[go: up one dir, main page]

WO2016086809A1 - 具有整流型搅混翼的燃料组件搅混格架 - Google Patents

具有整流型搅混翼的燃料组件搅混格架 Download PDF

Info

Publication number
WO2016086809A1
WO2016086809A1 PCT/CN2015/095902 CN2015095902W WO2016086809A1 WO 2016086809 A1 WO2016086809 A1 WO 2016086809A1 CN 2015095902 W CN2015095902 W CN 2015095902W WO 2016086809 A1 WO2016086809 A1 WO 2016086809A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixing
grid
wing
guiding groove
stirring
Prior art date
Application number
PCT/CN2015/095902
Other languages
English (en)
French (fr)
Inventor
禹文池
李伟才
李现锋
王仁钧
聂立红
陈晓明
庞铮铮
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核研究院有限公司
Priority to GB1710630.3A priority Critical patent/GB2553418B/en
Publication of WO2016086809A1 publication Critical patent/WO2016086809A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/322Means to influence the coolant flow through or around the bundles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/352Spacer grids formed of assembled intersecting strips
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/30Assemblies of a number of fuel elements in the form of a rigid unit
    • G21C3/32Bundles of parallel pin-, rod-, or tube-shaped fuel elements
    • G21C3/34Spacer grids
    • G21C3/3432Grids designed to influence the coolant, i.e. coolant mixing function
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a reactor component, and more particularly to a fuel assembly mixing grid having a rectifying type mixing wing.
  • a certain number of fuel rods are arranged at regular intervals (eg, 15 ⁇ 15 or 17 ⁇ 17, etc.) and are fixed into a bundle called a reactor fuel assembly.
  • the reactor fuel assembly is mainly composed of an upper header, a lower header, and a mixing grid ( Also known as the positioning grid), the control rod guide tube and the fuel rod.
  • the mixing grid is used for loading the fuel rod and is composed of a plurality of inner strips and outer strips surrounding the inner strip. The plurality of inner strips intersect each other (generally orthogonal) to form a grid-like grid structure having a plurality of grid cells.
  • the mixing wings extending into the grid unit are generally disposed on the inner strip, and the direction of the rotation occurs when the coolant flows from the bottom to the top in the fuel assembly through the mixing wing.
  • Crossflow and eddy currents are created downstream of the grid to improve the flow of coolant within the fuel assembly, thereby increasing the thermal throughput of the fuel assembly.
  • the mixing wings used in the prior art have certain limitations in the structure, so that they are lifted. The role of thermal work is greatly reduced.
  • the existing mixing wing is a triangular-like flat structure.
  • Fluid U is what we need, and the coolant fluids L and R that diffuse to the left and right along the surface of the mixing wing weaken the upward coolant fluid, which is why the effect of the stirrer wing to increase the thermal throughput is reduced.
  • the left and right diffused coolant fluids can disturb the surrounding flow field, increasing the inefficient dynamic energy dissipation.
  • the present invention provides a fuel assembly mixing grid having a rectifying type mixing wing, comprising an outer strip and a plurality of inner strips, the plurality of inner strips intersecting each other to form a grid structure
  • the grille structure has a plurality of hollow grille units surrounding a periphery of the grille structure and secured to the inner strip, the grille structure having a plurality of blending wings, the blending wings
  • a flow guiding groove is defined in a side of the grating unit and facing the inside of the grating unit.
  • the flow guiding groove is disposed on the mixing wing in the fuel assembly mixing frame of the present invention, the surface of the mixing wing is no longer planar, and the guiding groove is Facing the inside of the grid unit, so when the coolant fluid flows up to the mixing wing, there is no direct impact but can be collected by the channel and flow more toward the downstream of the mixing grid.
  • the shunting of the coolant to the left and right direction of the mixing wing can be effectively reduced, the disordered flow of the fluid is restricted, and the rectification function is ensured, which ensures the The mixing wings increase the effect of the thermal throughput of the fuel assembly.
  • the groove width of the flow guiding groove gradually expands outward from the bottom of the flow guiding groove.
  • the flow guiding groove is disposed in a shape of a narrow opening width at the bottom, and the coolant fluid on both sides of the guiding groove can be introduced into the guiding groove by using the slope of the side wall of the guiding groove
  • the flow guiding groove flows downstream and is not dispersed to both sides, thereby improving the rectifying effect.
  • the flow guiding groove has a triangular, trapezoidal, polygonal or curved cross section.
  • one end of the mixing wing is fixed to the inner strip, and the other end is bently extended into the grating unit.
  • the flow guiding groove extends in a bending direction of the mixing wing.
  • the provision of the flow guiding groove ensures that the coolant fluid flows under the guiding of the flow guiding groove according to the bending tendency of the mixing wing, avoiding turbulence and maximizing the mixing length.
  • the angle at which the mixing wing is bent into the grating unit with respect to the vertical direction ranges from 0 degrees to 90 degrees.
  • the angle at which the mixing wing is bent into the grill unit with respect to the vertical direction ranges from 20 degrees to 80 degrees.
  • the grid unit is provided with a fuel rod, and the end of the mixing wing near the fuel rod has a rectifying edge close to the fuel rod.
  • the rectifying edge adjacent to the fuel rod it is possible to effectively reduce the leakage of coolant from the gap between the mixing wing and the fuel rod, thereby causing more coolant to be folded along the tilting of the mixing wing.
  • the direction of the bend flows downstream, which in turn greatly increases the thermal performance of the blending wing.
  • Figure 1 is a partial perspective view of a mixing frame of the present invention.
  • Figure 2 is a partial plan view showing the agitating grid of the present invention.
  • Figure 3 is a schematic illustration of the direction of fluid around the mixing wing in the prior art.
  • Figure 4 is a schematic view showing the bending angle of the mixing wing in the present invention.
  • Figure 5 is a schematic cross-sectional view showing the shape of a guide groove on a mixing wing in the first embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view showing the shape of a guide groove on a mixing wing in a second embodiment of the present invention.
  • Figure 7 is a schematic cross-sectional view showing the shape of a guide groove on a mixing wing in a third embodiment of the present invention.
  • Figure 8 is a schematic cross-sectional view showing the shape of a guide groove on a mixing wing in a fourth embodiment of the present invention.
  • Figure 9 is a schematic cross-sectional view showing the shape of a guide groove on a mixing wing in a fifth embodiment of the present invention.
  • Figure 10 is a schematic cross-sectional view showing the shape of a guide groove on a mixing wing in a sixth embodiment of the present invention.
  • Figure 11 is a schematic cross-sectional view showing the shape of a guide groove on a mixing wing in a seventh embodiment of the present invention.
  • Figure 12 is a schematic cross-sectional view showing the shape of a guide groove on a mixing wing in an eighth embodiment of the present invention.
  • the fuel assembly mixing frame 1 of the present invention having a rectifying type mixing wing comprises an outer strip 10 and a plurality of inner strips 11, and the plurality of inner strips 11 intersect each other to form a grid structure.
  • the grid structure has a plurality of hollow grid units 110 surrounding the periphery of the grid structure and being fixed to the inner strip 11, the grid structure having a plurality of mixing
  • the wing 12 extends into the grating unit 110 and the mixing wing 12 is provided with a guide groove 120 toward a side of the interior of the grating unit 110.
  • the inner strips 11 are actually divided into two groups, wherein one set of inner strips 11 are parallel to each other and are equally spaced from each other, and the other set is also equally spaced from each other and arranged parallel to each other, and the two inner strips 11 are orthogonal to each other.
  • the grid structure is formed.
  • the hollow grid unit 110 is inserted into a fuel rod or a control rod guide tube (not shown), and the fuel rod and the control rod guide tube have a cylindrical structure.
  • T is the cross-flow direction of the coolant fluid within the agitating grid 1.
  • One end of the mixing wing 12 is fixed to the upper edge of the inner strip 11 and the other end is bently extended into the grating unit 110.
  • the bending of the mixing wing 12 means that the mixing wing 12 is biased toward the inside of the grating unit 110 with respect to the vertical direction. While being yawed, the mixing wing 12 may also have a certain curvature in the direction in which it extends itself, and may have a certain inclination, the actual shape of which is designed according to the requirements when performing its function, and the design is Those skilled in the art do not need conventional technical content that can be learned through creative thinking.
  • any two adjacent mixing wings 12 in the embodiment respectively extend into different interiors of the grating unit 110, that is, each of the grating units 110 is internally provided with a mixing wing 12 .
  • the number of the mixing wings 12 is not limited thereto.
  • the angle ⁇ at which the other end of the mixing wing 12 is bent into the grating unit 110 ranges from 0 degrees to 90 degrees, preferably The angle ⁇ ranges from 20 degrees to 80 degrees.
  • the guide groove 120 extends along a bending direction of the mixing wing 12, and when the other end of the mixing wing 12 is bent at an end of the mixing wing 12 fixed to the inner strip 11, the guide Flow cell 120 With its bending arrangement, it is ensured that the coolant fluid flows under the guiding of the guiding groove 120 according to the bending tendency of the mixing wing 12, avoiding turbulence and maximizing the mixing length.
  • one end of the mixing wing 12 extending into the grating unit 110 forms an arcuate opening corresponding to the outer contour of the fuel rod, the curved opening having a close proximity to the
  • the outer contour of the fuel rod has an arcuate rectifying edge 122.
  • the groove width of the guide groove 120 is gradually enlarged outward from the bottom of the flow guiding groove 120 in the present invention, that is, the width of the bottom of the flow guiding groove 120 is larger than the opening thereof.
  • the width is small to facilitate the flow of coolant into the flow guiding groove 120 from both sides of the flow guiding groove 120.
  • the cross section of the flow guiding groove 120 may be formed in a triangular shape, a trapezoidal shape, a polygonal shape or an arc shape, etc., in accordance with the above description.
  • Figure 5 shows a first embodiment of the present invention, wherein the bottom wall of the flow guiding groove 120 has a gentle V shape, and the guiding groove 120 has two side walls, one of the two side walls is opposite to the mixing
  • the surface of the wing 12 opening the guide groove 120 is vertically disposed, and the other side wall is inclined with respect to the surface, and the direction of the inclination is from the outside to the inside to ensure that the opening width of the opening of the flow guiding groove 120 is larger than the bottom thereof. Slot width.
  • FIG. 6 shows a second embodiment of the present invention.
  • the difference between this embodiment and the first embodiment is that both sidewalls of the flow guiding groove 120 open the surface of the guiding groove 120 with respect to the mixing wing 12. It is set from the outside to the inside.
  • the bottom wall of the guide groove 120 in the third embodiment of the present invention is composed of two parts, wherein a part of the bottom wall is inclined with respect to the surface of the baffle 12 opening the guide groove 120, and another A portion of the bottom wall is disposed in parallel with respect to the surface.
  • the flow guiding groove 120 has two side walls, and the two side walls are disposed in the same manner as the first embodiment.
  • the fourth embodiment of the present invention is as shown in FIG. 8.
  • the flow guiding groove 120 has a cross section of an isosceles triangle shape.
  • the fifth embodiment of the present invention is as shown in FIG. 9.
  • the flow guiding groove 120 has an isosceles trapezoidal cross section, that is, the guiding groove 120 has a guiding groove with the mixing wing 12.
  • the bottom surface of the surface of the 120 is parallel and the side walls are inclined from the outside to the inside.
  • the flow guiding groove 120 has two inclined bottom walls and two inclined side walls, and the bottom wall and The side walls are inclined to a greater extent than in the second embodiment, and the length of the bottom wall is shorter and the length of the side walls is longer. Therefore, the depth of the flow guiding groove 120 is deeper, and the flow guiding effect is better.
  • the bottom wall of the flow guiding groove 120 in the seventh embodiment of the present invention has a smooth circular arc shape.
  • the shape of the flow guiding groove 120 in this embodiment is the same as that in the sixth embodiment, except that in the sixth embodiment.
  • the flow guiding groove 120 is terminated by the tip end of the mixing wing 12 extending to the bottom end of the mixing wing 12, and in the present embodiment, the flow guiding groove 120 extends all the way down to the inner strip 11, thereby enhancing the drainage effect.
  • the other shape of the flow guiding groove 120 in the other embodiments above may also be provided in the same manner as in the present embodiment, extending downward to the inner strip 11.
  • the shape and size of the flow guiding groove 120 are not limited as long as they are disposed on one side of the mixing wing 12 facing the inside of the grating unit 110 and flowing along the coolant. The direction is extended and can be used as a flow guiding function.
  • the improvement of the present invention lies in that the flow guiding groove 120 is disposed on the mixing wing 12, and the specific shape of the mixing wing 12 and the oblique bending condition of the mixing wing 12 are not the protection points of the present invention. Therefore, only the shape of the guide groove 120 is shown in Figs. 5-11 of the specification, rather than the cross-sectional shape of the entire agitating wing 12.
  • the structure of the mixing wing 12 mentioned in the above embodiments is merely for facilitating the understanding of the present invention, and is not intended to limit the flow guiding groove 120.
  • the present invention is provided with the flow guiding groove 120 on the mixing wing 12 in the fuel assembly mixing frame 1 of the present invention, so that the surface of the mixing wing 12 is no longer planar, and
  • the flow guiding groove 120 is directed toward the inside of the grating unit 110, so when the coolant fluid flows upward to the mixing wing 12, there is no direct impact but can be collected by the flow guiding groove 120 and more
  • the flow in the downstream direction of the mixing frame 1 is increased, and the mixing length is increased.
  • the flow of the coolant to the right and left direction of the mixing wing 12 can be effectively reduced, and the fluid is limited.
  • the disordered flow acts as a rectification, ensuring that the mixing wing 12 enhances the thermal throughput of the fuel assembly.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Fuel Cell (AREA)

Abstract

一种具有整流型搅混翼的燃料组件搅混格架,包括外条带(10)及多个内条带(11),多个所述内条带(11)相互交叉形成格栅结构,所述格栅结构具有多个中空的格栅单元(110),所述外条带(10)围在所述格栅结构的外围并与所述内条带(11)固定,所述格栅结构具有多个搅混翼(12),所述搅混翼(12)伸入所述格栅单元(110)内且所述搅混翼(12)朝向所述格栅单元(110)内部的一面开设有导流槽(120)。该燃料组件搅混格架能够减少冷却剂向所述搅混翼左右方向的分流,限制了流体的无序流动,起到了整流的作用,保证了所述搅混翼提高燃料组件的热工余量的效果。

Description

具有整流型搅混翼的燃料组件搅混格架 技术领域
本发明涉及一种反应堆部件,尤其涉及一种具有整流型搅混翼的燃料组件搅混格架。
背景技术
一定数量的燃料棒按照一定间隔排列(如:15×15或17×17等)并被固定成一束,称为反应堆燃料组件,反应堆燃料组件主要由上管座、下管座、搅混格架(也称定位格架)、控制棒导向管和燃料棒组成。其中,搅混格架用于装载燃料棒且由多个内条带及围于内条带之外的外条带组成。多个内条带相互交叉(一般为正交)形成具有多个格栅单元的网格状格栅结构。
众所周知,核反应堆内的链式反应会产生大量对人体有害的放射性物质,如碘131、铯137等,为了避免这些放射性物质泄漏,在核反应堆外设置了锆合金外壳、反应堆压力容器及混凝土安全外壳等多层防护层以防止出现爆炸等事故时外界受到严重的辐射污染。然而,这些保护层都是针对核反应堆出现事故后而采取的应急安全措施,真正能确保核反应堆安全不发生爆炸的决定性因素,是控制核反应堆内链式反应速度和温度。因此,燃料组件内起慢化剂和冷却剂作用的轻水的流量控制就事关重要,而燃料组件的搅混格架对于轻水的流通性尤为重要。
为了增强燃料组件内部冷却剂的混流,一般会在内条带上设置伸入格栅单元内的搅混翼,利用冷却剂在燃料组件中从下至上流经搅混翼时发生的变向,在搅混格架的下游产生横流和涡流来改善燃料组件内冷却剂的流通性,从而提高燃料组件的热工佘量。
然而,现有技术中采用的搅混翼在结构上存在一定的局限性,使得其提升 热工佘量的作用大大降低。如图3所示,现有的搅混翼是类三角形的平板状结构,当冷却剂流体F向上流动时,会直接撞击搅混翼呈平面状的表面,从而产生分流,分流后向上的剩余冷却剂流体U才是我们所需要的,而沿着搅混翼表面向左右扩散的冷却剂流体L和R却削弱了向上的冷却剂流体,这就是搅混翼提高热工佘量的作用被降低的原因。另外,左右扩散的冷却剂流体会对周围的流场产生扰动,增加无效的动能耗散。
因此,有必要提供一种能够减少冷却剂分流,提高热工性能的燃料组件搅混格架。
发明内容
本发明的目的在于提供一种能够减少冷却剂分流,提高热工性能的燃料组件搅混格架。
为了实现上述目的,本发明提供了一种具有整流型搅混翼的燃料组件搅混格架,包括外条带及多个内条带,多个所述内条带相互交叉形成格栅结构,所述格栅结构具有多个中空的格栅单元,所述外条带围在所述格栅结构的外围并与所述内条带固定,所述格栅结构具有多个搅混翼,所述搅混翼伸入所述格栅单元内且所述搅混翼朝向所述格栅单元内部的一面开设有导流槽。
与现有技术相比,由于本发明燃料组件搅混格架中的所述搅混翼上设置了所述导流槽,使得所述搅混翼的表面不再是平面状,且所述导流槽是朝向所述格栅单元内部,因此当冷却剂流体向上流动到所述搅混翼处时,不会出现直接撞击而是能够被所述导流槽汇集而更多地向搅混格架的下游方向流动,增加了搅混长度,与现有技术中平板状的搅混翼相比,能够有效减少冷却剂向所述搅混翼左右方向的分流,限制了流体的无序流动,起到了整流的作用,保证了所述搅混翼提高燃料组件的热工佘量的效果。
较佳地,所述导流槽的槽宽从所述导流槽的底部向外逐渐扩大。将所述导流槽设置成底部窄开口宽的形状,能够利用所述导流槽的侧壁的坡度将所述导流槽两侧的冷却剂流体引入到所述导流槽内并沿所述导流槽向下游流动而不会再向两侧分散,提高了整流效果。
具体地,所述导流槽的横截面呈三角形、梯形、多边形或弧形。
较佳地,所述搅混翼的一端固定于所述内条带,另一端弯折地向所述格栅单元内延伸。
具体地,所述导流槽沿所述搅混翼的弯折方向延伸。这样设置导流槽能够保证冷却剂流体在所述导流槽的引导下根据所述搅混翼的弯折趋势而流动,避免出现乱流,最大程度的增加了搅混长度。
具体地,所述搅混翼相对竖直方向向所述格栅单元内弯折的角度范围为0度-90度。
更具体地,所述搅混翼相对竖直方向向所述格栅单元内弯折的角度范围为20度-80度。
较佳地,所述格栅单元内容置有燃料棒,所述搅混翼靠近所述燃料棒的一端具有贴近所述燃料棒的整流边。通过设置贴近所述燃料棒的所述整流边,能够有效减少冷却剂从所述搅混翼与所述燃料棒之间的间隙漏流,从而使更多的冷却剂沿所述搅混翼的倾斜折弯方向向下游流动,进而大大提高所述搅混翼的热工性能。
附图说明
图1是本发明搅混格架的局部立体示意图。
图2是本发明搅混格架的局部平面示意图。
图3是现有技术中搅混翼周围的流体方向示意图。
图4是本发明中搅混翼的弯折角度示意图。
图5是本发明第一实施例中搅混翼上导流槽形状的横截面示意图。
图6是本发明第二实施例中搅混翼上导流槽形状的横截面示意图。
图7是本发明第三实施例中搅混翼上导流槽形状的横截面示意图。
图8是本发明第四实施例中搅混翼上导流槽形状的横截面示意图。
图9是本发明第五实施例中搅混翼上导流槽形状的横截面示意图。
图10是本发明第六实施例中搅混翼上导流槽形状的横截面示意图。
图11是本发明第七实施例中搅混翼上导流槽形状的横截面示意图。
图12是本发明第八实施例中搅混翼上导流槽形状的横截面示意图。
具体实施方式
下面结合给出的说明书附图对本发明的较佳实施例作出描述。
如图1、图2所示,本发明具有整流型搅混翼的燃料组件搅混格架1包括外条带10及多个内条带11,多个所述内条带11相互交叉形成格栅结构,所述格栅结构具有多个中空的格栅单元110,所述外条带10围在所述格栅结构的外围并与所述内条带11固定,所述格栅结构具有多个搅混翼12,所述搅混翼12伸入所述格栅单元110内且所述搅混翼12朝向所述格栅单元110内部的一面开设有导流槽120。
内条带11实际分为两组,其中一组内条带11相互平行且彼此等间隔地设置,另一组也呈彼此等间隔且相互平行地设置,这两组内条带11相互正交形成所述格栅结构。中空的所述格栅单元110供燃料棒或控制棒导向管(图中未示出)插接,燃料棒及控制棒导向管均呈圆柱状结构。图2中T为冷却剂流体在搅混格架1内的横流方向。
所述搅混翼12的一端固定于所述内条带11的上边缘,另一端弯折地向所述格栅单元110内延伸。所述搅混翼12的弯折是指搅混翼12相对竖直方向向所述格栅单元110内偏摆。在偏摆的同时,所述搅混翼12在其自身延伸的方向上还可以具有一定的弧度,并且可以具有一定的倾斜,其实际形状根据实施其功能时的需求而设计,并且这种设计是本领域技术人员不需要经过创造性思考就能够得知的常规技术内容。另外,本实施例中任意两个相邻的所述搅混翼12分别对应伸入不同的所述格栅单元110内部,亦即每一所述格栅单元110内部均设有一所述搅混翼12。当然,所述搅混翼12的设置数量也不以此为限。
如图4所示,所述搅混翼12的另一端向所述格栅单元110内弯折的角度θ(搅混翼12与竖直方向的夹角)范围为0度-90度,较佳地,该角度θ的范围取20度-80度。
所述导流槽120沿所述搅混翼12的弯折方向延伸,当所述搅混翼12的另一端相对所述搅混翼12固定于所述内条带11的一端弯折时,所述导流槽120 随其弯折设置,保证冷却剂流体在所述导流槽120的引导下根据所述搅混翼12的弯折趋势而流动,避免出现乱流,最大程度的增加了搅混长度。
作为一种更优选的实施方式,所述搅混翼12伸入所述格栅单元110内的一端形成与所述燃料棒的外轮廓对应的一个弧形开口,该弧形开口具有一贴近所述燃料棒的外轮廓并呈弧形的整流边122。通过设置贴近所述燃料棒的所述整流边122,能够有效减少冷却剂从所述搅混翼12与所述燃料棒之间的间隙漏流,从而使更多的冷却剂沿所述搅混翼12的倾斜折弯方向向下游流动,进而大大提高所述搅混翼12的热工性能。
如图5至图11所示,本发明中导流槽120的槽宽从所述导流槽120的底部向外逐渐扩大,也就是说所述导流槽120的底部的宽度比其开口处的宽度小,以利于冷却剂从所述导流槽120的两侧流入所述导流槽120内。所述导流槽120的横截面可以呈三角形、梯形、多边形或弧形等符合以上描述的形成。
图5所示为本发明的第一实施例,其中所述导流槽120的底壁呈平缓的V形,且导流槽120具有两侧壁,两侧壁的其中之一相对所述搅混翼12开设所述导流槽120的表面呈垂直设置,另一侧壁相对该表面呈倾斜设置,且倾斜的方向是由外向内以确保所述导流槽120的开口的槽宽大于其底部的槽宽。
图6所示为本发明第二实施例,本实施例与第一实施例的不同在于所述导流槽120的两个侧壁都相对所述搅混翼12开设所述导流槽120的表面呈由外向内的倾斜设置。
请参照图7,本发明第三实施例中的导流槽120的底壁由两个部分组成,其中一部分底壁相对所述搅混翼12开设所述导流槽120的表面呈倾斜设置而另一部分底壁相对该表面呈平行设置。所述导流槽120具有两个侧壁,两个侧壁的设置同第一实施例。
本发明第四实施例如图8所示,本实施例中所述导流槽120的横截面为等腰三角形的形状。
本发明第五实施例如图9所示,本实施例中所述导流槽120的横截面呈等腰梯形,即所述导流槽120具有一与所述搅混翼12开设所述导流槽120的表面平行的底壁及两由外向内倾斜的侧壁。
请看图10,其所示为本发明的第六个实施例,本实施例中所述导流槽120具有两个呈倾斜设置的底壁及两个倾斜设置的侧壁,并且底壁及侧壁的倾斜程度都比第二实施例中更大,且底壁的长度较短,侧壁的长度较长。因此所述导流槽120的深度更深,导流效果更佳。
参照图11可以知道本发明的第七个实施例中的所述导流槽120的底壁呈平滑的圆弧形。
参照图12,其所示为本发明的第八个实施例中,本实施例中的所述导流槽120的形状与第六实施例中相同,所不同的是,第六实施例中所述导流槽120由搅混翼12的顶端延伸到搅混翼12的底端而结束,而在本实施例中导流槽120一直向下延伸到内条带11上,从而增强引流效果。理所当然的,以上其他实施例中其他形状的所述导流槽120也可以设置为与本实施例中相同的向下延伸到内条带11上的形式。
由以上八个实施例可知,本发明对所述导流槽120的形状、大小不做任何限定,只要其设置在所述搅混翼12朝向所述格栅单元110内部的一面且沿冷却剂流动方向延伸,并能够起到导流作用即可。
需要说明的是,本发明的改进点在于在搅混翼12上设置所述导流槽120,至于搅混翼12的具体形状及搅混翼12的倾斜弯折状况,均不属于本发明的保护重点,因此说明书附图5-11中呈现出的仅仅是导流槽120的形状而非搅混翼12整体的横截面形状。以上实施例中所提及的搅混翼12结构,仅为方便对本发明的理解,而不是以该结构对所述导流槽120进行限制。
本发明与现有技术相比,由于本发明燃料组件搅混格架1中的所述搅混翼12上设置了所述导流槽120,使得所述搅混翼12的表面不再是平面状,且所述导流槽120是朝向所述格栅单元110内部,因此当冷却剂流体向上流动到所述搅混翼12处时,不会出现直接撞击而是能够被所述导流槽120汇集而更多地向搅混格架1的下游方向流动,增加了搅混长度,与现有技术中平板状的搅混翼相比,能够有效减少冷却剂向所述搅混翼12左右方向的分流,限制了流体的无序流动,起到了整流的作用,保证了所述搅混翼12提高燃料组件的热工佘量的效果。
以上所揭露的仅为本发明的较佳实例而已,其作用是方便本领域的技术人员理解并据以实施,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属于本发明所涵盖的范围。

Claims (8)

  1. 一种具有整流型搅混翼的燃料组件搅混格架,包括外条带及多个内条带,多个所述内条带相互交叉形成格栅结构,所述格栅结构具有多个中空的格栅单元,所述外条带围在所述格栅结构的外围并与所述内条带固定,其特征在于:所述格栅结构具有多个搅混翼,所述搅混翼伸入所述格栅单元内且所述搅混翼朝向所述格栅单元内部的一面开设有导流槽。
  2. 如权利要求1所述的具有整流型搅混翼的燃料组件搅混格架,其特征在于:所述导流槽的槽宽从所述导流槽的底部向外逐渐扩大。
  3. 如权利要求2所述的具有整流型搅混翼的燃料组件搅混格架,其特征在于:所述导流槽的横截面呈三角形、梯形、多边形或弧形。
  4. 如权利要求1所述的具有整流型搅混翼的燃料组件搅混格架,其特征在于:所述搅混翼的一端固定于所述内条带,另一端弯折地向所述格栅单元内延伸。
  5. 如权利要求4所述的具有整流型搅混翼的燃料组件搅混格架,其特征在于:所述导流槽沿所述搅混翼的弯折方向延伸。
  6. 如权利要求4所述的具有整流型搅混翼的燃料组件搅混格架,其特征在于:所述搅混翼相对竖直方向向所述格栅单元内弯折的角度范围为0度-90度。
  7. 如权利要求6所述的具有整流型搅混翼的燃料组件搅混格架,其特征在于:所述搅混翼相对竖直方向向所述格栅单元内弯折的角度范围为20度-80度。
  8. 如权利要求1所述的具有整流型搅混翼的燃料组件搅混格架,其特征在 于:所述格栅单元内容置有燃料棒,所述搅混翼靠近所述燃料棒的一侧具有贴近所述燃料棒的整流边。
PCT/CN2015/095902 2014-12-05 2015-11-30 具有整流型搅混翼的燃料组件搅混格架 WO2016086809A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1710630.3A GB2553418B (en) 2014-12-05 2015-11-30 Fuel assembly mixing grid with flow deflector mixing vanes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410734800.6A CN104485137B (zh) 2014-12-05 2014-12-05 具有整流型搅混翼的燃料组件搅混格架
CN201410734800.6 2014-12-05

Publications (1)

Publication Number Publication Date
WO2016086809A1 true WO2016086809A1 (zh) 2016-06-09

Family

ID=52759675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095902 WO2016086809A1 (zh) 2014-12-05 2015-11-30 具有整流型搅混翼的燃料组件搅混格架

Country Status (3)

Country Link
CN (1) CN104485137B (zh)
GB (1) GB2553418B (zh)
WO (1) WO2016086809A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485137B (zh) * 2014-12-05 2017-04-26 中广核研究院有限公司 具有整流型搅混翼的燃料组件搅混格架
WO2018053812A1 (zh) * 2016-09-23 2018-03-29 中广核研究院有限公司 外条带、核反应堆燃料组件的定位格架及核反应堆燃料组件
CN111477356A (zh) * 2020-05-25 2020-07-31 中国原子能科学研究院 带扰流翼的栅元型定位格架
CN114220558B (zh) * 2021-11-18 2023-06-13 中国核动力研究设计院 一种燃料组件格架、燃料组件及压水堆堆芯

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039379A (en) * 1975-02-28 1977-08-02 Exxon Nuclear Company, Inc. Mixing vane grid spacer
CN1701392A (zh) * 2003-03-06 2005-11-23 法玛通Anp有限公司 定位隔架
TW201023206A (en) * 2008-08-26 2010-06-16 Areva Np Spacer grid for fuel assembly and associated fuel assembly
CN101752015A (zh) * 2008-12-03 2010-06-23 中国核动力研究设计院 具有倾斜搅混叶片的定位格架
CN102568632A (zh) * 2012-03-02 2012-07-11 中科华核电技术研究院有限公司 用于核燃料组件的格架及其搅混棒
CN104485137A (zh) * 2014-12-05 2015-04-01 中科华核电技术研究院有限公司 具有整流型搅混翼的燃料组件搅混格架
CN204332387U (zh) * 2014-12-05 2015-05-13 中科华核电技术研究院有限公司 含整流型搅混翼的燃料组件搅混格架

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627275A (ja) * 1992-07-10 1994-02-04 Mitsubishi Nuclear Fuel Co Ltd 燃料集合体の支持格子
KR100423737B1 (ko) * 2001-08-07 2004-03-22 한국수력원자력 주식회사 이중편향날개를 가진 핵연료집합체 지지격자
DE102004014499B3 (de) * 2004-03-25 2005-09-01 Framatome Anp Gmbh Brennelement für einen Druckwasserkernreaktor
CN202948731U (zh) * 2012-12-20 2013-05-22 中国核动力研究设计院 用于核燃料组件中具有交混性能的定位格架

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039379A (en) * 1975-02-28 1977-08-02 Exxon Nuclear Company, Inc. Mixing vane grid spacer
CN1701392A (zh) * 2003-03-06 2005-11-23 法玛通Anp有限公司 定位隔架
TW201023206A (en) * 2008-08-26 2010-06-16 Areva Np Spacer grid for fuel assembly and associated fuel assembly
CN101752015A (zh) * 2008-12-03 2010-06-23 中国核动力研究设计院 具有倾斜搅混叶片的定位格架
CN102568632A (zh) * 2012-03-02 2012-07-11 中科华核电技术研究院有限公司 用于核燃料组件的格架及其搅混棒
CN104485137A (zh) * 2014-12-05 2015-04-01 中科华核电技术研究院有限公司 具有整流型搅混翼的燃料组件搅混格架
CN204332387U (zh) * 2014-12-05 2015-05-13 中科华核电技术研究院有限公司 含整流型搅混翼的燃料组件搅混格架

Also Published As

Publication number Publication date
CN104485137A (zh) 2015-04-01
CN104485137B (zh) 2017-04-26
GB2553418A (en) 2018-03-07
GB201710630D0 (en) 2017-08-16
GB2553418B (en) 2020-09-09

Similar Documents

Publication Publication Date Title
WO2016086809A1 (zh) 具有整流型搅混翼的燃料组件搅混格架
Gawande et al. Effect of roughness geometries on heat transfer enhancement in solar thermal systems–a review
WO2016086810A1 (zh) 整流型导向翼结构及搅混格架
KR100330355B1 (ko) 회전유동발생 날개를 가진 덕트형 핵연료 집합체 지지격자
CN104318962B (zh) 具有流线型低压降流道的定位格架及燃料组件
US9767929B2 (en) Advanced grid spacer design for a nuclear fuel assembly
CN204884577U (zh) 一种条带、核燃料定位格架及核燃料组件
US8256846B2 (en) Dimples lifting pipe for mining deep-sea mineral resources
CN204166905U (zh) 具有流线型低压降流道的定位格架及燃料组件
KR100423738B1 (ko) 복합유동혼합장치를 가진 핵연료집합체 지지격자
KR100423737B1 (ko) 이중편향날개를 가진 핵연료집합체 지지격자
JPH10510925A (ja) 原子炉用燃料集合体およびスペーサ
EP1139348B1 (en) Twisted deflector for enhancing coolant mixing in a nuclear fuel assembly
CN204332387U (zh) 含整流型搅混翼的燃料组件搅混格架
CN106504799B (zh) 燃料组件及燃料组件的管座
CN204332388U (zh) 整流型导向翼结构及搅混格架
EP3564965A1 (en) Nuclear reactor fuel assembly
US20060056574A1 (en) Spacer
RU100844U1 (ru) Структура пластинчатой решетки для тепловыделяющей сборки
JP2004003932A (ja) 冷却材炉心入口構造
RU81365U1 (ru) Структура решетки для тепловыделяющей сборки ядерного реактора
RU2448376C1 (ru) Структура пластинчатой решетки для тепловыделяющей сборки
JP2011133236A (ja) 沸騰水型原子炉用の燃料集合体および沸騰水型原子炉の炉心
JP2007530928A (ja) 加圧水形原子炉の燃料集合体
RU2581620C1 (ru) Структура пластинчатой решетки для тепловыделяющей сборки

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865404

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201710630

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151130

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/11/2017)