[go: up one dir, main page]

WO2016103295A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2016103295A1
WO2016103295A1 PCT/JP2014/006469 JP2014006469W WO2016103295A1 WO 2016103295 A1 WO2016103295 A1 WO 2016103295A1 JP 2014006469 W JP2014006469 W JP 2014006469W WO 2016103295 A1 WO2016103295 A1 WO 2016103295A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
refrigerant
gas
precooling
ejector
Prior art date
Application number
PCT/JP2014/006469
Other languages
French (fr)
Japanese (ja)
Inventor
良祐 綿貫
徹 中山
英史 大森
裕 山中
Original Assignee
日揮株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日揮株式会社 filed Critical 日揮株式会社
Priority to PCT/JP2014/006469 priority Critical patent/WO2016103295A1/en
Publication of WO2016103295A1 publication Critical patent/WO2016103295A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0015Ejectors not being used as compression device using two or more ejectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/60Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"

Definitions

  • the present invention relates to a refrigeration apparatus for cooling a fluid to be cooled such as natural gas.
  • the production process of liquefied natural gas is a process of performing pretreatment such as acid gas removal and moisture removal on natural gas, followed by precooling to, for example, around ⁇ 40 ° C. with a precooling refrigerant, After removing the gas, it is provided with a step of cooling to ⁇ 160 ° C. to ⁇ 160 ° C. with the main refrigerant and liquefying.
  • a refrigerant mainly composed of propane is used as the precooling refrigerant, and a mixed refrigerant obtained by mixing methane, ethane, propane and nitrogen is used as the main refrigerant.
  • refrigerants are circulated and used in a vapor compression refrigeration cycle.
  • the refrigerant is compressed by a compressor in a gaseous state, and then cooled and liquefied by a condenser, and the liquefied refrigerant having a high pressure is reduced in pressure by an expansion valve or the like.
  • the low-temperature refrigerant is vaporized by heat exchange with natural gas and becomes a gas again.
  • the precooling refrigerant is also used to cool the main refrigerant compressed by the compressor, and the main refrigerant is cooled by the precooling refrigerant and then exchanges heat with natural gas.
  • Patent Document 1 proposes a technique for improving the efficiency of a refrigeration cycle by replacing an expansion valve provided in the refrigeration cycle with an ejector.
  • the refrigeration cycle described in Patent Document 1 is applied to a relatively small device such as an air conditioner such as an air conditioner or a refrigerator for a showcase.
  • Patent Document 2 discloses a technique for reducing the outlet pressure of a refrigeration compressor to an external pressure or lower using an ejector in order to reduce power when starting a refrigeration compressor provided in a natural gas refrigeration cycle.
  • Patent Document 3 describes a technique in which natural gas cooled and liquefied by a heat exchanger is decompressed and expanded into a rectifying column by an ejector to separate nitrogen contained in the liquefied natural gas.
  • the ejector described in the cited document 2 ends its use after starting the refrigeration compressor, and the ejector described in the cited document 3 is a device on the cooled fluid side, both of which are parts of the refrigeration cycle. It is not an ejector constituting the part.
  • JP 2009-299911 A Japanese Patent No. 4976426 U.S. Pat. No. 4,112,700
  • the present invention has been made under such a background, and is to provide a refrigeration apparatus having a refrigeration cycle including an ejector.
  • the refrigeration apparatus of the present invention includes a compressor that compresses refrigerant gas, A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle.
  • An ejector for increasing the pressure of the mixed fluid of the high-pressure refrigerant liquid and the refrigerant gas sucked from the suction port A gas-liquid separator that gas-liquid separates the fluid mixture pressurized by the ejector, and the separated refrigerant gas is sent to the compressor; Refrigerant liquid separated by the gas-liquid separator is supplied through a flow path, and heat is exchanged between the refrigerant liquid and the fluid to be cooled to cool the fluid to be cooled and heat exchange is generated.
  • a heat exchanger in which the refrigerant gas and the liquid accompanying it are sucked into the suction port of the ejector A liquid level control valve that is provided in the flow path and adjusts the flow rate of the refrigerant liquid based on the liquid level of the refrigerant liquid of the heat exchanger; And a flow rate adjusting unit that adjusts the flow rate of the high-pressure refrigerant liquid supplied to the nozzle of the ejector based on the liquid level in the gas-liquid separator.
  • This refrigeration apparatus is provided with a plurality of stages of the ejector, the gas-liquid separator, the flow path, the heat exchanger, the liquid level control valve, and the flow rate adjusting unit, and the inlets of the nozzles of the ejectors in the second and subsequent stages are as follows: You may comprise so that the refrigerant
  • a refrigeration apparatus includes a compressor that compresses refrigerant gas, A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle.
  • the refrigerant liquid separated by the gas-liquid separator is supplied through the first branch flow path, and heat exchange is performed between the refrigerant liquid and the first cooled fluid, and the first cooled fluid.
  • a first heat exchanger in which the refrigerant gas generated by cooling and heat exchange and the liquid accompanying the refrigerant gas are sucked into the suction port of the ejector,
  • the refrigerant liquid separated by the gas-liquid separator is supplied via the second branch flow path, and heat exchange is performed between the refrigerant liquid and the second cooled fluid, thereby the second cooled fluid.
  • a second heat exchanger in which the refrigerant gas generated by cooling and heat exchange and the liquid accompanying the refrigerant gas are sucked into the suction port of the ejector,
  • a first flow path and a second flow path are provided respectively for adjusting the flow rate of the refrigerant liquid based on the liquid level of the refrigerant liquid of the first heat exchanger and the second heat exchanger.
  • a flow rate adjusting unit that adjusts the flow rate of the high-pressure refrigerant liquid supplied to the nozzle of the ejector based on the liquid level in the gas-liquid separator.
  • the refrigeration apparatus includes the ejector, the gas-liquid separator, the first and second branch channels, the first heat exchanger, the second heat exchanger, the first liquid level control valve, the second A plurality of sets of liquid level control valves and flow rate adjustment units are provided, and the refrigerant liquid separated by the gas-liquid separator of the previous stage is supplied to the inlets of the nozzles of the second and subsequent sets of ejectors. You may be comprised so that.
  • each of the above-described refrigeration devices preliminarily cools natural gas with a precooling refrigerant, then main cools with the main refrigerant, compresses the main refrigerant after the main cooling, and then cools with the precooling refrigerant.
  • a refrigeration apparatus used for The high-pressure refrigerant is a precooling refrigerant, and one and the other of the first cooled fluid and the second cooled fluid may be natural gas and main refrigerant, respectively.
  • the refrigerant gas after being used for cooling the liquid to be cooled is sucked by the heat exchanger, and the pressure is increased.
  • the refrigerated refrigerant fluid and refrigerant gas discharged from the ejector are discharged from the ejector and sent to the gas-liquid separator, and the gas-liquid separated refrigerant gas is returned to the compressor while the refrigerant liquid is supplied to the heat exchanger. Have a cycle.
  • the flow rate of the refrigerant liquid supplied to the heat exchanger is adjusted based on the liquid level of the refrigerant liquid in the heat exchanger, while the flow rate of the high-pressure refrigerant liquid supplied to the ejector is a gas-liquid separation. It is adjusted based on the liquid level of the vessel. As a result, in the gas-liquid separator, the refrigerant liquid in an amount necessary for cooling the cooled fluid is supplied to the heat exchanger. Inflow can be prevented.
  • the pressure of the heat exchanger is operated at a lower pressure than the gas-liquid separator, that is, at a lower temperature. Therefore, the fluid to be cooled can be cooled to a lower temperature.
  • the liquefaction system of the natural gas (LNG: Liquefied Natural Gas) provided with the freezing apparatus which concerns on this invention is demonstrated.
  • LNG Liquefied Natural Gas
  • LNG manufacturing equipment will remove the acid gas removal part 101 which removes the acid gas in NG, and the water
  • the water removal unit 102 and the NG that has been subjected to the pretreatment for removing the acid gas and water are precooled and cooled to an intermediate temperature in the range of about ⁇ 20 ° C. to ⁇ 70 ° C., for example, ⁇ 35 ° C. to ⁇ 39 ° C.
  • the precooling heat exchange unit 103 and the gas-liquid mixed gas cooled to an intermediate temperature are sent to a heavy component removal unit (not shown) to remove heavy components (ethane and heavier components) having 2 or more carbon atoms.
  • LNG containing methane as a main component and containing a small amount of ethane, propane, and butane is cooled to ⁇ 150 ° C. to ⁇ 160 ° C. to be liquefied to provide liquefaction unit 104 for obtaining LNG as a liquefied gas.
  • the thick white arrows shown in FIG. 1 indicate the flow of the raw material NG or the product LNG.
  • the precooling heat exchange unit 103 precools the pretreated NG using, for example, propane which is a precooling refrigerant.
  • the precooling refrigerant is also used for cooling the main refrigerant used in the liquefaction unit 104 at the subsequent stage.
  • auxiliary cooling the cooling of the main refrigerant by the precooling refrigerant.
  • the flow of propane is indicated by a thin arrow indicated with “C3”
  • the flow of the main refrigerant is indicated by an hatched arrow indicated with “MR (MixederRefrigerant)”.
  • the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 for cooling the main refrigerant are preliminarily used for precooling NG and precooling the main refrigerant (MR).
  • the 1st compression part 2a which compresses the refrigerant (C3) for operation is provided.
  • the liquefaction unit 104 includes a second compression unit 2b that compresses the main refrigerant used for liquefaction of NG.
  • Each compressor 2a, 2b is provided with a plurality of compressors in parallel and in series according to the amount of precooling refrigerant or main refrigerant processed, the pressure difference between the suction side and the discharge side, and the like.
  • the refrigeration apparatus of this example is configured as a refrigeration cycle that cools the precooling refrigerant used in the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 constituting the liquefaction system.
  • the precooling refrigerant gas (high-pressure refrigerant gas) that has been pressurized by the compressor 20 constituting the first compressor 2a is cooled and condensed by AFC (AirFCFin Cooler) 31a, 31b.
  • the liquid receiver 32 retains the precooling refrigerant liquid (high-pressure refrigerant liquid).
  • the precooling refrigerant (liquid) is supercooled by the AFC 31c, and then precooled heat exchangers 34a to 34d provided on the precooling heat exchange unit 103 side, and an auxiliary provided on the auxiliary heat exchange unit 105 side.
  • the heat exchangers 35a to 35d are supplied separately.
  • the compressor 20 may be gas turbine driven, steam driven, or motor driven. Moreover, you may provide the heat exchanger by water cooling instead of AFC31a, 31b, 31c.
  • the precooling heat exchangers 34a to 34d of the precooling heat exchanging section 103 flow NG as a fluid to be cooled to the tube side, and flow a precooling refrigerant to the shell side to perform precooling of NG.
  • the tubes and shells of the precooling heat exchangers 34a to 34d are connected in series with the precooling heat exchanger 34a as the most upstream stage (first stage) and the precooling heat exchanger 34d as the most downstream stage (fourth stage).
  • NG flows in order from the first stage precooling heat exchanger 34a toward the fourth stage precooling heat exchanger 34d.
  • description of NG piping connecting the precooling heat exchangers 34a to 34d is omitted (the same applies to FIGS. 2 and 4).
  • the precooling refrigerant (liquid) supercooled by the AFC 31c is adiabatically expanded by the expansion valve 36a provided on the inlet side of the first stage precooling heat exchanger 34a, and the precooling heat exchange is performed while the temperature is further lowered. Is supplied to the vessel 34a.
  • the precooling heat exchanger 34a heat exchange between the precooling refrigerant and NG is performed, and NG is cooled.
  • gas-liquid separation between the liquid of the precooling refrigerant generated by adiabatic expansion in the expansion valve 36a and heat exchange with NG and the liquid is performed.
  • the gas is extracted from the pre-cooling heat exchanger 34a, and then the accompanying liquid is removed by the knockout drum 33a, and then returned to the high-pressure side suction port of the compressor 20.
  • the liquid in the precooling heat exchanger 34a is extracted toward the second stage precooling heat exchanger 34b.
  • a demister is provided in the knockout drum 33a.
  • expansion valves 36b to 36d are provided on the inlet side of the second and subsequent stage precooling heat exchangers 34b to 34d, respectively, so that the precooling heat on the upstream stage side is provided.
  • the precooling refrigerant (liquid) supplied from the exchangers 34a to 34c is adiabatically expanded to lower its temperature and then supplied to the downstream precooling heat exchangers 34b to 34d.
  • the temperature of the precooling refrigerant supplied to the precooling heat exchangers 34a to 34d gradually decreases from the upstream stage to the downstream stage.
  • the temperature of the NG cooled by the precooling heat exchangers 34a to 34d gradually decreases, and from the fourth stage precooling heat exchanger 34d, for example, from -35 ° C to -39.
  • NG in the gas-liquid mixed state cooled to 0 ° C. is extracted and supplied to the liquefaction unit 104 in the subsequent stage.
  • the gas generated in the second and subsequent precooling heat exchangers 34b to 34d also corresponds to the pressure of the knockout drums 33b to 33d after the accompanying liquid is removed from the knockout drums 33b to 33d. It is returned to the suction port of the compressor 20.
  • the precooling heat exchangers 34a to 34d are provided with liquid level gauges 341a to 341d for detecting the height position (liquid level) of the liquid in the shell.
  • the expansion valves 36a to 36d provided on the inlet side of the respective precooling heat exchangers 34a to 34d were detected by liquid level gauges 341a to 341d provided on the downstream side precooling heat exchangers 34a to 34d. Based on the liquid level, the supply amount of the precooling refrigerant supplied to the expansion valves 36a to 36d is increased or decreased.
  • the opening of the expansion valves 36a to 36d is increased to increase the supply amount of the precooling refrigerant, while the liquid level is increased.
  • control is performed to reduce the supply amount of the precooling refrigerant by reducing the opening degree of the expansion valves 36a to 36d.
  • the number of stages of the precooling heat exchangers 34a to 34d may be increased or decreased as necessary.
  • a plurality of heat exchanger systems in which these precooling heat exchangers 34a to 34d are connected in series are provided in parallel. Also good.
  • the configuration of the precooling heat exchangers 34a to 34d provided in the precooling heat exchange unit 103 has been described above, but the configuration of the auxiliary heat exchangers 35a to 35d provided on the auxiliary heat exchange unit 105 side is almost the same. It has become. That is, the auxiliary heat exchangers 35a to 35d flow the main refrigerant (MR), which is a fluid to be cooled, to the tube side, and flow the precooling refrigerant to the shell side to perform preliminary cooling of the main refrigerant.
  • the tubes and shells 35a to 35d are connected in series in this order. Further, the description of the main refrigerant piping connecting between the auxiliary heat exchangers 35a to 35d is omitted, which is the same as in the case of the precooling heat exchangers 34a to 34d.
  • Expansion valves 37a to 37d are provided on the inlet sides of the auxiliary heat exchangers 35a to 35d, respectively, so that the precooling refrigerant (liquid) supplied from the upstream side is adiabatically expanded to lower its temperature. Is supplied to each of the auxiliary heat exchangers 35a to 35d to cool the main refrigerant. Also in these auxiliary heat exchangers 35a to 35d, as the temperature of the precooling refrigerant decreases, the temperature of the main refrigerant gradually decreases. For example, the main refrigerant cooled to ⁇ 35 ° C. to ⁇ 39 ° C. is supplied to the liquefaction unit 104. Is done.
  • the gas generated in each of the auxiliary heat exchangers 35a to 35d is introduced into the aforementioned knockout drums 33a to 33d in accordance with the pressure, and the accompanying liquid is removed, and then the compressor corresponding to each pressure is removed. 20 and the flow rate adjustment by the expansion valves 37a to 37d is performed based on the liquid level detected by the liquid level gauges 351a to 351d provided in the auxiliary heat exchangers 35a to 35d. This is the same as the precooling heat exchangers 34a to 34d on the precooling heat exchanging unit 103 side.
  • the number of stages of the auxiliary heat exchangers 35a to 35d may be increased or decreased as necessary, and a plurality of heat exchanger systems in which the auxiliary heat exchangers 35a to 35d are connected in series are connected in parallel. It may be provided.
  • the refrigeration apparatus includes the precooling heat exchanging unit 103 in which the precooling refrigerant flows through the path of “compressor 20 ⁇ AFC 31a to 31c ⁇ precooling heat exchanger 34a to 34d ⁇ compressor 20”. And a refrigeration cycle on the auxiliary heat exchange section 105 side through which the precooling refrigerant flows through a path of “compressor 20 ⁇ AFC 31a to 31c ⁇ auxiliary heat exchangers 35a to 35d ⁇ compressor 20”. The temperature of the precooling refrigerant in each refrigeration cycle is lowered by adiabatic expansion in the expansion valves 36a to 36d and 37a to 37d.
  • the refrigeration apparatus of the present embodiment uses an ejector that reduces the pressure of the precooling heat exchangers 34a to 34d using the energy of the precooling refrigerant in the process of adiabatic expansion of the precooling refrigerant. 41a to 41d.
  • a configuration example of the refrigeration apparatus including the ejectors 41a to 41d will be described with reference to FIGS.
  • FIGS. 2 and 4 described below the same reference numerals as those used in FIG. 5 are attached to the same components as those described using FIG.
  • the refrigeration apparatus shown in FIG. 2 includes a precooling refrigerant gas (refrigerant gas) extraction side from each of the precooling heat exchangers 34a to 34d provided on the precooling heat exchanger 103 side and the knockout drums 33a to 33d. Further, the point that the ejectors 41a to 41d are provided is different from the conventional refrigeration apparatus shown in FIG. On the other hand, in the auxiliary heat exchangers 35a to 35d on the auxiliary heat exchanger 105 side, the refrigeration apparatus uses the expansion valves 37a to 37d to lower the temperature of the precooling refrigerant in the auxiliary heat exchangers 35a to 35d. It is the composition which makes it.
  • refrigerant gas refrigerant gas
  • FIG. 3 shows a configuration example of each of the ejectors 41a to 41d (in FIG. 3, each ejector 41a to 41d is generally labeled with “41”).
  • a nozzle 412 for supplying a precooling refrigerant liquid (high-pressure refrigerant liquid) to a tubular main body 416 whose rear end portion is sealed is coaxially inserted from the rear end portion side.
  • a suction port 413 for sucking a precooling refrigerant gas into the main body 416 is provided on a side surface of the main body 416, and the suction port 413 is connected to a pipe for extracting gas from the precooling heat exchangers 34a to 34d.
  • the distal end side of the main body 416 is reduced in diameter in the liquid discharge direction from the nozzle 412, and the downstream side of the discharge port of the nozzle 412 is a mixing unit 414 made of a pipe having a smaller diameter than the main body 416. It has become.
  • a diffuser portion 415 whose diameter is gradually enlarged is provided on the outlet side of the mixing portion 414, and the ejector 41 is provided with a gas-liquid separator (corresponding to the knockout drum shown in FIG. 5) 33a via the diffuser portion 415.
  • the ejector 41 having the above-described configuration, when the precooling refrigerant (liquid) accelerated at high speed in the nozzle 412 is discharged from the nozzle 412, the fluid in the main body 416 is drawn toward the precooling refrigerant flowing at high speed.
  • the precooling refrigerant (gas) is sucked from the suction port 413.
  • most of the precooling refrigerant extracted from the precooling heat exchangers 34a to 34d is gas, but is accompanied by a mist-like liquid of about 1.0 wt% at most.
  • the ejector 41 sucks the precooling refrigerant gas and the liquid accompanying it from the precooling heat exchangers 34a to 34d.
  • the precooling refrigerant gas and the liquid accompanying it may be collectively referred to as “gas”.
  • the temperature of the precooling refrigerant discharged from the nozzle 412 decreases due to adiabatic expansion.
  • the precooling refrigerant (liquid) discharged from the nozzle 412 and the precooling refrigerant (gas) sucked from the suction port 413 flow through the mixing unit 414 as a gas-liquid mixed fluid while being mixed with each other, and enter the diffuser unit 415. Decelerate and the pressure recovers.
  • the configuration of the ejector 41 provided in the refrigeration apparatus is not limited to the example shown in FIG. 3, and the precooling refrigerant (gas) is sucked using the precooling refrigerant (liquid), and the mixed fluid thereof. As long as the voltage is increased, the configuration of each part may be changed as appropriate.
  • the precooling refrigerant (liquid) supercooled by the AFC 31c is supplied to the nozzle 412 provided in the ejector 41a, while being on the outlet side (precooling refrigerant gas side) of the first stage precooling heat exchanger 34a.
  • the pipe is connected to the suction port 413 of the ejector 41a.
  • the exit side of the diffuser part 415 of the ejector 41a from which the gas-liquid mixed fluid of the precooling refrigerant flows out is connected to the gas-liquid separator 33a.
  • the liquid flowing into the knockout drum 33a provided in the conventional refrigeration apparatus shown in FIG. 5 is a small amount of mist accompanying the precooling refrigerant gas extracted from the precooling heat exchanger 34a. Only.
  • the gas-liquid separator 33a shown in FIG. 2 the mixed fluid of the precooling refrigerant gas and the liquid mixed in the ejector 41a flows, and the gas and the liquid are separated by the flow velocity decrease after the inflow. Gas-liquid separation.
  • the knockout drum 33a described with reference to FIG. 5 corresponds to a gas-liquid separator that separates gas and liquid into gas and liquid in the refrigeration apparatus shown in FIG. (Same in FIG. 4).
  • the precooling refrigerant gas after the gas-liquid separation is returned to the high-pressure side suction port of the compressor 20.
  • a liquid pool of a liquid for precooling whose temperature is lowered by the ejector 41a is formed on the lower side of the gas-liquid separator 33a.
  • the precooling refrigerant (liquid) is extracted from the liquid pool toward the precooling heat exchanger 34a through a flow path provided between the bottom of the gas-liquid separator 33a and the precooling heat exchanger 34a.
  • the gas-liquid separators 33a to 33c in the previous stage with respect to the ejectors 41b to 41d (nozzles 412) provided on the outlet side of the precooling heat exchangers 34b to 34d are used.
  • the structure is the same as that of the first stage except that the separated precooling refrigerant liquid is supplied. That is, gas-liquid separators 33b to 33d are provided on the outlet sides of the ejectors 41b to 41d in each stage, and the precooling refrigerant gas after the gas-liquid separation is supplied to the suction port of the compressor 20 corresponding to each pressure. Returned.
  • the precooling refrigerant (liquid) is supplied from the liquid reservoirs of the gas-liquid separators 33b to 33d through the flow path provided between the bottoms of the gas-liquid separators 33b to 33d and the precooling heat exchangers 34b to 34d. Extracted and used for cooling NG.
  • the gas (including the accompanying liquid) generated on the shell side of the precooling heat exchangers 34b to 34d is sucked by the ejectors 41b to 41d.
  • NG is cooled to a temperature lower than that of the heat exchanger shown in the refrigeration apparatus of FIG. The same applies to the point where the gas extracted from the auxiliary heat exchangers 35b to 35d on the auxiliary heat exchanging unit 105 side joins the flow paths on the outlet side of the ejectors 41b to 41d.
  • the refrigeration apparatus of the present example includes liquid levels of the precooling heat exchangers 34a to 34d.
  • the expansion valves 36a to 36d for adjusting the level are not provided. Therefore, as shown in FIG. 2, liquid level gauges 341a to 341d provided in the precooling heat exchangers 34a to 34d are provided in the flow path between the gas-liquid separators 33a to 33d and the precooling heat exchangers 34a to 34d.
  • Liquid level control valves 342a to 342d are provided for adjusting the flow rate of the precooling refrigerant (liquid) supplied from the gas-liquid separators 33a to 33d based on the detection result of the liquid level.
  • the liquid level control valves 342a to 342d when the liquid level in each of the precooling heat exchangers 34a to 34d is lower than the target value, the liquid level control valves 342a to 342d While increasing the opening degree and increasing the supply amount of the precooling refrigerant, when the liquid level is higher than the target value, the opening amounts of the liquid level control valves 342a to 342d are reduced and the supply amount of the precooling refrigerant is increased. Control to reduce is performed.
  • the above-described liquid level control valves 342a to 342d are opened and closed according to the liquid level of the precooling refrigerant in the precooling heat exchangers 34a to 34d, and the liquid reservoirs in the gas-liquid separators 33a to 34d
  • the amount of precooling refrigerant withdrawn is changed independently of the amount of.
  • the pre-cooling refrigerant (liquid) drawn out from the gas-liquid separators 33a to 33d is lost or the height of the liquid pool becomes too high.
  • the precooling refrigerant (liquid) may flow out to the compressor 20 side.
  • the gas-liquid separators 33a to 33d of this example are provided with liquid level gauges 331a to 331d for detecting the liquid level of the liquid pool.
  • a flow rate for adjusting the flow rate of the liquid precooling refrigerant (high-pressure refrigerant liquid) is provided at the base end portion of the nozzle 412 provided in each of the ejectors 41a to 41d (41).
  • An adjustment valve (flow rate adjustment unit) 411 is provided.
  • the flow rate adjustment valve 411 is preferably provided integrally with the nozzle 412 as a part of the equipment constituting the ejector 41.
  • the flow rate adjusting valve 411 may be independently provided on the upstream side of the precooling refrigerant (liquid) supply pipe connected to the nozzle 412 that does not include the flow rate adjusting valve 411.
  • the flow rate adjustment valve 411 of these ejectors 41a to 41d As an example of the control executed by the flow rate adjustment valves 411 of these ejectors 41a to 41d, when the liquid level in each of the gas-liquid separators 33a to 33d is lower than the target value, the flow rate adjustment valve 411 is opened. When the liquid level is higher than the target value while increasing the degree of supply of the precooling refrigerant, control is performed to reduce the supply amount of the precooling refrigerant by reducing the opening of the flow rate adjustment valve 411. Done.
  • the operation of the refrigeration apparatus described above will be described.
  • the supplied amount of the precooling refrigerant (liquid) supercooled by the AFC 31c is increased or decreased on the precooling heat exchange unit 103 side in accordance with the liquid level of the gas-liquid separator 33a.
  • the suction amount of the precooling refrigerant gas (including the accompanying liquid) sucked from the precooling heat exchanger 34a side is increased or decreased in accordance with the supply amount of the precooling refrigerant (liquid).
  • the gas-liquid mixed fluid of the pre-cooling refrigerant discharged from the ejector 41a is separated in the gas-liquid separator 33a, and the gas is returned to the suction port of the compressor 20, while the liquid is the gas-liquid separator.
  • a liquid pool is formed in 33a.
  • a part of the precooling refrigerant constituting the liquid pool is extracted toward the precooling heat exchanger 34a in accordance with the liquid level in the precooling heat exchanger 34a, and is used for cooling NG.
  • a part of the precooling refrigerant in the liquid pool is extracted toward the second-stage ejector 41b, and the extraction amount is at the liquid level of the precooling refrigerant in the second-stage gas-liquid separator 33b. Increase or decrease accordingly.
  • the liquid level of the precooling heat exchangers 34a to 34d varies depending on the flow rate of NG to be cooled, the inlet temperature of the NG in each of the precooling heat exchangers 34a to 34d, and the like.
  • the liquid level in the second-stage gas-liquid separator 33b also changes according to the liquid-level level in the second-stage precooling heat exchanger 34b and the third-stage gas-liquid separator 33c.
  • the total amount of precooling refrigerant (liquid) used in the precooling heat exchanger 34a and the ejector 41b connected to the gas-liquid separator 33a is collectively detected as the liquid level in the gas-liquid separator 33a.
  • the supply amount of the pre-cooling refrigerant (liquid) to the ejector 41a is increased or decreased so that the liquid level becomes constant.
  • the precooling heat exchanger 34a and the ejector 41b can freely use the precooling refrigerant in accordance with the load within the range of the compressor 20 and the AFC 31a to 31c.
  • the refrigeration apparatus can be operated without causing restrictions on the amount of refrigerant used.
  • the loads of the precooling heat exchangers 34b to 34d provided in each stage and the ejectors 41c to 41d in the subsequent stages are increased or decreased according to the load of only the precooling heat exchanger 34d).
  • the pre-cooling heat exchangers 34b to 34d and the ejectors 41c and 41d in the second and subsequent stages can freely use the pre-cooling refrigerant according to the load and do not cause individual usage amount restrictions.
  • a part of the precooling refrigerant (liquid) thus supercooled by the AFC 31c is cooled by the ejectors 41a to 41d, and then each precooling heat exchanger 34a to 34a is passed through the gas-liquid separators 33a to 33d downstream thereof. 34d, where it is used to cool NG. Then, the precooling refrigerant gas generated in the precooling heat exchangers 34a to 34d is sucked into the ejectors 41a to 41d together with the accompanying liquid, and is passed through the gas-liquid separators 33a to 33d, and the related art shown in FIG. NG can be cooled to a temperature lower than that of the precooling heat exchangers 34a to 34d of the refrigeration apparatus.
  • the remaining part of the precooling refrigerant (liquid) supercooled by the AFC 31c is the expansion valves 37a to 37d on the auxiliary heat exchange unit 105 side, as in the conventional refrigeration apparatus described with reference to FIG.
  • the pre-cooling refrigerant whose temperature has gradually decreased is used for cooling the main refrigerant, and the liquid level of the auxiliary heat exchangers 35a to 35d is adjusted by adjusting the opening degree of each expansion valve 37a to 37d.
  • the precooling refrigerant gas extracted from each of the auxiliary heat exchangers 35a to 35d joins the precooling refrigerant gas on the precooling heat exchange section 103 side together with the accompanying liquid, and passes through the gas-liquid separators 33a to 33d. To the suction port of the compressor 20.
  • the refrigeration apparatus has the following effects.
  • a liquid precooling refrigerant (high-pressure refrigerant liquid) obtained after being compressed by the compressor 20 is adiabatically expanded by the ejectors 41a to 41d, and NG (covered by the precooling heat exchangers 34a to 34d).
  • the precooling refrigerant (refrigerant gas) used for cooling the cooling liquid) is sucked and sent to the gas-liquid separators 33a to 33d, and the refrigerant gas separated from the gas-liquid is returned to the compressor 20, while the liquid precooling is performed.
  • the flow rate of the precooling refrigerant supplied to the precooling heat exchangers 34a to 34d is adjusted based on the liquid level of the precooling refrigerant in each of the precooling heat exchangers 34a to 34d, while the ejectors 41a to 41d.
  • the flow rate of the precooling refrigerant (liquid) supplied to is adjusted based on the liquid level of the gas-liquid separators 33a to 33d.
  • the pre-cooling refrigerant supplied to the pre-cooling heat exchangers 34a to 34d is supplied to the pre-cooling heat exchangers 34a to 34d while supplying the pre-cooling refrigerant necessary for cooling the NG to the pre-cooling heat exchangers 34a to 34d. It is possible to prevent the refrigerant from running out and the precooling refrigerant from flowing out to the compressor 20.
  • the installation locations of the ejectors are 41a to 41d. Any one of them, for example, 41a alone, or two or more ejectors, for example, 41a and 42b, may be provided in any combination. Furthermore, the system in which the ejector 41 is provided may be on the auxiliary heat exchange unit 105 side.
  • strain which provides the ejector 41 is not limited to any one of the pre-cooling heat exchange part 103 and the liquefaction part 104, You may provide in both systems.
  • FIG. 4 shows an example of a refrigeration apparatus in which common ejectors 41 a to 41 d are provided in both systems of the pre-cooling heat exchange unit 103 and the auxiliary heat exchange unit 105.
  • the flow path for extracting the precooling refrigerant (liquid) from the liquid pools of the gas-liquid separators 33a to 33d to the precooling heat exchangers 34a to 34d on the precooling heat exchanging unit 103 side is branched in the middle to assist
  • the auxiliary heat exchangers 35a to 35d on the heat exchange unit 105 side are connected.
  • the outlet side pipes of the auxiliary heat exchangers 35a to 35d (gas side of the precooling refrigerant) merge with the outlet side pipes of the precooling heat exchangers 34a to 34d side of the precooling heat exchanging unit 103 side,
  • the suction ports 413 of the ejectors 41a to 41d are connected.
  • each of the ejectors 41a to 41d includes two sets of precooling heat exchangers 34a to 34d and 35a to 35d provided in both systems of the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 from the upper side.
  • the gas (including the accompanying liquid) generated in the precooling heat exchangers 34a to 34d and 35a to 35d of each set can be sucked.
  • liquid level gauges 351a to 351d for detecting the internal liquid level, and detection of the liquid level by these liquid level gauges 351a to 351d Based on the results, liquid level control valves 352a to 352d for adjusting the flow rate of the precooling refrigerant (liquid) supplied from the gas-liquid separators 33a to 33d to the auxiliary heat exchangers 35a to 35d are provided.
  • each of the ejectors 41a to 41d adjusts the flow rate of the liquid precooling refrigerant based on the liquid level of the gas-liquid separators 33a to 33d, which is the same as the refrigeration apparatus described with reference to FIG. It is.
  • precooling heat exchangers 34a to 34d on the precooling heat exchanging section 103 side correspond to first heat exchangers, from gas-liquid separators 33a to 33d to precooling heat exchangers 34a to 34d.
  • the flow path of the precooling refrigerant corresponds to the first branch flow path.
  • NG cooled by the precooling heat exchangers 34a to 34d corresponds to the first fluid to be cooled, and the liquid level control valves 342a to 342d provided in the respective precooling heat exchangers 34a to 34d are the first liquid level. It corresponds to a control valve.
  • the auxiliary heat exchangers 35a to 35d on the auxiliary heat exchanging unit 105 side correspond to a second heat exchanger, and the flow path of the precooling refrigerant from the gas-liquid separators 33a to 33d to the auxiliary heat exchangers 35a to 35d.
  • the main refrigerant cooled by the auxiliary heat exchangers 35a to 35d corresponds to the second fluid to be cooled, and the liquid level control valves 352a to 352d provided in the auxiliary heat exchangers 35a to 35d are the second liquid. It corresponds to a surface control valve.
  • the pressure of the heat exchangers (pre-cooling heat exchangers 34a to 34d, auxiliary heat exchangers 35a to 35d) is lower than that of the gas-liquid separators 33a to 33d, that is, at a lower temperature. Since it can be operated, the fluid to be cooled can be cooled to a lower temperature. Alternatively, it is possible to reduce the load on the compressor 20 by increasing the suction pressure of the compressor 20 by setting the temperature level of these heat exchangers to be the same as the conventional one, and select either one freely. Can drive.
  • the ejectors 41a to 41d are provided in the precooling heat exchangers 34a to 34d of the precooling heat exchanging unit 103 and the auxiliary heat exchangers 35a to 35d of the auxiliary heat exchanging unit 105. It is not essential to provide 41a to 41d. For example, the effects obtained by replacing the conventional expansion valves 36a to 36d and 37a to 37d with the ejectors 41a to 41d may be compared with the cost, and the ejectors 41a to 41d may be provided at positions where the merit is greatest.
  • the case where only the most upstream stage expansion valve 36a and / or 37a is replaced with the ejector 41a may be used.
  • the upstream side expansion valve has a larger pressure difference before and after adiabatic expansion, and the effect of replacing it with the ejectors 41a to 41d is increased, while the size of the ejectors 41a to 41d is upstream. There is a tendency to become larger toward the step side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Provided is a refrigeration device comprising a refrigeration cycle including an ejector. The ejector 41a sucks a refrigerant gas by the ejection of a high-pressure refrigerant liquid obtained by condensing a high-pressure refrigerant gas emitted from a compressor 20, and increases the pressure of a mixed fluid thereof. A gas-liquid separator 33a separates the mixed fluid into gas and liquid, and sends the separated refrigerant gas to the compressor 20. A heat exchanger 34a exchanges heat between a fluid to be cooled and the refrigerant liquid separated by the gas-liquid separator 33a, and the generated refrigerant gas is sucked by a suction opening in the ejector 41. A liquid level adjustment valve 342a adjusts the flow rate of the refrigerant liquid on the basis of the liquid level of the refrigerant liquid in the heat exchanger 34a. A flow rate adjustment unit 411 adjusts the flow rate of the high-pressure refrigerant liquid supplied to the ejector 41a on the basis of the liquid level in the gas-liquid separator 33a.

Description

冷凍装置Refrigeration equipment
 本発明は、天然ガスなどの被冷却流体を冷却する冷凍装置に関する。 The present invention relates to a refrigeration apparatus for cooling a fluid to be cooled such as natural gas.
 液化天然ガスの製造工程は、天然ガスに対して酸性ガス除去及び水分除去などの前処理を行う工程、その後、予冷用冷媒により例えば-40℃付近まで予備冷却する工程、次いで天然ガスから重質ガスを除去した後、主冷媒により例えば-150℃から-160℃に冷却して液化する工程を備えている。予冷用冷媒としてはプロパンを主成分とする冷媒が用いられ、主冷媒としてはメタン、エタン、プロパン及び窒素を混合した混合冷媒が用いられる。 The production process of liquefied natural gas is a process of performing pretreatment such as acid gas removal and moisture removal on natural gas, followed by precooling to, for example, around −40 ° C. with a precooling refrigerant, After removing the gas, it is provided with a step of cooling to −160 ° C. to −160 ° C. with the main refrigerant and liquefying. A refrigerant mainly composed of propane is used as the precooling refrigerant, and a mixed refrigerant obtained by mixing methane, ethane, propane and nitrogen is used as the main refrigerant.
 これらの冷媒は、蒸気圧縮式の冷凍サイクルにおいて循環利用される。冷凍サイクルにおいては、冷媒は気体の状態で圧縮機により圧縮され、次いで凝縮器により冷却されて液化され、液化した圧力の高い冷媒は、膨張弁などにより降圧されて低温化される。低温化された冷媒は天然ガスとの熱交換により気化して再び気体となる。予冷用冷媒は、圧縮機により圧縮された主冷媒を冷却することにも使用され、主冷媒は予冷用冷媒により冷却された後、天然ガスとの間で熱交換を行う。 These refrigerants are circulated and used in a vapor compression refrigeration cycle. In the refrigeration cycle, the refrigerant is compressed by a compressor in a gaseous state, and then cooled and liquefied by a condenser, and the liquefied refrigerant having a high pressure is reduced in pressure by an expansion valve or the like. The low-temperature refrigerant is vaporized by heat exchange with natural gas and becomes a gas again. The precooling refrigerant is also used to cool the main refrigerant compressed by the compressor, and the main refrigerant is cooled by the precooling refrigerant and then exchanges heat with natural gas.
 一般的な冷凍サイクルに着目したとき、例えば特許文献1には、冷凍サイクル内に設けられている膨張弁をエジェクタに置き換えることにより、冷凍サイクルの効率を向上させる技術が提案されている。しかしながら、特許文献1に記載の冷凍サイクルは、エアコンなどの空気調和機やショーケース用の冷凍機などのように、比較的小型の機器に適用されるものである。ところが、天然ガスの液化システムのように、大型プラントの冷凍サイクルにてエジェクタを利用するためには、エジェクタから吐出される気液混合流体からの圧縮機の保護や複数系統の被冷却流体(天然ガス及び主冷媒)に対し、熱交換器を多段に設けて冷却する際のエジェクタの設け方など、小型の冷凍サイクルにはない独自の課題が存在する。 When focusing on a general refrigeration cycle, for example, Patent Document 1 proposes a technique for improving the efficiency of a refrigeration cycle by replacing an expansion valve provided in the refrigeration cycle with an ejector. However, the refrigeration cycle described in Patent Document 1 is applied to a relatively small device such as an air conditioner such as an air conditioner or a refrigerator for a showcase. However, in order to use an ejector in a refrigeration cycle of a large plant, such as a natural gas liquefaction system, it is necessary to protect a compressor from a gas-liquid mixed fluid discharged from the ejector or to provide a plurality of cooled fluids (natural There are unique problems that are not found in small refrigeration cycles, such as how to provide ejectors when cooling by providing multiple stages of heat exchangers for gas and main refrigerant).
 ここで特許文献2には、天然ガスの冷凍サイクルに設けられた冷凍圧縮機を起動する際の動力を低減するために、エジェクタを用いて冷凍圧縮機の出口圧を外気圧以下まで下げる技術が記載されている。また特許文献3には、熱交換器で冷却されて液化された天然ガスをエジェクタによって精留塔内に減圧膨張させ、液化天然ガス中に含まれる窒素を分離する技術が記載されている。 
 しかしながら、引用文献2に記載のエジェクタは冷凍圧縮機を起動した後には使用を終えるものであり、また引用文献3に記載のエジェクタは被冷却流体側の機器であって、いずれも冷凍サイクルの一部を構成するエジェクタではない。
Here, Patent Document 2 discloses a technique for reducing the outlet pressure of a refrigeration compressor to an external pressure or lower using an ejector in order to reduce power when starting a refrigeration compressor provided in a natural gas refrigeration cycle. Are listed. Patent Document 3 describes a technique in which natural gas cooled and liquefied by a heat exchanger is decompressed and expanded into a rectifying column by an ejector to separate nitrogen contained in the liquefied natural gas.
However, the ejector described in the cited document 2 ends its use after starting the refrigeration compressor, and the ejector described in the cited document 3 is a device on the cooled fluid side, both of which are parts of the refrigeration cycle. It is not an ejector constituting the part.
特開2009-299911号公報JP 2009-299911 A 特許第4976426号公報Japanese Patent No. 4976426 米国特許第4112700号公報U.S. Pat. No. 4,112,700
 本発明は、このような背景の下になされたものであり、エジェクタを含む冷凍サイクルを備えた冷凍装置を提供することにある。 The present invention has been made under such a background, and is to provide a refrigeration apparatus having a refrigeration cycle including an ejector.
 本発明の冷凍装置は、冷媒ガスを圧縮する圧縮機と、
 前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧するエジェクタと、
 前記エジェクタにて昇圧された混合流体を気液分離し、分離された冷媒ガスが前記圧縮機に送られる気液分離器と、
 前記気液分離器にて分離された冷媒液が流路を介して供給され、当該冷媒液と被冷却流体との間で熱交換を行って当該被冷却流体を冷却すると共に熱交換されて発生した冷媒ガスとそれに同伴される液が前記エジェクタの吸引口に吸引される熱交換器と、
 前記流路に設けられ、前記熱交換器の冷媒液の液面に基づいて冷媒液の流量が調整される液面調節弁と、
 前記気液分離器内の液面レベルに基づいて前記エジェクタのノズルに供給される高圧冷媒液体の流量を調整する流量調整部と、を備えたことを特徴とする。 
 この冷凍装置は、前記エジェクタ、気液分離器、流路、熱交換器、液面調節弁及び流量調整部の組を複数段設け、2段目以降の前記組のエジェクタのノズルの入り口は、一つ前の段の気液分離器にて分離された冷媒液が供給されるように構成されてもよい。
The refrigeration apparatus of the present invention includes a compressor that compresses refrigerant gas,
A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle. An ejector for increasing the pressure of the mixed fluid of the high-pressure refrigerant liquid and the refrigerant gas sucked from the suction port;
A gas-liquid separator that gas-liquid separates the fluid mixture pressurized by the ejector, and the separated refrigerant gas is sent to the compressor;
Refrigerant liquid separated by the gas-liquid separator is supplied through a flow path, and heat is exchanged between the refrigerant liquid and the fluid to be cooled to cool the fluid to be cooled and heat exchange is generated. A heat exchanger in which the refrigerant gas and the liquid accompanying it are sucked into the suction port of the ejector,
A liquid level control valve that is provided in the flow path and adjusts the flow rate of the refrigerant liquid based on the liquid level of the refrigerant liquid of the heat exchanger;
And a flow rate adjusting unit that adjusts the flow rate of the high-pressure refrigerant liquid supplied to the nozzle of the ejector based on the liquid level in the gas-liquid separator.
This refrigeration apparatus is provided with a plurality of stages of the ejector, the gas-liquid separator, the flow path, the heat exchanger, the liquid level control valve, and the flow rate adjusting unit, and the inlets of the nozzles of the ejectors in the second and subsequent stages are as follows: You may comprise so that the refrigerant | coolant liquid isolate | separated with the gas-liquid separator of the immediately preceding stage may be supplied.
 また、他の発明に係る冷凍装置は、冷媒ガスを圧縮する圧縮機と、
 前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧するエジェクタと、
 前記エジェクタにて昇圧された混合流体を気液分離し、分離された冷媒ガスが前記圧縮機に送られる気液分離器と、
 前記気液分離器にて分離された冷媒液が第1の分流路を介して供給され、当該冷媒液と第1の被冷却流体との間で熱交換を行って当該第1の被冷却流体を冷却すると共に熱交換されて発生した冷媒ガスとそれに同伴される液が前記エジェクタの吸引口に吸引される第1の熱交換器と、
 前記気液分離器にて分離された冷媒液が第2の分流路を介して供給され、当該冷媒液と第2の被冷却流体との間で熱交換を行って当該第2の被冷却流体を冷却すると共に熱交換されて発生した冷媒ガスとそれに同伴される液が前記エジェクタの吸引口に吸引される第2の熱交換器と、
 前記第1の分流路及び第2の分流路に夫々設けられ、前記第1の熱交換器及び第2の熱交換器の冷媒液の液面に基づいて夫々冷媒液の流量が調整される第1の液面調節弁及び第2の液面調節弁と、
 前記気液分離器内の液面レベルに基づいて前記エジェクタのノズルに供給される高圧冷媒液体の流量を調整する流量調整部と、を備えたことを特徴とする。 
 この冷凍装置は、前記エジェクタ、気液分離器、第1の分流路及び第2の分流路、第1の熱交換器、第2の熱交換器、第1の液面調節弁、第2の液面調節弁及び流量調整部の組を複数段設け、2段目以降の前記組のエジェクタのノズルの入り口は、一つ前の段の気液分離器にて分離された冷媒液が供給されるように構成されてもよい。
A refrigeration apparatus according to another invention includes a compressor that compresses refrigerant gas,
A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle. An ejector for increasing the pressure of the mixed fluid of the high-pressure refrigerant liquid and the refrigerant gas sucked from the suction port;
A gas-liquid separator that gas-liquid separates the fluid mixture pressurized by the ejector, and the separated refrigerant gas is sent to the compressor;
The refrigerant liquid separated by the gas-liquid separator is supplied through the first branch flow path, and heat exchange is performed between the refrigerant liquid and the first cooled fluid, and the first cooled fluid. A first heat exchanger in which the refrigerant gas generated by cooling and heat exchange and the liquid accompanying the refrigerant gas are sucked into the suction port of the ejector,
The refrigerant liquid separated by the gas-liquid separator is supplied via the second branch flow path, and heat exchange is performed between the refrigerant liquid and the second cooled fluid, thereby the second cooled fluid. A second heat exchanger in which the refrigerant gas generated by cooling and heat exchange and the liquid accompanying the refrigerant gas are sucked into the suction port of the ejector,
A first flow path and a second flow path are provided respectively for adjusting the flow rate of the refrigerant liquid based on the liquid level of the refrigerant liquid of the first heat exchanger and the second heat exchanger. 1 liquid level control valve and 2nd liquid level control valve;
And a flow rate adjusting unit that adjusts the flow rate of the high-pressure refrigerant liquid supplied to the nozzle of the ejector based on the liquid level in the gas-liquid separator.
The refrigeration apparatus includes the ejector, the gas-liquid separator, the first and second branch channels, the first heat exchanger, the second heat exchanger, the first liquid level control valve, the second A plurality of sets of liquid level control valves and flow rate adjustment units are provided, and the refrigerant liquid separated by the gas-liquid separator of the previous stage is supplied to the inlets of the nozzles of the second and subsequent sets of ejectors. You may be comprised so that.
 さらに上述の各冷凍装置は、天然ガスを予冷用冷媒により予備冷却し、次いで主冷媒により主冷却し、主冷却を終えた主冷媒を圧縮後、前記予冷用冷媒により冷却する天然ガスの液化システムに用いられる冷凍装置であって、
 前記高圧冷媒は予冷用冷媒であり、第1の被冷却流体及び第2の被冷却流体の一方及び他方は、夫々天然ガス及び主冷媒であってもよい。
Further, each of the above-described refrigeration devices preliminarily cools natural gas with a precooling refrigerant, then main cools with the main refrigerant, compresses the main refrigerant after the main cooling, and then cools with the precooling refrigerant. A refrigeration apparatus used for
The high-pressure refrigerant is a precooling refrigerant, and one and the other of the first cooled fluid and the second cooled fluid may be natural gas and main refrigerant, respectively.
 本発明は、圧縮機で圧縮後、冷却されて得られた高圧冷媒液体をエジェクタで断熱膨張する際、熱交換器にて被冷却液体の冷却に用いられた後の冷媒ガスを吸引し、昇圧された高圧冷媒液体と冷媒ガスとの混合流体をエジェクタより吐出させて気液分離器に送り込み、気液分離された冷媒ガスを圧縮機へ戻す一方、冷媒液を前記熱交換器に供給する冷凍サイクルを有する。そして、この熱交換器に供給される冷媒液の流量は当該熱交換器内の冷媒液の液面に基づいて調整される一方、前記エジェクタに供給される高圧冷媒液体の流量は、気液分離器の液面レベルに基づいて調整される。この結果、被冷却流体の冷却に必要な量の冷媒液を熱交換器へ供給しつつ、気液分離器においては、熱交換器へ供給される冷媒液の液切れや圧縮機への液の流入を防止することができる。 
 また、熱交換器において熱交換されて発生した冷媒ガスとそれに同伴される液はエジェクタにより吸引されるので、熱交換器の圧力は気液分離器よりも低い圧力、すなわち、低い温度で運転されるため、被冷却流体をより低い温度まで冷却することが可能である。
In the present invention, when the high-pressure refrigerant liquid obtained after being compressed by the compressor is adiabatically expanded by the ejector, the refrigerant gas after being used for cooling the liquid to be cooled is sucked by the heat exchanger, and the pressure is increased. The refrigerated refrigerant fluid and refrigerant gas discharged from the ejector are discharged from the ejector and sent to the gas-liquid separator, and the gas-liquid separated refrigerant gas is returned to the compressor while the refrigerant liquid is supplied to the heat exchanger. Have a cycle. The flow rate of the refrigerant liquid supplied to the heat exchanger is adjusted based on the liquid level of the refrigerant liquid in the heat exchanger, while the flow rate of the high-pressure refrigerant liquid supplied to the ejector is a gas-liquid separation. It is adjusted based on the liquid level of the vessel. As a result, in the gas-liquid separator, the refrigerant liquid in an amount necessary for cooling the cooled fluid is supplied to the heat exchanger. Inflow can be prevented.
In addition, since the refrigerant gas generated by heat exchange in the heat exchanger and the liquid accompanying the refrigerant gas are sucked by the ejector, the pressure of the heat exchanger is operated at a lower pressure than the gas-liquid separator, that is, at a lower temperature. Therefore, the fluid to be cooled can be cooled to a lower temperature.
天然ガスの液化システムの概略構成図である。It is a schematic block diagram of the natural gas liquefaction system. 前記液化システムに設けられた本発明の実施の形態に係る冷凍装置の構成図である。It is a block diagram of the freezing apparatus which concerns on embodiment of this invention provided in the said liquefaction system. 前記冷凍装置に設けられているエジェクタの縦断側面図である。It is a vertical side view of the ejector provided in the freezing apparatus. 第2の実施の形態に係る冷凍装置の構成図である。It is a block diagram of the freezing apparatus which concerns on 2nd Embodiment. 従来の冷凍装置の構成図である。It is a block diagram of the conventional freezing apparatus.
 本発明に係る冷凍装置を備えた天然ガス(LNG:Liquefied Natural Gas)の液化システムについて説明する。 
 初めに、本液化システムの概略構成について、図1を参照しながら説明する。
The liquefaction system of the natural gas (LNG: Liquefied Natural Gas) provided with the freezing apparatus which concerns on this invention is demonstrated.
First, a schematic configuration of the liquefaction system will be described with reference to FIG.
 天然ガス(以下、「NG」と記す)を処理する順序に沿って説明すると、LNG製造設備は、NG中の酸性ガスを除去する酸性ガス除去部101と、NG中に含まれる水分を除去する水分除去部102と、酸性ガス及び水分を除去する前処理が行われたNGを予備冷却して、約-20℃~-70℃の範囲の例えば-35℃~-39℃の中間温度に冷却する予冷熱交換部103と、中間温度に冷却された気液混合ガスを不図示の重質分除去部に送って、炭素数2以上の重質分(エタン及びそれよりも重い成分)を除去した後、メタンを主成分とし、若干のエタン、プロパン、ブタンを含むNGを-150℃~-160℃に冷却して液化し、液化ガスであるLNGを得る液化部104とを備える。 
 ここで図1中に示した太い白抜きの矢印が原料のNGまたは製品LNGの流れを示している。
If it demonstrates along the order which processes natural gas (henceforth "NG"), LNG manufacturing equipment will remove the acid gas removal part 101 which removes the acid gas in NG, and the water | moisture content contained in NG. The water removal unit 102 and the NG that has been subjected to the pretreatment for removing the acid gas and water are precooled and cooled to an intermediate temperature in the range of about −20 ° C. to −70 ° C., for example, −35 ° C. to −39 ° C. The precooling heat exchange unit 103 and the gas-liquid mixed gas cooled to an intermediate temperature are sent to a heavy component removal unit (not shown) to remove heavy components (ethane and heavier components) having 2 or more carbon atoms. Thereafter, LNG containing methane as a main component and containing a small amount of ethane, propane, and butane is cooled to −150 ° C. to −160 ° C. to be liquefied to provide liquefaction unit 104 for obtaining LNG as a liquefied gas.
Here, the thick white arrows shown in FIG. 1 indicate the flow of the raw material NG or the product LNG.
 予冷熱交換部103は、予冷用冷媒である例えばプロパンを用いて前処理後のNGを予冷する。予冷用冷媒は、後段の液化部104にて用いられる主冷媒の冷却にも用いられている。以下、予冷用冷媒による主冷媒の冷却を「補助冷却」と呼ぶ。図1には、プロパンの流れを「C3」と併記した細い矢印で記す一方、主冷媒の流れを「MR(Mixed Refrigerant)」と併記した斜線のハッチングを付した矢印で記してある。 The precooling heat exchange unit 103 precools the pretreated NG using, for example, propane which is a precooling refrigerant. The precooling refrigerant is also used for cooling the main refrigerant used in the liquefaction unit 104 at the subsequent stage. Hereinafter, the cooling of the main refrigerant by the precooling refrigerant is referred to as “auxiliary cooling”. In FIG. 1, the flow of propane is indicated by a thin arrow indicated with “C3”, while the flow of the main refrigerant is indicated by an hatched arrow indicated with “MR (MixederRefrigerant)”.
 さらに図1に示すように、既述の予冷熱交換部103、及び主冷媒の冷却を行う補助熱交換部105には、NGの予冷、及び主冷媒(MR)の予備冷却に用いられた予冷用冷媒(C3)を圧縮する第1の圧縮部2aが設けられている。一方、液化部104は、NGの液化に用いられた主冷媒を圧縮する第2の圧縮部2bを備える。各圧縮部2a、2bには、予冷用冷媒や主冷媒の処理量や吸込側と吐出側との圧力差などに応じ、複数の圧縮機が並列、直列に組み合わせて設けられている。 Further, as shown in FIG. 1, the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 for cooling the main refrigerant are preliminarily used for precooling NG and precooling the main refrigerant (MR). The 1st compression part 2a which compresses the refrigerant (C3) for operation is provided. On the other hand, the liquefaction unit 104 includes a second compression unit 2b that compresses the main refrigerant used for liquefaction of NG. Each compressor 2a, 2b is provided with a plurality of compressors in parallel and in series according to the amount of precooling refrigerant or main refrigerant processed, the pressure difference between the suction side and the discharge side, and the like.
 本例の冷凍装置は、上述の液化システムを構成する予冷熱交換部103及び補助熱交換部105にて用いられた予冷用冷媒の冷却を行う冷凍サイクルとして構成されている。 
 当該冷凍装置の具体的な構成を説明する前に、図5を参照しながら、従来の冷凍装置の例を説明しておく。
The refrigeration apparatus of this example is configured as a refrigeration cycle that cools the precooling refrigerant used in the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 constituting the liquefaction system.
Before describing the specific configuration of the refrigeration apparatus, an example of a conventional refrigeration apparatus will be described with reference to FIG.
 従来の冷凍装置においては、第1の圧縮部2aを構成する圧縮機20にて昇圧された予冷用冷媒のガス(高圧冷媒ガス)が、AFC(Air Fin Cooler)31a、31bによって冷却されて凝縮し、液レシーバー32にて予冷用冷媒の液体(高圧冷媒液体)が滞留される。この予冷用冷媒(液体)は、AFC31cにて過冷却された後、予冷熱交換部103側に設けられている予冷熱交換器34a~34d、及び補助熱交換部105側に設けられている補助熱交換器35a~35dに分かれて供給される。圧縮機20は、ガスタービン駆動であってもよいし、スチーム駆動、モーター駆動であってもよい。また、AFC31a、31b、31cに替えて水冷による熱交換器を設けてもよい。 In the conventional refrigeration apparatus, the precooling refrigerant gas (high-pressure refrigerant gas) that has been pressurized by the compressor 20 constituting the first compressor 2a is cooled and condensed by AFC (AirFCFin Cooler) 31a, 31b. The liquid receiver 32 retains the precooling refrigerant liquid (high-pressure refrigerant liquid). The precooling refrigerant (liquid) is supercooled by the AFC 31c, and then precooled heat exchangers 34a to 34d provided on the precooling heat exchange unit 103 side, and an auxiliary provided on the auxiliary heat exchange unit 105 side. The heat exchangers 35a to 35d are supplied separately. The compressor 20 may be gas turbine driven, steam driven, or motor driven. Moreover, you may provide the heat exchanger by water cooling instead of AFC31a, 31b, 31c.
 予冷熱交換部103の各予冷熱交換器34a~34dは、チューブ側に被冷却流体であるNGを流す一方、シェル側に予冷用冷媒を流してNGの予冷を行う。予冷熱交換器34a~34dのチューブ及びシェルは、予冷熱交換器34aを最上流段(1段目)、予冷熱交換器34dを最下流段(4段目)として直列に接続されている。これらの予冷熱交換器34a~34dにおいて、NGは1段目の予冷熱交換器34aから順に、4段目の予冷熱交換器34dへ向けて流れていく。なお、図示の便宜上、予冷熱交換器34a~34d間を繋ぐNGの配管については記載を省略してある(図2、4において同じ)。 The precooling heat exchangers 34a to 34d of the precooling heat exchanging section 103 flow NG as a fluid to be cooled to the tube side, and flow a precooling refrigerant to the shell side to perform precooling of NG. The tubes and shells of the precooling heat exchangers 34a to 34d are connected in series with the precooling heat exchanger 34a as the most upstream stage (first stage) and the precooling heat exchanger 34d as the most downstream stage (fourth stage). In these precooling heat exchangers 34a to 34d, NG flows in order from the first stage precooling heat exchanger 34a toward the fourth stage precooling heat exchanger 34d. For convenience of illustration, description of NG piping connecting the precooling heat exchangers 34a to 34d is omitted (the same applies to FIGS. 2 and 4).
 AFC31cにて過冷却された予冷用冷媒(液体)は、1段目の予冷熱交換器34aの入口側に設けられた膨張弁36aにて断熱膨張し、さらに温度が低下した状態で予冷熱交換器34aに供給される。予冷熱交換器34aにおいては、予冷用冷媒とNGとの熱交換が行われ、NGが冷却される。予冷熱交換器34aのシェル内においては、膨張弁36aにおける断熱膨張やNGとの熱交換によって発生した予冷用冷媒のガスと、液体との気液分離が行われる。当該ガスは、予冷熱交換器34aから抜き出された後、ノックアウトドラム33aにて同伴する液体が除去された後、圧縮機20の高圧側の吸込口に戻される。一方で、予冷熱交換器34a内の液体は2段目の予冷熱交換器34bへ向けて抜き出される。ノックアウトドラム33aには、例えばデミスタが設けられている。 The precooling refrigerant (liquid) supercooled by the AFC 31c is adiabatically expanded by the expansion valve 36a provided on the inlet side of the first stage precooling heat exchanger 34a, and the precooling heat exchange is performed while the temperature is further lowered. Is supplied to the vessel 34a. In the precooling heat exchanger 34a, heat exchange between the precooling refrigerant and NG is performed, and NG is cooled. In the shell of the precooling heat exchanger 34a, gas-liquid separation between the liquid of the precooling refrigerant generated by adiabatic expansion in the expansion valve 36a and heat exchange with NG and the liquid is performed. The gas is extracted from the pre-cooling heat exchanger 34a, and then the accompanying liquid is removed by the knockout drum 33a, and then returned to the high-pressure side suction port of the compressor 20. On the other hand, the liquid in the precooling heat exchanger 34a is extracted toward the second stage precooling heat exchanger 34b. For example, a demister is provided in the knockout drum 33a.
 以上に説明した1段目の予冷熱交換器34aと同様に、2段目以降の予冷熱交換器34b~34dの入口側にも各々膨張弁36b~36dが設けられ、上流段側の予冷熱交換器34a~34cから供給された予冷用冷媒(液体)を断熱膨張させて、その温度を低下させてから下流側の予冷熱交換器34b~34dに供給する。この結果、予冷熱交換器34a~34dに供給される予冷用冷媒は、上流側の段から下流側の段へ向けて、その温度が次第に低くなる。 Similarly to the first stage precooling heat exchanger 34a described above, expansion valves 36b to 36d are provided on the inlet side of the second and subsequent stage precooling heat exchangers 34b to 34d, respectively, so that the precooling heat on the upstream stage side is provided. The precooling refrigerant (liquid) supplied from the exchangers 34a to 34c is adiabatically expanded to lower its temperature and then supplied to the downstream precooling heat exchangers 34b to 34d. As a result, the temperature of the precooling refrigerant supplied to the precooling heat exchangers 34a to 34d gradually decreases from the upstream stage to the downstream stage.
 この予冷用冷媒の温度低下に伴って、予冷熱交換器34a~34dにて冷却されるNGの温度も次第に低くなり、4段目の予冷熱交換器34dからは、例えば-35℃~-39℃に冷却された気液混合状態のNGが抜き出され、後段の液化部104へ供給される。 
 なお、2段目以降の予冷熱交換器34b~34dにて発生したガスについても、各々ノックアウトドラム33b~33dにて同伴する液体が除去された後、各ノックアウトドラム33b~33dの圧力に対応する圧縮機20の吸込口に戻される。
As the temperature of the precooling refrigerant decreases, the temperature of the NG cooled by the precooling heat exchangers 34a to 34d gradually decreases, and from the fourth stage precooling heat exchanger 34d, for example, from -35 ° C to -39. NG in the gas-liquid mixed state cooled to 0 ° C. is extracted and supplied to the liquefaction unit 104 in the subsequent stage.
The gas generated in the second and subsequent precooling heat exchangers 34b to 34d also corresponds to the pressure of the knockout drums 33b to 33d after the accompanying liquid is removed from the knockout drums 33b to 33d. It is returned to the suction port of the compressor 20.
 ここで各予冷熱交換器34a~34dには、シェル内の液体の液面の高さ位置(液面レベル)を検出する液面計341a~341dが設けられている。そして各予冷熱交換器34a~34dの入口側に設けられている膨張弁36a~36dは、その下流側予冷熱交換器34a~34dに設けられている液面計341a~341dにて検出された液面レベルに基づいて、当該膨張弁36a~36dに供給する予冷用冷媒の供給量を増減する。 Here, the precooling heat exchangers 34a to 34d are provided with liquid level gauges 341a to 341d for detecting the height position (liquid level) of the liquid in the shell. The expansion valves 36a to 36d provided on the inlet side of the respective precooling heat exchangers 34a to 34d were detected by liquid level gauges 341a to 341d provided on the downstream side precooling heat exchangers 34a to 34d. Based on the liquid level, the supply amount of the precooling refrigerant supplied to the expansion valves 36a to 36d is increased or decreased.
 即ち、各予冷熱交換器34a~34d内の液面レベルが目標値よりも低い場合には、膨張弁36a~36dの開度を大きくして予冷用冷媒の供給量を増やす一方、当該液面レベルが目標値よりも高い場合には、膨張弁36a~36dの開度を小さくして予冷用冷媒の供給量を減らす制御が行われる。 
 なお、予冷熱交換器34a~34dの段数は、必要に応じて増減してもよいし、これら予冷熱交換器34a~34dが直列に接続された熱交換器系統を複数系統、並列に設けてもよい。
That is, when the liquid level in each of the precooling heat exchangers 34a to 34d is lower than the target value, the opening of the expansion valves 36a to 36d is increased to increase the supply amount of the precooling refrigerant, while the liquid level is increased. When the level is higher than the target value, control is performed to reduce the supply amount of the precooling refrigerant by reducing the opening degree of the expansion valves 36a to 36d.
The number of stages of the precooling heat exchangers 34a to 34d may be increased or decreased as necessary. A plurality of heat exchanger systems in which these precooling heat exchangers 34a to 34d are connected in series are provided in parallel. Also good.
 以上、予冷熱交換部103に設けられている予冷熱交換器34a~34dの構成について説明したが、補助熱交換部105側に設けられている補助熱交換器35a~35dについてもほぼ同様の構成となっている。
 即ち、補助熱交換器35a~35dは、チューブ側に被冷却流体である主冷媒(MR)を流す一方、シェル側に予冷用冷媒を流して主冷媒の予備冷却を行い、これら補助熱交換器35a~35dのチューブ及びシェルが、この順番に直列に接続されている。また、補助熱交換器35a~35d間を繋ぐ主冷媒の配管の記載を省略してある点については、予冷熱交換器34a~34dの場合と同じである。
The configuration of the precooling heat exchangers 34a to 34d provided in the precooling heat exchange unit 103 has been described above, but the configuration of the auxiliary heat exchangers 35a to 35d provided on the auxiliary heat exchange unit 105 side is almost the same. It has become.
That is, the auxiliary heat exchangers 35a to 35d flow the main refrigerant (MR), which is a fluid to be cooled, to the tube side, and flow the precooling refrigerant to the shell side to perform preliminary cooling of the main refrigerant. The tubes and shells 35a to 35d are connected in series in this order. Further, the description of the main refrigerant piping connecting between the auxiliary heat exchangers 35a to 35d is omitted, which is the same as in the case of the precooling heat exchangers 34a to 34d.
 そして、各補助熱交換器35a~35dの入口側には、各々膨張弁37a~37dが設けられ、上流側から供給された予冷用冷媒(液体)を断熱膨張させて、その温度を低下させてから各補助熱交換器35a~35dに供給することにより、主冷媒を冷却する。これら補助熱交換器35a~35dにおいても、予冷用冷媒の温度低下に伴って、主冷媒の温度が次第に低くなり、例えば-35℃~-39℃に冷却された主冷媒が液化部104へ供給される。 Expansion valves 37a to 37d are provided on the inlet sides of the auxiliary heat exchangers 35a to 35d, respectively, so that the precooling refrigerant (liquid) supplied from the upstream side is adiabatically expanded to lower its temperature. Is supplied to each of the auxiliary heat exchangers 35a to 35d to cool the main refrigerant. Also in these auxiliary heat exchangers 35a to 35d, as the temperature of the precooling refrigerant decreases, the temperature of the main refrigerant gradually decreases. For example, the main refrigerant cooled to −35 ° C. to −39 ° C. is supplied to the liquefaction unit 104. Is done.
 さらに、各補助熱交換器35a~35dにて発生したガスは、各々圧力に応じて既述のノックアウトドラム33a~33dに導入され、同伴する液体が除去された後、各圧力に対応する圧縮機20の吸込口に戻されること、及び、膨張弁37a~37dによる流量調整が補助熱交換器35a~35dに設けられた液面計351a~351dにて検出された液面レベルに基づいて行われることについても、予冷熱交換部103側の予冷熱交換器34a~34dと同様である。 
 また、これら補助熱交換器35a~35dの段数についても、必要に応じて増減してもよいし、これら補助熱交換器35a~35dが直列に接続された熱交換器系統を複数系統、並列に設けてもよい。
Further, the gas generated in each of the auxiliary heat exchangers 35a to 35d is introduced into the aforementioned knockout drums 33a to 33d in accordance with the pressure, and the accompanying liquid is removed, and then the compressor corresponding to each pressure is removed. 20 and the flow rate adjustment by the expansion valves 37a to 37d is performed based on the liquid level detected by the liquid level gauges 351a to 351d provided in the auxiliary heat exchangers 35a to 35d. This is the same as the precooling heat exchangers 34a to 34d on the precooling heat exchanging unit 103 side.
Further, the number of stages of the auxiliary heat exchangers 35a to 35d may be increased or decreased as necessary, and a plurality of heat exchanger systems in which the auxiliary heat exchangers 35a to 35d are connected in series are connected in parallel. It may be provided.
 以上、図5を用いて説明したように、冷凍装置は、「圧縮機20→AFC31a~31c→予冷熱交換器34a~34d→圧縮機20」の経路で予冷用冷媒が流れる予冷熱交換部103側の冷凍サイクルと、「圧縮機20→AFC31a~31c→補助熱交換器35a~35d→圧縮機20」の経路で予冷用冷媒が流れる補助熱交換部105側の冷凍サイクルとを備える。そして、各冷凍サイクル内における予冷用冷媒の温度は、膨張弁36a~36d、37a~37dにおける断熱膨張によって低下する。 As described above with reference to FIG. 5, the refrigeration apparatus includes the precooling heat exchanging unit 103 in which the precooling refrigerant flows through the path of “compressor 20 → AFC 31a to 31c → precooling heat exchanger 34a to 34d → compressor 20”. And a refrigeration cycle on the auxiliary heat exchange section 105 side through which the precooling refrigerant flows through a path of “compressor 20 → AFC 31a to 31c → auxiliary heat exchangers 35a to 35d → compressor 20”. The temperature of the precooling refrigerant in each refrigeration cycle is lowered by adiabatic expansion in the expansion valves 36a to 36d and 37a to 37d.
 しかしながら、膨張弁36a~36d、37a~37dにおいては、断熱膨張の過程において予冷用冷媒が持っているエネルギーの一部が失われるので、高い冷凍サイクル効率が得られない。この点、予冷用冷媒の断熱膨張の過程にて、液のなす仕事を予冷用冷媒(ガス)の圧力エネルギーとして回収すれば、予冷熱交換器34a~34d内の圧力を降下させ、その温度を低下させることで、冷凍サイクルの効率を向上させることができる。 However, in the expansion valves 36a to 36d and 37a to 37d, part of the energy of the precooling refrigerant is lost in the process of adiabatic expansion, so that high refrigeration cycle efficiency cannot be obtained. In this regard, in the process of adiabatic expansion of the precooling refrigerant, if the work performed by the liquid is recovered as the pressure energy of the precooling refrigerant (gas), the pressure in the precooling heat exchangers 34a to 34d is lowered, and the temperature is reduced. By reducing the efficiency, the efficiency of the refrigeration cycle can be improved.
 上述の考えに基づき、本実施の形態の冷凍装置は、予冷用冷媒の断熱膨張の過程において、予冷用冷媒が持っているエネルギーを利用して予冷熱交換器34a~34dの圧力を低下させるエジェクタ41a~41dを備えている。以下、図2、3を参照しながらエジェクタ41a~41dを備えた冷凍装置の構成例について説明する。
 なお、以下に説明する図2、図4において、図5を用いて説明したものと共通の構成要素には、図5に付したものと共通の符号を付してある。
Based on the above idea, the refrigeration apparatus of the present embodiment uses an ejector that reduces the pressure of the precooling heat exchangers 34a to 34d using the energy of the precooling refrigerant in the process of adiabatic expansion of the precooling refrigerant. 41a to 41d. Hereinafter, a configuration example of the refrigeration apparatus including the ejectors 41a to 41d will be described with reference to FIGS.
In FIGS. 2 and 4 described below, the same reference numerals as those used in FIG. 5 are attached to the same components as those described using FIG.
 図2に記載の冷凍装置は、予冷熱交換部103側に設けられた各予冷熱交換器34a~34dからの予冷用冷媒のガス(冷媒ガス)の抜き出し側とノックアウトドラム33a~33dとの間に、エジェクタ41a~41dを設けている点が、図5に記載の従来の冷凍装置と異なる。 
 一方で、当該冷凍装置は、補助熱交換部105側の補助熱交換器35a~35dにおいては、図5に示した例と同様に、膨張弁37a~37dを用いて予冷用冷媒の温度を低下させる構成となっている。
The refrigeration apparatus shown in FIG. 2 includes a precooling refrigerant gas (refrigerant gas) extraction side from each of the precooling heat exchangers 34a to 34d provided on the precooling heat exchanger 103 side and the knockout drums 33a to 33d. Further, the point that the ejectors 41a to 41d are provided is different from the conventional refrigeration apparatus shown in FIG.
On the other hand, in the auxiliary heat exchangers 35a to 35d on the auxiliary heat exchanger 105 side, the refrigeration apparatus uses the expansion valves 37a to 37d to lower the temperature of the precooling refrigerant in the auxiliary heat exchangers 35a to 35d. It is the composition which makes it.
 図3は、各エジェクタ41a~41dの構成例を示している(図3には各エジェクタ41a~41dを総括して「41」の符号を付してある)。エジェクタ41は、後端部が封止された管状の本体部416に対し、予冷用冷媒の液体(高圧冷媒液体)の供給を行うノズル412が、前記後端部側から同軸状に挿入されている。また本体部416の側面には、本体部416内への予冷用冷媒のガスの吸引を行う吸引口413が設けられ、当該吸引口413は予冷熱交換器34a~34dからガスを抜き出す配管と接続されている。また、本体部416の先端部側は、ノズル412からの液体の吐出方向へ向けて縮径し、ノズル412の吐出口の下流側は、本体部416よりも径の小さな配管からなる混合部414となっている。混合部414の出口側には管径が次第に拡大するディフューザ部415が設けられ、当該エジェクタ41は、このディフューザ部415を介して気液分離器(図5に示したノックアウトドラムに対応する)33a~33dへの予冷用冷媒の導入配管に接続される。 FIG. 3 shows a configuration example of each of the ejectors 41a to 41d (in FIG. 3, each ejector 41a to 41d is generally labeled with “41”). In the ejector 41, a nozzle 412 for supplying a precooling refrigerant liquid (high-pressure refrigerant liquid) to a tubular main body 416 whose rear end portion is sealed is coaxially inserted from the rear end portion side. Yes. Further, a suction port 413 for sucking a precooling refrigerant gas into the main body 416 is provided on a side surface of the main body 416, and the suction port 413 is connected to a pipe for extracting gas from the precooling heat exchangers 34a to 34d. Has been. In addition, the distal end side of the main body 416 is reduced in diameter in the liquid discharge direction from the nozzle 412, and the downstream side of the discharge port of the nozzle 412 is a mixing unit 414 made of a pipe having a smaller diameter than the main body 416. It has become. A diffuser portion 415 whose diameter is gradually enlarged is provided on the outlet side of the mixing portion 414, and the ejector 41 is provided with a gas-liquid separator (corresponding to the knockout drum shown in FIG. 5) 33a via the diffuser portion 415. To the pre-cooling refrigerant introduction pipe to .about.33d.
 上述の構成を備えたエジェクタ41において、ノズル412内で高速に加速された予冷用冷媒(液体)をノズル412から吐出すると、高速で流れる予冷用冷媒に向けて本体部416内の流体が引き込まれ、吸引口413から予冷用冷媒(ガス)が吸引される。ここで、予冷熱交換器34a~34dから抜き出された予冷用冷媒の大部分はガスであるが、多くて1.0wt%程度のミスト状の液体が同伴される。エジェクタ41は、これら予冷用冷媒のガス及びそれに同伴される液体を予冷熱交換器34a~34dから吸引する。以下の説明では、予冷用冷媒のガス及びそれに同伴される液体をまとめて「ガス」という場合がある。 In the ejector 41 having the above-described configuration, when the precooling refrigerant (liquid) accelerated at high speed in the nozzle 412 is discharged from the nozzle 412, the fluid in the main body 416 is drawn toward the precooling refrigerant flowing at high speed. The precooling refrigerant (gas) is sucked from the suction port 413. Here, most of the precooling refrigerant extracted from the precooling heat exchangers 34a to 34d is gas, but is accompanied by a mist-like liquid of about 1.0 wt% at most. The ejector 41 sucks the precooling refrigerant gas and the liquid accompanying it from the precooling heat exchangers 34a to 34d. In the following description, the precooling refrigerant gas and the liquid accompanying it may be collectively referred to as “gas”.
 さらにノズル412から吐出された予冷用冷媒は、断熱膨張によりその温度が低下する。 
 そしてノズル412から吐出された予冷用冷媒(液体)、及び吸引口413から吸引された予冷用冷媒(ガス)は、互いに混合されながら気液混合流体として混合部414を流れ、ディフューザ部415内にて減速して圧力が回復する。 
 なお、冷凍装置に設けるエジェクタ41の構成は、図3に示した例のみに限定されるものではなく、予冷用冷媒(液体)を用いて予冷用冷媒(ガス)を吸引し、これらの混合流体を昇圧する限りにおいて、各部の構成を適宜、変更してもよい。
Further, the temperature of the precooling refrigerant discharged from the nozzle 412 decreases due to adiabatic expansion.
The precooling refrigerant (liquid) discharged from the nozzle 412 and the precooling refrigerant (gas) sucked from the suction port 413 flow through the mixing unit 414 as a gas-liquid mixed fluid while being mixed with each other, and enter the diffuser unit 415. Decelerate and the pressure recovers.
The configuration of the ejector 41 provided in the refrigeration apparatus is not limited to the example shown in FIG. 3, and the precooling refrigerant (gas) is sucked using the precooling refrigerant (liquid), and the mixed fluid thereof. As long as the voltage is increased, the configuration of each part may be changed as appropriate.
 次に図2を参照しながら、上述のエジェクタ41a~41dを備える冷凍装置について詳述する。 
 AFC31cにて過冷却された予冷用冷媒(液体)は、エジェクタ41aに設けられたノズル412に供給される一方、1段目の予冷熱交換器34aの出口側(予冷用冷媒のガス側)の配管は、エジェクタ41aの吸引口413に接続されている。さらに予冷用冷媒の気液混合流体が流出するエジェクタ41aのディフューザ部415の出口側は、気液分離器33aに接続されている。
Next, the refrigeration apparatus including the above-described ejectors 41a to 41d will be described in detail with reference to FIG.
The precooling refrigerant (liquid) supercooled by the AFC 31c is supplied to the nozzle 412 provided in the ejector 41a, while being on the outlet side (precooling refrigerant gas side) of the first stage precooling heat exchanger 34a. The pipe is connected to the suction port 413 of the ejector 41a. Furthermore, the exit side of the diffuser part 415 of the ejector 41a from which the gas-liquid mixed fluid of the precooling refrigerant flows out is connected to the gas-liquid separator 33a.
 ここで、図5に示した従来の冷凍装置に設けられているノックアウトドラム33aに対して流入する液体は、予冷熱交換器34aから抜き出された予冷用冷媒のガスに同伴する少量のミストなどに過ぎない。 
 これに対して図2に示す気液分離器33aに対しては、エジェクタ41aにて混合された予冷用冷媒のガスと液体の混合流体が流入し、流入後の流速低下によりガスと液体とが気液分離される。従って、図5を用いて説明したノックアウトドラム33aは、図2に示す冷凍装置においては気液混合流体を気体と液体とを気液分離する気液分離器に相当するため、気液分離器33aと呼ぶことにする(図4において同じ)。
Here, the liquid flowing into the knockout drum 33a provided in the conventional refrigeration apparatus shown in FIG. 5 is a small amount of mist accompanying the precooling refrigerant gas extracted from the precooling heat exchanger 34a. Only.
On the other hand, to the gas-liquid separator 33a shown in FIG. 2, the mixed fluid of the precooling refrigerant gas and the liquid mixed in the ejector 41a flows, and the gas and the liquid are separated by the flow velocity decrease after the inflow. Gas-liquid separation. Accordingly, the knockout drum 33a described with reference to FIG. 5 corresponds to a gas-liquid separator that separates gas and liquid into gas and liquid in the refrigeration apparatus shown in FIG. (Same in FIG. 4).
 そして、気液分離後の予冷用冷媒のガスは、圧縮機20の高圧側の吸込口に戻される。気液分離器33aの下部側には、エジェクタ41aにて温度が低下した予冷用冷媒の液体の液溜まりが形成される。そして、気液分離器33aの底部と予冷熱交換器34aとの間に設けられた流路を介して、上記液溜まりから予冷用冷媒(液体)が予冷熱交換器34aに向けて抜き出される。そこで、予冷用冷媒とNGとの熱交換が行われ、予冷熱交換器34aのシェル側で発生したガス(同伴する液体を含む)がエジェクタ41aへ吸引される。その結果、図5に示した冷凍装置の予冷熱交換器34aの温度よりも低い温度レベルまでNGが冷却される。
 なお、補助熱交換部105側の補助熱交換器35aから抜き出されたガスは、エジェクタ41aの出口側の流路に合流して気液分離器33aへ導入される。
Then, the precooling refrigerant gas after the gas-liquid separation is returned to the high-pressure side suction port of the compressor 20. On the lower side of the gas-liquid separator 33a, a liquid pool of a liquid for precooling whose temperature is lowered by the ejector 41a is formed. Then, the precooling refrigerant (liquid) is extracted from the liquid pool toward the precooling heat exchanger 34a through a flow path provided between the bottom of the gas-liquid separator 33a and the precooling heat exchanger 34a. . Therefore, heat exchange between the precooling refrigerant and NG is performed, and the gas (including the accompanying liquid) generated on the shell side of the precooling heat exchanger 34a is sucked into the ejector 41a. As a result, NG is cooled to a temperature level lower than the temperature of the precooling heat exchanger 34a of the refrigeration apparatus shown in FIG.
Note that the gas extracted from the auxiliary heat exchanger 35a on the auxiliary heat exchanging unit 105 side joins the flow path on the outlet side of the ejector 41a and is introduced into the gas-liquid separator 33a.
 また2段目以降については、予冷熱交換器34b~34dの出口側に設けられているエジェクタ41b~41d(ノズル412)に対して、1つ前の段の気液分離器33a~33cにて分離された予冷用冷媒の液体が供給される点を除いて、1段目と同様の構成となっている。即ち、各段のエジェクタ41b~41dの出口側には気液分離器33b~33dが設けられ、気液分離後の予冷用冷媒のガスは、各々の圧力に対応する圧縮機20の吸込口に戻される。 In the second and subsequent stages, the gas-liquid separators 33a to 33c in the previous stage with respect to the ejectors 41b to 41d (nozzles 412) provided on the outlet side of the precooling heat exchangers 34b to 34d are used. The structure is the same as that of the first stage except that the separated precooling refrigerant liquid is supplied. That is, gas-liquid separators 33b to 33d are provided on the outlet sides of the ejectors 41b to 41d in each stage, and the precooling refrigerant gas after the gas-liquid separation is supplied to the suction port of the compressor 20 corresponding to each pressure. Returned.
 また、気液分離器33b~33dの底部と予冷熱交換器34b~34dとの間に設けられた流路を介して、気液分離器33b~33dの液溜まりから予冷用冷媒(液体)が抜き出され、NGの冷却に利用される。そして、予冷熱交換器34b~34dのシェル側で発生したガス(同伴する液体を含む)はエジェクタ41b~41dによって吸引される。各々の予冷熱交換器34b~34dでは図5の冷凍装置に示した熱交換器よりも低い温度までNGが冷却される。さらに、補助熱交換部105側の補助熱交換器35b~35dから抜き出されたガスが、エジェクタ41b~41dの出口側の流路に合流する点についても同様である。 Further, the precooling refrigerant (liquid) is supplied from the liquid reservoirs of the gas-liquid separators 33b to 33d through the flow path provided between the bottoms of the gas-liquid separators 33b to 33d and the precooling heat exchangers 34b to 34d. Extracted and used for cooling NG. The gas (including the accompanying liquid) generated on the shell side of the precooling heat exchangers 34b to 34d is sucked by the ejectors 41b to 41d. In each of the precooling heat exchangers 34b to 34d, NG is cooled to a temperature lower than that of the heat exchanger shown in the refrigeration apparatus of FIG. The same applies to the point where the gas extracted from the auxiliary heat exchangers 35b to 35d on the auxiliary heat exchanging unit 105 side joins the flow paths on the outlet side of the ejectors 41b to 41d.
 以上に説明した構成を備えた図2に示す本例の冷凍装置と、図5に示す従来の冷凍装置とを比較すると、本例の冷凍装置には、予冷熱交換器34a~34dの液面レベルを調節する膨張弁36a~36dが設けられていない。そこで、図2に示すように、気液分離器33a~33dと予冷熱交換器34a~34dとの間の流路には、予冷熱交換器34a~34dに設けられた液面計341a~341dによる液面レベルの検出結果に基づいて、気液分離器33a~33dから供給される予冷用冷媒(液体)の流量を調整する液面調節弁342a~342dが設けられている。 Comparing the refrigeration apparatus of the present example shown in FIG. 2 having the configuration described above with the conventional refrigeration apparatus shown in FIG. 5, the refrigeration apparatus of the present example includes liquid levels of the precooling heat exchangers 34a to 34d. The expansion valves 36a to 36d for adjusting the level are not provided. Therefore, as shown in FIG. 2, liquid level gauges 341a to 341d provided in the precooling heat exchangers 34a to 34d are provided in the flow path between the gas-liquid separators 33a to 33d and the precooling heat exchangers 34a to 34d. Liquid level control valves 342a to 342d are provided for adjusting the flow rate of the precooling refrigerant (liquid) supplied from the gas-liquid separators 33a to 33d based on the detection result of the liquid level.
 これら液面調節弁342a~342dにより実行される制御の例を挙げると、各予冷熱交換器34a~34d内の液面レベルが目標値よりも低い場合には、液面調節弁342a~342dの開度を大きくして予冷用冷媒の供給量を増やす一方、当該液面レベルが目標値よりも高い場合には、液面調節弁342a~342dの開度を小さくして予冷用冷媒の供給量を減らす制御が行われる。 As an example of the control executed by the liquid level control valves 342a to 342d, when the liquid level in each of the precooling heat exchangers 34a to 34d is lower than the target value, the liquid level control valves 342a to 342d While increasing the opening degree and increasing the supply amount of the precooling refrigerant, when the liquid level is higher than the target value, the opening amounts of the liquid level control valves 342a to 342d are reduced and the supply amount of the precooling refrigerant is increased. Control to reduce is performed.
 ここで、既述の液面調節弁342a~342dは、予冷熱交換器34a~34d内の予冷用冷媒の液面レベルに応じて開閉が行われ、気液分離器33a~34d内の液溜まりの量とは独立して予冷用冷媒の抜き出し量を変化させる。このとき、気液分離器33a~33dの液溜まりの量の調節を行わないと、気液分離器33a~33dから抜き出す予冷用冷媒(液体)が無くなったり、液溜まりの高さが高くなりすぎて圧縮機20側へ予冷用冷媒(液体)が流出したりするおそれもある。 Here, the above-described liquid level control valves 342a to 342d are opened and closed according to the liquid level of the precooling refrigerant in the precooling heat exchangers 34a to 34d, and the liquid reservoirs in the gas-liquid separators 33a to 34d The amount of precooling refrigerant withdrawn is changed independently of the amount of. At this time, if the amount of the liquid pool in the gas-liquid separators 33a to 33d is not adjusted, the pre-cooling refrigerant (liquid) drawn out from the gas-liquid separators 33a to 33d is lost or the height of the liquid pool becomes too high. Thus, the precooling refrigerant (liquid) may flow out to the compressor 20 side.
 そこで本例の気液分離器33a~33dには、液溜まりの液面レベルを検出する液面計331a~331dが設けられている。一方で、図2、図3に示すように、各エジェクタ41a~41d(41)に設けられたノズル412の基端部には、液体の予冷用冷媒(高圧冷媒液体)の流量を調整する流量調整弁(流量調整部)411が設けられている。ここで流量調整弁411は、エジェクタ41を構成する機器の一部として、ノズル412と一体に設けられていることが好ましい。但し、例えば流量調整弁411を備えないノズル412に接続される予冷用冷媒(液体)の供給配管の上流側に、流量調整弁411を独立して設けてもよいことは勿論である。 Therefore, the gas-liquid separators 33a to 33d of this example are provided with liquid level gauges 331a to 331d for detecting the liquid level of the liquid pool. On the other hand, as shown in FIGS. 2 and 3, a flow rate for adjusting the flow rate of the liquid precooling refrigerant (high-pressure refrigerant liquid) is provided at the base end portion of the nozzle 412 provided in each of the ejectors 41a to 41d (41). An adjustment valve (flow rate adjustment unit) 411 is provided. Here, the flow rate adjustment valve 411 is preferably provided integrally with the nozzle 412 as a part of the equipment constituting the ejector 41. However, for example, the flow rate adjusting valve 411 may be independently provided on the upstream side of the precooling refrigerant (liquid) supply pipe connected to the nozzle 412 that does not include the flow rate adjusting valve 411.
 これらエジェクタ41a~41dの流量調整弁411により実行される制御の例を挙げると、各気液分離器33a~33d内の液面レベルが目標値よりも低い場合には、流量調整弁411の開度を大きくして予冷用冷媒の供給量を増やす一方、当該液面レベルが目標値よりも高い場合には、流量調整弁411の開度を小さくして予冷用冷媒の供給量を減らす制御が行われる。 As an example of the control executed by the flow rate adjustment valves 411 of these ejectors 41a to 41d, when the liquid level in each of the gas-liquid separators 33a to 33d is lower than the target value, the flow rate adjustment valve 411 is opened. When the liquid level is higher than the target value while increasing the degree of supply of the precooling refrigerant, control is performed to reduce the supply amount of the precooling refrigerant by reducing the opening of the flow rate adjustment valve 411. Done.
 以上に説明した冷凍装置の作用について説明する。AFC31cにて過冷却された供給された予冷用冷媒(液体)は、予冷熱交換部103側においては、気液分離器33aの液面レベルに応じてエジェクタ41aへの供給量が増減される。エジェクタ41aにおいては、予冷用冷媒(液体)の供給量に対応して、予冷熱交換器34a側から吸引する予冷用冷媒のガス(同伴される液体を含む)の吸引量が増減する。 The operation of the refrigeration apparatus described above will be described. The supplied amount of the precooling refrigerant (liquid) supercooled by the AFC 31c is increased or decreased on the precooling heat exchange unit 103 side in accordance with the liquid level of the gas-liquid separator 33a. In the ejector 41a, the suction amount of the precooling refrigerant gas (including the accompanying liquid) sucked from the precooling heat exchanger 34a side is increased or decreased in accordance with the supply amount of the precooling refrigerant (liquid).
 エジェクタ41aから吐出されて温度が低下した予冷用冷媒の気液混合流体は気液分離器33a内で気液分離され、気体は圧縮機20の吸込口へ戻される一方、液体は気液分離器33a内に液溜まりを形成する。この液溜まりを構成する予冷用冷媒の一部は、予冷熱交換器34a内の液面レベルに応じて予冷熱交換器34aに向けて抜き出され、NGの冷却に用いられる。さらに液溜まり中の予冷用冷媒の一部は、2段目のエジェクタ41bへ向けて抜き出され、その抜き出し量は、2段目の気液分離器33b内の予冷用冷媒の液面レベルに応じて増減される。 The gas-liquid mixed fluid of the pre-cooling refrigerant discharged from the ejector 41a is separated in the gas-liquid separator 33a, and the gas is returned to the suction port of the compressor 20, while the liquid is the gas-liquid separator. A liquid pool is formed in 33a. A part of the precooling refrigerant constituting the liquid pool is extracted toward the precooling heat exchanger 34a in accordance with the liquid level in the precooling heat exchanger 34a, and is used for cooling NG. Further, a part of the precooling refrigerant in the liquid pool is extracted toward the second-stage ejector 41b, and the extraction amount is at the liquid level of the precooling refrigerant in the second-stage gas-liquid separator 33b. Increase or decrease accordingly.
 ここで予冷熱交換器34a~34dの液面レベルは、冷却されるNGの流量や各予冷熱交換器34a~34dにおけるNGの入口温度などによって変動する。また、2段目の気液分離器33b内の液面レベルも2段目の予冷熱交換器34bや3段目の気液分離器33c内の液面レベルに応じて変化する。 Here, the liquid level of the precooling heat exchangers 34a to 34d varies depending on the flow rate of NG to be cooled, the inlet temperature of the NG in each of the precooling heat exchangers 34a to 34d, and the like. The liquid level in the second-stage gas-liquid separator 33b also changes according to the liquid-level level in the second-stage precooling heat exchanger 34b and the third-stage gas-liquid separator 33c.
 このように、当該気液分離器33aに接続された予冷熱交換器34aやエジェクタ41bにおける予冷用冷媒(液体)のトータルの使用量を気液分離器33a内の液面レベルとしてまとめて検出し、例えば当該液面レベルが一定となるように、エジェクタ41aへの予冷用冷媒(液体)の供給量が増減される。この結果、圧縮機20やAFC31a~31cの機器能力の範囲内で、予冷熱交換器34aやエジェクタ41bはその負荷に応じて自由に予冷用冷媒を使用することが可能となり、個別の機器における予冷用冷媒の使用量に制約を発生させずに冷凍装置を運転することができる。 Thus, the total amount of precooling refrigerant (liquid) used in the precooling heat exchanger 34a and the ejector 41b connected to the gas-liquid separator 33a is collectively detected as the liquid level in the gas-liquid separator 33a. For example, the supply amount of the pre-cooling refrigerant (liquid) to the ejector 41a is increased or decreased so that the liquid level becomes constant. As a result, the precooling heat exchanger 34a and the ejector 41b can freely use the precooling refrigerant in accordance with the load within the range of the compressor 20 and the AFC 31a to 31c. The refrigeration apparatus can be operated without causing restrictions on the amount of refrigerant used.
 また、2段目以降のノックアウトドラム33b~33dにおいても同様に、各段に設けられた予冷熱交換器34b~34d、及びその後段のエジェクタ41c~41dの負荷(但し、ノックアウトドラム33dについては、予冷熱交換器34dの負荷のみ)に応じてエジェクタ41b~41dへの予冷用冷媒(液体)の供給量が増減される。この結果、2段目以降の予冷熱交換器34b~34d、エジェクタ41c、41dにおいても、その負荷に応じて自由に予冷用冷媒を使用することが可能となり、個別の使用量制約を発生させない。 Similarly, in the knockout drums 33b to 33d in the second and subsequent stages, the loads of the precooling heat exchangers 34b to 34d provided in each stage and the ejectors 41c to 41d in the subsequent stages (however, for the knockout drum 33d, The supply amount of the precooling refrigerant (liquid) to the ejectors 41b to 41d is increased or decreased according to the load of only the precooling heat exchanger 34d). As a result, the pre-cooling heat exchangers 34b to 34d and the ejectors 41c and 41d in the second and subsequent stages can freely use the pre-cooling refrigerant according to the load and do not cause individual usage amount restrictions.
 こうしてAFC31cにて過冷却された予冷用冷媒(液体)の一部は、各エジェクタ41a~41dで冷却された後、その下流の気液分離器33a~33dを介して各予冷熱交換器34a~34dに供給され、ここでNGの冷却に用いられる。そして、予冷熱交換器34a~34d内で発生した予冷用冷媒のガスは、同伴する液体と共にエジェクタ41a~41dに吸引され、気液分離器33a~33dを介して、図5に示した従来の冷凍装置の予冷熱交換器34a~34dよりも低い温度までNGを冷却することが可能となる。 A part of the precooling refrigerant (liquid) thus supercooled by the AFC 31c is cooled by the ejectors 41a to 41d, and then each precooling heat exchanger 34a to 34a is passed through the gas-liquid separators 33a to 33d downstream thereof. 34d, where it is used to cool NG. Then, the precooling refrigerant gas generated in the precooling heat exchangers 34a to 34d is sucked into the ejectors 41a to 41d together with the accompanying liquid, and is passed through the gas-liquid separators 33a to 33d, and the related art shown in FIG. NG can be cooled to a temperature lower than that of the precooling heat exchangers 34a to 34d of the refrigeration apparatus.
 一方で、AFC31cにて過冷却された予冷用冷媒(液体)の残る一部は、図5を用いて説明した従来の冷凍装置と同様に、補助熱交換部105側の各膨張弁37a~37dにて次第に温度低下した予冷用冷媒が主冷媒の冷却に用いられると共に、各膨張弁37a~37dの開度調整により、補助熱交換器35a~35dの液面レベルが調整される。そして、各補助熱交換器35a~35dから抜き出された予冷用冷媒のガスは、同伴する液体と共に予冷熱交換部103側の予冷用冷媒のガスに合流し、気液分離器33a~33dを介して圧縮機20の吸込口に戻される。 On the other hand, the remaining part of the precooling refrigerant (liquid) supercooled by the AFC 31c is the expansion valves 37a to 37d on the auxiliary heat exchange unit 105 side, as in the conventional refrigeration apparatus described with reference to FIG. The pre-cooling refrigerant whose temperature has gradually decreased is used for cooling the main refrigerant, and the liquid level of the auxiliary heat exchangers 35a to 35d is adjusted by adjusting the opening degree of each expansion valve 37a to 37d. The precooling refrigerant gas extracted from each of the auxiliary heat exchangers 35a to 35d joins the precooling refrigerant gas on the precooling heat exchange section 103 side together with the accompanying liquid, and passes through the gas-liquid separators 33a to 33d. To the suction port of the compressor 20.
 本実施の形態に係る冷凍装置によれば以下の効果がある。本冷凍装置は、圧縮機20で圧縮後、冷却されて得られた液体の予冷用冷媒(高圧冷媒液体)をエジェクタ41a~41dで断熱膨張させ、予冷熱交換器34a~34dにてNG(被冷却液体)の冷却に用いられた後の予冷用冷媒(冷媒ガス)を吸引して気液分離器33a~33dに送り込み、気液分離された冷媒ガスを圧縮機20へ戻す一方、液体の予冷用冷媒(冷媒液)を前記予冷熱交換器34a~34dに供給する冷凍サイクルを有する。そして、この予冷熱交換器34a~34dに供給される予冷用冷媒の流量は各予冷熱交換器34a~34d内の予冷用冷媒の液面レベルに基づいて調整される一方、前記エジェクタ41a~41dに供給される予冷用冷媒(液体)の流量は、気液分離器33a~33dの液面レベルに基づいて調整される。この結果、NGの冷却に必要な量の予冷用冷媒を予冷熱交換器34a~34dへ供給しつつ、気液分離器33a~33dにおいては、予冷熱交換器34a~34dへ供給される予冷用冷媒の液切れや圧縮機20への予冷用冷媒の流出を防止することができる。 The refrigeration apparatus according to the present embodiment has the following effects. In this refrigeration apparatus, a liquid precooling refrigerant (high-pressure refrigerant liquid) obtained after being compressed by the compressor 20 is adiabatically expanded by the ejectors 41a to 41d, and NG (covered by the precooling heat exchangers 34a to 34d). The precooling refrigerant (refrigerant gas) used for cooling the cooling liquid) is sucked and sent to the gas-liquid separators 33a to 33d, and the refrigerant gas separated from the gas-liquid is returned to the compressor 20, while the liquid precooling is performed. And a refrigeration cycle for supplying the refrigerant (refrigerant liquid) to the precooling heat exchangers 34a to 34d. The flow rate of the precooling refrigerant supplied to the precooling heat exchangers 34a to 34d is adjusted based on the liquid level of the precooling refrigerant in each of the precooling heat exchangers 34a to 34d, while the ejectors 41a to 41d. The flow rate of the precooling refrigerant (liquid) supplied to is adjusted based on the liquid level of the gas-liquid separators 33a to 33d. As a result, the pre-cooling refrigerant supplied to the pre-cooling heat exchangers 34a to 34d is supplied to the pre-cooling heat exchangers 34a to 34d while supplying the pre-cooling refrigerant necessary for cooling the NG to the pre-cooling heat exchangers 34a to 34d. It is possible to prevent the refrigerant from running out and the precooling refrigerant from flowing out to the compressor 20.
 ここで図2を用いて説明した冷凍装置においては、予冷熱交換部103側の予冷熱交換器34a~34dにエジェクタ41a~41dを設けた例について説明したが、エジェクタの設置場所は41a~41dのいずれか一つ、例えば41aのみとしてもよく、二つ以上のエジェクタ、例えば41aと42bに設けてもよく、その組み合わせは自由である。さらに、エジェクタ41を設ける系統は補助熱交換部105側であってもよい。 Here, in the refrigeration apparatus described with reference to FIG. 2, the example in which the ejectors 41a to 41d are provided in the precooling heat exchangers 34a to 34d on the precooling heat exchanging unit 103 side has been described, but the installation locations of the ejectors are 41a to 41d. Any one of them, for example, 41a alone, or two or more ejectors, for example, 41a and 42b, may be provided in any combination. Furthermore, the system in which the ejector 41 is provided may be on the auxiliary heat exchange unit 105 side.
 また、エジェクタ41を設ける系統は、予冷熱交換部103と液化部104とのいずれか一方に限定されるものではなく両系統に設けてもよい。例えば図4は、予冷熱交換部103及び補助熱交換部105の両系統に共通のエジェクタ41a~41dを設けた冷凍装置の例を示している。 Moreover, the system | strain which provides the ejector 41 is not limited to any one of the pre-cooling heat exchange part 103 and the liquefaction part 104, You may provide in both systems. For example, FIG. 4 shows an example of a refrigeration apparatus in which common ejectors 41 a to 41 d are provided in both systems of the pre-cooling heat exchange unit 103 and the auxiliary heat exchange unit 105.
 詳細には、各気液分離器33a~33dの液溜まりから予冷熱交換部103側の予冷熱交換器34a~34dへ向けて予冷用冷媒(液体)を抜き出す流路が途中で分岐し、補助熱交換部105側の補助熱交換器35a~35dに接続されている。また、これら補助熱交換器35a~35dの出口側(予冷用冷媒のガス側)の配管は、予冷熱交換部103側の予冷熱交換器34a~34d側の出口側配管に合流して、各エジェクタ41a~41dの吸引口413に接続されている。 Specifically, the flow path for extracting the precooling refrigerant (liquid) from the liquid pools of the gas-liquid separators 33a to 33d to the precooling heat exchangers 34a to 34d on the precooling heat exchanging unit 103 side is branched in the middle to assist The auxiliary heat exchangers 35a to 35d on the heat exchange unit 105 side are connected. Also, the outlet side pipes of the auxiliary heat exchangers 35a to 35d (gas side of the precooling refrigerant) merge with the outlet side pipes of the precooling heat exchangers 34a to 34d side of the precooling heat exchanging unit 103 side, The suction ports 413 of the ejectors 41a to 41d are connected.
 この構成により、各エジェクタ41a~41dは、予冷熱交換部103及び補助熱交換部105の両系統に設けられた予冷熱交換器34a~34d、35a~35dを上段側から2つずつセットにして、各セットの予冷熱交換器34a~34d、35a~35d内で発生したガス(同伴する液体を含む)を吸引することができる。 With this configuration, each of the ejectors 41a to 41d includes two sets of precooling heat exchangers 34a to 34d and 35a to 35d provided in both systems of the precooling heat exchanging unit 103 and the auxiliary heat exchanging unit 105 from the upper side. The gas (including the accompanying liquid) generated in the precooling heat exchangers 34a to 34d and 35a to 35d of each set can be sucked.
 さらに補助熱交換部105側の各補助熱交換器35a~35dに対しても、内部の液面レベルを検出する液面計351a~351dと、これら液面計351a~351dによる液面レベルの検出結果に基づいて、気液分離器33a~33dから補助熱交換器35a~35dに供給される予冷用冷媒(液体)の流量を調整する液面調節弁352a~352dとが設けられている。
 一方で、各エジェクタ41a~41dは、気液分離器33a~33dの液面レベルに基づいて、液体の予冷用冷媒の流量を調整する点については、図2を用いて説明した冷凍装置と同じである。
Further, for each of the auxiliary heat exchangers 35a to 35d on the auxiliary heat exchanging unit 105 side, liquid level gauges 351a to 351d for detecting the internal liquid level, and detection of the liquid level by these liquid level gauges 351a to 351d Based on the results, liquid level control valves 352a to 352d for adjusting the flow rate of the precooling refrigerant (liquid) supplied from the gas-liquid separators 33a to 33d to the auxiliary heat exchangers 35a to 35d are provided.
On the other hand, each of the ejectors 41a to 41d adjusts the flow rate of the liquid precooling refrigerant based on the liquid level of the gas-liquid separators 33a to 33d, which is the same as the refrigeration apparatus described with reference to FIG. It is.
 図4に示す冷凍装置において、例えば予冷熱交換部103側の予冷熱交換器34a~34dは第1の熱交換器に相当し、気液分離器33a~33dから予冷熱交換器34a~34dまでの予冷用冷媒の流路は第1の分流路に相当する。これら予冷熱交換器34a~34dにて冷却されるNGは第1の被冷却流体に相当し、各予冷熱交換器34a~34dに設けられた液面調節弁342a~342dは第1の液面調節弁に相当している。 In the refrigeration apparatus shown in FIG. 4, for example, precooling heat exchangers 34a to 34d on the precooling heat exchanging section 103 side correspond to first heat exchangers, from gas-liquid separators 33a to 33d to precooling heat exchangers 34a to 34d. The flow path of the precooling refrigerant corresponds to the first branch flow path. NG cooled by the precooling heat exchangers 34a to 34d corresponds to the first fluid to be cooled, and the liquid level control valves 342a to 342d provided in the respective precooling heat exchangers 34a to 34d are the first liquid level. It corresponds to a control valve.
 また、補助熱交換部105側の補助熱交換器35a~35dは第2の熱交換器に相当し、気液分離器33a~33dから補助熱交換器35a~35dまでの予冷用冷媒の流路は第2の分流路に相当する。これら補助熱交換器35a~35dにて冷却される主冷媒は第2の被冷却流体に相当し、各補助熱交換器35a~35dに設けられた液面調節弁352a~352dは第2の液面調節弁に相当している。 
 図4に示す冷凍装置の効果として、熱交換器(予冷熱交換器34a~34d、補助熱交換器35a~35d)の圧力を気液分離器33a~33dよりも低い圧力、すなわち、低い温度で運転することができるため、被冷却流体をより低い温度まで冷却することが可能となる。あるいは、これら熱交換器の温度レベルを従来と同じとし、圧縮機20の吸引圧を上昇させることで圧縮機20の負荷を軽減することが可能となり、いずれかを自由に選択して冷凍装置を運転することができる。
The auxiliary heat exchangers 35a to 35d on the auxiliary heat exchanging unit 105 side correspond to a second heat exchanger, and the flow path of the precooling refrigerant from the gas-liquid separators 33a to 33d to the auxiliary heat exchangers 35a to 35d. Corresponds to the second branch flow path. The main refrigerant cooled by the auxiliary heat exchangers 35a to 35d corresponds to the second fluid to be cooled, and the liquid level control valves 352a to 352d provided in the auxiliary heat exchangers 35a to 35d are the second liquid. It corresponds to a surface control valve.
As an effect of the refrigeration apparatus shown in FIG. 4, the pressure of the heat exchangers (pre-cooling heat exchangers 34a to 34d, auxiliary heat exchangers 35a to 35d) is lower than that of the gas-liquid separators 33a to 33d, that is, at a lower temperature. Since it can be operated, the fluid to be cooled can be cooled to a lower temperature. Alternatively, it is possible to reduce the load on the compressor 20 by increasing the suction pressure of the compressor 20 by setting the temperature level of these heat exchangers to be the same as the conventional one, and select either one freely. Can drive.
 さらには、上述したように、予冷熱交換部103の予冷熱交換器34a~34dや補助熱交換部105の補助熱交換器35a~35dにエジェクタ41a~41dを設ける場合において、全ての段にエジェクタ41a~41dを設けることも必須ではない。例えば従来の膨張弁36a~36d、37a~37dをエジェクタ41a~41dに置き換えることによる効果とコストとを比較し、メリットが最も大きくなる位置にエジェクタ41a~41dを設けてもよい。例えば最上流段の膨張弁36aまたは/および37aのみをエジェクタ41aに置き換える場合などが挙げられる。
 一般に、膨張弁36a~36d、37a~37dのうち上流段側の膨張弁ほど、断熱膨張前後の圧力差が大きく、エジェクタ41a~41dに置き換える効果が大きくなる一方、エジェクタ41a~41dのサイズは上流段側ほど大きくなる傾向がある。
Furthermore, as described above, in the case where the ejectors 41a to 41d are provided in the precooling heat exchangers 34a to 34d of the precooling heat exchanging unit 103 and the auxiliary heat exchangers 35a to 35d of the auxiliary heat exchanging unit 105, the ejectors are provided at all stages. It is not essential to provide 41a to 41d. For example, the effects obtained by replacing the conventional expansion valves 36a to 36d and 37a to 37d with the ejectors 41a to 41d may be compared with the cost, and the ejectors 41a to 41d may be provided at positions where the merit is greatest. For example, the case where only the most upstream stage expansion valve 36a and / or 37a is replaced with the ejector 41a may be used.
In general, among the expansion valves 36a to 36d and 37a to 37d, the upstream side expansion valve has a larger pressure difference before and after adiabatic expansion, and the effect of replacing it with the ejectors 41a to 41d is increased, while the size of the ejectors 41a to 41d is upstream. There is a tendency to become larger toward the step side.
20    圧縮機
33a~33d
      気液分離器またはノックアウトドラム
331a~331d
      液面計
34a~34d
      予冷熱交換器
341a~341d
      液面計
342a~342d
      液面調節弁
35a~35d
      補助熱交換器
36a~36d
      膨張弁
37a~37d
      膨張弁
41、41a~41d
      エジェクタ
411   流量調整弁

 
20 Compressors 33a-33d
Gas-liquid separator or knockout drum 331a-331d
Level gauges 34a to 34d
Pre-cooling heat exchangers 341a-341d
Level gauges 342a to 342d
Liquid level control valves 35a-35d
Auxiliary heat exchangers 36a-36d
Expansion valves 37a-37d
Expansion valves 41, 41a-41d
Ejector 411 Flow adjustment valve

Claims (5)

  1.  冷媒ガスを圧縮する圧縮機と、
     前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧するエジェクタと、
     前記エジェクタにて昇圧された混合流体を気液分離し、分離された冷媒ガスが前記圧縮機に送られる気液分離器と、
     前記気液分離器にて分離された冷媒液が流路を介して供給され、当該冷媒液と被冷却流体との間で熱交換を行って当該被冷却流体を冷却すると共に熱交換されて発生した冷媒ガスとそれに同伴される液が前記エジェクタの吸引口に吸引される熱交換器と、
     前記流路に設けられ、前記熱交換器の冷媒液の液面に基づいて冷媒液の流量が調整される液面調節弁と、
     前記気液分離器内の液面レベルに基づいて前記エジェクタのノズルに供給される高圧冷媒液体の流量を調整する流量調整部と、を備えたことを特徴とする冷凍装置。
    A compressor for compressing the refrigerant gas;
    A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle. An ejector for increasing the pressure of the mixed fluid of the high-pressure refrigerant liquid and the refrigerant gas sucked from the suction port;
    A gas-liquid separator that gas-liquid separates the fluid mixture pressurized by the ejector, and the separated refrigerant gas is sent to the compressor;
    Refrigerant liquid separated by the gas-liquid separator is supplied through a flow path, and heat is exchanged between the refrigerant liquid and the fluid to be cooled to cool the fluid to be cooled and heat exchange is generated. A heat exchanger in which the refrigerant gas and the liquid accompanying it are sucked into the suction port of the ejector,
    A liquid level control valve that is provided in the flow path and adjusts the flow rate of the refrigerant liquid based on the liquid level of the refrigerant liquid of the heat exchanger;
    A refrigeration apparatus comprising: a flow rate adjusting unit configured to adjust a flow rate of the high-pressure refrigerant liquid supplied to the nozzle of the ejector based on a liquid level in the gas-liquid separator.
  2.  請求項1に記載されたエジェクタ、気液分離器、流路、熱交換器、液面調節弁及び流量調整部の組を複数段設け、
     2段目以降の前記組のエジェクタのノズルの入り口は、一つ前の段の気液分離器にて分離された冷媒液が供給されるように構成されていることを特徴とする冷凍装置。
    A plurality of sets of ejectors, gas-liquid separators, flow paths, heat exchangers, liquid level control valves, and flow rate control units according to claim 1 are provided,
    The refrigeration apparatus characterized in that the inlet of the nozzle of the pair of ejectors in the second and subsequent stages is supplied with the refrigerant liquid separated by the gas-liquid separator in the previous stage.
  3.  冷媒ガスを圧縮する圧縮機と、
     前記圧縮機から吐出された高圧冷媒ガスを凝縮させて得られた高圧冷媒液体が噴射されるノズルと当該高圧冷媒液体の噴射により冷媒ガスを吸引する吸引口とを備え、前記ノズルから噴射された高圧冷媒液体と前記吸引口から吸引された冷媒ガスとの混合流体を昇圧するエジェクタと、
     前記エジェクタにて昇圧された混合流体を気液分離し、分離された冷媒ガスが前記圧縮機に送られる気液分離器と、
     前記気液分離器にて分離された冷媒液が第1の分流路を介して供給され、当該冷媒液と第1の被冷却流体との間で熱交換を行って当該第1の被冷却流体を冷却すると共に熱交換されて発生した冷媒ガスとそれに同伴される液が前記エジェクタの吸引口に吸引される第1の熱交換器と、
     前記気液分離器にて分離された冷媒液が第2の分流路を介して供給され、当該冷媒液と第2の被冷却流体との間で熱交換を行って当該第2の被冷却流体を冷却すると共に熱交換されて発生した冷媒ガスとそれに同伴される液が前記エジェクタの吸引口に吸引される第2の熱交換器と、
     前記第1の分流路及び第2の分流路に夫々設けられ、前記第1の熱交換器及び第2の熱交換器の冷媒液の液面に基づいて夫々冷媒液の流量が調整される第1の液面調節弁及び第2の液面調節弁と、
     前記気液分離器内の液面レベルに基づいて前記エジェクタのノズルに供給される高圧冷媒液体の流量を調整する流量調整部と、を備えたことを特徴とする冷凍装置。
    A compressor for compressing the refrigerant gas;
    A high-pressure refrigerant liquid obtained by condensing the high-pressure refrigerant gas discharged from the compressor is injected, and a suction port for sucking the refrigerant gas by the injection of the high-pressure refrigerant liquid is injected from the nozzle. An ejector for increasing the pressure of the mixed fluid of the high-pressure refrigerant liquid and the refrigerant gas sucked from the suction port;
    A gas-liquid separator that gas-liquid separates the fluid mixture pressurized by the ejector, and the separated refrigerant gas is sent to the compressor;
    The refrigerant liquid separated by the gas-liquid separator is supplied through the first branch flow path, and heat exchange is performed between the refrigerant liquid and the first cooled fluid, and the first cooled fluid. A first heat exchanger in which the refrigerant gas generated by cooling and heat exchange and the liquid accompanying the refrigerant gas are sucked into the suction port of the ejector,
    The refrigerant liquid separated by the gas-liquid separator is supplied via the second branch flow path, and heat exchange is performed between the refrigerant liquid and the second cooled fluid, thereby the second cooled fluid. A second heat exchanger in which the refrigerant gas generated by cooling and heat exchange and the liquid accompanying the refrigerant gas are sucked into the suction port of the ejector,
    A first flow path and a second flow path are provided respectively for adjusting the flow rate of the refrigerant liquid based on the liquid level of the refrigerant liquid of the first heat exchanger and the second heat exchanger. 1 liquid level control valve and 2nd liquid level control valve;
    A refrigeration apparatus comprising: a flow rate adjusting unit configured to adjust a flow rate of the high-pressure refrigerant liquid supplied to the nozzle of the ejector based on a liquid level in the gas-liquid separator.
  4.  請求項3に記載されたエジェクタ、気液分離器、第1の分流路及び第2の分流路、第1の熱交換器、第2の熱交換器、第1の液面調節弁、第2の液面調節弁及び流量調整部の組を複数段設け、
     2段目以降の前記組のエジェクタのノズルの入り口は、一つ前の段の気液分離器にて分離された冷媒液が供給されるように構成されていることを特徴とする冷凍装置。
    An ejector, a gas-liquid separator, a first branching channel and a second branching channel, a first heat exchanger, a second heat exchanger, a first liquid level control valve, a second, A plurality of sets of liquid level control valves and flow rate adjustment parts are provided,
    The refrigeration apparatus characterized in that the inlet of the nozzle of the pair of ejectors in the second and subsequent stages is supplied with the refrigerant liquid separated by the gas-liquid separator in the previous stage.
  5.  天然ガスを予冷用冷媒により予備冷却し、次いで主冷媒により主冷却し、主冷却を終えた主冷媒を圧縮後、前記予冷用冷媒により冷却する天然ガスの液化システムに用いられる冷凍装置であって、
     前記高圧冷媒は予冷用冷媒であり、
     第1の被冷却流体及び第2の被冷却流体の一方及び他方は、夫々天然ガス及び主冷媒であることを特徴とする請求項3または4に記載の冷凍装置。
     

     
    A refrigeration apparatus used in a natural gas liquefaction system that precools natural gas with a precooling refrigerant, then main cools with a main refrigerant, compresses the main refrigerant after main cooling, and then cools with the precooling refrigerant. ,
    The high-pressure refrigerant is a precooling refrigerant,
    The refrigeration apparatus according to claim 3 or 4, wherein one and the other of the first cooled fluid and the second cooled fluid are natural gas and main refrigerant, respectively.


PCT/JP2014/006469 2014-12-25 2014-12-25 Refrigeration device WO2016103295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006469 WO2016103295A1 (en) 2014-12-25 2014-12-25 Refrigeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006469 WO2016103295A1 (en) 2014-12-25 2014-12-25 Refrigeration device

Publications (1)

Publication Number Publication Date
WO2016103295A1 true WO2016103295A1 (en) 2016-06-30

Family

ID=56149399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006469 WO2016103295A1 (en) 2014-12-25 2014-12-25 Refrigeration device

Country Status (1)

Country Link
WO (1) WO2016103295A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990630A (en) * 2017-11-17 2018-05-04 国鸿液化气机械工程(大连)有限公司 Natural gas liquefaction system, the method for reducing compressor power consumption and the application in re-liquefied
WO2021030112A1 (en) * 2019-08-13 2021-02-18 Bechtel Oil, Gas And Chemicals, Inc. Systems and methods for improving the efficiency of open-cycle cascade-based liquified natural gas systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128101A (en) * 1974-08-09 1976-03-09 Linde Ag Tennengasuno ekikahoho
JPH0611199A (en) * 1991-11-20 1994-01-21 Nippon Sanso Kk Supercritical helium generator
JPH06265230A (en) * 1993-03-11 1994-09-20 Kobe Steel Ltd Method and device for controlling operation of liquefaction-refrigerating device
JPH06272977A (en) * 1993-03-23 1994-09-27 Daikin Ind Ltd Liquid-filled evaporator
JP2002349978A (en) * 2000-08-04 2002-12-04 Denso Corp Ejector cycle
JP2006118726A (en) * 2004-10-19 2006-05-11 Denso Corp Ejector cycle
JP2006228118A (en) * 2005-02-21 2006-08-31 Fuji Electric Retail Systems Co Ltd Vending machine
JP2010243095A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Refrigeration cycle apparatus and gas-liquid separator
US20130111944A1 (en) * 2010-07-23 2013-05-09 Carrier Corporation High Efficiency Ejector Cycle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5128101A (en) * 1974-08-09 1976-03-09 Linde Ag Tennengasuno ekikahoho
JPH0611199A (en) * 1991-11-20 1994-01-21 Nippon Sanso Kk Supercritical helium generator
JPH06265230A (en) * 1993-03-11 1994-09-20 Kobe Steel Ltd Method and device for controlling operation of liquefaction-refrigerating device
JPH06272977A (en) * 1993-03-23 1994-09-27 Daikin Ind Ltd Liquid-filled evaporator
JP2002349978A (en) * 2000-08-04 2002-12-04 Denso Corp Ejector cycle
JP2006118726A (en) * 2004-10-19 2006-05-11 Denso Corp Ejector cycle
JP2006228118A (en) * 2005-02-21 2006-08-31 Fuji Electric Retail Systems Co Ltd Vending machine
JP2010243095A (en) * 2009-04-08 2010-10-28 Mitsubishi Electric Corp Refrigeration cycle apparatus and gas-liquid separator
US20130111944A1 (en) * 2010-07-23 2013-05-09 Carrier Corporation High Efficiency Ejector Cycle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107990630A (en) * 2017-11-17 2018-05-04 国鸿液化气机械工程(大连)有限公司 Natural gas liquefaction system, the method for reducing compressor power consumption and the application in re-liquefied
WO2021030112A1 (en) * 2019-08-13 2021-02-18 Bechtel Oil, Gas And Chemicals, Inc. Systems and methods for improving the efficiency of open-cycle cascade-based liquified natural gas systems

Similar Documents

Publication Publication Date Title
CN105473967B (en) Mixed refrigerant systems and method
JP6117298B2 (en) Precooled mixed refrigerant integration system and method
US7628035B2 (en) Method for processing a stream of LNG obtained by means of cooling using a first refrigeration cycle and associated installation
JP5410443B2 (en) Method and system for adjusting the cooling capacity of a cooling system based on a gas expansion process
JP2023082058A (en) Mixed refrigerant system and method
JP6286812B2 (en) Method for determining mixed refrigerant composition of natural gas liquefier
JP2008530505A (en) Plant and method for liquefying natural gas
US10180282B2 (en) Parallel compression in LNG plants using a positive displacement compressor
EP3299757B1 (en) Mixed refrigerant cooling process and system
CN205957595U (en) A equipment for single mixed refrigerant process
CN105102913A (en) Natural gas liquefaction method and device
AU2015231891A1 (en) Liquefied natural gas facility employing an optimized mixed refrigerant system
CN113865266B (en) Liquefaction system
CN107917577A (en) The refrigerant cooling means and system of more pressure mixing
US20230194161A1 (en) Standalone high-pressure heavies removal unit for lng processing
AU2015388393B2 (en) Natural gas production system and method
WO2016103296A1 (en) Refrigeration device
WO2016103295A1 (en) Refrigeration device
RU2621572C2 (en) Method of reversing liquefaction of the rich methane of fraction
CA3007571C (en) Method for liquefying natural gas and nitrogen
CN109724279A (en) Single-stage throttling single cycle azeotrope refrigeration system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP