WO2016098351A1 - 硫化リチウム製造用装置及び硫化リチウムの製造方法 - Google Patents
硫化リチウム製造用装置及び硫化リチウムの製造方法 Download PDFInfo
- Publication number
- WO2016098351A1 WO2016098351A1 PCT/JP2015/006273 JP2015006273W WO2016098351A1 WO 2016098351 A1 WO2016098351 A1 WO 2016098351A1 JP 2015006273 W JP2015006273 W JP 2015006273W WO 2016098351 A1 WO2016098351 A1 WO 2016098351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium hydroxide
- reaction vessel
- lithium
- sulfide
- lithium sulfide
- Prior art date
Links
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 52
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 346
- 238000006243 chemical reaction Methods 0.000 claims abstract description 161
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 66
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 65
- 238000010438 heat treatment Methods 0.000 claims abstract description 42
- 238000003756 stirring Methods 0.000 claims abstract description 38
- 239000000843 powder Substances 0.000 claims abstract description 33
- 239000002904 solvent Substances 0.000 claims abstract description 21
- 239000007789 gas Substances 0.000 claims abstract description 20
- 239000002245 particle Substances 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 49
- 230000035484 reaction time Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 5
- 150000008064 anhydrides Chemical class 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 16
- 238000004220 aggregation Methods 0.000 abstract description 7
- 230000002776 aggregation Effects 0.000 abstract description 7
- 239000007858 starting material Substances 0.000 abstract description 3
- 230000014759 maintenance of location Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 21
- 239000000047 product Substances 0.000 description 21
- 239000002994 raw material Substances 0.000 description 17
- 238000005259 measurement Methods 0.000 description 13
- 229910018091 Li 2 S Inorganic materials 0.000 description 12
- 238000007664 blowing Methods 0.000 description 11
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 230000019086 sulfide ion homeostasis Effects 0.000 description 4
- -1 that is Substances 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910052743 krypton Inorganic materials 0.000 description 3
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004438 BET method Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000003918 potentiometric titration Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910012525 LiSH Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- HXQGSILMFTUKHI-UHFFFAOYSA-M lithium;sulfanide Chemical compound S[Li] HXQGSILMFTUKHI-UHFFFAOYSA-M 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000002203 sulfidic glass Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/80—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/22—Alkali metal sulfides or polysulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
- C01D15/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/16—Hydrogen sulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to an apparatus for producing lithium sulfide and a method for producing lithium sulfide.
- Lithium sulfide is used, for example, as a raw material for a sulfide solid electrolyte, which is a kind of electrolyte used in lithium ion secondary batteries.
- a method of synthesizing lithium sulfide a method of reacting hydrogen sulfide with Li 2 CO 3 or Li 2 SO 4 has been disclosed (Patent Documents 1 to 3).
- a method for synthesizing lithium sulfide using LiOH as a raw material a method using a solvent or an aqueous solution (Patent Documents 4 to 6) or a method of reacting with hydrogen sulfide without using a solvent (Patent Document 7) is disclosed. .
- Patent Documents 1 to 3 have a drawback that a high temperature of 400 ° C. or higher is required for the reaction.
- the methods described in Patent Documents 4 to 6 have the disadvantage that the volume efficiency of the reaction tank is low and the step of distilling off or recovering the solvent and water.
- the method described in Patent Document 7 has a drawback that aggregation of lithium hydroxide particles and adhesion of a product to a reaction device wall surface or the like are likely to occur.
- An object of the present invention is to provide a production apparatus capable of producing high-purity lithium sulfide using lithium hydroxide as a starting material, without using a solvent, and without causing aggregation of lithium hydroxide particles and adhesion of products to a reaction vessel. And providing a manufacturing method.
- An apparatus for producing lithium sulfide comprising: a heating device; and a second heating device that maintains a temperature of an inner wall of the reaction vessel that is not in contact with the powder.
- lithium hydroxide In the absence of a solvent, 0.1 kg or more of lithium hydroxide is added to 1 liter (l) of the reaction vessel, and the flow rate of hydrogen sulfide is 5 liters (l) / min or less to 1 kg of the lithium hydroxide.
- the manufacturing method of the following lithium sulfide is provided.
- Lithium hydroxide and hydrogen sulfide React at 140 ° C. or higher and 230 ° C. or lower, A method for producing lithium sulfide.
- 2. The method for producing lithium sulfide according to 1, wherein the reaction temperature is 140 ° C. or higher and 220 ° C. or lower. 3.
- 3. The method for producing lithium sulfide according to 1 or 2, wherein a particle size of the lithium hydroxide is 0.1 mm or more and 1.5 mm or less. 4).
- a production apparatus capable of producing high-purity lithium sulfide without using a solvent and causing aggregation of lithium hydroxide particles and adhesion of products to a reaction vessel without using a solvent, according to the present invention. And a manufacturing method can be provided.
- the apparatus for producing lithium sulfide of the present invention includes a reaction vessel in which lithium hydroxide powder and hydrogen sulfide gas are brought into contact, and a stirring blade inside the reaction vessel. And the 1st heating device which holds the temperature of the inner wall which is in contact with the powder among the inner walls of the reaction vessel, and the second heating device which holds the temperature of the inner wall which is not in contact with the powder among the inner walls of the reaction vessel It is characterized by having.
- the “powder” is mainly lithium hydroxide as a raw material and / or lithium sulfide as a product.
- FIG. 1 is a schematic view for explaining an apparatus for producing lithium sulfide according to an embodiment of the present invention.
- an apparatus 1 for producing lithium sulfide includes a reaction vessel 2, a first heating device 21, a second heating device 22, a stirring blade 23, a hydrogen sulfide cylinder 3, a discharge valve 40, an aggregator 42, and a nitrogen cylinder. 9 etc.
- the lithium sulfide production apparatus 1 produces lithium sulfide by reacting lithium hydroxide powder and hydrogen sulfide gas without using a solvent such as a hydrocarbon-based organic solvent.
- the reaction vessel 2 is a sealed vessel and encloses lithium hydroxide.
- the reaction vessel 2 may be a pressure vessel so that the reaction can be performed even in a pressurized state.
- a first heating device 21 is attached to the reaction vessel 2 near the bottom.
- the first heating device 21 is installed mainly for the purpose of heating and keeping lithium hydroxide powder as a raw material. Therefore, in order to efficiently conduct heat to the powder, the first heating device 21 is located in the reaction vessel 2 where the powder and the inner wall of the vessel are in contact (below the interface between the powder phase in the reaction vessel 2 and the gas phase). ).
- the bottom surface of the reaction vessel 2 and its periphery are preferable.
- the reaction vessel 2 is provided with a second heating device 22 different from the first heating device 21 at the body thereof.
- the second heating device 22 is installed not to heat the lithium hydroxide powder or the generated lithium sulfide powder, but mainly to prevent water from condensing on the inner wall of the reaction vessel 2. Therefore, it is installed above the interface between the powder phase and the gas phase in the reaction vessel 2. Specifically, the upper part and the lid part are preferable to the vicinity of the central part of the reaction vessel 2.
- the heating device 22 is installed on the body of the reaction vessel 2, but is not limited thereto, and may be installed on the lid of the reaction vessel 2, or installed on both the body and the lid. May be.
- the first heating device 21 and the second heating device 22 are not particularly limited as long as the inner wall or powder of the reaction vessel 2 can be heated to a predetermined temperature and held.
- a heating jacket using a heat medium such as an electric heater, an oil bath, or steam can be used.
- size of the reaction container 2 does not have a restriction
- the upper limit of the size of the reaction vessel is not particularly limited, but is, for example, 100 kiloliters (kl) or less. This embodiment is particularly effective when a large amount of lithium hydroxide as a raw material is used, for example, when 0.1 kg or more is used.
- the reaction vessel 2 becomes larger, it becomes difficult to control the temperature of the vessel uniformly. For example, the temperature of the inner wall near the upper part of the reaction vessel 2 decreases, causing water to condense.
- a second heating device 22 for preventing water from condensing on the inner wall of the reaction vessel 2 is installed separately. Even if the container 2 becomes large, water condensation can be prevented.
- the capacity of the reaction vessel 2 is preferably, for example, 0.1 liter (l) or more and 100 kiloliters (kl) or less, and particularly preferably 0.3 liter (l) or more and 50 kiloliters (kl) or less.
- the reaction vessel 2 is provided with a stirring blade 23 for stirring the inside thereof.
- a stirring blade 23 for stirring the inside thereof.
- a uniaxial stirring blade having a stirring blade in the lower stage is used, but the shape and quantity of the stirring blade, the number of stirring shafts, and the like are not particularly limited.
- stirring blade 23 it can carry out using a general blade. Specific examples include stirring blades such as anchor blades, faddler blades, helical blades, max blend blades, and disk-type blades.
- the reaction vessel 2 is provided with a supply port 24 for supplying lithium hydroxide to the lid, and is provided with a take-out port 25 for taking out lithium sulfide at the bottom.
- the reaction vessel 2 may be provided with a pressure sensor, a temperature sensor, an interface meter, and the like.
- a hydrogen sulfide cylinder 3 is provided as blowing means for blowing hydrogen sulfide into the reaction vessel 2.
- the hydrogen sulfide cylinder 3 is connected to the reaction vessel 2 through a valve 31 and piping, and inside the reaction vessel 2 is connected to a pipe 32 communicating with the piping.
- the pipe 32 has a tip located at the lower part of the reaction vessel 2 and is configured to blow out hydrogen sulfide below lithium hydroxide.
- One side of the discharge valve 40 is connected to the lid of the reaction vessel 2 via a pipe or the like, and the other side is connected to the condenser 42 via a pipe 41 or the like.
- This discharge valve 40 functions as a discharge means for discharging water produced as a by-product in the reaction vessel 2 during the reaction to the outside of the reaction vessel 2.
- the discharge from the discharge valve 40 includes water and hydrogen sulfide.
- the discharge valve 40 is usually a pressure control valve or the like, and maintains the inside of the reaction vessel 2 at a predetermined pressure.
- the apparatus 1 for producing lithium sulfide may be provided with a hydrogen sulfide recovery apparatus as necessary. For example, a gas that has not been liquefied by the condenser 42 may be recovered by a recovery device.
- the nitrogen cylinder 9 is connected to the reaction vessel 2 via a valve 91 and piping, and inside the reaction vessel 2 is connected to a pipe 32 communicating with the piping.
- the nitrogen cylinder 9 supplies nitrogen gas as an inert gas into the reaction vessel 2 at the end of the reaction.
- the operation of the lithium sulfide production apparatus 1 will be described.
- the valve 91 and the discharge valve 40 are opened, nitrogen gas is injected from the nitrogen cylinder 9, air inside the reaction vessel 2 is discharged, and then the valve 91 is closed.
- a predetermined amount of lithium hydroxide is charged into the reaction vessel 2 from the supply port 24. From the viewpoint of production efficiency, it is preferable to add 0.1 kg or more of lithium hydroxide to 1 liter (l) of the reaction vessel. It is more preferable to add 0.2 kg or more of lithium hydroxide, and it is particularly preferable to add 0.3 kg or more.
- the upper limit of the amount of lithium hydroxide added is not particularly limited, but is preferably 0.8 kg or less of lithium hydroxide per 1 liter (l) of the reaction vessel.
- the bulk density of the lithium hydroxide powder is usually about 0.75 g / cm 3 to about 1.00 g / cm 3 . Therefore, the input amount of lithium hydroxide to 1 liter (l) of the reaction vessel is, for example, 0.2 liter (l) or more, 0.3 liter (l) or more, or 0.4 liter (l) or more.
- the amount of lithium hydroxide introduced into 1 liter (l) of the reaction vessel is preferably 0.8 liter (l) or less for the reasons of powder scattering and prevention of stirring efficiency reduction.
- the heating devices 21 and 22 and the stirring blade 23 are operated to heat the lithium hydroxide and the inner wall of the reaction vessel to a predetermined temperature, and to mix lithium hydroxide uniformly so as not to stay in the reaction vessel.
- the temperature of the inner wall where the powder of the reaction vessel 2 is not in contact is maintained at 100 ° C. or higher by the second heating device 22. Thereby, it is possible to prevent the by-produced water from condensing on the inner wall.
- the upper limit of the temperature of the inner wall where the raw material powder of the reaction vessel 2 is not in contact is not particularly limited, but for example, 140 ° C. or lower is preferable.
- the first heating device 21 can efficiently heat the lithium hydroxide in the reaction vessel 2.
- the heating temperature is preferably 140 ° C. or higher and 230 ° C. or lower. In this embodiment, since the two heating devices 21 and 22 are installed independently, heating for the purpose of preventing condensation of water and heating for the purpose of heating the raw material can be controlled independently. As a result, the energy used can be reduced as compared with heating with one heating device.
- the stirring speed may be adjusted as appropriate, and is, for example, 50 rpm to 2000 rpm, and 100 rpm to 1000 rpm.
- the shape of the bottom of the reaction vessel 2 is preferably a shape that does not produce a corner, for example, a curved shape or a round bottom shape.
- the stirring blade is preferably as close to the bottom of the reaction vessel 2 as possible.
- the distance between the stirring blade and the bottom of the reaction vessel is, for example, 10 cm or less, 5 cm or less, 2 cm or less, 1 cm or less.
- the valve 31 is opened, and hydrogen sulfide is supplied into the reaction vessel 2 to start the reaction.
- the reactions of the above-described reaction formulas (1) and (2) proceed to generate lithium sulfide and water and hydrogen sulfide.
- the powder and the reaction vessel 2 are heated to a predetermined temperature, the generated water is not condensed inside the reaction vessel, but is discharged from the reaction vessel 2 together with hydrogen sulfide in a gaseous state.
- This discharge is performed through the discharge valve 40 and the piping 41, and the pressure inside the reaction vessel 2 is controlled to a predetermined pressure by the discharge valve 40.
- the blowing speed of hydrogen sulfide may be appropriately adjusted depending on the scale of the reaction system, reaction conditions, and the like.
- the use efficiency of hydrogen sulfide is improved.
- the flow rate of hydrogen sulfide can be reduced to 5 liters (l) / min or less with respect to 1 kg of charged lithium hydroxide.
- the flow rate of hydrogen sulfide is preferably 4 liters (l) / min or less with respect to 1 kg of lithium hydroxide, more preferably 3 liters (l) / min or less, particularly 2 liters (l) / min or less. preferable.
- the lower limit of the flow rate of hydrogen sulfide is, for example, 0.1 liter (l) / min.
- the discharged water and hydrogen sulfide are supplied to the condenser 42, and the water in the gaseous state becomes a liquid state (condensed).
- gaseous hydrogen sulfide is substantially dissolved in water in the condenser 42.
- the relationship between the amount of water generated and the reaction time is that when the supply amount of hydrogen sulfide is substantially constant, the amount of water increases due to the water generated by the reaction at the start of the reaction, and then changes to a substantially constant value. Thereafter, it decreases due to a decrease in lithium hydroxide as a raw material.
- the heating devices 21 and 22 are stopped, the valve 91 is opened, nitrogen gas is blown into the reaction vessel 2, hydrogen sulfide is discharged, and the generated lithium sulfide is taken out from the take-out port 25.
- the reaction is performed without using a solvent such as an organic solvent or water, the obtained lithium sulfide can be used as it is without performing distillation removal or recovery of the solvent.
- a vertical reaction vessel is used.
- a horizontal device such as a disk dryer can also be used.
- a second heating device that maintains the temperature of the inner wall not in contact with the powder in the vicinity of the gas outlet.
- Method for producing lithium sulfide In the method for producing lithium sulfide of the present invention, 0.1 kg or more of lithium hydroxide is introduced into 1 liter of reaction vessel in the absence of a solvent, and the flow rate of hydrogen sulfide is set to 5 liters per 1 kg of lithium hydroxide ( 1) / min or less, and lithium hydroxide and hydrogen sulfide are reacted while stirring so as not to retain lithium hydroxide.
- “in the absence of solvent” means that lithium hydroxide and hydrogen sulfide are not reacted in a solvent, but in the absence of a solvent, that is, solid lithium hydroxide is gaseous hydrogen sulfide. It is meant to react by direct contact.
- the production method of the present invention can be carried out, for example, by the production apparatus of the present invention described above.
- this production apparatus water produced as a by-product during the production of lithium sulfide can be prevented from condensing on the inner wall of the reaction vessel.
- aggregation of lithium hydroxide particles and adhesion of products to the reaction vessel can be prevented, so that even if a relatively large amount of lithium hydroxide is introduced into the reaction vessel, high purity lithium sulfide is produced. it can.
- the amount of lithium hydroxide added is not particularly limited, but is preferably 0.8 kg or less of lithium hydroxide per 1 liter (l) of the reaction vessel.
- the bulk density of the lithium hydroxide powder is usually about 0.75 g / cm 3 to about 1.00 g / cm 3 . Therefore, the input amount of lithium hydroxide to 1 liter (l) of the reaction vessel is, for example, 0.2 liter (l) or more, 0.3 liter (l) or more, or 0.4 liter (l) or more.
- the amount of lithium hydroxide introduced into 1 liter (l) of the reaction vessel is preferably 0.8 liter (l) or less for the reasons of powder scattering and prevention of stirring efficiency reduction.
- the flow rate of hydrogen sulfide can be reduced to 5 liters (l) / min or less with respect to 1 kg of charged lithium hydroxide.
- the flow rate of hydrogen sulfide is preferably 4 liters (l) / min or less with respect to 1 kg of lithium hydroxide, more preferably 3 liters (l) / min or less, particularly 2 liters (l) / min or less. preferable.
- the lower limit of the flow rate of hydrogen sulfide is preferably 0.1 liter (l) / min or more, for example.
- lithium hydroxide As lithium hydroxide, commercially available products can be used as they are. In the present invention, as described later, it is not necessary to use a material that has been pulverized and granulated in advance as a raw material. Therefore, it is not necessary to provide a atomization step such as classification or pulverization of lithium hydroxide.
- the particle size of lithium hydroxide is not particularly limited.
- it may be an industrial product having a particle size range of 0.1 mm or more and 1.5 mm or less, or may be more than 1.5 mm (for example, 1.6 mm or more and 2.0 mm or less).
- the particle size is measured using a laser diffraction particle size distribution analyzer (for example, Mastersizer 2000 manufactured by Malvern Instruments Ltd).
- Lithium hydroxide may be hydrated or anhydrous, but is preferably anhydrous.
- the amount of moisture which is an impurity in lithium hydroxide is not particularly limited, but is preferably 10 wt% or less, for example, 8 wt% or less, 5 wt% or less, 3 wt% or less.
- the amount of water in lithium hydroxide is measured by the weight loss when the sample is dried at 200 ° C. for 2 hours.
- a drying step of lithium hydroxide as a raw material may or may not be provided. Examples of the drying step include drying under an inert gas.
- Hydrogen sulfide that is commercially available can be used as it is. Hydrogen sulfide may or may not be dehydrated. Since the obtained lithium sulfide may be affected, the water content is preferably 50 ppm or less, more preferably 30 ppm or less. The lower limit of the moisture content is not particularly limited, but is usually 0.1 ppm or more. The moisture content may be 0 ppm.
- reaction temperature is preferably 140 ° C. or higher and 230 ° C. or lower. More preferably, they are 140 degreeC or more and 220 degrees C or less, for example, 150 degreeC or more and 220 degrees C or less, 150 degreeC or more and 210 degrees C or less, 160 degreeC or more and 200 degrees C or less.
- the hydrogen sulfide gas can be diffused to the inside of the lithium hydroxide particles, and the reaction can proceed sufficiently, so that high-purity lithium sulfide with a reduced amount of residual lithium hydroxide can be obtained. Moreover, generation
- the reaction is usually carried out in a reaction vessel with no air inflow.
- the lower limit of the size of the reaction vessel is not particularly limited, but is, for example, 100 ml (ml) or more and 300 ml (ml) or more.
- the present invention is particularly effective when a large amount of lithium hydroxide as a raw material is used, for example, when 0.1 kg or more is used.
- the reaction can be performed either continuously or batchwise.
- lithium hydroxide and hydrogen sulfide are reacted while stirring so as not to retain lithium hydroxide.
- the manufacturing apparatus of the present invention described above can be used.
- any apparatus that can be applied in the reaction temperature range and can be stirred so as not to retain lithium hydroxide and can supply or discharge gas can be used. Also good.
- a fluidized bed reactor and a rotary kiln are preferable.
- a disk dryer having a large heat transfer area is preferable.
- the disk structure of the disk dryer is preferably hollow and inclined with respect to the shaft so as to enhance the heat transfer rate and the stirring and shaking effects. By rotating the disk, a self-cleaning effect can be shown in which the material adhering to the shaft / casing is automatically scraped off.
- More specific examples of the disk type dryer include a CD dryer manufactured by Kurimoto Steel Co., Ltd., an incline disk dryer manufactured by Tsukishima Machine Co., Ltd., and a micron thermoprocessor manufactured by Hosokawa Micron Corporation.
- hydrogen sulfide gas is blown into a reaction vessel or the like into which lithium hydroxide has been charged to react lithium hydroxide and hydrogen sulfide.
- the method for blowing hydrogen sulfide is not particularly limited.
- Stirring can be performed using, for example, a general blade. Specifically, stirring blades such as anchor blades, faddler blades, helical blades, max blend blades, disk type blades and the like can be mentioned.
- the stirring speed may be adjusted as appropriate, and is, for example, 50 rpm to 2000 rpm, and 100 rpm to 1000 rpm.
- Water is by-produced by the reaction between lithium hydroxide and hydrogen sulfide.
- By-product water can be removed from the system by condensing water vapor evaporated from the reaction system with a condenser or the like.
- the portion of the reaction vessel that is in contact with lithium hydroxide is preferably 140 ° C. or higher and 230 ° C. or lower, and the portion of the reaction vessel that is not in contact with lithium hydroxide is preferably 100 ° C. or higher and 140 ° C. or lower.
- the reaction proceeds and lithium hydroxide as a raw material disappears from the reaction system, generation of water due to the reaction stops. It is preferable to continue blowing hydrogen sulfide until the water in the reaction system evaporates and becomes dry. If the blowing of hydrogen sulfide is stopped before the water is completely distilled off, the hydrolysis of lithium sulfide may proceed. Moreover, the amount of LiOH in the lithium sulfide obtained later can be reduced by continuing the blowing of hydrogen sulfide for a certain period of time even after being in a dry state.
- the time for which the blowing is continued is preferably 0.5 hours or more and 10 hours or less, more preferably 1 hour or more and 4 hours or less, for example, 2 hours or more and 3 hours or less. At this time, the flow rate of hydrogen sulfide may be the same as that before the dry state, or may be less than that before the dry state.
- the reaction is carried out without using a solvent, the obtained lithium sulfide can be used as it is without carrying out distillation removal or recovery of the solvent.
- the reaction time (the time from the start of blowing hydrogen sulfide to the stop of blowing) is usually 1 to 60 hours, for example 2 to 30 hours, 6 to 20 hours.
- lithium sulfide (Li 2 S) since the reaction can proceed sufficiently, high-purity lithium sulfide having a reduced amount of lithium hydroxide as a raw material can be obtained.
- the purity of the obtained lithium sulfide can be 98.0 wt% or more, for example, 98.2 wt% or more.
- the amount of lithium hydroxide in the obtained lithium sulfide can be 0.4 wt% or less, for example 0.2 wt% or less, for example 0.1 wt% or less.
- the purity of lithium sulfide and the amount of lithium hydroxide are measured by potentiometric titration.
- the specific surface area of the obtained lithium sulfide measured by the BET method is, for example, 1.0 m 2 / g or more, 1.2 m 2 / g or more, 1.5 m 2 / g or more.
- the BET method may use nitrogen gas (nitrogen method) or krypton gas (krypton method).
- nitrogen gas nitrogen method
- krypton gas krypton method
- the pore volume of the obtained lithium sulfide is, for example, 0.002 ml / g or more.
- the pore volume can be measured with the same device as the specific surface area, and a value obtained by interpolating 0.99 from a measurement point where the relative pressure P / P 0 is 0.99 or more can be used.
- the lower limit of measurement of the apparatus is 0.001 ml / g.
- the pore volume of lithium sulfide is preferably 0.003 ml / g or more.
- a sulfide-based solid electrolyte used for a lithium ion secondary battery or the like can be produced using lithium sulfide obtained by the method of the present invention.
- the sulfide-based solid electrolyte can also be used as a solid electrolyte layer of an all-solid lithium ion secondary battery, a solid electrolyte mixed with a positive electrode or a negative electrode mixture, or the like.
- an all-solid lithium ion secondary battery is formed by forming a positive electrode, a negative electrode, and a layer made of a solid electrolyte between the positive electrode and the negative electrode.
- Example 1 Lithium hydroxide anhydride (manufactured by Honjo Chemical Co., Ltd., particle size range: 0.1 mm to 1.5 mm, water content) in a 500 ml (ml) separable flask equipped with an anchor stirring blade 1 wt% or less) was charged in an amount of 200 g. While stirring at 200 rpm, the temperature was raised in a nitrogen stream, and the internal temperature (powder) was maintained at 200 ° C. using an oil bath. At the same time, the upper part of the separable flask was kept at 100 ° C. with a ribbon heater.
- a 500 ml (ml) separable flask equipped with an anchor stirring blade 1 wt% or less was charged in an amount of 200 g. While stirring at 200 rpm, the temperature was raised in a nitrogen stream, and the internal temperature (powder) was maintained at 200 ° C. using an oil bath. At the same time, the upper part of the separable flask was kept at
- the nitrogen gas was switched to hydrogen sulfide gas (manufactured by Sumitomo Seika Co., Ltd.), the flow rate was 500 milliliters (ml) / min, and the reaction between lithium hydroxide anhydride and hydrogen sulfide was performed while stirring with an anchor blade.
- the particle size range and water content of the lithium hydroxide anhydride were measured by the above-described methods.
- the recovered product, the purity measurement of Li 2 S, measurement of LiOH amount in Li 2 S, and the XRD measurement was performed. Measurements of LiOH amount of pure measurements and Li 2 S in the Li 2 S was calculated by potentiometric titration. The results are shown in Table 1. As a result of XRD measurements, the peak pattern was confirmed corresponding to Li 2 S. The “detection limit” of the LiOH amount is 0.1 wt%.
- Example 2 In Example 1, the flow rate of hydrogen sulfide gas was changed from 500 milliliters (ml) / min to 200 milliliters (ml) / min, and the total reaction time was changed to 16 hours. Lithium was produced. After 14 hours, 140 milliliters (ml) of water was recovered. After that, no water distilling was observed for 2 hours. Moreover, the adhesion of the product to a separable flask or the like was not observed. The product was recovered and evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result of XRD measurements, the peak pattern was confirmed corresponding to Li 2 S.
- Example 3 lithium sulfide was produced in the same manner as in Example 1 except that the reaction temperature was changed to 160 ° C. and the reaction time was changed to 20 hours. After 14 hours, 140 milliliters (ml) of water was recovered. Thereafter, no water distilling was observed for 6 hours. Moreover, the adhesion of the product to the separable flask or the like was hardly observed. The product was recovered and evaluated in the same manner as in Example 1. The results are shown in Table 1. As a result of XRD measurements, the peak pattern was confirmed corresponding to Li 2 S.
- Example 4 lithium sulfide was produced in the same manner as in Example 1 except that the reaction temperature was changed to 220 ° C. and the reaction time was changed to 8 hours. After 5 hours, 146 milliliters (ml) of water was recovered. Thereafter, no water distilling was observed for 3 hours. Moreover, the adhesion of the product to the separable flask or the like was hardly observed. The product was recovered and evaluated in the same manner as in Example 1. The results are shown in Table 2. As a result of XRD measurements, the peak pattern was confirmed corresponding to Li 2 S.
- Example 5 lithium sulfide was produced in the same manner as in Example 1 except that the reaction temperature was changed to 180 ° C. and the reaction time was changed to 11 hours. After 7 hours, 143 milliliters (ml) of water was recovered. Thereafter, no water was observed for 4 hours. Moreover, the adhesion of the product to the separable flask or the like was hardly observed. The product was recovered and evaluated in the same manner as in Example 1. The results are shown in Table 2. As a result of XRD measurements, the peak pattern was confirmed corresponding to Li 2 S.
- Example 6 lithium sulfide was produced in the same manner as in Example 1 except that the reaction temperature was changed to 140 ° C. and the reaction time was changed to 20 hours. After 18 hours, 140 milliliters (ml) of water was recovered. Thereafter, no water distilling was observed for 2 hours. Moreover, the adhesion of the product to the separable flask or the like was hardly observed. The product was recovered and evaluated in the same manner as in Example 1. The results are shown in Table 2. As a result of XRD measurements, the peak pattern was confirmed corresponding to Li 2 S.
- the reaction temperature was lower than in Examples 1 to 5 and the reaction rate was slow, and no water was distilled out. This is probably because the time until the reaction from 1 was completed, that is, the time until the reaction was below the detection limit was as short as 2 hours.
- the production apparatus for lithium sulfide of the present invention can be suitably used as an apparatus for producing high-purity lithium sulfide.
- the lithium sulfide obtained by the production method of the present invention can be used as a raw material for sulfide-based solid electrolytes used in lithium ion secondary batteries and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Secondary Cells (AREA)
- Conductive Materials (AREA)
- Mixers Of The Rotary Stirring Type (AREA)
Abstract
Description
従来、硫化リチウムの合成方法として、Li2CO3又Li2SO4に硫化水素を反応させる方法が開示されている(特許文献1~3)。
また、LiOHを原料とする硫化リチウムの合成方法として、溶媒又は水溶液を用いる方法や(特許文献4~6)、溶媒を用いずに硫化水素と反応させる方法(特許文献7)が開示されている。
本発明によれば、以下の硫化リチウム製造用装置等が提供される。
1.水酸化リチウム粉体と硫化水素ガスを接触させる反応容器と、前記反応容器の内部にある撹拌翼と、前記反応容器の内壁のうち、前記粉体と接している内壁の温度を保持する第一加熱装置と、前記反応容器の内壁のうち、前記粉体と接していない内壁の温度を保持する第二加熱装置と、を備える、硫化リチウム製造用装置。
2.前記反応容器の容量が0.1リットル(l)以上100キロリットル(kl)以下である、1に記載の硫化リチウム製造用装置。
3.前記撹拌翼が、前記反応容器の底面から10cm以内の位置にある、1又は2に記載の硫化リチウム製造用装置。
4.前記反応容器の底面部が丸底状である、1~3のいずれかに記載の硫化リチウム製造用装置。
5.前記撹拌翼が、アンカー翼、ファドラー翼、ヘリカル翼、マックスブレンド翼又はディスク型翼である、1~4のいずれかに記載の硫化リチウム製造用装置。
6.溶媒不存在下において、反応容器1リットル(l)に対して水酸化リチウムを0.1kg以上投入し、硫化水素の流量を、前記水酸化リチウム1kgに対して5リットル(l)/min以下とし、前記水酸化リチウムを滞留させないように撹拌しながら、前記水酸化リチウムと前記硫化水素を反応させる、硫化リチウムの製造方法。
7.前記水酸化リチウムの粒径が0.1mm以上1.5mm以下である、6に記載の硫化リチウムの製造方法。
8.前記水酸化リチウムが無水物である、6又は7に記載の硫化リチウムの製造方法。
9.前記水酸化リチウムの水分量が10wt%以下である、6~8のいずれかに記載の硫化リチウムの製造方法。
10.得られた硫化リチウム中の水酸化リチウムの量が0.2wt%以下である、6~9のいずれかに記載の硫化リチウムの製造方法。
11.得られた硫化リチウムの純度が98.0wt%以上である、6~10のいずれかに記載の硫化リチウムの製造方法。
12.前記反応の時間が1時間以上60時間以下である、6~11のいずれかに記載の硫化リチウムの製造方法。
13.前記反応において、水の発生が確認できなくなった後、さらに0.5時間以上10時間以下前記反応を行う、6~12のいずれかに記載の硫化リチウムの製造方法。
14.6~13のいずれかの製造方法により得られる硫化リチウム。
1.溶媒不存在下において、
水酸化リチウムと硫化水素とを、
140℃以上230℃以下で反応させる、
硫化リチウムの製造方法。
2.前記反応温度が140℃以上220℃以下である1に記載の硫化リチウムの製造方法。
3.前記水酸化リチウムの粒径が0.1mm以上1.5mm以下である1又は2に記載の硫化リチウムの製造方法。
4.前記水酸化リチウムが無水物である1~3のいずれかに記載の硫化リチウムの製造方法。
5.前記水酸化リチウムの水分量が10wt%以下である1~4のいずれかに記載の硫化リチウムの製造方法。
6.前記水酸化リチウムを撹拌しながら反応させる1~5のいずれかに記載の硫化リチウムの製造方法。
7.得られた硫化リチウム中の水酸化リチウムの量が0.2wt%以下である1~6のいずれかに記載の硫化リチウムの製造方法。
8.得られた硫化リチウムの純度が98.0wt%以上である1~7のいずれかに記載の硫化リチウムの製造方法。
本発明の硫化リチウム製造用装置は、水酸化リチウム粉体と硫化水素ガスを接触させる反応容器と、反応容器の内部にある撹拌翼と、を有する。そして、反応容器の内壁のうち、粉体と接している内壁の温度を保持する第一加熱装置と、反応容器の内壁のうち、粉体と接していない内壁の温度を保持する第二加熱装置と、を有することを特徴とする。なお、「粉体」は、主に原料である水酸化リチウム及び/又は生成物である硫化リチウムである。
図1は、本発明の一実施形態にかかる硫化リチウム製造用装置を説明するための概略図である。
図1において、硫化リチウム製造用装置1は、反応容器2、第一加熱装置21、第二加熱装置22、撹拌翼23、硫化水素ボンベ3、排出用弁40、凝集器42、及び、窒素ボンベ9等を備えている。この硫化リチウム製造用装置1は、炭化水素系有機溶媒等の溶媒を使用せずに、水酸化リチウム粉体と硫化水素ガスとを反応させ、硫化リチウムを製造する。
反応容器2はその底部付近に、第一加熱装置21が取り付けられている。第一加熱装置21は主に原料である水酸化リチウム粉体を加熱し、保温する目的で設置される。したがって、第一加熱装置21は熱を粉体に効率よく伝導するため、反応容器2内において粉体と容器内壁が接している箇所(反応容器2内の粉体相と気相間の界面より下部)に設置する。具体的には、反応容器2の底面及びその周辺が好ましい。
また、反応容器2は、その胴部に上記第一加熱装置21とは異なる第二加熱装置22が取り付けられている。第二加熱装置22は水酸化リチウム粉体や生成する硫化リチウム粉体を加熱するためではなく、主に反応容器2の内壁に水が凝縮することを防止するために設置される。したがって反応容器2内の粉体相と気相間の界面より上部に設置する。具体的には、反応容器2の中央部付近よりも上部や蓋部が好ましい。なお、本実施形態では反応容器2の胴部に加熱装置22を設置しているが、これに限られず、反応容器2の蓋部に設置してもよく、胴部及び蓋部の両方に設置してもよい。
本実施形態は、特に原料である水酸化リチウムを大量に用いる場合、例えば、0.1kg以上用いる場合に有効である。反応容器2が大きくなるに従い、容器の温度を均一に制御することが困難になる。例えば、反応容器2の上部付近の内壁の温度が低下し、水が凝縮する原因となる。本実施形態では、粉体を加熱するための第一加熱装置21の他に、別途、反応容器2の内壁に水が凝縮することを防止する第二加熱装置22を設置しているため、反応容器2が大きくなっても、水の凝縮を防止することができる。反応容器2の容量は、例えば、0.1リットル(l)以上100キロリットル(kl)以下が好ましく、特に、0.3リットル(l)以上50キロリットル(kl)以下が好ましい。
撹拌翼23としては、一般的な翼を用いて行うことができる。具体的には、アンカー翼、ファドラー翼、ヘリカル翼、マックスブレンド翼、ディスク型翼、等の撹拌翼が挙げられる。
なお、反応容器2は、圧力センサ、温度センサ、界面計等を設置してもよい。
LiOH+H2S→LiSH+H2O (1)
2LiSH→Li2S+H2S (2)
したがって、上記の排出用弁40からの排出物は、水及び硫化水素を含んでいる。
なお、排出用弁40は、通常、圧力制御弁等であり、反応容器2の内部を所定の圧力に維持する。また、硫化リチウム製造用装置1は、必要に応じて、硫化水素の回収装置を設けてもよい。例えば、凝縮器42で液化しなかった気体を回収装置で回収すればよい。
硫化リチウム製造用装置1では、まず、弁91及び排出用弁40が開かれ、窒素ボンベ9から窒素ガスが注入され、反応容器2内部の空気等が排出され、その後、弁91が閉じられる。
次に、供給口24から所定量の水酸化リチウムを反応容器2に投入する。
製造効率の観点から、反応容器1リットル(l)に対して水酸化リチウムを0.1kg以上投入することが好ましい。水酸化リチウムを0.2kg以上投入することがより好ましく、特に、0.3kg以上投入することが好ましい。水酸化リチウムの投入量の上限は特にないが、好ましくは反応容器1リットル(l)に対して水酸化リチウム0.8kg以下である。
なお、水酸化リチウム粉体の嵩密度は通常0.75g/cm3程度から1.00g/cm3程度である。したがって、反応容器1リットル(l)に対する水酸化リチウムの投入量は、例えば、0.2リットル(l)以上、0.3リットル(l)以上又は0.4リットル(l)以上である。また、上限は特にないが、粉末の飛散、撹拌効率低下防止という理由から、反応容器1リットル(l)に対する水酸化リチウムの投入量は、0.8リットル(l)以下が好ましい。
第一加熱装置21によって、反応容器2の水酸化リチウムを効率よく加熱することができる。加熱温度は140℃以上230℃以下が好ましい。
本実施形態では、2つの加熱装置21及び22を独立して設置しているため、水の凝縮防止を目的とする加熱と原料加熱を目的とする加熱を独立して制御できる。その結果、1つの加熱装置で加熱するよりも使用するエネルギーを低減できる。
また、撹拌翼はできるだけ反応容器2の底に近づけることが好ましい。撹拌翼と反応容器の底の距離は、例えば、10cm以下、5cm以下、2cm以下、1cm以下である。
ここで、粉体及び反応容器2は、所定の温度に加熱されているので、発生した水は反応容器内部で凝縮せずに、気体の状態で硫化水素とともに反応容器2から排出される。この排出は、排出用弁40及び配管41等を介して行われ、反応容器2の内部の圧力は、排出用弁40により所定の圧力に制御される。
発生する水分量と反応時間との関係は、硫化水素の供給量をほぼ一定とすると、反応開始とともに、反応により生成される水によって水分量は増加し、その後、ほぼ一定の値で推移し、その後、原料である水酸化リチウムの減少によって減少する。
水分の発生が止まった後、加熱装置21及び22を停止し、弁91を開き、反応容器2に窒素ガスを吹き込み、硫化水素を排出し、生成された硫化リチウムを取り出し口25から取り出す。
本実施形態では、有機溶媒や水等の溶媒を用いずに反応を行うため、溶媒の蒸留除去や回収を行わずに、得られた硫化リチウムをそのまま用いることができる。
本発明の硫化リチウムの製造方法は、溶媒不存在下において、反応容器1リットルに対して水酸化リチウムを0.1kg以上投入し、硫化水素の流量を、水酸化リチウム1kgに対して5リットル(l)/min以下とし、水酸化リチウムを滞留させないように撹拌しながら、水酸化リチウムと硫化水素を反応させることを特徴とする。
ここで、「溶媒不存在下において」とは、水酸化リチウムと硫化水素を溶媒中で反応させるのではなく、溶媒のない状態で反応させること、即ち、固体の水酸化リチウムに気体の硫化水素を直接接触させて反応させることを意味する。
なお、水酸化リチウム粉末の嵩密度は通常0.75g/cm3程度から1.00g/cm3程度である。したがって、反応容器1リットル(l)に対する水酸化リチウムの投入量は、例えば、0.2リットル(l)以上、0.3リットル(l)以上又は0.4リットル(l)以上である。また、上限は特にないが、粉末の飛散、攪拌効率低下防止という理由から、反応容器1リットル(l)に対する水酸化リチウムの投入量は、0.8リットル(l)以下が好ましい。
以下、各原料や反応条件について述べる。
水酸化リチウムは、工業的に市販されているものをそのまま用いることができる。本発明においては、後述するように、事前に粉砕して微粒状にしたものを原料として用いる必要がない。したがって、水酸化リチウムの分級や粉砕等の微粒化工程を設ける必要はない。
粒径は、レーザー回折式粒度分布測定装置(例えば、Malvern Instruments Ltd製 マスターサイザー2000)を用いて測定する。
本発明においては、原料である水酸化リチウムの乾燥工程は、設けてもよいし、設けなくてもよい。乾燥工程は、例えば不活性ガス下での乾燥が挙げられる。
硫化水素は、工業的に市販されているものをそのまま用いることができる。
硫化水素は、脱水してもよく、脱水しなくてもよい。得られた硫化リチウムに影響を与えるおそれがあるため、好ましくは水分量が50ppm以下、より好ましくは30ppm以下である。水分量の下限値は、特に限定されないが、通常0.1ppm以上である。水分量は0ppmでもよい。
反応温度は140℃以上230℃以下が好ましい。より好ましくは140℃以上220℃以下であり、例えば、150℃以上220℃以下、150℃以上210℃以下、160℃以上200℃以下である。
さらに、上述したように、硫化水素ガスを水酸化リチウム粒子内部まで十分に拡散させることができるため、原料の水酸化リチウムを予め粉砕・分級等して微粒化する必要がなく、工業的に市販されている水酸化リチウムをそのまま用いることができる。
また、反応温度を230℃以下とすることにより、各種ゴムの耐熱温度の範囲内となり、軸封の設計が容易となるという利点がある。さらに、反応温度を230℃以下とすることにより、熱媒油での加熱が可能であるという利点がある。
反応は、通常、大気の流入がない反応容器の中で行う。反応容器の大きさの下限は特に制限はないが、例えば100ミリリットル(ml)以上、300ミリリットル(ml)以上である。
反応容器の大きさの上限にも特に制限はないが、例えば100キロリットル(kl)以下である。
本発明は、特に原料である水酸化リチウムを大量に用いる場合、例えば、0.1kg以上用いる場合に有効である。
反応は、連続式及びバッチ式のいずれにおいても可能である。
ディスク型ドライヤーのより具体的な例として、株式会社栗本鐡工所製CDドライヤー、月島機械株式会社製インクラインドディスクドライヤー、ホソカワミクロン株式会社製ミクロンサーモプロセッサ等が挙げられる。
反応が進行し、反応系から原料である水酸化リチウムが消失すると、反応による水の発生が止まる。反応系の水が蒸発し、乾燥状態となるまで硫化水素の吹き込みを続けることが好ましい。水分が完全に留去される前に硫化水素の吹き込みを止めると、硫化リチウムの加水分解が進行するおそれがある。
また、乾燥状態となった後も一定時間硫化水素の吹き込みを続けることにより、後述する得られる硫化リチウム中のLiOH量を減らすことができる。吹込みを続ける時間としては、好ましくは0.5時間以上10時間以下であり、さらに好ましくは1時間以上4時間以下であり、例えば2時間以上3時間以下である。このとき、硫化水素の流量は、乾燥状態となる前と同じ流量でもよいし、乾燥状態となる前よりも少ない流量でもよい。
本発明によれば、反応を十分に進行することができるため、原料である水酸化リチウム量が低減された高純度の硫化リチウムが得られる。本発明によれば、得られた硫化リチウムの純度を98.0wt%以上、例えば98.2wt%以上とすることができる。
また、得られた硫化リチウム中の水酸化リチウムの量を0.4wt%以下、例えば0.2wt%以下、例えば0.1wt%以下とすることができる。
硫化リチウムの純度、水酸化リチウムの量は、電位差滴定法により測定する。
アンカー撹拌翼を装備した500ミリリットル(ml)セパラブルフラスコに、不活性ガス下で乾燥した水酸化リチウム無水物(本荘ケミカル株式会社製、粒径範囲:0.1mm以上1.5mm以下、水分量:1wt%以下)を200g仕込んだ。200rpmで撹拌しながら、窒素気流下にて昇温し、オイルバスを用いて内部温度(粉体)を200℃に保持した。同時に、セパラブルフラスコ上部をリボンヒーターで100℃に保持した。窒素ガスを硫化水素ガス(住友精化株式会社製)に切り替え、500ミリリットル(ml)/minの流量にし、アンカー翼で撹拌しながら水酸化リチウム無水物と硫化水素との反応を行った。
なお、水酸化リチウム無水物の粒径範囲と水分量は、それぞれ上述の方法により測定した。
続いて、温度を200℃に保持した状態で、硫化水素ガスを窒素ガスに切り替え、20分窒素ガスを通気し、フラスコ内の硫化水素ガスを窒素ガスに置換した。窒素ガスを流通した状態で内温を下げ、生成物粉体を回収した。
なお、LiOH量の「検出限界」は0.1wt%である。
実施例1において、硫化水素ガスの流量を500ミリリットル(ml)/minから200ミリリットル(ml)/minに変更し、全反応時間を16時間に変更した以外は、実施例1と同様にして硫化リチウムを製造した。14時間後に水は140ミリリットル(ml)回収された。その後2時間は水の留出は見られなかった。また、生成物のセパラブルフラスコ等への付着等は見られなかった。生成物を回収して、実施例1と同様にして評価を行った。結果を表1に示す。また、XRD測定の結果、Li2Sに対応するピークパターンが確認できた。
実施例1において、反応温度を160℃に変更し、反応時間を20時間に変更した以外は、実施例1と同様にして硫化リチウムを製造した。14時間後に水が140ミリリットル(ml)回収された。その後、6時間は水の留出は見られなかった。また、生成物のセパラブルフラスコ等への付着等は殆ど見られなかった。
生成物を回収して、実施例1と同様にして評価を行った。結果を表1に示す。また、XRD測定の結果、Li2Sに対応するピークパターンが確認できた。
実施例1において、反応温度を220℃に変更し、反応時間を8時間に変更した以外は、実施例1と同様にして硫化リチウムを製造した。5時間後に水が146ミリリットル(ml)回収された。その後、3時間は水の留出は見られなかった。また、生成物のセパラブルフラスコ等への付着等は殆ど見られなかった。
生成物を回収して、実施例1と同様にして評価を行った。結果を表2に示す。また、XRD測定の結果、Li2Sに対応するピークパターンが確認できた。
実施例1において、反応温度を180℃に変更し、反応時間を11時間に変更した以外は、実施例1と同様にして硫化リチウムを製造した。7時間後に水が143ミリリットル(ml)回収された。その後、4時間は水の留出は見られなかった。また、生成物のセパラブルフラスコ等への付着等は殆ど見られなかった。
生成物を回収して、実施例1と同様にして評価を行った。結果を表2に示す。また、XRD測定の結果、Li2Sに対応するピークパターンが確認できた。
実施例1において、反応温度を140℃に変更し、反応時間を20時間に変更した以外は、実施例1と同様にして硫化リチウムを製造した。18時間後に水が140ミリリットル(ml)回収された。その後、2時間は水の留出は見られなかった。また、生成物のセパラブルフラスコ等への付着等は殆ど見られなかった。
生成物を回収して、実施例1と同様にして評価を行った。結果を表2に示す。また、XRD測定の結果、Li2Sに対応するピークパターンが確認できた。
本発明の製造方法により得られた硫化リチウムは、リチウムイオン二次電池等に用いられる硫化物系固体電解質の原料として用いることができる。
本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。
Claims (14)
- 水酸化リチウム粉体と硫化水素ガスを接触させる反応容器と、
前記反応容器の内部にある撹拌翼と、
前記反応容器の内壁のうち、前記粉体と接している内壁の温度を保持する第一加熱装置と、
前記反応容器の内壁のうち、前記粉体と接していない内壁の温度を保持する第二加熱装置と、
を備える、硫化リチウム製造用装置。 - 前記反応容器の容量が0.1リットル(l)以上100キロリットル(kl)以下である、請求項1に記載の硫化リチウム製造用装置。
- 前記撹拌翼が、前記反応容器の底面から10cm以内の位置にある、請求項1又は2に記載の硫化リチウム製造用装置。
- 前記反応容器の底面部が丸底状である、請求項1~3のいずれかに記載の硫化リチウム製造用装置。
- 前記撹拌翼が、アンカー翼、ファドラー翼、ヘリカル翼、マックスブレンド翼又はディスク型翼である、請求項1~4のいずれかに記載の硫化リチウム製造用装置。
- 溶媒不存在下において、
反応容器1リットル(l)に対して水酸化リチウムを0.1kg以上投入し、
硫化水素の流量を、前記水酸化リチウム1kgに対して5リットル(l)/min以下とし、
前記水酸化リチウムを滞留させないように撹拌しながら、前記水酸化リチウムと前記硫化水素を反応させる、硫化リチウムの製造方法。 - 前記水酸化リチウムの粒径が0.1mm以上1.5mm以下である、請求項6に記載の硫化リチウムの製造方法。
- 前記水酸化リチウムが無水物である、請求項6又は7に記載の硫化リチウムの製造方法。
- 前記水酸化リチウムの水分量が10wt%以下である、請求項6~8のいずれかに記載の硫化リチウムの製造方法。
- 得られた硫化リチウム中の水酸化リチウムの量が0.2wt%以下である、請求項6~9のいずれかに記載の硫化リチウムの製造方法。
- 得られた硫化リチウムの純度が98.0wt%以上である、請求項6~10のいずれかに記載の硫化リチウムの製造方法。
- 前記反応の時間が1時間以上60時間以下である、請求項6~11のいずれかに記載の硫化リチウムの製造方法。
- 前記反応において、水の発生が確認できなくなった後、さらに0.5時間以上10時間以下前記反応を行う、請求項6~12のいずれかに記載の硫化リチウムの製造方法。
- 請求項6~13のいずれかの製造方法により得られる硫化リチウム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016564688A JP6697398B2 (ja) | 2014-12-16 | 2015-12-16 | 硫化リチウム製造用装置及び硫化リチウムの製造方法 |
US15/535,764 US10239027B2 (en) | 2014-12-16 | 2015-12-16 | Device for producing lithium sulfide, and method for producing lithium sulfide |
EP15869560.1A EP3235787B1 (en) | 2014-12-16 | 2015-12-16 | Device for producing lithium sulfide, and method for producing lithium sulfide |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-254395 | 2014-12-16 | ||
JP2014254395 | 2014-12-16 | ||
JP2015122168 | 2015-06-17 | ||
JP2015-122168 | 2015-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016098351A1 true WO2016098351A1 (ja) | 2016-06-23 |
Family
ID=56126259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/006273 WO2016098351A1 (ja) | 2014-12-16 | 2015-12-16 | 硫化リチウム製造用装置及び硫化リチウムの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10239027B2 (ja) |
EP (1) | EP3235787B1 (ja) |
JP (1) | JP6697398B2 (ja) |
WO (1) | WO2016098351A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016150860A (ja) * | 2015-02-16 | 2016-08-22 | 古河機械金属株式会社 | 硫化リチウムの製造方法 |
JP2016150859A (ja) * | 2015-02-16 | 2016-08-22 | 古河機械金属株式会社 | 硫化リチウム粒子、硫化物系無機固体電解質材料および硫化物系正極活物質 |
JP2017222567A (ja) * | 2016-06-14 | 2017-12-21 | 出光興産株式会社 | 硫化リチウム、及びその製造方法 |
JP2019094255A (ja) * | 2017-11-17 | 2019-06-20 | 出光興産株式会社 | 硫化リチウム粉体、及びその製造方法 |
JP2019147732A (ja) * | 2019-03-27 | 2019-09-05 | 古河機械金属株式会社 | 硫化リチウムの製造方法 |
JP2019147731A (ja) * | 2019-03-27 | 2019-09-05 | 古河機械金属株式会社 | 硫化リチウム粒子、硫化物系無機固体電解質材料の製造方法および硫化物系正極活物質の製造方法 |
WO2022255181A1 (ja) * | 2021-05-31 | 2022-12-08 | 古河機械金属株式会社 | 硫化リチウム製造装置および硫化リチウムの製造方法 |
KR20230087660A (ko) * | 2021-12-09 | 2023-06-19 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR20230129119A (ko) * | 2022-02-28 | 2023-09-06 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR20230129118A (ko) * | 2022-02-28 | 2023-09-06 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR20230129121A (ko) * | 2022-02-28 | 2023-09-06 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
WO2023195418A1 (ja) * | 2022-04-07 | 2023-10-12 | Agc株式会社 | 硫化リチウムの製造方法 |
WO2024143262A1 (ja) * | 2022-12-28 | 2024-07-04 | Agc株式会社 | 硫化物固体電解質複合体の製造方法、硫化物固体電解質複合体および複合体粉末の製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109012435B (zh) * | 2018-08-23 | 2020-11-24 | 长江师范学院 | 一种实验室用锂电池材料混料装置 |
CN114797658A (zh) * | 2021-01-28 | 2022-07-29 | 浙江中蓝新能源材料有限公司 | 一种新型电解液调配装置 |
CN113996260B (zh) * | 2021-11-24 | 2023-08-15 | 中汽创智科技有限公司 | 一种硫化物的制备装置和方法及其应用 |
KR102666522B1 (ko) * | 2022-11-10 | 2024-05-16 | 전북대학교산학협력단 | 황화 리튬의 제조방법 |
KR102664345B1 (ko) * | 2022-11-10 | 2024-05-09 | 전북대학교산학협력단 | 황화 리튬 미분말의 제조방법 |
FR3143861A1 (fr) * | 2022-12-20 | 2024-06-21 | Eurecat S.A | Procédé de production de sulfure de lithium dans un réacteur à lit circulant |
WO2024188824A1 (en) | 2023-03-10 | 2024-09-19 | Specialty Operations France | Process for preparing a powder of lithium sulfide |
KR20240153192A (ko) * | 2023-04-14 | 2024-10-22 | 주식회사 이수스페셜티케미컬 | 황화 리튬의 제조 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5584535A (en) * | 1978-12-20 | 1980-06-25 | Hosokawa Funtai Kogaku Kenkyusho:Kk | Powder material treating unit |
JPS5788014A (en) * | 1980-11-14 | 1982-06-01 | Central Glass Co Ltd | Method and apparatus for manufacturing alkali monofluorophosphate |
JPH09278423A (ja) * | 1996-04-16 | 1997-10-28 | Furukawa Co Ltd | 硫化リチウムの製造方法 |
JPH09283156A (ja) * | 1996-04-16 | 1997-10-31 | Matsushita Electric Ind Co Ltd | リチウムイオン伝導性固体電解質およびその製造方法 |
JP2015137183A (ja) * | 2014-01-20 | 2015-07-30 | 東レ・ファインケミカル株式会社 | 硫化リチウムの製造方法 |
JP2015174787A (ja) * | 2014-03-14 | 2015-10-05 | 東レ・ファインケミカル株式会社 | 硫化リチウム製造装置およびそれを用いた硫化リチウムの製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE606001A (ja) * | 1951-12-04 | |||
US4126666A (en) * | 1978-01-25 | 1978-11-21 | Foote Mineral Company | Process for producing high purity lithium sulfide |
JPH0761401B2 (ja) * | 1988-05-31 | 1995-07-05 | トクデン株式会社 | 加熱冷却容器 |
CA2167247A1 (en) * | 1995-01-24 | 1996-07-25 | Chi-Wai Hui | Method for controlling reaction temperature |
DE10008499A1 (de) | 1999-03-08 | 2000-09-28 | Idemitsu Petrochemical Co | Verfahren zur Abtrennung von festen Nicht-Lithiumhydroxid-Verbindungen |
EP1681263B1 (en) | 2003-10-23 | 2011-06-22 | Idemitsu Kosan Co., Ltd. | Method for purifying lithium sulfide |
JP5460283B2 (ja) | 2008-12-15 | 2014-04-02 | 出光興産株式会社 | 硫化リチウムの製造方法 |
JP5303428B2 (ja) | 2009-10-16 | 2013-10-02 | 出光興産株式会社 | 硫化リチウム及びその製造方法 |
US20110209578A1 (en) * | 2010-02-26 | 2011-09-01 | Kuniaki Ara | Nanoparticle manufacturing device and nanoparticle manufacturing method and method of manufacturing nanoparticle-dispersed liquid alkali metal |
JP5645653B2 (ja) | 2010-12-28 | 2014-12-24 | 出光興産株式会社 | 硫化リチウムの製造方法、及び硫化リチウムの製造装置 |
JP4948659B1 (ja) | 2011-04-12 | 2012-06-06 | 三井金属鉱業株式会社 | リチウムイオン電池固体電解質材料用硫化リチウムの製造方法 |
JP2013075816A (ja) | 2011-09-13 | 2013-04-25 | Nippon Chem Ind Co Ltd | 硫化リチウム、その製造方法及び無機固体電解質の製造方法 |
JP5770675B2 (ja) | 2012-04-26 | 2015-08-26 | 古河機械金属株式会社 | 硫化リチウムの製造方法 |
-
2015
- 2015-12-16 WO PCT/JP2015/006273 patent/WO2016098351A1/ja active Application Filing
- 2015-12-16 US US15/535,764 patent/US10239027B2/en active Active
- 2015-12-16 EP EP15869560.1A patent/EP3235787B1/en active Active
- 2015-12-16 JP JP2016564688A patent/JP6697398B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5584535A (en) * | 1978-12-20 | 1980-06-25 | Hosokawa Funtai Kogaku Kenkyusho:Kk | Powder material treating unit |
JPS5788014A (en) * | 1980-11-14 | 1982-06-01 | Central Glass Co Ltd | Method and apparatus for manufacturing alkali monofluorophosphate |
JPH09278423A (ja) * | 1996-04-16 | 1997-10-28 | Furukawa Co Ltd | 硫化リチウムの製造方法 |
JPH09283156A (ja) * | 1996-04-16 | 1997-10-31 | Matsushita Electric Ind Co Ltd | リチウムイオン伝導性固体電解質およびその製造方法 |
JP2015137183A (ja) * | 2014-01-20 | 2015-07-30 | 東レ・ファインケミカル株式会社 | 硫化リチウムの製造方法 |
JP2015174787A (ja) * | 2014-03-14 | 2015-10-05 | 東レ・ファインケミカル株式会社 | 硫化リチウム製造装置およびそれを用いた硫化リチウムの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3235787A4 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016150859A (ja) * | 2015-02-16 | 2016-08-22 | 古河機械金属株式会社 | 硫化リチウム粒子、硫化物系無機固体電解質材料および硫化物系正極活物質 |
JP2016150860A (ja) * | 2015-02-16 | 2016-08-22 | 古河機械金属株式会社 | 硫化リチウムの製造方法 |
JP2017222567A (ja) * | 2016-06-14 | 2017-12-21 | 出光興産株式会社 | 硫化リチウム、及びその製造方法 |
JP7014496B2 (ja) | 2016-06-14 | 2022-02-01 | 出光興産株式会社 | 硫化リチウム、及びその製造方法 |
JP7294795B2 (ja) | 2017-11-17 | 2023-06-20 | 出光興産株式会社 | 硫化リチウム粉体、及びその製造方法 |
JP2019094255A (ja) * | 2017-11-17 | 2019-06-20 | 出光興産株式会社 | 硫化リチウム粉体、及びその製造方法 |
JP2019147732A (ja) * | 2019-03-27 | 2019-09-05 | 古河機械金属株式会社 | 硫化リチウムの製造方法 |
JP2019147731A (ja) * | 2019-03-27 | 2019-09-05 | 古河機械金属株式会社 | 硫化リチウム粒子、硫化物系無機固体電解質材料の製造方法および硫化物系正極活物質の製造方法 |
WO2022255181A1 (ja) * | 2021-05-31 | 2022-12-08 | 古河機械金属株式会社 | 硫化リチウム製造装置および硫化リチウムの製造方法 |
KR20230087660A (ko) * | 2021-12-09 | 2023-06-19 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR102680726B1 (ko) | 2021-12-09 | 2024-07-03 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR20230129119A (ko) * | 2022-02-28 | 2023-09-06 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR20230129118A (ko) * | 2022-02-28 | 2023-09-06 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR20230129121A (ko) * | 2022-02-28 | 2023-09-06 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR102707192B1 (ko) | 2022-02-28 | 2024-09-20 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR102707201B1 (ko) | 2022-02-28 | 2024-09-20 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
KR102707194B1 (ko) | 2022-02-28 | 2024-09-20 | 주식회사 레이크테크놀로지 | 황화리튬 제조 장치 |
WO2023195418A1 (ja) * | 2022-04-07 | 2023-10-12 | Agc株式会社 | 硫化リチウムの製造方法 |
WO2024143262A1 (ja) * | 2022-12-28 | 2024-07-04 | Agc株式会社 | 硫化物固体電解質複合体の製造方法、硫化物固体電解質複合体および複合体粉末の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3235787B1 (en) | 2021-03-03 |
JP6697398B2 (ja) | 2020-05-20 |
EP3235787A4 (en) | 2018-06-27 |
JPWO2016098351A1 (ja) | 2017-11-24 |
US20170368515A1 (en) | 2017-12-28 |
US10239027B2 (en) | 2019-03-26 |
EP3235787A1 (en) | 2017-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016098351A1 (ja) | 硫化リチウム製造用装置及び硫化リチウムの製造方法 | |
JP5460283B2 (ja) | 硫化リチウムの製造方法 | |
TWI748052B (zh) | 高反應性、無塵且自由流動的硫化鋰及其生產方法 | |
JP7014496B2 (ja) | 硫化リチウム、及びその製造方法 | |
TW202105823A (zh) | 自廢鋰離子電池中回收鋰和其他金屬之方法 | |
EP3557680A1 (en) | Method for producing sulfide solid electrolyte | |
JP6186296B2 (ja) | 結晶化硫化物系固体電解質の製造方法 | |
JP6750836B2 (ja) | ハロゲン化アルカリ金属の製造方法、及び硫化物系固体電解質の製造方法 | |
JP6923173B2 (ja) | 硫黄含有複合体、その製造方法、及び固体電解質の製造方法 | |
TW201336797A (zh) | 玻璃粒子 | |
JP2012140261A (ja) | 硫化リチウムの製造方法、及び硫化リチウムの製造装置 | |
JP6150229B2 (ja) | 硫化リチウムの製造方法 | |
CN103011207A (zh) | 从锂辉石精矿制备碳酸锂的方法 | |
JP5823811B2 (ja) | イオン伝導性物質の製造方法、イオン伝導性物質、結晶化イオン伝導性物質及び電池 | |
JP6281841B2 (ja) | 硫化リチウムの製造方法 | |
JP2020075855A (ja) | アルジロダイト型結晶構造を含む固体電解質の改質方法 | |
CN105060266B (zh) | 一种纳米磷酸铁锂的水热合成方法 | |
CN103303950B (zh) | 一种制备勃姆石粉体的溶剂热合成法 | |
JP2016204219A (ja) | 硫化リチウム、及び硫化物固体電解質の製造方法 | |
CN107572600A (zh) | 一种锂化球形四氧化三钴颗粒的制备方法 | |
JP2022550137A (ja) | 硫化物固体電解質およびその前駆体 | |
JP6256754B2 (ja) | 硫化リチウムの製造方法 | |
CN102603008A (zh) | 纳米级黄铜矿的合成方法 | |
JP7319631B2 (ja) | 水酸化リチウムの製造方法、及び水酸化リチウムの製造装置 | |
CN104051732A (zh) | 一种用包合工艺制备磷酸铁锂的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15869560 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016564688 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15535764 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015869560 Country of ref document: EP |