차적으로 실행6) Execute the following actions sequentially starting with i = 1
수학식 7
Figure PCTKR2015014400-appb-M000007
Equation 7
Figure PCTKR2015014400-appb-M000007
여기서 pi, i=0,1,...Nldpc - Kldpc - 1의 최종 콘텐트는 패리티 비트 pi와 동일하다.Where p i , i = 0,1, ... N ldpc -K ldpc -1 The final content is the parity bit p i .
표 30
Figure PCTKR2015014400-appb-T000030
Table 30
Figure PCTKR2015014400-appb-T000030
표 30을 표 31로 대체하고, 롱 FECBLOCK에 대한 패리티 체크 매트릭스의 어드레스를 쇼트 FECBLOCK에 대한 패리티 체크 매트릭스의 어드레스로 대체하는 것을 제외하고, 쇼트 FECBLOCK에 대한 해당 LDPC 인코딩 절차는 롱 FECBLOCK에 대한 t LDPC 인코딩 절차에 따른다.Except for replacing Table 30 with Table 31 and replacing the address of the parity check matrix for long FECBLOCK with the address of the parity check matrix for short FECBLOCK, the corresponding LDPC encoding procedure for short FECBLOCK is t LDPC for long FECBLOCK. Follow the encoding procedure.
표 31
Figure PCTKR2015014400-appb-T000031
Table 31
Figure PCTKR2015014400-appb-T000031
도 20은 본 발명의 일 실시예에 따른 타임 인터리빙을 나타낸다.20 illustrates time interleaving according to an embodiment of the present invention.
(a) 내지 (c)는 타임 인터리빙 모드의 예를 나타낸다.(a) to (c) show examples of the time interleaving mode.
타임 인터리버는 데이터 파이프 레벨에서 동작한다. 타임 인터리빙의 파라미터는 각각의 데이터 파이프에 대해 다르게 설정될 수 있다.The time interleaver operates at the data pipe level. The parameters of time interleaving can be set differently for each data pipe.
PLS2-STAT 데이터의 일부에 나타나는 다음의 파라미터는 타임 인터리빙을 구성한다.The following parameters appearing in part of the PLS2-STAT data constitute time interleaving.
DP_TI_TYPE (허용된 값: 0 또는 1): 타임 인터리빙 모드를 나타낸다. 0은 타임 인터리빙 그룹당 다수의 타임 인터리빙 블록(하나 이상의 타임 인터리빙 블록)을 갖는 모드를 나타낸다. 이 경우, 하나의 타임 인터리빙 그룹은 하나의 프레임에 (프레임간 인터리빙 없이) 직접 매핑된다. 1은 타임 인터리빙 그룹당 하나의 타임 인터리빙 블록만을 갖는 모드를 나타낸다. 이 경우, 타임 인터리빙 블록은 하나 이상의 프레임에 걸쳐 확산된다(프레임간 인터리빙).DP_TI_TYPE (allowed values: 0 or 1): Represents the time interleaving mode. 0 indicates a mode with multiple time interleaving blocks (one or more time interleaving blocks) per time interleaving group. In this case, one time interleaving group is directly mapped to one frame (without interframe interleaving). 1 indicates a mode having only one time interleaving block per time interleaving group. In this case, the time interleaving block is spread over one or more frames (interframe interleaving).
DP_TI_LENGTH: DP_TI_TYPE = '0'이면, 해당 파라미터는 타임 인터리빙 그룹당 타임 인터리빙 블록의 수 NTI이다. DP_TI_TYPE = '1'인 경우, 해당 파라미터는 하나의 타임 인터리빙 그룹으로부터 확산되는 프레임의 수 PI이다.DP_TI_LENGTH: If DP_TI_TYPE = '0', this parameter is the number N TI of time interleaving blocks per time interleaving group. If DP_TI_TYPE = '1', this parameter is the number of frames P I spread from one time interleaving group.
DP_NUM_BLOCK_MAX (허용된 값: 0 내지 1023): 타임 인터리빙 그룹당 XFECBLOCK의 최대 수를 나타낸다.DP_NUM_BLOCK_MAX (allowed values: 0 to 1023): Represents the maximum number of XFECBLOCKs per time interleaving group.
DP_FRAME_INTERVAL (허용된 값: 1, 2, 4, 8): 주어진 피지컬 프로파일의 동일한 데이터 파이프를 전달하는 두 개의 순차적인 프레임 사이의 프레임의 수 IJUMP를 나타낸다.DP_FRAME_INTERVAL (allowed values: 1, 2, 4, 8): Represents the number of frames I JUMP between two sequential frames carrying the same data pipe of a given physical profile.
DP_TI_BYPASS (허용된 값: 0 또는 1): 타임 인터리빙이 데이터 프레임에 이용되지 않으면, 해당 파라미터는 1로 설정된다. 타임 인터리빙이 이용되면, 0으로 설정된다.DP_TI_BYPASS (allowed values: 0 or 1): If time interleaving is not used for the data frame, this parameter is set to one. If time interleaving is used, it is set to zero.
추가로, PLS2-DYN 데이터로부터의 파라미터 DP_NUM_BLOCK은 데이터 그룹의 하나의 타임 인터리빙 그룹에 의해 전달되는 XFECBLOCK의 수를 나타낸다.In addition, the parameter DP_NUM_BLOCK from the PLS2-DYN data indicates the number of XFECBLOCKs carried by one time interleaving group of the data group.
타임 인터리빙이 데이터 프레임에 이용되지 않으면, 다음의 타임 인터리빙 그룹, 타임 인터리빙 동작, 타임 인터리빙 모드는 고려되지 않는다. 그러나 스케줄러부터의 다이나믹(dynamic, 동적) 구성 정보를 위한 딜레이 컴펜세이션(delay compensation, 지연보상) 블록은 여전히 필요하다. 각각의 데이터 파이프에서, SSD/MIMO 인코딩으로부터 수신한 XFECBLOCK은 타임 인터리빙 그룹으로 그루핑된다. 즉, 각각의 타임 인터리빙 그룹은 정수 개의 XFECBLOCK의 집합이고, 다이나믹(dynamic, 동적)으로 변화하는 수의 XFECBLOCK을 포함할 것이다. 인덱스 n의 타임 인터리빙 그룹에 있는 XFECBLOCK의 수는 NxBLOCK_Group(n)로 나타내고, PLS2-DYN 데이터에서 DP_NUM_BLOCK으로 시그널링된다. 이때, NxBLOCK_Group(n)은 최소값 0에서 가장 큰 값이 1023인 최대값 NxBLOCK_Group_MAX (DP_NUM_BLOCK_MAX에 해당)까지 변화할 수 있다.If time interleaving is not used for the data frame, the next time interleaving group, time interleaving operation, and time interleaving mode are not considered. However, there is still a need for a delay compensation block for dynamic configuration information from the scheduler. In each data pipe, XFECBLOCKs received from SSD / MIMO encoding are grouped into time interleaving groups. That is, each time interleaving group is a set of integer number of XFECBLOCKs, and will contain a dynamically varying number of XFECBLOCKs. The number of XFECBLOCKs in the time interleaving group at index n is represented by N xBLOCK_Group (n) and signaled as DP_NUM_BLOCK in the PLS2-DYN data. In this case, N xBLOCK_Group (n) may vary from the minimum value 0 to the maximum value N xBLOCK_Group_MAX (corresponding to DP_NUM_BLOCK_MAX ) having the largest value 1023.
각각의 타임 인터리빙 그룹은 하나의 프레임에 직접 매핑되거나 PI개의 프레임에 걸쳐 확산된다. 또한 각각의 타임 인터리빙 그룹은 하나 이상(NTI개)의 타임 인터리빙 블록으로 분리된다. 여기서 각각의 타임 인터리빙 블록은 타임 인터리버 메모리의 하나의 사용에 해당한다. 타임 인터리빙 그룹 내의 타임 인터리빙 블록은 약간의 다른 수의 XFECBLOCK을 포함할 수 있다. 타임 인터리빙 그룹이 다수의 타임 인터리빙 블록으로 분리되면, 타임 인터리빙 그룹은 하나의 프레임에만 직접 매핑된다. 아래의 표 32에 나타낸 바와 같이, 타임 인터리빙에는 세 가지 옵션이 있다(타임 인터리빙을 생략하는 추가 옵션 제외).Each time interleaving group is either mapped directly to one frame or spread over P I frames. Each time interleaving group is further divided into one or more (N TI ) time interleaving blocks. Here, each time interleaving block corresponds to one use of the time interleaver memory. The time interleaving block in the time interleaving group may include some other number of XFECBLOCKs. If the time interleaving group is divided into multiple time interleaving blocks, the time interleaving group is directly mapped to only one frame. As shown in Table 32 below, there are three options for time interleaving (except for the additional option of omitting time interleaving).
표 32
Figure PCTKR2015014400-appb-T000032
Table 32
Figure PCTKR2015014400-appb-T000032
일반적으로, 타임 인터리버는 프레임 생성 과정 이전에 데이터 파이프 데이터에 대한 버퍼로도 작용할 것이다. 이는 각각의 데이터 파이프에 대해 2개의 메모리 뱅크로 달성된다. 첫 번째 타임 인터리빙 블록은 첫 번째 뱅크에 기입된다. 첫 번째 뱅크에서 판독되는 동안 두 번째 타임 인터리빙 블록이 두 번째 뱅크에 기입된다.In general, the time interleaver will also act as a buffer for the data pipe data before the frame generation process. This is accomplished with two memory banks for each data pipe. The first time interleaving block is written to the first bank. The second time interleaving block is written to the second bank while reading from the first bank.
타임 인터리빙은 트위스트된 행-열 블록 인터리버이다. n번째 타임 인터리빙 그룹의 s번째 타임 인터리빙 블록에 대해, 열의 수 Nc 가 NxBLOCK_TI(n,s) 와 동일한 반면, 타임 인터리빙 메모리의 행의 수 Nr 는 셀의 수 Ncells 와 동일하다 (즉, Nr = Ncells).Time interleaving is a twisted row-column block interleaver. For the sth time interleaving block of the nth time interleaving group, the number of columns N c is equal to N xBLOCK_TI (n, s), while the number of rows N r of the time interleaving memory is equal to the number N cells of cells (ie , N r = N cells ).
도 21은 본 발명의 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 기본 동작을 나타낸다.21 illustrates the basic operation of a twisted row-column block interleaver according to an embodiment of the present invention.
도 21(a)는 타임 인터리버에서 기입 동작을 나타내고, 도 21(b)는 타임 인터리버에서 판독 동작을 나타낸다. (a)에 나타낸 바와 같이, 첫 번째 XFECBLOCK은 타임 인터리빙 메모리의 첫 번째 열에 열 방향으로 기입되고, 두 번째 XFECBLOCK은 다음 열에 기입되고, 이러한 동작이 이어진다. 그리고 인터리빙 어레이에서, 셀이 대각선 방향으로 판독된다. (b)에 나타낸 바와 같이 첫 번째 행으로부터 (가장 왼쪽 열을 시작으로 행을 따라 오른쪽으로) 마지막 행까지 대각선 방향 판독이 진행되는 동안,
Figure PCTKR2015014400-appb-I000001
개의 셀이 판독된다. 구체적으로,
Figure PCTKR2015014400-appb-I000002
이 순차적으로 판독될 타임 인터리빙 메모리 셀 위치라고 가정하면, 이러한 인터리빙 어레이에서의 판독 동작은 아래 식에서와 같이 행 인덱스
Figure PCTKR2015014400-appb-I000003
, 열 인덱스
Figure PCTKR2015014400-appb-I000004
, 관련된 트위스트 파라미터
Figure PCTKR2015014400-appb-I000005
를 산출함으로써 실행된다.
Fig. 21A shows a write operation in the time interleaver and Fig. 21B shows a read operation in the time interleaver. As shown in (a), the first XFECBLOCK is written in the column direction to the first column of the time interleaving memory, and the second XFECBLOCK is written to the next column, followed by this operation. And in the interleaving array, the cells are read diagonally. As shown in (b), during the diagonal reading from the first row to the last row (starting from the leftmost column to the right along the row),
Figure PCTKR2015014400-appb-I000001
Cells are read. Specifically,
Figure PCTKR2015014400-appb-I000002
Assuming that this is a time interleaving memory cell position to be read sequentially, the read operation in this interleaving array is a row index as in the equation below.
Figure PCTKR2015014400-appb-I000003
Column index
Figure PCTKR2015014400-appb-I000004
Related twist parameters
Figure PCTKR2015014400-appb-I000005
Is executed by calculating.
수학식 8
Figure PCTKR2015014400-appb-M000008
Equation 8
Figure PCTKR2015014400-appb-M000008
여기서,
Figure PCTKR2015014400-appb-I000006
Figure PCTKR2015014400-appb-I000007
에 상관없이 대각선 방향 판독 과정에 대한 공통 시프트 값이고, 시프트 값은 아래 식에서와 같이 PLS2-STAT에서 주어진
Figure PCTKR2015014400-appb-I000008
에 의해 결정된다.
here,
Figure PCTKR2015014400-appb-I000006
Is
Figure PCTKR2015014400-appb-I000007
Regardless of the common shift value for the diagonal reading process, the shift value is given in PLS2-STAT as in the equation below.
Figure PCTKR2015014400-appb-I000008
Determined by
수학식 9
Figure PCTKR2015014400-appb-M000009
Equation 9
Figure PCTKR2015014400-appb-M000009
결과적으로, 판독될 셀 위치는 좌표
Figure PCTKR2015014400-appb-I000009
에 의해 산출된다.
As a result, the cell position to be read is coordinate
Figure PCTKR2015014400-appb-I000009
Calculated by
도 22는 본 발명의 다른 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 동작을 나타낸다.22 illustrates an operation of a twisted row-column block interleaver according to another embodiment of the present invention.
더 구체적으로, 도 22는
Figure PCTKR2015014400-appb-I000010
,
Figure PCTKR2015014400-appb-I000011
,
Figure PCTKR2015014400-appb-I000012
일 때 가상 XFECBLOCK을 포함하는 각각의 타임 인터리빙 그룹에 대한 타임 인터리빙 메모리에서 인터리빙 어레이를 나타낸다.
More specifically, FIG. 22
Figure PCTKR2015014400-appb-I000010
,
Figure PCTKR2015014400-appb-I000011
,
Figure PCTKR2015014400-appb-I000012
Denotes an interleaving array in the time interleaving memory for each time interleaving group including the virtual XFECBLOCK.
변수
Figure PCTKR2015014400-appb-I000013
Figure PCTKR2015014400-appb-I000014
보다 작거나 같을 것이다. 따라서,
Figure PCTKR2015014400-appb-I000015
에 상관없이 수신기 측에서 단일 메모리 디인터리빙을 달성하기 위해, 트위스트된 행-열 블록 인터리버용 인터리빙 어레이는 가상 XFECBLOCK을 타임 인터리빙 메모리에 삽입함으로써
Figure PCTKR2015014400-appb-I000016
의 크기로 설정되고, 판독 과정은 다음 식과 같이 이루어진다.
variable
Figure PCTKR2015014400-appb-I000013
Is
Figure PCTKR2015014400-appb-I000014
Will be less than or equal to therefore,
Figure PCTKR2015014400-appb-I000015
To achieve single memory deinterleaving at the receiver regardless, the interleaving array for twisted row-column block interleaver inserts a virtual XFECBLOCK into the time interleaving memory.
Figure PCTKR2015014400-appb-I000016
It is set to the size of, and the reading process is made as follows.
수학식 10
Figure PCTKR2015014400-appb-M000010
Equation 10
Figure PCTKR2015014400-appb-M000010
타임 인터리빙 그룹의 수는 3으로 설정된다. 타임 인터리버의 옵션은 DP_TI_TYPE='0', DP_FRAME_INTERVAL='1', DP_TI_LENGTH='1', 즉 NTI=1, IJUMP=1, PI=1에 의해 PLS2-STAT 데이터에서 시그널링된다. 각각 Ncells = 30인 XFECBLOCK의 타임 인터리빙 그룹당 수는 각각의 NxBLOCK_TI(0,0) = 3, NxBLOCK_TI(1,0) = 6, NxBLOCK_TI(2,0) = 5에 의해 PLS2-DYN 데이터에서 시그널링된다. XFECBLOCK의 최대 수는 NxBLOCK_Group_MAX에 의해 PLS2-STAT 데이터에서 시그널링 되고, 이는
Figure PCTKR2015014400-appb-I000017
로 이어진다.
The number of time interleaving groups is set to three. The options of the time interleaver are signaled in the PLS2-STAT data by DP_TI_TYPE = '0', DP_FRAME_INTERVAL = '1', DP_TI_LENGTH = '1', that is, NTI = 1, IJUMP = 1, PI = 1. The number per time interleaving group of XFECBLOCKs, each with Ncells = 30, is signaled in the PLS2-DYN data by NxBLOCK_TI (0,0) = 3, NxBLOCK_TI (1,0) = 6, and NxBLOCK_TI (2,0) = 5, respectively. The maximum number of XFECBLOCKs is signaled in PLS2-STAT data by NxBLOCK_Group_MAX, which
Figure PCTKR2015014400-appb-I000017
Leads to.
도 23은 본 발명의 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 대각선 방향 판독 패턴을 나타낸다.Figure 23 illustrates a diagonal read pattern of a twisted row-column block interleaver according to one embodiment of the present invention.
더 구체적으로, 도 23은 파라미터
Figure PCTKR2015014400-appb-I000018
및 Sshift=(7-1)/2=3을 갖는 각각의 인터리빙 어레이로부터의 대각선 방향 판독 패턴을 나타낸다. 이때 위에 유사 코드로 나타낸 판독 과정에서,
Figure PCTKR2015014400-appb-I000019
이면, Vi의 값이 생략되고, Vi의 다음 계산값이 사용된다.
More specifically, FIG. 23 shows parameters
Figure PCTKR2015014400-appb-I000018
And diagonal read patterns from each interleaving array with Sshift = (7-1) / 2 = 3. At this point, in the reading process indicated by pseudo code above,
Figure PCTKR2015014400-appb-I000019
, Then the value of Vi is omitted and the next calculated value of Vi is used.
도 24는 본 발명의 일 실시예에 따른 각각의 인터리빙 어레이로부터의 인터리빙된 XFECBLOCK을 나타낸다.24 illustrates interleaved XFECBLOCKs from each interleaving array according to an embodiment of the present invention.
도 24는 파라미터
Figure PCTKR2015014400-appb-I000020
및 Sshift=3을 갖는 각각의 인터리빙 어레이로부터 인터리빙된 XFECBLOCK을 나타낸다.
24 is a parameter
Figure PCTKR2015014400-appb-I000020
And XFECBLOCK interleaved from each interleaving array with Sshift = 3.
도 25 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링을 도시한 도면이다. FIG. 25 illustrates signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
전술한 바와 같이, 본 발명에 따른 주파수 인터리버는 OFDM 심볼마다 다른 인터리빙 시퀀스를 사용하여 인터리빙을 수행하나, 주파수 디인터리버는 수신한 OFDM 심볼에 대하여 싱글 메모리 디인터리빙을 수행할 수 있다. As described above, the frequency interleaver according to the present invention performs interleaving using different interleaving sequences for each OFDM symbol, but the frequency deinterleaver may perform single memory deinterleaving on the received OFDM symbol.
본 발명에서는, 한 프레임 내의 OFDM 심볼 수가 짝수인지 홀수인지에 무관하게 주파수 디인터리버가 싱글 메모리 디인터리빙을 수행할 수 있는 방법을 제안한다. 이를 위하여, OFDM 심볼 수가 짝수개인지 홀수개인지에 따라 전술한 주파수 인터리버의 구조가 다르게 운영될 수 있다. 또한, 이와 관련된 시그널링 정보가 전술한 프리앰블 및/또는 PLS(Physical Layer Signaling) 에 추가로 정의될 수 있다. 이를 통하여 OFDM 심볼의 개수가 짝수인 경우에 한정되지 않고, 언제든지 싱글 메모리 디인터리빙이 가능해질 수 있다. The present invention proposes a method in which a frequency deinterleaver can perform single memory deinterleaving regardless of whether the number of OFDM symbols in a frame is even or odd. To this end, the above-described structure of the frequency interleaver may operate differently depending on whether the number of OFDM symbols is even or odd. In addition, signaling information related thereto may be further defined in the aforementioned preamble and / or PLS (Physical Layer Signaling). As a result, the number of OFDM symbols is not limited to an even number, and single memory deinterleaving may be possible at any time.
여기서, PLS 는 매 프레임의 FSS(Frame Starting Symbol, FSS) 에 포함되어 전송될 수 있다. 또는 실시예에 따라, PLS 는 첫번째 OFDM 심볼에 포함되어 전송될 수 있다. 또는 PLS 존재여부에 따라, PLS 에 해당하는 시그널링은 프리앰블에 모두 포함되어 전송될 수 있다. 또는 프리앰블 및/또는 PLS 에 해당하는 시그널링 정보들은 부트 스트랩 정보에 포함되어 전송될 수도 있다. 부트 스트랩 정보는 프리앰블의 앞에 위치하는 정보 파트일 수 있다. Here, the PLS may be included in the frame starting symbol (FSS) of each frame and transmitted. Alternatively, according to an embodiment, the PLS may be included in the first OFDM symbol and transmitted. Alternatively, depending on the presence of the PLS, signaling corresponding to the PLS may be included in the preamble and transmitted. Alternatively, signaling information corresponding to the preamble and / or the PLS may be included in the bootstrap information and transmitted. The bootstrap information may be an information part located in front of the preamble.
송신부의 주파수 인터리버에서 활용된 처리동작 등에 관한 정보로서, FI_mode 필드와 N_sym 필드가 있을 수 있다.As information on a processing operation used in the frequency interleaver of the transmitter, there may be a FI_mode field and an N_sym field.
FI_mode 필드는 프리앰블에 위치할 수 있는 1 비트 필드일 수 있다. FI_mode 필드는 매 프레임의 FSS(Frame Starting Symbol) 또는 첫번째 OFDM 심볼에 사용된 인터리빙 스킴을 나타낼 수 있다. The FI_mode field may be a 1-bit field that may be located in the preamble. The FI_mode field may indicate an interleaving scheme used for the frame starting symbol (FSS) or the first OFDM symbol of each frame.
FI_mode 필드가 지시하는 인터리빙 스킴에는 FI 스킴 #1 와 FI 스킴 #2 가 있을 수 있다. Interleaving schemes indicated by the FI_mode field may include FI scheme # 1 and FI scheme # 2.
FI 스킴 #1 은 송신측에서 주파수 인터리버가 FSS 에 대하여, 랜덤 쓰기(random writing) 동작 수행 후 선형 읽기(linear reading) 동작을 수행한 경우를 의미할 수 있다. 이 경우는 FI_mode 필드 값이 0 인 경우에 해당될 수 있다. PRBS 등을 이용한 임의의 랜덤 시퀀스 제너레이터에 의해 발생되는 값을 이용해, 메모리에 랜덤쓰기, 선형 읽기 동작을 수행할 수 있다. 여기서 선형 읽기란 순차적으로 읽어들이는 동작을 의미할 수 있다. FI scheme # 1 may refer to a case in which the frequency interleaver performs a linear reading operation on the FSS after performing a random writing operation on the FSS. This case may correspond to a case where the FI_mode field value is 0. By using a value generated by an arbitrary random sequence generator using PRBS or the like, random write and linear read operations may be performed in the memory. Here, the linear read may mean an operation of sequentially reading.
FI 스킴 #2 는 송신측에서 주파수 인터리버가 FSS 에 대하여, 선형 쓰기(linear writing) 동작 수행 후 랜덤 읽기(random reading) 동작을 수행한 경우를 의미할 수 있다. 이 경우는 FI_mode 필드 값이 1 인 경우에 해당될 수 있다. 마찬가지로, PRBS 등을 이용한 임의의 랜덤 시퀀스 제너레이터에 의해 발생되는 값을 이용해, 메모리에 선형쓰기, 랜덤읽기 동작을 수행할 수 있다. 여기서 선형 쓰기란 순차적으로 쓰는 동작을 수행하는 것을 의미할 수 있다. FI scheme # 2 may mean a case in which the frequency interleaver performs a random reading operation after performing a linear writing operation on the FSS at the transmitting side. This case may correspond to a case where the FI_mode field value is 1. Similarly, linear write and random read operations can be performed in a memory using values generated by an arbitrary random sequence generator using PRBS. In this case, the linear writing may mean performing a writing operation sequentially.
또한, FI_mode 필드는 매 프레임의 FES(Frame Edge Symbol) 또는 마지막 OFDM 심볼에 사용된 인터리빙 스킴을 나타낼 수 있다. FES 에 적용되는 인터리빙 스킴은 PLS 에 의해 전송되는 N_sym 필드의 값에 따라 다르게 지시될 수 있다. 즉, OFDM 심볼 수가 홀수인지 짝수인지에 따라 FI_mode 필드가 지시하는 인터리빙 스킴이 달라질 수 있다. 두 필드들간의 관계는 미리 송수신측에 테이블로서 정의되어 있을 수 있다. In addition, the FI_mode field may indicate an interleaving scheme used for the frame edge symbol (FES) or the last OFDM symbol of each frame. The interleaving scheme applied to the FES may be indicated differently according to the value of the N_sym field transmitted by the PLS. That is, the interleaving scheme indicated by the FI_mode field may vary depending on whether the number of OFDM symbols is odd or even. The relationship between the two fields may be previously defined as a table on the transmitting and receiving side.
FI_mode 필드는 실시예에 따라 프리앰블 외에 프레임의 다른 부분에 정의되어 전송될 수 있다. According to an embodiment, the FI_mode field may be defined and transmitted in another part of the frame in addition to the preamble.
N_sym 필드는 PLS 파트에 위치할 수 있는 필드일 수 있다. N_sym 필드의 비트수는 실시예에 따라 가변적일 수 있다. N_sym 필드는 한 프레임에 포함된 OFDM 심볼의 개수를 지시할 수 있다. 이에 따라, 수신측에서는 OFDM 심볼의 개수가 짝수개인지 홀수개인지 파악할 수 있다.The N_sym field may be a field that may be located in the PLS part. The number of bits of the N_sym field may vary according to an embodiment. The N_sym field may indicate the number of OFDM symbols included in one frame. Accordingly, the receiving side can determine whether the number of OFDM symbols is even or odd.
전술한 한 프레임 내의 OFDM 심볼 수에 무관한 주파수 인터리버에 대응되는 주파수 디인터리버의 동작은 다음과 같다. 이 주파수 디인터리버는 제안된 시그널링 필드들을 활용하여 OFDM 심볼 수가 짝수인지 홀수인지 여부에 무관하게 싱글 메모리 디인터리빙을 수행할 수 있다.The operation of the frequency deinterleaver corresponding to the frequency interleaver irrespective of the number of OFDM symbols in one frame described above is as follows. The frequency deinterleaver may perform single memory deinterleaving using the proposed signaling fields regardless of whether the number of OFDM symbols is even or odd.
주파수 디인터리버는 먼저, 프리앰블의 FI_mode 필드의 정보를 이용하여 FSS 에 대하여 주파수 디인터리빙을 수행할 수 있다. FSS 에 활용된 주파수 인터리빙 스킴이 FI_mode 에 의해 지시되기 때문이다. First, the frequency deinterleaver may perform frequency deinterleaving on the FSS using information of the FI_mode field of the preamble. This is because the frequency interleaving scheme utilized for the FSS is indicated by FI_mode.
주파수 디인터리버는 FI_mode 필드의 시그널링 정보와 PLS 의 N_sym 필드의 시그널링 정보를 이용하여, FES 에 대하여 주파수 디인터리빙을 수행할 수 있다. 이 때, 미리 정의된 테이블을 이용하여 두 필드간의 관계가 파악될 수 있다. 기 정의된 테이블에 대하여는 후술한다. The frequency deinterleaver may perform frequency deinterleaving on the FES using signaling information of the FI_mode field and signaling information of the N_sym field of the PLS. At this time, the relationship between the two fields may be grasped using a predefined table. The predefined table will be described later.
이 외의 심볼들의 전반적인 디인터리빙 과정은, 송신측의 인터리빙 과정의 역순으로 수행될 수 있다. 즉, 입력되는 연속된 한쌍의 OFDM 심볼에 대해서, 주파수 디인터리버는 하나의 인터리빙 시퀀스를 활용하여 디인터리빙을 수행할 수 있다. 여기서, 하나의 인터리빙 시퀀스는 해당 주파수 인터리버가 읽기&쓰기에 사용했던 인터리빙 시퀀스일 수 있다. 주파수 디인터리버는 그 인터리빙 시퀀스를 이용하여 역순으로 읽기&쓰기 과정을 수행할 수 있다. The overall deinterleaving process of the other symbols may be performed in the reverse order of the interleaving process of the transmitter. That is, the frequency deinterleaver may perform deinterleaving by using one interleaving sequence with respect to a pair of input OFDM symbols. Here, one interleaving sequence may be an interleaving sequence used by the corresponding frequency interleaver for reading and writing. The frequency deinterleaver may perform the read & write process in reverse order using the interleaving sequence.
허나, 본 발명에 따른 주파수 디인터리버는 더블 메모리를 사용하는 핑퐁(ping pong) 구조를 사용하지 않을 수 있다. 주파수 디인터리버는 연속된 입력 OFDM 심볼들에 대하여, 싱글 메모리를 활용해 디인터리빙을 수행할 수 있다. 이로써 주파수 디인터리버의 메모리 사용 효율성이 증대될 수 있다. However, the frequency deinterleaver according to the present invention may not use a ping pong structure using a double memory. The frequency deinterleaver may perform deinterleaving using a single memory for successive input OFDM symbols. This can increase the memory usage efficiency of the frequency deinterleaver.
도 26 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링에 있어서, FSS 를 위한 FI 스킴들을 도시한 도면이다. FIG. 26 is a diagram illustrating FI schemes for FSS in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
전술한 FI_mode 필드와 N_sym 필드를 이용하여 주파수 인터리빙 과정에서 적용되는 인터리빙 스킴을 결정할 수 있다.An interleaving scheme applied in the frequency interleaving process may be determined using the aforementioned FI_mode field and the N_sym field.
FSS 의 경우에 있어서, N_sym 필드가 지시하는 OFDM 심볼의 수가 짝수인 경우, FI_mode 필드 값에 무관하게 FI 스킴 #1 이 FSS 에 수행될 수 있다. In the case of FSS, if the number of OFDM symbols indicated by the N_sym field is even, FI scheme # 1 may be performed on the FSS regardless of the FI_mode field value.
N_sym 필드가 지시하는 OFDM 심볼의 수가 홀수인 경우, FI_mode 필드가 0 의 값을 가지면, FI 스킴 #1 이 FSS 에 적용되고, 1 의 값을 가지면, FI 스킴 #2 가 FSS 에 적용될 수 있다. 즉, OFDM 심볼의 수가 홀수인 경우, 주파수 인터리빙에 있어 FI 스킴 #1 과 #2 가 번갈아가면서 FSS 에 적용될 수 있다. When the number of OFDM symbols indicated by the N_sym field is odd, if the FI_mode field has a value of 0, FI scheme # 1 is applied to the FSS, and if it has a value of 1, FI scheme # 2 may be applied to the FSS. That is, when the number of OFDM symbols is odd, FI schemes # 1 and # 2 may be alternately applied to the FSS in frequency interleaving.
도 27 는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링에 있어서, FES 를 위한 리셋 모드의 동작을 도시한 도면이다.FIG. 27 illustrates an operation of a reset mode for FES in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
FES 에 대한 주파수 인터리빙에 있어서, 전술한 심볼 오프셋 생성기는 리셋 모드(Reset mode) 라는 새로운 개념을 도입할 수 있다. 리셋 모드는, 심볼 오프셋 생성기에 의해 발생되는 심볼 오프셋 값이 '0' 인 모드를 의미할 수 있다. In frequency interleaving for FES, the aforementioned symbol offset generator may introduce a new concept called a reset mode. The reset mode may mean a mode in which a symbol offset value generated by the symbol offset generator is '0'.
FES 에 대한 주파수 인터리빙에 있어서, 전술한 FI_mode 필드와 N_sym 필드를 이용하여 리셋 모드의 사용여부를 결정할 수 있다.In frequency interleaving for FES, it is possible to determine whether to use the reset mode by using the aforementioned FI_mode field and N_sym field.
N_sym 필드가 지시하는 OFDM 심볼의 수가 짝수인 경우, FI_mode 필드의 값에 무관하게 심볼 오프셋 생성기의 리셋 모드는 동작하지 않을 수 있다(off).If the number of OFDM symbols indicated by the N_sym field is even, the reset mode of the symbol offset generator may not be operated regardless of the value of the FI_mode field.
N_sym 필드가 지시하는 OFDM 심볼의 수가 홀수인 경우, FI_mode 필드의 값이 0 일 경우 심볼 오프셋 생성기가 리셋 모드에 따라 동작할 수 있다(on). 또한, FI_mode 필드의 값이 1 일 경우 심볼 오프셋 생성기의 리셋 모드는 동작하지 않을 수 있다(off). 즉, OFDM 심볼의 수가 홀수인 경우, 주파수 인터리빙에 있어 리셋모드가 번갈아가며 온/오프 될 수 있다. When the number of OFDM symbols indicated by the N_sym field is odd, when the value of the FI_mode field is 0, the symbol offset generator may operate according to the reset mode (on). In addition, when the value of the FI_mode field is 1, the reset mode of the symbol offset generator may not operate. That is, when the number of OFDM symbols is an odd number, the reset mode may be alternately turned on / off in frequency interleaving.
도 28 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 주파수 인터리버의 입력과 출력을 수학식으로 표시한 도면이다.FIG. 28 is a diagram for mathematically representing an input and an output of a frequency interleaver in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
전술한 바와 같이, 각각의 메모리 뱅크-A 및 메모리 뱅크-B 의 OFDM 심볼 페어들은 전술한 인터리빙 과정에 의해 처리될 수 있다. 전술한 바와 같이, 인터리빙에는 하나의 메인 인터리빙 시드가 순환 천이(cyclic-shifting)되어 생성된 다양한 다른 인터리빙 시드가 활용될 수 있다. 여기서, 인터리빙 시드는 인터리빙 시퀀스라고 칭해질 수도 있다. 또한, 인터리빙 시드는 인터리빙 주소값(interleaving address value) 내지는 주소값(address value), 인터리빙 주소(interleaving address) 라고 칭해질 수 있다. 여기서, 인터리빙 주소값이라는 용어는 복수개의 주소값들의 집합의 의미로 복수의 대상을 지시하는데 사용될 수도 있고, 인터리빙 시드의 의미로 단수의 대상을 지시하는데 사용될 수도 있다. 즉 실시예에 따라, 인터리빙 주소값이라 함은 H(p) 의 각각의 주소값을 의미하거나, H(p) 자체를 의미할 수도 있다. As described above, OFDM symbol pairs of each memory bank-A and memory bank-B may be processed by the above-described interleaving process. As described above, interleaving may utilize a variety of other interleaving seeds generated by one main interleaving seed being cyclic-shifted. Here, the interleaving seed may be referred to as an interleaving sequence. In addition, the interleaving seed may be referred to as an interleaving address value, an address value, or an interleaving address. Here, the term interleaving address value may be used to indicate a plurality of objects in the meaning of a set of a plurality of address values, or may be used to indicate a singular object in the meaning of an interleaving seed. That is, according to the embodiment, the interleaving address value may mean each address value of H (p) or may mean H (p) itself.
하나의 OFDM 심볼 내에서 인터리빙될 주파수 인터리빙의 입력은 Om,l 으로 표기될 수 있다(t50010). 여기서, 각각의 데이터 셀들은 xm,l,0, .... xm,l,Ndata-1 로 표기될 수 있다. p 는 셀 인덱스, l 은 OFDM 심볼 인덱스, m 은 프레임의 인덱스를 의미할 수 있다. 즉, xm,l,p 는 m 번째 프레임, l 번째 OFDM 심볼의 p 번째 데이터 셀을 의미할 수 있다. Ndata 는 데이터 셀들의 개수를 의미할 수 있다. Nsym 은 심볼(프레임 시그널링 심볼, 노말 데이터 심볼, 프레임 엣지 심볼)들의 개수를 의미할 수 있다.An input of frequency interleaving to be interleaved in one OFDM symbol may be denoted by O m, l (t50010). Here, each of the data cells may be represented by x m, l, 0 ,... X m, l, Ndata-1 . p may mean a cell index, l may mean an OFDM symbol index, and m may mean an index of a frame. That is, x m, l, p may refer to the p th data cell of the m th frame, the l th OFDM symbol. N data may mean the number of data cells. N sym may mean the number of symbols (frame signaling symbol, normal data symbol, frame edge symbol).
전술한 동작에 의해 인터리빙을 거친 후의 데이터 셀들은 Pm,l 로 표기될 수 있다(t50020). 각각의 인터리빙된 데이터 셀들은 vm,l,0, .... vm,l,Ndata-1 로 표기될 수 있다. p, l, m 은 전술한것과 같은 인덱스 값을 가질 수 있다.Data cells after interleaving by the above operation may be denoted by P m, l (t50020). Each interleaved data cell may be denoted by v m, l, 0 ,... V m, l, Ndata-1 . p, l, m may have the same index value as described above.
도 29 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, FI 스킴 #1 및 FI 스킴 #2 에 따른 주파수 인터리빙의 논리적 동작 매커니즘의 수학식을 나타낸다.29 is a view illustrating equations of a logical operation mechanism of frequency interleaving according to FI scheme # 1 and FI scheme # 2 in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention. Indicates.
먼저, FI 스킴 #1 에 따른 주파수 인터리빙을 설명한다. 전술한 바와 같이, 각 메모리 뱅크의 인터리빙 시퀀스(인터리빙 주소)를 이용하여 주파수 인터리빙이 수행될 수 있다.First, frequency interleaving according to FI scheme # 1 will be described. As described above, frequency interleaving may be performed using an interleaving sequence (interleaving address) of each memory bank.
짝수번째 심볼(j mod 2 = 0)에 대한 인터리빙 동작은 도시된 수학식(t51010)과 같이 수학적으로 기술될 수 있다. 입력 데이터 x 에 대하여, 인터리빙 시퀀스(인터리빙 주소)를 이용하여 주파수 인터리빙이 수행되어 출력 v 를 얻을 수 있다. 여기서, p 번째 입력 데이터 x 는, H(p) 번째 출력 데이터 v 와 같아지도록 순서가 섞일 수 있다. The interleaving operation for the even-numbered symbol (j mod 2 = 0) can be described mathematically as shown in equation t51010. For the input data x, frequency interleaving may be performed using an interleaving sequence (interleaving address) to obtain an output v. Here, the p th input data x may be mixed in order to be equal to the H (p) th output data v.
즉, 짝수번째 심볼(첫번째 심볼)에 대해서는, 인터리빙 시퀀스를 이용하여 랜덤 쓰기 과정이 먼저 수행된 후, 다시 이를 순차적으로 읽는 선형 읽기 과정이 수행될 수 있다. 여기서, 인터리빙 시퀀스(인터리빙 주소)는 PRBS 등을 이용한 임의의 랜덤 시퀀스 제너레이터에 의해 발생되는 값일 수 있다. That is, for the even-numbered symbol (the first symbol), a random write process may be performed first using an interleaving sequence, and then a linear read process may be sequentially read again. Here, the interleaving sequence (interleaving address) may be a value generated by an arbitrary random sequence generator using PRBS.
홀수번째 심볼(j mod 2 = 1)에 대한 인터리빙 동작은 도시된 수학식(t51020)과 같이 수학적으로 기술될 수 있다. 입력 데이터 x 에 대하여, 인터리빙 시퀀스(인터리빙 주소)를 이용하여 주파수 인터리빙이 수행되어 출력 v 를 얻을 수 있다. 여기서, H(p) 번째 입력 데이터 x 는, p 번째 출력 데이터 v 와 같아지도록 순서가 섞일 수 있다. 즉, 짝수번째 심볼에 대한 인터리빙 처리와 비교했을 때, 인터리빙 시퀀스(인터리빙 주소)가 반대로(역으로, inverse) 적용될 수 있다. The interleaving operation for the odd numbered symbol (j mod 2 = 1) may be described mathematically as shown in equation t51020. For the input data x, frequency interleaving may be performed using an interleaving sequence (interleaving address) to obtain an output v. Here, the H (p) th input data x may be mixed in order to be equal to the pth output data v. That is, when compared to the interleaving process for even-numbered symbols, the interleaving sequence (interleaving address) may be applied inversely (inversely, inverse).
즉, 홀수번째 심볼(두번째 심볼)에 대해서는, 순서대로 메모리에 데이터를 쓰는 선형쓰기 동작이 먼저 수행된 후, 다시 이를 인터리빙 시퀀스를 이용하여 랜덤하게 읽는 랜덤 읽기 과정이 수행될 수 있다. 마찬가지로, 인터리빙 시퀀스(인터리빙 주소)는 PRBS 등을 이용한 임의의 랜덤 시퀀스 제너레이터에 의해 발생되는 값일 수 있다.That is, for an odd number symbol (second symbol), a linear write operation of writing data to a memory in order may be performed first, and then a random read process may be performed to read randomly using an interleaving sequence. Similarly, the interleaving sequence (interleaving address) may be a value generated by any random sequence generator using PRBS or the like.
먼저, FI 스킴 #2 에 따른 주파수 인터리빙을 설명한다. First, frequency interleaving according to FI scheme # 2 will be described.
FI 스킴 #2 에 따른 주파수 인터리빙의 경우, 짝/홀수번째 심볼에 대한 동작이 FI 스킴 #1 과 반대로 수행될 수 있다. In the case of frequency interleaving according to FI scheme # 2, an operation on even / odd symbols may be performed as opposed to FI scheme # 1.
즉, 짝수번째 심볼에 대해서는 도시된 수학식(t51020)에 따라, 선형쓰기 동작 후, 랜덤 읽기 동작이 수행될 수 있다. 또한, 홀수번째 심볼에 대해서는 도시된 수학식(t51010)에 따라, 랜덤쓰기 동작 후, 선형 읽기 동작이 수행될 수 있다. 자세한 사항은, FI 스킴 #1 에서 설명한 것과 같다. That is, a random read operation may be performed after the linear write operation with respect to the even number symbol according to the illustrated equation (t51020). In addition, for the odd numbered symbol, a linear read operation may be performed after the random write operation according to the equation (t51010). Details are the same as described in FI Scheme # 1.
심볼 인덱스 l 은 0, 1, ... , Nsym - 1, 셀 인덱스 p 는 0, 1, ... , Ndata - 1 로 표현될 수 있다. 실시예에 따라 짝수번째 심볼과 홀수번째 심볼에 대한 주파수 인터리빙 방식이 서로 뒤바뀔 수 있다. 또한, 실시예에 따라, FI 스킴 #1 과 FI 스킴 #2 에 따른 주파수 인터리빙 방식이 서로 뒤바뀔 수 있다.Symbol index l is 0, 1, ..., N sym -1, cell index p is 0, 1, ..., N data -1 It can be expressed as. According to an embodiment, frequency interleaving schemes for even-numbered symbols and odd-numbered symbols may be reversed. In addition, according to an embodiment, frequency interleaving schemes according to FI scheme # 1 and FI scheme # 2 may be reversed.
도 30 는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 짝수인 경우의 실시예를 도시한 도면이다. 30 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
본 실시예에서, N_sym 필드는 한 프레임 내에 OFDM 개수가 짝수개임을 지시할 수 있다. 본 실시예에서, 하나의 프레임은 하나의 프리앰블과 8 개의 OFDM 심볼을 가지고 있음을 가정한다. 실시예에 따라 프리앰블 앞에 부트 스트랩 정보가 더 포함될 수 있다. 부트 스트랩 정보는 도시되지 않았다.In the present embodiment, the N_sym field may indicate that the number of OFDM is even in one frame. In this embodiment, it is assumed that one frame has one preamble and eight OFDM symbols. In some embodiments, the bootstrap information may be further included in front of the preamble. Bootstrap information is not shown.
본 실시예에서, 한 프레임은 각각 하나의 FSS 와 FES 를 포함할 수 있다. 여기서, FSS 와 FES 의 길이는 같다고 가정한다. 또한, N_sym 필드의 정보는 PLS 파트에 포함되어 전송되므로, 주파수 디인터리버가 FSS 디코딩 후에 이를 확인할 수 있다. 또한, 본 실시예에서, FES 에 대한 동작이 수행되기 이전에 N_sym 필드에 대한 디코딩이 완료된다고 가정한다.In this embodiment, one frame may include one FSS and FES, respectively. It is assumed here that the lengths of the FSS and the FES are the same. In addition, since the information of the N_sym field is included in the PLS part and transmitted, the frequency deinterleaver may check this after FSS decoding. In addition, in the present embodiment, it is assumed that decoding for the N_sym field is completed before the operation for FES is performed.
각각의 프레임의 FSS 에서, 심볼 오프셋 생성기의 값은 0 으로 리셋될 수 있다. 따라서, 각 첫번째, 두번째 심볼들은 같은 인터리빙 시퀀스에 의해 처리될 수 있다. 또한, 각 프레임의 시작마다 다시 #0 시퀀스가 동작에 사용될 수 있다. 그 이후 차례대로 #1, #2 시퀀스가 주파수 인터리버/디인터리버의 동작에 사용될 수 있다.In the FSS of each frame, the value of the symbol offset generator can be reset to zero. Thus, each first and second symbol can be processed by the same interleaving sequence. In addition, the sequence # 0 may be used for operation again at the beginning of each frame. After that, the sequence # 1 and # 2 may be used to operate the frequency interleaver / deinterleaver.
도 31 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 짝수인 경우의 실시예를 도시한 도면이다. 31 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
첫번째 프레임에서, 프리앰블의 FI_mode 필드로부터, FSS 가 어떠한 방식으로 인터리빙되었는지에 대한 정보를 얻을 수 있다. 본 실시예는 OFDM 심볼이 짝수개인 경우이므로 FI 스킴 #1 만 사용될 수 있다. In the first frame, information on how the FSS is interleaved can be obtained from the FI_mode field of the preamble. In this embodiment, since the OFDM symbols are even, only FI scheme # 1 may be used.
이 후, FSS 가 디코딩되어, N_sym 정보가 획득될 수 있다. N_sym 정보로부터 본 프레임의 심볼 개수가 짝수개임을 알 수 있다. 이 후, 주파수 디인터리버가 FES 를 디코딩하게 될 때, 획득된 FI_mode 정보와 N_sym 정보를 이용하여 디코딩이 수행될 수 있다. 심볼의 개수가 짝수개인 경우이므로, 심볼 오프셋 생성기는 전술한 리셋모드에 따라 동작하지 않는다. 즉, 리셋 모드는 오프(off)된 상태일 수 있다. Thereafter, the FSS may be decoded to obtain N_sym information. It can be seen from the N_sym information that the number of symbols in the frame is even. Thereafter, when the frequency deinterleaver decodes the FES, decoding may be performed using the obtained FI_mode information and N_sym information. Since the number of symbols is an even number, the symbol offset generator does not operate according to the above-described reset mode. That is, the reset mode may be in an off state.
이 후 다른 프레임에 대해서도, 짝수개의 OFDM 심볼들이 포함되어 있으므로 주파수 디인터리버가 같은 방식으로 동작할 수 있다. 즉, FSS 에서 사용될 FI 스킴은 FI 스킴 #1 이며, FES 에서 사용될 리셋 모드는 오프(off) 된 상태일 수 있다. Thereafter, even number of OFDM symbols are included in other frames, so that the frequency deinterleaver may operate in the same manner. That is, the FI scheme to be used in the FSS is FI scheme # 1, and the reset mode to be used in the FES may be in an off state.
도 32 는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 홀수인 경우의 실시예를 도시한 도면이다. 32 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
본 실시예에서, N_sym 필드는 한 프레임 내에 OFDM 개수가 홀수개임을 지시할 수 있다. 본 실시예에서, 하나의 프레임은 하나의 프리앰블과 7 개의 OFDM 심볼을 가지고 있음을 가정한다. 실시예에 따라 프리앰블 앞에 부트 스트랩 정보가 더 포함될 수 있다. 부트 스트랩 정보는 도시되지 않았다.In the present embodiment, the N_sym field may indicate that the number of OFDM is odd in one frame. In this embodiment, it is assumed that one frame has one preamble and seven OFDM symbols. In some embodiments, the bootstrap information may be further included in front of the preamble. Bootstrap information is not shown.
본 실시예에서, 심볼의 개수가 짝수인 경우와 마찬가지로, 한 프레임은 각각 하나의 FSS 와 FES 를 포함할 수 있다. 여기서, FSS 와 FES 의 길이는 같다고 가정한다. 또한, N_sym 필드의 정보는 PLS 파트에 포함되어 전송되므로, 주파수 디인터리버가 FSS 디코딩 후에 이를 확인할 수 있다. 또한, 본 실시예에서, FES 에 대한 동작이 수행되기 이전에 N_sym 필드에 대한 디코딩이 완료된다고 가정한다.In the present embodiment, as in the case where the number of symbols is even, one frame may include one FSS and FES, respectively. It is assumed here that the lengths of the FSS and the FES are the same. In addition, since the information of the N_sym field is included in the PLS part and transmitted, the frequency deinterleaver may check this after FSS decoding. In addition, in the present embodiment, it is assumed that decoding for the N_sym field is completed before the operation for FES is performed.
각각의 프레임의 FSS 에서, 심볼 오프셋 생성기의 값은 0 으로 리셋될 수 있다. 또한 임의의 프레임의 FES 에서, FI_mode 필드와 N_sym 필드의 값에 따라 심볼 오프셋 생성기가 리셋모드에 따라 동작할 수 있다. 따라서, 임의의 프레임의 FES에서, 심볼 오프셋 생성기의 값이 0 으로 리셋되거나, 리셋되지 않을 수 있다. 이러한 리셋 과정은 매 프레임마다 교대로 수행될 수 있다. In the FSS of each frame, the value of the symbol offset generator can be reset to zero. In addition, in the FES of any frame, the symbol offset generator may operate according to the reset mode according to the values of the FI_mode field and the N_sym field. Thus, in the FES of any frame, the value of the symbol offset generator may or may not be reset to zero. This reset process may be performed alternately every frame.
도시된 첫번째 프레임의 마지막 심볼, FES 에서 심볼 오프셋 생성기의 리셋이 발생될 수 있다. 따라서, 인터리빙 시퀀스는 #0 시퀀스로 리셋될 수 있다. 따라서, 주파수 인터리버/디인터리버는 해당 FES 를 #0 시퀀스에 따라 처리할 수 있다(t54010). A reset of the symbol offset generator may occur at the last symbol of the first frame shown, FES. Thus, the interleaving sequence can be reset to the # 0 sequence. Accordingly, the frequency interleaver / deinterleaver may process the corresponding FES according to the sequence # 0 (t54010).
다음 프레임의 FSS 에서는 심볼 오프셋 생성기가 다시 리셋되어 #0 시퀀스가 사용될 수 있다(t54010). 두번째 프레임(프레임 #1) 의 FES 에서는 리셋이 발생되지 않고, 다시 세번째 프레임(프레임 #2) 의 FES 에서는 리셋이 발생될 수 있다. In the next frame FSS, the symbol offset generator is reset again so that the # 0 sequence may be used (t54010). A reset may not occur in the FES of the second frame (frame # 1), but again, a reset may occur in the FES of the third frame (frame # 2).
도 33 는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 홀수인 경우의 실시예를 도시한 도면이다. 33 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
첫번째 프레임에서, 프리앰블의 FI_mode 필드로부터, FSS 가 어떠한 방식으로 인터리빙되었는지에 대한 정보를 얻을 수 있다. OFDM 심볼이 홀수개인 경우이므로 FI 스킴 #1 과 FI 스킴 #2 가 사용될 수 있다. 본 실시예의 첫번째 프레임에서는 FI 스킴 #1 이 사용되었다.In the first frame, information on how the FSS is interleaved can be obtained from the FI_mode field of the preamble. Since the number of OFDM symbols is odd, FI scheme # 1 and FI scheme # 2 may be used. In the first frame of this embodiment, FI scheme # 1 is used.
이 후, FSS 가 디코딩되어, N_sym 정보가 획득될 수 있다. N_sym 정보로부터 본 프레임의 심볼 개수가 홀수개임을 알 수 있다. 이 후, 주파수 디인터리버가 FES 를 디코딩하게 될 때, 획득된 FI_mode 정보와 N_sym 정보를 이용하여 디코딩이 수행될 수 있다. 심볼의 개수가 홀수개이고, FI 스킴#1 가 사용된 경우이므로, FI_mode 필드 값은 0임을 알 수 있다. FI_mode 가 0 이므로 심볼 오프셋 생성기는 전술한 리셋모드에 따라 동작할 수 있다. 즉, 리셋 모드는 온(on) 상태일 수 있다. Thereafter, the FSS may be decoded to obtain N_sym information. It can be seen from the N_sym information that the number of symbols in the frame is odd. Thereafter, when the frequency deinterleaver decodes the FES, decoding may be performed using the obtained FI_mode information and N_sym information. Since the number of symbols is an odd number and the FI scheme # 1 is used, the FI_mode field value is 0. Since FI_mode is 0, the symbol offset generator may operate according to the above-described reset mode. That is, the reset mode may be in an on state.
리셋모드에 따라 동작되어, 심볼 오프셋 생성기는 0 으로 리셋될 수 있다. 두번째 프레임에서 FI_mode 필드 값이 1 이므로, FI 스킴 #2 에 의해 FSS 가 처리되었음을 알 수 있다. 역시, N_sym 필드를 통해, 심볼의 개수가 홀수개임을 알 수 있다. 두번째 프레임의 경우에는 FI_mode 필드 값이 1 이고, 심볼 개수가 홀수개이므로 심볼 오프셋 생성기는 리셋모드에 따라 동작하지 않을 수 있다. Operating in accordance with the reset mode, the symbol offset generator can be reset to zero. Since the value of the FI_mode field is 1 in the second frame, it can be seen that the FSS has been processed by the FI scheme # 2. Again, it can be seen that the number of symbols is odd through the N_sym field. In the case of the second frame, since the FI_mode field value is 1 and the number of symbols is odd, the symbol offset generator may not operate according to the reset mode.
이러한 방식으로, FSS 에서 사용될 FI 스킴은 FI 스킴 #1 과 #2 가 번갈아가며 세팅될 수 있다. 또한, FES 에서 사용될 리셋 모드는 온(on) 과 오프(off) 가 번갈아가며 세팅될 수 있다. 실시예에 따라 매 프레임마다 세팅이 바뀌지 않을 수도 있다. In this way, the FI scheme to be used in the FSS can be set alternately between the FI schemes # 1 and # 2. In addition, the reset mode to be used in the FES can be set alternately on and off. In some embodiments, the setting may not change every frame.
도 34 은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 주파수 디인터리버의 동작을 도시한 도면이다. FIG. 34 illustrates operation of a frequency deinterleaver in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
주파수 디인터리버는 앞서 정의된 FI_mode 필드 및/또는 N_sym 필드의 정보를 이용하여 주파수 디인터리빙을 수행할 수 있다. 전술한 바와 같이 주파수 디인터리버는 싱글 메모리를 이용하여 동작할 수 있다. 기본적으로 주파수 디인터리빙은 송신단에서 수행한 주파수 인터리빙 과정의 역과정을 수행하여 원래의 데이터가 순서가 복원되도록 하는 과정일 수 있다. The frequency deinterleaver may perform frequency deinterleaving using information of the FI_mode field and / or the N_sym field defined above. As described above, the frequency deinterleaver may operate using a single memory. Basically, frequency deinterleaving may be a process of performing an inverse process of the frequency interleaving process performed by the transmitter so that the original data may be restored.
전술한 것과 같이, FSS 에 대한 주파수 디인터리빙은 프리앰블의 FI_mode 필드 및 N_sym 필드를 이용하여 얻은 FI 스킴에 관한 정보를 기반으로 동작될 수 있다. FES 에 대한 주파수 디인터리빙은 FI_mode 필드와 N_sym 필드를 통해 리셋 모드의 동작 여부를 파악한뒤 그에 기반하여 동작될 수 있다. As described above, the frequency deinterleaving for the FSS may be operated based on the information about the FI scheme obtained by using the FI_mode field and the N_sym field of the preamble. Frequency deinterleaving for FES may be operated based on whether the reset mode is operated through the FI_mode field and the N_sym field.
즉, 입력되는 한쌍의 OFDM 심볼에 대하여, 주파수 디인터리버는 주파수 인터리버의 읽기/쓰기 동작의 역과정을 수행할 수 있다. 이 과정에서 하나의 인터리빙 시퀀스가 사용될 수 있다. That is, the frequency deinterleaver may perform a reverse process of the read / write operation of the frequency interleaver with respect to the pair of OFDM symbols input. In this process, one interleaving sequence may be used.
단, 전술한 바와 같이 주파수 인터리버는 더블 메모리를 사용하는 핑퐁 구조를 따르지만, 주파수 디인터리버는 싱글 메모리로 디인터리빙을 수행할 수 있다. 이 싱글 메모리 주파수 디인터리빙은 FI_mode 필드 및 N_sym 필드의 정보들을 이용하여 수행될 수 있다. 이 정보들을 통해, OFDM 심볼 개수에 영향을 받지 않고, 홀수개의 OFDM 심볼을 가진 프레임에 대해서도 싱글 메모리 주파수 디인터리빙이 가능할 수 있다. As described above, the frequency interleaver follows a ping-pong structure using a double memory, but the frequency deinterleaver may perform deinterleaving with a single memory. This single memory frequency deinterleaving may be performed using information of the FI_mode field and the N_sym field. With this information, single memory frequency deinterleaving may be possible even for a frame having an odd number of OFDM symbols without being affected by the number of OFDM symbols.
본 발명에 따른 주파수 인터리버는 OFDM 심볼의 모든 데이터 셀들을 대상으로 주파수 인터리빙을 수행할 수 있다. 주파수 인터리버는 데이터 셀들을, 각 심볼의 가능한(available) 데이터 캐리어에 매핑시키는 동작을 수행할 수 있다. The frequency interleaver according to the present invention can perform frequency interleaving on all data cells of an OFDM symbol. The frequency interleaver may perform an operation of mapping data cells to an available data carrier of each symbol.
본 발명에 따른 주파수 인터리버는 FFT 사이즈에 따라 다른 인터리빙 모드로 동작할 수 있다. 예를 들어, FFT 사이즈가 32K 인 경우, 주파수 인터리버는 전술한 FI 스킴 #1 과 같이 짝수번째 심볼에 대해서는 랜덤쓰기/선형읽기 동작을 수행하고, 홀수번째 심볼에 대해서는 선형쓰기/랜덤읽기 동작을 수행할 수 있다. 또한, FFT 사이즈가 16K 또는 8K 인 경우, 주파수 인터리버는 짝수/홀수에 무관하게 모든 심볼들에 대하여 선형읽기/랜덤쓰기 동작을 수행할 수 있다. The frequency interleaver according to the present invention may operate in different interleaving modes according to the FFT size. For example, if the FFT size is 32K, the frequency interleaver performs random write / linear read operation on the even symbol and linear write / random read operation on the odd symbol as in the FI scheme # 1 described above. can do. In addition, when the FFT size is 16K or 8K, the frequency interleaver may perform a linear read / random write operation on all symbols regardless of even / odd.
인터리빙 모드 전환을 결정하는 FFT 사이즈는 실시예에 따라 변경될 수 있다. 즉, 32K 및 16K 일 경우 FI 스킴 #1 과 같이 동작하고, 8K 일 경우 짝수/홀수에 무관한 동작을 수행할 수도 있다. 또한, 모든 FFT 사이즈에 대해 FI 스킴 #1 과 같이 동작할 수도 있고, 모든 FFT 사이즈에 대해 짝수/홀수에 무관한 동작을 수행할 수도 있다. 또한 실시예에 따라, 특정 FFT 사이즈에 대해서는 FI 스킴 #2 와 같이 동작할 수도 있다.The FFT size for determining the interleaving mode switching may be changed according to an embodiment. That is, in the case of 32K and 16K, the operation may be performed as in FI scheme # 1, and in the case of 8K, an even / odd independent operation may be performed. In addition, it may operate like FI scheme # 1 for all FFT sizes, and may perform an even / odd independent operation for all FFT sizes. In addition, according to an embodiment, the specific FFT size may operate as FI scheme # 2.
이러한 주파수 인터리빙은 전술한 인터리빙 시퀀스(인터리빙 주소)를 이용하여 수행될 수 있다. 인터리빙 시퀀스는 전술한대로 오프셋 값을 이용하여 다양하게 생성될 수 있다. 또한, 주소값 체크(address check) 가 수행되어 다양한 인터리빙 시퀀스가 생성될 수 있다. Such frequency interleaving may be performed using the above-described interleaving sequence (interleaving address). The interleaving sequence may be variously generated using the offset value as described above. In addition, an address check may be performed to generate various interleaving sequences.
도 35는 본 발명의 다른 실시예에 따른 variable data-rate 시스템을 나타낸 개념도이다.35 is a conceptual diagram illustrating a variable data-rate system according to another embodiment of the present invention.
구체적으로, 이 도면에 도시된 하나의 전송 슈퍼 프레임은 NTI_NUM개의 TI 그룹들로 구성되며, 각 TI 그룹은 N BLOCK_TI 개의 FEC 블록들을 포함할 수 있다. 이 경우, 각 TI 그룹에 포함된 FEC 블록의 개수는 서로 다를 수 있다. 본 발명의 일 실시예에 따른 TI 그룹은 타임 인터리빙을 수행하기 위한 블록으로 정의될 수 있으며, 상술한 TI 블록 또는 IF와 동일한 의미로 사용될 수 있다.Specifically, one transmission super frame shown in this figure is composed of NTI_NUM TI groups, and each TI group may include N BLOCK_TI FEC blocks. In this case, the number of FEC blocks included in each TI group may be different. The TI group according to an embodiment of the present invention may be defined as a block for performing time interleaving and may be used in the same meaning as the above-described TI block or IF.
본 발명에서는 TI 그룹 내에 포함된 FEC 블록들의 개수가 서로 다른 경우, 하나의 트위스티드 로-컬럼 블록 인터리빙 룰(twisted row-column block interleaving rule)을 이용하여 TI 그룹들에 대한 인터리빙을 수행하는 것을 일 실시예로 할 수 있다. 이를 통해 수신기는 단일 메모리를 사용하여 디인터리빙을 수행할 수 있다. 이하에서는 매 TI 그룹마다 FEC 블록 개수가 변할 수 있는 베리어블 비트-레이트 (variable bit-rate, VBR) 전송을 고려한 입력 FEC block의 메모리 배열 방법 및 타임 인터리버의 리딩 (reading) 동작을 설명한다.According to the present invention, when the number of FEC blocks included in the TI group is different, interleaving the TI groups using one twisted row-column block interleaving rule is performed. For example. This allows the receiver to perform deinterleaving using a single memory. Hereinafter, a method of arranging a memory of an input FEC block in consideration of variable bit-rate (VBR) transmission in which the number of FEC blocks may vary in each TI group, and a reading operation of a time interleaver will be described.
도 36은 본 발명의 블록 인터리빙의 라이팅(writing) 및 리딩 (reading) 오퍼레이션의 일 실시예를 나타낸다. 이에 대한 구체적인 내용은 전술하였다.36 illustrates an embodiment of writing and reading operations of block interleaving of the present invention. Details thereof have been described above.
도 37은 본 발명의 일 실시예에 따른 블록 인터리빙을 나타낸 수학식이다. 37 illustrates equations for block interleaving according to an embodiment of the present invention.
도면에 도시된 수학식은 각 TI 그룹 단위로 적용되는 블록 인터리빙을 나타낸다. 수학식에 도시된 바와 같이, 시프트 밸류는 TI 그룹에 포함된 FEC 블록들의 개수가 홀수인 경우 및 짝수인 경우 각각 계산될 수 있다. 즉, 본 발명의 일 실시예에 따른 블록 인터리빙은 FEC 블록들의 개수를 홀수로 만든 후 시프트 밸류를 계산할 수 있다.Equation shown in the figure represents block interleaving applied to each TI group unit. As shown in the equation, the shift value may be calculated when the number of FEC blocks included in the TI group is odd and even. That is, in the block interleaving according to an embodiment of the present invention, the number of FEC blocks is made odd and the shift value can be calculated.
본 발명의 일 실싱예에 따른 타임 인터리버는 수퍼 프레임 내에서 가장 큰 FEC 블록 개수를 갖는 TI group을 기준으로 인터리빙과 관련된 파라미터들을 결정할 수 있다. 이를 통해 수신기는 단일 메모리 사용하여 디인터리빙을 수행할 수 있다. 이때, 결정된 FEC 블록을 가장 많이 포함하고 있는 TI 그룹의 FEC 블록 개수보다 적은 FEC 블록을 갖는 TI 그룹에 대해서는 부족한 FEC 블록의 개수에 해당하는 버츄얼 (virtual) FEC 블록들을 추가할 수 있다. The time interleaver according to one embodiment of the present invention may determine parameters related to interleaving based on a TI group having the largest number of FEC blocks in a super frame. This allows the receiver to perform deinterleaving using a single memory. In this case, virtual FEC blocks corresponding to the number of insufficient FEC blocks may be added to the TI group having fewer FEC blocks than the number of FEC blocks of the TI group including the most determined FEC blocks.
본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들은 실제 FEC 블록들 앞에 삽입될 수 있다. 이후, 본 발명의 일 실시예에 따른 타임 인터리버는 버츄얼 (virtual) FEC 블록들을 고려하여 하나의 트위스티드 로-컬럼 블록 인터리빙 룰(twisted row-column block interleaving rule)을 이용하여 TI 그룹들에 대한 인터리빙을 수행할 수 있다. 또한 본 발명의 일 실시예에 따른 타임 인터리버는 리딩(reading) 동작에서 버츄얼 (virtual) FEC 블록들에 해당되는 메모리-인덱스 (memory-index)가 발생하는 경우 상술한 스킵 오퍼레이션을 수행할 수 있다. 이후 라이팅 (writing) 동작 시, 입력된 TI 그룹의 FEC 블록들의 개수와 리딩 (reading)시 출력 TI 그룹의 FEC 블록들의 개수를 일치 시킨다. 결과적으로, 본 발명의 일 실시예에 따른 타임 인터리빙에 따르면, 수신기에서 효율적인 싱글-메모리 디인터리빙(single-memory deinterleaving)을 수행하기 위하여 버츄얼 (virtual) FEC 블록을 삽입하더라도 스킵 오퍼레이션을 통해 실제 전송되는 데이터-레이트의 손실은 발생하지 않을 수 있다. Virtual FEC blocks according to an embodiment of the present invention may be inserted before actual FEC blocks. Subsequently, the time interleaver according to an embodiment of the present invention performs interleaving for TI groups using one twisted row-column block interleaving rule in consideration of virtual FEC blocks. Can be done. In addition, the time interleaver according to an embodiment of the present invention may perform the skip operation described above when a memory-index corresponding to virtual FEC blocks occurs in a reading operation. After writing, the number of FEC blocks of the input TI group and the number of FEC blocks of the output TI group match when reading. As a result, according to the time interleaving according to an embodiment of the present invention, even if a virtual FEC block is inserted to perform efficient single-memory deinterleaving in the receiver, it is actually transmitted through a skip operation. Loss of data-rate may not occur.
도 38는 본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들을 나타낸 도면이다.38 illustrates virtual FEC blocks according to an embodiment of the present invention.
도면의 좌측은 맥시멈 FEC 블록들의 개수와 TI 그룹에 포함된 실제 FEC 블록들의 개수 및 맥시멈 FEC 블록들의 개수와 실제 FEC 블록들의 개수간의 차이를 나타낸 파라미터 및 버츄얼 (virtual) FEC 블록들의 개수를 도출하기 위한 수학식을 나타낸다. The left side of the figure shows a parameter and a number of virtual FEC blocks indicating the difference between the number of maximum FEC blocks and the number of actual FEC blocks included in the TI group and the number of maximum FEC blocks and the number of actual FEC blocks. The equation is shown.
도면의 우측은 TI 그룹 내에 버츄얼 (virtual) FEC 블록들이 삽입된 실시예를 나타낸다. 이 경우 상술한 바와 같이 버츄얼 (virtual) FEC 블록들은 실제 FEC 블록의 앞에 삽입될 수 있디. The right side of the figure shows an embodiment in which virtual FEC blocks are inserted into a TI group. In this case, as described above, virtual FEC blocks may be inserted before the actual FEC block.
도 39은 본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들이 삽입된 이후 리딩 (reading) 동작을 나타낸 수학식이다. FIG. 39 is a equation illustrating a reading operation after virtual FEC blocks are inserted according to an embodiment of the present invention. FIG.
도면에 표시된 스킵 오퍼레이션은 리딩(reading) 동작에서 버츄얼 (virtual) FEC 블록들을 스킵하는 역할을 수행할 수 있다.The skip operation shown in the figure may play a role of skipping virtual FEC blocks in a reading operation.
도 40는 본 발명의 일 실시예에 따른 타임 인터리빙의 프로세스를 나타낸 순서도이다.40 is a flowchart illustrating a process of time interleaving according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 타임 인터리버는 이니셜 밸류(initial value)를 셋업할 수 있다(S67000). The time interleaver according to an embodiment of the present invention may set an initial value (S67000).
이후 본 발명의 일 실시예에 따른 타임 인터리버는 버츄얼 (virtual) FEC 블록들을 고려하여 실제 FEC 블록들을 라이팅 (writing)할 수 있다(S67100).Subsequently, the time interleaver according to an embodiment of the present invention may write actual FEC blocks in consideration of virtual FEC blocks (S67100).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 템포럴 TI 어드레스(temporal TI address)를 생성할 수 있다(S67200). Thereafter, the time interleaver according to the embodiment of the present invention may generate a temporal TI address (S67200).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 생성된 TI 리딩 어드레스 (reading address)의 가용성 (availiability)를 평가할 수 있다(S67300). 이후, 본 발명의 일 실시예에 따른 타임 인터리버는 최종 TI 리딩 어드레스 (reading address)를 생성할 수 있다(S67400). Thereafter, the time interleaver according to an embodiment of the present invention may evaluate the availability of the generated TI reading address (S67300). Thereafter, the time interleaver according to the embodiment of the present invention may generate a final TI reading address (S67400).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 실제 FEC 블록들을 리딩(reading)할 수 있다(S67500).Thereafter, the time interleaver according to the embodiment of the present invention may read actual FEC blocks (S67500).
도 41은 본 발명의 일 실시예에 따른 시프트 밸류 및 맥시멈 TI 블록의 크기를 결정하는 과정을 나타낸 수학식이다.FIG. 41 is an equation illustrating a process of determining a shift value and a size of a maximum TI block according to an embodiment of the present invention. FIG.
본 도면은 TI 그룹이 2개이고, TI 그룹내의 셀의 개수는 30이고, 첫번째 TI 그룹에 포함된 FEC 블록의 개수가 5이고 두번째 TI 블록에 포함된 FEC 블록의 개수가 6인 경우의 실시예를 나타낸다. 맥시멈 FEC 블록의 개수는 6이 되나, 짝수이므로, 시프트 밸류를 구하기 위한 조정된 맥시멈 FEC 블록의 개수는 7이 될 수 있으며, 시프트 밸류는 4로 계산될 수 있다.The figure shows an embodiment in which there are two TI groups, the number of cells in the TI group is 30, the number of FEC blocks included in the first TI group is 5, and the number of FEC blocks included in the second TI block is 6. Indicates. The number of maximum FEC blocks is 6, but is even, so that the number of adjusted maximum FEC blocks for obtaining the shift value can be 7, and the shift value can be calculated as four.
도 42 내지 도 44은 이전도면에서 전술한 실시예의 TI 과정을 나타낸 도면이다.42 to 44 are diagrams illustrating the TI process of the above-described embodiment in the previous figure.
도 42은 본 발명의 일 실시예에 따른 라이팅 (writing) 오퍼레이션을 나타낸다.42 illustrates a writing operation according to an embodiment of the present invention.
이 도면은 이전도면에서 설명한 두 개의 TI 그룹에 대한 라이팅 (writing) 오퍼레이션을 나타낸다.This figure shows the writing operations for the two TI groups described in the previous figures.
도면의 왼쪽에 도시된 블록은 TI 메모리 어드레스 어레이(memory address array)를 나타내며, 도면의 오른쪽에 도시된 블록은 연속한 두 개의 TI 그룹들에 대해 각각 버츄얼(virtual) FEC 블록들이 각각 2개 및 1개가 삽입된 경우의 라이팅 (writing) 오퍼레이션을 나타낸다. 상술한 바와 같이 조정된 맥시멈 FEC 블록의 개수는 7이므로, 첫번째 TI 그룹에는 두 개의 버츄얼(virtual) FEC 블록들이 삽입되며, 두번째 TI 그룹에는 한 개의 버츄얼(virtual) FEC 블록이 삽입된다.The block shown on the left side of the figure represents a TI memory address array, and the block shown on the right side of the figure shows two and one virtual FEC blocks, respectively, for two consecutive TI groups. Represents a writing operation when a dog is inserted. Since the number of adjusted maximum FEC blocks is 7 as described above, two virtual FEC blocks are inserted into the first TI group, and one virtual FEC block is inserted into the second TI group.
도 43은 본 발명의 일 실시예에 따른 리딩 (reading) 오퍼레이션을 나타낸다.43 illustrates a reading operation according to an embodiment of the present invention.
도면의 왼쪽에 도시된 블록은 TI 메모리 어드레스 어레이(memory address array)를 나타내며, 도면의 오른쪽에 도시된 블록은 연속한 두 개의 TI 그룹들에 대해 각각 버츄얼(virtual) FEC 블록들이 각각 2개 및 1개가 삽입된 경우의 리딩 (reading) 오퍼레이션을 나타낸다. 이 경우, 버츄얼(virtual) FEC 블록들에도 실제 FEC 블록과 동일하게 리딩 (reading) 오퍼레이션이 수행될 수 있다.The block shown on the left side of the figure represents a TI memory address array, and the block shown on the right side of the figure shows two and one virtual FEC blocks, respectively, for two consecutive TI groups. Represents a reading operation when a dog is inserted. In this case, a reading operation may be performed in the virtual FEC blocks in the same manner as the actual FEC block.
도 44은 본 발명의 일 실시예에 따른 리딩 (reading) 오퍼레이션에서 스킵 오퍼레이션이 수행된 결과를 나타낸다.44 is a view illustrating a result of a skip operation performed in a reading operation according to an embodiment of the present invention.
도면에 도시된 바와 같이 두 개의 TI 그룹내에는 버츄얼(virtual) FEC 블록들이 스킵될 수 있다.As shown in the figure, virtual FEC blocks may be skipped in two TI groups.
도 45 내지 46는 전술한 TI의 역과정인 타임 디인터리빙을 나타낸다. 45 to 46 show time deinterleaving which is a reverse process of the above-described TI.
구체적으로 도 45는 첫번째 TI 그룹에 대한 타임 디인터리빙을 나타내며 도 46은 두번째 TI 그룹에 대한 타임 디인터리빙을 나타낸다.In detail, FIG. 45 shows time deinterleaving for the first TI group, and FIG. 46 shows time deinterleaving for the second TI group.
도 45는 본 발명의 일 실시예에 따른 타임 디인터리빙의 라이팅 (writing) 과정을 나타낸다. 45 illustrates a writing process of time deinterleaving according to an embodiment of the present invention.
도면의 왼쪽에 도시된 블록은 TI 메모리 어드레스 어레이(memory address array)를 나타내며, 도면의 가운데 도시된 블록은 타임 디인터리버에 입력된 첫번째 TI 그룹을 나타내며, 도면의 오른쪽에 도시된 블록은 연속한 첫번째 TI 그룹에 대해 스킵된 버츄얼(virtual) FEC 블록들을 고려하여 수행된 라이팅 (writing) 과정을 나타낸다. The block shown on the left side of the figure represents a TI memory address array, the block shown in the middle of the figure represents the first TI group input to the time deinterleaver, and the block shown on the right side of the figure represents the first consecutive A writing process performed taking into account virtual FEC blocks skipped for a TI group is shown.
도면에 도시된 바와 같이, TI 과정에서 스킵된 2 개의 버츄얼 (virtual) FEC 블록들은 정확한 리딩 (reading) 오퍼레이션을 위해 라이팅 (writing) 과정에서 복원될 수 있다. 이 경우, 스킵된 2 개의 버츄얼 (virtual) FEC 블록들의 위치 및 양은 임의의 알고리즘을 통해 추정될 수 있다. As shown in the figure, two virtual FEC blocks that are skipped in the TI process may be restored in the writing process for accurate reading operation. In this case, the location and amount of the two virtual FEC blocks that were skipped can be estimated through any algorithm.
도 46는 본 발명의 다른 실시예에 따른 타임 디인터리빙의 라이팅 (writing) 과정을 나타낸다. 46 illustrates a writing process of time deinterleaving according to another embodiment of the present invention.
도면의 왼쪽에 도시된 블록은 TI 메모리 어드레스 어레이(memory address array)를 나타내며, 도면의 가운데 도시된 블록은 타임 디인터리버에 입력된 두번째 TI 그룹을 나타내며, 도면의 오른쪽에 도시된 블록은 연속한 두번째 TI 그룹에 대해 스킵된 버츄얼(virtual) FEC 블록들을 고려하여 수행된 라이팅 (writing) 과정을 나타낸다. The block shown on the left side of the figure represents a TI memory address array, the block shown in the middle of the figure represents the second TI group input to the time deinterleaver, and the block shown on the right side of the figure represents the second consecutive. A writing process performed taking into account virtual FEC blocks skipped for a TI group is shown.
도면에 도시된 바와 같이, TI 과정에서 스킵된 1 개의 버츄얼 (virtual) FEC 블록들은 정확한 리딩 (reading) 오퍼레이션을 위해 라이팅 (writing) 과정에서 복원될 수 있다. 이 경우, 스킵된 1 개의 버츄얼 (virtual) FEC 블록들의 위치 및 양은 임의의 알고리즘을 통해 추정될 수 있다. As shown in the figure, one virtual FEC blocks skipped in the TI process may be restored in the writing process for accurate reading operation. In this case, the location and amount of one virtual FEC blocks that were skipped can be estimated through any algorithm.
도 47은 본 발명의 다른 실시예에 따른 타임 디인터리빙의 리딩 (reading) 오퍼레이션을 나타내는 수학식이다.FIG. 47 is a equation illustrating reading operation of time deinterleaving according to another embodiment of the present invention. FIG.
수신기에서 사용되는 TDI 시프트 밸류는 송신기에서 사용된 시프트 밸류에 의해 결정될 수 있으며, 스킵 오퍼레이션 (skip operation)은 송신부와 유사하게 리딩 (reading) 오퍼레이션에서 버츄얼 (virtual) FEC 블록들을 스킵하는 역할을 수행할 수 있다.The TDI shift value used in the receiver may be determined by the shift value used in the transmitter, and the skip operation plays a role of skipping virtual FEC blocks in a reading operation similar to the transmitter. Can be.
도 48은 본 발명의 일 실시예에 따른 타임 디인터리빙의 프로세스를 나타낸 순서도이다.48 is a flowchart illustrating a process of time deinterleaving according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 타임 디인터리버는 이니셜 밸류(initial value)를 셋업할 수 있다(S75000). The time deinterleaver according to an embodiment of the present invention may set an initial value (S75000).
이후 본 발명의 일 실시예에 따른 타임 인터리버는 버츄얼 (virtual) FEC 블록들을 고려하여 실제 FEC 블록들을 라이팅 (writing)할 수 있다(S75100).Then, the time interleaver according to an embodiment of the present invention may write actual FEC blocks in consideration of virtual FEC blocks (S75100).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 템포럴 TDI 어드레스(temporal TDI address)를 생성할 수 있다(S75200). Thereafter, the time interleaver according to the embodiment of the present invention may generate a temporal TDI address (S75200).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 생성된 TDI 리딩 어드레스 (reading address)의 가용성 (availiability)를 평가할 수 있다(S75300). 이후, 본 발명의 일 실시예에 따른 타임 인터리버는 최종 TDI 리딩 어드레스 (reading address)를 생성할 수 있다(S75400). Then, the time interleaver according to an embodiment of the present invention may evaluate the availability of the generated TDI reading address (S75300). Thereafter, the time interleaver according to an embodiment of the present invention may generate a final TDI reading address (S75400).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 실제 FEC 블록들을 리딩(reading)할 수 있다(S75500).Thereafter, the time interleaver according to the embodiment of the present invention may read actual FEC blocks (S75500).
도 49는 PLP 개수에 따라 적용하는 인터리빙 타입을 표로 도시한 도면이다. 본 발명의 일실시예에 따른 타임 인터리버는 PLP_NUM의 값을 기반으로 인터리빙 타입(Interleaving type)이 결정될 수 있다. PLP_NUM는 PLP 모드를 나타내는 시그널링 필드(signaling field) 이다. PLP_NUM의 값이 1인 경우, PLP 모드는 싱글 PLP이다. 본 발명의 일 실시예에 따른 싱글 PLP는 컨볼루션 인터리버(Convolutional Interleaver, CI)만 적용될 수 있다.FIG. 49 is a table showing interleaving types applied according to the number of PLPs. In the time interleaver according to an embodiment of the present invention, an interleaving type may be determined based on the value of PLP_NUM. PLP_NUM is a signaling field indicating the PLP mode. If the value of PLP_NUM is 1, the PLP mode is a single PLP. A single PLP according to an embodiment of the present invention may apply only a convolutional interleaver (CI).
PLP_NUM의 값이 1보다 큰 경우, PLP 모드는 멀티플 PLP이다. 본 발명의 일 실시예에 따른 멀티플 PLP는 컨볼루션 인터리버(Convolutional Interleaver, CI)와 블록 인터리버(Block Interleaver, BI)가 적용될 수 있다. 이 경우, 컨볼루션 인터리버는 인터 프레임 인터리빙(Inter frame interleaving)을 수행할 수 있으며, 블록 인터리버는 인트라 프레임 인터리빙(Intra frame interleaving)을 수행할 수 있다. 인터 프레임 인터리빙 및 인트라 프레임 인터리빙의 구체적인 내용은 전술한 내용과 동일하다.If the value of PLP_NUM is greater than 1, the PLP mode is multiple PLPs. In the multiple PLP according to an embodiment of the present invention, a convolutional interleaver (CI) and a block interleaver (BI) may be applied. In this case, the convolution interleaver may perform inter frame interleaving, and the block interleaver may perform intra frame interleaving. Details of inter frame interleaving and intra frame interleaving are the same as those described above.
도 50은 상술한 하이브리드 타임 인터리버 구조의 제 1 실시예를 포함하는 블록도이다. 제 1 실시예에 따른 하이브리드 타임 인터리버는 블록 인터리버(BI)와 컨볼루션 인터리버(CI)를 포함할 수 있다. 본 발명의 타임 인터리버는 BICM 체인(BICM chain) 블록과 프레임 빌더(Frame Builder) 사이에 위치할 수 있다. 도 50 내지 도 51에 도시된 BICM 체인 블록은 도 5에 도시된 BICM 블록의 처리 블록(5000) 중 타임 인터리버(5050)를 제외한 블록들을 포함할 수 있다. 도 50 내지 도 51에 도시된 프레임 빌더는 도 1의 프레임 빌딩(1020)블록의 동일한 역할을 수행할 수 있다.50 is a block diagram including the first embodiment of the above-described hybrid time interleaver structure. The hybrid time interleaver according to the first embodiment may include a block interleaver (BI) and a convolution interleaver (CI). The time interleaver of the present invention may be located between a BICM chain block and a frame builder. The BICM chain block illustrated in FIGS. 50 to 51 may include blocks excluding the time interleaver 5050 of the processing block 5000 of the BICM block illustrated in FIG. 5. The frame builders illustrated in FIGS. 50 to 51 may perform the same role as the block building block 1020 of FIG. 1.
상술한 바와 같이 하이브리드 타임 인터리버 구조의 제 1 실시예에 따른 블록 인터리버는 PLP_NUM 값에 따라 적용 여부가 결정될 수 있다. 즉, PLP_NUM=1인 경우, 블록 인터리버는 적용되지 않고(블록인터리버 오프(off)), 컨볼루션 인터리버만 적용된다. PLP_NUM>1인 경우, 블록 인터리버와 컨볼루션 인터리버가 모두 적용(블록 인터리버 온(on))될 수 있다. PLP_NUM>1인 경우 적용되는 컨볼루션 인터리버의 구조 및 동작은 PLP_NUM=1인 경우 적용되는 컨볼루션 인터리버의 구조 및 동작과 동일하거나 유사할 수 있다.As described above, whether to apply the block interleaver according to the first embodiment of the hybrid time interleaver structure may be determined according to the PLP_NUM value. That is, when PLP_NUM = 1, the block interleaver is not applied (block interleaver off), and only the convolutional interleaver is applied. When PLP_NUM> 1, both the block interleaver and the convolution interleaver may be applied (block interleaver on). The structure and operation of the convolution interleaver applied when PLP_NUM> 1 may be the same as or similar to the structure and operation of the convolution interleaver applied when PLP_NUM = 1.
도 51은 상술한 하이브리드 타임 인터리버 구조의 제 2 실시예를 포함하는 블록도이다.51 is a block diagram including a second embodiment of the above-described hybrid time interleaver structure.
하이브리드 타임 인터리버 구조의 제 2 실시예에 포함되는 각 블록의 동작은 도 50에서 설명한 내용과 동일하다. 하이브리드 타임 인터리버 구조의 제 2 실시예에 따른 블록 인터리버는 PLP_NUM 값에 따라 적용 여부가 결정될 수 있다. 제 2 실시예에 따른 하이브리드 타임 인터리버의 각 블록들은 본 발명의 실시예에 따른 동작들을 수행할 수 있다. 이 때, PLP_NUM=1인 경우와 PLP_NUM>1인 경우 적용되는 컨볼루션 인터리버의 구조 및 동작이 서로 다를 수 있다.Operation of each block included in the second embodiment of the hybrid time interleaver structure is the same as the content described with reference to FIG. 50. Whether to apply the block interleaver according to the second embodiment of the hybrid time interleaver structure may be determined according to the PLP_NUM value. Each block of the hybrid time interleaver according to the second embodiment may perform operations according to the embodiment of the present invention. At this time, the structure and operation of the convolution interleaver applied when PLP_NUM = 1 and PLP_NUM> 1 may be different.
도 52는 하이브리드 타임 디인터리버의 구조의 제 1 실시예를 포함하는 블록도이다.52 is a block diagram including the first embodiment of the structure of the hybrid time deinterleaver.
제 1 실시예에 따른 하이브리드 타임 디인터리버는 상술한 제 1 실시예에 따른 하이브리드 타임 인터리버의 역동작에 상응하는 동작을 수행할 수 있다. 따라서, 도 52의 제 1 실시예에 따른 하이브리드 타임 디인터리버는 컨볼루션 디인터리버(Convolutional deinterleaver, CDI)와 블록 디인터리버(Block deinterleaver, BDI)를 포함할 수 있다. The hybrid time deinterleaver according to the first embodiment may perform an operation corresponding to the reverse operation of the hybrid time interleaver according to the first embodiment described above. Accordingly, the hybrid time deinterleaver according to the first embodiment of FIG. 52 may include a convolutional deinterleaver (CDI) and a block deinterleaver (BDI).
PLP_NUM>1인 경우 적용되는 컨볼루션 디인터리버의 구조 및 동작은 PLP_NUM=1인 경우 적용되는 컨볼루션 디인터리버의 구조 및 동작과 동일하거나 유사할 수 있다.The structure and operation of the convolutional deinterleaver applied when PLP_NUM> 1 may be the same as or similar to the structure and operation of the convolutional deinterleaver applied when PLP_NUM = 1.
하이브리드 타임 디인터리버 구조의 제 1 실시예에 따른 블록 디인터리버는 PLP_NUM 값에 따라 적용 여부가 결정될 수 있다. 즉, PLP_NUM=1인 경우, 블록 디인터리버는 적용되지 않고(블록 디인터리버 오프(off)), 컨볼루션 디인터리버만 적용된다.Whether the block deinterleaver according to the first embodiment of the hybrid time deinterleaver structure is applied may be determined according to a PLP_NUM value. That is, when PLP_NUM = 1, the block deinterleaver is not applied (block deinterleaver off), and only the convolutional deinterleaver is applied.
하이브리드 타임 디인터리버의 컨볼루션 디인터리버는 인터 프레임 디인터리빙(Inter frame deinterleaving)을 수행할 수 있으며, 블록 디인터리버는 인트라 프레임 디인터리빙(Intra frame deinterleaving)을 수행할 수 있다. 인터 프레임 디인터리빙 및 인트라 프레임 디인터리빙의 구체적인 내용은 전술한 내용과 동일하다.The convolutional deinterleaver of the hybrid time deinterleaver may perform inter frame deinterleaving, and the block deinterleaver may perform intra frame deinterleaving. Details of inter frame deinterleaving and intra frame deinterleaving are the same as those described above.
도 52 내지 도 53에 도시된 BICM 디코딩(BICM decoding) 블록은 도 50 내지 도 51의 BICM 체인(BICM chain)블록의 역동작을 수행할 수 있다.The BICM decoding block illustrated in FIGS. 52 to 53 may perform a reverse operation of the BICM chain block of FIGS. 50 to 51.
도 53은 하이브리드 타임 디인터리버의 구조의 제 2 실시예를 포함하는 블록도이다.53 is a block diagram including the second embodiment of the structure of the hybrid time deinterleaver.
제 2 실시예에 따른 하이브리드 타임 디인터리버는 상술한 제 2 실시예에 따른 하이브리드 타임 인터리버의 역동작에 상응하는 동작을 수행할 수 있다. 하이브리드 타임 디인터리버 구조의 제 2 실시예에 포함되는 각 블록의 동작은 도 52에서 설명한 내용과 동일할 수 있다.The hybrid time deinterleaver according to the second embodiment may perform an operation corresponding to the reverse operation of the hybrid time interleaver according to the second embodiment. Operation of each block included in the second embodiment of the hybrid time deinterleaver structure may be the same as the content described with reference to FIG. 52.
하이브리드 타임 디인터리버 구조의 제 2 실시예에 따른 블록 디인터리버는 PLP_NUM 값에 따라 적용 여부가 결정될 수 있다. 제 2 실시예에 따른 하이브리드 타임 디인터리버의 각 블록들은 본 발명의 실시예에 따른 동작들을 수행할 수 있다. 이 때, PLP_NUM=1인 경우와 PLP_NUM>1인 경우 적용되는 컨볼루션 디인터리버의 구조 및 동작이 서로 다를 수 있다. Whether the block deinterleaver according to the second embodiment of the hybrid time deinterleaver structure is applied may be determined according to a PLP_NUM value. Each block of the hybrid time deinterleaver according to the second embodiment may perform operations according to the embodiment of the present invention. In this case, the structure and operation of the convolutional deinterleaver applied when PLP_NUM = 1 and PLP_NUM> 1 may be different.
도 54는 본 발명의 일 실시예에 따른 하이브리드 방송 수신 장치를 나타낸 도면이다. 하이브리드 방송 시스템은 지상파 방송망 및 인터넷 망을 연동하여 방송 신호를 송신할 수 있다. 하이브리드 방송 수신 장치는 지상파 방송망 (브로드캐스트) 및 인터넷 망 (브로드밴드)을 통해 방송 신호를 수신할 수 있다. 하이브리드 방송 수신 장치는 피지컬 레이어 모듈, 피지컬 레이어 I/F 모듈, 서비스/컨텐트 획득 컨트롤러, 인터넷 억세스 제어 모듈, 시그널링 디코더, 서비스 시그널링 매니저, 서비스 가이드 매니저, 어플리케이션 시그널링 매니저, 경보 신호 매니저, 경보 신호 파서, 타겟팅 신호 파서, 스트리밍 미디어 엔진, 비실시간 파일 프로세서, 컴포넌트 싱크로나이저, 타겟팅 프로세서, 어플리케이션 프로세서, A/V 프로세서, 디바이스 매니저, 데이터 셰어링 및 커뮤니케이션 유닛, 재분배 모듈, 컴패니언 디바이스 및/또는 외부 모듈들을 포함할 수 있다. 54 is a diagram illustrating a hybrid broadcast reception device according to an embodiment of the present invention. The hybrid broadcasting system may transmit a broadcast signal by interworking a terrestrial broadcasting network and an internet network. The hybrid broadcast reception device may receive a broadcast signal through a terrestrial broadcast network (broadcast) and an internet network (broadband). The hybrid broadcast receiver includes a physical layer module, a physical layer I / F module, a service / content acquisition controller, an internet access control module, a signaling decoder, a service signaling manager, a service guide manager, an application signaling manager, an alarm signal manager, an alarm signal parser, Targeting signal parser, streaming media engine, non-real time file processor, component synchronizer, targeting processor, application processor, A / V processor, device manager, data sharing and communication unit, redistribution module, companion device and / or external modules can do.
피지컬 레이어 모듈 (Physical Layer Module(s))은 지상파 방송 채널을 통하여 방송 관련 신호를 수신 및 처리하고 이를 적절한 형태로 변환하여 피지컬 레이어 I/F 모듈로 전달할 수 있다. The physical layer module (s) may receive and process a broadcast-related signal through a terrestrial broadcast channel, convert it into an appropriate form, and deliver the signal to a physical layer I / F module.
피지컬 레이어 I/F 모듈 (Physical Layer I/F Module(s))은 Physical layer Module로 부터 획득된 정보로부터 IP 데이터 그램을 획득할 수 있다. 또한, 피지컬 레이어 I/F 모듈은 획득된 IP 데이터그램 등을 특정 프레임(예를 들어 RS Frame, GSE 등) 으로 변환할 수 있다.The physical layer I / F module (s) may obtain an IP datagram from information obtained from the physical layer module. In addition, the physical layer I / F module may convert the obtained IP datagram into a specific frame (eg, RS Frame, GSE, etc.).
서비스/컨텐트 획득 컨트롤러 (Service/Content Acquisition Controller)는 broadcast 및/또는 broadband 채널을 통한 서비스, 콘텐츠 및 이와 관련된 시그널링 데이터 획득을 위한 제어 동작을 수행할 수 있다.The service / content acquisition controller may perform a control operation for acquiring service, content, and signaling data related thereto through broadcast and / or broadband channels.
인터넷 억세스 제어 모듈(Internet Access Control Module(s))은 Broadband 채널을 통하여 서비스, 콘텐츠 등을 획득하기 위한 수신기 동작을 제어할 수 있다.The Internet Access Control Module (s) may control a receiver operation for acquiring a service, content, or the like through a broadband channel.
시그널링 디코더 (Signaling Decoder)는 broadcast 채널 등을 통하여 획득한 시그널링 정보를 디코딩할 수 있다. The signaling decoder may decode signaling information obtained through a broadcast channel.
서비스 시그널링 매니저 (Service Signaling Manager)는 IP 데이터 그램 등으로부터 서비스 스캔 및 서비스/콘텐츠 등과 관련된 시그널링 정보 추출, 파싱 및 관리할 수 있다. The service signaling manager may extract, parse, and manage signaling information related to service scan and service / content from an IP datagram.
서비스 가이드 매니저 (Service Guide Manager)는 IP 데이터 그램 등으로 부터 announcement 정보를 추출하고 SG(Service Guide) database 관리하며, service guide를 제공할 수 있다. The service guide manager may extract announcement information from an IP datagram, manage an SG database, and provide a service guide.
어플리케이션 시그널링 매니저 (App Signaling Manager)는 IP 데이터 그램 등으로 부터 애플리케이션 획득 등과 관련된 시그널링 정보 추출, 파싱 및 관리할 수 있다.The App Signaling Manager may extract, parse and manage signaling information related to application acquisition from an IP datagram.
경보 신호 파서 (Alert Signaling Parser)는 IP 데이터 그램 등으로 부터 alerting 관련된 시그널링 정보 추출 및 파싱, 관리할 수 있다.Alert Signaling Parser can extract, parse and manage signaling information related to alerting from IP datagram.
타겟팅 신호 파서 (Targeting Signaling Parser)는 IP 데이터 그램 등으로 부터 서비스/콘텐츠 개인화 혹은 타겟팅 관련된 시그널링 정보 추출 및 파싱, 관리할 수 있다. 또한 타겟팅 신호 파서는 파싱된 시그널링 정보를 타겟팅 프로세서로 전달할 수 있다.Targeting Signaling Parser can extract, parse and manage signaling information related to service / content personalization or targeting from IP datagram. In addition, the targeting signal parser may deliver the parsed signaling information to the targeting processor.
스트리밍 미디어 엔진 (Streaming Media Engine)은 IP 데이터그램 등으로 부터 A/V 스트리밍을 위한 오디오/비디오 데이터 추출 및 디코딩할 수 있다. The streaming media engine can extract and decode audio / video data for A / V streaming from IP datagrams.
비실시간 파일 프로세서 (Non-real time File Processor)는 IP 데이터그램 등으로 부터 NRT 데이터 및 application 등 파일 형태 데이터 추출 및 디코딩, 관리할 수 있다.The non-real time file processor can extract, decode and manage file type data such as NRT data and applications from IP datagrams.
컴포넌트 싱크로나이저 (Component Synchronizer)는 스트리밍 오디오/비디오 데이터 및 NRT 데이터 등의 콘텐츠 및 서비스를 동기화할 수 있다. The Component Synchronizer can synchronize content and services such as streaming audio / video data and NRT data.
타겟팅 프로세서 (Targeting Processor)는 타겟팅 신호 파서로부터 수신한 타겟팅 시그널링 데이터에 기초하여 서비스/콘텐츠의 개인화 관련 연산을 처리할 수 있다. The targeting processor may process an operation related to personalization of a service / content based on the targeting signaling data received from the targeting signal parser.
어플리케이션 프로세서 (App Processor)는 application 관련 정보 및 다운로드 된 application 상태 및 디스플레이 파라미터 처리할 수 있다. The App Processor may process application related information, downloaded application status, and display parameters.
A/V 프로세서 (A/V Processor)는 디코딩된 audio 및 video data, application 데이터 등을 기반으로 오디오/비디오 랜더링 관련 동작을 수행할 수 있다. The A / V Processor may perform audio / video rendering related operations based on decoded audio, video data, and application data.
디바이스 매니저 (Device Manager)는 외부 장치와의 연결 및 데이터 교환 동작을 수행할 수 있다. 또한 디바이스 매니저는 연동 가능한 외부 장치의 추가/삭제/갱신 등 외부 장치에 대한 관리 동작을 수행할 수 있다. The device manager may perform a connection and data exchange operation with an external device. In addition, the device manager may perform management operations on external devices, such as adding, deleting, and updating external devices that can be interworked.
데이터 셰어링 및 커뮤니케이션 유닛 (Data Sharing & Comm.)은 하이브리드 방송 수신기와 외부 장치 간의 데이터 전송 및 교환에 관련된 정보를 처리할 수 있다. 여기서, 전송 및 교환 가능한 데이터는 시그널링, A/V 데이터 등이 될 수 있다.The data sharing & communication unit can process information related to data transmission and exchange between the hybrid broadcast receiver and an external device. Here, the data that can be transmitted and exchanged may be signaling, A / V data, or the like.
재분배 모듈 (Redistribution Module(s))은 방송 수신기가 지상파 방송 신호를 직접 수신 하지 못하는 경우 차세대 방송 서비스 및 콘텐츠에 대한 관련 정보를 획득할 수 있다. 또한 재분배 모듈은 방송 수신기가 지상파 방송 신호를 직접 수신 하지 못하는 경우 차세대 방송 시스템에 의한 방송 서비스 및 콘텐츠 획득을 지원할 수 있다. The redistribution module (s) may obtain relevant information about next-generation broadcast services and contents when the broadcast receiver does not directly receive the terrestrial broadcast signal. In addition, the redistribution module may support the acquisition of broadcast services and content by the next generation broadcast system when the broadcast receiver does not directly receive the terrestrial broadcast signal.
컴패니언 디바이스 (Companion device(s))는 본 발명의 방송 수신기에 연결되어 오디오, 비디오, 또는 시그널링 포함데이터를 공유할 수 있다. 컴패니언 디바이스는 방송 수신기와 연결된 외부 장치를 지칭할 수 있다.Companion device (s) may be connected to the broadcast receiver of the present invention to share audio, video, or signaling inclusion data. The companion device may refer to an external device connected to the broadcast receiver.
외부 모듈 (External Management)는 방송 서비스/콘텐츠 제공을 위한 모듈을 지칭할 수 있으며 예를들어 차세대 방송 서비스/컨텐츠 서버가 될 수 있다. 외부 모듈은 방송 수신기와 연결된 외부 장치를 지칭할 수 있다.The external module may refer to a module for providing a broadcast service / content and may be, for example, a next generation broadcast service / content server. The external module may refer to an external device connected to the broadcast receiver.
도 55는 본 발명의 일 실시예에 따른 하이브리드 방송 수신기의 블록도를 나타낸 도면이다. 55 is a block diagram of a hybrid broadcast receiver according to an embodiment of the present invention.
하이브리드 방송 수신기는 차세대 방송 시스템의 DTV 서비스에서 지상파 방송과 브로드밴드의 연동을 통한 하이브리드 방송 서비스를 수신할 수 있다. 하이브리드 방송 수신기는 지상파 방송을 통해서 전송되는 방송 오디오/비디오 (Audio/Video, A/V) 컨텐츠를 수신하고, 이와 연관된 enhancement data 혹은 방송 A/V 컨텐츠의 일부를 브로드밴드를 통하여 실시간으로 수신할 수 있다. 본 명세서에서 방송 오디오/비디오 (Audio/Video, A/V) 컨텐츠는 미디어 컨텐츠로 지칭할 수 있다. The hybrid broadcast receiver may receive a hybrid broadcast service through interlocking terrestrial broadcast and broadband in a DTV service of a next generation broadcast system. The hybrid broadcast receiver may receive broadcast audio / video (Audio / Video, A / V) content transmitted through terrestrial broadcast, and receive enhancement data or a part of broadcast A / V content related thereto in real time through broadband. . In this specification, broadcast audio / video (A / V) content may be referred to as media content.
하이브리드 방송 수신기는 물리 계층 컨트롤러 (Physical Layer Controller, D55010), 튜너 (Tuner, D55020), 물리적 프레임 파서 (Physical Frame Parser, D55030), 연결 계층 파서 (Link Layer Frame Parser, D55040), IP/UDP 데이터그램 필터 (IP/UDP Datagram Filter, D55050), ATSC 3.0 디지털 텔레비전 컨트롤 엔진 (ATSC 3.0 DTV Control Engine, D55060), ALC/LCT+ 클라이언트 (ALC/LCT+ Client, D55070), 타이밍 제어부 (Timing Control, D55080), 시그널링 파서 (Signaling Parser, D55090), DASH 클라이언트 (Dynamic Adaptive Streaming over HTTP Client, DASH Client, D55100), HTTP 접속 클라이언트 (HTTP Access Client, D55110), ISO BMFF 파서 (ISO Base Media File Format Parser, ISO BMFF Parser, D55120) 및/또는 미디어 디코더(Media Decoder, D55130)을 포함할 수 있다. Hybrid broadcast receivers include Physical Layer Controller (D55010), Tuner (Tuner, D55020), Physical Frame Parser (D55030), Link Layer Frame Parser (D55040), IP / UDP Datagram Filter (IP / UDP Datagram Filter, D55050), ATSC 3.0 Digital Television Control Engine (ATSC 3.0 DTV Control Engine, D55060), ALC / LCT + Client (ALC / LCT + Client, D55070), Timing Control (D55080), Signaling Signaling Parser (D55090), DASH Client (Dynamic Adaptive Streaming over HTTP Client, DASH Client, D55100), HTTP Access Client (HTTP Access Client, D55110), ISO BMFF Parser (ISO Base Media File Format Parser, ISO BMFF Parser, D55120) and / or a media decoder D55130.
물리 계층 컨트롤러 (D55010)는 하이브리드 방송 수신기가 수신하고자 하는 지상파 방송 채널의 라디오 주파수 (Radio Frequency, RF) 정보 등을 이용하여 튜너 (D55020), 물리적 프레임 파서(D55030) 등의 동작을 제어할 수 있다. The physical layer controller D55010 may control operations of the tuner D55020 and the physical frame parser D55030 using radio frequency (RF) information of a terrestrial broadcast channel intended to be received by the hybrid broadcast receiver. .
튜너 (D55020)는 지상파 방송 채널을 통하여 방송 관련 신호를 수신 및 처리하고 이를 적절한 형태로 변환할 수 있다. 예를 들어 튜너 (D55020)는 수신된 지상파 방송 신호를 물리적 프레임 (Physical Frame)으로 변환할 수 있다. The tuner D55020 may receive and process a broadcast-related signal through a terrestrial broadcast channel and convert it to an appropriate form. For example, the tuner D55020 may convert the received terrestrial broadcast signal into a physical frame.
물리적 프레임 파서 (D55030)는 수신된 물리적 프레임을 파싱하고 이와 관련된 프로세싱을 통하여 연결 계층 프레임 (Link Layer Frame)을 획득할 수 있다. The physical frame parser D55030 may obtain a link layer frame through parsing the received physical frame and processing related thereto.
연결 계층 파서 (D55040)는 연결 계층 프레임으로부터 연결 계층 시그널링 (Link Layer signaling) 등을 획득하거나 IP/UDP 데이터그램 혹은 MPEG-2 TS 등을 획득하기 위한 관련 연산을 수행할 수 있다. 연결 계층 파서 (D55040)는 적어도 하나 이상의 IP/UDP 데이터그램 등을 출력할 수 있다. The link layer parser D55040 may perform a related operation for acquiring link layer signaling or the like from an link layer frame or for acquiring an IP / UDP datagram or an MPEG-2 TS. The connection layer parser D55040 may output at least one or more IP / UDP datagrams.
IP/UDP 데이터그램 필터 (D55050)는 수신된 적어도 하나 이상의 IP/UDP 데이터그램 등으로부터 특정 IP/UDP 데이터 그램을 필터링할 수 있다. 즉, IP/UDP 데이터그램 필터 (D55050)는 연결 계층 파서 (D55040)로부터 출력된 적어도 하나의 IP/UDP 데이터그램 중 ATSC 3.0 디지털 텔레비전 컨트롤 엔진 (D55060)에 의해 선택된 IP/UDP 데이터그램을 선택적으로 필터링할 수 있다. IP/UDP 데이터그램 필터 (D55050)는 ALC/LCT+ 등의 애플리케이션 계층 전송 프로토콜 패킷을 출력할 수 있다. The IP / UDP datagram filter D55050 may filter a specific IP / UDP datagram from the received at least one IP / UDP datagram. That is, the IP / UDP datagram filter D55050 selectively selects the IP / UDP datagram selected by the ATSC 3.0 digital television control engine D55060 among at least one IP / UDP datagram output from the connection layer parser D55040. You can filter. The IP / UDP datagram filter D55050 may output an application layer transport protocol packet such as ALC / LCT +.
ATSC 3.0 디지털 텔레비전 컨트롤 엔진 (D55060)은 각 하이브리드 방송 수신기에 포함된 모듈 간의 인터페이스를 담당할 수 있다. 또한 ATSC 3.0 디지털 텔레비전 컨트롤 엔진 (D55060)은 각 모듈에 필요한 파라미터 등을 각 모듈에 전달하고, 이를 통해 각 모듈의 동작을 제어할 수 있다. 본 발명에서 ATSC 3.0 디지털 텔레비전 컨트롤 엔진 (D55060)은 미디어 프리젠테이션 디스크립션 (Media Presentation Description, MPD) 및/또는 MPD URL을 DASH 클라이언트 (D55100)에 전달할 수 있다. 또한 본 발명에서 ATSC 3.0 디지털 텔레비전 컨트롤 엔진 (D55060)은 전송 모드(Delivery mode) 및/또는 전송 세션 식별자 (Transport Session Identifier, TSI)를 ALC/LCT+ 클라이언트 (D55070)에 전달할 수 있다. 여기서 TSI는 MPD 또는 MPD URL 관련 시그널링 등 시그널링 메시지를 포함하는 전송 패킷을 전송하는 세션, 예를 들어 애플리케이션 계층 전송 프로토콜인 ALC/LCT+ 세션 또는 FLUTE 세션의 식별자를 나타낼 수 있다. 또한 전송 세션 식별자는 MMT의 Asset id 등에 대응될 수 있다. The ATSC 3.0 digital television control engine (D55060) may be responsible for the interface between the modules included in each hybrid broadcast receiver. In addition, the ATSC 3.0 digital television control engine (D55060) transmits the parameters required for each module to each module, thereby controlling the operation of each module. In the present invention, the ATSC 3.0 digital television control engine D55060 may deliver a media presentation description (MPD) and / or an MPD URL to the DASH client D55100. Also, in the present invention, the ATSC 3.0 digital television control engine D55060 may transmit a delivery mode and / or a transport session identifier (TSI) to the ALC / LCT + client D55070. Here, TSI may indicate an identifier of a session for transmitting a transport packet including a signaling message such as MPD or MPD URL related signaling, for example, an ALC / LCT + session or FLUTE session, which is an application layer transport protocol. In addition, the transport session identifier may correspond to an asset id of the MMT.
ALC/LCT+ 클라이언트 (D55070)는 ALC/LCT+ 등의 애플리케이션 계층 전송 프로토콜 패킷을 처리하고 복수의 패킷을 수집 및 처리하여 하나 이상의 ISO Base Media File Format (ISOBMFF) 오브젝트를 생성할 수 있다. 어플리케이션 계층 전송 프로토콜 패킷에는 ALC/LCT 패킷, ALC/LCT+ 패킷, ROUTE 패킷, 및/또는 MMTP 패킷이 포함될 수 있다. The ALC / LCT + client D55070 may generate one or more ISO Base Media File Format (ISOBMFF) objects by processing application layer transport protocol packets such as ALC / LCT + and collecting and processing a plurality of packets. The application layer transport protocol packet may include an ALC / LCT packet, an ALC / LCT + packet, a ROUTE packet, and / or an MMTP packet.
타이밍 제어부 (D55080)는 시스템 타임 정보를 포함하는 패킷을 처리하고 이에 따라 시스템 클럭을 제어할 수 있다. The timing controller D55080 may process a packet including system time information and control the system clock accordingly.
시그널링 파서 (D55090)는 DTV 방송 서비스 관련 시그널링을 획득 및 파싱하고 파싱된 시그널링에 기초하여 채널 맵 등을 생성하고 관리할 수 있다. 본 발명에서 시그널링 파서는 시그널링 정보로부터 확장된 MPD 또는 MPD 관련 정보 등을 파싱할 수 있다. The signaling parser D55090 may acquire and parse DTV broadcast service related signaling, and generate and manage a channel map or the like based on the parsed signaling. In the present invention, the signaling parser may parse extended MPD or MPD related information from signaling information.
DASH 클라이언트 (D55100)는 실시간 스트리밍 (Real-time Streaming)혹은 적응적 스트리밍 (Adaptive Streaming)에 관련된 연산을 수행할 수 있다. DASH 클라이언트 (D55100)는 HTTP 접속 클라이언트 (D55110)을 통해 HTTP 서버로부터 DASH 컨텐츠를 수신할 수 있다. DASH 클라이언트 (D55100)는 수신된 DASH Segment등을 처리하여 ISO Base Media File Format 오브젝트를 출력할 수 있다. 본 발명에서 DASH 클라이언트 (D55100)는 ATSC 3.0 디지털 텔레비전 컨트롤 엔진 (D55060)에 전체 Representation ID (Fully qualified Representation ID) 또는 세그먼트 URL을 전달할 수 있다. 여기서 전체 Representation ID는 예를 들어 MPD URL, period@id 및 representation@id를 결합한 ID를 의미할 수 있다. 또한 DASH 클라이언트 (D55100)는 ATSC 3.0 디지털 텔레비전 컨트롤 엔진 (D55060)으로부터 MPD 또는 MPD URL을 수신할 수 있다. DASH 클라이언트 (D55100)는 수신된 MPD 또는 MPD URL을 이용하여 원하는 미디어 스트림 또는 DASH Segment를 HTTP 서버로부터 수신할 수 있다. 본 명세서에서 DASH 클라이언트 (D55100)는 프로세서로 지칭될 수 있다. The DASH client D55100 may perform operations related to real-time streaming or adaptive streaming. The DASH client D55100 may receive the DASH content from the HTTP server through the HTTP connection client D55110. The DASH client D55100 may output the ISO Base Media File Format object by processing the received DASH segment. In the present invention, the DASH client D55100 may transmit the full Representation ID (Fully qualified Representation ID) or the segment URL to the ATSC 3.0 digital television control engine (D55060). Here, the entire Representation ID may mean, for example, an ID combining the MPD URL, period @ id, and representation @ id. The DASH client D55100 may also receive an MPD or MPD URL from the ATSC 3.0 digital television control engine D55060. The DASH client D55100 may receive a desired media stream or DASH segment from the HTTP server using the received MPD or MPD URL. In the present specification, the DASH client D55100 may be referred to as a processor.
HTTP 접속 클라이언트 (D55110)는 HTTP 서버에 대해 특정 정보를 요청하고, HTTP 서버로부터 이에 대한 응답을 수신하여 처리할 수 있다. 여기서 HTTP 서버는 HTTP 접속 클라이언트로부터 수신한 요청을 처리하고 이에 대한 응답을 제공할 수 있다. The HTTP access client D55110 may request specific information from the HTTP server, and receive and process a response from the HTTP server. Here, the HTTP server may process a request received from an HTTP connection client and provide a response thereto.
ISO BMFF 파서 (D55120)는 ISO Base Media File Format 오브젝트로부터 오디오/비디오의 데이터 추출할 수 있다. The ISO BMFF parser D55120 may extract audio / video data from an ISO Base Media File Format object.
미디어 디코더 (D55130)는 수신된 오디오 및/또는 비디오 데이터를 디코딩하고, 디코딩된 오디오/비디오 데이터를 프리젠테이션하기 위한 프로세싱을 수행할 수 있다. The media decoder D55130 may decode the received audio and / or video data and perform processing for presenting the decoded audio / video data.
본 발명의 하이브리드 방송 수신기가 지상파 방송망과 브로드밴드의 연동을 통한 하이브리드 방송 서비스를 제공하기 위해서는 MPD에 대한 확장 또는 수정이 요구된다. 전술한 지상파 방송 시스템은 확장 또는 수정된 MPD를 송신할 수 있으며 하이브리드 방송 수신기는 확장 또는 수정된 MPD를 이용하여 방송 또는 브로드밴드를 통해 컨텐츠를 수신할 수 있다. 즉, 하이브리드 방송 수신기는 확장 또는 수정된 MPD는 지상파 방송을 통해 수신하고, MPD에 기초하여 지상파 방송 또는 브로드밴드를 통해 컨텐츠를 수신할 수 있다. 아래에서는 기존 MPD와 비교하여 확장 또는 수정된 MPD에 추가적으로 포함되어야 하는 엘리먼트 및 속성(attribute)에 대해 기술한다. 아래에서, 확장 또는 수정된 MPD는 MPD로 기술될 수 있다. In order for the hybrid broadcast receiver of the present invention to provide a hybrid broadcast service through interworking of a terrestrial broadcast network and a broadband, an extension or modification of the MPD is required. The above-mentioned terrestrial broadcasting system may transmit an extended or modified MPD, and the hybrid broadcast receiver may receive content through broadcast or broadband using the extended or modified MPD. That is, the hybrid broadcast receiver may receive the extended or modified MPD through terrestrial broadcasting and receive content through terrestrial broadcasting or broadband based on the MPD. The following describes elements and attributes that should be additionally included in the extended or modified MPD compared to the existing MPD. In the following, an extended or modified MPD may be described as an MPD.
MPD는 ATSC 3.0 서비스를 표현하기 위해 확장되거나 수정될 수 있다. 확장 또는 수정된 MPD는 MPD@anchorPresentationTime, Common@presentable, Common.Targeting, Common.TargetDevice 및/또는 Common@associatedTo를 추가적으로 포함할 수 있다. MPD can be extended or modified to represent ATSC 3.0 services. The extended or modified MPD may additionally include MPD @ anchorPresentationTime, Common @ presentable, Common.Targeting, Common.TargetDevice and / or Common @ associatedTo.
MPD@anchorPresentationTime는 MPD에 포함된 세그먼트들의 프리젠테이션 타임의 앵커, 즉 기초가 되는 시간을 나타낼 수 있다. 아래에서 MPD@anchorPresentationTime는 MPD의 유효 시간(effective time)으로 사용될 수 있다. MPD@anchorPresentationTime는 MPD에 포함된 세그먼트들 중 가장 빠른 재생 시점을 나타낼 수 있다. The MPD @ anchorPresentationTime may indicate an anchor of the presentation time of the segments included in the MPD, that is, the time at which it is based. In the following, MPD @ anchorPresentationTime may be used as an effective time of the MPD. MPD @ anchorPresentationTime may indicate the earliest playback time point among segments included in the MPD.
MPD는 공통 속성들 및 요소들(common attributes and elements)을 더 포함할 수 있다. 공통속성및 요소는 MPD 내의 AdaptionSet, Representation, SubRepresentation 등에 적용될 수 있다. Common@presentable은 MPD가 기술하고 있는 미디어가 프리젠테이션이 가능한 컴포넌트임을 나타낼 수 있다. The MPD may further include common attributes and elements. Common attributes and elements can be applied to AdaptionSet, Representation, SubRepresentation, etc. in MPD. Common @ presentable may indicate that the media described by the MPD is a component that can be presented.
Common.Targeting은 MPD가 기술하고 있는 미디어의 타겟팅 특징(targeting properties) 및/또는 개별화 특징(personalization properties)를 나타낼 수 있다. Common.Targeting may indicate targeting properties and / or personalization properties of media described by the MPD.
Common.TargetDevice는 MPD가 기술하고 있는 미디어의 타겟 디바이스 또는 타겟 디바이스들을 나타낼 수 있다. Common.TargetDevice may represent a target device or target devices of the media described by the MPD.
Common@associatedTo는 MPD가 기술하고 있는 미디어에 관련된 adaptationSet 및/또는 representation을 나타낼 수 있다. Common @ associatedTo may indicate an adaptationSet and / or representation related to the media described by the MPD.
또한 MPD에 포함된 MPD@id, Period@id 및 AdaptationSet@id는 MPD가 기술하고 있는 미디어 컨텐츠를 특정하기 위해 요구될 수 있다. 즉, DASH 클라이언트는 MPD에 기초하여 수신하고자 하는 컨텐츠를 MPD@id, Period@id 및 AdaptationSet@id로 특정하여 ATSC 3.0 디지털 텔레비전 컨트롤 엔진에 전달할 수 있다. 또한 ATSC 3.0 디지털 텔레비전 컨트롤 엔진은 해당 컨텐츠를 수신하여 DASH 클라이언트에 전달할 수 있다. In addition, MPD @ id, Period @ id and AdaptationSet @ id included in the MPD may be required to specify the media content described by the MPD. That is, the DASH client may specify the content to be received based on the MPD as MPD @ id, Period @ id, and AdaptationSet @ id, and deliver the content to the ATSC 3.0 digital television control engine. The ATSC 3.0 digital television control engine can also receive the content and deliver it to the DASH client.
도 56은 본 발명의 일 실시예에 따른 차세대 하이브리드 방송 시스템의 프로토콜 스택을 나타낸다. 도시된 바와 같이, IP 기반 하이브리드 방송을 지원하는 차세대 방송 송신 시스템은 방송서비스의 오디오 혹은 비디오 데이터 등을 ISO Base Media File Format (이하 ISO BMFF) 으로 encapsulation 할 수 있다. 여기서, 인캡슐레이션은 DASH Segment 혹은 MMT의 MPU (Media processing unit) 등의 형태를 이용할 수 있다. 또한 차세대 방송 시스템은 인캡슐레이션된 데이터를 방송망과 인터넷 망에 동일하게 혹은 각 전송망의 속성에 따라 서로 다르게 전송할 수 있다. 또한 차세대 방송 시스템은 인캡슐레이션된 데이터를 브로드캐스트 또는 브로드밴드 중 적어도 하나를 이용하여 전송할 수 있다. 브로드캐스트를 이용하는 방송망의 경우 방송 시스템은 ISO Base Media File (이하 ISO BMFF) 형태로 encapsulation 된 데이터를 실시간 오브젝트 전송을 지원하는 application layer transport 프로토콜 패킷을 통해 전송할 수 있다. 예를 들어 방송 시스템은 Real-Time Object Delivery over Unidirectional Transport (이하 ROUTE) 또는 MMTP의 transport packet 등으로 encapsulation 할 수 있다. 그리고 방송 시스템은 인캡슐레이션된 데이터를 다시 IP/UDP 데이터 그램으로 생성 후 이를 방송 신호에 실어서 전송할 수 있다. 브로드밴드를 이용하는 경우 방송 시스템은 인캡슐레이션된 데이터를 DASH 등 스트리밍 기법 등을 기반으로 수신측에 전달 할 수 있다. 56 shows a protocol stack of a next generation hybrid broadcast system according to an embodiment of the present invention. As shown, the next generation broadcast transmission system supporting IP-based hybrid broadcasting may encapsulate audio or video data of a broadcast service in an ISO Base Media File Format (hereinafter referred to as ISO BMFF). Here, the encapsulation may use a form such as DASH Segment or MPU (Media Processing Unit) of MMT. In addition, the next generation broadcasting system may transmit the encapsulated data to the broadcasting network and the Internet network in the same manner or differently according to the properties of each transmission network. In addition, the next generation broadcast system may transmit the encapsulated data using at least one of broadcast or broadband. In the case of a broadcast network using broadcast, the broadcast system may transmit data encapsulated in the form of ISO Base Media File (hereinafter referred to as ISO BMFF) through an application layer transport protocol packet supporting real-time object transmission. For example, a broadcast system may encapsulate a real-time object delivery over unidirectional transport (hereinafter referred to as ROUTE) or a transport packet of an MMTP. The broadcast system may generate the encapsulated data as an IP / UDP datagram and then load the encapsulated data into a broadcast signal. In the case of using broadband, the broadcasting system may deliver the encapsulated data to the receiver based on a streaming technique such as DASH.
이와 더불어 방송 시스템은 방송 서비스의 시그널링 정보를 다음과 같은 방법으로 전송할 수 있다. 브로드캐스트를 이용하는 방송망의 경우 방송 시스템은 시그널링의 속성 등에 따라 차세대 방송 전송 시스템 및 방송망의 physical layer 를 통해 시그널링 정보를 전송할 수 있다. 여기서, 방송 시스템은 방송 신호 내에 포함된 transport frame 의 특정 data pipe (이하 DP) 등을 통해 시그널링 정보를 전송할 수 있다. 브로드캐스트를 통해 전송되는 시그널링 형태는 비트 스트림 또는 IP/UDP 데이터 그램으로 encapsulation 된 형태일 수 있다. 브로드밴드를 이용하는 경우 방송 시스템은 수신기의 요청에 대한 응답으로서 시그널링 데이터를 리턴하여 전달할 수 있다. In addition, the broadcast system may transmit signaling information of a broadcast service in the following method. In the case of a broadcast network using broadcast, the broadcast system may transmit signaling information through the next-generation broadcast transmission system and the physical layer of the broadcast network according to signaling properties. Here, the broadcast system may transmit signaling information through a specific data pipe (hereinafter referred to as DP) of a transport frame included in the broadcast signal. The signaling form transmitted through broadcast may be encapsulated into a bit stream or an IP / UDP datagram. In case of using broadband, the broadcast system may return signaling data in response to a request of a receiver and transmit the signaling data.
이와 더불어 방송 시스템은 방송 서비스의 ESG 혹은 NRT 콘텐츠 등을 다음과 같은 방법으로 전송할 수 있다. 브로드캐스트를 이용하는 방송망의 경우 방송 시스템은 application layer transport 프로토콜 패킷, 예를 들어 Real-Time Object Delivery over Unidirectional Transport (이하 ROUTE), MMTP의 transport packet 등으로 ESG 혹은 NRT 콘텐츠를 encapsulation 할 수 있다. 그리고 encapsulation 된 ESG 혹은 NRT 콘텐츠를 다시 IP/UDP 데이터 그램으로 생성한 후 이를 방송 신호에 실어서 전송할 수 있다. 브로드밴드를 이용하는 경우 방송 시스템은 수신기의 요청에 대한 응답으로서 ESG 혹은 NRT 콘텐츠 등을 리턴하여 전달할 수 있다. In addition, the broadcast system may transmit ESG or NRT content of a broadcast service in the following manner. In the case of a broadcast network using broadcast, the broadcast system may encapsulate the ESG or NRT content using an application layer transport protocol packet, for example, Real-Time Object Delivery over Unidirectional Transport (ROUTE), MMTP transport packet, and the like. In addition, the encapsulated ESG or NRT content can be generated as an IP / UDP datagram and loaded on a broadcast signal for transmission. In the case of using broadband, the broadcast system may return ESG or NRT content and the like as a response to the request of the receiver and transmit the same.
도 57은 본 발명의 일 실시예에 따른 차세대 방송 전송 시스템의 physical layer 에 전달되는 전송 프레임의 구조를 나타낸다. 차세대 방송 시스템은 브로드캐스트를 이용하여 전송 프레임을 전송할 수 있다. 도면에서, 전송 프레임의 앞부분에 위치한 P1은 transport signal detection을 위한 정보가 포함된 심볼을 의미할 수 있다. P1은 tuning information을 포함할 수 있으며 수신기는 P1 심볼에 포함된 parameter에 기초하여 P1 다음에 위치한 L1 파트를 디코딩할 수 있다. 방송 시스템은 L1 파트에 transport frame 구성 및 각 DP (data pipe)의 특성 등에 대한 정보를 포함시킬 수 있다. 즉, 수신기는 L1 파트를 디코딩하여 transport frame 구성 및 각 DP (data pipe)의 특성 등에 대한 정보를 얻을 수 있다. 또한 수신기는 Common DP를 통해 DP 간의 공유해야 하는 정보를 획득할 수 있다. 실시예에 따라 Transport frame 은 common DP를 포함하지 않을 수도 있다.57 shows a structure of a transport frame delivered to a physical layer of a next generation broadcast transmission system according to an embodiment of the present invention. The next generation broadcast system may transmit a transport frame using broadcast. In the figure, P1 located at the front of the transmission frame may mean a symbol including information for transport signal detection. P1 may include tuning information and the receiver may decode the L1 part located after P1 based on a parameter included in the P1 symbol. The broadcast system may include information on a transport frame configuration and characteristics of each DP (data pipe) in the L1 part. That is, the receiver may decode the L1 part to obtain information about the transport frame configuration and the characteristics of each DP (data pipe). In addition, the receiver may acquire information that should be shared between DPs through a common DP. According to an embodiment, a transport frame may not include a common DP.
전송 프레임에서 Audio, Video, Data 등의 component는 DP1~n으로 구성된 interleaved DP 영역에 포함되어 전송된다. 여기서 각각의 서비스(채널)를 구성하는 component가 각각 어느 DP로 전송되는가는 L1 혹은 common PLP 등을 통해 시그널링 될 수 있다. In the transmission frame, components such as audio, video, and data are included in the interleaved DP region composed of DP1 to n and transmitted. Here, to which DP each component constituting each service (channel) is transmitted may be signaled through L1 or common PLP.
또한 차세대 방송 시스템은 전송 프레임에 포함된 서비스에 대한 정보를 신속하게 획득하기 위한 정보를 전송할 수 있다. 즉, 차세대 방송 시스템은 차세대 방송 수신기가 transport frame 에 포함된 방송 서비스 및 콘텐츠 관련 정보를 신속하게 획득하도록 할 수 있다. 이와 더불어 해당 frame 내에서 하나 이상의 방송국에서 생성해 낸 서비스/콘텐츠가 존재하는 경우 수신기로 하여금 방송국에 따른 서비스/콘텐츠를 효율적으로 인지하도록 할 수 있다. 즉, 차세대 방송 시스템은 전송 프레임 내에 포함된 서비스에 대한 서비스 리스트 정보를 전송 프레임에 포함시켜 전송할 수 있다. In addition, the next generation broadcasting system may transmit information for quickly obtaining information about a service included in a transmission frame. That is, the next generation broadcast system may allow the next generation broadcast receiver to quickly acquire broadcast service and content related information included in a transport frame. In addition, when there is a service / content generated by one or more broadcasting stations in the corresponding frame, the receiver can efficiently recognize the service / content according to the broadcasting station. That is, the next generation broadcast system may transmit service list information about a service included in a transport frame by including the same in a transport frame.
방송 시스템은 수신기가 해당 주파수 내의 방송 서비스 및 콘텐츠 스캔을 신속하게 할 수 있도록 하기 위하여, 별도의 채널, 예를 들어 Fast Information Channel (FIC) 등이 존재하는 경우 이를 통해 방송서비스 관련된 정보를 전송할 수 있다. 도 57의 중단에 도시된 바와 같이 방송 시스템은 Transport frame 에 방송 서비스 스캔 및 획득을 위한 정보를 포함시켜 전송할 수 있다. 여기서 방송 서비스에 대한 스캔 및 획득에 대한 정보를 포함하는 영역을 FIC라고 지칭할 수 있다. 수신기는 FIC 를 통하여 하나 이상의 방송국에서 생성 및 전송되는 방송 서비스에 대한 정보를 획득할 수 있으며, 이를 통해 수신기 상에서 이용 가능한 방송 서비스들에 대한 스캔을 손쉽고 빠르게 수행할 수 있다. The broadcast system may transmit broadcast service related information through a separate channel, for example, a fast information channel (FIC), so that the receiver can quickly scan a broadcast service and content within a corresponding frequency. . As shown in the interruption of FIG. 57, the broadcast system may include information for scan and acquisition of a broadcast service in a transport frame and transmit the information. Here, an area including information on scan and acquisition for a broadcast service may be referred to as an FIC. The receiver may acquire information on broadcast services generated and transmitted by one or more broadcasting stations through the FIC, and thus, the receiver may easily and quickly scan the broadcast services available on the receiver.
또한 전송 프레임에 포함된 특정 DP는 해당 transport frame 내에서 전송되는 방송 서비스 및 콘텐츠에 대한 시그널링을 신속하고 강건하게 전송할 수 있는 Base DP 로 동작할 수 있다. Physical layer의 transport frame 의 각 DP 을 통하여 전송되는 데이터들은 도 57의 하단과 같을 수 있다. 즉, Link layer signaling 혹은 IP 데이터 그램 등은 특정 형태의 Generic packet 으로 encapsulation 된 후 DP 을 통하여 전송될 수 있다. 여기서, Generic packet은 시그널링 데이터를 포함할 수 있다. 여기서, Link(low) layer signaling 은 fast service scan/acquisition, IP header compression의 context information, emergency alert 과 관련된 시그널링 등을 포함할 수 있다.In addition, a specific DP included in a transport frame may operate as a base DP capable of quickly and robustly transmitting signaling for broadcast service and content transmitted in a corresponding transport frame. Data transmitted through each DP of the transport frame of the physical layer may be the same as the bottom of FIG. That is, the link layer signaling or the IP datagram may be transmitted through the DP after being encapsulated into a specific type of generic packet. Here, the generic packet may include signaling data. Here, the link (low) layer signaling may include fast service scan / acquisition, context information of IP header compression, signaling related to emergency alert, and the like.
도 58은 본 발명의 일 실시예에 따른 어플리케이션 계층 전송 프로토콜의 전송 패킷을 나타낸 도면이다. 애플리케이션 계층 전송 세션은 IP 주소 및 포트 번호의 조합으로 구성될 수 있다. 어플리케이션 계층 전송 프로토콜이 Real-Time Object Delivery over Unidirectional Transport (이하 ROUTE) 인 경우, ROUTE 세션이 하나 이상의 LCT(Layered Coding Transport) 세션들로 구성되는 될 수 있다. 예를 들어 하나의 LCT 전송 세션을 통해 하나의 미디어 컴포넌트 (예를 들어 DASH Representation 등)를 전달하는 경우 하나의 애플리케이션 전송 세션을 통하여 하나 이상의 미디어 컴포넌트를 multiplexing 하여 전송할 수 있다. 더 나아가 하나의 LCT 전송 세션을 통하여 하나이상의 전송 오브젝트 (Transport object) 를 전달할 수 있으며 각 전송 오브젝트는 전송 세션을 통하여 전달되는 DASH representation과 연관된 DASH segment 가 될 수 있다. 58 illustrates a transport packet of an application layer transport protocol according to an embodiment of the present invention. The application layer transport session may consist of a combination of IP address and port number. When the application layer transport protocol is Real-Time Object Delivery over Unidirectional Transport (ROUTE), the ROUTE session may be composed of one or more Layered Coding Transport (LCT) sessions. For example, when one media component (for example, DASH Representation, etc.) is delivered through one LCT transmission session, one or more media components may be multiplexed and transmitted through one application transmission session. Furthermore, one or more transport objects may be delivered through one LCT transport session, and each transport object may be a DASH segment associated with a DASH representation delivered through the transport session.
예를 들어 애플리케이션 계층 전송 프로토콜이 LCT 기반인 경우, 다음과 같이 전송 패킷이 구성될 수 있다. 전송 패킷은 LCT 헤더, ROUTE 헤더 및 페이로드 데이터를 포함할 수 있으며, 전송 패킷에 포함된 복수의 필드는 다음과 같을 수 있다. For example, when the application layer transport protocol is LCT-based, the transport packet may be configured as follows. The transport packet may include an LCT header, a ROUTE header, and payload data, and the plurality of fields included in the transport packet may be as follows.
LCT 헤더는 다음과 같은 필드들을 포함할 수 있다. V (version) 필드는 해당 전송 프로토콜 패킷의 버전 정보 나타낼 수 있다. C 필드는 아래에서 설명할 Congestion Control Information 필드의 길이와 연관된 flag을 나타낼 수 있다. PSI 필드는 protocol-specific information 으로써 해당 프로토콜에 특화된 정보를 나타낼 수 있다. S 필드는 transport session identifier (TSI) 필드의 길이와 연관된 flag을 나타낼 수 있다. O 필드는 transport object identifier (TOI) 필드의 길이와 연관된 flag을 나타낼 수 있다. H 필드는 TSI, TOI 필드의 길이에 half-word(16 bits) 추가 여부를 표현할 수 있다. A (Close Session flag) 필드는 세션이 종료됨 또는 종료가 임박했음을 표현할 수 있다. B (Close Object flag) 필드는 전송중인 오브젝트가 종료됨 또는 종료가 임박했음을 표현할 수 있다. Code point 필드는 해당 패킷의 페이로드를 인코딩 혹은 디코딩하는데 관련된 정보를 나타낼 수 있다. 예를 들어 페이로드 타입 등이 이에 해당할 수 있다. Congestion Control Information 필드는 congestion control 과 연관된 정보를 포함할 수 있다. 예를 들어 congestion control 과 연관된 정보는 Current time slot index (CTSI), channel number, 또는 해당 채널 내의 packet sequence number 등이 될 수 있다. Transport Session Identifier 필드는 전송 세션의 식별자를 나타낼 수 있다. Transport Object Identifier 필드는 전송 세션을 통해 전송되는 오브젝트의 식별자를 나타낼 수 있다. The LCT header may include the following fields. The V (version) field may indicate version information of a corresponding transport protocol packet. The C field may indicate a flag associated with the length of the Congestion Control Information field described below. The PSI field is protocol-specific information and may indicate information specific to a corresponding protocol. The S field may indicate a flag associated with the length of a transport session identifier (TSI) field. The O field may indicate a flag associated with the length of the transport object identifier (TOI) field. The H field may represent whether half-word (16 bits) is added to the length of the TSI and TOI fields. A (Close Session flag) field may represent that the session is terminated or is about to be terminated. The B (Close Object flag) field may represent that the object being transmitted is closed or the end is imminent. The code point field may indicate information related to encoding or decoding a payload of a corresponding packet. For example, the payload type may correspond to this. The Congestion Control Information field may include information associated with congestion control. For example, the information associated with the congestion control may be a current time slot index (CTSI), a channel number, or a packet sequence number within a corresponding channel. The Transport Session Identifier field may indicate an identifier of a transport session. The Transport Object Identifier field may indicate an identifier of an object transmitted through a transport session.
ROUTE(ALC) Header는 Forward Error correction scheme 등과 연관된 페이로드 식별자 등 앞선 LCT 헤더의 추가 정보 전송를 포함할 수 있음. The ROUTE (ALC) Header may include transmission of additional information of the preceding LCT header, such as a payload identifier associated with the Forward Error correction scheme.
Payload data는 해당 패킷의 페이로드의 실질적인 데이터 부분을 나타낼 수 있다. Payload data may indicate a substantial data portion of the payload of the packet.
도 59는 본 발명의 일 실시예에 따른 차세대 방송 시스템이 시그널링 데이터를 전송하는 방법을 나타낸다. 차세대 방송 시스템의 시그널링 데이터는 도시된 바와 같이 전송될 수 있다. 수신기로 하여금 신속한 서비스/콘텐츠 스캔 및 획득을 지원하기 위하여 차세대 방송 송신 시스템은 해당 physical layer frame에 의해 전달되는 방송 서비스에 대한 시그널링 데이터를 Fast Information Channel(이하 FIC) 등을 통하여 전달할 수 있다. 본 명세서에서 FIC는 서비스 리스트에 대한 정보를 의미할 수 있다. 만약 별도의 FIC 가 존재하지 않는 경우 link layer signaling 이 전달되는 경로를 통하여 전달될 수 있다. 즉 서비스 및 서비스 내의 컴포넌트(오디오, 비디오 등) 들에 대한 정보 등을 포함하는 시그널링 정보는 physical layer frame 내의 하나 이상의 DP 들을 통해 IP/UDP 데이터그램으로 encapsulation 되어 전송될 수 있다. 실시예에 따라 서비스 및 서비스 컴포넌트에 대한 시그널링 정보는 application layer transport 패킷 (예를 들어 ROUTE 패킷 또는 MMTP 패킷 등) 으로 encapsulation 되어 전송될 수 있다. 59 is a diagram illustrating a method for transmitting signaling data by a next generation broadcast system according to one embodiment of the present invention. Signaling data of the next generation broadcast system may be transmitted as shown. In order for the receiver to support fast service / content scan and acquisition, the next generation broadcast transmission system may deliver signaling data for a broadcast service delivered by a corresponding physical layer frame through a fast information channel (hereinafter referred to as FIC). In the present specification, FIC may mean information on a service list. If a separate FIC does not exist, it may be transmitted through a path through which link layer signaling is carried. That is, signaling information including information on a service and components (audio, video, etc.) in the service may be encapsulated and transmitted as an IP / UDP datagram through one or more DPs in a physical layer frame. According to an embodiment, signaling information about a service and a service component may be encapsulated and transmitted in an application layer transport packet (for example, a ROUTE packet or an MMTP packet).
도 59의 상단은 위에서 설명한 시그널링 데이터가 FIC 및 하나 이상의 DP 를 통하여 전달되는 경우의 실시 예를 나타낸다. 이는 신속한 서비스 스캔/획득을 지원하기 위한 시그널링 데이터가 FIC 를 통해 전달되고 서비스 등에 대한 자세한 정보를 포함하는 시그널링 데이터가 IP 데이터그램으로 encapsulation 되어 특정 DP을 통하여 전달될 수 있다. 본 명세서에서 서비스 등에 대한 자세한 정보를 포함하는 시그널링 데이터는 서비스 레이어 시그널링으로 칭할 수 있다. The upper part of FIG. 59 shows an example of the case where the signaling data described above is delivered through the FIC and one or more DPs. This means that signaling data to support fast service scan / acquisition is delivered through FIC, and signaling data including detailed information about a service is encapsulated into an IP datagram, and can be delivered through a specific DP. In this specification, signaling data including detailed information about a service may be referred to as service layer signaling.
도 59의 중단은 위에서 설명한 시그널링 데이터가 FIC 및 하나 이상의 DP 를 통하여 전달되는 경우의 실시 예를 나타낸다. 이는 신속한 서비스 스캔/획득을 지원하기 위한 시그널링 데이터가 FIC 를 통해 전달되고 서비스 등에 대한 자세한 정보를 포함하는 시그널링 데이터가 IP 데이터그램으로 encapsulation 되어 특정 DP을 통하여 전달될 수 있다. 또한 서비스에 포함된 특정 컴포넌트 등에 대한 정보 등을 포함하는 시그널링 데이터의 일부가 어플리케이션 레이어 전송 프로토콜 내의 하나 이상의 전송 세션을 통하여 전달될 수도 있다. 예를 들어 시그널링 데이터의 일부는 ROUTE 세션 내의 하나 이상의 전송 세션을 통하여 전달될 수도 있다.The interruption of FIG. 59 shows an example of the case where the signaling data described above is delivered through the FIC and one or more DPs. This means that signaling data to support fast service scan / acquisition is delivered through FIC, and signaling data including detailed information about a service is encapsulated into an IP datagram, and can be delivered through a specific DP. In addition, a part of signaling data including information on a specific component included in the service may be delivered through one or more transport sessions in the application layer transport protocol. For example, some of the signaling data may be delivered via one or more transport sessions in the ROUTE session.
도 59의 하단은 위에서 설명한 시그널링 데이터가 FIC 및 하나 이상의 DP 를 통하여 전달되는 경우의 실시 예를 나타낸다. 이는 신속한 서비스 스캔/획득을 지원하기 위한 시그널링 데이터가 FIC 를 통해 전달되고 서비스 등에 대한 자세한 정보를 포함하는 시그널링 데이터는 ROUTE 세션 내의 하나 이상의 전송 세션을 통하여 전달될 수 있다.The lower part of FIG. 59 shows an example of the case where the signaling data described above is delivered through the FIC and one or more DPs. This means that signaling data for supporting fast service scan / acquisition is delivered through FIC, and signaling data including detailed information about a service, etc., can be delivered through one or more transport sessions in a ROUTE session.
도 60은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 본 명세서는 차세대 방송 수신 장치가 방송 서비스를 스캔하고 획득하기 위한 시그널링 정보를 제안한다. 차세대 방송 시스템에서는 특정 주파수 내에 하나 이상의 방송국에서 생성해 낸 방송 서비스 및 콘텐츠가 전송될 수 있다. 수신기는 해당 주파수 내에 존재하는 방송국 및 해당 방송국의 서비스/콘텐츠를 신속하고 용이하게 스캔하기 위해 상술한 시그널링 정보를 이용할 수 있다. 이는 도시된 바와 같은 syntax로 나타낼 수 있으며 이는 XML 등 다른 포멧으로 나타내어 질 수 있다. 60 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver. The present specification proposes signaling information for scanning and obtaining a broadcast service by a next generation broadcast receiving apparatus. In the next generation broadcasting system, broadcast services and contents generated by one or more broadcasting stations within a specific frequency may be transmitted. The receiver may use the above-described signaling information to quickly and easily scan a broadcast station existing within a corresponding frequency and a service / content of the broadcast station. This can be represented by a syntax as shown, which can be represented in other formats, such as XML.
신속한 서비스 스캔 및 획득을 위한 시그널링 정보는 physical layer transport frame 내의 별도의 채널인 fast information channel (FIC) 로 전달될 수 있다. 또한 상술한 시그널링 정보는 Physical layer의 data pipe 들 간의 공유될 수 있는 정보를 전달할 수 있는 Common DP 등을 통하여 전달될 수도 있다. 또한 link layer 의 시그널링이 전달되는 경로로 통하여 전달될 수도 있다. 또한 상술한 시그널링 정보는 IP 데이터그램으로 encapsulation 되어 특정 DP을 통하여 전달될 수 있다. 또한 상술한 시그널링 정보는 서비스 시그널링이 전달되는 service signaling channel 혹은 application layer의 transport session 등을 통하여 전달될 수도 있다. Signaling information for fast service scan and acquisition may be delivered in a fast information channel (FIC), which is a separate channel in a physical layer transport frame. In addition, the above-described signaling information may be delivered through a common DP, which may deliver information that may be shared between data pipes of a physical layer. It may also be delivered through a path through which signaling of the link layer is delivered. In addition, the aforementioned signaling information may be encapsulated into an IP datagram and transmitted through a specific DP. In addition, the above-described signaling information may be delivered through a service signaling channel through which service signaling is delivered or a transport session of an application layer.
신속한 서비스 스캔 및 획득을 위한 시그널링 정보 (FIC 정보)는 다음 같은 필드들 중 적어도 하나를 포함할 수 있다. 본 명세서에서 FIC 정보는 서비스 획득 정보로 지칭될 수 있다. FIC_portocol_version 필드는 FIC 시그널링 정보의 프로토콜 버전 (Version of structure of FIC)을 나타낼 수 있다. TSID 필드는 방송 스트림의 식별자 (Identifier of overall broadcast stream)를 나타낼 수 있다. FIC_data_version 필드는 해당 FIC 정보의 데이터 버전 (indicates data version of this FIC instance)을 나타낼 수 있다. FIC_data_version 필드는 FIC의 내용에 변경이 있는 경우 증가할 수 있다. num_partitions 필드는 브로드캐스트 스트림의 파티션 개수를 나타낼 수 있다. num_partitions 필드가 사용되기 위해 각 브로드캐스트 스트림은 하나 또는 그 이상의 파티션으로 나뉘어 전송될 수 있음을 가정한다. 각 파티션은 하나의 브로드캐스터에 의한 복수의 DP를 포함할 수 있다. 각 파티션은 하나의 브로드캐스터에 의해 사용된 브로드캐스트 스트림의 부분을 나타낼 수 있다. partition_protocol_version 필드는 상술한 파티션 구조의 버전을 나타낼 수 있다. base_DP_ID 필드는 해당 파티션의 베이스 DP에 대한 식별자를 나타낼 수 있다. 베이스 DP는 서비스 시그널링 테이블을 포함할 수 있다. 서비스 시그널링 테이블은 해당 파티션 내의 모든 서비스에 대한 리스트를 포함할 수 있다. 즉, 서비스 시그널링 테이블은 전송되는 서비스들을 리스팅할 수 있다. 또한 각 서비스에 대한 기본 속성을 정의할 수 있다. 베이스 DP는 해당 파티션 내에서 로버스트한 DP일 수 있으며 해당 파티션에 대한 다른 시그널링 테이블을 포함할 수도 있다. base_DP_version 필드는 해당 베이스 DP를 통해서 전송되는 데이터의 변화를 나타내는 버전 정보를 나타낼 수 있다. 예를 들어 베이스 DP를 통해 서비스 시그널링 등이 전달되는 경우, 서비스 시그널링의 변화가 발생되면 base_DP_version 필드는 1씩 증가할 수 있다. num_services 필드는 해당 파티션에 속하는 적어도 하나의 서비스의 개수를 나타낼 수 있다. service_id 필드는 서비스에 대한 식별자를 나타낼 수 있다. channel_number 필드는 해당 서비스와 연관된 채널 넘버를 나타낼 수 있다. service_category 필드는 해당 서비스의 카테고리를 나타낼 수 있으며, 예를 들어 A/V, audio, ESG, CoD 등을 나타낼 수 있다. short_service_name_length 필드는 해당 서비스를 나타내는 이름에 대한 길이를 나타낼 수 있다. short_Service_name 필드는 해당 서비스를 나타내는 이름을 나타낼 수 있다. service_status 필드는 해당 서비스의 상태를 나타낼 수 있으며, 그 값에 따라 active 또는 suspended, hidden 또는 shown 속성을 나타낼 수 있다. service_distribution 필드는 ATSC M/H 문서의 “multi-ensemble” flag 와 유사한 속성을 가질 수 있다. 예를 들어 해당 서비스가 해당 파티션에 모두 포함되어 있는지, 해당 파티션에 부분적으로 포함되어 있지만 해당 파티션만으로 프리젠테이션이 가능한지, 프리젠테이션하기 위해 다른 파티션이 필요한지 또는 프리젠테이션하기 위해 다른 방송 스트림이 요구되는지 등에 대한 정보를 나타낼 수 있다. sp_indicator 필드는 서비스 보호 플래그 (service protection flag)로써 프리젠테이션을 위해 필요한 하나 또는 그 이상의 컴포넌트들이 보호되는지 여부를 나타낼 수 있다. Signaling information (FIC information) for fast service scan and acquisition may include at least one of the following fields. In the present specification, the FIC information may be referred to as service acquisition information. The FIC_portocol_version field may indicate a protocol version of FIC signaling information. The TSID field may indicate an identifier of the overall broadcast stream. The FIC_data_version field may indicate a data version of this FIC instance. The FIC_data_version field may be increased when there is a change in the content of the FIC. The num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster. The partition_protocol_version field may indicate the version of the above-described partition structure. The base_DP_ID field may indicate an identifier for the base DP of the corresponding partition. The base DP may include a service signaling table. The service signaling table may include a list of all services in the corresponding partition. That is, the service signaling table may list the services to be transmitted. You can also define default attributes for each service. The base DP may be a robust DP in the partition and may include other signaling tables for the partition. The base_DP_version field may indicate version information indicating a change in data transmitted through the corresponding base DP. For example, when service signaling is delivered through the base DP, if a change in service signaling occurs, the base_DP_version field may increase by one. The num_services field may indicate the number of at least one service belonging to a corresponding partition. The service_id field may indicate an identifier for a service. The channel_number field may indicate a channel number associated with a corresponding service. The service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like. The short_service_name_length field may indicate the length of a name representing the corresponding service. The short_Service_name field may indicate a name representing a corresponding service. The service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value. The service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated. The sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag.
도 61은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 신속한 방송 서비스 스캔 및 서비스/컴포넌트 획득을 지원하기 위한 FIC 정보 (서비스 획득 정보)는 서비스 및 컴포넌트 데이터를 전달하는 application layer transport session 에 대한 정보를 포함할 수 있다. 도시된 바와 같이 FIC 정보는 바이너리 포맷으로 표현될 수 있으나 실시예에 따라 XML 등 다른 포멧으로 나타내어질 수 있다. FIC 정보는 다음과 같은 필드를 포함할 수 있다. FIC_portocol_version 필드는 시그널링 정보의 프로토콜 버전 (Version of structure of FIC)을 나타낼 수 있다. TSID 필드는 방송 스트림의 식별자 (Identifier of overall broadcast stream)를 나타낼 수 있다. FIC_data_version 필드는 해당 FIC 정보의 데이터 버전 (indicates data version of this FIC instance)을 나타낼 수 있다. FIC_data_version 필드는 FIC의 내용에 변경이 있는 경우 증가할 수 있다. num_partitions 필드는 브로드캐스트 스트림의 파티션 개수를 나타낼 수 있다. num_partitions 필드가 사용되기 위해 각 브로드캐스트 스트림은 하나 또는 그 이상의 파티션으로 나뉘어 전송될 수 있음을 가정한다. 각 파티션은 하나의 브로드캐스터에 의한 복수의 DP를 포함할 수 있다. 각 파티션은 하나의 브로드캐스터에 의해 사용된 브로드캐스트 스트림의 부분을 나타낼 수 있다. partition_id 필드는 해당 파티션의 식별자를 나타낼 수 있다. partition_protocol_version 필드는 상술한 파티션 구조의 버전을 나타낼 수 있다. num_services 필드는 해당 파티션에 속하는 적어도 하나의 컴포넌트의 개수를 나타낼 수 있다. service_id 필드는 서비스에 대한 식별자를 나타낼 수 있다. service_data_version 필드는 FIC 내의 service loop 데이터의 변화 혹은 해당 서비스와 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. service_data_version 필드는 포함된 서비스 데이터에 변화가 발생할 때마다 1씩 증가할 수 있다. 수신기는 service_data_version 필드를 이용하여 FIC의 서비스 루프의 데이터 변화 혹은 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. channel_number 필드는 해당 서비스와 연관된 채널 넘버를 나타낼 수 있다. service_category 필드는 해당 서비스의 카테고리를 나타낼 수 있으며, 예를 들어 A/V, audio, ESG, CoD 등을 나타낼 수 있다. short_service_name_length 필드는 해당 서비스를 나타내는 이름에 대한 길이를 나타낼 수 있다. short_service_name 필드는 해당 서비스를 나타내는 이름을 나타낼 수 있다. service_status 필드는 해당 서비스의 상태를 나타낼 수 있으며, 그 값에 따라 active 또는 suspended, hidden 또는 shown 속성을 나타낼 수 있다. service_distribution 필드는 ATSC M/H 문서의 “multi-ensemble” flag 와 유사한 속성을 가질 수 있다. 예를 들어 해당 서비스가 해당 파티션에 모두 포함되어 있는지, 해당 파티션에 부분적으로 포함되어 있지만 해당 파티션만으로 프리젠테이션이 가능한지, 프리젠테이션하기 위해 다른 파티션이 필요한지 또는 프리젠테이션하기 위해 다른 방송 스트림이 요구되는지 등에 대한 정보를 나타낼 수 있다. sp_indicator 필드는 서비스 보호 플래그 (service protection flag)로써 프리젠테이션을 위해 필요한 하나 또는 그 이상의 컴포넌트들이 보호되는지 여부를 나타낼 수 있다. IP_version_flag 필드는 뒤따르는 IP 주소 형식을 나타낼 수 있다. 해당 필드 값이 0인 경우 IPv4 형식을, 1인 경우 IPv6 주소 형식을 사용함을 나타낼 수 있다. source_IP_address_flag 필드는 source_IP_addr 을 포함하는지 여부를 나타낼 수 있다. 해당 필드 값이 1인 경우 source_IP_addr 가 존재함을 나타낼 수 있다. num_transport_session 필드는 방송 스트림 내에서 해당 서비스의 컴포넌트 데이터를 전송하는 transport session (예를 들어 ROUTE 또는 MMTP session) 의 개수를 나타낼 수 있다. source_IP_addr 필드는 전술한 source_IP_address_flag 값이 1인 경우 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 source IP address 를 나타낼 수 있다. dest_IP_addr 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 destination IP address 을 나타낼 수 있다. dest_UDP_port 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 UDP datagram의 UDP port number 나타낼 수 있다. LSID_DP 필드는 전송 세션에 대한 세부 정보를 포함하는 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. 여기서, 전송 세션에 대한 세부 정보를 포함하는 시그널링은 예를 들어 ROUTE 인 경우 각 ROUTE 세션의 세부 LCT 전송 세션에 대한 정보를 포함하는 LCT session instance description 등이 될 수 있다. service_signaling_flag 필드는 전송 세션이 서비스 시그널링을 전송하는지 여부를 나타낼 수 있다. service_signaling_flag 값이 1인경우 해당 전송 세션 (예를 들어 ROUTE 또는 MMTP session)을 통하여 전송되는 데이터가 서비스 시그널링을 포함하고 있음을 나타낼 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. 각 디스크립터는 확장이 가능하며, 각 디스크립터는 num_descriptors 필드를 포함할 수 있다. 각 디스크립터는 num_descriptors 필드가 나타내는 값에 대응하는 개수의 descriptor loop를 포함할 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. service descriptors 필드는 service 레벨의 descriptor 들을 포함할 수 있다. Partition descriptors 필드는 파티션 레벨의 디스크립터를 포함할 수 있으며, 하나의 파티션은 하나의 방송사 등에 의해 사용되는 방송 스트림의 일부를 가리킬 수 있다. FIC session descriptors 필드는 FIC 레벨의 descriptor 들을 포함할 수 있다. 실시예에 따라 상술한 FIC에 포함된 각 필드들은 FIC외의 다른 테이블에 포함되어 방송 신호와 함께 전송될 수도있다. 61 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver. The FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the FIC information may be represented in a binary format but may be represented in another format such as XML according to an embodiment. The FIC information may include the following fields. The FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC). The TSID field may indicate an identifier of the overall broadcast stream. The FIC_data_version field may indicate a data version of this FIC instance. The FIC_data_version field may be increased when there is a change in the content of the FIC. The num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster. The partition_id field may indicate an identifier of a corresponding partition. The partition_protocol_version field may indicate the version of the above-described partition structure. The num_services field may indicate the number of at least one component belonging to the corresponding partition. The service_id field may indicate an identifier for a service. The service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service. The service_data_version field may increase by 1 whenever a change occurs in the included service data. The receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field. The channel_number field may indicate a channel number associated with a corresponding service. The service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like. The short_service_name_length field may indicate the length of a name representing the corresponding service. The short_service_name field may indicate a name representing a corresponding service. The service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value. The service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated. The sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag. The IP_version_flag field may indicate the following IP address format. If the corresponding field value is 0, it may represent that the IPv4 format is used, and when 1, the IPv6 address format is used. The source_IP_address_flag field may indicate whether to include source_IP_addr. If the corresponding field value is 1, it may represent that source_IP_addr exists. The num_transport_session field may indicate the number of transport sessions (eg, ROUTE or MMTP sessions) for transmitting component data of a corresponding service in a broadcast stream. The source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service when the above-described source_IP_address_flag value is 1. The dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service. The dest_UDP_port field may indicate a UDP port number of a UDP datagram including component data of a corresponding service. The LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session. In this case, the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE. The service_signaling_flag field may indicate whether a transport session transmits service signaling. When the service_signaling_flag value is 1, it may represent that data transmitted through a corresponding transport session (eg, ROUTE or MMTP session) includes service signaling. The transport session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field. The transport session descriptors field may include descriptors of a transport session level. The service descriptors field may include descriptors of a service level. The Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster. The FIC session descriptors field may include descriptors of the FIC level. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
도 62는 본 발명의 일 실시예에 따른 FIC 기반 시그널링을 전송하는 방법을 나타낸다. 상술한 FIC 기반 시그널링이 전달되는 실시 예는 아래 그림과 같을 수 있다. 본 명세서에서 FIC 기반 시그널링은 서비스 획득 정보 또는 서비스 획득 시그널링으로 지칭될 수 있다. 도시된 바와 같이 피지컬 레이어 시그널링은 서비스 획득 정보에 대한 필드를 포함할 수 있다. 서비스 획득 정보에 대한 필드는 서비스 획득 정보 (FIC)의 파싱 여부를 수신기에게 알려줄 수 있다. 수신기는 서비스 획득 정보를 파싱하여 service_data_version 정보를 통해 서비스 시그널링의 데이터가 변경되었는지 여부를 확인할 수 있다. 서비스 시그널링 데이터가 변경된 경우, 방송 신호 수신기는 LSID_DP 필드를 이용하여 전송 세션에 대한 세부 정보를 포함하는 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 확인할 수 있다. 방송 수신기는 해당 DP 식별자가 지시하는 DP를 파싱하여 전송 세션에 대한 세부 정보를 확인할 수 있다. 즉, 차세대 방송 시스템의 시그널링 방법은 피지컬 레이어 시그널링이 서비스 획득 정보의 파싱 여부를 시그널링하고, 서비스 획득 정보가 전송 세션에 대한 세부 정보의 위치를 시그널링하여 전송 세션에 대한 세부 정보를 확인하는 순서를 포함할 수 있다. 여기서, 전송 세션에 대한 세부 정보는 MPD 전송 테이블, 어플리케이션 시그널링 테이블, 전송 세션 디스크립터 (LSID) 및/또는 컴포넌트 매핑 테이블(CMT)을 포함할 수 있다. 62 illustrates a method of transmitting FIC based signaling according to an embodiment of the present invention. An embodiment in which the above-described FIC-based signaling is delivered may be as shown in the following figure. FIC based signaling may be referred to herein as service acquisition information or service acquisition signaling. As shown, the physical layer signaling may include a field for service acquisition information. The field for the service acquisition information may inform the receiver whether or not the service acquisition information (FIC) is parsed. The receiver may determine whether data of service signaling is changed through service_data_version information by parsing service acquisition information. When the service signaling data is changed, the broadcast signal receiver may check the data pipe identifier of the physical layer that delivers signaling including detailed information about the transport session using the LSID_DP field. The broadcast receiver may parse the DP indicated by the corresponding DP identifier and check detailed information about the transport session. That is, the signaling method of the next generation broadcast system includes a procedure in which physical layer signaling signals whether service acquisition information is parsed and service acquisition information signals a location of detailed information about a transport session to confirm detailed information about the transport session. can do. Here, the detailed information about the transport session may include an MPD transport table, an application signaling table, a transport session descriptor (LSID), and / or a component mapping table (CMT).
도 63은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 신속한 방송 서비스 스캔 및 서비스/컴포넌트 획득을 지원하기 위한 FIC 정보 (서비스 획득 정보)는 서비스 및 컴포넌트 데이터를 전달하는 application layer transport session 에 대한 정보를 포함할 수 있다. 도시된 바와 같이 FIC 정보는 바이너리 포맷으로 표현될 수 있으나 실시예에 따라 XML 등 다른 포멧으로 나타내어질 수 있다. FIC 정보는 다음과 같은 필드를 포함할 수 있다. FIC_portocol_version 필드는 시그널링 정보의 프로토콜 버전 (Version of structure of FIC)을 나타낼 수 있다. TSID 필드는 방송 스트림의 식별자 (Identifier of overall broadcast stream)를 나타낼 수 있다. FIC_data_version 필드는 해당 FIC 정보의 데이터 버전 (indicates data version of this FIC instance)을 나타낼 수 있다. FIC_data_version 필드는 FIC의 내용에 변경이 있는 경우 증가할 수 있다. num_partitions 필드는 브로드캐스트 스트림의 파티션 개수를 나타낼 수 있다. num_partitions 필드가 사용되기 위해 각 브로드캐스트 스트림은 하나 또는 그 이상의 파티션으로 나뉘어 전송될 수 있음을 가정한다. 각 파티션은 하나의 브로드캐스터에 의한 복수의 DP를 포함할 수 있다. 각 파티션은 하나의 브로드캐스터에 의해 사용된 브로드캐스트 스트림의 부분을 나타낼 수 있다. partition_id 필드는 해당 파티션의 식별자를 나타낼 수 있다. partition_protocol_version 필드는 상술한 파티션 구조의 버전을 나타낼 수 있다. num_services 필드는 해당 파티션에 속하는 적어도 하나의 컴포넌트의 개수를 나타낼 수 있다. service_id 필드는 서비스에 대한 식별자를 나타낼 수 있다. service_data_version 필드는 FIC 내의 service loop 데이터의 변화 혹은 해당 서비스와 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. service_data_version 필드는 포함된 서비스 데이터에 변화가 발생할 때마다 1씩 증가할 수 있다. 수신기는 service_data_version 필드를 이용하여 FIC의 서비스 루프의 데이터 변화 혹은 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. channel_number 필드는 해당 서비스와 연관된 채널 넘버를 나타낼 수 있다. service_category 필드는 해당 서비스의 카테고리를 나타낼 수 있으며, 예를 들어 A/V, audio, ESG, CoD 등을 나타낼 수 있다. short_service_name_length 필드는 해당 서비스를 나타내는 이름에 대한 길이를 나타낼 수 있다. short_service_name 필드는 해당 서비스를 나타내는 이름을 나타낼 수 있다. service_status 필드는 해당 서비스의 상태를 나타낼 수 있으며, 그 값에 따라 active 또는 suspended, hidden 또는 shown 속성을 나타낼 수 있다. service_distribution 필드는 ATSC M/H 문서의 “multi-ensemble” flag 와 유사한 속성을 가질 수 있다. 예를 들어 해당 서비스가 해당 파티션에 모두 포함되어 있는지, 해당 파티션에 부분적으로 포함되어 있지만 해당 파티션만으로 프리젠테이션이 가능한지, 프리젠테이션하기 위해 다른 파티션이 필요한지 또는 프리젠테이션하기 위해 다른 방송 스트림이 요구되는지 등에 대한 정보를 나타낼 수 있다. sp_indicator 필드는 서비스 보호 플래그 (service protection flag)로써 프리젠테이션을 위해 필요한 하나 또는 그 이상의 컴포넌트들이 보호되는지 여부를 나타낼 수 있다. IP_version_flag 필드는 뒤따르는 IP 주소 형식을 나타낼 수 있다. 해당 필드 값이 0인 경우 IPv4 형식을, 1인 경우 IPv6 주소 형식을 사용함을 나타낼 수 있다. source_IP_address_flag 필드는 source_IP_addr 을 포함하는지 여부를 나타낼 수 있다. 해당 필드 값이 1인 경우 source_IP_addr 가 존재함을 나타낼 수 있다. num_transport_session 필드는 방송 스트림 내에서 해당 서비스의 컴포넌트 데이터를 전송하는 transport session (예를 들어 ROUTE 또는 MMTP session) 의 개수를 나타낼 수 있다. source_IP_addr 필드는 전술한 source_IP_address_flag 값이 1인 경우 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 source IP address 를 나타낼 수 있다. dest_IP_addr 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 destination IP address 을 나타낼 수 있다. dest_UDP_port 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 UDP port number 나타낼 수 있다. LSID_DP 필드는 전송 세션에 대한 세부 정보를 포함하는 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. 여기서, 전송 세션에 대한 세부 정보를 포함하는 시그널링은 예를 들어 ROUTE 인 경우 각 ROUTE 세션의 세부 LCT 전송 세션에 대한 정보를 포함하는 LCT session instance description 등이 될 수 있다. service_signaling_flag 필드는 전송 세션이 서비스 시그널링을 전송하는지 여부를 나타낼 수 있다. service_signaling_flag 값이 1인경우 서비스 시그널링을 포함하는 DP가 존재함을 나타낼 수 있다. signaling_data_version 필드는 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. 서비스 시그널링 데이터에 변화가 발생할 때마다 해당 필드는 1씩 증가할 수 있다. 수신기는 signaling_data_version 필드를 이용하여 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. signaling_DP 필드는 서비스 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. 각 디스크립터는 확장이 가능하며, 각 디스크립터는 num_descriptors 필드를 포함할 수 있다. 각 디스크립터는 num_descriptors 필드가 나타내는 값에 대응하는 개수의 descriptor loop를 포함할 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. service descriptors 필드는 service 레벨의 descriptor 들을 포함할 수 있다. Partition descriptors 필드는 파티션 레벨의 디스크립터를 포함할 수 있으며, 하나의 파티션은 하나의 방송사 등에 의해 사용되는 방송 스트림의 일부를 가리킬 수 있다. FIC session descriptors 필드는 FIC 레벨의 descriptor 들을 포함할 수 있다. 실시예에 따라 상술한 FIC에 포함된 각 필드들은 FIC외의 다른 테이블에 포함되어 방송 신호와 함께 전송될 수도있다. 63 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver. The FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the FIC information may be represented in a binary format but may be represented in another format such as XML according to an embodiment. The FIC information may include the following fields. The FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC). The TSID field may indicate an identifier of the overall broadcast stream. The FIC_data_version field may indicate a data version of this FIC instance. The FIC_data_version field may be increased when there is a change in the content of the FIC. The num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster. The partition_id field may indicate an identifier of a corresponding partition. The partition_protocol_version field may indicate the version of the above-described partition structure. The num_services field may indicate the number of at least one component belonging to the corresponding partition. The service_id field may indicate an identifier for a service. The service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service. The service_data_version field may increase by 1 whenever a change occurs in the included service data. The receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field. The channel_number field may indicate a channel number associated with a corresponding service. The service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like. The short_service_name_length field may indicate the length of a name representing the corresponding service. The short_service_name field may indicate a name representing a corresponding service. The service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value. The service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated. The sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag. The IP_version_flag field may indicate the following IP address format. If the corresponding field value is 0, it may represent that the IPv4 format is used, and when 1, the IPv6 address format is used. The source_IP_address_flag field may indicate whether to include source_IP_addr. If the corresponding field value is 1, it may represent that source_IP_addr exists. The num_transport_session field may indicate the number of transport sessions (eg, ROUTE or MMTP sessions) for transmitting component data of a corresponding service in a broadcast stream. The source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service when the above-described source_IP_address_flag value is 1. The dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service. The dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service. The LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session. In this case, the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE. The service_signaling_flag field may indicate whether a transport session transmits service signaling. If the service_signaling_flag value is 1, this may indicate that a DP including service signaling exists. The signaling_data_version field may indicate a change of associated service signaling data. Each time a change occurs in the service signaling data, the corresponding field may be increased by one. The receiver may detect a change in signaling related to the corresponding service using the signaling_data_version field. The signaling_DP field may indicate a data pipe identifier of a physical layer that carries service signaling. The transport session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field. The transport session descriptors field may include descriptors of a transport session level. The service descriptors field may include descriptors of a service level. The Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster. The FIC session descriptors field may include descriptors of the FIC level. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
도 64는 본 발명의 다른 실시예에 따른 FIC 기반 시그널링을 전송하는 방법을 나타낸다. 상술한 FIC 기반 시그널링이 전달되는 실시 예는 아래 그림과 같을 수 있다. 본 명세서에서 FIC 기반 시그널링은 서비스 획득 정보 또는 서비스 획득 시그널링으로 지칭될 수 있다. 도시된 바와 같이 피지컬 레이어 시그널링은 서비스 획득 정보에 대한 필드를 포함할 수 있다. 서비스 획득 정보에 대한 필드는 서비스 획득 정보 (FIC)의 파싱 여부를 수신기에게 알려줄 수 있다. 수신기는 서비스 획득 정보를 파싱하여 service_data_version 정보를 통해 서비스 시그널링의 데이터가 변경되었는지 여부를 확인할 수 있다. 서비스 시그널링 데이터가 변경된 경우, 방송 신호 수신기는 LSID_DP 필드를 이용하여 전송 세션에 대한 자세한 정보를 포함하고있는 LSID 혹은 LSID Table 등을 LSID_DP 필드로부터 식별한 DP를 통하여 획득할 수 있다. 이와 더불어 수신기는 service_signaling_flag, signaling_data_version, signaling_DP 등의 정보를 이용하여 시그널링 데이터의 변화 등을 인지하고 signaling_예로부터 식별한 DP를 통해 시그널링 데이터를 획득할 수 있다.64 illustrates a method of transmitting FIC based signaling according to another embodiment of the present invention. An embodiment in which the above-described FIC-based signaling is delivered may be as shown in the following figure. FIC based signaling may be referred to herein as service acquisition information or service acquisition signaling. As shown, the physical layer signaling may include a field for service acquisition information. The field for the service acquisition information may inform the receiver whether or not the service acquisition information (FIC) is parsed. The receiver may determine whether data of service signaling is changed through service_data_version information by parsing service acquisition information. When the service signaling data is changed, the broadcast signal receiver may acquire an LSID or LSID table including detailed information on the transport session through the DP identified from the LSID_DP field using the LSID_DP field. In addition, the receiver may recognize a change in the signaling data using information such as service_signaling_flag, signaling_data_version, signaling_DP, etc., and acquire signaling data through the DP identified from the signaling_example.
즉, 차세대 방송 시스템의 시그널링 방법은 피지컬 레이어 시그널링이 서비스 획득 정보의 파싱 여부를 시그널링하고, 서비스 획득 정보가 전송 세션에 대한 세부 정보의 위치를 시그널링하여 전송 세션에 대한 세부 정보를 확인하는 순서를 포함할 수 있다. 여기서, 전송 세션에 대한 세부 정보는 MPD 전송 테이블, 어플리케이션 시그널링 테이블, 전송 세션 디스크립터 (LSID) 및/또는 컴포넌트 매핑 테이블(CMT)을 포함할 수 있으며 전송 세션에 대한 각 세부 정보는 서로 다른 예에 의해 전달될 수 있다.That is, the signaling method of the next generation broadcast system includes a procedure in which physical layer signaling signals whether service acquisition information is parsed and service acquisition information signals a location of detailed information about a transport session to confirm detailed information about the transport session. can do. Here, the detailed information about the transport session may include an MPD transport table, an application signaling table, a transport session descriptor (LSID), and / or a component mapping table (CMT). Each detail information about the transport session may be described by different examples. Can be delivered.
도 65는 본 발명의 일 실시예에 따른 차세대 방송 시스템의 서비스 시그널링 메시지 포맷을 나타낸 도면이다. 본 명세서에서 서비스 시그널링 메시지는 서비스 등에 대한 자세한 정보를 포함하는 시그널링 데이터 또는 서비스 레이어 시그널링으로 칭할 수 있다. 서비스 시그널링 메시지는 signaling message header 와 signaling message를 포함하는 구조일 수 있다. signaling message는 binary 혹은 XML 포맷 등으로 표현될 수 있다. 이는 IP 데이터 그램 혹은 application layer transport 패킷(예를 들어 ROUTE 혹은 MMTP 등)의 페이로드로 포함되어 전송될 수 있다. Signaling message header 의 syntax 는 다음과 같을 수 있으며 이는 XML 등 다른 포멧으로 나타내어질 수 있다. Signaling message header는 다음의 필드를 포함할 수 있다. signaling_id 필드는 signaling 메시지의 식별자를 나타낼 수 있다. 예를 들어 시그널링 메시지가 section 형태로 나타내어 지는 경우 signaling table section 의 id 를 나타낼 수 있다. signaling_length 필드는 포함되어 있는 signaling 메시지의 길이를 나타낼 수 있다. signaling_id_extension 필드는 signaling 메시지에 대한 식별자의 확장 정보를 나타낼 수 있다. signaling_id_extension 필드는 signaling_id 필드와 함께 시그널링을 식별하는 정보로 사용할 수 있다. 예를 들어 signaling_id_extension 필드는 signaling message 의 프로토콜 버전 등을 포함할 수 있다. version_number 필드는 signaling 메시지의 버전 정보를 나타낼 수 있다. version_number 필드는 해당 시그널링 메시지가 포함하는 내용이 변경하는 경우에 변경될 수 있다. current_next_indicator 필드는 포함되어 있는 signaling 메시지가 현재 가용한지 여부를 나타낼 수 있다. 이 필드의 값이 ‘1’인 경우 포함되어 있는 현재 포함되어 있는 signaling 메시지가 현재 가용함을 나타낼 수 있다. 이 필드의 값이 ‘0’인 경우 현재 signaling 메시지가 가용하지 않으며 추후 동일한 signaling_id, signaling_id_extension, 혹은 fragment_number 을 포함하는 signaling 메시지가 가용할 수 있음을 나타낼 수 있다. fragmentation_indicator 필드는 해당 signaling 메시지가 fragmentation 되었는지 여부를 나타낼 수 있다. 이 필드의 값이 ‘1’인 경우 해당 메시지가 fragmentation 되었음을 나타내며 이러한 경우 signaling_message_data() 에 시그널링 데이터의 일부가 포함되었음을 나타낼 수 있다. 이 필드의 값이 ‘0’ 인 경우 signaling_message_data() 에 전체 시그널링 데이터가 포함되어 있음을 나타낼 수 있다. payload_format_indicator 필드는 현재 signaling 메시지 헤더 부분에 payload_format 값을 포함하고 있는지 여부를 나타낼 수 있다. 이 필드의 값이 ‘1’인 경우 signaling 메시지 헤더 부분에 payload_format 값이 포함되어 있음을 나타낼 수 있다. expiration_indicator 필드는 현재 signaling 메시지 헤더 부분에 expiration 값을 포함하고 있는지 여부를 나타낼 수 있음. 이 필드의 값이 ‘1’인 경우 signaling 메시지 헤더 부분에 expiration 값이 포함되어 있음을 나타낼 수 있다. fragment_number 필드는 하나의 signaling 메시지가 여러 개의 fragment 로 나뉘어져서 전송될 경우 현재 signaling message의 fragment 넘버를 나타낼 수 있다. last_fragment_number 필드는 하나의 signaling 메시지가 여러 개의 fragment 로 나뉘어져서 전송될 경우 해당 signaling 메시지의 마지막 데이터를 포함하는 fragment 의 넘버를 나타낼 수 있다. payload_format 필드는 페이로드에 포함되는 시그널링 메시지 데이터의 포멧을 나타낼 수 있음. 실시 예로 binary, XML 등을 나타낼 수 있다. expiration 필드는 페이로드에 포함된 시그널링 메시지의 유효 시간을 나타낼 수 있다.65 is a diagram illustrating a service signaling message format of a next generation broadcast system according to an embodiment of the present invention. In the present specification, the service signaling message may be referred to as signaling data or service layer signaling including detailed information about a service. The service signaling message may have a structure including a signaling message header and a signaling message. The signaling message may be expressed in binary or XML format. This may be transmitted as a payload of an IP datagram or an application layer transport packet (eg, ROUTE or MMTP). The syntax of the signaling message header may be as follows, which may be expressed in other formats such as XML. The signaling message header may include the following fields. The signaling_id field may indicate an identifier of a signaling message. For example, when a signaling message is expressed in the form of section, it may indicate the id of the signaling table section. The signaling_length field may indicate the length of an included signaling message. The signaling_id_extension field may indicate extension information of an identifier for a signaling message. The signaling_id_extension field may be used as information for identifying signaling together with the signaling_id field. For example, the signaling_id_extension field may include a protocol version of a signaling message. The version_number field may indicate version information of a signaling message. The version_number field may be changed when contents included in the corresponding signaling message change. The current_next_indicator field may indicate whether an included signaling message is currently available. If the value of this field is '1', this may indicate that the currently included signaling message is currently available. If the value of this field is '0', this may indicate that a signaling message that is not currently available and that a signaling message including the same signaling_id, signaling_id_extension, or fragment_number may be available later. The fragmentation_indicator field may indicate whether a corresponding signaling message is fragmented. If the value of this field is '1', this indicates that the message is fragmented. In this case, it may indicate that signaling_message_data () includes a part of signaling data. When the value of this field is '0', it may represent that signaling_message_data () includes all signaling data. The payload_format_indicator field may indicate whether a current payload_format value is included in a signaling message header part. If the value of this field is '1', this may indicate that the payload_format value is included in the signaling message header part. The expiration_indicator field may indicate whether an expiration value is currently included in a signaling message header part. When the value of this field is '1', this may indicate that an expiration value is included in a signaling message header part. The fragment_number field may indicate the fragment number of the current signaling message when one signaling message is divided into several fragments and transmitted. The last_fragment_number field may indicate the number of a fragment including the last data of the signaling message when one signaling message is divided into multiple fragments and transmitted. The payload_format field may indicate the format of signaling message data included in the payload. As an example, it may represent binary, XML, or the like. The expiration field may indicate the valid time of the signaling message included in the payload.
도 66은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 사용하는 서비스 시그널링 테이블을 나타낸다. 본 발명은 차세대 방송망에서 사용 가능한 서비스 시그널링 테이블/메시지 등은 다음과 같을 수 있으며 아래와 같은 정보 등을 포함하여 시그널링 할 수 있다. 각 테이블/메시지에 포함된 정보들은 서로 다른 테이블로 나뉘어서 개별적으로 전송될 수 있으며 도시된 실시예에 의해 한정되지 않는다. 또한 실시예에 따라 서로 다른 테이블에 속한 시그널링 정보는 하나의 테이블로 병합되어 전송될 수도 있다. Service mapping table은 서비스의 속성 및 서비스와 연관된 정보를 포함할 수 있다. 서비스의 속성 정보는 예를 들어 아이디, 이름, 카테고리 등의 정보를 포함할 수 있으며, 서비스와 연관된 정보는 서비스를 획득할 수 있는 경로 정보 등을 포함할 수 있다. MPD Delivery table은 서비스/콘텐츠와 연관된 DASH MPD 를 포함하거나 DASH MPD 를 획득할 수 있는 경로 정보 등을 포함할 수 있다. Component mapping table은 서비스 내 컴포넌트 정보 및 컴포넌트와 연관된 정보를 포함할 수 있다. 컴포넌트 정보는 연관된 DASH representation 정보 등을 포함할 수 있으며, 컴포넌트와 연관된 정보는 컴포넌트를 획득할 수 있는 경로 정보 등을 포함할 수 있다. LSID table은 서비스/컴포넌트 등을 전달하는 전송 세션 및 전송 패킷의 구성 등에 대한 정보를 포함할 수 있다. Initialization Segment Delivery table는 서비스 내 컴포넌트와 연관된 DASH Representation 대한 Initialization Segment 정보 혹은 이를 획득할 수 있는 경로 등에 대한 정보 포함할 수 있다. Application parameter table는 방송 서비스와 연관된 애플리케이션에 대한 세부 정보 및 이를 획득할 수 있는 경로 등 연관된 정보를 포함할 수 있다. 이러한 시그널링 메시지/테이블 등이 방송망을 통하여 전송되는 경우 FIC (Fast Information Channel) 혹은 SSC (Service Signaling Channel), 혹은 application layer transport session (예를 들어 ROUTE 또는 MMTP session) 등을 통해 전송될 수 있다. 더 나아가 인터넷 망(브로드밴드)을 통하여 전송될 수 있다.66 illustrates a service signaling table used in a next generation broadcast system according to an embodiment of the present invention. In the present invention, the service signaling table / message and the like usable in the next generation broadcasting network may be as follows and may be signaled by including the following information. Information included in each table / message may be divided into different tables and transmitted separately, and is not limited by the illustrated embodiment. In some embodiments, signaling information belonging to different tables may be merged into one table and transmitted. The service mapping table may include attributes of the service and information associated with the service. The attribute information of the service may include, for example, information such as an ID, a name, a category, and the like, and the information associated with the service may include path information for acquiring the service. The MPD Delivery Table may include a DASH MPD associated with a service / content or path information for acquiring the DASH MPD. The component mapping table may include component information in a service and information associated with a component. The component information may include associated DASH representation information and the like, and the information associated with the component may include path information for acquiring the component. The LSID table may include information about a transport session for transmitting a service / component, a configuration of a transport packet, and the like. The initialization segment delivery table may include initialization segment information on a DASH Representation associated with a component in a service or information on a path for obtaining the segment. The application parameter table may include detailed information about an application associated with a broadcast service and related information such as a path for obtaining the same. When such a signaling message / table is transmitted through a broadcasting network, it may be transmitted through a fast information channel (FIC), a service signaling channel (SSC), or an application layer transport session (eg, a ROUTE or MMTP session). Furthermore, it can be transmitted through the Internet network (broadband).
도 67은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 사용되는 서비스 매핑 테이블을 나타낸 도면이다. 아래에서 설명할 내용은 시그널링 메시지 헤더 뒤에 위치한 서비스 시그널링 메시지 부분에 포함되어 전송될 수 있다. 67 is a diagram illustrating a service mapping table used in a next generation broadcast system according to an embodiment of the present invention. Content to be described below may be included in the service signaling message part located behind the signaling message header and transmitted.
서비스 매핑 테이블은 서비스 매핑 시그널링에 대한 정보를 포함할 수 있으며 XML 형태 또는 binary 형태 등으로 표현될 수 있다. 서비스 시그널링의 하나인 서비스 매핑 테이블은 서비스 식별자(id), 서비스 타입, 서비스 네임, 채널 넘버, ROUTE 세션 관련 정보, MPD 관련 정보, 컴포넌트 시그널링 위치 정보를 포함할 수 있다. 서비스 식별자는 서비스를 식별하는 정보를 나타낼 수 있으며 id 속성으로 표현될 수 있다. 서비스 타입 정보는 서비스의 타입을 나타내는 정보일 수 있으며, serviceType 속성으로 표현될 수 있다. 서비스 네임 정보는 서비스의 이름을 나타내는 정보일 수 있으며, serviceName 속성으로 표현될 수 있다. 채널 넘버 정보는 서비스와 관련된 채널 넘버를 나타내는 정보일 수 있으며, channelNumber 속성으로 표현될 수 있다. The service mapping table may include information on service mapping signaling and may be expressed in an XML form or a binary form. The service mapping table, which is one of service signaling, may include a service identifier (id), a service type, a service name, a channel number, ROUTE session related information, MPD related information, and component signaling location information. The service identifier may indicate information for identifying a service and may be expressed by an id attribute. The service type information may be information indicating a type of a service and may be expressed by a serviceType attribute. The service name information may be information representing a name of a service and may be expressed by a serviceName attribute. The channel number information may be information indicating a channel number associated with a service and may be expressed by a channelNumber attribute.
ROUTE 세션 관련 정보는 sourceIP 속성, destinationIP 속성, destinationPort 속성을 포함할 수 있다. sourceIP 속성은 연계된 데이터를 포함하는 IP 데이터그램들의 소스 어드레스를 나타낼 수 있다. destinationIP 속성은 연계된 데이터를 포함하는 IP 데이터그램들의 목적지 어드레스를 나타낼 수 있다. destinationPort 속성은 연계된 데이터를 포함하는 IP 데이터그램 내의 UDP 패킷 헤더의 목적지 포트 넘버를 나타낼 수 있다. The ROUTE session related information may include a sourceIP attribute, a destinationIP attribute, and a destinationPort attribute. The sourceIP attribute may indicate the source address of IP datagrams containing associated data. The destinationIP attribute may indicate a destination address of IP datagrams including associated data. The destinationPort attribute may indicate a destination port number of a UDP packet header in an IP datagram including associated data.
또한 ROUTE 세션 관련 정보는 전송 세션들에 대한 세부 정보(LSID)를 포함할 수 있으며, 예를 들어 각 LSID 위치 정보 및 각 LSID 위치 정보의 딜리버리 모드 정보를 포함할 수 있다. 또한 전송 세션들에 대한 세부 정보(LSID)는 부트스트랩 정보를 포함할 수 있다. LSID에 포함된 부트스트랩 정보는 딜리버리 모드에 따른 LSID의 부트스트랩 정보를 포함할 수 있다. 부트스트랩 정보에 포함된 속성은 아래에서 자세히 설명한다. In addition, the ROUTE session related information may include detailed information (LSID) of transport sessions, for example, may include each LSID location information and delivery mode information of each LSID location information. In addition, the detailed information (LSID) for transport sessions may include bootstrap information. The bootstrap information included in the LSID may include bootstrap information of the LSID according to the delivery mode. The attributes included in the bootstrap information are described in detail below.
MPD 관련 정보는 MPD 또는 MPD 시그널링 로케이션에 대한 정보를 포함할 수 있다. MPD에 대한 정보는 버전 속성을 포함할 수 있으며, MPD의 버전을 나타낼 수 DT다. MPD 시그널링 로케이션 정보는 MPD 또는 MPD URL과 관련된 시그널링을 획득할 수 있는 위치를 나타낼 수 있다. MPD 시그널링 로케이션에 포함된 딜리버리 모드 정보는 MPD 로케이션 시그널링의 딜리버리 모드를 나타낼 수 있다. MPD 시그널링 로케이션에 포함된 부트스트랩 인포 정보는 상기 딜리버리 모드에 따른 MPD 또는 MPD URL의 부트스트랩 정보를 포함할 수 있다. The MPD related information may include information about the MPD or the MPD signaling location. The information on the MPD may include a version attribute and may indicate a version of the MPD. The MPD signaling location information may indicate a location from which signaling associated with the MPD or the MPD URL may be obtained. The delivery mode information included in the MPD signaling location may indicate the delivery mode of the MPD location signaling. The bootstrap information information included in the MPD signaling location may include bootstrap information of the MPD or the MPD URL according to the delivery mode.
컴포넌트 시그널링 로케이션 관련 정보는 딜리버리 모드 속성을 포함할 수 있다. 딜리버리모드 속성은 해당 컴포넌트 시그널링 로케이션 정보의 딜리버리 모드를 나타낼 수 있다. MPD 시그널링 로케이션에 포함된 부트스트랩 정보는 딜리버리 모드에 따른 해당 컴포넌트 로케이션 시그널링의 부트스트랩 정보를 포함할 수 있다. The component signaling location related information may include a delivery mode attribute. The delivery mode attribute may indicate a delivery mode of corresponding component signaling location information. The bootstrap information included in the MPD signaling location may include bootstrap information of the corresponding component location signaling according to the delivery mode.
부트스트랩 정보는 딜리버리 모드에 따라 다음과 같은 속성 중 적어도 하나를 포함할 수 있다. The bootstrap information may include at least one of the following attributes according to the delivery mode.
sourceIP 속성은 연계된 데이터를 포함하는 IP 데이터그램들의 소스 어드레스를 나타낼 수 있다. destinationIP 속성은 연계된 데이터를 포함하는 IP 데이터그램들의 목적지 어드레스를 나타낼 수 있다. destinationPort 속성은 연계된 데이터를 포함하는 UDP 패킷 헤더의 목적지 포트 넘버를 나타낼 수 있다. tsi 속성은 연계된 데이터를 포함하는 전송 패킷들(transport packets)을 전달하는 전송 세션에 대한 식별자를 나타낼 수 있다. URL 속성은 연계된 데이터를 획득할 수 있는 URL을 나타낼 수 있다. packetid는 연계된 데이터를 포함하는 전송 패킷들(transport packets)의 식별자를 나타낼 수 있다.The sourceIP attribute may indicate the source address of IP datagrams containing associated data. The destinationIP attribute may indicate a destination address of IP datagrams including associated data. The destinationPort attribute may indicate a destination port number of a UDP packet header including associated data. The tsi attribute may indicate an identifier for a transport session for transmitting transport packets including associated data. The URL attribute may indicate a URL from which associated data can be obtained. The packetid may indicate an identifier of transport packets including associated data.
도 68은 본 발명의 일 실시예에 따른 차세대 방송 시스템의 서비스 시그널링 테이블을 나타낸다. 차세대 방송 시스템에서 수신기로 하여금 방송 서비스 및 콘텐츠를 수신 가능할 수 있도록 하기 위하여 방송 서비스 시그널링을 제공할 수 있다. 이는 시그널링 데이터가 동일한 전송 세션 식별자(TSI)를 통하여 전송되는 경우 수신기로 하여금 관련 시그널링을 획득할 수 있도록 한다. 서비스 시그널링 테이블은 도시된 바와 같이 바이너리 포맷으로 표현될 수 있으며, 실시예에 따라 XML 등 다른 형태로 나타내어 질 수 있다. 또한 서비스 시그널링 테이블은 전술한 시그널링 메시지 포멧으로 encapsulation 될 수 있다. 서비스 시그널링 테이블은 다음과 같은 필드들을 포함할 수 있다. SST_portocol_version 필드는 서비스 시그널링 테이블의 버전을 나타낼 수 있다. partition_id 필드는 해당 파티션의 식별자를 나타낼 수 있다. SST_data_version 필드는 해당 서비스 시그널링 테이블의 데이터 버전을 나타낼 수 있다. num_services 필드는 해당 파티션 내에 포함된 적어도 하나 이상의 서비스의 개수를 나타낼 수 있다. service_id 필드는 해당 서비스의 식별자를 나타낼 수 있다. service_name 필드는 해당 서비스의 이름을 나타낼 수 있다. MPD_availability 필드는 브로드캐스트, 셀룰러 네트워크 및/또는 wifi/이더넷을 통해 MPD를 획득할 수 있는지 여부를 나타낼 수 있다. CMT_availability 필드는 브로드캐스트, 셀룰러 네트워크 및/또는 wifi/이더넷을 통해 Component Mapping Table (CMT)를 이용할 수 있는지 여부를 나타낼 수 있다. ASL_availability 필드는 브로드캐스트, 셀룰러 네트워크 및/또는 wifi/이더넷을 통해 Application Signaling Table (AST)를 이용할 수 있는지 여부를 나타낼 수 있다. DP_ID 필드는 MPD, CMT 및/또는 ASL 를 브로드캐스트를 통해 전달하는 DP의 식별자를 나타낼 수 있다. LCT_IP_address 필드는 MPD, CMT 및/또는 ASL 를 전달하는 LCT 채널의 IP 주소를 나타낼 수 있다. LCT_UDP_port 필드는 MPD, CMT 및/또는 ASL 를 전달하는 LCT 채널의 UDP 포트를 나타낼 수 있다 나타낼 수 있다. LCT_TSI 필드는 MPD, CMT 및/또는 ASL 를 전달하는 LCT 채널의 전송 세션 식별자 (Transport Session Identifier, TSI)를 나타낼 수 있다. MPD_TOI 필드는 MPD가 브로드캐스트를 통해 전달되는 경우 MPD를 전달하는 애플리케이션 전송 패킷의 전송 오브젝트 식별자 (Transport Object Identifier)를 나타낼 수 있다. CMT TOI 필드는 CMT가 브로드캐스트를 통해 전달되는 경우 CMT를 전달하는 애플리케이션 전송 패킷의 전송 오브젝트 식별자 (Transport Object Identifier)를 나타낼 수 있다. AST_TOI 필드는 AST 가 브로드캐스트를 통해 전달되는 경우 AST를 전달하는 애플리케이션 전송 패킷의 전송 오브젝트 식별자 (Transport Object Identifier)를 나타낼 수 있다. MPD_URL 필드는 브로드밴드를 통해 MPD를 획득할 수 있는 URL 정보를 나타낼 수 있다. CMT_URL 필드는 브로드밴드를 통해 CMT를 획득할 수 있는 URL 정보를 나타낼 수 있다. AST_URL 브로드밴드를 통해 AST를 획득할 수 있는 URL 정보를 나타낼 수 있다. 68 shows a service signaling table of a next generation broadcast system according to an embodiment of the present invention. In a next generation broadcast system, broadcast service signaling may be provided to enable a receiver to receive broadcast service and content. This allows the receiver to obtain the associated signaling when the signaling data is transmitted via the same transport session identifier (TSI). The service signaling table may be represented in a binary format as shown, and may be represented in another form such as XML according to an embodiment. In addition, the service signaling table may be encapsulated in the above-described signaling message format. The service signaling table may include the following fields. The SST_portocol_version field may indicate the version of the service signaling table. The partition_id field may indicate an identifier of a corresponding partition. The SST_data_version field may indicate the data version of the corresponding service signaling table. The num_services field may indicate the number of at least one service included in a corresponding partition. The service_id field may indicate an identifier of a corresponding service. The service_name field may indicate the name of a corresponding service. The MPD_availability field may indicate whether the MPD can be obtained through broadcast, cellular network, and / or wifi / Ethernet. The CMT_availability field may indicate whether a Component Mapping Table (CMT) is available through broadcast, cellular network, and / or wifi / Ethernet. The ASL_availability field may indicate whether an Application Signaling Table (AST) is available through broadcast, cellular network, and / or wifi / Ethernet. The DP_ID field may indicate an identifier of a DP that delivers MPD, CMT, and / or ASL through broadcast. The LCT_IP_address field may indicate an IP address of an LCT channel that carries an MPD, a CMT, and / or an ASL. The LCT_UDP_port field may indicate that a UDP port of an LCT channel carrying MPD, CMT, and / or ASL may be indicated. The LCT_TSI field may indicate a transport session identifier (TSI) of an LCT channel that carries an MPD, a CMT, and / or an ASL. The MPD_TOI field may indicate a transport object identifier of an application transport packet that carries the MPD when the MPD is delivered through broadcast. The CMT TOI field may indicate a transport object identifier of an application transport packet carrying the CMT when the CMT is delivered through broadcast. The AST_TOI field may indicate a transport object identifier of an application transport packet that delivers the AST when the AST is delivered through broadcast. The MPD_URL field may indicate URL information for acquiring the MPD through broadband. The CMT_URL field may indicate URL information for acquiring a CMT through broadband. The AST_URL may indicate URL information for obtaining an AST through broadband.
도 69는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 사용되는 컴포넌트 매핑 테이블을 나타낸 도면이다. 아래에서 설명할 내용은 시그널링 메시지 헤더 뒤에 위치한 서비스 시그널링 메시지 부분에 포함되어 전송될 수 있다. 컴포넌트 매핑 테이블은 컴포넌트 매핑 시그널링에 대한 정보를 포함할 수 있으며 XML 형태 또는 binary 형태 등으로 표현될 수 있다. 서비스 시그널링의 하나인 컴포넌트 매핑 테이블은 다음과 같은 필드를 포함할 수 있다. Signaling_id 필드는 해당 테이블이 component mapping table 임을 나타내는 식별자를 포함할 수 있다. protocol_version 필드는 component mapping table syntax 등 component mapping table 의 프로토콜 버전을 나타낼 수 있다. Signaling_version 필드는 component mapping table 의 시그널링 데이터의 변화 등을 나타낼 수 있다. Service_id 필드는 해당 컴포넌트들과 연관된 서비스에 대한 식별자를 나타낼 수 있다. Num_component 필드는 해당 서비스가 포함하는 컴포넌트의 개수를 나타낼 수 있다. Mpd_id 필드는 컴포넌트와 연관된 DASH MPD 식별자를 나타낼 수 있다. Period_id 필드는 컴포넌트와 연관된 DASH period 식별자를 나타낼 수 있다. representation_id 필드는 컴포넌트와 연관된 DASH representation 식별자를 나타낼 수 있다. Source_IP 필드는 해당 컴포넌트 데이터를 포함하는 IP/UDP 데이터 그램의 source IP 주소를 나타낼 수 있다. Dest_IP 필드는 해당 컴포넌트 데이터를 포함하는 IP/UDP 데이터 그램의 destination IP 주소를 나타낼 수 있다. port 필드는 해당 컴포넌트 데이터를 포함하는 IP/UDP 데이터 그램의 Port 넘버를 나타낼 수 있다. tsi 필드는 해당 컴포넌트 데이터를 포함하는 application layer transport session의 식별자를 나타낼 수 있다. DP_id 필드는 해당 컴포넌트 데이터를 전달하는 physical layer data pipe 의 식별자를 나타낼 수 있다. 위와 같은 정보를 통해 CMT는 각 서비스에 연관된 컴포넌트들을 정의하고 해당 컴포넌트들을 수신할 수 있는 위치 또는 경로를 수신기에 알려줄 수 있다. 69 illustrates a component mapping table used in the next generation broadcast system according to an embodiment of the present invention. Content to be described below may be included in the service signaling message part located behind the signaling message header and transmitted. The component mapping table may include information on component mapping signaling and may be expressed in an XML form or a binary form. The component mapping table, which is one of service signaling, may include the following fields. The Signaling_id field may include an identifier indicating that the corresponding table is a component mapping table. The protocol_version field may indicate a protocol version of a component mapping table such as component mapping table syntax. The Signaling_version field may indicate a change in signaling data of a component mapping table. The Service_id field may indicate an identifier for a service associated with corresponding components. The Num_component field may indicate the number of components included in a corresponding service. The Mpd_id field may indicate a DASH MPD identifier associated with a component. The Period_id field may indicate a DASH period identifier associated with a component. The representation_id field may indicate a DASH representation identifier associated with a component. The Source_IP field may indicate a source IP address of an IP / UDP datagram including corresponding component data. The Dest_IP field may indicate a destination IP address of an IP / UDP datagram including corresponding component data. The port field may indicate a port number of an IP / UDP datagram including corresponding component data. The tsi field may indicate an identifier of an application layer transport session including corresponding component data. The DP_id field may indicate an identifier of a physical layer data pipe that carries corresponding component data. Through the above information, the CMT may define components related to each service and inform the receiver of a location or a path where the components can be received.
도 70은 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 컴포넌트 매핑 테이블 디스크립션 (Component Mapping Table Description)은 차세대 방송 시스템에서 방송 서비스에 포함된 컴포넌트의 전송 경로에 대한 정보를 시그널링할 수 있다. 이는 XML 포맷 또는 binary 형태의 bitstream 등으로 표현될 수 있다. 컴포넌트 매핑 테이블 디스크립션은 다음과 같은 엘리먼트 및 속성을 포함할 수 있다. service_id 속성은 컴포넌트와 연관된 서비스의 식별자를 나타낼 수 있다. BroadcastComp는 동일한 방송 스트림을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. BroadcastComp는 mpdID, perID, reptnID, baseURL 및/또는 datapipeID 중 적어도 하나를 포함할 수 있다. mpdID 속성은 BroadcastComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Segment와 연관된 Base URL 을 나타낼 수 있다. datapipeID 속성은 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 data pipe 의 식별자를 나타낼 수 있다. 70 illustrates a component mapping table description according to an embodiment of the present invention. The component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form. The component mapping table description may include the following elements and attributes. The service_id attribute may represent an identifier of a service associated with a component. BroadcastComp may represent one or more components transmitted through the same broadcast stream. BroadcastComp may include at least one of mpdID, perID, reptnID, baseURL, and / or datapipeID. The mpdID attribute may indicate a DASH MPD identifier associated with BroadcastComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate a base URL associated with a DASH segment associated with the corresponding component. The datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in a broadcast stream.
BBComp는 broadband 망을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. BBComp는 mpdID, perID, reptnID 및/또는 baseURL 중 적어도 하나를 포함할 수 있다. mpdID 속성은 BBComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Segment와 연관된 Base URL 을 나타낼 수 있다.BBComp may represent one or more components transmitted through a broadband network. The BBComp may include at least one of mpdID, perID, reptnID, and / or baseURL. The mpdID attribute may indicate a DASH MPD identifier associated with BBComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate a base URL associated with a DASH segment associated with the corresponding component.
ForeignComp는 다른 방송 스트림을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. ForeignComp는 mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr 및/또는 destUDPPort 중 적어도 하나를 포함할 수 있다. mpdID 속성은 ForeignComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Segment 의 Base URL 을 나타낼 수 있다. transportStreamID 속성 해당 컴포넌트 데이터를 포함하는 방송 스트림의 식별자를 나타낼 수 있다. sourceIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 source IP 주소를 나타낼 수 있다. destIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination IP 주소를 나타낼 수 있다. destUDPPort 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination UDP port number를 나타낼 수 있다. datapipeID 속성은 해당 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 data pipe 의 식별자를 나타낼 수 있다. 위의 Component Mapping Description 은 하나의 XML 파일 혹은 앞서 제안한 시그널링 메시지 포멧으로 encapsulation 되어 전송될 수 있다. 도 70의 하단에 도시된 바와 같이 Signaling message header 는 전술한 형태를 따를 수 있으며 서비스 메시지 부분에 component mapping description 혹은 그 일부가 포함될 수 있다. 위와 같은 정보를 통해 CMT는 각 서비스에 연관된 컴포넌트들을 정의하고 해당 컴포넌트들에 관련된 정보를 수신할 수 있는 위치 또는 경로를 수신기에 알려줄 수 있다. ForeignComp may represent one or more components transmitted through another broadcast stream. ForeignComp may include at least one of mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, and / or destUDPPort. The mpdID attribute may indicate a DASH MPD identifier associated with ForeignComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL property may indicate the base URL of the DASH segment associated with the corresponding component. transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data. The sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data. The destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data. The destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data. The datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in the corresponding broadcast stream. The above Component Mapping Description can be encapsulated in one XML file or the above-mentioned signaling message format and transmitted. As shown in the lower part of FIG. 70, the signaling message header may follow the above-described form, and a component mapping description or part thereof may be included in the service message part. Through the above information, the CMT may define components related to each service and inform the receiver of a location or a path for receiving information related to the corresponding components.
도 71은 본 발명의 일 실시예에 따른 차세대 방송 시스템의 컴포넌트 매핑 테이블의 신택스를 나타낸다. 차세대 방송 시스템은 수신기로 하여금 방송 서비스의 컴포넌트를 획득할 수 있도록 컴포넌트 매핑 테이블(CMT)을 시그널링할 수 있다. 이는 binary 또는 XML 등 다른 형태로 표현될 수 있으며 전술한 시그널링 메시지 포멧으로 encapsulation 될 수 있다. 컴포넌트 매핑 테이블은 다음과 같은 필드를 포함할 수 있다. CMT_portocol_version 필드는 Component Mapping Tabe(CMT)의 구조(structure)의 버전을 나타낼 수 있다. service_id 필드는 해당 CMT가 제공하는 컴포넌트 위치와 관련된 서비스의 식별자를 나타낼 수 있다. CMT_data_version 필드는 해당 CMT의 데이터 버전을 나타낼 수 있다. num_broadcast_streams 필드는 해당 서비스와 연관된 적어도 하나의 컴포넌트를 포함하는 브로드캐스트 스트림의 개수를 나타낼 수 있다. TSID 필드는 해당 브로드캐스트 스트림의 전송 세션 식별자를 나타낼 수 있다. num_partitions 필드는 해당 서비스와 관련된 적어도 하나의 컴포넌트를 포함하는 브로드캐스트 스트림의 파티션 개수를 나타낼 수 있다. CMT는 복수의 파티션들을 포함할 수 있다. partition_id 필드는 해당 파티션의 식별자를 나타낼 수 있다. num_data_pipes 필드는 해당 서비스와 관련된 적어도 하나의 컴포넌트를 포함하는 파티션 내의 데이터 파이프들의 개수를 나타낼 수 있다. DP_ID 필드는 각 데이터 파이프의 식별자를 나타낼 수 있다. num_ROUTE_sessions 필드는 각 데이터 파이프에 포함된 전송 세션 (예를들어 ROUTE 세션)의 개수를 나타낼 수 있다. 각 데이터 파이프는 해당 서비스와 관련된 적어도 하나의 컴포넌트를 포함할 수 있다. IP_address 필드는 각 전송 세션의 IP 주소를 나타낼 수 있다. UDP_port 필드는 각 전송 세션의 UDP port를 나타낼 수 있다. num_LCT_channels 필드는 해당 서비스와 관련된 컴포넌트를 포함하는 전송 세션 내의 LCT 채널의 개수를 나타낼 수 있다. LCT_TSI 필드는 전송 세션 식별자 (Transport Session Identifier, TSI)를 나타낼 수 있다. Representation_ID 필드는 해당 LCT 채널에 의해 운반되는 DASH Representation의 식별자를 나타낼 수 있다. 실시예에 따라 컴포넌트 매핑 테이블은 MPD id 필드 및 Period id 필드를 더 포함할 수 있다. 이 경우, MPD id, Period id 및 Representation id를 조합하여 globally unique ID를 획득할 수 있다. Internet_availability 필드는 해당 Representation 이 인터넷 또는 브로드밴드를 통해서도 수신될 수 있는지 여부를 나타낸 식별자일 수 있다. num_internet_only_reptns 필드는 인터넷 또는 브로드밴드를 통해서만 수신할 수 있는 Representation의 개수를 나타낼 수 있다. Representation_ID 필드는 num_internet_only_reptns 의 loop 내에서, 인터넷 또는 브로드밴드를 통해서만 수신할 수 있는 DASH Representation 의 식별자를 나타낼 수 있다. 상술한 바와 같이 실시예에 따라 MPD id, Period id 및 Representation id를 조합하여 globally unique한 식별자를 구성할 수 있다. 위와 같은 정보를 통해 CMT는 각 서비스에 연관된 컴포넌트들을 정의하고 해당 컴포넌트들을 수신할 수 있는 위치 또는 경로를 수신기에 알려줄 수 있다. 71 illustrates syntax of a component mapping table of a next generation broadcast system according to an embodiment of the present invention. The next generation broadcast system may signal a component mapping table (CMT) to allow a receiver to acquire a component of a broadcast service. This may be expressed in other forms such as binary or XML, and may be encapsulated in the aforementioned signaling message format. The component mapping table may include the following fields. The CMT_portocol_version field may indicate the version of the structure of the Component Mapping Tabe (CMT). The service_id field may indicate an identifier of a service related to a component location provided by a corresponding CMT. The CMT_data_version field may indicate the data version of the corresponding CMT. The num_broadcast_streams field may indicate the number of broadcast streams including at least one component associated with a corresponding service. The TSID field may indicate a transport session identifier of the corresponding broadcast stream. The num_partitions field may indicate the number of partitions of a broadcast stream including at least one component related to a corresponding service. The CMT may include a plurality of partitions. The partition_id field may indicate an identifier of a corresponding partition. The num_data_pipes field may indicate the number of data pipes in a partition including at least one component related to a corresponding service. The DP_ID field may indicate an identifier of each data pipe. The num_ROUTE_sessions field may indicate the number of transport sessions (eg, ROUTE sessions) included in each data pipe. Each data pipe may include at least one component associated with a corresponding service. The IP_address field may indicate an IP address of each transport session. The UDP_port field may indicate a UDP port of each transport session. The num_LCT_channels field may indicate the number of LCT channels in a transport session including a component related to a corresponding service. The LCT_TSI field may indicate a transport session identifier (TSI). The Representation_ID field may indicate an identifier of the DASH Representation carried by the corresponding LCT channel. According to an embodiment, the component mapping table may further include an MPD id field and a period id field. In this case, a globally unique ID may be obtained by combining the MPD id, the period id, and the representation id. The Internet_availability field may be an identifier indicating whether a corresponding Representation can also be received through the Internet or broadband. The num_internet_only_reptns field may indicate the number of representations that can be received only through the Internet or broadband. The Representation_ID field may indicate an identifier of a DASH Representation that can be received only through the Internet or broadband within a loop of num_internet_only_reptns. As described above, a globally unique identifier may be configured by combining MPD id, Period id, and Representation id. Through the above information, the CMT may define components related to each service and inform the receiver of a location or a path where the components can be received.
도 72는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 각 서비스와 연관된 시그널링을 브로드밴드망을 통해 전달하는 방법을 나타낸다. 차세대 방송 시스템은 서비스와 연관된 시그널링을 broadband 망 등을 통하여 수신기로 전달할 수 있다. 차세대 방송 시스템은 URL Signaling Table Description을 이용하여 broadband 망 등을 통해 시그널링을 수신기로 전달할 수 있다. 이는 XML 또는 binary 등 다른 형태로 나타내어질 수 있다. URL Signaling Table Description은 다음과 같은 속성을 포함할 수 있다. service_id 속성은 시그널링과 연관된 서비스의 식별자를 나타낼 수 있다. mpdURL 속성은 브로드밴드 MPD의 URL을 나타낼 수 있다. cstURL 속성은 브로드밴드 CMT의 URL을 나타낼 수 있다. CMT 는 방송 서비스 내 컴포넌트 데이터 획득 경로에 대한 정보를 포함할 수 있다. astURL 속성은 브로드밴드 AST의 URL을 나타낼 수 있다. AST 는 방송 서비스와 연관된 애플리케이션에 대한 정보를 포함할 수 있다. 수신기는 상기 디스크립션을 수신하고 각 시그널링에 대한 URL에 기초하여 해당 시그널링을 수신할 수 있다. 위의 URL Signaling Table Description 은 하나의 XML 파일 혹은 앞서 제안한 시그널링 메시지 포멧으로 encapsulation 되어 전송될 수 있다. 도면 하단에서 보는 바와 같이 Signaling message header 는 앞서 제안한 형태를 따를 수 있으며, 헤더 뒤에 URL Signaling Table Description 혹은 그 일부가 포함될 수 있다. 72 is a view illustrating a method for delivering signaling associated with each service through a broadband network in a next generation broadcast system according to an embodiment of the present invention. The next generation broadcasting system may deliver signaling associated with a service to a receiver through a broadband network. The next generation broadcasting system may transmit signaling to a receiver through a broadband network using a URL signaling table description. This can be represented in other forms, such as XML or binary. The URL Signaling Table Description may include the following attributes. The service_id attribute may indicate an identifier of a service associated with signaling. The mpdURL attribute may indicate the URL of the broadband MPD. The cstURL attribute may indicate the URL of the broadband CMT. The CMT may include information on a component data acquisition path in a broadcast service. The astURL attribute may indicate the URL of the broadband AST. The AST may include information about an application associated with a broadcast service. The receiver may receive the description and receive the corresponding signaling based on the URL for each signaling. The above URL Signaling Table Description can be encapsulated in one XML file or the previously proposed signaling message format and transmitted. As shown at the bottom of the figure, the signaling message header may follow the previously proposed form, and may include a URL signaling table description or part thereof after the header.
도 73은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 MPD를 시그널링하는 방안을 나타낸다. 차세대 방송망에서 사용 가능한 방송 서비스의 MPD에 대한 시그널링 메시지는 도면 상단에 도시된 바와 같이 시그널링 메시지 헤더와 시그널링 메시지로 구성될 수 있다. Signaling message header 는 전술한 형태를 따를 수 있으며, MPD delivery table 정보는 다음과 같은 정보를 포함할 수 있다. Signaling_id 정보는 해당 시그널링 메시지가 MPD 혹은 MPD를 획득할 수 있는 경로 정보를 포함하는 시그널링 메시지임을 식별할 수 있다. protocol_version 정보는 해당 시그널링 메시지의 syntax 등 MPD delivery table 의 프로토콜 버전을 나타낼 수 있다. Signaling_version 정보는 MPD delivery table 의 시그널링 데이터의 변화 등을 나타낼 수 있다. Service_id 정보는 해당 시그널링 정보와 연관된 서비스 식별자를 나타낼 수 있다. Mpd_id 정보는 시그널링 메시지와 연관된 DASH MPD의 식별자를 나타낼 수 있다. MPD_version 정보는 해당 MPD의 변화 등을 나타내는 버전 정보를 나타낼 수 있다. Delivery_mode 정보는 시그널링 메시지가 해당 MPD 를 포함하고 있는지 다른 경로를 통하여 전달되는지 여부에 대한 정보를 나타낼 수 있다. MPD_data() 정보는 해당 시그널링 메시지가 MPD를포함하는 경우 MPD 데이터 자체를 포함할 수 있다. MPD_path 정보는 MPD를 획득할 수 있는 경로에 대한 정보를 포함할 수 있다. 예를 들어 경로는 URL 등을 나타낼 수 있다. 73 illustrates a method for signaling MPD in a next generation broadcast system according to an embodiment of the present invention. The signaling message for the MPD of the broadcast service available in the next generation broadcasting network may include a signaling message header and a signaling message as shown in the upper part of the figure. The signaling message header may follow the above-described form, and the MPD delivery table information may include the following information. Signaling_id information may identify that the signaling message is a signaling message including the MPD or path information for acquiring the MPD. The protocol_version information may indicate a protocol version of the MPD delivery table such as syntax of the corresponding signaling message. The signaling_version information may indicate a change in signaling data of the MPD delivery table. The service_id information may indicate a service identifier associated with corresponding signaling information. The Mpd_id information may indicate an identifier of the DASH MPD associated with the signaling message. The MPD_version information may indicate version information indicating a change of the corresponding MPD. The delivery_mode information may indicate information on whether the signaling message includes the corresponding MPD or is delivered through another path. The MPD_data () information may include the MPD data itself when the corresponding signaling message includes the MPD. The MPD_path information may include information about a path from which an MPD can be obtained. For example, the path may represent a URL or the like.
MPD delivery table description은 다음과 같은 정보를 포함할 수 있다. service_id 속성은 시그널링과 연관된 서비스의 식별자를 나타낼 수 있다. MPD_id 속성은 MPD의 식별ㅈ를 나타낼 수 있다. MPD_version은 MPD의 변화 정보를 나타낼 수 있는 버전 정보를 나타낼 수 있다. MPD_URL 속성은 MPD를 획득할 수 있는 URL 정보를 포함할 수 있다. 또한 MPD 엘리먼트는 MPD 정보를 포함할 수 있다. MPD Delivery Table Description 은 하나의 XML 파일 혹은 앞서 제안한 시그널링 메시지 포멧으로 encapsulation 되어 전송될 수 있다. 즉, Signaling message header 는 앞서 제안한 형태를 따를 수 있으며, 그 뒤에 MPD Delivery Table Description 혹은 그 일부가 포함될 수 있다.The MPD delivery table description may include the following information. The service_id attribute may indicate an identifier of a service associated with signaling. The MPD_id attribute may indicate identification of the MPD. MPD_version may indicate version information that may indicate change information of the MPD. The MPD_URL attribute may include URL information for acquiring the MPD. In addition, the MPD element may include MPD information. The MPD Delivery Table Description may be encapsulated in one XML file or the signaling message format proposed above and transmitted. That is, the signaling message header may follow the previously proposed form, and may include an MPD Delivery Table Description or a part thereof.
도 74는 본 발명의 일 실시예에 따른 차세대 방송 시스템의 MPD 딜리버리 테이블의 신택스를 나타낸다. 시그널링 메시지 헤더 뒤에는 MPD 딜리버리 테이블의 정보 또는 그 일부가 포함될 수 있으며 MPD 딜리버리 테이블의 정보는 다음과 같은 필드를 포함할 수 있다. service_id 필드는 연관된 방송 서비스의 식별자를 나타낼 수 있다. MPD_id_length 필드는 뒤따르는 MPD_id_bytes() 길이를 나타낼 수 있다. MPD_id_bytes 필드는 signaling 메시지에 포함되는 MPD 파일의 식별자를 나타낼 수 있다. MPD_version 필드는 해당 MPD의 데이터의 변화 등 버전 정보를 나타낼 수 있다. MPD_URL_availabilty 필드는 해당 시그널링 테이블/메시지 내에 MPD 의 URL 정보의 존재 여부를 나타낼 수 있다. MPD_data_availabilty 필드는 해당 시그널링 테이블/메시지 내에 MPD 자체 포함 여부를 나타낼 수 있다. 해당 값이 ‘1’인 경우 MPD 자체가 해당 시그널링 테이블/메시지에 포함됨을 나타낼 수 있다. MPD_URL_length 필드는 뒤따르는 MPD_URL_bytes() 길이를 나타낼 수 있다. MPD_URL_bytes 필드는 signaling 메시지에 포함되는 MPD URL을 나타낼 수 있다. MPD_coding 필드는 해당 signaling 메시지 내에 포함하는 MPD 파일의 인코딩 방식을 나타낼 수 있다. 도면 하단과 같이 값에 따라 MPD 파일이 서로 다른 형태의 인코딩 방식으로 인코딩되었음을 나타낼 수 있다. 예를 들어 MPD_coding 필드의 값이 ‘0x00’인 경우 XML로 표현되는 MPD 파일 자체를 포함하고 있음을 나타낼 수 있다. 또한 그 값이 ‘0x01’인 경우 gzip 으로 압축된 MPD 파일이 포함되어 있음을 나타낼 수 있다. 예를 들어 gzip 으로 압축되어 있는 MPD 가 복수의 메시지/테이블로 나뉘어져 전송되는 경우 해당 복수의 MPD_bytes()를 concatenate한 후 ungzip 할 수 있다. MPD_byte_length 필드는 뒤따르는 MPD_bytes() 길이를 나타낼 수 있다. MPD_bytes 필드는 MPD_coding 에서 명시된 인코딩 방식에 따라 signaling 메시지에 포함되는 MPD 파일의 실제 데이터를 포함할 수 있다. 차세대 방송 시스템은 상술한 필드들을 포함하는 MPD 딜리버리 테이블을 통해 수신기가 서비스와 관련된 MPD를 수신 또는 획득할 수 있도록 한다. 74 illustrates the syntax of an MPD delivery table of a next generation broadcast system according to an embodiment of the present invention. After the signaling message header, the information of the MPD delivery table or a part thereof may be included, and the information of the MPD delivery table may include the following fields. The service_id field may indicate an identifier of an associated broadcast service. The MPD_id_length field may indicate the length of the following MPD_id_bytes (). The MPD_id_bytes field may indicate an identifier of the MPD file included in the signaling message. The MPD_version field may indicate version information such as a change of data of the corresponding MPD. The MPD_URL_availabilty field may indicate whether there is URL information of the MPD in the corresponding signaling table / message. The MPD_data_availabilty field may indicate whether the MPD itself is included in the signaling table / message. If the value is '1', this may indicate that the MPD itself is included in the signaling table / message. The MPD_URL_length field may indicate the length of the following MPD_URL_bytes (). The MPD_URL_bytes field may indicate an MPD URL included in a signaling message. The MPD_coding field may indicate an encoding method of an MPD file included in a corresponding signaling message. As shown in the lower part of the figure, it may represent that the MPD file is encoded in different types of encoding schemes according to a value. For example, when the value of the MPD_coding field is '0x00', this may indicate that the MPD file itself expressed in XML is included. Also, if the value is '0x01', this may indicate that an MPD file compressed with gzip is included. For example, when a MPD compressed with gzip is divided into a plurality of messages / tables and transmitted, the MPD_bytes () can be concatenated and then ungzipd. The MPD_byte_length field may indicate the length of the following MPD_bytes (). The MPD_bytes field may include actual data of the MPD file included in the signaling message according to the encoding scheme specified in MPD_coding. The next generation broadcast system enables a receiver to receive or acquire an MPD associated with a service through the MPD delivery table including the above-described fields.
도 75는 본 발명의 일 실시예에 따른 차세대 방송 시스템의 전송 세션 인스턴스 디스크립션을 나타낸다. 어플리케이션 레이어 전송 방법이 Real-Time Object Delivery over Unidirectional Transport (이하 ROUTE) 인 경우 ROUTE 세션이 하나 이상의 LCT(Layered Coding Transport) 세션들로 구성될 수 있다. 하나 이상의 전송 세션(Transport session) 에 대한 세부 정보는 전송 세션 인스턴스 디스크립션을 통해 시그널링 될 수 있다. 전송 세션 인스턴스 디스크립터는 ROUTE인 경우 LCT Session Instance Description (LSID)로 지칭될 수 있다. 특히, 전송 세션 인스턴스 디스크립션은 ROUTE 세션을 구성하는 각 LCT 전송 세션에 의해 무엇이 전달되는지를 정의할 수 있다. 각 전송 세션은 전송 세션 식별자(Transport Session Identifier, TSI)에 의해 유니크하게 식별될 수 있다. 전송 세션 식별자는 LCT 헤더에 포함될 수 있다. 전송 세션 인스턴스 디스크립션은 해당 세션을 통해 전송되는 모든 전송 세션을 기술할 수 있다. 예를 들어 LSID는 ROUTE 세션에 의해 운반되는 모드 LCT 세션을 기술할 수 있다. 전송 세션 인스턴스 디스크립션은 전송 세션들과 동일한 ROUTE 세션으로 전달되거나, 또는 서로 다른 ROUTE 세션이나 유니캐스트를 통해 전달될 수도 있다. 75 illustrates a transport session instance description of a next generation broadcast system according to an embodiment of the present invention. When the application layer transport method is Real-Time Object Delivery over Unidirectional Transport (ROUTE), the ROUTE session may consist of one or more Layered Coding Transport (LCT) sessions. Detailed information about one or more transport sessions may be signaled through transport session instance description. The transport session instance descriptor may be referred to as LCT Session Instance Description (LSID) when ROUTE. In particular, the transport session instance description may define what is conveyed by each LCT transport session that constitutes a ROUTE session. Each transport session may be uniquely identified by a transport session identifier (TSI). The transport session identifier may be included in the LCT header. A transport session instance description may describe all transport sessions transmitted through that session. For example, the LSID may describe a mode LCT session carried by a ROUTE session. The transport session instance description may be delivered in the same ROUTE session as the transport sessions, or may be delivered in different ROUTE sessions or unicasts.
동일한 ROUTE 세션으로 전달되는 경우, 전송 세션 인스턴스 디스크립션은 지정된 전송 세션 식별자(TSI) 0을 갖는 전송 세션으로 전달될 수 있다. 전송 세션 인스턴스 디스크립션에서 참조되는 다른 오브젝트도 TSI=0으로 전달될 수 있으나, 전송 세션 인스턴스 디스크립션과는 다른 TOI 값을 가질 수 있다. 또는 TSI ≠ 0인 분리된 전송 세션을 통해 전달될 수도 있다. 전송 세션 인스턴스 디스크립션은버전 넘버, 유효(validity) 정보 또는 만료(expiration) 정보 중 적어도 하나를 이용하여 업데이트될 수 있다. 전송 세션 인스턴스 디스크립션은 도시된 형태 이외에 bitstream 등으로 나타내어 질 수 있다. When delivered in the same ROUTE session, the transport session instance description may be delivered to a transport session with a designated transport session identifier (TSI) 0. Other objects referenced in the transport session instance description may also be delivered with TSI = 0, but may have a TOI value different from the transport session instance description. Or it may be delivered through a separate transport session in which TSI ≠ 0. The transport session instance description may be updated using at least one of a version number, validity information or expiration information. The transport session instance description may be represented by a bitstream or the like in addition to the illustrated form.
전송 세션 인스턴스 디스크립션은 version 속성, validFrom 속성, expiration 속성을 포함할 수 있으며, 각 전송 세션에 대해 TSI 속성 및 SourceFlow, RepairFlow 정보를 포함할 수 있다. version 속성은 해당 전송 세션 인스턴스 디스크립션의 버전 정보를 나타낼 수 있으며, 그 내용이 업데이트 될 때마다 버전 정보는 증가할 수 있다. 가장 높은 버전 넘버를 갖는 전송 세션 인스턴스 디스크립션이 최근의 유효한 버전임을 나타낼 수 있다. validFrom 속성은 해당 전송 세션 인스턴스 디스크립션이 언제부터 유효한 지를 나타낼 수 있다. validFrom 속성은 실시예에 따라 전송 세션 인스턴스 디스크립션에 포함되지 않을 수도 있으며, 이 경우 해당 전송 세션 인스턴스 디스크립션은 수신 즉시 유효함을 나타낼 수 있다. expiration 속성은 해당 전송 세션 인스턴스 디스크립션이 언제 만료되는지를 나타낼 수 있다. expiration 속성은 실시예에 따라 전송 세션 인스턴스 디스크립션에 포함되지 않을 수도 있으며, 이 경우 해당 전송 세션 인스턴스 디스크립션은 계속적으로 유효한 것임을 나타낼 수 있다. 만약 expiration 속성을 갖는 전송 세션 인스턴스 디스크립션이 수신되면 해당 expiration 속성을 따를 수 있다. TSI 속성은 전송 세션 식별자를 나타낼 수 있으며, SourceFlow 엘리먼트는 해당 TSI로 전송되는 소스 플로우의 정보를 제공하며, 상세 내용은 아래에서 설명한다. RepairFlow 엘리먼트는 해당 TSI로 전송되는 리페어 플로우의 정보를 제공할 수 있다. The transport session instance description may include a version attribute, a validFrom attribute, and an expiration attribute, and may include TSI attribute, SourceFlow, and RepairFlow information for each transport session. The version attribute may indicate version information of a corresponding transport session instance description, and the version information may increase whenever the contents are updated. The transport session instance description with the highest version number may indicate that it is the latest valid version. The validFrom attribute may indicate when the corresponding transport session instance description is valid. According to an embodiment, the validFrom attribute may not be included in the transport session instance description, and in this case, the transport session instance description may indicate that the transport session instance description is valid upon receipt. The expiration attribute may indicate when the corresponding transport session instance description expires. According to an embodiment, the expiration attribute may not be included in the transport session instance description, and in this case, it may represent that the transport session instance description is continuously valid. If a transport session instance description with an expiration attribute is received, the corresponding expiration attribute can be followed. The TSI attribute may indicate a transport session identifier. The SourceFlow element provides information of a source flow transmitted to a corresponding TSI. Details are described below. The RepairFlow element may provide information of the repair flow transmitted to the corresponding TSI.
도 76은 본 발명의 일 실시예에 다른 차세대 방송 시스템의 소스 플로우(SourceFlow) 엘리먼트를 나타낸다. 소스 플로우 엘리먼트는 EFDT 엘리먼트, idRef 속성, realtime 속성, minBufferSize 속성, Application Idendtifier 엘리먼트, PayloadFormat 엘리먼트를 포함할 수 있다. EFDT 엘리먼트는 파일 딜리버리 데이터의 상세 정보를 포함할 수 있다. EFDT는 extended File Delivery Table(FDT) instance를 나타낼 수 있으며 자세한 내용은 아래에서 설명한다. idRef 속성은 EFDT의 식별자를 나타낼 수 있으며, 대응하는 전송 세션에 의해 URI로 표현될 수 있다. realtime 속성은 해당 LCT 패킷들이 확장 헤더(extension header)를 포함함을 나타낼 수 있다. 확장 헤더는 딜리버리 오브젝트의 프리젠테이션 타임을 나타내는 타임 스탬프를 포함할 수 있다. minBufferSize 속성은 수신기에 저장되는데 필요한 데이터의 최대 양을 정의할 수 있다. Application Idendtifier 엘리먼트는 해당 전송 세션에 의해 운반되는 어플리케이션에 매핑될 수 있는 부가 정보를 제공할 수 있다. 예를 들어 렌더링을 위한 전송 세션을 선택하기 위한 DASH 컨텐츠의 Representation ID 또는 DASH representation의 Adaptation Set 파라미터가 부가 정보로 제공될 수 있다. PayloadFormat 엘리먼트는 소스플로우의 오브젝트를 운반하는 ROUTE 패킷의 페이로드 포맷을 정의할 수 있다. PayloadFormat 엘리먼트는 codePoint 속성, deliveryObjectFormat 속성, fragmentation 속성, deliveryOrder 속성, sourceFecPayloadID 속성 및/또는 FECParameters 엘리먼트를 포함할 수 있다. codePoint 속성은 해당 페이로드에서 사용되는 코드포인트 값이 가지는 패킷의 구조 등을 정의할 수 있다. 이는 LCT 헤더의 CP 필드의 값을 나타낼 수 있다. deliveryObjectFormat 속성은 해당 딜리버리 오브젝트의 페이로드 포맷을 나타낼 수 있다. fragmentation 속성은 오브젝트가 하나 이상의 전송 패킷으로 나뉘어져서 전송되는 경우 프래그멘테이션 규칙 등을 정의할 수 있다. deliveryOrder 속성은 하나의 전송 오브젝트를 전달하는 각 전송 패킷이 포함하는 내용의 전송 순서를 나타낼 수 있다. sourceFecPayloadID 속성은 source FEC 페이로드 식별자의 포맷을 정의할 수 있다. FECParameters 엘리먼트는 FEC 파라미터들을 정의할 수 있다. 이는 FEC encoding id, instance id등을 포함할 수 있다. 76 is a view illustrating a source flow element of a next generation broadcast system according to an embodiment of the present invention. The source flow element may include an EFDT element, an idRef attribute, a realtime attribute, a minBufferSize attribute, an Application Idendtifier element, and a PayloadFormat element. The EFDT element may include detailed information of the file delivery data. The EFDT may represent an extended file delivery table (FDT) instance, which will be described below. The idRef attribute may indicate an identifier of the EFDT and may be represented by a URI by a corresponding transport session. The realtime attribute may indicate that corresponding LCT packets include an extension header. The extension header may include a time stamp indicating the presentation time of the delivery object. The minBufferSize property can define the maximum amount of data needed to be stored in the receiver. The Application Idendtifier element may provide additional information that may be mapped to an application carried by the corresponding transport session. For example, the Representation ID of the DASH content or the Adaptation Set parameter of the DASH representation for selecting a transport session for rendering may be provided as additional information. The PayloadFormat element can define the payload format of the ROUTE packet carrying the object of the sourceflow. The PayloadFormat element may include a codePoint attribute, deliveryObjectFormat attribute, fragmentation attribute, deliveryOrder attribute, sourceFecPayloadID attribute and / or FECParameters element. The codePoint attribute may define a packet structure of a codepoint value used in a corresponding payload. This may indicate the value of the CP field of the LCT header. The deliveryObjectFormat attribute may indicate the payload format of the corresponding delivery object. The fragmentation attribute may define a fragmentation rule when an object is transmitted divided into one or more transport packets. The deliveryOrder attribute may indicate a delivery order of content included in each transport packet delivering one transport object. The sourceFecPayloadID attribute may define the format of the source FEC payload identifier. The FECParameters element may define FEC parameters. This may include an FEC encoding id, an instance id, and the like.
도 77은 본 발명의 일 실시예에 따른 차세대 방송 시스템의 EFDT를 나타낸다. EFDT는 파일 딜리버리 데이터의 상세 정보를 포함할 수 있다. EFDT는 idRef 속성, 버전 속성, maxExpiresDelta 속성, maxTransportSize 속성, FileTemplate 엘리먼트를 포함할 수 있다. idRef 속성은 EFDT의 식별자를 나타낼 수 있다. 버전 속성은 EFDT 인스턴스 디스크립터의 버전을 나타낼 수 있다. 이 속성은 EFDT가 업데이트될 때 1씩 증가할 수 있다. 수신된 EFDT 중 가장 높은 버전 넘버를 갖는 EFDT가 현재 유효한 버전임을 나타낼 수 있다. maxExpiresDelta 속성은 오브젝트와 연관된 첫번째 패킷을 전송한 후 해당 오브젝트의 최대 유효시간(expiry time)을 나타낼 수 있다. maxTransportSize 속성은 해당 EFDT에 의해 기술되는 오브젝트의 최대 전송 사이즈를 나타낼 수 있다. FileTemplate 엘리먼트는 바디 부분의 file URL 또는 file 템플릿을 상세화할 수 있다. 77 shows an EFDT of a next generation broadcast system according to an embodiment of the present invention. The EFDT may include detailed information of file delivery data. The EFDT may include an idRef attribute, a version attribute, a maxExpiresDelta attribute, a maxTransportSize attribute, and a FileTemplate element. The idRef attribute may indicate an identifier of the EFDT. The version attribute may indicate the version of the EFDT instance descriptor. This property can be incremented by one when the EFDT is updated. It may indicate that the EFDT having the highest version number among the received EFDTs is currently a valid version. The maxExpiresDelta attribute may indicate the maximum expiry time of the object after transmitting the first packet associated with the object. The maxTransportSize attribute may indicate the maximum transport size of an object described by the corresponding EFDT. The FileTemplate element can specify the file URL or file template of the body part.
전술한 전송 세션 인스턴스 디스크립터 (LSID) element는 도면 하단의 전송 세션 인스턴스 디스크립터 테이블 (LSID Table)에 의해 전송될 수 있다. LSID Table은 전술한 signaling message에 의해 전달될 수 있으며, 이는 시그널링 메시지 헤더와 시그널링 메시지 데이터 부분으로 구분될 수 있다. 시그널링 메시지 데이터 부분은 전송 세션 인스턴스 디스크립터 (LSID) 또는 그 일부를 포함할 수 있다. 시그널링 메시지 데이터는 전송 세션 인스턴스 디스크립터 (LSID) Table을 포함할 수 있으며, 다음과 같은 필드들을 포함할 수 있다. Signaling_id 필드는 전송 세션 인스턴스 디스크립터 (LSID)를 포함하는 시그널링 table 임을 나타내는 식별자 정보를 나타낼 수 있다. protocol_version 필드는 전송 세션 인스턴스 디스크립터(LSID)를 포함하는 시그널링 syntax 등 시그널링의 프로토콜 버전을 나타낼 수 있다. Signaling_version 필드는 전송 세션 인스턴스 디스크립터(LSID)를 포함하는 시그널링 데이터의 변화 등을 나타낼 수 있다. 이와 더불어 전송 세션 인스턴스 디스크립터 테이블은 앞서 설명한 전송 세션 인스턴스 디스크립터 (LSID) 엘리먼트의 내용을 더 포함할 수 있다. The aforementioned transport session instance descriptor (LSID) element may be transmitted by a transport session instance descriptor table (LSID Table) at the bottom of the figure. The LSID Table may be delivered by the aforementioned signaling message, which may be divided into a signaling message header and a signaling message data part. The signaling message data portion may include a transport session instance descriptor (LSID) or part thereof. The signaling message data may include a transport session instance descriptor (LSID) table, and may include the following fields. The Signaling_id field may indicate identifier information indicating that the signaling table includes a transport session instance descriptor (LSID). The protocol_version field may indicate a protocol version of signaling such as a signaling syntax including a transport session instance descriptor (LSID). The Signaling_version field may indicate a change in signaling data including a transport session instance descriptor (LSID). In addition, the transport session instance descriptor table may further include the contents of the above described transport session instance descriptor (LSID) element.
도 78은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 사용하는 ISDT를 전송하는 방법을 나타낸다. 차세대 방송 시스템은 Initialization Segment Delivery Table (ISDT)를 전송함으로써 방송 서비스 내의 컴포넌트와 연관된 DASH Representation 의 Initialization segment 에 대한 시그널링 정보를 전달할 수 있다. 방송 서비스 내 컴포넌트와 연관된 DASH Representation 의 Initialization segment 에 대한 시그널링 메시지는 헤더와 데이터를 포함할 수 있다. Signaling message header 는 전술한 형태를 따를 수 있으며, 시그널링 메시지 데이터는 initialization segment delivery 정보 또는 그 일부를 포함할 수 있다. initialization segment delivery 정보는 다음의 정보를 포함할 수 있다. Signaling_id 정보는 initialization segment 혹은 그 경로 정보를 포함하는 시그널링 메시지임을 식별할 수 있다. protocol_version 정보는 해당 시그널링 메시지의 syntax 등 initialization segment delivery table 의 프로토콜 버전을 나타낼 수 있다. Sequence_number 정보는 initialization segment delivery table 의 인스턴스에 대한 식별자를 나타낼 수 있다. Signaling_version 정보는 initialization segment delivery table 의 시그널링 데이터의 변화 등을 나타낼 수 있다. Service_id 정보는 해당 컴포넌트와 연관된 서비스를 식별할 수 있다. Mpd_id 정보는 해당 컴포넌트와 연관된 연관된 DASH MPD 식별자를 나타낼 수 있다. period_id 정보는 해당 컴포넌트와 연관된 연관된 DASH Period 식별자를 나타낼 수 있다. representation_id 정보는 해당 컴포넌트와 연관된 DASH representation 식별자를 나타낼 수 있다. Initialization_segment_version 정보는 해당 MPD의 변화 등을 나타내는 버전 정보일 수 있다. Delivery_mode 정보는 해당 initialization segment 를 포함하고 있는지 다른 경로를 통하여 전달되는 지 등에 대한 정보를 나타낼 수 있다. Initialization_segment _data() 정보는 initialization segment 데이터 자체를 포함할 수 있다. initialization segment path 정보는 initialization segment 에 대한 URL 등 initialization segment 를 획득할 수 있는 경로에 대한 정보를 포함할 수 있다. 이와 같은 ISDT를 통해 수신기는 컴포넌트와 연관된 DASH Representation 의 Initialization segment 에 대한 정보를 수신할 수 있다. 78 is a view illustrating a method for transmitting an ISDT used by a next generation broadcast system according to an embodiment of the present invention. The next generation broadcast system may transmit signaling information on an initialization segment of DASH Representation associated with a component in a broadcast service by transmitting an initialization segment delivery table (ISDT). The signaling message for the initialization segment of the DASH Representation associated with the component in the broadcast service may include a header and data. The signaling message header may follow the above-described form, and the signaling message data may include initialization segment delivery information or part thereof. The initialization segment delivery information may include the following information. Signaling_id information can identify that it is a signaling message including an initialization segment or its path information. The protocol_version information may indicate a protocol version of an initialization segment delivery table such as syntax of a corresponding signaling message. Sequence_number information may indicate an identifier for an instance of an initialization segment delivery table. Signaling_version information may indicate a change in signaling data of an initialization segment delivery table. The service_id information may identify a service associated with the corresponding component. The Mpd_id information may indicate an associated DASH MPD identifier associated with the corresponding component. The period_id information may indicate an associated DASH Period identifier associated with the corresponding component. The representation_id information may indicate a DASH representation identifier associated with the corresponding component. The Initialization_segment_version information may be version information indicating a change of the corresponding MPD. The delivery_mode information may indicate information about whether the corresponding initialization segment is included or delivered through another path. The initialization_segment _data () information may include initialization segment data itself. The initialization segment path information may include information on a path for obtaining an initialization segment, such as a URL for the initialization segment. Through such an ISDT, the receiver may receive information on an initialization segment of the DASH Representation associated with the component.
도 79는 본 발명의 일 실시예에 따른 차세대 방송 시스템의 시그널링 메시지의 딜리버리 구조를 나타낸다. 전술한 시그널링 데이터들이 application layer transport, 예를 들어 ROUTE 기반으로 전송되는 경우 도시된 바와 같이 전달될 수있다. 즉, 신속한 서비스의 스캔 등을 지원하기 위하여 fast information channel 등을 통하여 일부 시그널링을 전송할 수 있다. 그리고 시그널링의 일부는 특정 transport session을 통하여 전송될 수 있으며 또한 컴포넌트 데이터와 함께 혼재 되어 전달될 수 있다. 79 illustrates a delivery structure of a signaling message of a next generation broadcast system according to an embodiment of the present invention. When the aforementioned signaling data are transmitted based on an application layer transport, for example, ROUTE, the signaling data may be delivered as shown. That is, some signaling may be transmitted through a fast information channel in order to support fast scan. Part of the signaling may be transmitted through a specific transport session and may also be mixed with component data.
신속한 서비스의 스캔 및 획득을 지원하기 위한 시그널링 정보는 전송 세션과 별도의 채널로 수신될 수 있다. 여기서 별도의 채널이란 별도의 데이터 파이프(data pipe, DP)를 의미할 수 있다. 또한 서비스에 대한 상세 정보는 별도의 지정된 전송 세션을 통해 수신될 수 있으며 이 때 해당 전송 세션은 TSI=0의 값을 가질 수 있다. 여기서 지정된 전송 세션을 통해 전달되는 정보는 MPD 딜리버리 테이블, 어플리케이션 시그널링 테이블, 전송 세션 인스턴스 디스크립션 테이블 및/또는 컴포넌트 매핑 테이블을 포함할 수 있다. 또한 일부 시그널링 정보는 컴포넌트 데이터와 함께 전송 세션으로 전달될 수 있으며, 예를 들어 initialization segment delivery table이 컴포넌트 데이터와 함께 전달될 수 있다. Signaling information for supporting fast scan and acquisition may be received in a channel separate from the transport session. Here, the separate channel may mean a separate data pipe (DP). In addition, detailed information about the service may be received through a separate designated transport session, and the transport session may have a value of TSI = 0. The information transmitted through the designated transport session may include an MPD delivery table, an application signaling table, a transport session instance description table, and / or a component mapping table. In addition, some signaling information may be delivered together with the component data in the transport session. For example, an initialization segment delivery table may be delivered together with the component data.
도면 하단은 차세대 방송망에서 방송 서비스를 획득하는 실시예를 나타낸다. 수신기는 서비스가 선택되면 브로드캐스트를 튜닝하고 빠른 서비스 스캔 및 획득을 위한 정보를 획득하고 파싱할 수 있다. 그 다음, 빠른 서비스 스캔 및 획득을 위한 정보로부터 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립션 (예를들어 LSID)의 위치가 결정되면 해당 디스크립션을 획득하고 파싱할 수 있다. 이와 함께 수신기는 시그널링을 포함한 전송 세션을 확인하고 이로부터 시근러링 테이블을 획득하고 파싱할 수 있으며, 원하는 컴포넌트를 결정할 수 있다. 이 과정을 통해 원하는 컴포넌트를 프리젠테이션 할 수 있다. 즉, 방송 서비스는 빠른 서비스 스캔 및 획득을 위한 정보로부터 전송 세션에 대한 정보를 획득하고, 전송 세션에 대한 정보로부터 원하는 컴포넌트의 위치를 확인하여 해당 컴포넌트를 재생함으로써 사용자에게 제공될 수 있다. The lower part of the figure shows an embodiment of acquiring a broadcast service in a next generation broadcasting network. When a service is selected, the receiver can tune the broadcast and obtain and parse information for fast service scan and acquisition. Then, if the location of the service layer signaling or transport session instance description (eg, LSID) is determined from the information for fast service scan and acquisition, the corresponding description may be obtained and parsed. At the same time, the receiver can identify the transport session including signaling, obtain and parse the time-running table from it, and determine the desired component. This process allows you to present the components you want. That is, the broadcast service may be provided to a user by acquiring information on a transport session from information for fast service scan and acquisition, and identifying a location of a desired component from information on the transport session and playing the corresponding component.
도 80은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 신속한 방송 서비스 스캔 및 서비스/컴포넌트 획득을 지원하기 위한 FIC 정보 (서비스 획득 정보)는 서비스 및 컴포넌트 데이터를 전달하는 application layer transport session 에 대한 정보를 포함할 수 있다. 도시된 바와 같이 FIC 정보는 바이너리 포맷으로 표현될 수 있으나 실시예에 따라 XML 등 다른 포멧으로 나타내어질 수 있다. FIC 정보는 다음과 같은 필드를 포함할 수 있다. FIC_portocol_version 필드는 시그널링 정보의 프로토콜 버전 (Version of structure of FIC)을 나타낼 수 있다. TSID 필드는 방송 스트림의 식별자 (Identifier of overall broadcast stream)를 나타낼 수 있다. FIC_data_version 필드는 해당 FIC 정보의 데이터 버전 (indicates data version of this FIC instance)을 나타낼 수 있다. FIC_data_version 필드는 FIC의 내용에 변경이 있는 경우 증가할 수 있다. num_partitions 필드는 브로드캐스트 스트림의 파티션 개수를 나타낼 수 있다. num_partitions 필드가 사용되기 위해 각 브로드캐스트 스트림은 하나 또는 그 이상의 파티션으로 나뉘어 전송될 수 있음을 가정한다. 각 파티션은 하나의 브로드캐스터에 의한 복수의 DP를 포함할 수 있다. 각 파티션은 하나의 브로드캐스터에 의해 사용된 브로드캐스트 스트림의 부분을 나타낼 수 있다. partition_id 필드는 해당 파티션의 식별자를 나타낼 수 있다. partition_protocol_version 필드는 상술한 파티션 구조의 버전을 나타낼 수 있다. num_services 필드는 해당 파티션에 속하는 적어도 하나의 컴포넌트의 개수를 나타낼 수 있다. service_id 필드는 서비스에 대한 식별자를 나타낼 수 있다. service_data_version 필드는 FIC 내의 service loop 데이터의 변화 혹은 해당 서비스와 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. service_data_version 필드는 포함된 서비스 데이터에 변화가 발생할 때마다 1씩 증가할 수 있다. 수신기는 service_data_version 필드를 이용하여 FIC의 서비스 루프의 데이터 변화 혹은 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. channel_number 필드는 해당 서비스와 연관된 채널 넘버를 나타낼 수 있다. service_category 필드는 해당 서비스의 카테고리를 나타낼 수 있으며, 예를 들어 A/V, audio, ESG, CoD 등을 나타낼 수 있다. short_service_name_length 필드는 해당 서비스를 나타내는 이름에 대한 길이를 나타낼 수 있다. short_service_name 필드는 해당 서비스를 나타내는 이름을 나타낼 수 있다. service_status 필드는 해당 서비스의 상태를 나타낼 수 있으며, 그 값에 따라 active 또는 suspended, hidden 또는 shown 속성을 나타낼 수 있다. service_distribution 필드는 ATSC M/H 문서의 “multi-ensemble” flag 와 유사한 속성을 가질 수 있다. 예를 들어 해당 서비스가 해당 파티션에 모두 포함되어 있는지, 해당 파티션에 부분적으로 포함되어 있지만 해당 파티션만으로 프리젠테이션이 가능한지, 프리젠테이션하기 위해 다른 파티션이 필요한지 또는 프리젠테이션하기 위해 다른 방송 스트림이 요구되는지 등에 대한 정보를 나타낼 수 있다. sp_indicator 필드는 서비스 보호 플래그 (service protection flag)로써 프리젠테이션을 위해 필요한 하나 또는 그 이상의 컴포넌트들이 보호되는지 여부를 나타낼 수 있다. IP_version_flag 필드는 뒤따르는 IP 주소 형식을 나타낼 수 있다. 해당 필드 값이 0인 경우 IPv4 형식을, 1인 경우 IPv6 주소 형식을 사용함을 나타낼 수 있다. source_IP_address_flag 필드는 source_IP_addr 을 포함하는지 여부를 나타낼 수 있다. 해당 필드 값이 1인 경우 source_IP_addr 가 존재함을 나타낼 수 있다. num_transport_session 필드는 방송 스트림 내에서 해당 서비스의 컴포넌트 데이터를 전송하는 transport session (예를 들어 ROUTE 또는 MMTP session) 의 개수를 나타낼 수 있다. source_IP_addr 필드는 전술한 source_IP_address_flag 값이 1인 경우 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 source IP address 를 나타낼 수 있다. dest_IP_addr 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 destination IP address 을 나타낼 수 있다. dest_UDP_port 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 UDP port number 나타낼 수 있다. LSID_DP 필드는 전송 세션에 대한 세부 정보를 포함하는 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. 여기서, 전송 세션에 대한 세부 정보를 포함하는 시그널링은 예를 들어 ROUTE 인 경우 각 ROUTE 세션의 세부 LCT 전송 세션에 대한 정보를 포함하는 LCT session instance description 등이 될 수 있다. LSID_tsi 필드는 전송 세션에 대한 세부정보를 포함하는 시그널링인 전송 세션 인스턴스 디스크립션이 전송되는 전송 세션의 식별자를 나타낼 수 있다. 여기서 세션 인스턴스 디스크립션은 LCT 전송 세션의 경우 LSID 가 될 수 있다. 또한 전송 세션 인스턴스 디스크립션이 전송되는 전송 세션을 통하여 해당 서비스와 연관된 서비스 시그널링이 전달될 수 있다. service_signaling_flag 필드는 전송 세션이 서비스 시그널링을 전송하는지 여부를 나타낼 수 있다. service_signaling_flag 값이 1인경우 서비스 시그널링을 포함하는 DP가 존재함을 나타낼 수 있다. signaling_data_version 필드는 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. 서비스 시그널링 데이터에 변화가 발생할 때마다 해당 필드는 1씩 증가할 수 있다. 수신기는 signaling_data_version 필드를 이용하여 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. signaling_DP 필드는 서비스 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. signaling_tsi 필드는 서비스 시그널링을 전달하는 전송 세션의 식별자 등을 나타낼 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. 각 디스크립터는 확장이 가능하며, 각 디스크립터는 num_descriptors 필드를 포함할 수 있다. 각 디스크립터는 num_descriptors 필드가 나타내는 값에 대응하는 개수의 descriptor loop를 포함할 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. service descriptors 필드는 service 레벨의 descriptor 들을 포함할 수 있다. Partition descriptors 필드는 파티션 레벨의 디스크립터를 포함할 수 있으며, 하나의 파티션은 하나의 방송사 등에 의해 사용되는 방송 스트림의 일부를 가리킬 수 있다. FIC session descriptors 필드는 FIC 레벨의 descriptor 들을 포함할 수 있다. 실시예에 따라 상술한 FIC에 포함된 각 필드들은 FIC외의 다른 테이블에 포함되어 방송 신호와 함께 전송될 수도있다. 80 illustrates signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver. The FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the FIC information may be represented in a binary format but may be represented in another format such as XML according to an embodiment. The FIC information may include the following fields. The FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC). The TSID field may indicate an identifier of the overall broadcast stream. The FIC_data_version field may indicate a data version of this FIC instance. The FIC_data_version field may be increased when there is a change in the content of the FIC. The num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster. The partition_id field may indicate an identifier of a corresponding partition. The partition_protocol_version field may indicate the version of the above-described partition structure. The num_services field may indicate the number of at least one component belonging to the corresponding partition. The service_id field may indicate an identifier for a service. The service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service. The service_data_version field may increase by 1 whenever a change occurs in the included service data. The receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field. The channel_number field may indicate a channel number associated with a corresponding service. The service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like. The short_service_name_length field may indicate the length of a name representing the corresponding service. The short_service_name field may indicate a name representing a corresponding service. The service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value. The service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated. The sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag. The IP_version_flag field may indicate the following IP address format. If the corresponding field value is 0, it may represent that the IPv4 format is used, and when 1, the IPv6 address format is used. The source_IP_address_flag field may indicate whether to include source_IP_addr. If the corresponding field value is 1, it may represent that source_IP_addr exists. The num_transport_session field may indicate the number of transport sessions (eg, ROUTE or MMTP sessions) for transmitting component data of a corresponding service in a broadcast stream. The source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service when the above-described source_IP_address_flag value is 1. The dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service. The dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service. The LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session. In this case, the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE. The LSID_tsi field may indicate an identifier of a transport session in which a transport session instance description, which is a signaling including detailed information about the transport session, is transmitted. In this case, the session instance description may be an LSID in the case of an LCT transport session. In addition, service signaling associated with a corresponding service may be delivered through a transport session through which a transport session instance description is transmitted. The service_signaling_flag field may indicate whether a transport session transmits service signaling. If the service_signaling_flag value is 1, this may indicate that a DP including service signaling exists. The signaling_data_version field may indicate a change of associated service signaling data. Each time a change occurs in the service signaling data, the corresponding field may be increased by one. The receiver may detect a change in signaling related to the corresponding service using the signaling_data_version field. The signaling_DP field may indicate a data pipe identifier of a physical layer that carries service signaling. The signaling_tsi field may indicate an identifier of a transport session for delivering service signaling. The transport session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field. The transport session descriptors field may include descriptors of a transport session level. The service descriptors field may include descriptors of a service level. The Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster. The FIC session descriptors field may include descriptors of the FIC level. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
도 81은 본 발명의 일 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 신속한 방송 서비스 스캔 및 서비스/컴포넌트 획득을 지원하기 위한 FIC 정보 (서비스 획득 정보)는 서비스 및 컴포넌트 데이터를 전달하는 application layer transport session 에 대한 정보를 포함할 수 있다. 도시된 바와 같이 FIC 정보는 바이너리 포맷으로 표현될 수 있으나 실시예에 따라 XML 등 다른 포멧으로 나타내어질 수 있다. FIC 정보는 다음과 같은 필드를 포함할 수 있다. FIC_portocol_version 필드는 시그널링 정보의 프로토콜 버전 (Version of structure of FIC)을 나타낼 수 있다. TSID 필드는 방송 스트림의 식별자 (Identifier of overall broadcast stream)를 나타낼 수 있다. num_partitions 필드는 브로드캐스트 스트림의 파티션 개수를 나타낼 수 있다. num_partitions 필드가 사용되기 위해 각 브로드캐스트 스트림은 하나 또는 그 이상의 파티션으로 나뉘어 전송될 수 있음을 가정한다. 각 파티션은 하나의 브로드캐스터에 의한 복수의 DP를 포함할 수 있다. 각 파티션은 하나의 브로드캐스터에 의해 사용된 브로드캐스트 스트림의 부분을 나타낼 수 있다. partition_id 필드는 해당 파티션의 식별자를 나타낼 수 있다. partition_protocol_version 필드는 상술한 파티션 구조의 버전을 나타낼 수 있다. num_services 필드는 해당 파티션에 속하는 적어도 하나의 서비스의 개수를 나타낼 수 있다. 각 서비스는 복수의 시그널링 테이블들을 포함할 수 있다. 예를 들어 컴포넌트들과 그 세그먼트들에 대한 정보를 포함하는 DASH MPD, 브로드밴드 및 다른 브로드캐스트 스트림들에 포함된 컴포넌트들에 대한 식별자를 포함하는 CMT, 어플리케이션 시그널링 테이블인 AST 및 MPD, CMT, AST 중 적어도 하나의 URL을 포함하는 UST(URL signaling table)을 포함할 수 있다. 이들 시그널링 테이블들은 해당 서비스의 시그널링 채널에 포함될 수 있다. service_id 필드는 서비스에 대한 식별자를 나타낼 수 있다. service_data_version 필드는 FIC 내의 service loop 데이터의 변화 혹은 해당 서비스와 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. service_data_version 필드는 포함된 서비스 데이터에 변화가 발생할 때마다 1씩 증가할 수 있다. 예를 들어 FIC, MPD, CMT, AST 또는 UST에 변화가 있는 경우에 1씩 증가할 수 있다. 수신기는 service_data_version 필드를 이용하여 FIC의 서비스 루프의 데이터 변화 혹은 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. service_channel_number 필드는 해당 서비스와 연관된 채널 넘버를 나타낼 수 있다. service_category 필드는 해당 서비스의 카테고리를 나타낼 수 있으며, 예를 들어 A/V, audio, ESG, CoD 등을 나타낼 수 있다. service_short_name_length 필드는 해당 서비스를 나타내는 이름에 대한 길이를 나타낼 수 있다. service_short_name 필드는 해당 서비스를 나타내는 이름을 나타낼 수 있다. service_status 필드는 해당 서비스의 상태를 나타낼 수 있으며, 그 값에 따라 active 또는 suspended, hidden 또는 shown 속성을 나타낼 수 있다. service_distribution 필드는 ATSC M/H 문서의 “multi-ensemble” flag 와 유사한 속성을 가질 수 있다. 예를 들어 해당 서비스가 해당 파티션에 모두 포함되어 있는지, 해당 파티션에 부분적으로 포함되어 있지만 해당 파티션만으로 프리젠테이션이 가능한지, 프리젠테이션하기 위해 다른 파티션이 필요한지 또는 프리젠테이션하기 위해 다른 방송 스트림이 요구되는지 등에 대한 정보를 나타낼 수 있다. sp_indicator 필드는 서비스 보호 플래그 (service protection flag)로써 프리젠테이션을 위해 필요한 하나 또는 그 이상의 컴포넌트들이 보호되는지 여부를 나타낼 수 있다. IP_version_flag 필드는 뒤따르는 IP 주소 형식을 나타낼 수 있다. 해당 필드 값이 0인 경우 IPv4 형식을, 1인 경우 IPv6 주소 형식을 사용함을 나타낼 수 있다. num_ROUTE_sessions는 브로드캐스트 스트림 내에서 해당 서비스의 컴포넌트 데이터를 전송하는 전송 세션의 개수를 나타낼 수 있다. 예를 들어 전송 세션은 ROUTE 세션일 수 있다. 다음의 정보들은 각 ROUTE 세션에 대해 설정될 수 있다. source_IP_addr 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 source IP address 를 나타낼 수 있다. dest_IP_addr 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 destination IP address 을 나타낼 수 있다. dest_UDP_port 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 UDP port number 나타낼 수 있다. LSID_DP 필드는 전송 세션에 대한 세부 정보를 포함하는 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. 여기서, 전송 세션에 대한 세부 정보를 포함하는 시그널링은 예를 들어 ROUTE 인 경우 각 ROUTE 세션의 세부 LCT 전송 세션에 대한 정보를 포함하는 LCT session instance description 등이 될 수 있다. LSID_tsi 필드는 전송 세션에 대한 세부정보를 포함하는 시그널링인 전송 세션 인스턴스 디스크립션이 전송되는 전송 세션의 식별자를 나타낼 수 있다. 여기서 세션 인스턴스 디스크립션은 LCT 전송 세션의 경우 LSID 가 될 수 있다. 또한 전송 세션 인스턴스 디스크립션이 전송되는 전송 세션을 통하여 해당 서비스와 연관된 서비스 시그널링이 전달될 수 있다. component_signaling_flag 필드는 전송 세션이 서비스의 컴포넌트 시그널링을 전송하는지 여부를 나타낼 수 있다. component_signaling_flag 값이 1인경우 해당 전송 세션을 통하여 전송되는 데이터 중 서비스 시그널링(예를 들어, MPD (DASH Media Presentation Description), CMT 등) 을 포함하고 있음을 나타낼 수 있다. 여기서 CMT는 Component Mapping Table로써 브로드밴드를 통해 전달되는 컴포넌트들의 식별자를 포함할 수 있으며, 또한 다른 브로드캐스트 스트림에 포함된 컴포넌트에 대한 정보도 포함할 수 있다. 각 서비스는 서비스 시그널링 채널을 포함할 수 있으며, 서비스 시그널링 채널은 MPD, CMT, AST 및/또는 UST를 포함할 수 있다. 서비스 시그널링 채널은 서비스를 위한 복수의 라우트 세션 중 하나의 시그널링 채널일 수 있으며, 존재 여부를 component signaling flag를 통해 나타낼 수 있다. 복수의 전송 세션(ROUTE 또는 MMTP 세션)이 시그널링 및 서비스의 컴포넌트들을 전송하는 경우, 바람직하게는 전술한 서비스 시그널링 테이블들은 하나의 전송 세션에 의해 전달할 수 있다. 81 is a diagram showing signaling data transmitted by a next generation broadcast system according to an embodiment of the present invention for a quick broadcast service scan of a receiver. The FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the FIC information may be represented in a binary format but may be represented in another format such as XML according to an embodiment. The FIC information may include the following fields. The FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC). The TSID field may indicate an identifier of the overall broadcast stream. The num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster. The partition_id field may indicate an identifier of a corresponding partition. The partition_protocol_version field may indicate the version of the above-described partition structure. The num_services field may indicate the number of at least one service belonging to a corresponding partition. Each service may include a plurality of signaling tables. For example, DASH MPD including information about components and their segments, CMT including identifiers for components included in broadband and other broadcast streams, AST and MPD, which are application signaling tables, among CMT, AST. It may include a URL signaling table (UST) including at least one URL. These signaling tables may be included in a signaling channel of a corresponding service. The service_id field may indicate an identifier for a service. The service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service. The service_data_version field may increase by 1 whenever a change occurs in the included service data. For example, if there is a change in the FIC, MPD, CMT, AST or UST, it may increase by one. The receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field. The service_channel_number field may indicate a channel number associated with a corresponding service. The service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like. The service_short_name_length field may indicate the length of a name representing the corresponding service. The service_short_name field may indicate a name representing a corresponding service. The service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value. The service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated. The sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag. The IP_version_flag field may indicate the following IP address format. If the corresponding field value is 0, it may represent that the IPv4 format is used, and when 1, the IPv6 address format is used. num_ROUTE_sessions may indicate the number of transport sessions for transmitting component data of a corresponding service in a broadcast stream. For example, the transport session may be a ROUTE session. The following information may be set for each ROUTE session. The source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service. The dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service. The dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service. The LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session. In this case, the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE. The LSID_tsi field may indicate an identifier of a transport session in which a transport session instance description, which is a signaling including detailed information about the transport session, is transmitted. In this case, the session instance description may be an LSID in the case of an LCT transport session. In addition, service signaling associated with a corresponding service may be delivered through a transport session through which a transport session instance description is transmitted. The component_signaling_flag field may indicate whether a transport session carries component signaling of a service. When the component_signaling_flag value is 1, this may indicate that service signaling (eg, DASH Media Presentation Description (MPD), CMT, etc.) is included among data transmitted through the corresponding transport session. Here, the CMT may include identifiers of components delivered through broadband as component mapping tables, and may also include information on components included in other broadcast streams. Each service may include a service signaling channel, and the service signaling channel may include MPD, CMT, AST, and / or UST. The service signaling channel may be one signaling channel of a plurality of route sessions for a service, and may indicate whether there is a component through a component signaling flag. When a plurality of transport sessions (ROUTE or MMTP session) carry the components of signaling and service, preferably the aforementioned service signaling tables may be carried by one transport session.
ROUTE session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. 각 디스크립터는 확장이 가능하며, 각 디스크립터는 num_descriptors 필드를 포함할 수 있다. 각 디스크립터는 num_descriptors 필드가 나타내는 값에 대응하는 개수의 descriptor loop를 포함할 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. service descriptors 필드는 service 레벨의 descriptor 들을 포함할 수 있다. Partition descriptors 필드는 파티션 레벨의 디스크립터를 포함할 수 있으며, 하나의 파티션은 하나의 방송사 등에 의해 사용되는 방송 스트림의 일부를 가리킬 수 있다. FIC descriptors 필드는 FIC 레벨의 descriptor 들을 포함할 수 있다. The ROUTE session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field. The transport session descriptors field may include descriptors of a transport session level. The service descriptors field may include descriptors of a service level. The Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster. The FIC descriptors field may include descriptors of the FIC level.
실시예에 따라 상술한 FIC에 포함된 각 필드들은 FIC외의 다른 테이블에 포함되어 방송 신호와 함께 전송될 수도있다. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
도 82는 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 컴포넌트 매핑 테이블 디스크립션 (Component Mapping Table Description)은 차세대 방송 시스템에서 방송 서비스에 포함된 컴포넌트의 전송 경로에 대한 정보를 시그널링할 수 있다. 이는 XML 포맷 또는 binary 형태의 bitstream 등으로 표현될 수 있다. 컴포넌트 매핑 테이블 디스크립션은 다음과 같은 엘리먼트 및 속성을 포함할 수 있다. service_id 속성은 컴포넌트와 연관된 서비스의 식별자를 나타낼 수 있다. BroadcastComp는 동일한 방송 스트림을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. BroadcastComp는 mpdID, perID, reptnID, baseURL 및/또는 datapipeID 중 적어도 하나를 포함할 수 있다. mpdID 속성은 BroadcastComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다. datapipeID 속성은 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 data pipe 의 식별자를 나타낼 수 있다. 82 illustrates a component mapping table description according to an embodiment of the present invention. The component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form. The component mapping table description may include the following elements and attributes. The service_id attribute may represent an identifier of a service associated with a component. BroadcastComp may represent one or more components transmitted through the same broadcast stream. BroadcastComp may include at least one of mpdID, perID, reptnID, baseURL, and / or datapipeID. The mpdID attribute may indicate a DASH MPD identifier associated with BroadcastComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component. The datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in a broadcast stream.
BBComp는 broadband 망을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. BBComp는 mpdID, perID, reptnID 및/또는 baseURL 중 적어도 하나를 포함할 수 있다. mpdID 속성은 BBComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다.BBComp may represent one or more components transmitted through a broadband network. The BBComp may include at least one of mpdID, perID, reptnID, and / or baseURL. The mpdID attribute may indicate a DASH MPD identifier associated with BBComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
ForeignComp는 다른 방송 스트림을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. ForeignComp는 mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort 및/또는 datapipeID 중 적어도 하나를 포함할 수 있다. mpdID 속성은 ForeignComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다. transportStreamID 속성 해당 컴포넌트 데이터를 포함하는 방송 스트림의 식별자를 나타낼 수 있다. sourceIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 source IP 주소를 나타낼 수 있다. destIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination IP 주소를 나타낼 수 있다. destUDPPort 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination UDP port number를 나타낼 수 있다. datapipeID 속성은 해당 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 data pipe 의 식별자를 나타낼 수 있다. 상술한 sourceIPAddr속성, destIPAddr 속성, destUDPPort 속성 및 datapipeID 속성은 실시예에 따라 옵셔널한 속성일 수 있으며 CMT에 선택적으로 포함될 수 있다. 위의 Component Mapping Description 은 하나의 XML 파일 혹은 앞서 제안한 시그널링 메시지 포멧으로 encapsulation 되어 전송될 수 있다. 하단에 도시된 바와 같이 Signaling message header 는 전술한 형태를 따를 수 있으며 서비스 메시지 부분에 component mapping description 혹은 그 일부가 포함될 수 있다. 위와 같은 정보를 통해 CMT는 각 서비스에 연관된 컴포넌트들을 정의하고 해당 컴포넌트들에 관련된 정보를 수신할 수 있는 위치 또는 경로를 수신기에 알려줄 수 있다. ForeignComp may represent one or more components transmitted through another broadcast stream. ForeignComp may include at least one of mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort and / or datapipeID. The mpdID attribute may indicate a DASH MPD identifier associated with ForeignComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component. transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data. The sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data. The destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data. The destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data. The datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in the corresponding broadcast stream. The aforementioned sourceIPAddr attribute, destIPAddr attribute, destUDPPort attribute, and datapipeID attribute may be optional attributes and may be selectively included in the CMT according to an embodiment. The above Component Mapping Description can be encapsulated in one XML file or the above-mentioned signaling message format and transmitted. As shown below, the signaling message header may follow the above-described form, and a component mapping description or part thereof may be included in the service message part. Through the above information, the CMT may define components related to each service and inform the receiver of a location or a path for receiving information related to the corresponding components.
도 83은 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 컴포넌트 매핑 테이블 디스크립션 (Component Mapping Table Description)은 차세대 방송 시스템에서 방송 서비스에 포함된 컴포넌트의 전송 경로에 대한 정보를 시그널링할 수 있다. 이는 XML 포맷 또는 binary 형태의 bitstream 등으로 표현될 수 있다. 컴포넌트 매핑 테이블 디스크립션은 다음과 같은 엘리먼트 및 속성을 포함할 수 있다. service_id 속성은 컴포넌트와 연관된 서비스의 식별자를 나타낼 수 있다. BroadcastComp는 동일한 방송 스트림을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. BroadcastComp는 mpdID, perID, reptnID, baseURL, tsi 및/또는 datapipeID 중 적어도 하나를 포함할 수 있다. mpdID 속성은 BroadcastComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다. tsi 속성은 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 전송 세션의 식별자를 나타낼 수 있다. datapipeID 속성은 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 data pipe 의 식별자를 나타낼 수 있다. 83 illustrates a component mapping table description according to an embodiment of the present invention. The component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form. The component mapping table description may include the following elements and attributes. The service_id attribute may represent an identifier of a service associated with a component. BroadcastComp may represent one or more components transmitted through the same broadcast stream. BroadcastComp may include at least one of mpdID, perID, reptnID, baseURL, tsi, and / or datapipeID. The mpdID attribute may indicate a DASH MPD identifier associated with BroadcastComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component. The tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in a broadcast stream. The datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in a broadcast stream.
BBComp는 broadband 망을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. BBComp는 mpdID, perID, reptnID 및/또는 baseURL 중 적어도 하나를 포함할 수 있다. mpdID 속성은 BBComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다.BBComp may represent one or more components transmitted through a broadband network. The BBComp may include at least one of mpdID, perID, reptnID, and / or baseURL. The mpdID attribute may indicate a DASH MPD identifier associated with BBComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
ForeignComp는 다른 방송 스트림을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. ForeignComp는 mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi 및/또는 datapipeID 중 적어도 하나를 포함할 수 있다. mpdID 속성은 ForeignComp와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다. transportStreamID 속성 해당 컴포넌트 데이터를 포함하는 방송 스트림의 식별자를 나타낼 수 있다. sourceIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 source IP 주소를 나타낼 수 있다. destIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination IP 주소를 나타낼 수 있다. destUDPPort 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination UDP port number를 나타낼 수 있다. tsi 속성은 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 전송 세션의 식별자를 나타낼 수 있다. datapipeID 속성은 해당 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 data pipe 의 식별자를 나타낼 수 있다. 상술한 sourceIPAddr속성, destIPAddr 속성, destUDPPort 속성 및 datapipeID 속성은 실시예에 따라 옵셔널한 속성일 수 있으며 CMT에 선택적으로 포함될 수 있다. 위의 Component Mapping Description 은 하나의 XML 파일 혹은 앞서 제안한 시그널링 메시지 포멧으로 encapsulation 되어 전송될 수 있다. 하단에 도시된 바와 같이 Signaling message header 는 전술한 형태를 따를 수 있으며 서비스 메시지 부분에 component mapping description 혹은 그 일부가 포함될 수 있다. 위와 같은 정보를 통해 CMT는 각 서비스에 연관된 컴포넌트들을 정의하고 해당 컴포넌트들에 관련된 정보를 수신할 수 있는 위치 또는 경로를 수신기에 알려줄 수 있다. ForeignComp may represent one or more components transmitted through another broadcast stream. ForeignComp may include at least one of mpdID, perID, reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi and / or datapipeID. The mpdID attribute may indicate a DASH MPD identifier associated with ForeignComp. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component. transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data. The sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data. The destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data. The destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data. The tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in a broadcast stream. The datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in the corresponding broadcast stream. The aforementioned sourceIPAddr attribute, destIPAddr attribute, destUDPPort attribute, and datapipeID attribute may be optional attributes and may be selectively included in the CMT according to an embodiment. The above Component Mapping Description can be encapsulated in one XML file or the above-mentioned signaling message format and transmitted. As shown below, the signaling message header may follow the above-described form, and a component mapping description or part thereof may be included in the service message part. Through the above information, the CMT may define components related to each service and inform the receiver of a location or a path for receiving information related to the corresponding components.
도 84 및 도 85는 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 컴포넌트 매핑 테이블 디스크립션 (Component Mapping Table Description)은 차세대 방송 시스템에서 방송 서비스에 포함된 컴포넌트의 전송 경로에 대한 정보를 시그널링할 수 있다. 이는 XML 포맷 또는 binary 형태의 bitstream 등으로 표현될 수 있다. 컴포넌트 매핑 테이블은 DASH 관련 식별자와 함께 전송 파라미터 엘리먼트 (DeliveryParameter element) 및 페이로드 포맷 엘리먼트 (PayloadFormat element)를 포함할 수 있다. 84 and 85 illustrate a component mapping table description according to an embodiment of the present invention. The component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form. The component mapping table may include a delivery parameter element and a payload format element along with a DASH-related identifier.
컴포넌트 매핑 테이블 디스크립션은 다음과 같은 엘리먼트 및 속성을 포함할 수 있다. service_id 속성은 컴포넌트와 연관된 서비스의 식별자를 나타낼 수 있다. Component 엘리먼트는 해당 방송 서비스 내의 컴포넌트를 나타낼 수 있다. Component 엘리먼트는 mpdID, perID, reptnID, baseURL 속성, DeliveryParameter 엘리먼트 및/또는 PayloadFormat 엘리먼트 중 적어도 하나를 포함할 수 있다. mpdID 속성은 컴포넌트와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다. The component mapping table description may include the following elements and attributes. The service_id attribute may represent an identifier of a service associated with a component. The component element may indicate a component in a corresponding broadcast service. The component element may include at least one of mpdID, perID, reptnID, baseURL attribute, DeliveryParameter element, and / or PayloadFormat element. The mpdID attribute may indicate a DASH MPD identifier associated with the component. The perID attribute may indicate an associated period identifier in the corresponding MPD. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
DeliveryParameter 엘리먼트는 해당 컴포넌트가 전송되는 경로 등에 대한 세부 정보를 포함할 수 있다. DeliveryParameter 엘리먼트는 transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi, datapipeID 및/또는 URL 중 적어도 하나를 포함할 수 있다. transportStreamID 속성 해당 컴포넌트 데이터를 포함하는 방송 스트림의 식별자를 나타낼 수 있다. sourceIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 source IP 주소를 나타낼 수 있다. destIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination IP 주소를 나타낼 수 있다. destUDPPort 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination UDP port number를 나타낼 수 있다. tsi 속성은 해당 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 전송 세션의 식별자를 나타낼 수 있다. datapipeID 속성은 해당 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 physical layer data pipe의 식별자를 나타낼 수 있다. URL 속성은 인터넷 망등을 통하여 해당 컴포넌트 데이터를 획득할 수 있는 URL 정보를 나타낼 수 있다. 상술한 sourceIPAddr속성, destIPAddr 속성, destUDPPort 속성, datapipeID 속성 및/또는 URL 속성은 실시예에 따라 옵셔널한 속성일 수 있으며 DeliveryParameter 엘리먼트에 선택적으로 포함될 수 있다.The DeliveryParameter element may include detailed information about a path on which the corresponding component is delivered. The DeliveryParameter element may include at least one of transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi, datapipeID, and / or URL. transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data. The sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data. The destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data. The destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data. The tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in the corresponding broadcast stream. The datapipeID attribute may indicate an identifier of a physical layer data pipe in which corresponding component data is transmitted in the corresponding broadcast stream. The URL attribute may indicate URL information for obtaining corresponding component data through an internet network. The aforementioned sourceIPAddr attribute, destIPAddr attribute, destUDPPort attribute, datapipeID attribute and / or URL attribute may be optional attributes and may be optionally included in a DeliveryParameter element.
PayloadFormat 엘리먼트는 해당 컴포넌트 데이터를 전송하는 패킷의 페이로드 형태에 대한 세부정보를 포함할 수 있다. PayloadFormat 엘리먼트는 codePoint 속성, deliveryObjectFormat 속성, fragmentation 속성, deliveryOrder 속성, sourceFecPayloadID 속성 및/또는 FECParameters 엘리먼트를 포함할 수 있다. codePoint 속성은 해당 페이로드에서 사용되는 코드포인트를 정의할 수 있다. 이는 LCT 헤더의 CP 필드의 값을 나타낼 수 있다. 이는 뒤따르는 deliveryObjectFormat 속성, fragmentation 속성, deliveryOrder 속성, sourceFecPayloadID 속성 값들의 집합에 대한 인덱스 일 수 있다. deliveryObjectFormat 속성은 해당 딜리버리 오브젝트의 페이로드 포맷을 나타낼 수 있다. fragmentation 속성은 프래그멘테이션의 타입을 정의할 수 있다. deliveryOrder 속성은 오브젝트의 딜리버리 순서를 나타낼 수 있다. sourceFecPayloadID 속성은 source FEC 페이로드 식별자의 포맷을 정의할 수 있다. FECParameters 엘리먼트는 FEC 파라미터들을 정의할 수 있다. 이는 FEC encoding id, instance id등을 포함할 수 있다. The PayloadFormat element may include detailed information on the payload type of a packet for transmitting corresponding component data. The PayloadFormat element may include a codePoint attribute, deliveryObjectFormat attribute, fragmentation attribute, deliveryOrder attribute, sourceFecPayloadID attribute and / or FECParameters element. The codePoint attribute can define the codepoint used in the payload. This may indicate the value of the CP field of the LCT header. This may be an index to a subsequent set of deliveryObjectFormat attribute, fragmentation attribute, deliveryOrder attribute, and sourceFecPayloadID attribute values. The deliveryObjectFormat attribute may indicate the payload format of the corresponding delivery object. The fragmentation attribute may define the type of fragmentation. The deliveryOrder attribute may indicate a delivery order of objects. The sourceFecPayloadID attribute may define the format of the source FEC payload identifier. The FECParameters element may define FEC parameters. This may include an FEC encoding id, an instance id, and the like.
도 86은 본 발명의 일 실시예에 따른 컴포넌트 매핑 테이블 디스크립션을 나타낸다. 컴포넌트 매핑 테이블 디스크립션 (Component Mapping Table Description)은 차세대 방송 시스템에서 방송 서비스에 포함된 컴포넌트의 전송 경로에 대한 정보를 시그널링할 수 있다. 이는 XML 포맷 또는 binary 형태의 bitstream 등으로 표현될 수 있다. 컴포넌트 매핑 테이블 디스크립션은 service_id 속성, mpd_id 속성, per_id 속성, BroadcastComp 엘리먼트, BBComp 엘리먼트 및 ForeignComp 엘리먼트를 포함할 수 있다. 컴포넌트 매핑 테이블 디스크립션은 다음과 같은 엘리먼트 및 속성을 포함할 수 있다. service_id 속성은 컴포넌트와 연관된 서비스의 식별자를 나타낼 수 있다. CMT 디스크립션은 service_id 속성과 동일한 레벨에 mpdID 속성 및 perID 속성을 포함할 수 있다. 즉, BroadcastComp 엘리먼트, BBComp 엘리먼트 및 ForeignComp 엘리먼트에 공통적으로 적용되는 mpdID 속성 및 perID 속성을 중복하여 기술하지 않고 service_id 속성과 동일한 레벨에서 기술할 수 잇다. mpdID 속성은 해당 서비스와 연관된 DASH MPD 식별자를 나타낼 수 있다. perID 속성은 해당 MPD 내의 연관된 period 식별자를 나타낼 수 있다.86 illustrates a component mapping table description according to an embodiment of the present invention. The component mapping table description may signal information about a transmission path of a component included in a broadcast service in a next generation broadcast system. This can be expressed in XML format or a bitstream in binary form. The component mapping table description may include a service_id attribute, mpd_id attribute, per_id attribute, BroadcastComp element, BBComp element, and ForeignComp element. The component mapping table description may include the following elements and attributes. The service_id attribute may represent an identifier of a service associated with a component. The CMT description may include the mpdID attribute and the perID attribute at the same level as the service_id attribute. That is, the mpdID attribute and the perID attribute which are commonly applied to the BroadcastComp element, the BBComp element, and the ForeignComp element can be described at the same level as the service_id attribute without overlapping them. The mpdID attribute may indicate a DASH MPD identifier associated with the corresponding service. The perID attribute may indicate an associated period identifier in the corresponding MPD.
BroadcastComp는 동일한 방송 스트림을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. BroadcastComp는 reptnID, baseURL, tsi 및/또는 datapipeID 중 적어도 하나를 포함할 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다. tsi 속성은 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 전송 세션의 식별자를 나타낼 수 있다. datapipeID 속성은 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 data pipe 의 식별자를 나타낼 수 있다. BroadcastComp may represent one or more components transmitted through the same broadcast stream. BroadcastComp may include at least one of reptnID, baseURL, tsi, and / or datapipeID. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component. The tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in a broadcast stream. The datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in a broadcast stream.
BBComp 엘리먼트는 broadband 망을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. BBComp는 reptnID 및/또는 baseURL 중 적어도 하나를 포함할 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다.The BBComp element may represent one or more components transmitted over a broadband network. The BBComp may include at least one of reptnID and / or baseURL. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component.
ForeignComp는 다른 방송 스트림을 통하여 전송되는 하나 이상의 컴포넌트를 나타낼 수 있다. ForeignComp는 reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi 및/또는 datapipeID 중 적어도 하나를 포함할 수 있다. reptnID 속성은 해당 컴포넌트와 연관된 DASH Representation 식별자를 나타낼 수 있다. baseURL 속성은 해당 컴포넌트와 연관된 DASH Representation을 구성하는 Segment 들의 Base URL 을 나타낼 수 있다. transportStreamID 속성 해당 컴포넌트 데이터를 포함하는 방송 스트림의 식별자를 나타낼 수 있다. sourceIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 source IP 주소를 나타낼 수 있다. destIPAddr 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination IP 주소를 나타낼 수 있다. destUDPPort 속성은 해당 컴포넌트 데이터를 포함하는 IP 데이터 그램의 destination UDP port number를 나타낼 수 있다. tsi 속성은 해당 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 전송 세션의 식별자를 나타낼 수 있다. datapipeID 속성은 해당 방송 스트림 내에서 해당 컴포넌트 데이터가 전송되는 data pipe 의 식별자를 나타낼 수 있다. 상술한 sourceIPAddr속성, destIPAddr 속성, destUDPPort 속성, tsi 속성 및 datapipeID 속성은 실시예에 따라 옵셔널한 속성일 수 있으며 CMT에 선택적으로 포함될 수 있다. 위의 Component Mapping Description 은 하나의 XML 파일 혹은 앞서 제안한 시그널링 메시지 포멧으로 encapsulation 되어 전송될 수 있다. 위와 같은 정보를 통해 CMT는 각 서비스에 연관된 컴포넌트들을 정의하고 해당 컴포넌트들에 관련된 정보를 수신할 수 있는 위치 또는 경로를 수신기에 알려줄 수 있다. ForeignComp may represent one or more components transmitted through another broadcast stream. ForeignComp may include at least one of reptnID, baseURL, transportStreamID, sourceIPAddr, destIPAddr, destUDPPort, tsi, and / or datapipeID. The reptnID attribute may indicate a DASH Representation identifier associated with a corresponding component. The baseURL attribute may indicate base URLs of segments constituting the DASH Representation associated with the corresponding component. transportStreamID property This may represent an identifier of a broadcast stream including corresponding component data. The sourceIPAddr attribute may indicate a source IP address of an IP datagram including corresponding component data. The destIPAddr attribute may indicate a destination IP address of an IP datagram including corresponding component data. The destUDPPort attribute may indicate a destination UDP port number of an IP datagram including corresponding component data. The tsi attribute may indicate an identifier of a transport session in which corresponding component data is transmitted in the corresponding broadcast stream. The datapipeID attribute may indicate an identifier of a data pipe in which corresponding component data is transmitted in the corresponding broadcast stream. The aforementioned sourceIPAddr attribute, destIPAddr attribute, destUDPPort attribute, tsi attribute and datapipeID attribute may be optional attributes and may be selectively included in the CMT according to an embodiment. The above Component Mapping Description can be encapsulated in one XML file or the above-mentioned signaling message format and transmitted. Through the above information, the CMT may define components related to each service and inform the receiver of a location or a path for receiving information related to the corresponding components.
도 87은 본 발명의 일 실시예에 따른 MPD의 공통 속성 및 엘리먼트들을 나타낸 도면이다. 차세대 방송 시스템은 DASH 기반 하이브리드 방송 서비스를 제공할 수 있다. 차세대 방송 시스템은 DASH MPD 내의 Representation 등과 연관된 Segment 들이 서로 다른 distribution 경로를 통해서 전달됨을 나타낼 수 있다. MPD의 공통 속성 및 엘리먼트(Common attributes and elements)들은 adaptation set, representation 및 sub-representation 엘리먼트들에 공통적으로 존재할 수 있으며, 도시된 바와 같이 연관된 representation의 위치 정보를 포함할 수 있다. 차세대 방송 시스템은 MPD의 공통 속성 및 엘리먼트들에 포함된 연관된 representation의 위치 정보를 이용하여 DASH client 로 하여금 연관된 representation 또는 세그먼트의 위치를 알 수 있도록 할 수 있다. MPD의 공통 속성 및 엘리먼트는 다음과 같은 속성 및 엘리먼트들을 포함할 수 있다. @profiles 속성은 프로파일 속성으로써 연관된 representation의 프로파일을 나타낼 수 있다. @width 속성은 디스플레이될 비디오 미디어 타입의 수평 표시 크기(horizontal visual presentation size)를 나타낼 수 있다. @height 속성은 디스플레이될 비디오 미디어 타입의 수직 표시 크기(vertical visual presentation size)를 나타낼 수 있다. @sar 속성은 비디오 미디어 컴포넌트 타입의 sample aspect ratio를 나타낼 수 있다. @frameRate 속성은 representation의 출력 프레임 레이트를 나타낼 수 있다. @audioSamplingRate 속성은 오디오 미디어 컴포넌트 타입의 샘플링 레이트를 나타낼 수 있다. @mimeType 속성은 초기화 세그먼트의 컨케트네이션(concatenation)의 MIME 타입을 나타낼 수 있다. @segmentProfiles 속성은 해당 representation을 프로세스하는데 필수적인 세그먼트들의 프로파일들을 나타낼 수 있다. @codecs 속성은 해당 representation 내에서 사용되는 코덱을 나타낼 수 있다. @maximumSAPPeriod 속성은 포함된 미디어 스트림의 최대 SAP (stream access point) 인터벌을 나타낼 수 있다. @startWithSAP 속성은 SAP과 함께 시작하는 각 미디어 세그먼트의 수를 나타낼 수 있다. @maxPlayoutRate 속성은 최대 플레이아웃 레이트를 나타낼 수 있다. @codingDependency 속성은 디코딩을 위해 하나 또는 그 이상의 다른 억세스 유닛에 의존하는 적어도 하나의 억세스 유닛이 존재하는지 여부를 나타낼 수 있다. @scanType 속성은 비디오 미디어 컴포넌트 타입의 source material의 스캔 타입을 나타낼 수 있다. FramePacking 엘리먼트는 비디오 미디어 컴포넌트 타입의 프레임-패킹 정보를 나타낼 수 있다. AudioChannelConfiguration 엘리먼트는 오디오 미디어 컴포넌트 타입의 오디오 채널 설정을 나타낼 수 있다. ContentProtection 엘리먼트는 연관된 representation에 대해 사용된 켄텐트 보호 스킴에 대한 정보를 나타낼 수 있다. EssentialProperty 엘리먼트는 프로세싱에 필수적으로 고려되는 엘리먼트에 대한 정보를 나타낼 수 있다. SupplementalProperty 엘리먼트는 프로세싱을 최적화하기 위해 사용되는 부가 정보를 포함할 수 있다. InbandEventStream 엘리먼트는 연관된 representation에 인밴드 이벤트 스트림이 존재하는지 여부를 나타낼 수 있다. Location 엘리먼트는 연관된 representation을 획득할 수 있는 위치 정보를 포함할 수 있다. Location 엘리먼트는 연관된 representation을 운반하는 브로드캐스트 스트림 또는 물리 채널 데이터 파이프 (physical layer data pipes)에 대한 정보를 포함할 수 있다. DASH client 또는 차세대 방송 수신 장치는 Location 엘리먼트를 이용하여 연관된 representation을 획득할 수 있다. 즉, 차세대 방송 시스템 수신 장치는 전술한 CMT를 이용하지 않아도, MPD의 Common attributes and elements에 포함된 위치 정보를 이용하여 연관된 representation의 위치에 대한 정보를 획득하고 이에 기초하여 연관된 representation을 획득할 수 있다. 상술한 representation은 실시예에 따라 컴포넌트로 설명될 수 있다. 87 is a view illustrating common attributes and elements of an MPD according to an embodiment of the present invention. The next generation broadcast system may provide a DASH-based hybrid broadcast service. The next generation broadcast system may indicate that segments associated with Representation and the like in the DASH MPD are transmitted through different distribution paths. Common attributes and elements of the MPD may be common to the adaptation set, representation and sub-representation elements, and may include location information of the associated representation as shown. The next generation broadcast system may enable the DASH client to know the location of the associated representation or segment using the location information of the associated representation included in the elements and elements of the MPD. Common attributes and elements of the MPD may include the following attributes and elements. The @profiles attribute may indicate the profile of the associated representation as a profile attribute. The @width attribute may indicate a horizontal visual presentation size of the video media type to be displayed. The @height attribute may indicate the vertical visual presentation size of the video media type to be displayed. The @sar attribute may indicate a sample aspect ratio of a video media component type. The @frameRate attribute can indicate the output frame rate of the representation. The @audioSamplingRate attribute may indicate the sampling rate of the audio media component type. The @mimeType attribute may indicate the MIME type of concatenation of the initialization segment. The @segmentProfiles attribute may indicate the profiles of the segments necessary to process the representation. The @codecs attribute may indicate a codec used in the representation. The @maximumSAPPeriod attribute may indicate the maximum stream access point (SAP) interval of an included media stream. The @startWithSAP attribute can indicate the number of each media segment starting with SAP. The @maxPlayoutRate attribute may indicate the maximum playout rate. The @codingDependency attribute may indicate whether there is at least one access unit that depends on one or more other access units for decoding. The @scanType attribute may indicate the scan type of the source material of the video media component type. The FramePacking element may indicate frame-packing information of the video media component type. The AudioChannelConfiguration element may indicate an audio channel configuration of an audio media component type. The ContentProtection element may indicate information about the content protection scheme used for the associated representation. The EssentialProperty element can represent information about an element that is considered essential for processing. The SupplementalProperty element may contain additional information used to optimize processing. The InbandEventStream element may indicate whether an inband event stream exists in the associated representation. The Location element may include location information from which an associated representation can be obtained. The Location element may contain information about the broadcast stream or physical layer data pipes carrying the associated representation. The DASH client or the next generation broadcast reception device may obtain an associated representation by using a Location element. That is, the apparatus for receiving a next generation broadcast system may acquire information on the location of the associated representation using location information included in the common attributes and elements of the MPD without obtaining the above-described CMT, and obtain the associated representation based on the location information. . The above-described representation may be described as a component according to an embodiment.
또한 다른 실시예로써, 차세대 방송 시스템은 연관된 Representation 등의 전송 경로에 대한 정보를 DASH MPD 내의 Base URL element의 @servicelocation 속성에 할당할 수 있다. 차세대 방송 시스템은 @servicelocation 속성을 이용하여 DASH client로 하여금 해당 representation과 연관된 Segment 들이 전달 되는 경로에 대한 정보를 알 수 있도록 할 수 있다. In another embodiment, the next generation broadcast system may allocate information on a transmission path such as associated Representation to the @servicelocation attribute of the Base URL element in the DASH MPD. The next generation broadcasting system can use the @servicelocation attribute to enable the DASH client to know the information on the paths through which segments associated with the representation are delivered.
도 88은 본 발명의 일 실시예에 따는 전송 세션 인스턴스 디스크립션을 나타낸 도면이다. 어플리케이션 레이어 전송 방법이 Real-Time Object Delivery over Unidirectional Transport (이하 ROUTE) 인 경우 ROUTE 세션이 하나 이상의 LCT(Layered Coding Transport) 세션들로 구성될 수 있다. 하나 이상의 전송 세션(Transport session) 에 대한 세부 정보는 전송 세션 인스턴스 디스크립션을 통해 시그널링 될 수 있다. 전송 세션 인스턴스 디스크립터는 ROUTE인 경우 LCT Session Instance Description (LSID)로 지칭될 수 있다. 특히, 전송 세션 인스턴스 디스크립션은 ROUTE 세션을 구성하는 각 LCT 전송 세션에 의해 무엇이 전달되는지를 정의할 수 있다. 각 전송 세션은 전송 세션 식별자(Transport Session Identifier, TSI)에 의해 유니크하게 식별될 수 있다. 전송 세션 식별자는 LCT 헤더에 포함될 수 있다. 전송 세션 인스턴스 디스크립션은 해당 세션을 통해 전송되는 모든 전송 세션을 기술할 수 있다. 예를 들어 LSID는 ROUTE 세션에 의해 운반되는 모드 LCT 세션을 기술할 수 있다. 전송 세션 인스턴스 디스크립션은 전송 세션들과 동일한 ROUTE 세션으로 전달되거나, 또는 서로 다른 ROUTE 세션이나 유니캐스트를 통해 전달될 수도 있다. 88 illustrates a transport session instance description according to an embodiment of the present invention. When the application layer transport method is Real-Time Object Delivery over Unidirectional Transport (ROUTE), the ROUTE session may consist of one or more Layered Coding Transport (LCT) sessions. Detailed information about one or more transport sessions may be signaled through transport session instance description. The transport session instance descriptor may be referred to as LCT Session Instance Description (LSID) when ROUTE. In particular, the transport session instance description may define what is conveyed by each LCT transport session that constitutes a ROUTE session. Each transport session may be uniquely identified by a transport session identifier (TSI). The transport session identifier may be included in the LCT header. A transport session instance description may describe all transport sessions transmitted through that session. For example, the LSID may describe a mode LCT session carried by a ROUTE session. The transport session instance description may be delivered in the same ROUTE session as the transport sessions, or may be delivered in different ROUTE sessions or unicasts.
동일한 ROUTE 세션으로 전달되는 경우, 전송 세션 인스턴스 디스크립션은 지정된 전송 세션 식별자(TSI) 0을 갖는 전송 세션으로 전달될 수 있다. 전송 세션 인스턴스 디스크립션에서 참조되는 다른 오브젝트도 TSI=0으로 전달될 수 있으나, 전송 세션 인스턴스 디스크립션과는 다른 TOI 값을 가질 수 있다. 또는 TSI ≠ 0인 분리된 전송 세션을 통해 전달될 수도 있다. 전송 세션 인스턴스 디스크립션은버전 넘버, 유효(validity) 정보 또는 만료(expiration) 정보 중 적어도 하나를 이용하여 업데이트될 수 있다. 전송 세션 인스턴스 디스크립션은 도시된 형태 이외에 bitstream 등으로 나타내어 질 수 있다. When delivered in the same ROUTE session, the transport session instance description may be delivered to a transport session with a designated transport session identifier (TSI) 0. Other objects referenced in the transport session instance description may also be delivered with TSI = 0, but may have a TOI value different from the transport session instance description. Or it may be delivered through a separate transport session in which TSI ≠ 0. The transport session instance description may be updated using at least one of a version number, validity information or expiration information. The transport session instance description may be represented by a bitstream or the like in addition to the illustrated form.
전송 세션 인스턴스 디스크립션은 version 속성, validFrom 속성, expiration 속성을 포함할 수 있으며, 각 전송 세션에 대해 TSI 속성, SourceFlow엘리먼트, RepairFlow 엘리먼트, TransportSessionProperty 엘리먼트를 포함할 수 있다. version 속성은 해당 전송 세션 인스턴스 디스크립션의 버전 정보를 나타낼 수 있으며, 그 내용이 업데이트 될 때마다 버전 정보는 증가할 수 있다. 가장 높은 버전 넘버를 갖는 전송 세션 인스턴스 디스크립션이 최근의 유효한 버전임을 나타낼 수 있다. validFrom 속성은 해당 전송 세션 인스턴스 디스크립션이 언제부터 유효한 지를 나타낼 수 있다. validFrom 속성은 실시예에 따라 전송 세션 인스턴스 디스크립션에 포함되지 않을 수도 있으며, 이 경우 해당 전송 세션 인스턴스 디스크립션은 수신 즉시 유효함을 나타낼 수 있다. expiration 속성은 해당 전송 세션 인스턴스 디스크립션이 언제 만료되는지를 나타낼 수 있다. expiration 속성은 실시예에 따라 전송 세션 인스턴스 디스크립션에 포함되지 않을 수도 있으며, 이 경우 해당 전송 세션 인스턴스 디스크립션은 계속적으로 유효한 것임을 나타낼 수 있다. 만약 expiration 속성을 갖는 전송 세션 인스턴스 디스크립션이 수신되면 해당 expiration 속성을 따를 수 있다. TSI 속성은 전송 세션 식별자를 나타낼 수 있으며, SourceFlow 엘리먼트는 해당 TSI로 전송되는 소스 플로우의 정보를 제공하며, 상세 내용은 아래에서 설명한다. RepairFlow 엘리먼트는 해당 TSI로 전송되는 리페어 플로우의 정보를 제공할 수 있다. TransportSessionProperty 엘리먼트는 해당 전송 세션에 대한 부가적인 속성 정보를 포함할 수 있다. 전송 세션 인스턴스 디스크립션은 TransportSessionProperty 엘리먼트 내에 전송 세션션에 대한 부가적인 속성 정보를 포함할 수 있으며, 예를 들어 부가정보는 전송 세션에 대한 서비스 시그널링 정보를 포함할 수 있다. The transport session instance description may include a version attribute, a validFrom attribute, and an expiration attribute, and may include a TSI attribute, a SourceFlow element, a RepairFlow element, and a TransportSessionProperty element for each transport session. The version attribute may indicate version information of a corresponding transport session instance description, and the version information may increase whenever the contents are updated. The transport session instance description with the highest version number may indicate that it is the latest valid version. The validFrom attribute may indicate when the corresponding transport session instance description is valid. According to an embodiment, the validFrom attribute may not be included in the transport session instance description, and in this case, the transport session instance description may indicate that the transport session instance description is valid upon receipt. The expiration attribute may indicate when the corresponding transport session instance description expires. According to an embodiment, the expiration attribute may not be included in the transport session instance description, and in this case, it may represent that the transport session instance description is continuously valid. If a transport session instance description with an expiration attribute is received, the corresponding expiration attribute can be followed. The TSI attribute may indicate a transport session identifier. The SourceFlow element provides information of a source flow transmitted to a corresponding TSI. Details are described below. The RepairFlow element may provide information of the repair flow transmitted to the corresponding TSI. The TransportSessionProperty element may include additional property information for the transport session. The transport session instance description may include additional attribute information for the transport session in the TransportSessionProperty element. For example, the additional information may include service signaling information for the transport session.
도 89는 본 발명의 일 실시예에 다른 차세대 방송 시스템의 소스 플로우(SourceFlow) 엘리먼트를 나타낸다. 소스 플로우 엘리먼트는 EFDT 엘리먼트, idRef 속성, realtime 속성, minBufferSize 속성, Application Idendtifier 엘리먼트, PayloadFormat 엘리먼트 및/또는 SourceFlowProperty 엘리먼트를 포함할 수 있다. EFDT 엘리먼트는 파일 딜리버리 데이터의 상세 정보를 포함할 수 있다. EFDT는 extended File Delivery Table(FDT) instance를 나타낼 수 있으며 자세한 내용은 아래에서 설명한다. idRef 속성은 EFDT의 식별자를 나타낼 수 있으며, 대응하는 전송 세션에 의해 URI로 표현될 수 있다. realtime 속성은 해당 LCT 패킷들이 확장 헤더(extension header)를 포함함을 나타낼 수 있다. 확장 헤더는 딜리버리 오브젝트의 프리젠테이션 타임을 나타내는 타임 스탬프를 포함할 수 있다. minBufferSize 속성은 수신기에 저장되는데 필요한 데이터의 최대 양을 정의할 수 있다. Application Idendtifier 엘리먼트는 해당 전송 세션에 의해 운반되는 어플리케이션에 매핑될 수 있는 부가 정보를 제공할 수 있다. 예를 들어 렌더링을 위한 전송 세션을 선택하기 위한 DASH 컨텐츠의 Representation ID 또는 DASH representation의 Adaptation Set 파라미터가 부가 정보로 제공될 수 있다. PayloadFormat 엘리먼트는 소스플로우의 오브젝트를 운반하는 ROUTE 패킷의 페이로드 포맷을 정의할 수 있다. PayloadFormat 엘리먼트는 codePoint 속성, deliveryObjectFormat 속성, fragmentation 속성, deliveryOrder 속성, sourceFecPayloadID 속성 및/또는 FECParameters 엘리먼트를 포함할 수 있다. codePoint 속성은 해당 페이로드에서 사용되는 코드포인트를 정의할 수 있다. 이는 LCT 헤더의 CP 필드의 값을 나타낼 수 있다. deliveryObjectFormat 속성은 해당 딜리버리 오브젝트의 페이로드 포맷을 나타낼 수 있다. fragmentation 속성은 프래그멘테이션의 타입을 정의할 수 있다. deliveryOrder 속성은 오브젝트의 딜리버리 순서를 나타낼 수 있다. sourceFecPayloadID 속성은 source FEC 페이로드 식별자의 포맷을 정의할 수 있다. FECParameters 엘리먼트는 FEC 파라미터들을 정의할 수 있다. 이는 FEC encoding id, instance id등을 포함할 수 있다. SourceFlowProperty 엘리먼트는 해당 소스 플로우에 대한 속성 정보를 제공할 수 있다. 예를 들어, 속성 정보는 해당 소스 플로우 데이터를 운반하는 브로드캐스트의 위치 정보를 포함할 수 있다. 여기서 브로드 캐스트의 위치 정보는 브로드캐스트 스트림 내의 데이터 파이프 또는 physical layer pipe (PLP)에 대한 정보를 포함할 수 있다. 더 나아가 다른 방송 스트림을 통해서 소스플로우 데이터가 전달되는 경우 브로트캐스트 스트림 식별자, 해당 스트림 내의 데이터 파이프 또는 physical layer pipe (PLP)에 대한 정보를 포함할 수 있다.89 is a view illustrating a source flow element of a next generation broadcast system according to an embodiment of the present invention. The source flow element may include an EFDT element, an idRef attribute, a realtime attribute, a minBufferSize attribute, an Application Idendtifier element, a PayloadFormat element, and / or a SourceFlowProperty element. The EFDT element may include detailed information of the file delivery data. The EFDT may represent an extended file delivery table (FDT) instance, which will be described below. The idRef attribute may indicate an identifier of the EFDT and may be represented by a URI by a corresponding transport session. The realtime attribute may indicate that corresponding LCT packets include an extension header. The extension header may include a time stamp indicating the presentation time of the delivery object. The minBufferSize property can define the maximum amount of data needed to be stored in the receiver. The Application Idendtifier element may provide additional information that may be mapped to an application carried by the corresponding transport session. For example, the Representation ID of the DASH content or the Adaptation Set parameter of the DASH representation for selecting a transport session for rendering may be provided as additional information. The PayloadFormat element can define the payload format of the ROUTE packet carrying the object of the sourceflow. The PayloadFormat element may include a codePoint attribute, deliveryObjectFormat attribute, fragmentation attribute, deliveryOrder attribute, sourceFecPayloadID attribute and / or FECParameters element. The codePoint attribute can define the codepoint used in the payload. This may indicate the value of the CP field of the LCT header. The deliveryObjectFormat attribute may indicate the payload format of the corresponding delivery object. The fragmentation attribute may define the type of fragmentation. The deliveryOrder attribute may indicate a delivery order of objects. The sourceFecPayloadID attribute may define the format of the source FEC payload identifier. The FECParameters element may define FEC parameters. This may include an FEC encoding id, an instance id, and the like. The SourceFlowProperty element may provide property information on the corresponding source flow. For example, the attribute information may include location information of a broadcast carrying corresponding source flow data. The location information of the broadcast may include information about a data pipe or a physical layer pipe (PLP) in the broadcast stream. Furthermore, when the source flow data is transmitted through another broadcast stream, the stream information may include a broadcast stream identifier, a data pipe or a physical layer pipe (PLP) in the stream.
도 90은 본 발명의 다른 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 도시된 서비스 획득 정보는 전술한 서비스 획득 정보에 링크 레이어 시그널링에 대한 정보를 더 포함할 수 있다. 링크 레이어 시그널링에 대한 정보는 링크 레이어 시그널링의 존재 여부를 나타내는 플래그 정보, 링크 레이어 시그널링 데이터의 버전 정보 및 링크 레이어 시그널링이 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 신속한 방송 서비스 스캔 및 서비스/컴포넌트 획득을 지원하기 위한 FIC 정보 (서비스 획득 정보)는 서비스 및 컴포넌트 데이터를 전달하는 application layer transport session 에 대한 정보를 포함할 수 있다. 도시된 바와 같이 시스템 획득 정보는 바이너리 포맷으로 표현될 수 있으나 실시예에 따라 XML 등 다른 포멧으로 나타내어질 수 있다. 90 is a diagram showing signaling data transmitted by a next generation broadcast system according to another embodiment of the present invention for a quick broadcast service scan of a receiver. The illustrated service acquisition information may further include information on link layer signaling in the aforementioned service acquisition information. The information on link layer signaling may include flag information indicating whether link layer signaling is present, version information of link layer signaling data, and information on a data pipe or PLP through which link layer signaling is transmitted. The FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. As shown, the system acquisition information may be expressed in a binary format, but may be represented in other formats such as XML according to an embodiment.
시스템 획득 정보는 다음과 같은 필드를 포함할 수 있다. FIC_portocol_version 필드는 시그널링 정보의 프로토콜 버전 (Version of structure of FIC)을 나타낼 수 있다. TSID 필드는 방송 스트림의 식별자 (Identifier of overall broadcast stream)를 나타낼 수 있다. FIC_data_version 필드는 해당 FIC 정보의 데이터 버전 (indicates data version of this FIC instance)을 나타낼 수 있다. FIC_data_version 필드는 FIC의 내용에 변경이 있는 경우 증가할 수 있다. num_partitions 필드는 브로드캐스트 스트림의 파티션 개수를 나타낼 수 있다. num_partitions 필드가 사용되기 위해 각 브로드캐스트 스트림은 하나 또는 그 이상의 파티션으로 나뉘어 전송될 수 있음을 가정한다. 각 파티션은 하나의 브로드캐스터에 의한 복수의 DP를 포함할 수 있다. 각 파티션은 하나의 브로드캐스터에 의해 사용된 브로드캐스트 스트림의 부분을 나타낼 수 있다. partition_id 필드는 해당 파티션의 식별자를 나타낼 수 있다. partition_protocol_version 필드는 상술한 파티션 구조의 버전을 나타낼 수 있다. num_services 필드는 해당 파티션에 속하는 적어도 하나의 컴포넌트의 개수를 나타낼 수 있다. service_id 필드는 서비스에 대한 식별자를 나타낼 수 있다. service_data_version 필드는 FIC 내의 service loop 데이터의 변화 혹은 해당 서비스와 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. service_data_version 필드는 포함된 서비스 데이터에 변화가 발생할 때마다 1씩 증가할 수 있다. 수신기는 service_data_version 필드를 이용하여 FIC의 서비스 루프의 데이터 변화 혹은 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. channel_number 필드는 해당 서비스와 연관된 채널 넘버를 나타낼 수 있다. service_category 필드는 해당 서비스의 카테고리를 나타낼 수 있으며, 예를 들어 A/V, audio, ESG, CoD 등을 나타낼 수 있다. short_service_name_length 필드는 해당 서비스를 나타내는 이름에 대한 길이를 나타낼 수 있다. short_service_name 필드는 해당 서비스를 나타내는 이름을 나타낼 수 있다. service_status 필드는 해당 서비스의 상태를 나타낼 수 있으며, 그 값에 따라 active 또는 suspended, hidden 또는 shown 속성을 나타낼 수 있다. service_distribution 필드는 ATSC M/H 문서의 “multi-ensemble” flag 와 유사한 속성을 가질 수 있다. 예를 들어 해당 서비스가 해당 파티션에 모두 포함되어 있는지, 해당 파티션에 부분적으로 포함되어 있지만 해당 파티션만으로 프리젠테이션이 가능한지, 프리젠테이션하기 위해 다른 파티션이 필요한지 또는 프리젠테이션하기 위해 다른 방송 스트림이 요구되는지 등에 대한 정보를 나타낼 수 있다. sp_indicator 필드는 서비스 보호 플래그 (service protection flag)로써 프리젠테이션을 위해 필요한 하나 또는 그 이상의 컴포넌트들이 보호되는지 여부를 나타낼 수 있다. IP_version_flag 필드는 뒤따르는 IP 주소 형식을 나타낼 수 있다. 해당 필드 값이 0인 경우 IPv4 형식을, 1인 경우 IPv6 주소 형식을 사용함을 나타낼 수 있다. source_IP_address_flag 필드는 source_IP_addr 을 포함하는지 여부를 나타낼 수 있다. 해당 필드 값이 1인 경우 source_IP_addr 가 존재함을 나타낼 수 있다. num_transport_session 필드는 방송 스트림 내에서 해당 서비스의 컴포넌트 데이터를 전송하는 transport session (예를 들어 ROUTE 또는 MMTP session) 의 개수를 나타낼 수 있다. source_IP_addr 필드는 전술한 source_IP_address_flag 값이 1인 경우 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 source IP address 를 나타낼 수 있다. dest_IP_addr 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 destination IP address 을 나타낼 수 있다. dest_UDP_port 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 UDP port number 나타낼 수 있다. LSID_DP 필드는 전송 세션에 대한 세부 정보를 포함하는 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. 여기서, 전송 세션에 대한 세부 정보를 포함하는 시그널링은 예를 들어 ROUTE 인 경우 각 ROUTE 세션의 세부 LCT 전송 세션에 대한 정보를 포함하는 LCT session instance description 등이 될 수 있다. LSID_tsi 필드는 전송 세션에 대한 세부정보를 포함하는 시그널링인 전송 세션 인스턴스 디스크립션이 전송되는 전송 세션의 식별자를 나타낼 수 있다. 여기서 세션 인스턴스 디스크립션은 LCT 전송 세션의 경우 LSID 가 될 수 있다. 또한 전송 세션 인스턴스 디스크립션이 전송되는 전송 세션을 통하여 해당 서비스와 연관된 서비스 시그널링이 전달될 수 있다. service_signaling_flag 필드는 전송 세션이 서비스 시그널링을 전송하는지 여부를 나타낼 수 있다. service_signaling_flag 값이 1인경우 서비스 시그널링을 포함하는 DP가 존재함을 나타낼 수 있다. signaling_data_version 필드는 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. 서비스 시그널링 데이터에 변화가 발생할 때마다 해당 필드는 1씩 증가할 수 있다. 수신기는 signaling_data_version 필드를 이용하여 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. signaling_DP 필드는 서비스 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. signaling_tsi 필드는 서비스 시그널링을 전달하는 전송 세션의 식별자 등을 나타낼 수 있다. link_layer_signaling_flag는 서비스 획득 정보가 link layer (혹은 low layer) 시그널링을 전송하는지 여부를 나타낼 수 있다. link_layer_signaling_data_version은 연관된 link layer (혹은 low layer) 시그널링 데이터의 변화를 나타낼 수 있다. 해당 필드는 링크 레이어 시그널링 데이터에 변화가 발생할 때마다 1씩 증가할 수 있다. 이를 이용하여 수신기는 link layer (혹은 low layer) 시그널링의 변화를 감지할 수 있다. link_layer_signaling_DP는 L2 layer 에서 사용할 수 있는 link layer (혹은 low layer) 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. 각 디스크립터는 확장이 가능하며, 각 디스크립터는 num_descriptors 필드를 포함할 수 있다. 각 디스크립터는 num_descriptors 필드가 나타내는 값에 대응하는 개수의 descriptor loop를 포함할 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. service descriptors 필드는 service 레벨의 descriptor 들을 포함할 수 있다. Partition descriptors 필드는 파티션 레벨의 디스크립터를 포함할 수 있으며, 하나의 파티션은 하나의 방송사 등에 의해 사용되는 방송 스트림의 일부를 가리킬 수 있다. FIC session descriptors 필드는 FIC 레벨의 descriptor 들을 포함할 수 있다. 실시예에 따라 상술한 FIC에 포함된 각 필드들은 FIC외의 다른 테이블에 포함되어 방송 신호와 함께 전송될 수도있다. The system acquisition information may include the following fields. The FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC). The TSID field may indicate an identifier of the overall broadcast stream. The FIC_data_version field may indicate a data version of this FIC instance. The FIC_data_version field may be increased when there is a change in the content of the FIC. The num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster. The partition_id field may indicate an identifier of a corresponding partition. The partition_protocol_version field may indicate the version of the above-described partition structure. The num_services field may indicate the number of at least one component belonging to the corresponding partition. The service_id field may indicate an identifier for a service. The service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service. The service_data_version field may increase by 1 whenever a change occurs in the included service data. The receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field. The channel_number field may indicate a channel number associated with a corresponding service. The service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like. The short_service_name_length field may indicate the length of a name representing the corresponding service. The short_service_name field may indicate a name representing a corresponding service. The service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value. The service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated. The sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag. The IP_version_flag field may indicate the following IP address format. If the corresponding field value is 0, it may represent that the IPv4 format is used, and when 1, the IPv6 address format is used. The source_IP_address_flag field may indicate whether to include source_IP_addr. If the corresponding field value is 1, it may represent that source_IP_addr exists. The num_transport_session field may indicate the number of transport sessions (eg, ROUTE or MMTP sessions) for transmitting component data of a corresponding service in a broadcast stream. The source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service when the above-described source_IP_address_flag value is 1. The dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service. The dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service. The LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session. In this case, the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE. The LSID_tsi field may indicate an identifier of a transport session in which a transport session instance description, which is a signaling including detailed information about the transport session, is transmitted. In this case, the session instance description may be an LSID in the case of an LCT transport session. In addition, service signaling associated with a corresponding service may be delivered through a transport session through which a transport session instance description is transmitted. The service_signaling_flag field may indicate whether a transport session transmits service signaling. If the service_signaling_flag value is 1, this may indicate that a DP including service signaling exists. The signaling_data_version field may indicate a change of associated service signaling data. Each time a change occurs in the service signaling data, the corresponding field may be increased by one. The receiver may detect a change in signaling related to the corresponding service using the signaling_data_version field. The signaling_DP field may indicate a data pipe identifier of a physical layer that carries service signaling. The signaling_tsi field may indicate an identifier of a transport session for delivering service signaling. The link_layer_signaling_flag may indicate whether service acquisition information transmits link layer (or low layer) signaling. link_layer_signaling_data_version may indicate a change of associated link layer (or low layer) signaling data. This field may increase by 1 whenever a change occurs in the link layer signaling data. Using this, the receiver can detect a change in link layer (or low layer) signaling. The link_layer_signaling_DP may indicate a data pipe identifier of the physical layer that delivers link layer (or low layer) signaling that can be used in the L2 layer. The transport session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field. The transport session descriptors field may include descriptors of a transport session level. The service descriptors field may include descriptors of a service level. The Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster. The FIC session descriptors field may include descriptors of the FIC level. According to an embodiment, each field included in the above-described FIC may be included in a table other than the FIC and transmitted along with a broadcast signal.
도 91은 본 발명의 다른 실시예에 따른 차세대 방송 시스템이 수신기의 신속한 방송 서비스 스캔을 위해 전송하는 시그널링 데이터를 나타낸다. 신속한 방송 서비스 스캔 및 서비스/컴포넌트 획득을 지원하기 위한 FIC 정보 (서비스 획득 정보)는 서비스 및 컴포넌트 데이터를 전달하는 application layer transport session 에 대한 정보를 포함할 수 있다. 또한 서비스 획득 정보는 링크 레이어 시그널링에 대한 정보를 더 포함할 수 있다. 도시된 바와 같이 서비스 획득 정보는 바이너리 포맷으로 표현될 수 있으나 실시예에 따라 XML 등 다른 포멧으로 나타내어질 수 있다. 91 is a diagram showing signaling data transmitted by a next generation broadcast system according to another embodiment of the present invention for a quick broadcast service scan of a receiver. The FIC information (service acquisition information) for supporting fast broadcast service scan and service / component acquisition may include information about an application layer transport session for delivering service and component data. The service acquisition information may further include information on link layer signaling. As shown, the service acquisition information may be represented in a binary format, but may be represented in other formats such as XML according to an embodiment.
서비스 획득 정보는 다음과 같은 필드를 포함할 수 있다. FIC_portocol_version 필드는 시그널링 정보의 프로토콜 버전 (Version of structure of FIC)을 나타낼 수 있다. TSID 필드는 방송 스트림의 식별자 (Identifier of overall broadcast stream)를 나타낼 수 있다. num_partitions 필드는 브로드캐스트 스트림의 파티션 개수를 나타낼 수 있다. num_partitions 필드가 사용되기 위해 각 브로드캐스트 스트림은 하나 또는 그 이상의 파티션으로 나뉘어 전송될 수 있음을 가정한다. 각 파티션은 하나의 브로드캐스터에 의한 복수의 DP를 포함할 수 있다. 각 파티션은 하나의 브로드캐스터에 의해 사용된 브로드캐스트 스트림의 부분을 나타낼 수 있다. partition_id 필드는 해당 파티션의 식별자를 나타낼 수 있다. partition_protocol_version 필드는 상술한 파티션 구조의 버전을 나타낼 수 있다. num_services 필드는 해당 파티션에 속하는 적어도 하나의 서비스의 개수를 나타낼 수 있다. 각 서비스는 복수의 시그널링 테이블들을 포함할 수 있다. 예를 들어 컴포넌트들과 그 세그먼트들에 대한 정보를 포함하는 DASH MPD, 브로드밴드 및 다른 브로드캐스트 스트림들에 포함된 컴포넌트들에 대한 식별자를 포함하는 CMT, 어플리케이션 시그널링 테이블인 AST 및 MPD, CMT, AST 중 적어도 하나의 URL을 포함하는 UST(URL signaling table)을 포함할 수 있다. 이들 시그널링 테이블들은 해당 서비스의 시그널링 채널에 포함될 수 있다. service_id 필드는 서비스에 대한 식별자를 나타낼 수 있다. service_data_version 필드는 FIC 내의 service loop 데이터의 변화 혹은 해당 서비스와 연관된 서비스 시그널링 데이터의 변화를 나타낼 수 있다. service_data_version 필드는 포함된 서비스 데이터에 변화가 발생할 때마다 1씩 증가할 수 있다. 예를 들어 FIC, MPD, CMT, AST 또는 UST에 변화가 있는 경우에 1씩 증가할 수 있다. 수신기는 service_data_version 필드를 이용하여 FIC의 서비스 루프의 데이터 변화 혹은 해당 서비스와 관련된 시그널링의 변화를 감지할 수 있다. service_channel_number 필드는 해당 서비스와 연관된 채널 넘버를 나타낼 수 있다. service_category 필드는 해당 서비스의 카테고리를 나타낼 수 있으며, 예를 들어 A/V, audio, ESG, CoD 등을 나타낼 수 있다. service_short_name_length 필드는 해당 서비스를 나타내는 이름에 대한 길이를 나타낼 수 있다. service_short_name 필드는 해당 서비스를 나타내는 이름을 나타낼 수 있다. service_status 필드는 해당 서비스의 상태를 나타낼 수 있으며, 그 값에 따라 active 또는 suspended, hidden 또는 shown 속성을 나타낼 수 있다. service_distribution 필드는 ATSC M/H 문서의 “multi-ensemble” flag 와 유사한 속성을 가질 수 있다. 예를 들어 해당 서비스가 해당 파티션에 모두 포함되어 있는지, 해당 파티션에 부분적으로 포함되어 있지만 해당 파티션만으로 프리젠테이션이 가능한지, 프리젠테이션하기 위해 다른 파티션이 필요한지 또는 프리젠테이션하기 위해 다른 방송 스트림이 요구되는지 등에 대한 정보를 나타낼 수 있다. sp_indicator 필드는 서비스 보호 플래그 (service protection flag)로써 프리젠테이션을 위해 필요한 하나 또는 그 이상의 컴포넌트들이 보호되는지 여부를 나타낼 수 있다. IP_version_flag 필드는 뒤따르는 IP 주소 형식을 나타낼 수 있다. 해당 필드 값이 0인 경우 IPv4 형식을, 1인 경우 IPv6 주소 형식을 사용함을 나타낼 수 있다. num_ROUTE_sessions는 브로드캐스트 스트림 내에서 해당 서비스의 컴포넌트 데이터를 전송하는 전송 세션의 개수를 나타낼 수 있다. 예를 들어 전송 세션은 ROUTE 세션일 수 있다. 다음의 정보들은 각 ROUTE 세션에 대해 설정될 수 있다. source_IP_addr 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 source IP address 를 나타낼 수 있다. dest_IP_addr 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 destination IP address 을 나타낼 수 있다. dest_UDP_port 필드는 해당 서비스의 컴포넌트 데이터를 포함하는 IP datagram의 UDP port number 나타낼 수 있다. LSID_DP 필드는 전송 세션에 대한 세부 정보를 포함하는 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다. 여기서, 전송 세션에 대한 세부 정보를 포함하는 시그널링은 예를 들어 ROUTE 인 경우 각 ROUTE 세션의 세부 LCT 전송 세션에 대한 정보를 포함하는 LCT session instance description 등이 될 수 있다. LSID_tsi 필드는 전송 세션에 대한 세부정보를 포함하는 시그널링인 전송 세션 인스턴스 디스크립션이 전송되는 전송 세션의 식별자를 나타낼 수 있다. 여기서 세션 인스턴스 디스크립션은 LCT 전송 세션의 경우 LSID 가 될 수 있다. 또한 전송 세션 인스턴스 디스크립션이 전송되는 전송 세션을 통하여 해당 서비스와 연관된 서비스 시그널링이 전달될 수 있다. component_signaling_flag 필드는 전송 세션이 서비스의 컴포넌트 시그널링을 전송하는지 여부를 나타낼 수 있다. component_signaling_flag 값이 1인경우 해당 전송 세션을 통하여 전송되는 데이터 중 서비스 시그널링(예를 들어, MPD (DASH Media Presentation Description), CMT 등) 을 포함하고 있음을 나타낼 수 있다. 여기서 CMT는 Component Mapping Table로써 브로드밴드를 통해 전달되는 컴포넌트들의 식별자를 포함할 수 있으며, 또한 다른 브로드캐스트 스트림에 포함된 컴포넌트에 대한 정보도 포함할 수 있다. 각 서비스는 서비스 시그널링 채널을 포함할 수 있으며, 서비스 시그널링 채널은 MPD, CMT, AST 및/또는 UST를 포함할 수 있다. 서비스 시그널링 채널은 서비스를 위한 복수의 라우트 세션 중 하나의 시그널링 채널일 수 있으며, 존재 여부를 component signaling flag를 통해 나타낼 수 있다. 복수의 전송 세션(ROUTE 또는 MMTP 세션)이 시그널링 및 서비스의 컴포넌트들을 전송하는 경우, 바람직하게는 전술한 서비스 시그널링 테이블들은 하나의 전송 세션에 의해 전달할 수 있다. link_layer_signaling_flag는 서비스 획득 정보가 link layer (혹은 low layer) 시그널링을 전송하는지 여부를 나타낼 수 있다. link_layer_signaling_data_version은 연관된 link layer (혹은 low layer) 시그널링 데이터의 변화를 나타낼 수 있다. 해당 필드는 링크 레이어 시그널링 데이터에 변화가 발생할 때마다 1씩 증가할 수 있다. 이를 이용하여 수신기는 link layer (혹은 low layer) 시그널링의 변화를 감지할 수 있다. link_layer_signaling_DP는 L2 layer 에서 사용할 수 있는 link layer (혹은 low layer) 시그널링을 전달하는 physical layer 의 Data pipe 식별자를 나타낼 수 있다.The service acquisition information may include the following fields. The FIC_portocol_version field may indicate a protocol version of signaling information (Version of structure of FIC). The TSID field may indicate an identifier of the overall broadcast stream. The num_partitions field may indicate the number of partitions of the broadcast stream. In order to use the num_partitions field, it is assumed that each broadcast stream can be transmitted divided into one or more partitions. Each partition may include a plurality of DPs by one broadcaster. Each partition may represent a portion of the broadcast stream used by one broadcaster. The partition_id field may indicate an identifier of a corresponding partition. The partition_protocol_version field may indicate the version of the above-described partition structure. The num_services field may indicate the number of at least one service belonging to a corresponding partition. Each service may include a plurality of signaling tables. For example, DASH MPD including information about components and their segments, CMT including identifiers for components included in broadband and other broadcast streams, AST and MPD, which are application signaling tables, among CMT, AST. It may include a URL signaling table (UST) including at least one URL. These signaling tables may be included in a signaling channel of a corresponding service. The service_id field may indicate an identifier for a service. The service_data_version field may indicate a change of service loop data in a FIC or a change of service signaling data related to a corresponding service. The service_data_version field may increase by 1 whenever a change occurs in the included service data. For example, if there is a change in the FIC, MPD, CMT, AST or UST, it may increase by one. The receiver may detect a change in data of a service loop of FIC or a change in signaling related to a corresponding service by using a service_data_version field. The service_channel_number field may indicate a channel number associated with a corresponding service. The service_category field may indicate a category of a corresponding service and may indicate, for example, A / V, audio, ESG, CoD, and the like. The service_short_name_length field may indicate the length of a name representing the corresponding service. The service_short_name field may indicate a name representing a corresponding service. The service_status field may indicate the state of a corresponding service and may indicate an active or suspended, hidden, or shown attribute according to the value. The service_distribution field may have an attribute similar to the “multi-ensemble” flag of the ATSC M / H document. For example, whether the service is all in that partition, whether it is part of that partition but can be presented with that partition alone, if you need another partition to present, or if you need a different broadcast stream to present it, etc. Information may be indicated. The sp_indicator field may indicate whether one or more components required for presentation are protected as a service protection flag. The IP_version_flag field may indicate the following IP address format. If the corresponding field value is 0, it may represent that the IPv4 format is used, and when 1, the IPv6 address format is used. num_ROUTE_sessions may indicate the number of transport sessions for transmitting component data of a corresponding service in a broadcast stream. For example, the transport session may be a ROUTE session. The following information may be set for each ROUTE session. The source_IP_addr field may indicate a source IP address of an IP datagram including component data of a corresponding service. The dest_IP_addr field may indicate a destination IP address of an IP datagram including component data of a corresponding service. The dest_UDP_port field may indicate a UDP port number of an IP datagram including component data of a corresponding service. The LSID_DP field may indicate a data pipe identifier of a physical layer that carries signaling including detailed information about a transport session. In this case, the signaling including detailed information on the transport session may be, for example, an LCT session instance description including information on a detailed LCT transport session of each ROUTE session in the case of ROUTE. The LSID_tsi field may indicate an identifier of a transport session in which a transport session instance description, which is a signaling including detailed information about the transport session, is transmitted. In this case, the session instance description may be an LSID in the case of an LCT transport session. In addition, service signaling associated with a corresponding service may be delivered through a transport session through which a transport session instance description is transmitted. The component_signaling_flag field may indicate whether a transport session carries component signaling of a service. When the component_signaling_flag value is 1, this may indicate that service signaling (eg, DASH Media Presentation Description (MPD), CMT, etc.) is included among data transmitted through the corresponding transport session. Here, the CMT may include identifiers of components delivered through broadband as component mapping tables, and may also include information on components included in other broadcast streams. Each service may include a service signaling channel, and the service signaling channel may include MPD, CMT, AST, and / or UST. The service signaling channel may be one signaling channel of a plurality of route sessions for a service, and may indicate whether there is a component through a component signaling flag. When a plurality of transport sessions (ROUTE or MMTP session) carry the components of signaling and service, preferably the aforementioned service signaling tables may be carried by one transport session. The link_layer_signaling_flag may indicate whether service acquisition information transmits link layer (or low layer) signaling. link_layer_signaling_data_version may indicate a change of associated link layer (or low layer) signaling data. This field may increase by 1 whenever a change occurs in the link layer signaling data. Using this, the receiver can detect a change in link layer (or low layer) signaling. The link_layer_signaling_DP may indicate a data pipe identifier of the physical layer that delivers link layer (or low layer) signaling that can be used in the L2 layer.
ROUTE session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. 각 디스크립터는 확장이 가능하며, 각 디스크립터는 num_descriptors 필드를 포함할 수 있다. 각 디스크립터는 num_descriptors 필드가 나타내는 값에 대응하는 개수의 descriptor loop를 포함할 수 있다. Transport session descriptors 필드는 전송 세션 레벨의 descriptor 들을 포함할 수 있다. service descriptors 필드는 service 레벨의 descriptor 들을 포함할 수 있다. Partition descriptors 필드는 파티션 레벨의 디스크립터를 포함할 수 있으며, 하나의 파티션은 하나의 방송사 등에 의해 사용되는 방송 스트림의 일부를 가리킬 수 있다. FIC descriptors 필드는 FIC 레벨의 descriptor 들을 포함할 수 있다. The ROUTE session descriptors field may include descriptors of a transport session level. Each descriptor is extensible, and each descriptor may include a num_descriptors field. Each descriptor may include a number of descriptor loops corresponding to the value indicated by the num_descriptors field. The transport session descriptors field may include descriptors of a transport session level. The service descriptors field may include descriptors of a service level. The Partition descriptors field may include a descriptor of a partition level, and one partition may indicate a part of a broadcast stream used by one broadcaster. The FIC descriptors field may include descriptors of the FIC level.
실시예에 따라 상술한 서비스 획득 정보에 포함된 각 필드들은 서비스 획득 정보 외의 다른 정보들과 함께 방송 신호에 포함되어 전송될 수도있다. According to an embodiment, each field included in the above-described service acquisition information may be included in the broadcast signal and transmitted along with other information than the service acquisition information.
도 92는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 획득하는 방법을 나타낸다. 상단 도면은 본 발명의 차세대 방송 시스템에서 사용하는 서비스 레이어 시그널링의 포맷으로써, 서비스 레이어 시그널링은 도시된 바와 같은 형태로 encapsulation 될 수 있다. 예를 들어 인캡슐레이션된 서비스 레이어 시그널링은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 차세대 방송 시스템에서 앞서 제안한 서비스 시그널링을 사용하는 경우 하단 도면과 같이 전달할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame을 통해 전송될 수 있다. 방송 신호 프레임은 물리 계층 시그널링(physical layer signaling) 을 포함할 수 있다. 물리 계층 시그널링의 정보는 빠른 서비스 획득 정보에 대한 필드를 포함할 수 있다. 해당 필드는 빠른 서비스 획득 정보의 버전 정보를 포함할 수 있으며, 다시 말하면 해당 필드는 물리적 계층 프레임이 빠른 서비스 획득 정보를 포함하는지 여부 또는 빠른 서비스 획득 정보를 파싱해야하는지 여부를 나타낼 수 있다. 수신기는 물리 계층 시그널링의 해당 필드를 이용하여 빠른 서비스 획득 정보를 획득할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame 내에 빠른 서비스 획득 정보를 포함할 수 있다. 빠른 서비스 획득 정보는 서비스 식별자를 포함할 수 있으며 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 PLP를 식별하고, 그 안에 포함된 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터를 획득할 수 있다. 도시된 바와 같이 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터는 해당 PLP 내의 0번째 전송 세션에 의해 전달 될 수 있다. 즉, 서비스 레이어 시그널링은 서비스 획득 정보에 포함된 PLP 식별자가 지시하는 PLP 내의 tsi=0에 해당하는 전송 세션에 의해 전달될 수 있다. 다시 말하면, 서비스 레이어 시그널링가 전달되는 전송 세션은 그 식별자가 0으로 고정될 수 있다. 92 is a view illustrating a method of obtaining service layer signaling in a next generation broadcast system according to an embodiment of the present invention. The upper diagram is a format of service layer signaling used in a next generation broadcast system of the present invention, and service layer signaling may be encapsulated in a form as shown. For example, encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), application transport protocol (e.g. ROUTE or MMTP) header (ATPH), signaling It may include a message header (SMH) and a signaling message. When using the service signaling proposed above in the next generation broadcast system, it can be delivered as shown in the following figure. The broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame. The broadcast signal frame may include physical layer signaling. The information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed. The receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling. The broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame. The quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP. That is, service layer signaling may be delivered by a transport session corresponding to tsi = 0 in the PLP indicated by the PLP identifier included in the service acquisition information. In other words, the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
도시된 바와 같이 서비스 레이어 시그널링은 전술한 encapsulation 형태를 가질 수 있다. 즉, 서비스 레이어 시그널링의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 서비스 레이어 시그널링이 전달하는 메시지의 종류에 따라 MPD delivery description, component mapping description 또는 URL signaling description을 포함할 수 있다. As shown, service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. In this case, the signaling message may include an MPD delivery description, a component mapping description, or a URL signaling description according to the type of the message delivered by the service layer signaling.
또한 도시된 바와 같이 전송 세션 인스턴스 디스크립터는 전술한 encapsulation 형태를 가질 수 있다. 즉, 전송 세션 인스턴스 디스크립터의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 전송 세션 인스턴스 디스크립터를 포함할 수 있다. 본 발명에서 전송 세션 인스턴스 디스크립터는 서비스 레이어 시그널링 중 하나로 포함되어 전달될 수도 있다. In addition, as shown, the transport session instance descriptor may have the encapsulation form described above. That is, the format of the transport session instance descriptor is a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and a signaling message. In this case, the signaling message may include a transport session instance descriptor. In the present invention, the transport session instance descriptor may be included in one of service layer signaling and delivered.
도 93은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링 및 링크 레이어 시그널링을 획득하는 방법을 나타낸다. 차세대 방송 시스템에서 앞서 제안한 서비스 레이어 시그널링을 사용하는 경우 도면과 같이 전달할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame을 통해 전송될 수 있다. 방송 신호 프레임은 물리 계층 시그널링(physical layer signaling) 을 포함할 수 있다. 물리 계층 시그널링의 정보는 빠른 서비스 획득 정보에 대한 필드를 포함할 수 있다. 해당 필드는 빠른 서비스 획득 정보의 버전 정보를 포함할 수 있으며, 다시 말하면 해당 필드는 물리적 계층 프레임이 빠른 서비스 획득 정보를 포함하는지 여부 또는 빠른 서비스 획득 정보를 파싱해야하는지 여부를 나타낼 수 있다. 수신기는 물리 계층 시그널링의 해당 필드를 이용하여 빠른 서비스 획득 정보를 획득할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame 내에 빠른 서비스 획득 정보를 포함할 수 있다. 빠른 서비스 획득 정보는 서비스 식별자를 포함할 수 있으며 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 PLP를 식별하고, 그 안에 포함된 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터를 획득할 수 있다. 도시된 바와 같이 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터는 해당 PLP 내의 0번째 전송 세션에 의해 전달 될 수 있다. 즉, 서비스 레이어 시그널링은 서비스 획득 정보에 포함된 PLP 식별자가 지시하는 PLP 내의 tsi=0에 해당하는 전송 세션에 의해 전달될 수 있다. 다시 말하면, 서비스 레이어 시그널링가 전달되는 전송 세션은 그 식별자가 0으로 고정될 수 있다. 93 illustrates a method of acquiring service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention. In the case of using the service layer signaling proposed above in the next generation broadcasting system, it may be delivered as shown in the figure. The broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame. The broadcast signal frame may include physical layer signaling. The information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed. The receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling. The broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame. The quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP. That is, service layer signaling may be delivered by a transport session corresponding to tsi = 0 in the PLP indicated by the PLP identifier included in the service acquisition information. In other words, the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
도시된 바와 같이 서비스 레이어 시그널링은 전술한 encapsulation 형태를 가질 수 있다. 즉, 서비스 레이어 시그널링의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 서비스 레이어 시그널링이 전달하는 메시지의 종류에 따라 MPD delivery description, component mapping description 또는 URL signaling description을 포함할 수 있다. As shown, service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. In this case, the signaling message may include an MPD delivery description, a component mapping description, or a URL signaling description according to the type of the message delivered by the service layer signaling.
또한 도시된 바와 같이 전송 세션 인스턴스 디스크립터는 전술한 encapsulation 형태를 가질 수 있다. 즉, 전송 세션 인스턴스 디스크립터의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 전송 세션 인스턴스 디스크립터를 포함할 수 있다. 본 발명에서 전송 세션 인스턴스 디스크립터는 서비스 레이어 시그널링 중 하나로 포함되어 전달될 수도 있다. In addition, as shown, the transport session instance descriptor may have the encapsulation form described above. That is, the format of the transport session instance descriptor is a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and a signaling message. In this case, the signaling message may include a transport session instance descriptor. In the present invention, the transport session instance descriptor may be included in one of service layer signaling and delivered.
또한 빠른 서비스 획득 정보는 링크 레이어 시그널링이 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 링크 레이어 시그널링이 전달되는 PLP를 식별하고, 그 안에 포함된 링크 레이어 시그널링를 획득할 수 있다. 도시된 바와 같이 전송 링크 레이어 시그널링의 포맷은 Generic packet header(GPH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 링크 레이어 시그널링에 대한 정보를 포함할 수 있다. 수신기는 data pipe 등을 통하여 Link Layer signaling (혹은 low layer signaling) 을 획득할 수 있으며 application transport protocol을 통하여 component mapping table 등 과 같은 서비스 /컴포넌트 시그널링을 획득할 수 있다. In addition, the quick service acquisition information may include information on a data pipe or PLP through which link layer signaling is carried. That is, the receiver may identify a PLP through which link layer signaling is transmitted using data pipe or PLP identifier information included in fast service acquisition information, and acquire link layer signaling included therein. As shown, the format of transport link layer signaling may include a generic packet header (GPH) and a signaling message. Here, the signaling message may include information on link layer signaling. The receiver may acquire link layer signaling (or low layer signaling) through a data pipe and the like, and may acquire service / component signaling such as a component mapping table through an application transport protocol.
도 94는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 획득하는 방법을 나타낸다. 차세대 방송 시스템에서 서비스/컴포넌트 시그널링을 위하여 3GPP eMBMS 시그널링 등을 사용하는 경우 도시된 바와 같이 전달될 수 있다. 여기서 서비스 레이어 시그널링은 User Service Bundle Description (USBD), MPD, Session Description Protocol을 포함할 수 있으며, 전송 세션 인스턴스 디스크립션을 더 포함할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame을 통해 전송될 수 있다. 방송 신호 프레임은 물리 계층 시그널링(physical layer signaling) 을 포함할 수 있다. 물리 계층 시그널링의 정보는 빠른 서비스 획득 정보에 대한 필드를 포함할 수 있다. 해당 필드는 빠른 서비스 획득 정보의 버전 정보를 포함할 수 있으며, 다시 말하면 해당 필드는 물리적 계층 프레임이 빠른 서비스 획득 정보를 포함하는지 여부 또는 빠른 서비스 획득 정보를 파싱해야하는지 여부를 나타낼 수 있다. 수신기는 물리 계층 시그널링의 해당 필드를 이용하여 빠른 서비스 획득 정보를 획득할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame 내에 빠른 서비스 획득 정보를 포함할 수 있다. 빠른 서비스 획득 정보는 서비스 식별자를 포함할 수 있으며 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 PLP를 식별하고, 그 안에 포함된 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터를 획득할 수 있다. 도시된 바와 같이 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터는 해당 PLP 내의 0번째 전송 세션에 의해 전달 될 수 있다. 즉, 서비스 레이어 시그널링은 서비스 획득 정보에 포함된 PLP 식별자가 지시하는 PLP 내의 tsi=0에 해당하는 전송 세션에 의해 전달될 수 있다. 다시 말하면, 서비스 레이어 시그널링가 전달되는 전송 세션은 그 식별자가 0으로 고정될 수 있다. 94 illustrates a method of obtaining service layer signaling in a next generation broadcast system according to an embodiment of the present invention. When 3GPP eMBMS signaling or the like is used for service / component signaling in a next generation broadcast system, it may be delivered as shown. In this case, the service layer signaling may include User Service Bundle Description (USBD), MPD, Session Description Protocol, and may further include a transport session instance description. The broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame. The broadcast signal frame may include physical layer signaling. The information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed. The receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling. The broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame. The quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP. That is, service layer signaling may be delivered by a transport session corresponding to tsi = 0 in the PLP indicated by the PLP identifier included in the service acquisition information. In other words, the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
도시된 바와 같이 서비스 레이어 시그널링은 전술한 encapsulation 형태를 가질 수 있다. 즉, 서비스 레이어 시그널링의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 서비스 레이어 시그널링이 전달하는 메시지의 종류에 따라 User Service Bundle Description (USBD), MPD, Session Description Protocol을 포함할 수 있다. As shown, service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. In this case, the signaling message may include a User Service Bundle Description (USBD), an MPD, and a Session Description Protocol according to the type of the message transmitted by the service layer signaling.
또한 도시된 바와 같이 전송 세션 인스턴스 디스크립터는 전술한 encapsulation 형태를 가질 수 있다. 즉, 전송 세션 인스턴스 디스크립터의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 전송 세션 인스턴스 디스크립터를 포함할 수 있다. 본 발명에서 전송 세션 인스턴스 디스크립터는 서비스 레이어 시그널링 중 하나로 포함되어 전달될 수도 있다.In addition, as shown, the transport session instance descriptor may have the encapsulation form described above. That is, the format of the transport session instance descriptor is a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and a signaling message. In this case, the signaling message may include a transport session instance descriptor. In the present invention, the transport session instance descriptor may be included in one of service layer signaling and delivered.
도 95는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링 및 링크 레이어 시그널링을 획득하는 방법을 나타낸다. 차세대 방송 시스템에서 3GPP eMBMS 시그널링을 사용하는 경우 도면과 같이 전달할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame을 통해 전송될 수 있다. 방송 신호 프레임은 물리 계층 시그널링(physical layer signaling) 을 포함할 수 있다. 물리 계층 시그널링의 정보는 빠른 서비스 획득 정보에 대한 필드를 포함할 수 있다. 해당 필드는 빠른 서비스 획득 정보의 버전 정보를 포함할 수 있으며, 다시 말하면 해당 필드는 물리적 계층 프레임이 빠른 서비스 획득 정보를 포함하는지 여부 또는 빠른 서비스 획득 정보를 파싱해야하는지 여부를 나타낼 수 있다. 수신기는 물리 계층 시그널링의 해당 필드를 이용하여 빠른 서비스 획득 정보를 획득할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame 내에 빠른 서비스 획득 정보를 포함할 수 있다. 빠른 서비스 획득 정보는 서비스 식별자를 포함할 수 있으며 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 PLP를 식별하고, 그 안에 포함된 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터를 획득할 수 있다. 도시된 바와 같이 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터는 해당 PLP 내의 0번째 전송 세션에 의해 전달 될 수 있다. 즉, 서비스 레이어 시그널링은 서비스 획득 정보에 포함된 PLP 식별자가 지시하는 PLP 내의 tsi=0에 해당하는 전송 세션에 의해 전달될 수 있다. 다시 말하면, 서비스 레이어 시그널링가 전달되는 전송 세션은 그 식별자가 0으로 고정될 수 있다. 95 illustrates a method of acquiring service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention. When 3GPP eMBMS signaling is used in a next generation broadcast system, it can be delivered as shown in the figure. The broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame. The broadcast signal frame may include physical layer signaling. The information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed. The receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling. The broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame. The quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP. That is, service layer signaling may be delivered by a transport session corresponding to tsi = 0 in the PLP indicated by the PLP identifier included in the service acquisition information. In other words, the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
도시된 바와 같이 서비스 레이어 시그널링은 전술한 encapsulation 형태를 가질 수 있다. 즉, 서비스 레이어 시그널링의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 서비스 레이어 시그널링이 전달하는 메시지의 종류에 따라 User Service Bundle Description (USBD), MPD, Session Description Protocol을 포함할 수 있다. As shown, service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. In this case, the signaling message may include a User Service Bundle Description (USBD), an MPD, and a Session Description Protocol according to the type of the message transmitted by the service layer signaling.
또한 도시된 바와 같이 전송 세션 인스턴스 디스크립터는 전술한 encapsulation 형태를 가질 수 있다. 즉, 전송 세션 인스턴스 디스크립터의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 전송 세션 인스턴스 디스크립터를 포함할 수 있다. 본 발명에서 전송 세션 인스턴스 디스크립터는 서비스 레이어 시그널링 중 하나로 포함되어 전달될 수도 있다. In addition, as shown, the transport session instance descriptor may have the encapsulation form described above. That is, the format of the transport session instance descriptor is a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and a signaling message. In this case, the signaling message may include a transport session instance descriptor. In the present invention, the transport session instance descriptor may be included in one of service layer signaling and delivered.
또한 빠른 서비스 획득 정보는 링크 레이어 시그널링이 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 링크 레이어 시그널링이 전달되는 PLP를 식별하고, 그 안에 포함된 링크 레이어 시그널링를 획득할 수 있다. 도시된 바와 같이 전송 링크 레이어 시그널링의 포맷은 Generic packet header(GPH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 링크 레이어 시그널링에 대한 정보를 포함할 수 있다. 수신기는 data pipe 등을 통하여 Link Layer signaling (혹은 low layer signaling) 을 획득할 수 있으며 application transport protocol을 통하여 component mapping table 등 과 같은 서비스 /컴포넌트 시그널링을 획득할 수 있다. 즉, 차세대 방송 시스템은 물리적 계층 프레임에 링크 레이어 시그널링이 포함된 데이터 파이프 또는 PLP에 대한 시그널링 정보를 포함할 수 있다.In addition, the quick service acquisition information may include information on a data pipe or PLP through which link layer signaling is carried. That is, the receiver may identify a PLP through which link layer signaling is transmitted using data pipe or PLP identifier information included in fast service acquisition information, and acquire link layer signaling included therein. As shown, the format of transport link layer signaling may include a generic packet header (GPH) and a signaling message. Here, the signaling message may include information on link layer signaling. The receiver may acquire link layer signaling (or low layer signaling) through a data pipe and the like, and may acquire service / component signaling such as a component mapping table through an application transport protocol. That is, the next generation broadcast system may include signaling information for a data pipe or PLP including link layer signaling in a physical layer frame.
도 96은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 전달하는 방법을 나타낸다. 상단 도면은 본 발명의 차세대 방송 시스템에서 사용하는 서비스 레이어 시그널링의 포맷으로써, 서비스 레이어 시그널링은 도시된 바와 같은 형태로 encapsulation 될 수 있다. 예를 들어 인캡슐레이션된 서비스 레이어 시그널링은 좌측 상단에 도시된 바와 같이 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), 그리고 signaling message 조합으로 구성될 수 있다. 또는 인캡슐레이션된 서비스 레이어 시그널링은 우측 상단에 도시된 바와 같이 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message 조합으로 구성될 수 있다. 또한 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다. 수신기는 이를 이용하여 서비스 레이어 시그널링을 수신 및 파싱 여부를 결정할 수 있다.96 illustrates a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention. The upper diagram is a format of service layer signaling used in a next generation broadcast system of the present invention, and service layer signaling may be encapsulated in a form as shown. For example, encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), and application transport protocol (e.g. ROUTE or MMTP). ) header (ATPH) and a signaling message combination. Alternatively, the encapsulated service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), and an application transport protocol (e.g. ROUTE or MMTP) header. (ATPH), a signaling message header (SMH), and a signaling message combination. ATPH may also include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling. The receiver may use this to determine whether to receive and parse service layer signaling.
차세대 방송 시스템에서 앞서 제안한 서비스 시그널링을 사용하는 경우 하단 도면과 같이 전달할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame을 통해 전송될 수 있다. 방송 신호 프레임은 물리 계층 시그널링(physical layer signaling) 을 포함할 수 있다. 물리 계층 시그널링의 정보는 빠른 서비스 획득 정보에 대한 필드를 포함할 수 있다. 해당 필드는 빠른 서비스 획득 정보의 버전 정보를 포함할 수 있으며, 다시 말하면 해당 필드는 물리적 계층 프레임이 빠른 서비스 획득 정보를 포함하는지 여부 또는 빠른 서비스 획득 정보를 파싱해야하는지 여부를 나타낼 수 있다. 수신기는 물리 계층 시그널링의 해당 필드를 이용하여 빠른 서비스 획득 정보를 획득할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame 내에 빠른 서비스 획득 정보를 포함할 수 있다. 빠른 서비스 획득 정보는 서비스 식별자를 포함할 수 있으며 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 PLP를 식별하고, 그 안에 포함된 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터를 획득할 수 있다. 도시된 바와 같이 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터는 해당 PLP 내의 0번째 전송 세션에 의해 전달 될 수 있다. 즉, 서비스 레이어 시그널링은 서비스 획득 정보에 포함된 PLP 식별자가 지시하는 PLP 내의 tsi=0에 해당하는 전송 세션에 의해 전달될 수 있다. 다시 말하면, 서비스 레이어 시그널링가 전달되는 전송 세션은 그 식별자가 0으로 고정될 수 있다.  When using the service signaling proposed above in the next generation broadcast system, it can be delivered as shown in the following figure. The broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame. The broadcast signal frame may include physical layer signaling. The information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed. The receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling. The broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame. The quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP. That is, service layer signaling may be delivered by a transport session corresponding to tsi = 0 in the PLP indicated by the PLP identifier included in the service acquisition information. In other words, the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
도시된 바와 같이 서비스 레이어 시그널링은 전술한 encapsulation 형태를 가질 수 있다. 즉, 서비스 레이어 시그널링의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 서비스 레이어 시그널링이 전달하는 메시지의 종류에 따라 MPD delivery description, component mapping description 또는 URL signaling description을 포함할 수 있다. 전술한 바와 같이 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다. 예를 들어, MPD delivery description을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF1의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 MPD delivery description의 내용에 변경이 있는 경우 변경될 수 있다. 또한 component mapping description 을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF2의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 component mapping description 의 내용에 변경이 있는 경우 변경될 수 있다. 또한 URL signaling description을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF3의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 URL signaling description의 내용에 변경이 있는 경우 변경될 수 있다. 이를 통해 수신기는 서비스 레이어 시그널링의 application transport protocol header에 포함된 필터링 정보인 signaling id 및 version 정보를 이용하여 원하는 서비스 레이어 시그널링을 필터링할 수 있다. 예를 들어 MPD delivery description을 수신하고자 하는 경우, signaling id 0xF1을 갖는 서비스 레이어 시그널링을 수신할 수 있다. 또한 이때 버전 정보를 확인하여 기수신된 MPD delivery description에 비해 업데이트된 경우에만 해당 서비스 레이어 시그널링을 파싱할 수 있다. 이를 통해 수신기는 서비스 레이어 시그널링에 대한 불필요한 파싱 동작을 줄일 수 있으며 프로세싱 오버헤드를 감소시킬 수 있다. 상술한 바와 같이 차세대 방송 시스템은 서비스 레이어 시그널링의 전송 프로토콜의 헤더에 시그널링 ID와 버전 정보를 포함시킴으로써 수신단이 원하는 정보를 필터링 할 수 있도록 지원할 수 있다. As shown, service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. In this case, the signaling message may include an MPD delivery description, a component mapping description, or a URL signaling description according to the type of the message delivered by the service layer signaling. As described above, ATPH may include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling. For example, service layer signaling including the MPD delivery description may have a value of 0xF1 as a signaling id. In addition, the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of the MPD delivery description which is a signaling message of the corresponding service layer signaling. In addition, the service layer signaling including the component mapping description may have a value of 0xF2 as a signaling id. In addition, the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of the component mapping description which is a signaling message of the corresponding service layer signaling. In addition, service layer signaling including a URL signaling description may have a value of 0xF3 as a signaling id. In addition, the version information may have a value of 0x01 and the version information may be changed when there is a change in the content of the URL signaling description which is a signaling message of the corresponding service layer signaling. Through this, the receiver may filter desired service layer signaling by using signaling id and version information, which is filtering information included in an application transport protocol header of service layer signaling. For example, when it is desired to receive the MPD delivery description, the service layer signaling having the signaling id 0xF1 may be received. Also, at this time, the service layer signaling may be parsed only when the version information is checked and updated compared to the received MPD delivery description. This allows the receiver to reduce unnecessary parsing operations for service layer signaling and to reduce processing overhead. As described above, the next generation broadcast system may support the receiver to filter desired information by including the signaling ID and the version information in the header of the transport protocol of the service layer signaling.
도 97은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링 및 링크 레이어 시그널링을 전송하는 방법을 나타낸 도면이다. 본 발명의 차세대 방송 시스템에서 사용하는 서비스 레이어 시그널링은 encapsulation 될 수 있다. 예를 들어 인캡슐레이션된 서비스 레이어 시그널링은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), 그리고 signaling message 조합으로 구성될 수 있다. 또는 인캡슐레이션된 서비스 레이어 시그널링은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message 조합으로 구성될 수 있다. 또한 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다. 97 is a diagram illustrating a method for transmitting service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention. Service layer signaling used in the next generation broadcast system of the present invention may be encapsulation. For example, encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), application transport protocol (e.g. ROUTE or MMTP) header (ATPH), and It may consist of a combination of signaling messages. Or encapsulated service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and signaling message may be combined. ATPH may also include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
차세대 방송 시스템에서 앞서 제안한 서비스 시그널링을 사용하는 경우 도시된 바와 같이 전달할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame을 통해 전송될 수 있다. 방송 신호 프레임은 물리 계층 시그널링(physical layer signaling) 을 포함할 수 있다. 물리 계층 시그널링의 정보는 빠른 서비스 획득 정보에 대한 필드를 포함할 수 있다. 해당 필드는 빠른 서비스 획득 정보의 버전 정보를 포함할 수 있으며, 다시 말하면 해당 필드는 물리적 계층 프레임이 빠른 서비스 획득 정보를 포함하는지 여부 또는 빠른 서비스 획득 정보를 파싱해야하는지 여부를 나타낼 수 있다. 수신기는 물리 계층 시그널링의 해당 필드를 이용하여 빠른 서비스 획득 정보를 획득할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame 내에 빠른 서비스 획득 정보를 포함할 수 있다. 빠른 서비스 획득 정보는 서비스 식별자를 포함할 수 있으며 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 PLP를 식별하고, 그 안에 포함된 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터를 획득할 수 있다. 도시된 바와 같이 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터는 해당 PLP 내의 0번째 전송 세션에 의해 전달 될 수 있다. 즉, 서비스 레이어 시그널링은 서비스 획득 정보에 포함된 PLP 식별자가 지시하는 PLP 내의 tsi=0에 해당하는 전송 세션에 의해 전달될 수 있다. 다시 말하면, 서비스 레이어 시그널링가 전달되는 전송 세션은 그 식별자가 0으로 고정될 수 있다. When using the service signaling proposed above in the next generation broadcast system, it can be delivered as shown. The broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame. The broadcast signal frame may include physical layer signaling. The information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed. The receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling. The broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame. The quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP. That is, service layer signaling may be delivered by a transport session corresponding to tsi = 0 in the PLP indicated by the PLP identifier included in the service acquisition information. In other words, the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
도시된 바와 같이 서비스 레이어 시그널링은 전술한 encapsulation 형태를 가질 수 있다. 즉, 서비스 레이어 시그널링의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 서비스 레이어 시그널링이 전달하는 메시지의 종류에 따라 MPD delivery description, component mapping description 또는 URL signaling description을 포함할 수 있다. 전술한 바와 같이 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다. 예를 들어, MPD delivery description을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF1의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 MPD delivery description의 내용에 변경이 있는 경우 변경될 수 있다. 또한 component mapping description 을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF2의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 component mapping description 의 내용에 변경이 있는 경우 변경될 수 있다. 또한 URL signaling description을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF3의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 URL signaling description의 내용에 변경이 있는 경우 변경될 수 있다. 이를 통해 수신기는 서비스 레이어 시그널링의 application transport protocol header에 포함된 필터링 정보인 signaling id 및 version 정보를 이용하여 원하는 서비스 레이어 시그널링을 필터링할 수 있다. 예를 들어 MPD delivery description을 수신하고자 하는 경우, signaling id 0xF1을 갖는 서비스 레이어 시그널링을 수신할 수 있다. 또한 이때 버전 정보를 확인하여 기수신된 MPD delivery description에 비해 업데이트된 경우에만 해당 서비스 레이어 시그널링을 파싱할 수 있다. 이를 통해 수신기는 서비스 레이어 시그널링에 대한 불필요한 파싱 동작을 줄일 수 있으며 프로세싱 오버헤드를 감소시킬 수 있다. 상술한 바와 같이 차세대 방송 시스템은 서비스 레이어 시그널링의 전송 프로토콜의 헤더에 시그널링 ID와 버전 정볼를 포함시킴으로써 수신단이 원하는 정보를 필터링 할 수 있도록 지원할 수 있다. As shown, service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. In this case, the signaling message may include an MPD delivery description, a component mapping description, or a URL signaling description according to the type of the message delivered by the service layer signaling. As described above, ATPH may include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling. For example, service layer signaling including the MPD delivery description may have a value of 0xF1 as a signaling id. In addition, the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of the MPD delivery description which is a signaling message of the corresponding service layer signaling. In addition, the service layer signaling including the component mapping description may have a value of 0xF2 as a signaling id. In addition, the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of the component mapping description which is a signaling message of the corresponding service layer signaling. In addition, service layer signaling including a URL signaling description may have a value of 0xF3 as a signaling id. In addition, the version information may have a value of 0x01 and the version information may be changed when there is a change in the content of the URL signaling description which is a signaling message of the corresponding service layer signaling. Through this, the receiver may filter desired service layer signaling by using signaling id and version information, which is filtering information included in an application transport protocol header of service layer signaling. For example, when it is desired to receive the MPD delivery description, the service layer signaling having the signaling id 0xF1 may be received. Also, at this time, the service layer signaling may be parsed only when the version information is checked and updated compared to the received MPD delivery description. This allows the receiver to reduce unnecessary parsing operations for service layer signaling and to reduce processing overhead. As described above, the next generation broadcast system may support the receiver to filter desired information by including the signaling ID and the version information in the header of the transport protocol of the service layer signaling.
또한 빠른 서비스 획득 정보는 링크 레이어 시그널링이 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 링크 레이어 시그널링이 전달되는 PLP를 식별하고, 그 안에 포함된 링크 레이어 시그널링를 획득할 수 있다. 도시된 바와 같이 전송 링크 레이어 시그널링의 포맷은 Generic packet header(GPH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 링크 레이어 시그널링에 대한 정보를 포함할 수 있다. 수신기는 data pipe 등을 통하여 Link Layer signaling (혹은 low layer signaling) 을 획득할 수 있으며 application transport protocol을 통하여 component mapping table 등 과 같은 서비스 /컴포넌트 시그널링을 획득할 수 있다. 즉, 차세대 방송 시스템은 물리적 계층 프레임에 링크 레이어 시그널링이 포함된 데이터 파이프 또는 PLP에 대한 시그널링 정보를 포함할 수 있다.In addition, the quick service acquisition information may include information on a data pipe or PLP through which link layer signaling is carried. That is, the receiver may identify a PLP through which link layer signaling is transmitted using data pipe or PLP identifier information included in fast service acquisition information, and acquire link layer signaling included therein. As shown, the format of transport link layer signaling may include a generic packet header (GPH) and a signaling message. Here, the signaling message may include information on link layer signaling. The receiver may acquire link layer signaling (or low layer signaling) through a data pipe and the like, and may acquire service / component signaling such as a component mapping table through an application transport protocol. That is, the next generation broadcast system may include signaling information for a data pipe or PLP including link layer signaling in a physical layer frame.
도 98은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 전달하는 방법을 나타낸다. 본 발명의 차세대 방송 시스템에서 사용하는 서비스 레이어 시그널링은 encapsulation 될 수 있다. 예를 들어 인캡슐레이션된 서비스 레이어 시그널링은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), 그리고 signaling message 조합으로 구성될 수 있다. 또는 인캡슐레이션된 서비스 레이어 시그널링은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message 조합으로 구성될 수 있다. 또한 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다.98 illustrates a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention. Service layer signaling used in the next generation broadcast system of the present invention may be encapsulation. For example, encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), application transport protocol (e.g. ROUTE or MMTP) header (ATPH), and It may consist of a combination of signaling messages. Or encapsulated service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and signaling message may be combined. ATPH may also include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
차세대 방송 시스템에서 3GPP eMBMS 시그널링을 사용하는 경우 도면과 같이 전달할 수 있다. 차세대 방송 시스템에서 앞서 제안한 서비스 시그널링을 사용하는 경우 하단 도면과 같이 전달할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame을 통해 전송될 수 있다. 방송 신호 프레임은 물리 계층 시그널링(physical layer signaling) 을 포함할 수 있다. 물리 계층 시그널링의 정보는 빠른 서비스 획득 정보에 대한 필드를 포함할 수 있다. 해당 필드는 빠른 서비스 획득 정보의 버전 정보를 포함할 수 있으며, 다시 말하면 해당 필드는 물리적 계층 프레임이 빠른 서비스 획득 정보를 포함하는지 여부 또는 빠른 서비스 획득 정보를 파싱해야하는지 여부를 나타낼 수 있다. 수신기는 물리 계층 시그널링의 해당 필드를 이용하여 빠른 서비스 획득 정보를 획득할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame 내에 빠른 서비스 획득 정보를 포함할 수 있다. 빠른 서비스 획득 정보는 서비스 식별자를 포함할 수 있으며 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 PLP를 식별하고, 그 안에 포함된 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터를 획득할 수 있다. 도시된 바와 같이 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터는 해당 PLP 내의 0번째 전송 세션에 의해 전달 될 수 있다. 즉, 서비스 레이어 시그널링은 서비스 획득 정보에 포함된 PLP 식별자가 지시하는 PLP 내의 tsi=0에 해당하는 전송 세션에 의해 전달될 수 있다. 다시 말하면, 서비스 레이어 시그널링가 전달되는 전송 세션은 그 식별자가 0으로 고정될 수 있다. When 3GPP eMBMS signaling is used in a next generation broadcast system, it can be delivered as shown in the figure. When using the service signaling proposed above in the next generation broadcast system, it can be delivered as shown in the following figure. The broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame. The broadcast signal frame may include physical layer signaling. The information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed. The receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling. The broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame. The quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP. That is, service layer signaling may be delivered by a transport session corresponding to tsi = 0 in the PLP indicated by the PLP identifier included in the service acquisition information. In other words, the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
도시된 바와 같이 서비스 레이어 시그널링은 전술한 encapsulation 형태를 가질 수 있다. 즉, 서비스 레이어 시그널링의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 서비스 레이어 시그널링이 전달하는 메시지의 종류에 따라 User Service Bundle Description (USBD), MPD, Session Description Protocol을 포함할 수 있다. 전술한 바와 같이 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다. 예를 들어, User Service Bundle Description 을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF4의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 User Service Bundle Description 의 내용에 변경이 있는 경우 변경될 수 있다. 또한 Session Description Protocol을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF5의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 Session Description Protocol 의 내용에 변경이 있는 경우 변경될 수 있다. 또한 MPD 를 포함한 서비스 레이어 시그널링은 signaling id로써 0xF6의 값을 가질 수 있다. 또한 그 버전 정보는 0x02의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 MPD 의 내용에 변경이 있는 경우 변경될 수 있다. 이를 통해 수신기는 서비스 레이어 시그널링의 application transport protocol header에 포함된 필터링 정보인 signaling id 및 version 정보를 이용하여 원하는 서비스 레이어 시그널링을 필터링할 수 있다. 예를 들어 User Service Bundle Description 을 수신하고자 하는 경우, signaling id 0xF4를 갖는 서비스 레이어 시그널링을 수신할 수 있다. 또한 이때 버전 정보를 확인하여 기수신된 User Service Bundle Description 에 비해 업데이트된 경우에만 해당 서비스 레이어 시그널링을 파싱할 수 있다. 이를 통해 수신기는 서비스 레이어 시그널링에 대한 불필요한 파싱 동작을 줄일 수 있으며 프로세싱 오버헤드를 감소시킬 수 있다. 상술한 바와 같이 차세대 방송 시스템은 서비스 레이어 시그널링의 전송 프로토콜의 헤더에 시그널링 ID와 버전 정볼를 포함시킴으로써 수신단이 원하는 정보를 필터링 할 수 있도록 지원할 수 있다. As shown, service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. In this case, the signaling message may include a User Service Bundle Description (USBD), an MPD, and a Session Description Protocol according to the type of the message transmitted by the service layer signaling. As described above, ATPH may include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling. For example, service layer signaling including a User Service Bundle Description may have a value of 0xF4 as a signaling id. In addition, the version information may have a value of 0x01 and the version information may be changed when there is a change in the content of the User Service Bundle Description which is a signaling message of the corresponding service layer signaling. In addition, the service layer signaling including the Session Description Protocol may have a value of 0xF5 as a signaling id. In addition, the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of Session Description Protocol, which is a signaling message of the corresponding service layer signaling. In addition, the service layer signaling including the MPD may have a value of 0xF6 as a signaling id. In addition, the version information may have a value of 0x02, and the version information may be changed when there is a change in the content of the MPD, which is a signaling message of the corresponding service layer signaling. Through this, the receiver may filter desired service layer signaling by using signaling id and version information, which is filtering information included in an application transport protocol header of service layer signaling. For example, when a user service bundle description is to be received, service layer signaling having signaling id 0xF4 may be received. In this case, the corresponding service layer signaling may be parsed only when the version information is updated and compared with the received User Service Bundle Description. This allows the receiver to reduce unnecessary parsing operations for service layer signaling and to reduce processing overhead. As described above, the next generation broadcast system may support the receiver to filter desired information by including the signaling ID and the version information in the header of the transport protocol of the service layer signaling.
도 99는 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링 및 링크 레이어 시그널링을 전송하는 방법을 나타낸 도면이다. 본 발명의 차세대 방송 시스템에서 사용하는 서비스 레이어 시그널링은 encapsulation 될 수 있다. 예를 들어 인캡슐레이션된 서비스 레이어 시그널링은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), 그리고 signaling message 조합으로 구성될 수 있다. 또는 인캡슐레이션된 서비스 레이어 시그널링은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message 조합으로 구성될 수 있다. 또한 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다.99 is a view showing a method of transmitting service layer signaling and link layer signaling in a next generation broadcast system according to an embodiment of the present invention. Service layer signaling used in the next generation broadcast system of the present invention may be encapsulation. For example, encapsulated service layer signaling may include generic packet header (GPH), IP packet header (IPH), UDP datagram header (UDPH), application transport protocol (e.g. ROUTE or MMTP) header (ATPH), and It may consist of a combination of signaling messages. Or encapsulated service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH), a signaling message header. (SMH) and signaling message may be combined. ATPH may also include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
차세대 방송 시스템에서 3GPP eMBMS 시그널링을 사용하는 경우 도면과 같이 전달할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame을 통해 전송될 수 있다. 방송 신호 프레임은 물리 계층 시그널링(physical layer signaling) 을 포함할 수 있다. 물리 계층 시그널링의 정보는 빠른 서비스 획득 정보에 대한 필드를 포함할 수 있다. 해당 필드는 빠른 서비스 획득 정보의 버전 정보를 포함할 수 있으며, 다시 말하면 해당 필드는 물리적 계층 프레임이 빠른 서비스 획득 정보를 포함하는지 여부 또는 빠른 서비스 획득 정보를 파싱해야하는지 여부를 나타낼 수 있다. 수신기는 물리 계층 시그널링의 해당 필드를 이용하여 빠른 서비스 획득 정보를 획득할 수 있다. 차세대 방송 시스템의 방송 신호는 physical layer frame 내에 빠른 서비스 획득 정보를 포함할 수 있다. 빠른 서비스 획득 정보는 서비스 식별자를 포함할 수 있으며 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 서비스 레이어 시그널링 또는 전송 세션 인스턴스 디스크립터 중 적어도 하나가 전달되는 PLP를 식별하고, 그 안에 포함된 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터를 획득할 수 있다. 도시된 바와 같이 서비스 레이어 시그널링 정보 또는 전송 세션 인스턴스 디스크립터는 해당 PLP 내의 0번째 전송 세션에 의해 전달 될 수 있다. 즉, 서비스 레이어 시그널링은 서비스 획득 정보에 포함된 PLP 식별자가 지시하는 PLP 내의 tsi=0에 해당하는 전송 세션에 의해 전달될 수 있다. 다시 말하면, 서비스 레이어 시그널링가 전달되는 전송 세션은 그 식별자가 0으로 고정될 수 있다. When 3GPP eMBMS signaling is used in a next generation broadcast system, it can be delivered as shown in the figure. The broadcast signal of the next generation broadcast system may be transmitted through a physical layer frame. The broadcast signal frame may include physical layer signaling. The information of the physical layer signaling may include a field for fast service acquisition information. This field may include version information of the quick service acquisition information. In other words, the field may indicate whether the physical layer frame includes the quick service acquisition information or whether the quick service acquisition information should be parsed. The receiver may acquire fast service acquisition information by using a corresponding field of physical layer signaling. The broadcast signal of the next generation broadcast system may include fast service acquisition information in a physical layer frame. The quick service acquisition information may include a service identifier and may include information about a data pipe or PLP to which at least one of service layer signaling or a transport session instance descriptor is delivered. That is, the receiver identifies the PLP to which at least one of the service layer signaling or the transport session instance descriptor is delivered using the data pipe or PLP identifier information included in the quick service acquisition information, and the service layer signaling information or the transport session included therein. You can get an instance descriptor. As shown, the service layer signaling information or the transport session instance descriptor may be delivered by the 0 th transport session in the corresponding PLP. That is, service layer signaling may be delivered by a transport session corresponding to tsi = 0 in the PLP indicated by the PLP identifier included in the service acquisition information. In other words, the transport session to which the service layer signaling is delivered may have its identifier fixed to zero.
도시된 바와 같이 서비스 레이어 시그널링은 전술한 encapsulation 형태를 가질 수 있다. 즉, 서비스 레이어 시그널링의 포맷은 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 서비스 레이어 시그널링이 전달하는 메시지의 종류에 따라 User Service Bundle Description (USBD), MPD, Session Description Protocol을 포함할 수 있다. 전술한 바와 같이 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다. 예를 들어, User Service Bundle Description 을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF4의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 User Service Bundle Description 의 내용에 변경이 있는 경우 변경될 수 있다. 또한 Session Description Protocol을 포함한 서비스 레이어 시그널링은 signaling id로써 0xF5의 값을 가질 수 있다. 또한 그 버전 정보는 0x01의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 Session Description Protocol 의 내용에 변경이 있는 경우 변경될 수 있다. 또한 MPD 를 포함한 서비스 레이어 시그널링은 signaling id로써 0xF6의 값을 가질 수 있다. 또한 그 버전 정보는 0x02의 값을 가질 수 있으며 버전 정보는 해당 서비스 레이어 시그널링의 시그널링 메시지인 MPD 의 내용에 변경이 있는 경우 변경될 수 있다. 이를 통해 수신기는 서비스 레이어 시그널링의 application transport protocol header에 포함된 필터링 정보인 signaling id 및 version 정보를 이용하여 원하는 서비스 레이어 시그널링을 필터링할 수 있다. 예를 들어 User Service Bundle Description 을 수신하고자 하는 경우, signaling id 0xF4를 갖는 서비스 레이어 시그널링을 수신할 수 있다. 또한 이때 버전 정보를 확인하여 기수신된 User Service Bundle Description 에 비해 업데이트된 경우에만 해당 서비스 레이어 시그널링을 파싱할 수 있다. 이를 통해 수신기는 서비스 레이어 시그널링에 대한 불필요한 파싱 동작을 줄일 수 있으며 프로세싱 오버헤드를 감소시킬 수 있다. 상술한 바와 같이 차세대 방송 시스템은 서비스 레이어 시그널링의 전송 프로토콜의 헤더에 시그널링 ID와 버전 정볼를 포함시킴으로써 수신단이 원하는 정보를 필터링 할 수 있도록 지원할 수 있다. As shown, service layer signaling may have the encapsulation form described above. That is, the format of the service layer signaling may include a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (eg ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. In this case, the signaling message may include a User Service Bundle Description (USBD), an MPD, and a Session Description Protocol according to the type of the message transmitted by the service layer signaling. As described above, ATPH may include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling. For example, service layer signaling including a User Service Bundle Description may have a value of 0xF4 as a signaling id. In addition, the version information may have a value of 0x01 and the version information may be changed when there is a change in the content of the User Service Bundle Description which is a signaling message of the corresponding service layer signaling. In addition, the service layer signaling including the Session Description Protocol may have a value of 0xF5 as a signaling id. In addition, the version information may have a value of 0x01, and the version information may be changed when there is a change in the content of Session Description Protocol, which is a signaling message of the corresponding service layer signaling. In addition, the service layer signaling including the MPD may have a value of 0xF6 as a signaling id. In addition, the version information may have a value of 0x02, and the version information may be changed when there is a change in the content of the MPD, which is a signaling message of the corresponding service layer signaling. Through this, the receiver may filter desired service layer signaling by using signaling id and version information, which is filtering information included in an application transport protocol header of service layer signaling. For example, when a user service bundle description is to be received, service layer signaling having signaling id 0xF4 may be received. In this case, the corresponding service layer signaling may be parsed only when the version information is updated and compared with the received User Service Bundle Description. This allows the receiver to reduce unnecessary parsing operations for service layer signaling and to reduce processing overhead. As described above, the next generation broadcast system may support the receiver to filter desired information by including the signaling ID and the version information in the header of the transport protocol of the service layer signaling.
또한 빠른 서비스 획득 정보는 링크 레이어 시그널링이 전달되는 데이터 파이프 또는 PLP에 대한 정보를 포함할 수 있다. 즉, 수신기는 빠른 서비스 획득 정보에 포함된 데이터 파이프 또는 PLP 식별자 정보를 이용하여 링크 레이어 시그널링이 전달되는 PLP를 식별하고, 그 안에 포함된 링크 레이어 시그널링를 획득할 수 있다. 도시된 바와 같이 전송 링크 레이어 시그널링의 포맷은 Generic packet header(GPH) 및 signaling message를 포함할 수 있다. 여기서 signaling message는 링크 레이어 시그널링에 대한 정보를 포함할 수 있다. 수신기는 data pipe 등을 통하여 Link Layer signaling (혹은 low layer signaling) 을 획득할 수 있으며 application transport protocol을 통하여 component mapping table 등 과 같은 서비스 /컴포넌트 시그널링을 획득할 수 있다. 즉, 차세대 방송 시스템은 물리적 계층 프레임에 링크 레이어 시그널링이 포함된 데이터 파이프 또는 PLP에 대한 시그널링 정보를 포함할 수 있다.In addition, the quick service acquisition information may include information on a data pipe or PLP through which link layer signaling is carried. That is, the receiver may identify a PLP through which link layer signaling is transmitted using data pipe or PLP identifier information included in fast service acquisition information, and acquire link layer signaling included therein. As shown, the format of transport link layer signaling may include a generic packet header (GPH) and a signaling message. Here, the signaling message may include information on link layer signaling. The receiver may acquire link layer signaling (or low layer signaling) through a data pipe and the like, and may acquire service / component signaling such as a component mapping table through an application transport protocol. That is, the next generation broadcast system may include signaling information for a data pipe or PLP including link layer signaling in a physical layer frame.
도 100은 본 발명의 일 실시예에 따른 차세대 방송 시스템의 서비스 레이어 시그널링을 전송하는 방법을 나타낸 도면이다. 서비스 레이어 시그널링은 전술한 시그널링 또는 3GPP eMBMS 시그널링을 포함할 수 있다. 차세대 방송 시스템의 방송 신호에 Fast Information Channel 이 존재하지 않는 경우 도시된 바와 같이 신속한 서비스 스캔 및 획득을 지원하기 위한 시그널링 데이터가 physical frame 내의 common data pipe, data pipe 또는 PLP를 통하여 전송될 수 있다. 이러한 경우 신속한 서비스 스캔 및 획득 등과 관련된 시그널링 데이터는 link (혹은 low) layer signaling 형태로 encapsulation 될 수 있으며 다른 link (혹은 low) layer signaling 등과 함께 전송될 수 있다. 즉 프레임 내의 PLP는 서비스 획득 정보를 포함한 시그널링 데이터를 전달할 수 있다. 더 나아가 이는 서비스/컴포넌트 시그널링 혹은 컴포넌트 데이터들과 동일한 혹은 별도의 data pipe 또는 PLP 를 통하여 전송될 수도 있다. 서비스/컴포넌트 시그널링은 앞서 제안한 시그널링 혹은 3GPP eMBMS 시그널링 등이 전송될 수 있다. 해당 시그널링은 전술한 바와 같이 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 여기서 SMH는 실시예에 따라 시그널링 포맷에 포함되지 않을 수 있다. 여기서 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다.100 illustrates a method of transmitting service layer signaling of a next generation broadcast system according to an embodiment of the present invention. Service layer signaling may include the aforementioned signaling or 3GPP eMBMS signaling. When a fast information channel does not exist in a broadcast signal of a next generation broadcast system, signaling data for supporting fast service scan and acquisition may be transmitted through a common data pipe, a data pipe, or a PLP in a physical frame. In this case, signaling data related to rapid service scan and acquisition may be encapsulated in a link (or low) layer signaling form and may be transmitted together with other link (or low) layer signaling. That is, the PLP in the frame may deliver signaling data including service acquisition information. Furthermore, this may be transmitted through the same or separate data pipe or PLP as the service / component signaling or component data. For service / component signaling, the previously proposed signaling or 3GPP eMBMS signaling may be transmitted. The signaling includes a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g., ROUTE or MMTP) header (ATPH), a signaling message header (SMH). ) And a signaling message. In this case, the SMH may not be included in the signaling format according to an embodiment. Here, ATPH may include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling.
하단 도면은 링크 레이어 시그널링에 포함된 서비스 획득 정보를 이용하여 서비스 레이어 시그널링을 획득하는 방법을 나타낸 도면이다. 방송 신호 프레임의 PLP는 링크 레이어 시그널링을 포함할 수 있다. 링크 레이어 시그널링은 전술한 빠른 서비스 스캔 및 획득 정보를 포함할 수 있다. 빠른 서비스 스캔 및 획득 정보는 서비스 식별자 및 해당 서비스에 대한 서비스 레이어 시그널링이 포함된 PLP 식별자 정보를 포함할 수 있다. 해당 PLP 식별자에 의해 지시되는 PLP는 서비스 레이어 시그널링을 포함할 수 있다. 서비스 레이어 시그널링은 상술한 바와 같이 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH), signaling message header (SMH) 및 signaling message를 포함할 수 있다. 서비스 레이어 시그널링의 signaling message는 전송 세션 인스턴스 디스크립션, MPD delivery description, component mapping description 또는 URL signaling description을 포함할 수 있다. 차세대 방송 신호 수신기는 서비스 레이어 시그널링을 파싱하여 원하는 서비스를 획득할 수 있다. The lower figure illustrates a method of acquiring service layer signaling using service acquisition information included in link layer signaling. The PLP of the broadcast signal frame may include link layer signaling. Link layer signaling may include the fast service scan and acquisition information described above. The quick service scan and acquisition information may include a service identifier and PLP identifier information including service layer signaling for the corresponding service. The PLP indicated by the corresponding PLP identifier may include service layer signaling. As described above, the service layer signaling includes a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g., ROUTE or MMTP) header (ATPH), a signaling message header ( SMH) and a signaling message. The signaling message of the service layer signaling may include a transport session instance description, an MPD delivery description, a component mapping description, or a URL signaling description. The next generation broadcast signal receiver may parse service layer signaling to obtain a desired service.
도 101은 본 발명의 일 실시예에 따른 차세대 방송 시스템에서 서비스 레이어 시그널링을 전달하는 방법을 나타낸 도면이다. 서비스 레이어 시그널링은 전술한 시그널링 또는 3GPP eMBMS 시그널링을 포함할 수 있다. 방송 신호 프레임의 PLP는 링크 레이어 시그널링을 포함할 수 있다. 링크 레이어 시그널링은 전술한 빠른 서비스 스캔 및 획득 정보를 포함할 수 있다. 빠른 서비스 스캔 및 획득 정보는 서비스 식별자 및 해당 서비스에 대한 서비스 레이어 시그널링이 포함된 PLP 식별자 정보를 포함할 수 있다. 해당 PLP 식별자에 의해 지시되는 PLP는 서비스 레이어 시그널링을 포함할 수 있다. 서비스 레이어 시그널링은 상술한 바와 같이 Generic packet header(GPH), IP packet Header (IPH), UDP datagram header (UDPH), application transport protocol (예를 들어 ROUTE 또는 MMTP 등) header (ATPH) 및 signaling message를 포함할 수 있다. 서비스 레이어 시그널링의 signaling message는 전송 세션 인스턴스 디스크립션, MPD delivery description, component mapping description 또는 URL signaling description을 포함할 수 있다. 차세대 방송 신호 수신기는 서비스 레이어 시그널링을 파싱하여 원하는 서비스를 획득할 수 있다. 여기서 ATPH는 서비스 레이어 시그널링에 대한 filtering index를 포함할 수 있다. 여기서 filtering index 는 signaling id, version 등을 포함할 수 있다. signaling id는 서비스 레이어 시그널링에 대한 식별자 정보를 포함할 수 있으며, version은 서비스 레이어 시그널링에 포함된 정보의 version을 나타낼 수 있다. filtering index를 이용하여 서비스 레이어 시그널링을 필터링 하는 방법은 전술한 바와 같다. 101 is a view showing a method of delivering service layer signaling in a next generation broadcast system according to an embodiment of the present invention. Service layer signaling may include the aforementioned signaling or 3GPP eMBMS signaling. The PLP of the broadcast signal frame may include link layer signaling. Link layer signaling may include the fast service scan and acquisition information described above. The quick service scan and acquisition information may include a service identifier and PLP identifier information including service layer signaling for the corresponding service. The PLP indicated by the corresponding PLP identifier may include service layer signaling. Service layer signaling includes a generic packet header (GPH), an IP packet header (IPH), a UDP datagram header (UDPH), an application transport protocol (e.g. ROUTE or MMTP) header (ATPH) and a signaling message as described above. can do. The signaling message of the service layer signaling may include a transport session instance description, an MPD delivery description, a component mapping description, or a URL signaling description. The next generation broadcast signal receiver may parse service layer signaling to obtain a desired service. Here, ATPH may include a filtering index for service layer signaling. Here, the filtering index may include a signaling id and a version. The signaling id may include identifier information on service layer signaling, and version may indicate a version of information included in service layer signaling. The method of filtering the service layer signaling by using the filtering index has been described above.
도 102 은 본 발명의 다른 실시예에 따른, 시그널링 메시지 (signaling message) 의 헤더 (header) 의 신택스 (syntax)를 나타낸 도면이다.FIG. 102 is a diagram illustrating syntax of a header of a signaling message according to another embodiment of the present invention. FIG.
본 발명의 다른 실시예에 따른 시그널링 메시지는 XML 형태로 표현될 수 있다. 이때, XML 형태의 시그널링 메시지에 포함되는 시그널링 정보는, 전술한 바, 또는 후술한 바와 같은 시그널링 정보에 해당될 수 있다.The signaling message according to another embodiment of the present invention may be expressed in an XML form. In this case, the signaling information included in the XML-type signaling message may correspond to the above-described or the above-described signaling information.
본 발명의 다른 실시예에 따른, 시그널링 메시지의 헤더는, signaling_id 정보, signaling_length 정보, signaling_id_extension 정보, version_number 정보, current_next_indicator 정보, indicator_flags 정보, fragmentation_indicator 정보, payload_format_indicator 정보, expiration_indicator 정보, validfrom_indicator 정보, fragment_number 정보, last_fragment_number 정보, payload_format 정보, validfrom 정보, 및/또는 expiration 정보를 포함할 수 있다.According to another embodiment of the present invention, a header of a signaling message includes signaling_id information, signaling_length information, signaling_id_extension information, version_number information, current_next_indicator information, indicator_flags information, fragmentation_indicator information, payload_format_indicator information, expiration_indicator information, validfrom_indicator information, fragment_numberment information, last_fragment_number information , payload_format information, validfrom information, and / or expiration information.
본 실시예에 따른 시그널링 메시지의 헤더에 포함되는 시그널링 정보 중, 전술한 시그널링 메시지의 헤더에 포함되는 시그널링 정보와 동일하거나 유사한 명칭을 가지는 시그널링 정보에 대한 설명은, 전술한 설명으로 대체한다.In the signaling information included in the header of the signaling message according to the present embodiment, the description of the signaling information having the same or similar name as the signaling information included in the header of the signaling message described above is replaced with the above description.
validfrom_indicator 정보는, 시그널링 메시지의 헤더 부분에 validfrom 정보의 값이 포함되었는지 여부를 나타낼 수 있다. 예를 들어, validfrom_indicator 정보의 값이 ‘1’인 경우 시그널링 메시지의 헤더 부분에 validfrom 정보가 포함되어 있음을 나타낼 수 있다.The validfrom_indicator information may indicate whether a value of validfrom information is included in a header portion of the signaling message. For example, when the value of validfrom_indicator information is '1', this may indicate that validfrom information is included in a header portion of the signaling message.
validfrom 정보는, 페이로드 (payload) 에 포함된 시그널링 메시지의 가용 시작 시점을 나타낼 수 있다. 수신기는 이를 이용하여, 페이로드에 포함된 시그널링의 가용 시작 시점을 인지할 수 있으며, 해당 시점부터 페이로드에 포함된 데이터를 시그널링 정보로 사용할 수 있다. The validfrom information may indicate an available start time of the signaling message included in the payload. The receiver may recognize an available start time of the signaling included in the payload, and use the data included in the payload as the signaling information from that time.
여기서 페이로드는 방송 서비스 또는 방송 컨텐츠의 데이터 (방송 서비스 데이터)를 포함하는 방송 신호 내의 영역을 나타낼 수 있다. 즉, 일반적으로 시그널링 정보는, 방송 신호 내에서, 방송 서비스 데이터와는 물리적 혹은 논리적으로 구분된 영역을 통하여 전송되는 것이 일반적이다. 그러나, 본 발명에 따르면, 페이로드 영역에 여유 영역이 존재하는 경우, 또는 시그널링 정보의 전송을 위하여 할당된 영역의 크기 보다 많은 양의 시그널링 정보를 전송하여야 하는 경우에는, 방송 신호 내의 페이로드 영역을 통하여 시그널링 정보를 전송할 수 있다. Here, the payload may indicate an area within a broadcast signal including data of a broadcast service or broadcast content (broadcast service data). That is, in general, signaling information is generally transmitted through a region physically or logically separated from broadcast service data in a broadcast signal. However, according to the present invention, when there is a spare area in the payload area or when it is necessary to transmit a greater amount of signaling information than the size of the allocated area for transmission of the signaling information, the payload area in the broadcast signal is determined. Signaling information can be transmitted through the system.
도 103 는 본 발명의 일 실시예에 따른, DASH Initialization Segment (DASH 초기화 세그먼트)를 처리하는 프로토콜 스택 (Protocol Stack) 을 나타낸 도면이다.FIG. 103 is a diagram illustrating a protocol stack for processing a DASH Initialization Segment according to an embodiment of the present invention.
DASH 초기화 세그먼트는, 전술한, Initialization Segment Delivery Table 과 같은 형태 또는 XML 형태로 전송될 수 있다. The DASH initialization segment may be transmitted in a form such as the Initialization Segment Delivery Table described above or in an XML form.
초기화 세그먼트 (DASH 초기화 세그먼트) 는 복수의 세그먼트로 인캡슐레이션된 (encapsulated) 미디어 스트림 (방송 신호 또는 방송 신호)를 표출하기 위하여 필요한 메타데이터 (시그널링 정보)를 포함하는 세그먼트이다. 여기서 세그먼트는 HTTP-URL 과 연관된 데이터의 유닛이다. 세그먼트는 방송 서비스 또는 방송 컨텐츠를 위한 데이터를 포함한다. 리프레젠테이션 (Representation) 은 전송 포맷 내에서 하나 이상의 미디어 스트림을 포함하는 데이터 유닛이다. 리프레젠테이션은 하나 이상의 세그먼트를 포함할 수 있다.An initialization segment (DASH initialization segment) is a segment that contains metadata (signaling information) necessary to express an encapsulated media stream (broadcast signal or broadcast signal) into a plurality of segments. Where the segment is a unit of data associated with the HTTP-URL. A segment includes data for a broadcast service or broadcast content. Representation is a data unit that includes one or more media streams in a transport format. The presentation may include one or more segments.
DASH 초기화 세그먼트는, 송신기 또는 수신기에서 도시된 프로토콜 스택에 따라 처리될 수 있다. DASH 초기화 세그먼트는, 프로토콜 스택 (Protocol Stack) 상에서 하나 이상의 경로를 통해 전송될 수 있다. The DASH initialization segment may be processed according to the protocol stack shown at the transmitter or receiver. The DASH initialization segment may be sent over one or more paths on a Protocol Stack.
프로토콜 스택을 살펴보면, 시그널링 정보 또는 방송 서비스 데이터는, 여러 계층 (layer) 의 프로토콜에 따라 처리될 수 있음을 알 수 있다. 도면에서 도시된 ‘시그널링 채널 (signaling channel), DP (Data Pipe)’ 는 제 1 계층에 해당될 수 있고, ‘FIC, 링크 레이어 프레임 (Link Layer Frame)’ 은 제 2 계층에 해당될 수 있고, IP (Internet Protocol) 은 제 3 계층에 해당될 수 있고, UDP (User Datagram Protocol) 는 제 4 계층에 해당될 수 있고, ROUTE 는 제 5 계층에 해당될 수 있다. 여기서, 링크 레이어 프레임은 본 명세서에 설명된 링크 레이어 패킷을 포함할 수 있다.Looking at the protocol stack, it can be seen that signaling information or broadcast service data can be processed according to protocols of various layers. In the drawing, a 'signaling channel (signaling channel), a data pipe (DP)' may correspond to a first layer, and a 'FIC, link layer frame' may correspond to a second layer. Internet Protocol (IP) may correspond to the third layer, User Datagram Protocol (UDP) may correspond to the fourth layer, and ROUTE may correspond to the fifth layer. Here, the link layer frame may include the link layer packet described herein.
DASH 초기화 세그먼트가 처리되는 프로토콜 스택은, 도시된 (1) 의 경로와 같이, 초기화 세그먼트 (Initialization Segment)와 같은 시그널링 데이터가 IP/UDP에 직접 올려져 전송될 경우, 앞서 제안한 Initialization Segment Delivery Table과 같은 형태의 정보로 전송되거나, 초기화 세그먼트 (Initialization Segment) 자체가 IP 데이터 그램 등의 형태로, 프로토콜 스택의 처리를 거쳐 전송될 수 있다. 전술한 서비스 시그널링 및/또는 컴포넌트 시그널링을 위한 정보들은 도시된 (1)의 경로로 함께 전송될 수 있다. The protocol stack in which the DASH initialization segment is processed, such as the path shown in (1), when signaling data such as initialization segment (Initialization Segment) is directly uploaded and transmitted to the IP / UDP, such as the proposed Initialization Segment Delivery Table. The information may be transmitted in the form of information, or the initialization segment itself may be transmitted through a protocol stack in the form of an IP datagram. The above information for service signaling and / or component signaling may be transmitted together in the path of (1) shown.
본 발명에 일 실시예에 따르면, DASH 초기화 세그먼트는, 경로 (2)와 같이 시그널링 데이터를 전송하기 위한 특정 세션 (session), 또는 경로 (3)과 같이, 컴포넌트 데이터를 전송하는 세션에서, 미디어 데이터와 함께 전송될 수 있다. 일예로, 어플리케이션 전송 프로토콜 (application transport protocol) 은 ROUTE (Real-time Object delivery over Unidirectional Transport) 가 사용될 수 있다. ROUTE 세션은, 시그널링 정보를 전송하기 위한 세션 및/또는 방송 미디어에 대한 데이터를 전송하는 세션을 포함할 수 있다. 방송 시스템은 시그널링 정보를 전송하는 세션은, TSI 의 값을 일정한 값으로 고정하여, 수신기가 해당 TSI 의 값을 가지는 세션을 통하여 전송되는 데이터는 시그널링 정보임을 식별할 수 있다.According to an embodiment of the present invention, the DASH initialization segment is a media session for transmitting signaling data, such as path (2), or media session data in a session for transmitting component data, such as path (3). Can be sent with. For example, a real-time object delivery over unidirectional transport (ROUTE) may be used as the application transport protocol. The ROUTE session may include a session for transmitting signaling information and / or a session for transmitting data for broadcast media. The broadcast system may identify a session for transmitting signaling information by fixing the value of the TSI to a constant value, so that the data transmitted through the session having the value of the TSI by the receiver is signaling information.
도시된 경로 (2), 및/또는 경로 (3)과 같이, 초기화 세그먼트 (Initialization Segment)와 같은 시그널링 정보 (데이터)가 전송되는 경우, 전송 스트림 또는 전송 오브젝트 등에서 전술한 시그널링 메시지 포맷의 데이터, 초기화 세그먼트 (Initialization Segment)가 어느 부분에 위치하는지를 식별하는 정보, 및/또는 시그널링 메시지 포맷의 데이터나 초기화 세그먼트 (Initialization Segment)를 함께 전송되는 데이터들 가운데서 구분하기 위한 정보가, 전송 프로토콜 패킷 내부의 필드, 또는 별도의 시그널링 형태로 제공될 수 있다.When signaling information (data), such as Initialization Segment, is transmitted, such as the illustrated path (2) and / or path (3), data of the aforementioned signaling message format, initialization in a transport stream or transport object, etc., is initialized. Information for identifying where a segment is located, and / or information for distinguishing data of a signaling message format or an initialization segment from data transmitted together, includes a field in a transport protocol packet, Or it may be provided in a separate signaling form.
도 104 은 본 발명의 일 실시예에 따른, LCT (Layered Coding Transport) 세션 인스턴스 디스크립터 (LCT Session Instance Description; LSID)의 일부를 나타낸 도면이다.FIG. 104 illustrates a portion of a Layered Coding Transport (LCT) Session Instance Descriptor (LSID) according to an embodiment of the present invention.
본 발명의 일 실시예에 따른, LCT 세션 인스턴스 디스크립터는, 시그널링 메시지 포맷의 데이터, 초기화 세그먼트 (Initialization Segment)가 방송 신호 내에서 어느 부분에 위치하는지를 식별하는 정보, 및/또는 시그널링 메시지 포맷의 데이터나 초기화 세그먼트 (Initialization Segment) 를, 함께 전송되는 데이터들 가운데서 구분하기 위한 정보를 제공할 수 있다.According to an embodiment of the present invention, the LCT session instance descriptor may include data of a signaling message format, information identifying which part of an initialization segment is located in a broadcast signal, and / or data of a signaling message format. Information may be provided for distinguishing an initialization segment from among data transmitted together.
LCT 세션 인스턴스 디스크립터는, PayloadFormat 엘레먼트를 포함할 수 있다. PayloadFormat 엘레먼트는, @codePoint 정보, @deliveryObjectFormat 정보, @fragmentation 정보, @deliveryOrder 정보 및/또는 @sourceFecPayloadID 정보 포함할 수 있다.The LCT session instance descriptor may include a PayloadFormat element. The PayloadFormat element may include @codePoint information, @deliveryObjectFormat information, @fragmentation information, @deliveryOrder information, and / or @sourceFecPayloadID information.
각각의 엘레먼트는, 도면에 설명된 바와 같은 정보를 제공하는 데에 사용될 수 있다.Each element may be used to provide information as described in the figures.
본 발명의 일 실시예에 따르면, 방송 수신기 또는 방송 송신기는, 초기화 세그먼트 (Initialization Segment)가 포함되는 ROUTE 패킷을 식별하기 위하여, LSID의 SourceFlow 엘레먼트 내의 PayloadFormat 엘레먼트의 @deliveryObjectFormat 정보 (또는 필드)를 사용할 수 있다. According to an embodiment of the present invention, the broadcast receiver or broadcast transmitter may use @deliveryObjectFormat information (or field) of the PayloadFormat element in the SourceFlow element of the LSID to identify a ROUTE packet including an initialization segment. have.
일 실시예로, @deliveryObjectFormat 정보 값이 ‘0’인 경우, @deliveryObjectFormat 정보는 해당 ROUTE 패킷은 시그널링 메시지 포맷을 포함하고 있음을 나타낼 수 있다. @deliveryObjectFormat 정보 의 값이 ‘0’ 인 경우, 이 PayloadFormat 엘레먼트 에 할당된 @codePoint 정보의 값과 LCT 패킷 헤더 내의 같은 값의 code point (CP)를 갖는 ROUTE 패킷은, 전술한 시그널링 메시지 포맷 (signaling message format) 형태의 데이터를 전송하고 있음을 나타낼 수 있다. 초기화 세그먼트 (Initialization Segment)는 본 시그널링 메시지 포맷 (signaling message format)에 포함되어 전송될 수 있으며, 서비스 시그널링, 컴포넌트 시그널링 등 다른 시그널링 데이터 또한 같은 방법으로 시그널링 메시지 포맷 (signaling message format)에 포함되어 ROUTE 패킷을 통해 전송되고 있음이 식별될 수 있다. In an embodiment, when the value of @deliveryObjectFormat information is '0', the @deliveryObjectFormat information may indicate that the corresponding ROUTE packet includes a signaling message format. If the value of @deliveryObjectFormat information is '0', a ROUTE packet having a code point (CP) of the same value in the LCT packet header and the value of the @codePoint information assigned to this PayloadFormat element is the signaling message format described above. format) data may be transmitted. The initialization segment may be transmitted as included in the signaling message format, and other signaling data such as service signaling and component signaling may also be included in the signaling message format in the same manner. It can be identified that is being transmitted via.
@deliveryObjectFormat 정보의 값이 ‘4’인 경우, @deliveryObjectFormat 필드는 해당 ROUTE 패킷은 초기화 세그먼트를 포함하는 메타데이터 (시그널링 정보)를 포함함을 나타낼 수 있다. @deliveryObjectFormat 필드의 값이 ‘4’인 경우, @deliveryObjectFormat 정보는 초기화 세그먼트 (Initialization Segment)를 포함하는 메타 데이터 포맷이 ROUTE 패킷을 통하여 전송됨을 나타내거나, 초기화 세그먼트 (Initialization Segment)가 직접 ROUTE 패킷을 통해 전송되고 있음을 나타낼 수 있다. If the value of @deliveryObjectFormat information is '4', the @deliveryObjectFormat field may indicate that the corresponding ROUTE packet includes metadata (signaling information) including an initialization segment. If the value of the @deliveryObjectFormat field is '4', the @deliveryObjectFormat information indicates that the metadata format including the initialization segment is transmitted through the ROUTE packet, or the initialization segment directly sends the ROUTE packet. It may indicate that it is being transmitted.
본 발명의 일 실시예에 따르면, 방송 시스템 (방송 수신기 및/또는 송신기) 은, @deliveryObjectFormat 정보에 새로운 값 (예를 들면, ‘5’ 이상의 값)을 할당하여, 서비스 시그널링 (서비스 레벨 시그널링 정보), 및/또는 컴포넌트 시그널링 (컴포넌트 레벨 시그널링) 등의 다른 시그널링 데이터가 ROUTE 패킷을 통해 직접 전송됨을 시그널링 할 수 있다. According to an embodiment of the present invention, a broadcast system (broadcast receiver and / or transmitter) assigns a new value (e.g., a value of '5' or more) to @deliveryObjectFormat information, thereby providing service signaling (service level signaling information). , And / or other signaling data such as component signaling (component level signaling) may be signaled to be transmitted directly through the ROUTE packet.
본 발명의 다른 실시예에 따르면, 방송 시스템은, 본 실시 예에서 설명된 @deliveryObjectFormat 정보를 이용하는 방법 외에도, LSID 내의 다른 필드들 또는 새로운 추가 필드를 통해, 초기화 세그먼트 (Initialization Segment)등의 시그널링 데이터가 전송되는 ROUTE 패킷을 식별할 수도 있다.According to another embodiment of the present invention, in addition to the method of using the @deliveryObjectFormat information described in the present embodiment, the broadcast system may display signaling data such as an initialization segment through other fields or new additional fields in the LSID. It may also identify the transmitted ROUTE packet.
도 105는 본 발명의 일 실시예에 따른, 서비스 시그널링 메시지를 필터링 (filtering) 하기 위한 정보를 제공하는 시그널링 오브젝트 디스크립션 (Signaling Object Description; SOD) 를 나타낸 도면이다.FIG. 105 is a diagram illustrating a Signaling Object Description (SOD) for providing information for filtering a service signaling message according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 시그널링 오브젝트 디스크립션은, @protocolVersion 정보, @dataVersion 정보, @validFrom 정보, @expiration 정보, Signaling Object 엘레먼트, @toi 정보, @type 정보, @version 정보, @instance Id 정보, @validFrom 정보, @expiration 정보, 및/또는 @payloadFormat 정보를 포함할 수 있다.The signaling object description according to an embodiment of the present invention may include @protocolVersion information, @dataVersion information, @validFrom information, @expiration information, Signaling Object element, @toi information, @type information, @version information, @instance Id information, It may include @validFrom information, @expiration information, and / or @payloadFormat information.
@protocolVersion 정보는 시그널링 오브젝트 디스크립션의 버전을 나타낸다.The @protocolVersion information indicates the version of the signaling object description.
@dataVersion 정보는 시그널링 오브젝트 디스크립션의 인스턴스 (instance)의 버전 (version) 을 나타낸다. 시그널링 오브젝트 디스크립션 내에 포함된 내용이 변경되는 경우에 @dataVersion이 변경될 수 있다.@dataVersion information indicates the version of an instance of a signaling object description. @DataVersion may change when the contents included in the signaling object description change.
@validFrom 정보는 시그널링 오브젝트 디스크립션의 인스턴스의 가용 시작 시점을 나타낼 수 있다. 이를 이용하여 수신기는 시그널링 오브젝트 디스크립션의 가용 시작 시점을 인지할 수 있으며 해당 시점부터 시그널링 오브젝트 디스크립션에 포함된 정보를 사용할 수 있다.The @validFrom information may indicate an available start time of an instance of the signaling object description. Using this, the receiver may recognize an available start time of the signaling object description and use the information included in the signaling object description from that time.
@expiration 정보는 시그널링 오브젝트 디스크립션의 인스턴스의 가용 완료 시점을 나타낼 수 있다. 이를 이용하여 수신기는 시그널링 오브젝트 디스크립션의 가용 완료시점을 인지할 수 있으며, 이를 이용하여 시그널링 오브젝트 디스크립션의 정보를 관리할 수 있다.The @expiration information may indicate an available completion time of an instance of the signaling object description. By using this, the receiver can recognize the available completion time of the signaling object description, and can manage the information of the signaling object description using this.
Signaling Object 엘레먼트는 시그널링 정보를 포함하는 오브젝트를 나타낸다. 시그널링 오브젝트 디스크립션에서는 하나 이상의 시그널링 오브젝트에 대한 시그널링 정보를 포함할 수 있다. The Signaling Object element represents an object including signaling information. The signaling object description may include signaling information about one or more signaling objects.
@toi 정보는 시그널링 오브젝트에 할당된 TOI (Transmission Object Identifier)를 나타낸다. @toi 정보는 시그널링 오브젝트와 관련된 패킷을 식별하는데 사용될 수 있다. 수신기는 @toi 정보를 LCT 패킷의 TOI 에 맵핑하여, 각각의 object가 전송하는 시그널링 메시지의 type, 및/또는 version 등의 아래의 정보들을 식별할 수 있다.@toi information represents a Transmission Object Identifier (TOI) assigned to a signaling object. The @toi information can be used to identify the packet associated with the signaling object. The receiver may map @toi information to the TOI of the LCT packet to identify the following information such as the type, and / or version of the signaling message transmitted by each object.
@type 정보는 오브젝트에 포함된 시그널링 메시지의 타입을 식별하는 정보이다. 예를 들면, @type 정보의 값이 0 이면, LSID(LCT Session Instance Description), @type 정보의 값이 1 이면, CMD(Component Mapping Description), @type 정보의 값이 2 이면, ASD(Application Signaling Description), @type 정보의 값이 3 이면, MPD (Media Presentation Description), @type 정보의 값이 4 이면 USD (URL Signaling Description), @type 정보의 값이 5 이면, IS (Initialization Segment) 이 오브젝트 내에서 시그널링 메시지로 전송됨을 나타낼 수 있다.@type information is information for identifying the type of signaling message included in the object. For example, if the value of the @type information is 0, the LST Session Instance Description (LSID), the value of the @type information is 1, the component mapping description (CMD), and the value of the @type information is 2, the application signaling Description), if the value of @type information is 3, MPD (Media Presentation Description), if the value of @type information is 4, USD (URL Signaling Description), if the value of @type information is 5, IS (Initialization Segment) It may indicate that a signaling message is transmitted within.
@version 정보는 시그널링 메시지의 버전 (version) 을 나타내는 정보이다. 수신기는 본 필드 값의 변화를 통해 시그널링 메시지의 변경를 식별할 수 있다.@version information is information indicating a version of a signaling message. The receiver may identify a change in the signaling message through a change in this field value.
@instance Id 정보는 시그널링 메시지의 인스턴스를 식별하는 정보이다. 본 정보는 수신기에 의하여, 초기화 세그먼트 (Initialization Segment) 와 같이 하나의 서비스 내에 여러 개 존재할 수 있는 시그널링 메시지들의 인스턴스들을 구분하는데에 사용될 수 있다.@instance Id information is information for identifying an instance of a signaling message. This information may be used by the receiver to distinguish between instances of signaling messages that may exist in a single service, such as an Initialization Segment.
@validFrom 정보는 오브젝트에 포함된 시그널링 메시지의 가용 시작 시점을 나타낼 수 있다. 이를 이용하여 수신기는 오브젝트에 포함된 시그널링의 가용 시작 시점을 인지할 수 있으며 해당 시점부터 오브젝트에 포함된 시그널링을 사용할 수 있다.The @validFrom information may indicate an available start time of the signaling message included in the object. Using this, the receiver may recognize an available start time of the signaling included in the object and use the signaling included in the object from that time.
@expiration 정보는 오브젝트에 포함된 시그널링 메시지의 유효 시간을 나타낼 수 있다. 이를 이용하여 수신기는 오브젝트에 포함된 시그널링의 가용 완료 시간을 인지할 수 있으며 이를 이용하여 시그널링 메시지를 관리할 수 있다.The @expiration information may indicate the valid time of the signaling message included in the object. Using this, the receiver can recognize the available completion time of the signaling included in the object and can manage the signaling message using this.
@payloadFormat 정보는 오브젝트에 포함되는 시그널링 메시지 데이터의 포맷을 나타낼 수 있다. 예를 들면, 시그널링 메시지는 binary 또는 XML 의 형식으로 제공될 수 있으며, @payloadFormat 정보는 이 형식을 나타낸다.The @payloadFormat information may indicate the format of signaling message data included in the object. For example, the signaling message may be provided in the form of binary or XML, and the @payloadFormat information indicates this format.
시그널링 메시지가 ROUTE 등의 LCT 기반 프로토콜로 전송될 경우, 각각의 시그널링 메시지를 오브젝트로 설정하여 처리할 수 있다. 위 프로토콜에서 오브젝트는 고유의 TOI로 식별될 수 있으므로, 각각의 TOI에 version, type 등 시그널링 메시지 관련 정보를 맵핑함으로써 시그널링 메시지를 필터링할 수 있다. 전술한 바와 같은, SOD (Signaling Object Description)은 하나의 전송 세션에 해당하는 시그널링 오브젝트들의 필터링 정보를 제공한다. 시그널링 오브젝트 디스크립션은 시그널링을 전송하는 세션의 내부, 또는 외부 수단을 통해 전송될 수 있다. 내부에서 시그널링 오브젝트 디스크립션이 전송될 경우, 수신기는 고유의 TOI 값 (예를 들면, 0 또는 0xFFFF 등의 값)으로, 시그널링 오브젝트 디스크립션을 식별하여, 함께 전송되는 다른 시그널링 메시지에 앞서 시그널링 오브젝트 디스크립션을 해석할 수 있다. 외부로 시그널링 오브젝트 디스크립션이 전송될 경우, FIC (Fast Information Channel), SLT (service list table), 별도의 IP 데이터 그램, 또는 다른 ROUTE 세션 등의 수단을 통해 시그널링 오브젝트 디스크립션이 전송하여, 해당 세션에서 전달되는 다른 오브젝트에 앞서 전송하여, 수신기에서는 시그널링 메시지의 정보를 미리 획득할 수 있다.When the signaling message is transmitted through an LCT-based protocol such as ROUTE, each signaling message may be set as an object and processed. In the above protocol, since an object may be identified as a unique TOI, the signaling message may be filtered by mapping signaling message related information such as version and type to each TOI. As described above, a signaling object description (SOD) provides filtering information of signaling objects corresponding to one transport session. The signaling object description may be transmitted through internal or external means of the session for transmitting the signaling. When a signaling object description is transmitted internally, the receiver identifies the signaling object description with a unique TOI value (e.g., a value such as 0 or 0xFFFF) and interprets the signaling object description prior to other signaling messages sent together. can do. When the signaling object description is transmitted to the outside, the signaling object description is transmitted through a means such as a fast information channel (FIC), a service list table (SLT), a separate IP datagram, or another ROUTE session, and delivered in the session. By transmitting in advance of another object, the receiver may acquire information of a signaling message in advance.
도 106은 본 발명의 일 실시예에 따른, 시그널링 메시지를 포함하는 오브젝트를 나타낸 도면이다.106 is a diagram illustrating an object including a signaling message according to an embodiment of the present invention.
시그널링 메시지가 ROUTE 등의 LCT 기반 프로토콜로 전송될 경우, 각각의 시그널링 메시지를 오브젝트로 설정하여 처리할 수 있다. 위 프로토콜에서 오브젝트는 고유의 TOI로 식별될 수 있다. 수신기에서는 각각의 TOI에 version, 및/또는 type 등 시그널링 메시지 관련 정보를 맵핑하여, 시그널링 메시지를 필터링할 수 있다. 서로 다른 내용물을 담는 오브젝트에는 서로 다른 TOI가 부여될 수 있으며, 이 경우, 방송 시스템에서는 모든 오브젝트들이 고유하게 식별될 수 있으므로, 기존의 오브젝트 처리 방법과 호환성 있는 방법으로 시그널링 메시지를 처리할 수 있다. When the signaling message is transmitted through an LCT-based protocol such as ROUTE, each signaling message may be set as an object and processed. In the above protocol, an object can be identified by its unique TOI. The receiver may filter signaling messages by mapping signaling message related information such as version and / or type to each TOI. Different TOIs may be assigned to objects containing different contents. In this case, all objects may be uniquely identified in the broadcast system, and thus signaling signals may be processed in a manner compatible with existing object processing methods.
도시된 그림은, TOI 필드의 일부를 고정 길이의 시그널링 메시지 관련 정보 기술을 위해 사용하는 실시 예를 보여준다. 본 실시 예에서는 32비트의 TOI 필드가 사용되고 있으며, 각각 16비트의 Type과 Version 필드를 통해 오브젝트를 통해 전송되고 있는 앞서 설명한 시그널링 데이터의 type과 version을 식별할 수 있다. 같은 방법으로 앞서 설명한 sequence number 정보, valid from 정보, expiration 정보, 및/또는 payload format 정보의 추가 정보 또한 본 실시 예에서의 Type, Version 같이 TOI 필드의 일부를 고정 길이의 필드로 할당함으로써 해당 정보를 전달할 수 있다.The illustrated figure shows an embodiment in which a part of the TOI field is used for describing a fixed length signaling message related information. In the present embodiment, a 32-bit TOI field is used, and the type and version of the above-described signaling data transmitted through the object may be identified through the 16-bit Type and Version fields, respectively. In the same manner, additional information of the sequence number information, valid from information, expiration information, and / or payload format information described above may also be assigned by assigning a part of the TOI field as a fixed length field, such as Type and Version in the present embodiment. I can deliver it.
본 발명의 일 실시예에 따른, 오브젝트는, v 엘레먼트, c 엘레먼트, PSI 엘레먼트, S 엘레먼트, O 엘레먼트, H 엘레먼트, A 엘레먼트, B 엘레먼트, HDR_LEN 엘레먼트, Codepoint 엘레먼트, Congestion Control Information 엘레먼트, Transport Session Identifier (TSI) 엘레먼트, Transport Object Identifier (TOI) 엘레먼트, Header Extensions 엘레먼트, FEC payload ID 엘레먼트, 및/또는 Encoding Symbols 엘레먼트를 포함할 수 있다. 여기서 엘레먼트는 정보 또는 필드로 명명될 수도 있다.According to an embodiment of the present invention, the object may include: v element, c element, PSI element, S element, O element, H element, A element, B element, HDR_LEN element, Codepoint element, Congestion Control Information element, Transport Session Identifier (TSI) element, Transport Object Identifier (TOI) element, Header Extensions element, FEC payload ID element, and / or Encoding Symbols element. Here, the element may be named as information or a field.
PSI 엘레먼트는 X 엘레먼트 및/또는 Y 엘레먼트를 포함할 수 있다.The PSI element may comprise an X element and / or a Y element.
TOI 엘레먼트는, Type 엘레먼트 및/또는 Version 엘레먼트를 포함할 수 있다.The TOI element may include a Type element and / or a Version element.
v 엘레먼트는 패킷의 버전 넘버를 나타낸다. v 엘레먼트는 ALC/LCT 의 버전을 나타낼 수 있다. v 엘레먼트는 본 오브젝트를 통하여 ALC/LCT+을 따르는 패킷이 전송됨을 나타낼 수 있다.The v element indicates the version number of the packet. The v element may indicate a version of ALC / LCT. The v element may indicate that a packet conforming to ALC / LCT + is transmitted through this object.
c 엘레먼트는 Congestion control flag 에 해당된다. c 엘레먼트는 Congestion Control Information (CCI) 엘레먼트의 길이를 나타낼 수 있다. 예를 들면, c 엘레먼트는, c 엘레먼트의 값이 0인 경우, CCI의 길이는 32비트, c 엘레먼트의 값이 1인 경우, CCI의 길이는 64비트, c 엘레먼트의 값이 2인 경우, CCI의 길이는 96비트, c 엘레먼트의 값이 3인 경우, CCI의 길이는 128비트 임을 나타낼 수 있다.The c element corresponds to the Congestion control flag. The c element may indicate the length of the Congestion Control Information (CCI) element. For example, the c element has a CCI value of 0, the CCI length is 32 bits, the c element has a value of 1, the CCI length is 64 bits, and the c element has a value of CCI. If the length of 96 bits, the value of the c element is 3, it can represent that the length of the CCI is 128 bits.
PSI 엘레먼트는 Protocol-Specific Indication (PSI) 에 해당될 수 있다. PSI 엘레먼트는 ALC/LCT+의 상위 프로토콜에 대한 특정 목적의 지시자로 사용될 수 있다. PSI 엘레먼트는 현재 패킷이 source packet에 해당되는지 FEC repair packet에 해당되는지 가리킬 수 있다.The PSI element may correspond to Protocol-Specific Indication (PSI). The PSI element may be used as a specific purpose indicator for the higher protocol of ALC / LCT +. The PSI element may indicate whether the current packet corresponds to the source packet or the FEC repair packet.
X 엘레먼트는 source packet을 가리키는 정보에 해당될 수 있다. Source와 repair data를 위하여 서로 다른 FEC payload ID 포맷이 사용되는 경우, 이 엘레먼트의 값이 ‘1’이면, source data를 위한 FEC payload ID 포맷임을 나타내고, 이 엘레먼트의 값이 ‘0’ 이면, repair data를 위한 FEC payload ID 포맷임을 나타낸다. 또는, 이 엘레먼트의 값이 송신기에서 ‘0’으로 세팅된 경우, 수신기는 이 엘레먼트 또는 이 패킷을 무시하고, 처리하지 않을 수 있다. The X element may correspond to information indicating a source packet. When different FEC payload ID formats are used for source and repair data, if the value of this element is '1', it indicates that the FEC payload ID format is for source data. If the value of this element is '0', repair data is used. Indicates that the FEC payload ID format for the. Or, if the value of this element is set to '0' at the transmitter, the receiver may ignore this element or this packet and not process it.
S 엘레먼트는 Transport Session Identifier flag 에 해당될 수 있다. S 엘레먼트는 Transport Session Identifier 엘레먼트의 길이를 가리킨다.The S element may correspond to a Transport Session Identifier flag. The S element indicates the length of the Transport Session Identifier element.
O 엘레먼트는 Transport Object Identifier flag 에 해당될 수 있다. O 엘레먼트는 Transport Object Identifier 엘레먼트의 길이를 나타낼 수 있다. 오브젝트는 하나의 파일을 의미할 수 있고, 상기 TOI는 각 오브젝트의 식별정보로써, 상기 TOI가 0인 파일은 파일과 관련된 시그널링 정보를 포함할 수 있다.The O element may correspond to a Transport Object Identifier flag. The O element may indicate the length of the Transport Object Identifier element. An object may mean one file, and the TOI is identification information of each object, and a file having a TOI of 0 may include signaling information related to a file.
H 엘레먼트는 Half-word flag 에 해당될 수 있다. H 엘레먼트는 TSI 및 TOI 필드의 길이에 half-word(16 bits)를 추가할지 여부를 지시한다.The H element may correspond to a half-word flag. The H element indicates whether to add half-word (16 bits) to the length of the TSI and TOI fields.
A 엘레먼트는 Close Session flag 에 해당될 수 있다. A 엘레먼트는 세션이 종료 또는 종료가 임박했음을 가리킬 수 있다.The A element may correspond to the Close Session flag. The A element may indicate that the session has ended or is about to end.
B 엘레먼트는 Close Object flag 에 해당될 수 있다. B 엘레먼트는 전송 중인 오브젝트가 종료 또는 종료가 임박했음을 가리킬 수 있다.The B element may correspond to the Close Object flag. The B element may indicate that the object being transmitted is about to terminate or is about to terminate.
HDR_LEN 엘레먼트는 패킷의 헤더의 길이를 나타낸다.The HDR_LEN element indicates the length of the header of the packet.
Codepoint 엘레먼트는 이 패킷에 의하여 전송되는 페이로드 (payload)의 타입을 나타낸다. 페이로드의 타입에 따라, 추가적인 페이로드 헤더가 페이로드 데이터의 프리픽스 (prefix)에 삽입될 수 있다.The Codepoint element indicates the type of payload carried by this packet. Depending on the type of payload, additional payload headers may be inserted in the prefix of payload data.
Congestion Control Information (CCI) 엘레먼트는 layer numbers, logical channel numbers, sequence numbers 등의 Congestion Control 정보를 포함할 수 있다. Congestion Control Information (CCI) 엘레먼트는 필요한 Congestion Control 관련 정보를 포함할 수 있다.The Congestion Control Information (CCI) element may include congestion control information such as layer numbers, logical channel numbers, and sequence numbers. The Congestion Control Information (CCI) element may contain necessary Congestion Control related information.
Transport Session Identifier (TSI) 엘레먼트는 Transport Session Identifier field(TSI)는 세션의 고유 식별자이다. TSI 엘레먼트는 특정 전송자 (sender) 로 부터의 모든 세션 (session)들 중에 어느 하나의 세션을 가리킨다. TSI 엘레먼트는 transport session 을 식별하는 역할을 수행한다. TSI 엘레먼트의 값은 하나의 트랙을 위하여 사용될 수 있다.In the Transport Session Identifier (TSI) element, the Transport Session Identifier field (TSI) is a unique identifier of the session. The TSI element indicates any one of all sessions from a particular sender. The TSI element identifies the transport session. The value of the TSI element can be used for one track.
Transport Object Identifier (TOI) 엘레먼트는 오브젝트의 고유 식별자이다. TOI 엘레먼트는 세션 내에서, 어떠한 오브젝트에 이 패킷이 속하는지를 가리킨다. TOI 엘레먼트의 값은 하나의 ISO BMFF object 데이터를 위하여 사용될 수 있다. TOI 엘레먼트는 ISO BMFF 파일의 ID와 chunk의 ID를 포함할 수 있다. TOI 엘레먼트는 ISO BMFF 파일의 ID와 chunk의 ID의 조합을 그 값으로 가질 수 있다.The Transport Object Identifier (TOI) element is a unique identifier of an object. The TOI element indicates which object this packet belongs to within the session. The value of the TOI element may be used for one ISO BMFF object data. The TOI element may include an ID of an ISO BMFF file and an ID of a chunk. The TOI element may have a combination of the ID of the ISO BMFF file and the ID of the chunk as its value.
Type 엘레먼트는 본 오브젝트를 통하여 전송되는 데이터의 종류를 식별할 수 있다. 예를 들면, Type 엘레먼트는 본 오브젝트를 통하여 전송되는 데이터가 시그널링 메시지 임을 나타낼 수 있다.The type element may identify the type of data transmitted through the object. For example, the Type element may indicate that data transmitted through the object is a signaling message.
Version 엘레먼트는 본 오브젝트를 통하여 전송되는 데이터의 버전을 식별한다. 예를 들면, Version 엘레먼트는 Type 오브젝트를 통하여 식별된 데이터의 구조 및/또는 내용의 변경이 있는지를 식별하는 정보를 포함할 수 있다.The Version element identifies the version of data transmitted through this object. For example, the Version element may include information identifying whether there is a change in the structure and / or content of the data identified through the Type object.
Header Extensions 엘레먼트는 추가적인 헤더 정보를 포함할 수 있다.The Header Extensions element may include additional header information.
FEC payload ID 엘레먼트는 FEC Payload 식별자이다. FEC payload ID 엘레먼트는 Transmission Block 또는 encoding symbol의 식별 정보를 포함한다. FEC Payload ID는 상기 파일이 FEC 인코딩된 경우의 식별자를 나타낸다. 예를 들어, FEC Payload ID는 상기 FLUTE 프로토콜 파일이 FEC 인코딩된 경우, 방송국 또는 방송서버가 이를 구분하기 위해 할당할 수 있다.The FEC payload ID element is an FEC payload identifier. The FEC payload ID element includes identification information of a transmission block or an encoding symbol. The FEC Payload ID indicates an identifier when the file is FEC encoded. For example, when the FLUTE protocol file is FEC encoded, the FEC Payload ID may be allocated by a broadcasting station or a broadcasting server to distinguish it.
Encoding Symbols 엘레먼트는 Transmission Block 또는 encoding symbol의 데이터를 포함할 수 있다.The encoding symbol element may include data of a transmission block or an encoding symbol.
도 107 는 본 발명의 일 실시예에 따른, TOI 구성 디스크립션 (TOI Configuration Description; TCD)를 나타낸 도면이다.107 illustrates a TOI Configuration Description (TCD) according to an embodiment of the present invention.
전술한 바와 같이, TOI필드의 일부를 가변 길이의 시그널링 메시지 관련 정보의 기술을 위해 사용할 수 있다. 가변 길이의 TOI 필드 내에서, 시그널링 메시지 관련 정보의 기술을 위해서는 TOI 필드의 구성 정보가 별도로 전송될 수 있다. 일 실시예로, 도시된 표와 같은 TOI 구성 디스크립션이 TOI 필드의 구성에 관한 정보를 제공하기 위하여, 송신 및/또는 수신될 수 있다. 본 실시 예에서는, TCD (TOI Configuration Description)은 하나의 전송 세션에 해당하는 전송 패킷들의 TOI 필드 구성 정보를 제공한다. TCD는 시그널링을 전송하는 세션의 내부, 및/또는 외부 수단을 통해 전송될 수 있다. TCD가 시그널링을 전송하는 세션의 내부에서 전송될 경우, 고유의 TOI 값, 일례로 0 또는 0xFFFF 등의 값으로 식별하여 함께 전송되는 다른 시그널링 메시지에 앞서 해석될 수 있다. TCD가 시그널링을 전송하는 세션의 외부로 전송될 경우, FIC, 별도의 IP 데이터 그램 및/또는 다른 ROUTE 세션 등의 수단을 통해 전송되어, 해당 세션에서 전달되는 오브젝트에 앞서 전송되어 각 패킷에 포함된 TOI 필드의 구성 정보를 수신기에서 미리 알 수 있게 처리 할 수 있다. @typeBits 필드 이하의 필드들은 TOI 내 각각의 필드 길이를 나타내며, TOI 시작 bit로 부터 순서대로 각각의 길이에 해당하는 필드 정보가 기술됨을 알려준다.As described above, a part of the TOI field may be used for describing variable length signaling message related information. In a variable length TOI field, configuration information of the TOI field may be separately transmitted for describing signaling message related information. In one embodiment, a TOI configuration description, such as the table shown, may be transmitted and / or received to provide information regarding the configuration of the TOI field. In this embodiment, the TCD (TOI Configuration Description) provides TOI field configuration information of transport packets corresponding to one transport session. The TCD may be transmitted via internal and / or external means of the session carrying signaling. When the TCD is transmitted inside a session for transmitting signaling, it may be interpreted prior to other signaling messages that are identified and transmitted with a unique TOI value, for example, a value such as 0 or 0xFFFF. When the TCD is transmitted outside of a session for transmitting signaling, it is transmitted through means such as FIC, separate IP datagrams, and / or other ROUTE sessions, and transmitted before the object delivered in the session and included in each packet. Configuration information of the TOI field may be processed so that the receiver can know in advance. Fields below the @typeBits field indicate the length of each field in the TOI and indicate that field information corresponding to each length is described in order from the TOI start bit.
본 발명의 일 실시예에 따른 TCD는, @protocolVersion 정보, @dataVersion 정보, @validFrom 정보, @expiration 정보, @typeBits 정보, @versionBits 정보, @instanceIdBits 정보, @validFromBits 정보, @expirationBits 정보, 및/또는 @payloadFormatBits 정보를 포함할 수 있다.TCD according to an embodiment of the present invention, the @protocolVersion information, @dataVersion information, @validFrom information, @expiration information, @typeBits information, @versionBits information, @instanceIdBits information, @validFromBits information, @expidationBits information, and / or @payloadFormatBits information may be included.
@protocolVersion 정보는 TCD의 버전을 식별한다. @protocolVersion 정보는 TCD의 프로토콜 또는 구조에 변경이 있는 경우, 이를 식별한다.The @protocolVersion information identifies the version of the TCD. @protocolVersion information identifies when there is a change in the protocol or structure of the TCD.
@dataVersion 정보는 TCD의 인스턴스 (Instance) 의 버전을 식별한다. @dataVersion 정보는 TCD에 포함되는 내용이 변경되는 경우, 이를 식별한다.The @dataVersion information identifies the version of an instance of the TCD. @dataVersion information identifies when the contents included in the TCD are changed.
@validFrom 정보는 TCD의 인스턴스 (Instance) 의 가용 시작 시점을 나타낼 수 있다. 수신기는 @validFrom 정보를 이용하여 TCD의 가용 시작 시점을 인지할 수 있으며, 해당 시점부터 TCD 의 정보를 사용할 수 있다.The @validFrom information may indicate an available start time of an instance of the TCD. The receiver may recognize an available start time of the TCD using @validFrom information, and may use the information of the TCD from that time.
@expiration 정보는 TCD의 인스턴스 (Instance) 의 가용 완료 시점을 나타낼 수 있다. 수신기는 @expiration 정보를 이용하여 TCD의 가용 완료 시점을 인지할 수 있으며, TCD 의 정보를 사용을 종료시킬 수 있다. 수신기는 @expiration 정보를 이용하여, TCD 정보를 관리할 수 있다.@expiration information may indicate an available completion time of an instance of the TCD. The receiver may recognize the available completion time of the TCD by using @expiration information, and may terminate the use of the information of the TCD. The receiver may manage TCD information by using @expiration information.
@typeBits 정보는 TOI 필드 내 type 필드의 길이를 나타낸다. @typeBits 정보는 type 필드의 길이를 비트로 표현할 수 있다.@typeBits information indicates the length of the type field in the TOI field. @typeBits information can represent the length of the type field in bits.
@versionBits 정보는 TOI 필드 내 version 필드의 길이를 나타낸다. @versionBits 정보는 version 필드의 길이를 비트로 표현할 수 있다.@versionBits information indicates the length of the version field in the TOI field. @versionBits information can express the length of the version field in bits.
@instanceIdBits 정보는 TOI 필드 내 instanceID 필드의 길이를 비트수로 나타낼 수 있다.The @instanceIdBits information may indicate the length of the instanceID field in the TOI field in bits.
@validFromBits 정보는 TOI 필드 내 validFrom 필드의 길이를 비트수로 나타낼 수 있다.The @validFromBits information can indicate the length of the validFrom field in the TOI field in bits.
@expirationBits 정보는 TOI 필드 내 expiration 필드의 길이를 비트수로 나타낼 수 있다.The @expirationBits information can indicate the length of the expiration field in the TOI field in bits.
@payloadFormatBits 정보는 TOI 필드 내 payloadFormat 필드의 길이를 비트수로 나타낼 수 있다.The @payloadFormatBits information can indicate the length of the payloadFormat field in the TOI field in bits.
도 108은 본 발명의 일 실시예에 따른, 전송 패킷의 페이로드 (Payload) 포맷 (Format) 엘레먼트를 나타낸 도면이다.FIG. 108 is a diagram illustrating a payload format element of a transport packet according to an embodiment of the present invention. FIG.
본 발명의 일 실시예에 따르면, 전송 패킷의 페이로드를 통하여, 시그널링 메시지를 전송할 수 있다. 이를 위하여, 전송 패킷은 도시된 바와 같은 페이로드 포맷 엘레먼트를 포함할 수 있다. 전송 패킷은 방송 데이터를 포함하는 오브젝트를 전송하는 패킷에 해당된다. 본 발명의 전송 패킷이 해당 패킷이 처리되는 프로토콜에 따라, 그 명칭이 달라질 수 있다. 예를 들면, ROUTE를 통하여 패킷이 처리되면, ROUTE 패킷으로 명명될 수 있다According to an embodiment of the present invention, the signaling message may be transmitted through the payload of the transport packet. To this end, the transport packet may include a payload format element as shown. The transport packet corresponds to a packet for transmitting an object including broadcast data. The name of the transport packet of the present invention may vary depending on the protocol in which the packet is processed. For example, if a packet is processed via ROUTE, it may be called a ROUTE packet.
페이로드 포맷 엘레먼트는, 전술한 바와 같이 LSID에 포함될 수 있다. The payload format element may be included in the LSID as described above.
본 발명의 전송 패킷의 페이로드 포맷 엘레먼트는, @codePoint 정보, @deliveryObjectFormat 정보, @fragmentation 정보, @deliveryOrder 정보, @sourceFecPayloadID 정보 및/또는 TCID (TOI Configuration Instance Description) 을 포함할 수 있다.The payload format element of the transport packet of the present invention may include @codePoint information, @deliveryObjectFormat information, @fragmentation information, @deliveryOrder information, @sourceFecPayloadID information and / or TCID (TOI Configuration Instance Description).
@codePoint 정보는 이 페이로드를 위하여 사용되는 CodePoint가 무엇인지 정의한다. 본 정보는 전술한 CP 엘레먼트와 동일한 역할을 하거나, 동일한 값을 가질 수 있다. The @codePoint information defines what CodePoint is used for this payload. This information may play the same role as the aforementioned CP element or may have the same value.
@deliveryObjectFormat 정보는 데이터의 전송을 위한 오브젝트의 페이로드의 포맷을 식별한다. 예를 들면, 본 정보는 오브젝트가 시그널링 메시지를 전송하거나, 파일을 전송하거나, Entity를 전송하거나, Package를 전송하거나, 또는 초기화 세그먼트를 포함하는 메타데이터를 전송하고 있음을 나타낼 수 있다. The @deliveryObjectFormat information identifies the format of the payload of the object for the transmission of data. For example, the information may indicate that the object is transmitting a signaling message, transmitting a file, transmitting an entity, transmitting a package, or transmitting metadata including an initialization segment.
@fragmentation 정보는 프래그멘테이션 (Fragmentation) 의 타입을 식별한다. @fragmentation information identifies the type of fragmentation.
@deliveryOrder 정보는 오브젝트들의 전송 순서를 식별한다. 예를 들면, 본 정보는 현재 페이로드를 통하여 전송되는 오브젝트의 순서를 식별하는데 사용될 수 있다.@deliveryOrder information identifies the transmission order of objects. For example, this information may be used to identify the order of objects that are transmitted on the current payload.
@sourceFecPayloadID 정보는 소스 FEC 페이로드 ID (Source FEC Payload ID) 의 포맷을 정의할 수 있다. The @sourceFecPayloadID information may define the format of a Source FEC Payload ID.
TCID는 TOI 필드의 일부를 가변 길이의 시그널링 메시지 관련 정보의 기술을 위해 사용하는 경우, TOI 필드의 구성 정보를 포함할 수 있다. The TCID may include configuration information of the TOI field when a part of the TOI field is used for describing signaling message related information of variable length.
도 109는 본 발명의 일 실시예에 따른, TOI 구성 인스턴스 디스크립션 (TOI Configuration Instance Description; TCID) 를 나타낸 도면이다.FIG. 109 illustrates a TOI Configuration Instance Description (TCID) according to an embodiment of the present invention.
TOI 필드의 일부를 가변 길이의 시그널링 메시지 관련 정보의 기술을 위해 사용하며, 하나의 전송 세션 내에서 TOI 필드의 구성이 동적으로 변할 수 있다. A portion of the TOI field is used for describing signaling message related information of variable length, and the configuration of the TOI field may be dynamically changed in one transport session.
가변 길이의 TOI 필드 내 시그널링 메시지 관련 정보의 기술을 위해서는 TOI 필드 구성 정보가 별도로 전송될 수 있으며, 이러한 TOI 필드 구성 정보는, 도시된 형태로 전송될 수 있다. TOI field configuration information may be separately transmitted for describing signaling message related information in a variable length TOI field, and such TOI field configuration information may be transmitted in the form shown.
본 실시 예에서는, TCID는 하나의 codepoint 값에 맵핑되는 패킷들의 그룹에 해당하는 전송 패킷들의 TOI 필드 구성 정보를 제공한다. TCID는 LSID의 SourceFlow 내 PayloadFormat에 포함되어 전송될 수 있다. TCID의 내부 필드들은 앞서 설명한 TCD에서와 같을 수 있으며, PayloadFormat에 함께 포함된 @codePoint와 같은 값의 CP 값을 갖는 패킷들의 TOI 구성을 나타낼 수 있다. TOI의 구성 방법은 앞서 설명한 TCD에서의 방법과 같을 수 있다.In this embodiment, the TCID provides TOI field configuration information of transport packets corresponding to a group of packets mapped to one codepoint value. The TCID may be included in the PayloadFormat in the SourceFlow of the LSID and transmitted. The internal fields of the TCID may be the same as in the TCD described above, and may indicate a TOI configuration of packets having a CP value of the same value as @codePoint included in PayloadFormat. The construction method of the TOI may be the same as the method of the TCD described above.
본 발명의 일 실시예에 따른, TCID는 @typeBits 정보, @versionBits 정보, @instanceIdBits 정보, @validFromBits 정보, @expirationBits 정보, 및/또는 @payloadFormatBits 정보를 포함할 수 있다. 본 정보들에 대한 설명은, 동일한 명칭을 가지는 전술한 정보들에 대한 설명으로 대체한다.According to an embodiment of the present invention, the TCID may include @typeBits information, @versionBits information, @instanceIdBits information, @validFromBits information, @expirationBits information, and / or @payloadFormatBits information. The description of the information is replaced with the description of the above information having the same name.
도 110은 본 발명의 일 실시예에 따른, FIC (Fast Information Channel) 의 페이로드의 신택스 (syntax)를 나타낸 도면이다.FIG. 110 is a diagram illustrating syntax of a payload of a fast information channel (FIC) according to an embodiment of the present invention.
본 발명에서는 서비스를 스캔하거나, 서비스의 획득을 위한 정보를 포함하는 시그널링 데이터를 FIC로 명명하였으나, 그 명칭에 한정되지 않고, 서비스 계층 (또는 레벨) 의 하위 계층에서, 보다 효과적으로 방송 서비스를 획득하기 위한 정보를 제공하는 시그널링 데이터에 대한 설명을 하고자 한다. 일 예로, 이러한 시그널링 데이터는 서비스 리스트 테이블, 또는 서비스 리스트 엘레먼트 등의 다른 명칭으로 명명될 수 있다.In the present invention, signaling data including information for scanning a service or acquiring a service is named FIC. It will be described with respect to the signaling data providing information for. For example, such signaling data may be named by another name such as a service list table or a service list element.
또한, 본 발명에서는 설명의 편의를 위하여, 시그널링 데이터의 구조를 binary 형태의 테이블로 도시하였으나, 해당 테이블에 속하는 동일 또는 유사한 정보는, XML 형태로 구현될 수 있다.In addition, in the present invention, for the sake of convenience of description, the structure of the signaling data is shown in a binary table, but the same or similar information belonging to the table may be implemented in an XML form.
본 발명의 일 실시예에 따른 FIC 는 FIC_protocol_version 정보, transport_stream_id 정보, num_partitions 정보, partition_id 정보, partition_protocol_version 정보, num_services 정보, service_id 정보, service_data_version 정보, service_channel_number 정보, service_category 정보, short_service_name_length 정보, short_service_name 정보, service_status 정보, service_distribution 정보, sp_indicator 정보, IP_version_flag 정보, SSC_source_IP_address_flag 정보, SSC_source_IP_address 정보, SSC_destination_IP_address 정보, SSC_destination_UDP_port 정보, SSC_TSI 정보, SSC_DP_ID 정보, num_partition_level_descriptors 정보, partition_level_descriptor() 엘레먼트, num_FIC_level_descriptors 정보, 및/또는 FIC_level_descriptor() 엘레먼트를 포함할 수 있다.FIC according to an embodiment of the present invention is FIC_protocol_version information, transport_stream_id information, num_partitions information, partition_id information, partition_protocol_version information, num_services information, service_id information, service_data_version information, service_channel_number information, service_category information, short_service_name_length information, short_service_distribution name information Information, sp_indicator information, IP_version_flag information, SSC_source_IP_address_flag information, SSC_source_IP_address information, SSC_destination_IP_address information, SSC_destination_UDP_port information, SSC_TSI information, SSC_DP_ID information, num_partition_level_descriptors information, partition_level_descriptors information, partition_level_descriptors information, partition_level_descriptors information, and partition_level_descriptors information
FIC_protocol_version 정보는 FIC의 구조의 버전을 식별하는 정보이다.The FIC_protocol_version information is information for identifying the version of the structure of the FIC.
transport_stream_id 정보는 방송 스트림을 식별하는 정보이다. 전체 방송 스트림을 식별하는 정보에 해당될 수 있다.The transport_stream_id information is information for identifying a broadcast stream. It may correspond to information for identifying the entire broadcast stream.
num_partitions 정보는 방송 스트림 내에서의 파티션 (partition) 의 개수를 나타내는 정보이다. 하나의 방송 스트림은 하나 이상의 파티션으로 나뉘어질 수 있고, 각각의 파티션은, 하나의 방송사 (또는 방송 소스) 에 의하여 사용되는 하나 이상의 데이터 파이프 (data pipe)를 포함할 수 있다. The num_partitions information is information indicating the number of partitions in a broadcast stream. One broadcast stream may be divided into one or more partitions, and each partition may include one or more data pipes used by one broadcaster (or broadcast source).
partition_id 정보는 파티션을 식별하는 정보이다. The partition_id information is information for identifying a partition.
partition_protocol_version 정보는 파티션의 구조의 버전을 식별하는 정보이다.The partition_protocol_version information is information for identifying a version of a partition structure.
num_services 정보는 파티션을 통하여 하나 이상의 컴포넌트가 전송되는 방송 서비스의 개수를 나타낸다.The num_services information indicates the number of broadcast services through which one or more components are transmitted.
service_id 정보는 서비스 (또는 방송 서비스) 를 식별하는 정보이다.The service_id information is information for identifying a service (or broadcast service).
service_data_version 정보는 FIC에 의하여 시그널링되는 서비스를 위한 서비스 엔트리 (entry)에 변경이 있는 경우, 이 변경을 식별하는 정보이다. 또는, service_data_version 정보는 서비스 시그널링 채널 (또는 서비스 레벨 시그널링)에 포함되는, 서비스를 위한 시그널링 테이블에 변경이 있는 경우, 이를 식별하는 정보이다. service_data_version 정보는 해당 변경이 있을 때 마다, 그 값을 증가시켜, 변경이 있음을 나타낼 수 있다.The service_data_version information is information for identifying this change when there is a change in a service entry for a service signaled by the FIC. Alternatively, service_data_version information is information for identifying a change in a signaling table for a service included in a service signaling channel (or service level signaling). The service_data_version information may indicate that there is a change by increasing its value whenever there is a corresponding change.
service_channel_number 정보는 서비스를 위한 채널 번호를 나타낸다.The service_channel_number information represents a channel number for a service.
service_category 정보는 서비스의 카태고리를 나타낸다. 예를 들어, service_category 정보는 방송 서비스가 A/V 서비스, 오디오 서비스, ESG (Electronic Service Guide), App based service 및/또는 CoD (Content on Demand) 임을 나타낼 수 있다.The service_category information represents a category of service. For example, the service_category information may indicate that the broadcast service is an A / V service, an audio service, an electronic service guide (ESG), an app based service, and / or a content on demand (CoD).
short_service_name_length 정보는, short_service_name 정보의 길이를 나타낸다. short_service_name_length 정보는, short_service_name 정보가 존재하지 않는 경우, ‘0’ 의 값을 가질 수 있다.The short_service_name_length information indicates the length of the short_service_name information. The short_service_name_length information may have a value of '0' when the short_service_name information does not exist.
short_service_name 정보는 서비스의 Short Name을 나타낸다. short_service_name 정보가 나타내는 각 문자는 UTF-8 에 의하여 인코딩될 수 있다. short_service_name 정보가 홀수의 바이트 길이를 가지는 경우, short_service_name_length 정보에 의하여 식별되는 카운트 페어 (pair) 마다의 바이트 페어의 마지막 두번째 바이트는 0x00 값을 가질 수 있다. (The short name of the Service, each character of which shall be encoded per UTF-8 []. When there is an odd number of bytes in the short name, the second byte of the last of the byte pair per the pair count indicated by the short_service_name_length field shall contain 0x00.)The short_service_name information represents a short name of a service. Each character indicated by the short_service_name information may be encoded by UTF-8. When the short_service_name information has an odd byte length, the last second byte of the byte pair per count pair identified by the short_service_name_length information may have a value of 0x00. (The short name of the Service, each character of which shall be encoded per UTF-8 [] .When there is an odd number of bytes in the short name, the second byte of the last of the byte pair per the pair count indicated by the short_service_name_length field shall contain 0x00.)
service_status 정보는 서비스의 상태를 나타낸다. service_status 정보는 방송 서비스가 active, inactive, suspended, hidden, 및/또는 shown 상태임을 나타낼 수 있다.The service_status information indicates the state of the service. The service_status information may indicate that a broadcast service is in an active, inactive, suspended, hidden, and / or shown state.
service_distribution 정보는 방송 서비스 또는 방송 컨텐츠의 표출 (representation)이, 현재 파티션만으로 가능한지, 현재 파티션만으로는 불가능하지만 현재 파티션이 필요한지, 다른 파티션을 필요로 하는지, 다른 방송 스트림을 필요로 하는지를 식별한다.The service_distribution information identifies whether the presentation of a broadcast service or broadcast content is possible with only the current partition, not with the current partition but with the current partition, another partition, or another broadcast stream.
sp_indicator 정보는 서비스 보호가 적용되었는지 나타낸다. sp_indicator 정보는 의미있는 표출을 위하여 필요한, 방송 서비스의 하나 이상의 컴포넌트들에 대하여, protection이 되었는지를 식별한다.The sp_indicator information indicates whether service protection is applied. The sp_indicator information identifies whether protection is provided for one or more components of a broadcast service, which are necessary for meaningful presentation.
IP_version_flag 정보는, SSC_source_IP_address 정보 및/또는 SSC_destination_IP_address 정보가 나타내는 IP 주소가 IPv4 주소인지, IPv6 주소인지를 식별한다.The IP_version_flag information identifies whether the IP address indicated by the SSC_source_IP_address information and / or the SSC_destination_IP_address information is an IPv4 address or an IPv6 address.
SSC_source_IP_address_flag 정보는, 서비스를 위하여 SSC_source_IP_address 정보가 존재하는지 식별하는 정보이다. The SSC_source_IP_address_flag information is information for identifying whether SSC_source_IP_address information exists for a service.
SSC_source_IP_address 정보는, SSC_source_IP_address_flag 정보의 값이 ‘1’ 로 셋팅된 경우, 존재하지만, SSC_source_IP_address_flag 정보의 값이 ‘0’ 으로 셋팅된 경우, 존재하지 않는다. SSC_source_IP_address 정보는 서비스를 위한 시그널링 정보를 전송하는 IP 데이터 그램 (또는 데이터 유닛)의 소스 IP 주소를 나타낸다. SSC_source_IP_address 정보는, IPv6의 주소가 사용되는 경우, 128 비트를 가질 수 있다.SSC_source_IP_address information exists when the value of the SSC_source_IP_address_flag information is set to '1', but does not exist when the value of the SSC_source_IP_address_flag information is set to '0'. The SSC_source_IP_address information indicates a source IP address of an IP datagram (or data unit) that carries signaling information for a service. The SSC_source_IP_address information may have 128 bits when an IPv6 address is used.
SSC_destination_IP_address 정보는 서비스를 위한 시그널링 정보를 전송하는 IP 데이터 그램 (또는 데이터 유닛)의 데스티네이션 IP 주소를 나타낸다. SSC_destination_IP_address 정보는, IPv6의 주소가 사용되는 경우, 128 비트를 가질 수 있다.The SSC_destination_IP_address information indicates a destination IP address of an IP datagram (or data unit) that carries signaling information for a service. The SSC_destination_IP_address information may have 128 bits when an IPv6 address is used.
SSC_destination_UDP_port 정보는 서비스를 위한 시그널링 정보를 전송하는 UDP/IP 스트림을 위한 데스티네이션 UDP 포트 번호를 나타낸다.The SSC_destination_UDP_port information represents a destination UDP port number for a UDP / IP stream for transmitting signaling information for a service.
SSC_TSI 정보는 서비스를 위한 시그널링 정보 (또는 시그널링 테이블)를 전송하는 LCT 채널의 TSI (Transport Session Identifier) 를 나타낸다.The SSC_TSI information represents a transport session identifier (TSI) of an LCT channel for transmitting signaling information (or signaling table) for a service.
SSC_DP_ID 정보는 서비스를 위한 시그널링 정보 (또는 시그널링 테이블)을 포함하는 데이터 파이프 (DP; Data Pipe)를 식별하는 정보이다. 시그널링 정보를 전송하는 데이터 파이프는, 현재 파티션 또는 방송 스트림 내에서 가장 robust 한 데이터 파이프에 해당될 수 있다.The SSC_DP_ID information is information for identifying a data pipe (DP) including signaling information (or signaling table) for a service. A data pipe for transmitting signaling information may correspond to the most robust data pipe in a current partition or broadcast stream.
num_partition_level_descriptors 정보는 파티션을 위하여 정의되는 파티션 레벨 디스크립터의 개수를 나타낸다.The num_partition_level_descriptors information indicates the number of partition level descriptors defined for a partition.
partition_level_descriptor() 엘레먼트는 하나 이상의 파티션 레벨 디스크립터를 포함한다. 파티션 레벨 디스크립터는 수신기에서 파티션에 접근하거나, 파티션을 획득하거나, 파티션을 이용하기 위하여 필요한 정보를 포함할 수 있다.The partition_level_descriptor () element contains one or more partition level descriptors. The partition level descriptor may include information necessary for accessing a partition, obtaining a partition, or using a partition at a receiver.
num_FIC_level_descriptors 정보는 FIC를 위하여 정의되는 FIC 레벨 디스크립터의 개수를 나타낸다. The num_FIC_level_descriptors information indicates the number of FIC level descriptors defined for the FIC.
FIC_level_descriptor() 엘레먼트는 하나 이상의 FIC 레벨 디스크립터를 포함한다. FIC 레벨 디스크립터는 FIC를 위한 추가의 시그널링 정보를 포함할 수 있다.The FIC_level_descriptor () element contains one or more FIC level descriptors. The FIC level descriptor may include additional signaling information for the FIC.
도 111은 본 발명의 다른 실시예에 따른, FIC의 페이로드의 신택스 (syntax)를 나타낸 도면이다.FIG. 111 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention. FIG.
본 발명의 다른 실시예에 따른, FIC의 페이로드는, 전술한 실시예에서의 FIC의 페이로드에 SSC_delivery_type 정보, SSC_URL_length 정보, 및/또는 SSC_URL_data 정보를 추가로 포함할 수 있다.The payload of the FIC according to another embodiment of the present invention may further include SSC_delivery_type information, SSC_URL_length information, and / or SSC_URL_data information in the payload of the FIC in the above-described embodiment.
SSC_delivery_type 정보는 서비스와 관련되는 시그널링 정보 (예를 들면, 서비스 시그널링 채널 또는 서비스 레벨 시그널링) 가 전달되는 경로를 식별하는 정보이다. SSC_delivery_type 정보는 서비스 레벨 시그널링의 데이터가 브로드밴드 (인터넷 망)를 통하여 전송되는지 여부를 식별할 수 있다. 일 예로, SSC_delivery_type 정보는, 그 값이 0x01을 가질 때, 방송망을 통하여 서비스 레벨 시그널링이 전송됨을 나타낼 수 있다. SSC_delivery_type 정보는, 그 값이 0x02를 가질 때, 인터넷 망을 통하여 서비스 레벨 시그널링이 전송됨을 나타낼 수 있다. SSC_delivery_type information is information for identifying a path through which signaling information (eg, a service signaling channel or service level signaling) related to a service is delivered. The SSC_delivery_type information may identify whether data of service level signaling is transmitted through a broadband (Internet network). For example, the SSC_delivery_type information may indicate that service level signaling is transmitted through the broadcast network when the value has 0x01. The SSC_delivery_type information may indicate that service level signaling is transmitted through the Internet when its value has 0x02.
SSC_URL_length 정보는 SSC_URL_data 정보의 길이를 나타낸다.The SSC_URL_length information represents the length of the SSC_URL_data information.
SSC_URL_data 정보는 서비스와 관련되는 시그널링 정보를 제공하는 서버 또는 위치의 URL 을 나타낸다.The SSC_URL_data information represents a URL of a server or a location that provides signaling information related to a service.
본 실시예에서 설명되지 않은, 다른 정보들에 대한 설명은, 전술한 설명으로 대체한다.Description of other information, which is not described in this embodiment, is replaced with the above description.
도 112는 본 발명의 다른 실시예에 따른, 서비스 레벨 시그널링의 신택스 (syntax)를 나타낸 도면이다.112 is a diagram illustrating syntax of service level signaling according to another embodiment of the present invention.
수신기에서, 시청자가 원하는 방송 서비스 및/또는 방송 컨텐트를 수신하기 위하여, 필요한 정보를 서비스 레벨 시그널링으로 명명할 수 있다. 서비스 레벨 시그널링은, 방송 서비스 및 방송 서비스에 포함되는 컴포넌트에 대한 속성을 설명하는 정보를 포함한다.In the receiver, information required for receiving a broadcast service and / or broadcast content desired by a viewer may be called service level signaling. Service level signaling includes information describing a property of a broadcast service and a component included in the broadcast service.
본 발명의 다른 실시예에 따른, 서비스 레벨 시그널링 데이터는, 시그널링 메시지 헤더 (header) 및/또는 서비스 시그널링 메시지를 포함할 수 있다.According to another embodiment of the present invention, the service level signaling data may include a signaling message header and / or a service signaling message.
본 발명의 다른 실시예에 따른, 서비스 레벨 시그널링 데이터는, @service_id 정보, @service_category 정보, @service_name 정보, @channel_number 정보, @service_status 정보, @service_distribution 정보, @SP_indicator 정보, ROUTE Session 엘레먼트, @sourceIPAddr 정보, @destIPAddr 정보, @destUDPPort 정보, @LSID_DP 정보, Targeting 엘레먼트, Content Advisory 엘레먼트, Right Issuer Service 엘레먼트, Current Program 엘레먼트, Original Service Identification 엘레먼트, Content Labeling 엘레먼트, Genre 엘레먼트, Caption 엘레먼트, 및/또는 Protection 엘레먼트를 포함할 수 있다.According to another embodiment of the present invention, the service level signaling data includes: @service_id information, @service_category information, @service_name information, @channel_number information, @service_status information, @service_distribution information, @SP_indicator information, ROUTE session element, and @sourceIPAddr information. , @destIPAddr information, @destUDPPort information, @LSID_DP information, Targeting element, Content Advisory element, Right Issuer Service element, Current Program element, Original Service Identification element, Content Labeling element, Genre element, Caption element, and / or Protection element It may include.
@service_id 정보는 방송 서비스를 식별하는 정보이다.The @service_id information is information for identifying a broadcast service.
@service_category 정보는 방송 서비스의 카테고리를 식별하는 정보이다. 예를 들면, @service_category 정보는 방송 서비스가, 오디오 서비스, 실시간 방송 서비스, 비실시간 방송 서비스, linear 방송 서비스, app-based 방송 서비스 혹은 서비스 가이드 임을 식별할 수 있다.The @service_category information is information for identifying a category of a broadcast service. For example, the @service_category information may identify that the broadcast service is an audio service, a real time broadcast service, a non-real time broadcast service, a linear broadcast service, an app-based broadcast service, or a service guide.
@service_name 정보는 방송 서비스의 명칭을 나타낸다.The @service_name information represents the name of a broadcast service.
@channel_number 정보는 방송 서비스를 전송하는 채널 번호를 나타낸다. 이 채널 번호는, 논리적/물리적 채널 번호에 해당될 수 있다. 경우에 따라서, 이 채널 번호는, 서비스 레벨 시그널링의 데이터를 전송하는 논리적 전송 경로 또는 전송 유닛을 식별하는 정보로 사용될 수 있다.@channel_number information represents a channel number for transmitting a broadcast service. This channel number may correspond to a logical / physical channel number. In some cases, this channel number may be used as information identifying a logical transmission path or transmission unit for transmitting data of service level signaling.
@service_status 정보는 방송 서비스의 상태를 나타낸다. @service_status 정보는 방송 서비스가 액티브 (active) 상태인지, 인액티브 (inactive) 상태인지 식별하는 정보를 포함할 수 있다. @service_status 정보는 방송 서비스가 히든 (hidden) 상태인지 여부를 식별하는 정보를 포함할 수 있다. The @service_status information indicates the status of a broadcast service. The @service_status information may include information identifying whether the broadcast service is in an active state or inactive state. The @service_status information may include information for identifying whether a broadcast service is in a hidden state.
@service_distribution 정보는 방송 서비스를 위한 데이터 또는 컴포넌트가 어떻게 분배되어 전송되는지 나타내는 정보이다.The @service_distribution information is information indicating how data or components for a broadcast service are distributed and transmitted.
@SP_indicator 정보는, 방송 서비스 또는 방송 서비스에 포함되는 적어도 하나의 컴포넌트에 대하여 서비스 프로텍션 (protection) 이 적용되었는지 식별하는 정보이다. @SP_indicator 정보는 방송 서비스의 의미있는 표출을 위한 데이터 단위 또는 컴포넌트에 서비스 프로텍션이 적용되었는지 식별하는 정보에 해당될 수 있다.The @SP_indicator information is information for identifying whether service protection is applied to the broadcast service or at least one component included in the broadcast service. The @SP_indicator information may correspond to information for identifying whether service protection is applied to a data unit or component for meaningful presentation of a broadcast service.
ROUTE Session 엘레먼트는 방송 서비스 또는 방송 서비스에 포함되는 컴포넌트들을 전송하는 ROUTE 세션에 대한 정보를 포함하는 엘레먼트이다.The ROUTE Session element is an element including information on a ROUTE session for transmitting a broadcast service or components included in the broadcast service.
@sourceIPAddr 정보는 ROUTE 패킷을 전송하는 IP 데이터 그램 (혹은 데이터 유닛)의 소스 (source) IP 주소를 나타낸다.The @sourceIPAddr information indicates a source IP address of an IP datagram (or data unit) transmitting a ROUTE packet.
@destIPAddr 정보는 ROUTE 패킷을 전송하는 IP 데이터 그램 (혹은 데이터 유닛)의 데스티네이션 (destination) IP 주소를 나타낸다.@destIPAddr information indicates a destination IP address of an IP datagram (or data unit) transmitting a ROUTE packet.
@destUDPPort 정보는 ROUTE 패킷을 전송하는 IP 데이터 그램 (혹은 데이터 유닛)의 데스티네이션 포트 (port) 번호를 나타낸다.@destUDPPort information indicates a destination port number of an IP datagram (or data unit) transmitting a ROUTE packet.
@LSID_DP 정보는 ROUTE 세션과 관련한 전송 파라미터 및/또는 ROUTE 세션 내의 하위 세션을 설명하는 정보 (예를 들면, LSID)를 전달하는 데이터 파이프를 식별하는 정보이다.The @LSID_DP information is information identifying a data pipe carrying transport parameters relating to a ROUTE session and / or information describing a sub-session within the ROUTE session (eg, LSID).
Targeting 엘레먼트는 개인화된 방송 서비스 (타겟팅 방송) 제공을 위한 정보를 포함하는 엘레먼트이다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다. The targeting element is an element including information for providing a personalized broadcast service (targeting broadcast). This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included.
Content Advisory 엘레먼트는 방송 서비스에 대한 시청 등급과 관련한 정보를 포함하는 엘레먼트이다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다. Right Issuer Service 엘레먼트는 방송 서비스를 적절히 소비하기 위한 권한과 관련한 정보를 포함하는 엘레먼트이다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다. The Content Advisory element is an element that contains information related to a rating of a broadcast service. This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included. The Right Issuer Service element is an element that contains information on the right to consume broadcast services properly. This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included.
Current Program 엘레먼트는 현재 방송 프로그램에 대한 정보를 포함하는 엘레먼트이다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다. The Current Program element is an element including information about the current broadcast program. This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included.
Original Service Identification 엘레먼트는 현재 방송 서비스와 관련한 원래의 서비스를 식별하는 것과 관련된 정보를 포함하는 엘레먼트이다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다. The Original Service Identification element is an element including information related to identifying the original service related to the current broadcast service. This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included.
Content Labeling 엘레먼트는 컨텐트 레벨링 (content labeling) 과 관련한 정보를 포함하는 엘레먼트이다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다. Genre 엘레먼트는 방송 서비스의 장르를 구분하기 위한 정보를 포함하는 정보이다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다.The Content Labeling element is an element that contains information related to content labeling. This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included. The Genre element is information including information for identifying the genre of a broadcast service. This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included.
Caption 엘레먼트는 방송 서비스의 closed caption/subtitle 에 대한 정보를 포함하는 엘레먼트이다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다.The caption element is an element including information on closed caption / subtitle of a broadcast service. This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included.
Protection 엘레먼트는 방송 서비스에 대한 프로텍션 (protection) 관련 정보를 포함하는 엘레먼트이다. Protection 엘레먼트는 전술한 @SP_indicator 정보가, 방송 서비스 또는 방송 컴포넌트에 대하여 프로텍션이 적용된 경우, 이 프로텍션과 관련한 세부 정보를 제공할 수 있다. 본 엘레먼트는 별도의 시그널링 구조로 서비스 레벨 시그널링에 포함될 수 있다. 이러한 경우 해당 서비스 레벨 시그널링에 대한 링크 정보를 포함할 수 있다.The protection element is an element including protection-related information about a broadcast service. The Protection element may provide detailed information related to the protection when the above-described @SP_indicator information is applied to a broadcast service or a broadcast component. This element may be included in service level signaling in a separate signaling structure. In this case, link information on the corresponding service level signaling may be included.
도 113은 본 발명의 다른 실시예에 따른, 컴포넌트 맵핑 디스크립션 (component mapping description) 을 나타낸 도면이다.FIG. 113 is a diagram illustrating a component mapping description according to another embodiment of the present invention.
본 발명의 다른 실시예에 따른, 컴포넌트 맵핑 디스크립션은, 전술한 실시예에 따른, 컴포넌트 맵핑 디스크립션에 포함되는 정보 또는 엘레먼트에 더하여, @partitionID 정보를 더 포함할 수 있다.According to another embodiment of the present invention, the component mapping description may further include @partitionID information in addition to the information or element included in the component mapping description according to the above-described embodiment.
@partitionID 정보는 방송 스트림 상에서 방송국을 나타내는 partition 을 식별하는 정보이다. @partitionID 정보는 방송 컴포넌트를 전송하는 출처를 식별하는 정보로 사용될 수 있다. The @partitionID information is information for identifying a partition representing a broadcast station on a broadcast stream. @partitionID information may be used as information for identifying a source for transmitting a broadcast component.
컴포넌트 맵핑 디스크립션에 포함되는 다른 정보 또는 엘레먼트에 대한 설명은, 동일한 명칭을 가지는 정보 또는 엘레먼트에 대하여, 전술한 설명으로 대체한다.Description of other information or elements included in the component mapping description is replaced with the above description for information or elements having the same name.
도 114는 본 발명의 다른 실시예에 따른, URL 시그널링 디스크립션 (URL signaling description) 의 신택스 (syntax)를 나타낸 도면이다.FIG. 114 is a diagram illustrating syntax of a URL signaling description according to another embodiment of the present invention. FIG.
전술한 바와 같이, 방송 서비스를 설명하는 시그널링 정보는 방송망뿐만 아니라, 브로드밴드망을 통하여 전송될 수 있다. 방송 서비스를 설명하는 시그널링 정보가 브로드밴드망을 통하여 전송되는 경우, 수신기는 URL 시그널링 디스크립션을 통하여, 해당 시그널링 정보를 획득할 수 있다.As described above, signaling information describing a broadcast service may be transmitted through a broadband network as well as a broadcast network. When signaling information describing a broadcast service is transmitted through a broadband network, the receiver may acquire corresponding signaling information through a URL signaling description.
본 발명의 다른 실시예에 따른, URL 시그널링 디스크립션은 @service_id 정보, @smtURL 정보, @mpdURL 정보, @cmtURL 정보, @astURL 정보, @gatURL 정보, 및/또는 @eatURL 정보를 포함할 수 있다.According to another embodiment of the present invention, the URL signaling description may include @service_id information, @smtURL information, @mpdURL information, @cmtURL information, @astURL information, @gatURL information, and / or @eatURL information.
@service_id 정보는 서비스를 식별하는 정보이다.The @service_id information is information for identifying a service.
@smtURL 정보는 브로드밴드로 SMT (Service Map Table) 가 전송되는 경우, SMT를 제공하는 서버 또는 위치의 URL을 나타내는 정보이다.The @smtURL information is information indicating a URL of a server or a location that provides an SMT when a SMT (Service Map Table) is transmitted through a broadband.
@mpdURL 정보는 브로드밴드로 MPD 가 전송되는 경우, MPD를 제공하는 서버 또는 위치의 URL을 나타내는 정보이다.The @mpdURL information is information indicating a URL of a server or a location providing the MPD when the MPD is transmitted over broadband.
@cmtURL 정보는 브로드밴드로 CMT (Component Mapping Table) 가 전송되는 경우, CMT를 제공하는 서버 또는 위치의 URL을 나타내는 정보이다.The @cmtURL information is information indicating a URL of a server or a location providing a CMT when a CMT (Component Mapping Table) is transmitted through a broadband.
@astURL 정보는 브로드밴드로 AST (Application Signaling Talbe) 가 전송되는 경우, AST를 제공하는 서버 또는 위치의 URL을 나타내는 정보이다.@astURL information is information indicating a URL of a server or a location that provides an AST when an AST (Application Signaling Talbe) is transmitted through a broadband.
@gatURL 정보는 브로드밴드로 GAT (Guide Access Table) 가 전송되는 경우, GAT를 제공하는 서버 또는 위치의 URL을 나타내는 정보이다. GAT는 ESG (Electronic Service Guide) 의 부트스트랩 (bootstrap) 을 위한 정보를 포함하는 시그널링 메시지에 해당될 수 있다. 즉, GAT는 수신기가 ESG에 접근하기 위하여 필요한 정보를 포함하는 시그널링 메시지에 해당될 수 있다.The @gatURL information is information indicating a URL of a server or a location that provides a GAT when a guide access table (GAT) is transmitted over a broadband. The GAT may correspond to a signaling message including information for bootstrap of an ESG (Electronic Service Guide). That is, the GAT may correspond to a signaling message including information necessary for the receiver to access the ESG.
@eatURL 정보는 브로드밴드로 EAT (Emergency Alert Table) 가 전송되는 경우, EAT를 제공하는 서버 또는 위치의 URL을 나타내는 정보이다. EAT는 비상 경보 관련 정보와 비상 경보 메시지를 포함하는 시그널링 메시지에 해당될 수 있다.The @eatURL information is information indicating a URL of a server or a location that provides an EAT when an EAT (Emergency Alert Table) is transmitted over a broadband. The EAT may correspond to a signaling message including emergency alert related information and an emergency alert message.
도 115는 본 발명의 다른 실시예에 따른, SourceFlow 엘레먼트를 나타낸 도면이다.115 is a view showing a SourceFlow element according to another embodiment of the present invention.
방송 서비스의 데이터는 ROUTE 세션을 통하여, 오브젝트 (Object) 단위로 전송될 수 있다. 각각의 오브젝트는 개별적으로 복원될 수 있다. 하나의 세션 내에서, 오브젝트를 전송하기 위하여 source 프로토콜을 정의할 수 있고, source 프로토콜 내에서서의 source (object) 의 전달과 관련한 정보를 포함하는 SourceFlow 엘레먼트를 정의할 수 있다.Data of the broadcast service may be transmitted in units of objects through a ROUTE session. Each object can be restored individually. Within one session, you can define a source protocol to send objects, and define a SourceFlow element that contains information about the delivery of source (object) within the source protocol.
본 발명의 다른 실시예에 따른, SourceFlow 엘레먼트는 전술한 SourceFlow 엘레먼트에 포함되는 정보/속성/엘레먼트 이외에, @location 정보를 더 포함할 수 있다.According to another embodiment of the present invention, the SourceFlow element may further include @location information in addition to the information / attribute / element included in the aforementioned SourceFlow element.
@location 정보는 source flow 의 데이터를 전송하는 위치 또는 데이터 유닛을 나타내는 정보이다. @location 정보는 방송 스트림 내에서 데이터 파이프를 식별하고, 수신기는 해당 데이터 파이프를 통하여, source flow 의 데이터가 전송됨을 알 수 있다.The @location information is information indicating a location or data unit for transmitting data of the source flow. The @location information identifies a data pipe in the broadcast stream, and the receiver can know that data of the source flow is transmitted through the data pipe.
SourceFlow 엘레먼트에 포함되는 다른 정보/속성/엘레먼트에 대한 설명은, 전술한 SourceFlow 엘레먼트에 대한 설명으로 대체한다.The description of other information / attributes / elements included in the SourceFlow element is replaced with the description of the aforementioned SourceFlow element.
도 116은 본 발명의 다른 실시예에 따른, 시그널링 정보를 방송망을 통하여 획득하는 과정을 나타낸 도면이다.116 is a diagram illustrating a process of acquiring signaling information through a broadcasting network according to another embodiment of the present invention.
수신기는 FIC 에 포함되는 서비스를 식별하는 정보를 이용하여, 수신기가 원하는 방송 서비스와 관련된 서비스 시그널링 채널의 데이터가 전송되는 위치에 접근할 수 있다.The receiver may access a location where data of a service signaling channel associated with a broadcast service desired by the receiver is transmitted using information identifying a service included in the FIC.
수신기는 FIC 에서, 서비스 시그널링 채널의 데이터를 전송하는 IP 데이터그램의 소스 IP 주소, 데스티네이션 IP 주소 및/또는 UDP 포트 번호에 대한 정보를 획득한다.In the FIC, the receiver obtains information about a source IP address, a destination IP address, and / or a UDP port number of an IP datagram that transmits data of a service signaling channel.
수신기는 FIC 에서, 서비스 시그널링 채널의 데이터를 포함하는 데이터 파이프를 식별하는 정보를 획득한다. 수신기는 해당 정보를 통하여, 서비스 시그널링 채널의 데이터가 전송되는 데이터 파이프에 접근할 수 있다.The receiver obtains, in the FIC, information identifying a data pipe containing data of a service signaling channel. The receiver may access a data pipe through which data of a service signaling channel is transmitted through the corresponding information.
수신기는 FIC 에 포함된, 서비스 시그널링 채널의 데이터를 전송하는 LCT 세션을 식별하는 정보를 이용하여, 해당 LCT 세션에 접근할 수 있다. 또는 서비스 시그널링 채널의 데이터를 전송하는 LCT 세션은, 특정 TSI 를 가지는 LCT 세션으로 고정될 수 있으며, 이 경우, 수신기는 별도의 정보 없이도, 서비스 시그널링 채널의 데이터를 얻기 위하여, 위 특정 TSI를 가지는 LCT 세션에 접근할 수 있다. 수신기는, 해당 위치에 접근하여, 서비스 시그널링 채널의 데이터를 획득할 수 있다.The receiver may access the corresponding LCT session by using information for identifying the LCT session for transmitting data of the service signaling channel included in the FIC. Alternatively, an LCT session for transmitting data of a service signaling channel may be fixed to an LCT session having a specific TSI. In this case, the receiver may obtain an LCT having the above specific TSI in order to obtain data of the service signaling channel without additional information. You can access the session. The receiver may access the corresponding location to obtain data of the service signaling channel.
수신기는 전술한 LSID를 전송하는 LCT 세션에 접근할 수도 있다. 이 경우, LSID를 전송하는 LCT 세션의 TSI는 고정되어 있을 수 있으며, 수신기는 해당 TSI를 가지는 LCT 세션에 접근하여, LSID를 획득할 수 있다. 수신기는 LSID의 정보를 이용하여, 방송 서비스에 포함되는 컴포넌트를 획득할 수 있다.The receiver may access an LCT session transmitting the above-described LSID. In this case, the TSI of the LCT session transmitting the LSID may be fixed, and the receiver may access the LCT session having the corresponding TSI and acquire the LSID. The receiver may acquire a component included in a broadcast service by using the information of the LSID.
도 117은 본 발명의 다른 실시예에 따른, 시그널링 정보를 방송망과 브로드밴드망을 통하여 획득하는 과정을 나타낸 도면이다.117 is a diagram illustrating a process of acquiring signaling information through a broadcasting network and a broadband network according to another embodiment of the present invention.
수신기는 FIC 에 포함되는 서비스를 식별하는 정보를 이용하여, 수신기가 원하는 방송 서비스와 관련된 서비스 시그널링 채널의 데이터가 전송되는 위치에 접근할 수 있다.The receiver may access a location where data of a service signaling channel associated with a broadcast service desired by the receiver is transmitted using information identifying a service included in the FIC.
수신기는 FIC 에서, 서비스 시그널링 채널의 데이터를 전송하는 IP 데이터그램의 소스 IP 주소, 데스티네이션 IP 주소 및/또는 UDP 포트 번호에 대한 정보를 획득한다.In the FIC, the receiver obtains information about a source IP address, a destination IP address, and / or a UDP port number of an IP datagram that transmits data of a service signaling channel.
수신기는 FIC 에서, 서비스 시그널링 채널의 데이터를 포함하는 데이터 파이프를 식별하는 정보를 획득한다. 수신기는 해당 정보를 통하여, 서비스 시그널링 채널의 데이터가 전송되는 데이터 파이프에 접근할 수 있다.The receiver obtains, in the FIC, information identifying a data pipe containing data of a service signaling channel. The receiver may access a data pipe through which data of a service signaling channel is transmitted through the corresponding information.
수신기는 서비스 시그널링 채널의 데이터에 접근하여, 전술한 URL 시그널링 테이블 또는 URL 시그널링 디스크립션을 획득한다. 수신기는 URL 시그널링 테이블에 포함되는 정보를 이용하여, 서비스 레벨 시그널링을 제공하는 서버 또는 위치에 접근하여, 브로드밴드망을 통하여, 서비스 레벨 시그널링을 획득할 수 있다.The receiver accesses data of the service signaling channel to obtain the above-described URL signaling table or URL signaling description. The receiver may access the server or the location providing the service level signaling by using the information included in the URL signaling table and acquire the service level signaling through the broadband network.
도 118은 본 발명의 다른 실시예에 따른, 시그널링 정보를 브로드밴드망을 통하여 획득하는 과정을 나타낸 도면이다.118 is a diagram illustrating a process of acquiring signaling information through a broadband network according to another embodiment of the present invention.
수신기는 FIC 에 포함되는, 서비스 시그널링 채널의 전송 타입을 식별하는 정보가, 서비스 시그널링 채널의 데이터가 브로드밴드망을 통하여 전송됨을 나타내는 경우, FIC 내에서 서비스 시그널링 채널의 데이터를 제공하는 서버 또는 위치에 대한 URL 정보를 획득한다. 이 경우, URL 정보는 서비스 시그널링 채널의 데이터 전체를 제공하는 하나의 서버 또는 위치에 대한 URL을 나타내거나, 서비스 시그널링 채널에 포함될 수 있는 각각의 시그널링 구조 (SMT, MPD, CMT 등)를 제공하는 각각의 서버 또는 위치의 URL 을 나타낼 수 있다.The receiver may include information on a server or a location that provides data of a service signaling channel in the FIC when the information identifying the type of transmission of the service signaling channel included in the FIC indicates that data of the service signaling channel is transmitted through the broadband network. Obtain URL information. In this case, the URL information represents a URL for one server or location providing the entire data of the service signaling channel, or each providing each signaling structure (SMT, MPD, CMT, etc.) that can be included in the service signaling channel. It can represent the URL of the server or location of.
수신기는 해당 URL 정보가 나타내는 서버 또는 위치에 접근하여, 브로드밴드망으로 서비스 시그널링 채널의 데이터를 획득한다.The receiver accesses a server or a location indicated by the corresponding URL information and acquires data of a service signaling channel through a broadband network.
도 119는 본 발명의 다른 실시예에 따른, ESG (Electronic Service Guide)를 방송망을 통하여 획득하는 과정을 나타낸 도면이다.119 is a diagram illustrating a process of acquiring an electronic service guide (ESG) through a broadcasting network according to another embodiment of the present invention.
수신기는, FIC 에 포함되는 서비스의 카테고리를 식별하는 정보로부터, 방송 서비스가 ESG에 해당됨을 인식하고, 해당 서비스에 대한 서비스 시그널링 채널의 데이터를 전송하는 데이터 파이프를 식별하는 정보를 획득할 수 있다. The receiver may recognize that a broadcast service corresponds to an ESG from information identifying a category of a service included in the FIC, and may acquire information identifying a data pipe for transmitting data of a service signaling channel for the corresponding service.
수신기는 식별된 데이터 파이프에 접근하여, 해당 데이터 파이프로 전송되는 ESG의 데이터를 획득할 수 있다. The receiver may access the identified data pipe and obtain data of the ESG transmitted to that data pipe.
이러한 과정을 이용하여, ESG 를 방송 서비스로 취급하지만, 일반적인 방송 서비스에 접근하기 위하여 복잡한 시그널링 구조를 해석할 필요가 없어져, ESG의 획득이 보다 효율적으로 이루어 질 수 있다.Using this process, the ESG is treated as a broadcast service, but it is not necessary to interpret a complicated signaling structure in order to access a general broadcast service, so that the ESG can be obtained more efficiently.
도 120은 본 발명의 다른 실시예에 따른, 방송 서비스의 비디오 세그먼트 및 오디오 세그먼트를 방송망을 통하여 획득하는 과정을 나타낸 도면이다.120 is a diagram illustrating a process of acquiring a video segment and an audio segment of a broadcast service through a broadcast network according to another embodiment of the present invention.
수신기는 서비스 시그널링 채널의 데이터를 획득하고, 서비스 시그널링 채널의 데이터에 포함되는, 방송 서비스의 컴포넌트를 설명하는 정보는 포함하는 시그널링 구조 (예를 들면, CMT)를 획득한다. The receiver obtains data of the service signaling channel and obtains a signaling structure (eg, CMT) that includes information describing a component of a broadcast service included in the data of the service signaling channel.
해당 시그널링 구조에서, 수신기는, 방송 서비스의 비디오 컴포넌트를 전송하는 데이터 파이프를 식별하는 정보를 획득하고, 해당 정보를 이용하여, 데이터 파이프에 접근한다. 수신기는 해당 데이터 파이프를 전송하는 ROUTE 세션내의 LCT 세션을 설명하는 시그널링 구조 (예를 들면, LSID)를 획득한다. In the signaling structure, the receiver obtains information identifying a data pipe for transmitting a video component of a broadcast service, and uses the information to access the data pipe. The receiver acquires a signaling structure (eg, LSID) that describes the LCT session in the ROUTE session carrying the data pipe.
수신기는 LCT 세션을 설명하는 시그널링 구조로부터, 방송 서비스의 비디오 컴포넌트를 전송하는 LCT 세션에 접근하여, 비디오 컴포넌트를 획득한다. The receiver accesses the LCT session transmitting the video component of the broadcast service from the signaling structure describing the LCT session, and obtains the video component.
수신기는 방송 서비스의 오디오 컴포넌트를 전송하는 데이터 파이프를 식별하는 정보를 획득하고, 해당 정보를 이용하여, 데이터 파이프에 접근한다. 수신기는 해당 데이터 파이프를 전송하는 ROUTE 세션내의 LCT 세션을 설명하는 시그널링 구조 (예를 들면, LSID)를 획득한다. The receiver obtains information identifying a data pipe for transmitting the audio component of the broadcast service, and uses the information to access the data pipe. The receiver acquires a signaling structure (eg, LSID) that describes the LCT session in the ROUTE session carrying the data pipe.
수신기는 LCT 세션을 설명하는 시그널링 구조로부터, 방송 서비스의 오디오 컴포넌트를 전송하는 LCT 세션에 접근하여, 오디오 컴포넌트를 획득한다.The receiver accesses the LCT session transmitting the audio component of the broadcast service from the signaling structure describing the LCT session to obtain the audio component.
본 발명에 따르면, 전술한 시그널링 구조를 통하여, 방송 서비스에 포함되는 각각의 컴포넌트가 각각의 전송 경로를 통하여 전송되는 경우에도, 해당 컴포넌트를 효율적으로 찾아서, 획득할 수 있는 효과가 있다. 또한, 송신단에서는, 여유가 있는 영역을 통하여, 자유롭게 방송 서비스의 컴포넌트들을 전송할 수 있고, 따라서, 보다 많은 방송 데이터를 효율적으로 전송할 수 있는 효과가 있다.According to the present invention, even when each component included in the broadcast service is transmitted through each transmission path through the above-described signaling structure, there is an effect of efficiently finding and acquiring the corresponding component. In addition, the transmitting end can freely transmit components of a broadcast service through a spare area, and thus, there is an effect of efficiently transmitting more broadcast data.
도 121은 본 발명의 다른 실시예에 따른, 방송 서비스의 비디오 세그먼트는 방송망을 통하여 획득하고, 방송 서비스의 오디오 세그먼트는 브로드밴드망을 통하여 획득하는 과정을 나타낸 도면이다.121 is a diagram illustrating a process of acquiring a video segment of a broadcast service through a broadcast network and acquiring an audio segment of the broadcast service through a broadband network according to another embodiment of the present invention.
수신기는 서비스 시그널링 채널의 데이터를 획득하고, 서비스 시그널링 채널의 데이터에 포함되는, 방송 서비스의 컴포넌트를 설명하는 정보는 포함하는 시그널링 구조 (예를 들면, CMT)를 획득한다. The receiver obtains data of the service signaling channel and obtains a signaling structure (eg, CMT) that includes information describing a component of a broadcast service included in the data of the service signaling channel.
해당 시그널링 구조에서, 수신기는, 방송 서비스의 비디오 컴포넌트를 전송하는 데이터 파이프를 식별하는 정보를 획득하고, 해당 정보를 이용하여, 데이터 파이프에 접근한다. 수신기는 해당 데이터 파이프를 전송하는 ROUTE 세션내의 LCT 세션을 설명하는 시그널링 구조 (예를 들면, LSID)를 획득한다. In the signaling structure, the receiver obtains information identifying a data pipe for transmitting a video component of a broadcast service, and uses the information to access the data pipe. The receiver acquires a signaling structure (eg, LSID) that describes the LCT session in the ROUTE session carrying the data pipe.
수신기는 LCT 세션을 설명하는 시그널링 구조로부터, 방송 서비스의 비디오 컴포넌트를 전송하는 LCT 세션에 접근하여, 비디오 컴포넌트를 획득한다. The receiver accesses the LCT session transmitting the video component of the broadcast service from the signaling structure describing the LCT session, and obtains the video component.
한편, 수신기는, 방송 서비스의 컴포넌트를 설명하는 정보는 포함하는 시그널링 구조에서, 오디오 컴포넌트가 브로드밴드로 전송됨을 인식하고, 해당 오디오 컴포넌트를 전송하는 서버 또는 위치의 주소를 획득한다. 또는 수신기는 MPD를 이용하여, 해당 오디오 컴포넌트의 세그먼트를 제공하는 주소를 획득하고, 해당 주소로부터, 오디오 컴포넌트의 세그먼트를 획득한다.Meanwhile, the receiver recognizes that an audio component is transmitted through a broadband in a signaling structure including information describing a component of a broadcast service, and obtains an address of a server or a location transmitting the corresponding audio component. Alternatively, the receiver acquires an address providing a segment of the corresponding audio component using the MPD, and obtains a segment of the audio component from the corresponding address.
전술한 시그널링 구조를 통하여, 본 발명에 따르면, 이종망을 통하여, 하나의 방송 서비스에 속하는 컴포넌트들이 각각 전송되는 경우에도, 해당 방송 서비스를 위한 컴포넌트들에 효율적으로 접근할 수 있는 효과가 있다.According to the present invention, through the above-described signaling structure, even when components belonging to one broadcast service are transmitted through heterogeneous networks, there is an effect of efficiently accessing the components for the corresponding broadcast service.
도 122는 본 발명의 다른 실시예에 따른, FIC의 페이로드의 신택스 (syntax)를 나타낸 도면이다.FIG. 122 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention. FIG.
본 발명에서 설명하고 있는 FIC는, 수신기가 빠르게 서비스 (방송 서비스, 브로드밴드 서비스 등) 를 획득하는데 필요한 정보를 제공하는 것을 목적으로 하고 있다. 따라서, FIC는 서비스 레벨 시그널링 (서비스 레이어 시그널링)에 접근하기 위한 부트스트랩핑 (bootstrapping) 정보를 제공한다. 수신기는 서비스 계층의 아래 계층에서, FIC를 수신하고, FIC에 포함된 정보를 이용하여, 서비스 계층에서의 시그널링 정보인, 서비스 레벨 시그널링을 빠르게 획득할 수 있다. 수신기는 서비스 레벨 시그널링에 포함된, 서비스에 대한 설명 정보를 이용하여, 서비스에 빠르게 접근할 수 있다.The FIC described in the present invention aims to provide information necessary for a receiver to quickly obtain a service (broadcast service, broadband service, etc.). Thus, the FIC provides bootstrapping information for accessing service level signaling (service layer signaling). The receiver may receive the FIC in a lower layer of the service layer and quickly obtain service level signaling, which is signaling information in the service layer, using the information included in the FIC. The receiver may quickly access the service by using the description information of the service included in the service level signaling.
한편, 본 발명의 다른 실시예에서는, FIC에서 서비스 및 서비스를 구성하는 컴포넌트 (예를 들어 비디오, 오디오 등)에 대한 정보를 제공할 수 있다. 이 경우, 수신기는 FIC를 수신하면, 서비스 레벨 시그널링에 접근하지 않고, FIC에 포함된 서비스 혹은 서비스 내의 컴포넌트에 대한 정보를 이용하여, 서비스의 컴포넌트를 바로 접근 및 재생할 수 있다. 예를 들면, 신속한 접근이 필요한 긴급 경보 서비스, 또는 전자 프로그램 가이드 (EPG) 서비스 등은, FIC에서 해당 서비스를 구성하는 데이터를 획득하는데 필요한 정보를 제공할 수 있고, 이 경우, 수신기는 서비스 레벨 시그널링에 접근하는 과정을 생략하고, FIC를 이용하여, 해당 서비스에 바로 접근할 수 있다.Meanwhile, in another embodiment of the present invention, information on a service and a component (eg, video, audio, etc.) constituting the service may be provided in the FIC. In this case, when the receiver receives the FIC, the receiver may directly access and play the component of the service by using information about the service included in the FIC or a component in the service without accessing service level signaling. For example, an emergency alert service, or an electronic program guide (EPG) service, which requires quick access, can provide information necessary to obtain data constituting the service in the FIC, in which case the receiver provides service level signaling. You can skip the process of accessing and access the service directly using FIC.
본 발명의 다른 실시예에 따른, FIC의 페이로드는, FIC_protocol_version 정보, transport_stream_id 정보, num_partitions 정보, partition_id 정보, partition_protocol_version 정보, num_services 정보, service_id 정보, service_data_version 정보, service_channel_number 정보, service_category 정보, short_service_name_length 정보, short_service_name 정보, service_status 정보, service_distribution 정보, sp_indicator 정보, IP_version_flag 정보, source_IP_address_flag 정보, bootstrap_mode 정보, source_IP_address 정보, destination_IP_address 정보, destination_UDP_port 정보, SSC_tsi 정보, SSC_dp_id 정보, num_component 정보, component_id 정보, component_tsi 정보, compoent_dp_id 정보, num_component_descriptor 정보, component_level_descriptor() 엘레먼트, num_partition_level_descriptors 정보, partition_level_descriptor() 엘레먼트, num_FIC_level_descriptors 정보, 및/또는 FIC_level_descriptor 엘레먼트를 포함할 수 있다.In accordance with another embodiment of the present invention, the payload of the FIC may include FIC_protocol_version information, transport_stream_id information, num_partitions information, partition_id information, partition_protocol_version information, num_services information, service_id information, service_data_version information, service_channel_number information, service_category information, short_service_name_length information, and short_service_name_length information. , service_status information, service_distribution information, sp_indicator information, IP_version_flag information, source_IP_address_flag information, bootstrap_mode information, source_IP_address information, destination_IP_address information, destination_UDP_port information, SSC_tsi information, SSC_dp_id information, num_component information, component_id information, component_t_dp_id Include () element, num_partition_level_descriptors information, partition_level_descriptor () element, num_FIC_level_descriptors information, and / or FIC_level_descriptor elements. There.
bootstrap_mode 정보는 방송 서비스 컴포넌트 데이터에 대한 부트스트랩의 모드를 나타낼 수 있다. 얘를 들면, bootstrap_mode 정보의 값이, 0x00 인 경우, 본 정보를 위한 필드가 추후 사용을 위하여 예약된 상태임을 나타낼 수 있다. bootstrap_mode 정보의 값이 0x01, 및 0x03 내지 0x07 인 경우, 방송 시스템에서, 정상적인 부트스트랩 모드 (서비스 시그널링 수신 후 해당 정보를 이용하여 부트스트랩 수행)를 위한 시그널링 체계를 제공함을 나타낼 수 있다. 즉, 정상적인 부투스트랩 모드는, 전술한 바와 같이, 수신기가 FIC의 정보를 이용하여, 서비스 레벨 시그널링에 접근하고, 서비스 레벨 시그널링에 포함된 정보를 이용하여, 서비스에 필요한 데이터 및 정보를 획득하는 과정을 수행할 수 있도록 시그널링 체계가 제공되는 모드이다. bootstrap_mode 정보의 값이 0x02 인 경우, 빠른 부트스트랩 (fast bootstrap) 모드 (FIC에 수신된 시그널링 정보만을 이용하여 신속한 부트스트랩 수행) 를 위한 시그널링 체계가 방송 시스템에서 제공됨을 나타낼 수 있다. 즉, 빠른 부트스트랩 모드는, 수신기가 FIC 에 포함되는 정보를 이용하여, 서비스 및 서비스 내 컴포넌트를 바로 획득할 수 있도록, 시그널링 체계가 제공되는 모드이다. The bootstrap_mode information may indicate a mode of bootstrap for broadcast service component data. For example, when the value of the bootstrap_mode information is 0x00, this may indicate that a field for this information is reserved for future use. When the values of the bootstrap_mode information are 0x01 and 0x03 to 0x07, it may represent that the broadcast system provides a signaling scheme for a normal bootstrap mode (running bootstrap using corresponding information after receiving service signaling). That is, in the normal but-to-strap mode, as described above, the receiver accesses the service level signaling by using the information of the FIC, and acquires data and information required for the service by using the information included in the service level signaling. This is a mode in which a signaling scheme is provided to perform. When the value of the bootstrap_mode information is 0x02, it may represent that a signaling scheme for fast bootstrap mode (fast bootstrap execution using only signaling information received in the FIC) is provided in the broadcast system. That is, the fast bootstrap mode is a mode in which a signaling scheme is provided so that a receiver can directly acquire a service and a component in the service by using information included in the FIC.
bootstrap_mode 정보는 방송 서비스에 포함되는 하나 이상의 컴포넌트들을 획득하는데 사용되는 시그널링 구조를 가리키는 부트스트랩 모드 (bootstrap mode) 를 식별할 수 있다. 일 실시예로, bootstrap_mode 정보는, 부트스트랩 모드가, 제 1 부트스트랩 모드 또는 제 2 부트스트랩 모드에 해당되는지를 식별하고, 제 1 부트스트랩 모드는, FIC (또는, 제 2 레벨 시그널링 데이터) 에 포함되는 정보를 이용하여, 서비스 레벨 시그널링 (또는, 제 1 레벨 시그널링 데이터)가 전송되는 위치를 식별하고, 해당 위치에서 서비스 레벨 시그널링을 획득하고, 서비스 레벨 시그널링에 포함되는 정보를 이용하여, 하나 이상의 컴포넌트를 획득하는 모드이고, 제 2 부트스트랩 모드는, FIC 에 포함되는 정보를 이용하여, 하나 이상의 컴포넌트를 획득하는 모드에 해당될 수 있다.The bootstrap_mode information may identify a bootstrap mode indicating a signaling structure used to acquire one or more components included in the broadcast service. In one embodiment, the bootstrap_mode information identifies whether the bootstrap mode corresponds to the first bootstrap mode or the second bootstrap mode, and the first bootstrap mode corresponds to the FIC (or second level signaling data). Using the included information, identifying a location where service level signaling (or first level signaling data) is transmitted, obtaining service level signaling at that location, and using the information included in the service level signaling, one or more This is a mode for acquiring a component, and the second bootstrap mode may correspond to a mode for acquiring one or more components using information included in the FIC.
부트스트랩 모드 정보가, 부트스트랩 모드가 제 1 부트스트랩 모드에 해당됨을 식별하는 경우, FIC 는, 방송 서비스를 고유하게 식별하는 서비스 식별 정보, 서비스 식별 정보에 의하여 식별되는 방송 서비스에 포함되는 컴포넌트들의 개수를 나타내는 컴포넌트 개수 정보, 방송 서비스에 포함되는 컴포넌트를 고유하게 식별하는 컴포넌트 식별 정보, 컴포넌트 식별 정보에 의하여 식별되는 컴포넌트의 데이터를 포함하는 패킷이 전송되는 전송 세션을 식별하는 컴포넌트 전송 세션 식별 정보, 컴포넌트의 데이터를 포함하는 패킷을 전송하는 물리적 계층의 데이터 파이프를 식별하는 컴포넌트 데이터파이프 식별 정보, 및/또는 컴포넌트의 데이터를 포함하는 상기 패킷에 대한 전송 프로토콜 파라미터를 포함하는 전송 파라미터 디스크립터를 더 포함할 수 있다. 전송 파라미터 디스크립터에 대하여는, 후술한다.When the bootstrap mode information identifies that the bootstrap mode corresponds to the first bootstrap mode, the FIC may include service identification information uniquely identifying the broadcast service and components included in the broadcast service identified by the service identification information. Component transmission session identification information identifying a transmission session in which a packet including a component number information indicating the number, component identification information uniquely identifying a component included in a broadcast service, data of a component identified by component identification information is transmitted, And a transport parameter descriptor comprising component datapipe identification information identifying a data pipe of a physical layer transmitting a packet comprising data of the component, and / or a transport protocol parameter for the packet comprising data of the component.There. The transmission parameter descriptor will be described later.
num_component 정보는, 서비스에 포함되는 컴포넌트의 개수를 나타낼 수 있다.The num_component information may indicate the number of components included in a service.
component_id 정보는 컴포넌트를 식별하는 정보이다. component_id 정보는 컴포넌트를 고유하게 식별하는 식별자에 해당될 수 있다.The component_id information is information for identifying a component. The component_id information may correspond to an identifier that uniquely identifies a component.
component_tsi 정보는, 컴포넌트의 데이터를 포함하는 패킷이 전송되는 전송 세션을 식별하는 정보이다. component_tsi 정보는 해당 패킷의 플로우 (flow) 를 나타내는 패킷 id (identifier) 를 가리킬 수 있다.The component_tsi information is information for identifying a transmission session in which a packet including data of a component is transmitted. The component_tsi information may indicate a packet id indicating a flow of the corresponding packet.
component_dp_id 정보는, 컴포넌트의 데이터를 포함하는 패킷이 전송되는 물리적 계층 (physical layer) 의 데이터 파이프 (data pipe) 를 식별하는 정보이다.The component_dp_id information is information for identifying a data pipe of a physical layer to which a packet including data of a component is transmitted.
num_component_descriptor 정보는, 컴포넌트에 대한 정보를 제공하는, 컴포넌트 레벨 디스크립터의 개수를 나타낸다.The num_component_descriptor information indicates the number of component level descriptors that provide information about a component.
Component_level_descrptor () 엘레먼트는, 컴포넌트와 관련된 정보를 포함하는 컴포넌트 레벨 디스크립터를 포함할 수 있다.The Component_level_descrptor () element may include a component level descriptor including information related to a component.
FIC에 포함되는 다른 정보 및/또는 엘레먼트에 대한 설명은, 본 명세서에서, 동일 또는 유사한 명칭을 가지는 정보 및/또는 엘레먼트에 대한 전술한 설명으로 대체한다.The description of other information and / or elements included in the FIC is replaced by the above description of information and / or elements having the same or similar names herein.
도 123은 본 발명의 다른 실시예에 따른, FIC의 페이로드의 신택스 (syntax)를 나타낸 도면이다.123 is a diagram illustrating syntax of a payload of an FIC according to another embodiment of the present invention.
하나의 방송 서비스는, 하나 이상의 ROUTE 세션 (session) 을 통하여 전송될 수 있다. 이 경우, 빠른 부트스트랩을 위하여, FIC에 몇 가지 정보 및/또는 엘레먼트가 포함될 수 있다. 수신기는 FIC 에 포함된 정보만을 이용하여, 방송 서비스에 포함되는 데이터를 전송하는 ROUTE 세션들에 접근하여, 방송 서비스를 위한 데이터를 획득할 수 있다.One broadcast service may be transmitted through one or more ROUTE sessions. In this case, some information and / or elements may be included in the FIC for fast bootstrap. The receiver may access ROUTE sessions for transmitting data included in the broadcast service using only the information included in the FIC and acquire data for the broadcast service.
본 발명의 다른 실시예에 따른, FIC는, FIC_protocol_version 정보, transport_stream_id 정보, num_partitions 정보, partition_id 정보, partition_protocol_version 정보, num_services 정보, service_id 정보, service_data_version 정보, service_channel_number 정보, service_category 정보, short_service_name_length 정보, short_service_name 정보, service_status 정보, service_distribution 정보, sp_indicator 정보, IP_version_flag 정보, num_ROUTE_session 정보, source_IP_address_flag 정보, ssc_flag 정보, bootstrap_mode 정보, source_IP_address 정보, destination_IP_address 정보, destination_UDP_port 정보, SSC_tsi 정보, SSC_dp_id 정보, num_component 정보, component_id 정보, component_tsi 정보, compoent_dp_id 정보, num_component_descriptor 정보, component_level_descriptor() 엘레먼트, num_partition_level_descriptors 정보, partition_level_descriptor() 엘레먼트, num_FIC_level_descriptors 정보, 및/또는 FIC_level_descriptor 엘레먼트를 포함할 수 있다.According to another embodiment of the present invention, the FIC includes FIC_protocol_version information, transport_stream_id information, num_partitions information, partition_id information, partition_protocol_version information, num_services information, service_id information, service_data_version information, service_channel_number information, service_category information, short_service_name_length information, short_service_service_length information, service_distribution information, sp_indicator information, IP_version_flag information, num_ROUTE_session information, source_IP_address_flag information, ssc_flag information, bootstrap_mode information, source_IP_address information, destination_IP_address information, destination_UDP_port information, SSC_tsi information, SSC_dp_id information, component num_component information, componentnum_component information Information, component_level_descriptor () element, num_partition_level_descriptors information, partition_level_descriptor () element, num_FIC_level_descriptors information, and / or FIC_level_descriptor It may include Les treatments.
num_ROUTE_session 정보는, 방송 서비스를 위한 데이터를 전송하는 ROUTE session의 개수를 나타낼 수 있다.The num_ROUTE_session information may indicate the number of ROUTE sessions for transmitting data for a broadcast service.
ssc_flag 정보는, ROUTE 세션 내에 서비스 시그널링이 전송되는 service signaling channel 이 존재함을 나타낼 수 있다. ssc_flag 정보는 ROUTE 세션 내에서 서비스 시그널링이 전송되는지 여부를 나타낼 수 있다. 여기서 서비스 시그널링 채널은, 서비스 레벨 시그널링에 해당될 수 있다. 서비스 시그널링이 전송되는 경우 해당 서비스 시그널링이 전송되는 세션의 정보 및 data pipe 에 대한 식별자를 포함할 수 있다. The ssc_flag information may indicate that a service signaling channel through which service signaling is transmitted exists in a ROUTE session. The ssc_flag information may indicate whether service signaling is transmitted in a ROUTE session. Here, the service signaling channel may correspond to service level signaling. When service signaling is transmitted, it may include information about a session in which the service signaling is transmitted and an identifier for a data pipe.
FIC에 포함되는 다른 정보 및/또는 엘레먼트에 대한 설명은, 본 명세서에서, 동일 또는 유사한 명칭을 가지는 정보 및/또는 엘레먼트에 대한 전술한 설명으로 대체한다.The description of other information and / or elements included in the FIC is replaced by the above description of information and / or elements having the same or similar names herein.
도 124는 본 발명의 일 실시예에 따른, transport_parameter_descriptor 를 나타낸 도면이다.124 is a diagram showing a transport_parameter_descriptor according to an embodiment of the present invention.
각 컴포넌트의 데이터들이 전송 프로토콜을 통해서 전달되는 경우, 컴포넌트의 데이터를 포함하는 전송 패킷에 대한 전송 프로토콜 파라미터가 시그널링되면, 수신기는, 해당 시그널링에 포함되는 정보를 이용하여, 각 컴포넌트의 데이터를 포함하는 전송 패킷을 효과적으로 처리할 수 있다. When data of each component is transmitted through a transport protocol, if a transport protocol parameter for a transport packet including data of the component is signaled, the receiver includes data of each component by using information included in the signaling. Can effectively process the transport packet.
본 발명의 일 실시예에서는, 전송 프로토콜 관련 파라미터를 시그널링하기 위하여, 도시된 바와 같은 디스크립터를 제안한다. 도시된 디스크립터는, 비트스트림 (bitstream) 또는 XML 로 표현될 수 있다. In one embodiment of the present invention, a descriptor as shown is proposed for signaling a transport protocol related parameter. The depicted descriptor can be represented in a bitstream or XML.
본 발명에서 제안하는 디스크립터는, 전술한 FIC 내의, 컴포넌트 레벨, 파티션 레벨 (partition level), 또는 FIC 레벨의 디스크립터로 사용될 수 있다. 또는, 본 발명에서 제안하는 디스크립터는, 물리적 계층의 상위 계층인, 링크 계층에서의 시그널링 (link layer signaling) 으로, 수신기에 전달될 수도 있다. 또는, 본 발명에서 제안하는 디스크립터는, 서비스 시그널링 (서비스 레벨 시그널링) 에서 컴포넌트 레벨 및/또는 서비스 레벨의 디스크립터로 사용될 수 있다. The descriptor proposed by the present invention may be used as a descriptor of a component level, partition level, or FIC level in the aforementioned FIC. Alternatively, the descriptor proposed by the present invention may be delivered to a receiver through link layer signaling, which is an upper layer of a physical layer. Alternatively, the descriptor proposed in the present invention may be used as a descriptor of a component level and / or a service level in service signaling (service level signaling).
본 발명의 일 실시예에 따른, transport_parameter_descriptor는 descriptor_tag 정보, descriptor_length 정보, codepoint_flag 정보, delivery_object_format_flag 정보, fragmentation_flag 정보, delivery_order_flag 정보, payload_id_scheme_flag 정보, code_point 정보, delivery_object_format 정보, fragmentation_scheme 정보, delivery_order 정보, 및/또는 payload_id_scheme 정보를 포함할 수 있다.According to an embodiment of the present invention, the transport_parameter_descriptor includes descriptor_tag information, descriptor_length information, codepoint_flag information, delivery_object_format_flag information, fragmentation_flag information, delivery_order_flag information, payload_id_scheme_flag information, code_point information, delivery_object_format information, fragmentation_scheme information, fragment_payload_id and delivery_orderload information, and delivery_orderload information, It may include.
descriptor_tag 정보는, 디스크립터가 전송 프로토콜의 파라미터를 전달하는 디스크립터임을 나타내는 정보이다.The descriptor_tag information is information indicating that the descriptor carries a parameter of a transport protocol.
descriptor_length 정보는, 디스크립터의 길이를 나타낼 수 있다.The descriptor_length information may indicate the length of the descriptor.
codepoint_flag 정보는, 디스크립터 내에 codepoint 정보가 존재하는지 여부를 나타내는 flag 에 해당될 수 있다. codepoint_flag 정보의 값이, ‘true’ 인 경우 codepoint 정보가 존재할 수 있고, ‘false’ 인 경우, codepoint 정보가 존재하지 않을 수 있다.The codepoint_flag information may correspond to a flag indicating whether codepoint information exists in the descriptor. If the value of the codepoint_flag information is 'true', the codepoint information may exist. If the value of the codepoint_flag information is 'false', the codepoint information may not exist.
delivery_object_flag 정보는, 디스크립터 내에 delivery_object_format 정보가 존재하는지 여부를 나타내는 flag 에 해당될 수 있다. delivery_object_flag 정보의 값이 ‘true’ 인 경우 delivery_object_format 정보가 존재할 수 있고, ‘false’ 인 경우, delivery_object_format 정보가 존재하지 않을 수 있다.The delivery_object_flag information may correspond to a flag indicating whether delivery_object_format information exists in the descriptor. If the value of the delivery_object_flag information is 'true', the delivery_object_format information may be present. If the value is 'false', the delivery_object_format information may not be present.
fragmentation_flag 정보는, 디스크립터 내에 fragmentation_scheme 정보가 존재하는지 여부를 나타내는 flag 에 해당될 수 있다. fragmentation_flag 정보의 값이 ‘true’ 인 경우 fragmentation_scheme 정보가 존재할 수 있고, ‘false’ 인 경우, fragmentation_scheme 정보가 존재하지 않을 수 있다. The fragmentation_flag information may correspond to a flag indicating whether fragmentation_scheme information exists in the descriptor. If the value of fragmentation_flag information is 'true', fragmentation_scheme information may be present. If it is 'false', fragmentation_scheme information may not be present.
delivery_order_flag 정보는, 디스크립터 내에 delivery_order 정보가 존재하는지 여부를 나타내는 flag 에 해당될 수 있다. delivery_order_flag 정보의 값이 ‘true’ 인 경우 delivery_order 정보가 존재할 수 있고, ‘false’ 인 경우, delivery_order 정보가 존재하지 않을 수 있다.The delivery_order_flag information may correspond to a flag indicating whether delivery_order information exists in the descriptor. If the value of the delivery_order_flag information is 'true', the delivery_order information may be present. If the value is 'false', the delivery_order information may not be present.
payload_id_scheme_flag 정보는, 디스크립터 내에 payload_id_scheme 정보가 존재하는지 여부를 나타내는 flag 에 해당될 수 있다 payload_id_scheme_flag 정보의 값이 ‘true’ 인 경우 payload_id_scheme 정보가 존재할 수 있고, ‘false’ 인 경우, payload_id_scheme 정보가 존재하지 않을 수 있다.The payload_id_scheme_flag information may correspond to a flag indicating whether payload_id_scheme information exists in the descriptor. If the value of payload_id_scheme_flag information is 'true', payload_id_scheme information may be present and if 'false', payload_id_scheme information may not exist. have.
code_point 정보는, 전송 패킷의 헤더에 codepoint 값이 포함되어 있는 경우, (예를 들어 LCT 패킷 헤더의 codepoint 등) 해당 값에 따른, 전송 패킷 페이로드와 연관된 파라미터를 가리킬 수 있다. 예를 들어 뒤따르는 delivery_object_format 정보, fragmentation_scheme 정보, delivery_order 정보, 및/또는 payload_id_scheme 정보의 조합을 가리킬 수 있다. The code_point information may indicate a parameter associated with a transport packet payload according to a corresponding value (for example, a codepoint of an LCT packet header) when a codepoint value is included in a header of a transport packet. For example, it may indicate a combination of following delivery_object_format information, fragmentation_scheme information, delivery_order information, and / or payload_id_scheme information.
delivery_object_format 정보는, 전송 패킷의 페이로드에 포함되어 있는 delivery object의 포멧을 가리키는 정보이다. 일 실시예로, delivery_object_format 정보의 값이 ‘0x00’ 인 경우, 및 ‘0x05’ 내지 ‘0xff‘ 인 경우, delivery_object_format 정보가, 추후 사용을 위하여 예약된 상태임을 나타낼 수 있다. delivery_object_format 정보의 값이 ‘0x01’ 인 경우, 딜리버리 오브젝트 (delivery object)의 포멧이 파일 (file) 임을 나타낼 수 있다. delivery_object_format 정보의 값이 ‘0x02’ 인 경우, delivery object의 포멧이 엔터티 모드 (entity mode) 형태임을 나타낼 수 있다. 엔터티 모드는 엔터티의 헤더와 페이로드를 포함하는 모드이다. delivery_object_format 정보의 값이 ‘0x03’ 인 경우, delivery object의 포멧이 패키지 (package) 형태임을 나타낼 수 있다. 패키지 형태는, 두 개 이상의 파일이 조합된 형태이다. delivery_object_format 정보의 값이 ‘0x04’ 인 경우, delivery object가 메타데이터를 포함함을 나타낼 수 있다.The delivery_object_format information is information indicating the format of the delivery object included in the payload of the transport packet. In an embodiment, when the value of the delivery_object_format information is '0x00' and when the values are '0x05' to '0xff', it may represent that the delivery_object_format information is reserved for future use. When the value of the delivery_object_format information is '0x01', it may represent that the format of the delivery object is a file. When the value of the delivery_object_format information is '0x02', this may indicate that the format of the delivery object is an entity mode. Entity mode is a mode that includes the entity's header and payload. When the value of the delivery_object_format information is '0x03', it may represent that the format of the delivery object is a package. The package form is a combination of two or more files. When the value of the delivery_object_format information is '0x04', this may represent that the delivery object includes metadata.
fragmentation_scheme 정보는, 하나의 delivery object 가, 하나 이상의 전송 패킷으로 나누어서 전송되는 경우, 프래그멘테이션 (fragmentation) 되는 규칙을 가리키는 정보이다. fragmentation_scheme 정보는, 하나의 delivery object 에서, 하나 이상의 전송 패킷이 전송되는 경우, delivery object에서 전송되는 데이터가 프래그멘테이션 (fragmentation) 되는 규칙을 가리키는 정보이다. 일 실시예로, fragmentation_scheme 정보의 값이 ’0x00’ 인 경우, fragmentation_scheme 정보는 프래그멘테이션 방식이 임의적임을 나타낼 수 있다. 즉, fragmentation_scheme 정보의 값이 ’0x00’ 인 경우는 일정한 규칙이 없이 프래그멘테이션이 이루어짐을 나타낼 수 있다. fragmentation_scheme 정보의 값이 ’0x01’ 인 경우, fragmentation_scheme 정보는 ISOBMFF의 하나 이상의 box를, delivery object가 포함할 수 있도록 프래그멘테이션됨을 나타낼 수 있다. fragmentation_scheme 정보의 값이 ’0x02’ 인 경우, fragmentation_scheme 정보는 ISOBMFF의 sample 기반으로 데이터가, delivery object가 포함될 수 있도록 프래그멘테이션됨을 나타낼 수 있다. The fragmentation_scheme information is information indicating a rule that is fragmented when one delivery object is transmitted divided into one or more transport packets. The fragmentation_scheme information is information indicating a rule in which data transmitted in the delivery object is fragmented when one or more transport packets are transmitted in one delivery object. In an embodiment, when the value of fragmentation_scheme information is '0x00', the fragmentation_scheme information may indicate that the fragmentation scheme is arbitrary. That is, when the value of fragmentation_scheme information is '0x00', this may indicate that fragmentation is performed without a certain rule. When the value of fragmentation_scheme information is '0x01', the fragmentation_scheme information may indicate that one or more boxes of the ISOBMFF are fragmented to include the delivery object. When the value of fragmentation_scheme information is '0x02', the fragmentation_scheme information may indicate that data is fragmented to include a delivery object based on a sample of ISOBMFF.
delivery_order 정보는, 하나의 delivery object 에 포함되는 데이터가, 하나 이상의 전송 패킷으로 나누어서 전송되는 경우, 각 전송 패킷의 전송 순서를 나타내는 정보이다. 일 실시예로, delivery_order 정보의 값이 ‘0x00’ 인 경우, delivery_order 정보는 전송 순서가 임의적임을 나타낼 수 있다. delivery_order 정보의 값이 ‘0x01’ 인 경우, delivery_order 정보는 전송 패킷이 ISOBMFF을 구성하는 순서대로 전송됨을 나타낼 수 있다 (in-order delivery). delivery_order 정보의 값이 ‘0x02’ 인 경우, delivery_order 정보는 전송 패킷이 ISOBMFF의 미디어 샘플들의 순서대로 데이터를 전송하고, ISOBMFF 내의 movie 프래그먼트의 앞서서 해당 데이터들이 전송됨을 나타낼 수 있다.The delivery_order information is information indicating a transmission order of each transport packet when data included in one delivery object is transmitted by being divided into one or more transport packets. According to an embodiment, when the value of the delivery_order information is '0x00', the delivery_order information may indicate that the delivery order is arbitrary. If the value of the delivery_order information is '0x01', the delivery_order information may indicate that the transport packet is transmitted in the order of configuring the ISOBMFF (in-order delivery). When the value of the delivery_order information is '0x02', the delivery_order information may indicate that the transport packet transmits data in the order of media samples of the ISOBMFF and the corresponding data are transmitted before the movie fragment in the ISOBMFF.
Payload_id_scheme 정보는, 전송 패킷의 헤더에 payload ID 값이 포함되어 있는 경우, 당 payload id 를 할당하는 규칙을 가리킬 수 있다. 일 실시예로, Payload_id_scheme 정보의 값이 ‘0x00’ 인 경우, Payload_id_scheme 정보는 FEC payload ID가 존재하지 않고, 패킷 내에서, 전체 delivery object가 포함됨을 나타낼 수 있다. Payload_id_scheme 정보의 값이 ‘0x01’ 인 경우, Payload_id_scheme 정보는 FEC payload ID가 32비트로 정의되고, 본 object에서 시작 오프셋 (start offset) 을 표현함을 나타낼 수 있다. Payload_id_scheme 정보의 값이 ‘0x02’ 내지 ‘0xff’ 인 경우, Payload_id_scheme 정보는 추후 사용을 위하여, 예약된 상태임을 나타낼 수 있다.The payload_id_scheme information may indicate a rule for allocating the payload id when the payload ID value is included in the header of the transport packet. In an embodiment, when the value of Payload_id_scheme information is '0x00', the Payload_id_scheme information may indicate that the FEC payload ID does not exist and includes the entire delivery object in the packet. When the value of Payload_id_scheme information is '0x01', the Payload_id_scheme information may represent that the FEC payload ID is defined as 32 bits and represents a start offset in the present object. When the value of the payload_id_scheme information is '0x02' to '0xff', the payload_id_scheme information may indicate that it is reserved for future use.
본 발명의 실시예에 따르면, transport_parameter_descriptor와 같은 시그널링 정보를, 서비스 레벨 시그널링이 전송되는 계층 보다, 하위 계층 (예를 들면, 물리 계층, 링크 계층, 및/또는 네트워크 계층 등) 에서 전송하여, 수신기가, 서비스 레벨 시그널링을 획득하기 이전에, 특정 서비스에 대하여, 우선적으로 접근이 가능하도록 하는 효과가 있다. According to an embodiment of the present invention, the receiver transmits signaling information such as transport_parameter_descriptor at a lower layer (eg, a physical layer, a link layer, and / or a network layer, etc.) rather than a layer where service level signaling is transmitted. Before acquiring service level signaling, there is an effect of making it possible to preferentially access a specific service.
도 125는 본 발명의 다른 실시예에 따른, 수신기에서 방송 서비스를 획득하는 과정에서의 시그널링 구조를 나타낸 도면이다.125 is a diagram illustrating a signaling structure in the process of acquiring a broadcast service in a receiver according to another embodiment of the present invention.
도시된 도면을 참조하면, 수신기는 다음과 같은 단계로, 시그널링 정보 및/또는 비디오/오디오 데이터를 획득할 수 있다.Referring to the drawing, the receiver may acquire signaling information and / or video / audio data in the following steps.
FIC 에 서비스 레벨 시그널링 (서비스 시그널링) 에 대한 bootstrap 에 대한 정보가 포함되어 있을 수 있다. 수신기는 FIC에 포함된 정보를 이용하여 서비스 레벨 시그널링이 전송되는 물리적 계층 (physical layer) 의 데이터 파이프 (data pipe) 를 인식할 수 있다. The FIC may include information on bootstrap for service level signaling (service signaling). The receiver may recognize a data pipe of a physical layer through which service level signaling is transmitted using information included in the FIC.
수신기는 인식되는 데이터 파이프에 접근하여, 서비스 레벨 시그널링을 획득할 수 있다.The receiver may access the recognized data pipe to obtain service level signaling.
수신기는 서비스 레벨 시그널링을 통하여, 각각의 서비스에 포함되는 컴포넌트의 데이터를 전송하는, 하나 이상의 ROUTE 세션 (session) 에 대한 정보 및/또는 각 ROUTE 세션 (session) 과 연관된 정보를 제공하는 LSID 가 전송되는 데이터 파이프를 인식할 수 있다. The receiver transmits, via service level signaling, an LSID providing information about one or more ROUTE sessions and / or information associated with each ROUTE session, which transmits data of a component included in each service. Recognize data pipes.
수신기는 LSID 및/또는 서비스 레벨 시그널링을 통하여, ROUTE 세션 (session) 내의 LCT 세션을 통하여 전송되는 패킷에 대한 정보를 획득할 수 있다.The receiver may obtain information about a packet transmitted through an LCT session in a ROUTE session through LSID and / or service level signaling.
수신기는 MPD를 획득하고 이를 파싱하여 비디오/오디오와 연관된 세그먼트의 URL 관련 정보를 획득할 수 있다.The receiver may obtain the MPD and parse it to obtain URL related information of a segment associated with the video / audio.
수신기는 비디오/오디오와 연관된 세그먼트의 URL 관련 정보와, 서비스 레벨 시그널링의 Segment_URL_Pattern 을 비교하여, 해당 세그먼트의 전송 경로 (distribution path) 를 인식할 수 있다. The receiver may recognize the distribution path of the segment by comparing the URL-related information of the segment associated with the video / audio with Segment_URL_Pattern of the service level signaling.
비디오/오디오와 연관된 세그먼트가 방송망을 통하여 전송되는 경우, 수신기는 해당 세그먼트 URL 정보와 LSID 내의 파일 템플릿 (file template) 을 비교하여 전송 세션을 인식하고, 해당 전송 세션에 가입 (join) 후 해당 세그먼트를 획득할 수 있다.When a segment associated with video / audio is transmitted through the broadcasting network, the receiver compares the segment URL information with a file template in the LSID to recognize the transmission session, joins the transmission session, and then joins the segment. Can be obtained.
수신기는 획득한 세그먼트로 비디오/오디오를 재생할 수 있다.The receiver can play the video / audio with the acquired segment.
도 126은 본 발명의 일 실시예에 따른, 방송 신호 송신 처리 과정을 나타낸 순서도 이다.126 is a flowchart illustrating a broadcast signal transmission process according to an embodiment of the present invention.
방송 신호 송신 처리 장치는, 제 1 레벨 시그널링 데이터 및 방송 서비스를 위한 방송 데이터를 포함하는 하나 이상의 제 1 계층 데이터 유닛들을 생성한다 (JS126010).The broadcast signal transmission processing apparatus generates one or more first layer data units including first level signaling data and broadcast data for a broadcast service (JS126010).
방송 신호 송신 처리 장치는, 상기 하나 이상의 제 1 계층 데이터 유닛들과 제 2 레벨 시그널링 데이터를 포함하는 하나 이상의 제 2 계층 데이터 유닛들을 생성한다 (JS126020).The broadcast signal transmission processing apparatus generates one or more second layer data units including the one or more first layer data units and second level signaling data (JS126020).
방송 신호 송신 처리 장치는. 상기 하나 이상의 제 2 계층 데이터 유닛들을 포함하는 방송 신호를 생성한다 (JS12630).Broadcast signal transmission processing apparatus. A broadcast signal including the one or more second layer data units is generated (JS12630).
도 127은 본 발명의 일 실시예에 따른, 방송 신호 처리 장치를 나타낸 도면이다.127 is a diagram illustrating a broadcast signal processing apparatus according to an embodiment of the present invention.
본 발명의 일 실시예에 따른, 방송 신호 처리 장치 (J126100) 는 프로토콜 프로세서 (J126200), 방송 신호 생성기 (J126300), 및/또는 송신부 (J126400) 를 포함할 수 있다.The broadcast signal processing apparatus J126100 according to an embodiment of the present invention may include a protocol processor J126200, a broadcast signal generator J126300, and / or a transmitter J126400.
프로토콜 프로세서 (J126200)는 제 1 레벨 시그널링 인코더 (J126210), 제 1 계층 인코더 (J126220), 제 2 레벨 시그널링 인코더 (J126230), 및/또는 제 2 계층 인코더 (J126240)를 포함한다.The protocol processor J126200 includes a first level signaling encoder J126210, a first layer encoder J126220, a second level signaling encoder J126230, and / or a second layer encoder J126240.
프로토콜 프로세서 (J126200)는 방송 데이터 또는 시그널링 데이터에 대하여, 방송 시스템의 프로토콜에 따른 처리를 수행한다.The protocol processor J126200 performs processing based on a protocol of a broadcast system on broadcast data or signaling data.
방송 신호 생성기 (J126300)는 프로토콜 프로세서에서 처리된 데이터를 전송하기 위한 일련의 처리를 수행한다. 방송 신호 생성기 (J126300)는 전술한 물리적 계층에서의 방송 신호 인코더/처리기에 해당될 수 있다.The broadcast signal generator J126300 performs a series of processes for transmitting data processed by the protocol processor. The broadcast signal generator J126300 may correspond to the broadcast signal encoder / processor in the above-described physical layer.
송신부 (J126400)는 방송 신호를 송신한다.The transmitter J126400 transmits a broadcast signal.
제 1 레벨 시그널링 인코더 (J126210)는 제 1 레벨 시그널링 데이터를 생성한다. 제 1 레벨 시그널링 데이터는, 방송 서비스를 묘사하는 정보를 제공하는 상위 계층의 시그널링 정보에 해당될 수 있다.The first level signaling encoder J126210 generates first level signaling data. The first level signaling data may correspond to signaling information of an upper layer that provides information describing a broadcast service.
제 1 계층 인코더 (J126220)는 제 1 계층의 프로토콜에 따라, 방송 데이터를 생성한다. 제 1 계층의 프로토콜은, MPEG-DASH, NRT, 및/또는 MMT 에 따른 프로토콜에 해당될 수 있다.The first layer encoder J126220 generates broadcast data according to the protocol of the first layer. The protocol of the first layer may correspond to a protocol according to MPEG-DASH, NRT, and / or MMT.
제 2 레벨 시그널링 인코더 (J126230)는 제 2 레벨 시그널링 데이터를 생성한다. 제 2 레벨 시그널링 데이터는, 제 1 레벨 시그널링 데이터가 처리되는 계층 보다 하위 계층에서, 제 1 레벨 시그널링 데이터에 대한 정보를 얻기 위한 정보를 포함할 수 있다. 제 2 레벨 시그널링 데이터는, 제 1 레벨 시그널링 데이터가 처리되는 계층 보다 하위 계층에서, 방송 서비스를 스캔 (scan) 하여, 빠르게 방송 서비스에 대한 맵을 생성하는데 필요한 정보를 포함할 수 있다.The second level signaling encoder J126230 generates second level signaling data. The second level signaling data may include information for obtaining information on the first level signaling data in a lower layer than the layer in which the first level signaling data is processed. The second level signaling data may include information necessary to quickly generate a map for the broadcast service by scanning a broadcast service in a lower layer than the layer where the first level signaling data is processed.
제 2 계층 인코더 (J126240)는 제 2 계층의 프로토콜에 따라, 제 1 계층에서 처리된 데이터를 처리한다. 제 2 계층의 프로토콜은, MMTP (MPEG Media Transport Protocol), ROUTE (ALC/LCT) 및/또는 HTTP 에 따른 프로토콜에 해당될 수 있다.The second layer encoder J126240 processes the data processed in the first layer according to the protocol of the second layer. The protocol of the second layer may correspond to a protocol according to MPEG Media Transport Protocol (MMTP), ROUTE (ALC / LCT), and / or HTTP.
이상, 본 발명에 따르면, 물리적 계층 처리 이후에, 각각의 계층에서 제공되는 시그널링 정보를 빠르게 획득할 수 있는 효과가 있다. As described above, according to the present invention, after the physical layer processing, the signaling information provided in each layer can be obtained quickly.
본 발명에 따르면, 각각의 계층에서의 상위 계층의 시그널링 정보 및/또는 방송 데이터의 처리를 시그널링 정보로 제공하여, 수신기에서 빠른 방송 서비스에 대한 획득, 및 처리가 가능하다는 효과가 있다.According to the present invention, processing of signaling information and / or broadcast data of an upper layer in each layer is provided as signaling information, so that a fast broadcast service can be obtained and processed in a receiver.
본 명세서에서 모듈 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 프로세서들일 수 있다. 전술한 실시예에 기술된 각 단계들은 하드웨어/프로세서들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블락/유닛들은 하드웨어/프로세서로서 동작할 수 있다. 또한, 본 발명이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다. In the present specification, a module or a unit may be processors for executing consecutive processes stored in a memory (or storage unit). Each of the steps described in the above embodiments may be performed by hardware / processors. Each module / block / unit described in the above embodiments can operate as a hardware / processor. In addition, the methods proposed by the present invention can be executed as code. This code can be written to a processor readable storage medium and thus read by a processor provided by an apparatus.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 본 발명의 권리범위에 속한다.For convenience of description, each drawing is divided and described, but it is also possible to design a new embodiment by merging the embodiments described in each drawing. And, according to the needs of those skilled in the art, it is also within the scope of the present invention to design a computer-readable recording medium on which a program for executing the previously described embodiments is recorded.
본 발명에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상술한 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.Apparatus and method according to the present invention is not limited to the configuration and method of the embodiments described as described above, the above-described embodiments may be selectively all or part of each embodiment so that various modifications can be made It may be configured in combination.
한편, 본 발명이 제안하는 방법을 네트워크 디바이스에 구비된, 프로세서가 읽을 수 있는 기록매체에, 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.On the other hand, it is possible to implement the method proposed by the present invention as a processor-readable code in a processor-readable recording medium provided in a network device. The processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor. Examples of the processor-readable recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet. . The processor-readable recording medium can also be distributed over network coupled computer systems so that the processor-readable code is stored and executed in a distributed fashion.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.In addition, although the preferred embodiment of the present invention has been shown and described above, the present invention is not limited to the above-described specific embodiment, the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.
그리고, 당해 명세서에서는 물건 발명과 방법 발명이 모두 설명되고 있으며, 필요에 따라 양 발명의 설명은 보충적으로 적용될 수가 있다.In addition, in this specification, both the object invention and the method invention are described, and description of both invention can be supplementally applied as needed.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.It is understood by those skilled in the art that various changes and modifications can be made in the present invention without departing from the spirit or scope of the invention. Accordingly, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.Reference is made herein to both apparatus and method inventions, and the descriptions of both apparatus and method inventions may be complementary to one another.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.Various embodiments have been described in the best mode for carrying out the invention.
본 발명은 일련의 방송 신호 제공 분야에서 이용된다.The present invention is used in the field of providing a series of broadcast signals.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.It will be apparent to those skilled in the art that various changes and modifications can be made in the present invention without departing from the spirit or scope of the invention. Accordingly, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (14)

  1. 제 1 레벨 시그널링 데이터 및 방송 서비스를 위한 방송 데이터를 포함하는 하나 이상의 제 1 계층 데이터 유닛들을 생성하는 단계;Generating one or more first layer data units comprising first level signaling data and broadcast data for a broadcast service;
    상기 하나 이상의 제 1 계층 데이터 유닛들과 제 2 레벨 시그널링 데이터를 포함하는 하나 이상의 제 2 계층 데이터 유닛들을 생성하는 단계; 및Generating one or more second layer data units including the one or more first layer data units and second level signaling data; And
    상기 하나 이상의 제 2 계층 데이터 유닛들을 포함하는 방송 신호를 생성하는 단계;Generating a broadcast signal comprising the one or more second layer data units;
    를 포함하고,Including,
    상기 제 1 레벨 시그널링 데이터는, 상기 방송 서비스를 설명하는 정보를 포함하고,The first level signaling data includes information for describing the broadcast service.
    상기 제 2 레벨 시그널링 데이터는, 채널 스캔과 상기 제 1 레벨 시그널링 데이터를 획득하는데 필요한 정보를 포함하는 것을 특징으로 하는 방송 신호 송신 처리 방법.The second level signaling data includes information necessary to acquire a channel scan and the first level signaling data.
  2. 제 1 항에 있어서, 상기 제 2 레벨 시그널링 데이터는,The method of claim 1, wherein the second level signaling data comprises:
    상기 방송 서비스에 포함되는 하나 이상의 컴포넌트들을 획득하는데 사용되는 시그널링 구조를 가리키는 부트스트랩 모드 (bootstrap mode) 를 식별하는 부트스트랩 모드 정보를 포함하는 것을 특징으로 하는 방송 신호 송신 처리 방법.And bootstrap mode information identifying a bootstrap mode indicating a signaling structure used to obtain one or more components included in the broadcast service.
  3. 제 2 항에 있어서, 상기 부트스트랩 모드 정보는,The method of claim 2, wherein the bootstrap mode information,
    상기 부트스트랩 모드가, 제 1 부트스트랩 모드 또는 제 2 부트스트랩 모드에 해당되는지를 식별하고,Identify whether the bootstrap mode corresponds to a first bootstrap mode or a second bootstrap mode,
    상기 제 1 부트스트랩 모드는, 상기 제 2 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 제 1 레벨 시그널링 데이터가 전송되는 위치를 식별하고, 상기 위치에서 상기 제 1 레벨 시그널링 데이터를 획득하고, 상기 제 1 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 하나 이상의 컴포넌트를 획득하는 모드이고,The first bootstrap mode may identify a location where the first level signaling data is transmitted by using information included in the second level signaling data, obtain the first level signaling data at the location, and A mode for acquiring the one or more components by using information included in first level signaling data,
    상기 제 2 부트스트랩 모드는, 상기 제 2 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 하나 이상의 컴포넌트를 획득하는 모드인 것을 특징으로 하는 방송 신호 송신 처리 방법.The second bootstrap mode is a mode for acquiring the one or more components by using information included in the second level signaling data.
  4. 제 3 항에 있어서, 상기 부트스트랩 모드 정보가, 상기 부트스트랩 모드가 상기 제 1 부트스트랩 모드에 해당됨을 식별하는 경우, 상기 제 2 레벨 시그널링 데이터는,The second level signaling data of claim 3, wherein the bootstrap mode information identifies that the bootstrap mode corresponds to the first bootstrap mode.
    상기 방송 서비스를 고유하게 식별하는 서비스 식별 정보, 및Service identification information for uniquely identifying the broadcast service, and
    상기 서비스 식별 정보에 의하여 식별되는 방송 서비스에 포함되는 컴포넌트들의 개수를 나타내는 컴포넌트 개수 정보를 포함하는 것을 특징으로 하는 방송 신호 송신 처리 방법.And component number information indicating the number of components included in the broadcast service identified by the service identification information.
  5. 제 4 항에 있어서, 상기 제 2 레벨 시그널링 데이터는,The method of claim 4, wherein the second level signaling data,
    상기 방송 서비스에 포함되는 컴포넌트를 고유하게 식별하는 컴포넌트 식별 정보, 및Component identification information for uniquely identifying a component included in the broadcast service, and
    상기 컴포넌트 식별 정보에 의하여 식별되는 컴포넌트의 데이터를 포함하는 패킷이 전송되는 전송 세션을 식별하는 컴포넌트 전송 세션 식별 정보를 더 포함하는 것을 특징으로 하는 방송 신호 송신 처리 방법.And transmitting component transmission session identification information for identifying a transmission session in which a packet including the data of the component identified by the component identification information is transmitted.
  6. 제 5 항에 있어서, 상기 제 2 레벨 시그널링 데이터는,The method of claim 5, wherein the second level signaling data,
    상기 컴포넌트의 데이터를 포함하는 패킷을 전송하는 물리적 계층의 데이터 파이프를 식별하는 컴포넌트 데이터파이프 식별 정보를 더 포함하는 것을 특징으로 하는 방송 신호 송신 처리 방법.And a component data pipe identification information for identifying a data pipe of a physical layer that transmits a packet including data of the component.
  7. 제 6 항에 있어서, 상기 제 2 레벨 시그널링 데이터는,The method of claim 6, wherein the second level signaling data,
    상기 컴포넌트의 데이터를 포함하는 상기 패킷에 대한 전송 프로토콜 파라미터를 포함하는 전송 파라미터 디스크립터를 더 포함하는 것을 특징으로 하는 방송 신호 송신 처리 방법.And a transmission parameter descriptor containing a transmission protocol parameter for the packet including data of the component.
  8. 제 1 레벨 시그널링 데이터 및 방송 서비스를 위한 방송 데이터를 포함하는 하나 이상의 제 1 계층 데이터 유닛들을 생성하는 제 1 계층 인코더;A first layer encoder for generating one or more first layer data units comprising first level signaling data and broadcast data for a broadcast service;
    상기 하나 이상의 제 1 계층 데이터 유닛들과 제 2 레벨 시그널링 데이터를 포함하는 하나 이상의 제 2 계층 데이터 유닛들을 생성하는 제 2 계층 인코더; 및A second layer encoder for generating one or more second layer data units including the one or more first layer data units and second level signaling data; And
    상기 하나 이상의 제 2 계층 데이터 유닛들을 포함하는 방송 신호를 생성하는 방송 신호 생성기;A broadcast signal generator for generating a broadcast signal comprising the one or more second layer data units;
    를 포함하고,Including,
    상기 제 1 레벨 시그널링 데이터는, 상기 방송 서비스를 설명하는 정보를 포함하고,The first level signaling data includes information for describing the broadcast service.
    상기 제 2 레벨 시그널링 데이터는, 채널 스캔과 상기 제 1 레벨 시그널링 데이터를 획득하는데 필요한 정보를 포함하는 것을 특징으로 하는 방송 신호 송신 처리 장치.And the second level signaling data includes information necessary to acquire a channel scan and the first level signaling data.
  9. 제 8 항에 있어서, 상기 제 2 레벨 시그널링 데이터는,The method of claim 8, wherein the second level signaling data,
    상기 방송 서비스에 포함되는 하나 이상의 컴포넌트들을 획득하는데 사용되는 시그널링 구조를 가리키는 부트스트랩 모드 (bootstrap mode) 를 식별하는 부트스트랩 모드 정보를 포함하는 것을 특징으로 하는 방송 신호 송신 처리 장치.And bootstrap mode information identifying a bootstrap mode indicating a signaling structure used to acquire one or more components included in the broadcast service.
  10. 제 9 항에 있어서, 상기 부트스트랩 모드 정보는,The method of claim 9, wherein the bootstrap mode information,
    상기 부트스트랩 모드가, 제 1 부트스트랩 모드 또는 제 2 부트스트랩 모드에 해당되는지를 식별하고,Identify whether the bootstrap mode corresponds to a first bootstrap mode or a second bootstrap mode,
    상기 제 1 부트스트랩 모드는, 상기 제 2 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 제 1 레벨 시그널링 데이터가 전송되는 위치를 식별하고, 상기 위치에서 상기 제 1 레벨 시그널링 데이터를 획득하고, 상기 제 1 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 하나 이상의 컴포넌트를 획득하는 모드이고,The first bootstrap mode may identify a location where the first level signaling data is transmitted by using information included in the second level signaling data, obtain the first level signaling data at the location, and A mode for acquiring the one or more components by using information included in first level signaling data,
    상기 제 2 부트스트랩 모드는, 상기 제 2 레벨 시그널링 데이터에 포함되는 정보를 이용하여, 상기 하나 이상의 컴포넌트를 획득하는 모드인 것을 특징으로 하는 방송 신호 송신 처리 장치.The second bootstrap mode is a mode for acquiring the one or more components using information included in the second level signaling data.
  11. 제 10 항에 있어서, 상기 부트스트랩 모드 정보가, 상기 부트스트랩 모드가 상기 제 1 부트스트랩 모드에 해당됨을 식별하는 경우, 상기 제 2 레벨 시그널링 데이터는,The method of claim 10, wherein when the bootstrap mode information identifies that the bootstrap mode corresponds to the first bootstrap mode, the second level signaling data includes:
    상기 방송 서비스를 고유하게 식별하는 서비스 식별 정보, 및Service identification information for uniquely identifying the broadcast service, and
    상기 서비스 식별 정보에 의하여 식별되는 방송 서비스에 포함되는 컴포넌트들의 개수를 나타내는 컴포넌트 개수 정보를 포함하는 것을 특징으로 하는 방송 신호 송신 처리 장치.And component number information indicating the number of components included in the broadcast service identified by the service identification information.
  12. 제 11 항에 있어서, 상기 제 2 레벨 시그널링 데이터는,The method of claim 11, wherein the second level signaling data,
    상기 방송 서비스에 포함되는 컴포넌트를 고유하게 식별하는 컴포넌트 식별 정보, 및Component identification information for uniquely identifying a component included in the broadcast service, and
    상기 컴포넌트 식별 정보에 의하여 식별되는 컴포넌트의 데이터를 포함하는 패킷이 전송되는 전송 세션을 식별하는 컴포넌트 전송 세션 식별 정보를 더 포함하는 것을 특징으로 하는 방송 신호 송신 처리 장치.And component transmission session identification information for identifying a transmission session in which a packet including the data of the component identified by the component identification information is transmitted.
  13. 제 12 항에 있어서, 상기 제 2 레벨 시그널링 데이터는,The method of claim 12, wherein the second level signaling data,
    상기 컴포넌트의 데이터를 포함하는 패킷을 전송하는 물리적 계층의 데이터 파이프를 식별하는 컴포넌트 데이터파이프 식별 정보를 더 포함하는 것을 특징으로 하는 방송 신호 송신 처리 장치.And component data pipe identification information for identifying a data pipe of a physical layer for transmitting a packet including data of the component.
  14. 제 13 항에 있어서, 상기 제 2 레벨 시그널링 데이터는,The method of claim 13, wherein the second level signaling data,
    상기 컴포넌트의 데이터를 포함하는 상기 패킷에 대한 전송 프로토콜 파라미터를 포함하는 전송 파라미터 디스크립터를 더 포함하는 것을 특징으로 하는 방송 신호 송신 처리 장치.And a transmission parameter descriptor including a transmission protocol parameter for the packet including data of the component.
PCT/KR2015/014400 2014-12-30 2015-12-29 Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method WO2016108573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462098284P 2014-12-30 2014-12-30
US62/098,284 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016108573A1 true WO2016108573A1 (en) 2016-07-07

Family

ID=56284631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014400 WO2016108573A1 (en) 2014-12-30 2015-12-29 Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method

Country Status (1)

Country Link
WO (1) WO2016108573A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130119281A (en) * 2012-04-23 2013-10-31 한국전자통신연구원 Method and apparatus for transmitting signla in digital broadcasting system
KR20130120416A (en) * 2012-04-25 2013-11-04 삼성전자주식회사 Apparatus and method for transmitting and receiving signalling information in a digital broadcast system
KR101455393B1 (en) * 2008-03-03 2014-10-27 삼성전자주식회사 Method and apparatus for transmitting and receiving control information in a wireless communication system
WO2014200280A2 (en) * 2013-06-12 2014-12-18 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
US20140380135A1 (en) * 2010-09-14 2014-12-25 Lg Electronics Inc. Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, and method for transmitting/receiving broadcast signal through apparatus for transmitting/receiving broadcasting signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455393B1 (en) * 2008-03-03 2014-10-27 삼성전자주식회사 Method and apparatus for transmitting and receiving control information in a wireless communication system
US20140380135A1 (en) * 2010-09-14 2014-12-25 Lg Electronics Inc. Apparatus for transmitting broadcast signal, apparatus for receiving broadcast signal, and method for transmitting/receiving broadcast signal through apparatus for transmitting/receiving broadcasting signal
KR20130119281A (en) * 2012-04-23 2013-10-31 한국전자통신연구원 Method and apparatus for transmitting signla in digital broadcasting system
KR20130120416A (en) * 2012-04-25 2013-11-04 삼성전자주식회사 Apparatus and method for transmitting and receiving signalling information in a digital broadcast system
WO2014200280A2 (en) * 2013-06-12 2014-12-18 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals

Similar Documents

Publication Publication Date Title
WO2015178603A1 (en) Broadcasting transmission device, method for operating broadcasting transmission device, broadcasting reception device, and method for operating broadcasting reception device
WO2016080803A1 (en) Broadcasting signal transmission apparatus, broadcasting signal reception apparatus, broadcasting signal transmission method, and broadcasting signal reception method
WO2016010404A1 (en) Broadcast transmission device, method by which broadcast transmission device processes data, broadcast reception device and method by which broadcast reception device processes data
WO2015102381A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2016028120A1 (en) Broadcast signal transmitting method, broadcast signal transmitting device, broadcast signal receiving method, and broadcast signal receiving device
WO2016060422A1 (en) Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method
WO2016076654A1 (en) Broadcasting signal transmission device, broadcasting signal reception device, broadcasting signal transmission method, and broadcasting signal reception method
WO2016129868A1 (en) Broadcast signal transmitting device, broadcast signal receiving device, broadcast signal transmitting method, and broadcast signal receiving method
WO2016093576A1 (en) Broadcasting signal transmission apparatus, broadcasting signal receiving apparatus, broadcasting signal transmission method and broadcasting signal receiving method
WO2015064942A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2016122267A1 (en) Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method
WO2015178690A1 (en) Broadcast signal transmitting/receiving method and device
WO2016060410A1 (en) Broadcasting signal transmission device, broadcasting signal reception device, broadcasting signal transmission method, and broadcasting signal reception method
WO2016111526A1 (en) Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method
WO2015126223A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2016117939A1 (en) Broadcast signal transmission apparatus, broadcast signal receiving apparatus, broadcast signal transmission method, and broadcast signal receiving method
WO2016048090A1 (en) Broadcasting signal transmitting device, broadcasting signal receiving device, broadcasting signal transmitting method, and broadcasting signal receiving method
WO2016080721A1 (en) Broadcast signal transmission device, broadcast signal reception device, broadcast signal transmission method, and broadcast signal reception method
WO2016076569A1 (en) Broadcast signal transmission apparatus, broadcast signal receiving apparatus, broadcast signal transmission method, and broadcast signal receiving method
WO2015156625A1 (en) Broadcast transmission device, broadcast reception device, operating method of broadcast transmission device, and operating method of broadcast reception device
WO2015065104A1 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2016129869A1 (en) Broadcast signal transmission apparatus, broadcast signal receiving apparatus, broadcast signal transmission method, and broadcast signal receiving method
WO2016064151A1 (en) Broadcasting signal transmission device, broadcasting signal reception device, broadcasting signal transmission method, and broadcasting signal reception method
WO2016060416A1 (en) Device for transmitting broadcast signal, device for receiving broadcast signal, method for transmitting broadcast signal, and method for receiving broadcast signal
WO2015167177A1 (en) Broadcast transmission apparatus, broadcast reception apparatus, operation method of the broadcast transmission apparatus and operation method of the broadcast reception apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875667

Country of ref document: EP

Kind code of ref document: A1