[go: up one dir, main page]

WO2016072156A1 - Capsule-type endoscope guidance system and operation method for capsule-type endoscope guidance system - Google Patents

Capsule-type endoscope guidance system and operation method for capsule-type endoscope guidance system Download PDF

Info

Publication number
WO2016072156A1
WO2016072156A1 PCT/JP2015/076194 JP2015076194W WO2016072156A1 WO 2016072156 A1 WO2016072156 A1 WO 2016072156A1 JP 2015076194 W JP2015076194 W JP 2015076194W WO 2016072156 A1 WO2016072156 A1 WO 2016072156A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule endoscope
guidance
target position
unit
capsule
Prior art date
Application number
PCT/JP2015/076194
Other languages
French (fr)
Japanese (ja)
Inventor
和也 古保
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016521799A priority Critical patent/JPWO2016072156A1/en
Publication of WO2016072156A1 publication Critical patent/WO2016072156A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a capsule endoscope guidance system that guides a capsule endoscope introduced into a subject and an operation method of the capsule endoscope guidance system.
  • capsule endoscopes that have been introduced into a subject and imaged have been developed.
  • the capsule endoscope is provided with an imaging function and a wireless communication function inside a capsule-shaped casing formed in a size that can be introduced into the digestive tract of a subject, and has been swallowed by the subject.
  • imaging is performed while moving in the digestive tract by peristaltic movement or the like, and image data of an image inside the organ of the subject (hereinafter also referred to as an in-vivo image) is sequentially generated and wirelessly transmitted.
  • the wirelessly transmitted image data is received by a receiving device provided outside the subject, and further taken into an image display device such as a workstation and subjected to predetermined image processing.
  • the in-vivo image of the subject can be displayed as a still image or a moving image.
  • a guidance system has been proposed that guides a capsule endoscope introduced into a subject by operating it from outside the subject.
  • a capsule endoscope having a permanent magnet provided therein is introduced into a subject's digestive tract (for example, the stomach) together with a liquid such as water to float, and is placed outside the subject.
  • a system for controlling the position or posture of a capsule endoscope by applying a magnetic field generated by another permanent magnet to the internal permanent magnet is disclosed.
  • the capsule endoscope can be guided by the user's operation so that the same inspection as that using a general wired endoscope can be performed by the capsule endoscope. Is expected to be.
  • the present invention has been made in view of the above, and can easily bring a capsule endoscope closer to a pylorus whose position and shape fluctuate. Further, the capsule endoscope can be directed toward the pylorus. It is an object of the present invention to provide a capsule endoscope guidance system capable of moving a mirror forward and a method for operating the capsule endoscope guidance system.
  • a capsule endoscope guidance system introduces an image into a subject to generate an image signal, and sequentially generates the image signal.
  • the image processing unit holds in advance a feature amount of an image showing a pylorus, and extracts the pyloric region based on the feature amount and the feature amount of the in-vivo image. It is characterized by that.
  • the guidance device further includes: a display unit that displays the in-vivo image; and an operation input unit that specifies a region in the in-vivo image according to an operation performed from outside.
  • the image processing unit calculates a feature amount of the region specified by the operation input unit, and extracts the pyloric region based on the feature amount and the feature amount of the in-vivo image. To do.
  • the guidance device further includes an operation input unit that inputs an instruction signal corresponding to an operation performed from the outside, and the guidance control unit executes the first guidance control. Then, when the instruction signal is input from the operation input unit, the second guidance control is executed.
  • the guidance control unit performs the second guidance. The control is terminated.
  • the guidance control unit ends the second guidance control when a predetermined time has elapsed after the instruction signal is input from the operation input unit.
  • the guidance control unit starts executing the first and second guidance controls simultaneously when the target position is set.
  • the guidance controller further advances the capsule endoscope after the capsule endoscope contacts the target position during execution of the second guidance control. Then, guidance control for pressing the target position is performed.
  • the capsule endoscope has a permanent magnet inside, and the guiding means generates a magnetic field to be applied to the permanent magnet, whereby the capsule endoscope It is characterized by changing the position and posture of the.
  • An operation method of a capsule endoscope guidance system includes a capsule endoscope that is introduced into a subject and performs imaging, and a guidance device that guides the capsule endoscope.
  • An operation method of an endoscope guidance system wherein the capsule endoscope generates an image signal by imaging the inside of the subject and sequentially transmits the image signal wirelessly, and the guidance device includes: A receiving step for sequentially receiving the image signals wirelessly transmitted from the capsule endoscope; and the guidance device sequentially generates in-vivo images based on the image signals, and the pylorus in the subject is captured.
  • a second guidance control is performed in which the capsule endoscope is advanced toward the target position at least until it comes into contact with the target position while keeping the center of the visual field of the endoscope at the target position.
  • a guidance control step is performed in which the capsule endoscope is advanced toward the target position at least until it comes into contact with the target position while keeping the center of the visual field of the endoscope at the target position.
  • the position in the subject corresponding to the pyloric region extracted from the in-vivo image is set as the target position, and the capsule endoscope is set so that the center of the visual field of the capsule endoscope matches the target position.
  • the capsule endoscope is directed to the target position, and the capsule endoscope is advanced at least until it comes into contact with the target position.
  • the mold endoscope can be made to approach and pass easily.
  • FIG. 1 is a schematic diagram showing a configuration example of a capsule endoscope guidance system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope shown in FIG.
  • FIG. 3 is a schematic diagram illustrating a configuration example of the magnetic field generation unit illustrated in FIG. 1.
  • FIG. 4 is a flowchart showing the operation of the capsule endoscope guidance system according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing a user's operation in an examination using the capsule endoscope guidance system according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing a digestive tract in a subject.
  • FIG. 1 is a schematic diagram showing a configuration example of a capsule endoscope guidance system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope shown in FIG.
  • FIG. 3 is a schematic diagram illustrating
  • FIG. 7 is a schematic diagram showing a display screen of the in-vivo image displayed on the display unit shown in FIG.
  • FIG. 8 is a schematic diagram illustrating a display example of a notification screen indicating that the center of the visual field matches the target position.
  • FIG. 9 is a schematic diagram illustrating a display example of a notification screen indicating that the capsule endoscope has reached the target position.
  • FIG. 10 is a flowchart showing the operation of the capsule endoscope guidance system according to the second embodiment of the present invention.
  • FIG. 11 is a flowchart showing a user's operation in an examination using the capsule endoscope system according to the second embodiment of the present invention.
  • FIG. 12 is a schematic diagram illustrating a display example of a pylorus confirmation screen displayed on the display unit in the capsule endoscope guidance system according to the second embodiment of the present invention.
  • capsule endoscopes that are orally introduced into a subject and image the inside of the subject (intraluminal) are illustrated as an example of a capsule endoscope.
  • the present invention is not limited to the embodiments. That is, the present invention relates to various endoscopes that have a capsule type, such as a capsule endoscope that performs imaging while moving in the lumen from the esophagus to the anus of the subject, and that is introduced into the subject and performs imaging. It is possible to apply to.
  • each drawing merely schematically shows the shape, size, and positional relationship to the extent that the contents of the present invention can be understood. Therefore, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing. In the description of the drawings, the same portions are denoted by the same reference numerals.
  • FIG. 1 is a schematic diagram showing a configuration example of a capsule endoscope guidance system according to Embodiment 1 of the present invention.
  • a capsule endoscope guidance system 1 according to Embodiment 1 includes a capsule endoscope 10 that is introduced into a subject, and a guidance device 20 that guides the capsule endoscope 10.
  • a guidance method of the capsule endoscope 10 a capsule is provided by providing a permanent magnet inside the capsule endoscope 10 and applying a magnetic field MG generated by the guiding device 20 to the permanent magnet. A method of guiding the mold endoscope 10 is used.
  • the capsule endoscope 10 is introduced into the subject together with a predetermined liquid by oral ingestion or the like, then moves inside the digestive tract and is finally discharged out of the subject. Meanwhile, the capsule endoscope 10 drifts in the liquid inside the organ (for example, the stomach), images the inside of the subject while being guided by the magnetic field MG, sequentially generates image data of the in-vivo image, and wirelessly transmits it.
  • a predetermined liquid for example, the stomach
  • images the inside of the subject while being guided by the magnetic field MG, sequentially generates image data of the in-vivo image, and wirelessly transmits it.
  • FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope 10.
  • the capsule endoscope 10 and the capsule casing 100 which is an exterior case formed in a size that can be easily introduced into the organ of a subject, and imaging that captures subjects in different directions.
  • the processing unit 11A, 11B and the signals input from the imaging units 11A, 11B are processed, the control unit 15 that controls each component of the capsule endoscope 10, and the signal processed by the control unit 15 is capsule-type.
  • a wireless communication unit 16 that wirelessly transmits to the outside of the endoscope 10, a power supply unit 17 that supplies power to each component of the capsule endoscope 10, and a permanent magnet 18 that enables guidance by the guidance device 20.
  • the capsule-type casing 100 includes a cylindrical casing 101 and dome-shaped casings 102 and 103, and is realized by closing both side opening ends of the cylindrical casing 101 with the dome-shaped casings 102 and 103.
  • the cylindrical casing 101 is a colored casing that is substantially opaque to visible light.
  • the dome-shaped casings 102 and 103 are dome-shaped optical members that are transparent to light of a predetermined wavelength band such as visible light.
  • Such a capsule housing 100 encloses the imaging units 11A and 11B, the control unit 15, the wireless communication unit 16, the power supply unit 17, and the permanent magnet 18 in a liquid-tight manner.
  • the imaging unit 11A includes an LED (Light Emitting Diode) or an LD (Laser Diode), and the like.
  • the imaging unit 11A emits illumination light such as white light, an optical system 13A such as a condenser lens, a CMOS image sensor, or a CCD. And an image pickup device 14A made of the same.
  • the illumination unit 12A irradiates the subject in the imaging field of the imaging device 14A with illumination light through the dome-shaped casing 102.
  • the optical system 13A collects the reflected light from the imaging field and forms an image on the imaging surface of the imaging element 14A.
  • the image sensor 14A converts the reflected light (optical signal) from the imaging field received on the imaging surface into an electrical signal and outputs it as an image signal.
  • the imaging unit 11B includes an illumination unit 12B such as an LED or an LD, an optical system 13B such as a condenser lens, and an imaging element 14B such as a CMOS image sensor or a CCD.
  • the subject in the imaging field is imaged through the body 103.
  • the control unit 15 controls each operation of the imaging units 11A and 11B and the wireless communication unit 16, and controls input / output of signals between these components. Specifically, the control unit 15 sets the imaging frame rate in the imaging units 11A and 11B, and images the subject in the imaging field illuminated by the illuminating unit 12A onto the imaging element 14A at the set imaging frame rate. At the same time, the imaging element 14B images the subject in the imaging field illuminated by the illumination unit 12B. Then, the control unit 15 performs predetermined signal processing on the image signals output from the imaging elements 14A and 14B. Further, the control unit 15 causes the wireless communication unit 16 to wirelessly transmit the image signals sequentially.
  • the wireless communication unit 16 includes an antenna 16a for transmitting a wireless signal.
  • the wireless communication unit 16 acquires from the control unit 15 an image signal of the in-vivo image generated by the imaging units 11A and 11B imaging the subject, and performs a modulation process on the image signal to generate a wireless signal. And transmitted to the guidance device 20 via the antenna 16a.
  • the power supply unit 17 is a power storage unit such as a button-type battery or a capacitor, and has a switch unit such as a magnetic switch or an optical switch. When the power supply unit 17 is configured to have a magnetic switch, the power supply unit 17 switches the on / off state of the power supply by a magnetic field applied from the outside.
  • the power supply unit 17 supplies power of the power storage unit to each component (the imaging units 11A and 11B, the control unit 15, and the wireless communication unit 16) of the capsule endoscope 10 when in the on state. Sometimes, power supply to each component of the capsule endoscope 10 is stopped.
  • the permanent magnet 18 is for enabling the capsule endoscope 10 to be guided by the magnetic field MG generated by the guiding device 20, and is fixedly arranged in a predetermined direction inside the capsule casing 100. .
  • the permanent magnet 18 is arranged so that the magnetization direction indicated by the arrow is orthogonal to the long axis La of the capsule endoscope 10.
  • the permanent magnet 18 operates following the magnetic field MG applied from the outside, and as a result, guidance of the capsule endoscope 10 by the guidance device 20 is realized.
  • the guidance device 20 performs wireless communication with the capsule endoscope 10 and receives a wireless signal transmitted from the capsule endoscope 10;
  • the position and posture detection unit 22 for detecting the position of the capsule endoscope 10 in the subject based on the wireless signal received by the patient and the in-vivo image based on the wireless signal received by the reception unit 21 and the generation
  • An image processing unit 23 that performs predetermined image processing on the in-vivo image, a display unit 24 that displays the in-vivo image generated by the image processing unit 23 on a screen, and a guidance unit that guides the capsule endoscope 10
  • the magnetic field generation unit 25, the control unit 26 that controls each of these units, the operation input unit 27 that receives input of instructions and information to the capsule endoscope guidance system 1, and the capsule endoscope 10
  • a storage unit 28 for storing image data and various kinds of information have been vivo image.
  • the receiving unit 21 includes a plurality of receiving antennas 21a, and sequentially receives the radio signals transmitted from the capsule endoscope 10 via these receiving antennas 21a.
  • the receiving unit 21 selects an antenna having the highest received electric field strength from these receiving antennas 21a, and extracts an image signal by performing a demodulation process or the like on the radio signal received through the selected antenna.
  • the position and orientation detection unit 22 detects the position and orientation of the capsule endoscope 10 in the subject based on the intensity of the radio signal received by the reception unit 21, and information on the position of the capsule endoscope 10 (Hereinafter referred to as position information) is generated and output. Specifically, the position and orientation detection unit 22 appropriately sets an initial value of the position of the capsule endoscope 10 and determines the position by the Gauss-Newton method based on the intensity distribution of the radio signal received by each receiving antenna 21a. The position of the capsule endoscope 10 is obtained by repeating the process of calculating the estimated value until the amount of deviation between the calculated estimated value and the previous estimated value is equal to or less than a predetermined value (for example, Japanese Patent Application Laid-Open No. 2007-2007). No. 283001).
  • a predetermined value for example, Japanese Patent Application Laid-Open No. 2007-2007.
  • the method for detecting the position and orientation of the capsule endoscope 10 is not limited to the method described above.
  • a coil for generating a magnetic field is provided in the capsule endoscope 10 and a plurality of sense coils for detecting the magnetic field generated by the coils are provided on the guidance device 20 side, and the amplitude of the magnetic field detected by each sense coil and Based on the phase, the position and orientation of the capsule endoscope 10 may be detected (see, for example, International Publication No. 2009/031456).
  • the image processing unit 23 captures an image signal from the receiving unit 21 and performs white balance processing, demosaicing, color conversion, density conversion (gamma conversion, etc.), smoothing (noise removal, etc.), sharpening (edge enhancement, etc.), etc.
  • In-vivo images are generated by performing image processing, and predetermined image processing is performed on the generated in-vivo images. Specifically, the image processing unit 23 performs a process for calculating the feature amount of the in-vivo image, an image recognition process, and the like, thereby extracting a pyloric region that is an area in which the pylorus in the subject is captured from the in-vivo image. 231.
  • the display unit 24 includes various displays such as a liquid crystal display, and displays an image generated by the image processing unit 23, the position of the capsule endoscope 10 detected by the position and orientation detection unit 22, and various other information.
  • the magnetic field generator 25 changes the position and posture of the capsule endoscope 10 by generating a magnetic field MG that acts on the permanent magnet 18 built in the capsule endoscope 10.
  • FIG. 3 is a schematic diagram illustrating a configuration example of the magnetic field generation unit 25.
  • the magnetic field generation unit 25 includes an extracorporeal permanent magnet 25a that generates a magnetic field, and a driving unit that translates and rotates the extracorporeal permanent magnet 25a.
  • Such a magnetic field generation unit 25 is installed, for example, under a bed or the like on which a subject is placed, and operates under the control of a guidance control unit 262 described later.
  • the extracorporeal permanent magnet 25a is preferably realized by a bar magnet having a rectangular parallelepiped shape, and is capsule-shaped in a region obtained by projecting one surface PL of four surfaces parallel to its magnetization direction onto a horizontal plane (xy plane).
  • the endoscope 10 is restrained.
  • the plane position changing unit 25b translates the extracorporeal permanent magnet 25a in the horizontal plane (x direction and y direction). Thereby, the capsule endoscope 10 restrained by the magnetic field MG moves in the horizontal plane.
  • the vertical position changing unit 25c translates the extracorporeal permanent magnet 25a in the vertical direction (z direction). Thereby, the capsule endoscope 10 restrained by the magnetic field MG moves in the vertical direction.
  • the elevation angle changing unit 25d changes the angle of the magnetization direction with respect to the horizontal plane by rotating the extracorporeal permanent magnet 25a in a vertical plane including the magnetization direction of the extracorporeal permanent magnet 25a. That is, the extracorporeal permanent magnet 25a is rotated with respect to an axis parallel to the plane PL and orthogonal to the magnetization direction and passing through the center of the extracorporeal permanent magnet 25a. As a result, the angle (elevation angle) of the long axis La of the capsule endoscope 10 constrained by the magnetic field MG with respect to the horizontal plane changes.
  • the turning angle changing unit 25e rotates the extracorporeal permanent magnet 25a with respect to the vertical axis passing through the center of the extracorporeal permanent magnet 25a. Thereby, the angle (turning angle) around the vertical axis of the long axis La of the capsule endoscope 10 constrained by the magnetic field MG changes.
  • the configuration of the magnetic field generation unit 25 is not limited to the configuration shown in FIG.
  • an electromagnet may be provided instead of the extracorporeal permanent magnet 25a, and the magnetic field acting on the capsule endoscope 10 may be changed by translating and rotating the electromagnet.
  • a plurality of electromagnets may be provided as the magnetic field generation unit 25, and the combined magnetic field generated by these electromagnets acting on the capsule endoscope 10 may be changed by adjusting the power supplied to each electromagnet.
  • the control unit 26 comprehensively controls the operation of each part of the guidance device 20, the position information of the capsule endoscope 10 captured from the position and orientation detection unit 22, and the signal input from the operation input unit 27. Based on the above, control for guiding the capsule endoscope 10 in the subject is performed. Specifically, the control unit 26 generates a target position setting unit 261 that sets a target position in the subject to which the capsule endoscope 10 is approached, and a magnetic field MG for guiding the capsule endoscope 10. And a guidance control unit 262 for controlling the operation of the magnetic field generation unit 25.
  • the target position setting unit 261 selects a region (for example, pylorus) in the subject corresponding to the region selected by the user with respect to the in-vivo image displayed on the display unit 24 as the target position.
  • a region for example, pylorus
  • the target position setting unit 261 determines the position of the region selected in the in-vivo image based on the position information of the capsule endoscope 10 (that is, the current position and posture of the capsule endoscope 10). And this position is set as the target position of the capsule endoscope 10.
  • the guidance control unit 262 outputs a control signal to the magnetic field generation unit 25 based on the position information of the capsule endoscope 10 and the guidance instruction information input from the operation input unit 27, so that the user desired position and Control for guiding the capsule endoscope 10 to the posture is performed.
  • the guidance control unit 262 also changes the position or posture of the capsule endoscope 10 so that the center of the visual field of the capsule endoscope 10 (that is, the center of the in-vivo image) matches the target position.
  • the second guidance control is executed to cause the magnetic field generation unit 25 to generate the magnetic field MG to be advanced until it comes into contact with the position.
  • the operation input unit 27 is an input device including a console including a joystick, various buttons, and various switches, a keyboard, a touch panel, a mouse, and the like, and guides the capsule endoscope 10 according to an operation performed from the outside.
  • Guidance instruction information and a signal representing instructions and information for the guidance device 20 are input to the control unit 26.
  • the guidance instruction information is instruction information for changing the position and posture of the capsule endoscope 10, and specifically, an operation for translating the capsule endoscope 10 in the horizontal direction or the vertical direction (translation operation).
  • an operation for changing the inclination angle of the long axis La of the capsule endoscope 10 with respect to the vertical axis an inclination angle changing operation
  • an azimuth angle about the vertical axis
  • Information on an operation (azimuth angle changing operation) or the like for changing the angle is included.
  • the operation input unit 27 includes a pyloric region specifying unit 271 that specifies a pyloric region for the in-vivo image displayed on the display unit 24.
  • a pyloric region specifying unit 271 controls a signal for specifying the selected region as a pyloric region. Input to the unit 26.
  • the operation input unit 27 includes a passage instruction input unit 272 that inputs an instruction to pass the pylorus to the capsule endoscope 10 when the pylorus is set as the target position by the target position setting unit 261.
  • a predetermined pointer operation for example, a click operation
  • an icon for example, a mouse or the like
  • An instruction signal for passing the pylorus is input to the control unit 26.
  • the storage unit 28 is realized by using a storage medium that stores information in a rewritable manner such as a flash memory or a hard disk. In addition to the in-vivo image data based on the image signal transmitted from the capsule endoscope 10, the storage unit 28 stores information such as various programs and various parameters for the control unit 26 to control each unit of the guidance device 20.
  • a storage medium that stores information in a rewritable manner such as a flash memory or a hard disk.
  • the storage unit 28 stores information such as various programs and various parameters for the control unit 26 to control each unit of the guidance device 20.
  • FIG. 4 is a flowchart showing the operation of the capsule endoscope guidance system 1.
  • FIG. 5 is a flowchart showing the operation of the user (medical staff in charge of the examination) in the examination using the capsule endoscope guidance system 1.
  • step S200 the user turns on the power of the capsule endoscope 10 and introduces it into the subject. Specifically, the capsule endoscope 10 is swallowed by a subject together with a liquid such as water.
  • step S100 when the capsule endoscope 10 is powered on in step S100, the capsule endoscope 10 starts imaging in the subsequent step S101, and the generated image signal is transmitted to the guidance device 20. Sequentially. Further, in step S ⁇ b> 102, the guidance device 20 generates an in-vivo image based on the received image signal and displays it on the display unit 24.
  • step S201 the user observes the in-vivo image displayed on the display unit 24 and confirms that the capsule endoscope 10 has reached the stomach in the subject.
  • step S ⁇ b> 202 the user observes the inside of the stomach from the in-vivo image captured on the display unit 24 while guiding the capsule endoscope 10 floating in the liquid using the operation input unit 27.
  • the observation order of the pylorus is preferably last.
  • step S103 the control unit 26 determines whether or not the guidance instruction information is input from the operation input unit 27.
  • step S103: No the operation of the guidance device 20 proceeds to step S105 described later.
  • step S103: Yes the guidance control unit 262 controls the magnetic field generation unit 25 according to the input guidance instruction information, so that the position or posture of the capsule endoscope 10 is determined. Is changed (step S104).
  • step S203 After observing the stomach other than the pylorus, in step S203, the user performs an operation of guiding the capsule endoscope 10 to the pylorus.
  • FIG. 6 is a schematic diagram showing a digestive tract in a subject.
  • a ring-shaped muscle tissue called a pyloric ring exists at the boundary between the stomach and the duodenum.
  • the pyloric ring is a tissue that opens and closes according to the action of the stomach and sends the contents of the stomach to the duodenum, and can be distinguished from other areas in the stomach by color, shape, and the like.
  • FIG. 7 is a schematic diagram showing a display screen for in-vivo images displayed on the display unit 24.
  • a screen M1 shown in FIG. 7 includes an in-vivo image display area m10 in which an in-vivo image is displayed, and an OK button m11.
  • step S204 the user observes the in-vivo image displayed on the display unit 24 and determines whether or not the pyloric ring is reflected.
  • step S204: No the user continues to perform an operation for guiding the capsule endoscope 10 to the pylorus ring (step S203).
  • step S204 when the user determines that the pyloric ring is reflected in the in-vivo image (step S204: Yes), the operation input unit 27 is used to select the pyloric ring on the in-vivo image displayed on the display unit 24. This is performed (step S205). Specifically, by dragging and dropping the cursor on the in-vivo image displayed in the in-vivo image display area m10, the area including the pyloric ring m12 is surrounded by a rectangular frame m13, and the OK button m11 is clicked. . In response to this, a signal for designating the selected region as the pyloric region is input from the pyloric region designating unit 271 (see FIG. 1) to the control unit 26.
  • step S105 the control unit 26 determines whether or not a signal specifying the pyloric region is input from the pyloric region specifying unit 271.
  • step S105: No the operation of the guidance device 20 returns to step S103.
  • the target position setting unit 261 sets a region in the subject corresponding to the pyloric region in the in-vivo image as the target position (step S106). .
  • step S107 the image processing unit 23 calculates the feature amount of the region designated as the pyloric region.
  • the feature amount it is preferable to use a parameter that does not change with respect to enlargement, reduction, or rotation of the image. Thereby, even if the shape and position of the pyloric region in the in-vivo image fluctuate, the target position can be reliably supplemented.
  • a color feature amount such as an average color of the pyloric region may be used as the feature amount.
  • step S108 the guidance control unit 262 determines that the center of the visual field (for example, the visual field of the imaging unit 11A) (that is, the central part of the in-vivo image displayed in the in-vivo image display area m10) matches the target position.
  • the guidance control of the endoscope 10 is performed. Specifically, based on the in-vivo image generated by the image processing unit 23 and the position and size of the pyloric region on the in-vivo image, the distance and angle between the capsule endoscope 10 and the target position are calculated, Feedback control is performed on the magnetic field generation unit 25 in order to change the position and posture of the capsule endoscope 10 so that the center portion matches the target position.
  • step S109 the control unit 26 causes the image processing unit 23 to perform image recognition processing, and determines whether or not the center of the visual field of the capsule endoscope 10 matches the target position based on the result. Specifically, the image processing unit 23 calculates the feature amount of the central portion of the in-vivo image, and compares this feature amount with the feature amount of the pyloric region calculated in step S107. If the difference between the two feature amounts is within a predetermined range, it is determined that the center of the field of view matches the target position. Note that this image recognition processing may be performed on in-vivo images of all frames that are sequentially generated, or may be performed on in-vivo images thinned out at a predetermined interval.
  • step S109 If the center of the field of view still does not match the target position (step S109: No), the operation of the guidance device 20 returns to step S108. By repeating these steps S108 to S109, the pylorus region approaches the center in the in-vivo image displayed on the display unit 24.
  • control unit 26 causes the display unit 24 to display a notification screen indicating that the central part of the visual field matches the target position (step S110).
  • FIG. 8 is a schematic diagram showing a display example of a notification screen indicating that the center of the visual field matches the target position.
  • the screen M2 shown in FIG. 8 includes an approach instruction input button m14 for inputting an instruction to bring the capsule endoscope 10 to the target position in addition to the in-vivo image display area m10.
  • an in-vivo image with the pyloric ring m12 positioned at the center is displayed.
  • step S206 the user observes the pylorus.
  • step S207 the user performs an input operation of an instruction for causing the capsule endoscope 10 to approach the pylorus. Specifically, using the operation input unit 27, a selection operation is performed by a click operation or the like of the approach instruction input button m14 in the screen M2. In response to this, the operation input unit 27 inputs an approach instruction signal to the control unit 26.
  • step S111 the control unit 26 determines whether an approach instruction signal is input from the operation input unit 27.
  • the control unit 26 stands by as it is.
  • the guidance control unit 262 performs guidance control to advance the capsule endoscope 10 to the target position (step S112).
  • the target position is already located at the center of the visual field of the capsule endoscope 10
  • step S113 the control unit 26 determines whether or not the capsule endoscope 10 has arrived at the pylorus, which is the target position.
  • the capsule endoscope 10 arrives at the pylorus and the tip of the capsule endoscope 10 comes into contact with the pylorus, the capsule endoscope 10 is guided and controlled to move forward. The position of the mold endoscope 10 does not change. Therefore, when the position of the capsule endoscope 10 no longer changes, it can be determined that the capsule endoscope 10 has arrived at the pylorus.
  • step S113 When the capsule endoscope 10 has not yet arrived at the pylorus which is the target position (step S113: No), the control unit 26 continues to perform guidance control to advance the capsule endoscope 10 to the target position (step S112).
  • step S113 when the capsule endoscope 10 arrives at the pylorus which is the target position (step S113: Yes), the control unit 26 displays a notification screen indicating that the capsule endoscope 10 has reached the target position. (Step S114).
  • FIG. 9 is a schematic diagram showing a display example of a notification screen indicating that the capsule endoscope 10 has reached the target position.
  • a screen M3 shown in FIG. 9 includes, in addition to the in-vivo image display area m10, a pyloric passage instruction input button m15 for inputting an instruction for allowing the capsule endoscope 10 to pass the pyloric ring m12. Further, in the in-vivo image display region m10, the pylorus ring m12 at the center is displayed in a larger state as the capsule endoscope 10 approaches the pylorus than before the approach. The user can recognize that the capsule endoscope 10 has reached the target position by confirming that the pyloric passage instruction input button m15 is displayed on the screen M3.
  • step S208 the user performs an input operation for instructing the capsule endoscope 10 to pass the pylorus. Specifically, using the operation input unit 27, a selection operation is performed by a click operation or the like of the pylorus passage instruction input button m15 in the screen M3. In response to this, the operation input unit 27 inputs a pyloric passage instruction signal to the control unit 26.
  • step S115 the control unit 26 determines whether or not a pyloric passage instruction signal is input from the operation input unit 27.
  • the control unit 26 stands by as it is.
  • the guidance control unit 262 performs guidance control to further advance the capsule endoscope 10 (step S116).
  • the guidance control unit 262 causes the magnetic field generation unit 25 to generate a strong magnetic field so that the capsule endoscope 10 keeps moving forward by pressing the pyloric ring even when the capsule endoscope 10 contacts the pyloric ring. Thereby, the pylorus ring is opened and the capsule endoscope 10 is passed through.
  • step S117 the control unit 26 determines whether or not the capsule endoscope 10 has passed through the pylorus ring. Specifically, by causing the image processing unit 23 to perform image recognition processing, it is determined whether or not the pyloric region has disappeared from the in-vivo image. When the pyloric region has disappeared from the in-vivo image, the capsule endoscope 10 Is determined to have moved through the pyloric ring to the duodenum. Note that this image recognition processing is performed by comparing the feature amount of the in-vivo image with the feature amount of the pyloric region calculated in step S107, as in step S109. Alternatively, the control unit 26 may determine that the capsule endoscope 10 has passed through the pyloric ring when a predetermined time has elapsed since the capsule endoscope 10 started moving toward the pyloric ring.
  • step S117: No If the capsule endoscope 10 has not yet passed through the pylorus (step S117: No), the guidance control unit 262 continues the guidance control for moving the capsule endoscope 10 forward (step S116). On the other hand, when the capsule endoscope 10 passes through the pyloric ring (step S117: Yes), the guidance control unit 262 cancels the guidance control for moving the capsule endoscope 10 forward (step S118).
  • step S209 an operation for ending the inspection is performed. Specifically, a predetermined pointer operation on the screen of the display unit 24 (for example, a click operation on the end button), a pressing operation on a dedicated input button, or the like is performed. In response to this, the operation input unit 27 inputs a signal instructing the end of the inspection to the control unit 26.
  • a predetermined pointer operation on the screen of the display unit 24 for example, a click operation on the end button
  • a pressing operation on a dedicated input button or the like is performed.
  • the operation input unit 27 inputs a signal instructing the end of the inspection to the control unit 26.
  • step S119 the control unit 26 determines whether or not a signal instructing the end of the inspection is input from the operation input unit 27.
  • the guidance device 20 continues displaying the in-vivo image based on the image signal received from the capsule endoscope 10.
  • guidance instruction information is input from the operation input unit 27, guidance control of the capsule endoscope 10 is performed according to the guidance instruction information.
  • step S119 when a signal instructing the end of the examination is input (step S119: Yes), the control unit 26 ends the display of the in-vivo image (step S120), and then ends the operation of the guidance device 20.
  • the region in the subject corresponding to the pyloric ring selected by the user on the in-vivo image is set as the target position, and the center of the visual field of the capsule endoscope 10 is set. Since the guidance control is performed so that the capsule endoscope 10 is moved forward toward the target position, even if the pylorus fluctuates in the subject, The endoscope 10 can be surely brought close to the pylorus ring and allowed to pass through.
  • the capsule endoscope 10 when the approach instruction signal is input from the operation input unit 27 after the center of the visual field of the capsule endoscope 10 is set to the target position, the capsule endoscope 10 However, when the target position setting unit 261 sets the target position, the guidance control for adjusting the center of the visual field of the capsule endoscope 10 to the target position and the capsule type are performed. The guidance control for bringing the endoscope 10 closer to the target position may be started simultaneously.
  • the characteristic amount of a typical pylorus ring image collected by past examination or the like is stored in the storage unit 28 in advance.
  • the pylorus extraction unit 231 automatically extracts the pylorus region from the in-vivo image using this feature amount.
  • the target position setting unit 261 sets a region in the subject corresponding to the pyloric region automatically extracted by the pyloric extraction unit 231 as a target position.
  • FIG. 10 is a flowchart showing the operation of the capsule endoscope guidance system according to the second embodiment. Among these, steps S100 to S104 are the same as those in the first embodiment.
  • FIG. 11 is a flowchart showing a user operation in an examination using the capsule endoscope guidance system according to the second embodiment. Among these, steps S200 to S202 are the same as those in the first embodiment.
  • the user when observing the inside of the stomach, the user does not need to end the observation order of the pylorus part, and can proceed with observation from a desired site.
  • step S130 following step S104 the pylorus extraction unit 231 calculates the feature amount of the in-vivo images that are sequentially generated, and compares the calculated feature amount with the feature amount of the pylorus ring image stored in the storage unit 28. Thus, a process for detecting a candidate region of the pyloric region from the in-vivo image is performed.
  • step S131 when the candidate area is not detected from the in-vivo image (step S131: No), the operation of the guidance device 20 proceeds to step S135 described later.
  • step S131: Yes when a candidate area is detected from the in-vivo image (step S131: Yes), the control unit 26 causes the user to check whether the detected candidate area is a pyloric area (pylorus confirmation screen). Is created and displayed on the display unit 24 (step S132).
  • FIG. 12 is a schematic diagram showing a display example of the pylorus confirmation screen.
  • the pylorus confirmation screen M4 shown in FIG. 12 includes, in addition to the in-vivo image display area m10, a pylorus confirmation button m17 and an unconfirmed button m18 for the user to input a determination result.
  • a frame m16 surrounding the candidate area detected from the in-vivo image is superimposed on the in-vivo image display area m10.
  • step S220 the user visually checks the candidate area surrounded by the frame m16, and inputs the determination result as to whether or not this candidate area is a pyloric area using the operation input unit 27. Specifically, when it is determined that the candidate area is a pylorus area, the operation input unit 27 is used to perform a selection operation by clicking the pylorus confirmation button m17 in the pylorus confirmation screen M4. In response to this, a pylorus confirmation signal indicating that the candidate region is a pyloric region is input from the operation input unit 27 to the control unit 26.
  • the user uses the operation input unit 27 to select and operate the unconfirmed button m18 in the pylorus confirmation screen M4.
  • a signal indicating that the candidate region is not the pyloric region is input from the operation input unit 27 to the control unit 26.
  • step S221: No When the user continues to observe the stomach (step S221: No), the user returns to step S202. Then, when the pylorus confirmation screen is displayed on the display unit 24, the candidate area may be determined as needed.
  • step S221: Yes the user performs an operation for ending the stomach observation (step S222). Specifically, a predetermined pointer operation on the screen of the display unit 24 (for example, a click operation on the stomach observation end button), a pressing operation on a dedicated input button, or the like is performed. In response to this, the operation input unit 27 inputs a signal instructing the end of stomach observation to the control unit 26.
  • a predetermined pointer operation on the screen of the display unit 24 for example, a click operation on the stomach observation end button
  • a pressing operation on a dedicated input button, or the like is performed.
  • the operation input unit 27 inputs a signal instructing the end of stomach observation to the control unit 26.
  • step S133 when the pylorus confirmation signal is not input from the operation input unit 27 (step S133: No), the operation of the guidance device 20 proceeds to step S135 as it is.
  • the control unit 26 detects the position information of the capsule endoscope 10 (that is, the current position of the capsule endoscope 10 and the current position of the capsule endoscope 10). The position of the candidate area confirmed as the pyloric area is calculated based on the (posture), and position information representing this position is stored (step S134).
  • step S135 the control unit 26 determines whether or not a signal instructing the end of stomach observation is input from the operation input unit 27.
  • step S135 No
  • the operation of the guidance device 20 returns to step S103.
  • step S135 when a signal instructing the end of stomach observation is input (step S135: Yes), the target position setting unit 261 reads the position information stored in the storage unit 28 in step S134, and is confirmed as a pyloric region. The position in the subject corresponding to the candidate area is set as the target position (step S136).
  • the subsequent operations after step S108 are the same as those in the first embodiment.
  • the user operations after step S206 are the same as those in the first embodiment.
  • the pylorus extraction unit 231 automatically detects the candidate area of the pylorus area while the user is observing the stomach, and the candidate area Among them, the candidate area determined by the user as the pyloric area and the position information thereof are stored in the storage unit 28, so that the user can observe the stomach in a desired order.
  • the control unit 26 reads the feature amount of the candidate area accumulated in the storage unit 28, and is stored in the storage unit 28 in advance.
  • a candidate area that most closely matches the feature amount of the pylorus ring image is determined as a pylorus area, and a target position is set based on position information associated with the candidate area.
  • the control unit 26 displays a list of in-vivo images including candidate regions accumulated in the storage unit 28, and the in-vivo images displayed as a list are displayed.
  • the in-vivo image including the pyloric region may be selected by the user.
  • the control unit 26 determines a candidate area in the in-vivo image selected by the user as a pyloric area, and sets a target position based on position information associated with the candidate area.
  • Embodiments 1 and 2 and the modifications described above are merely examples for carrying out the present invention, and the present invention is not limited to these.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the first and second embodiments and the modified examples. It is obvious from the above description that the present invention can be variously modified according to specifications and the like, and that various other embodiments are possible within the scope of the present invention.
  • Capsule-type endoscope guidance system 10 Capsule-type endoscope 11A, 11B Imaging part 12A, 12B Illumination part 13A, 13B Optical system 14A, 14B Imaging element 15 Control part 16 Wireless communication part 16a Antenna 17 Power supply part 18 Permanent magnet 20 Guiding device 21 Receiving unit 21a Receiving antenna 22 Position and posture detecting unit 23 Image processing unit 231 Pyloric extraction unit 24 Display unit 25 Magnetic field generating unit 25a Extracorporeal permanent magnet 25b Planar position changing unit 25c Vertical position changing unit 25d Elevation angle changing unit 25e Turning angle Change unit 26 Control unit 261 Target position setting unit 262 Guidance control unit 27 Operation input unit 271 Pyloric region designation unit 272 Passing instruction input unit 28 Storage unit 100 Capsule-type casing 101 Cylindrical casing 102, 103 Domed casing

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

A capsule-type endoscope guidance system 1 comprising a capsule-type endoscope 10 and a guidance device 20 that guides the capsule-type endoscope 10. The guidance device 20 is capable of easily causing the capsule-type endoscope 10 to approach and pass through a pylorus having a fluctuating position or shape, as a result of having: a magnetic field generation unit 25 that generates a magnetic field MG that guides the capsule-type endoscope 10; a reception unit 21 that receives wirelessly transmitted image signals; an image processing unit 23 that generates in vivo images on the basis of the image signals and extracts a pylorus area from the in vivo images; a target position setting unit 261 that sets, as a target position, the position inside the subject body that corresponds to the pylorus area; and a guidance control unit 262 that executes first guidance control and second guidance control, said first guidance control changing the position or the posture of the capsule-type endoscope 10 such that the center of the field of view for the capsule-type endoscope 10 matches the target position, and said second guidance control facing the capsule-type endoscope 10 towards the target position, in a state in which the center of the field of view matches the target position, and moving the capsule-type endoscope 10 forward at least until same comes in contact with the target position.

Description

カプセル型内視鏡誘導システム及びカプセル型内視鏡誘導システムの作動方法Capsule endoscope guidance system and method for operating capsule endoscope guidance system
 本発明は、被検体内に導入されたカプセル型内視鏡を誘導するカプセル型内視鏡誘導システム及びカプセル型内視鏡誘導システムの作動方法に関する。 The present invention relates to a capsule endoscope guidance system that guides a capsule endoscope introduced into a subject and an operation method of the capsule endoscope guidance system.
 内視鏡分野においては、被検体内に導入されて撮像を行うカプセル型内視鏡が開発されている。カプセル型内視鏡は、被検体の消化管内に導入可能な大きさに形成されたカプセル形状をなす筐体の内部に撮像機能及び無線通信機能を備えたものであり、被検体に嚥下された後、蠕動運動等によって消化管内を移動しながら撮像を行い、被検体の臓器内部の画像(以下、体内画像ともいう)の画像データを順次生成して無線送信する。無線送信された画像データは、被検体外に設けられた受信装置によって受信され、さらに、ワークステーション等の画像表示装置に取り込まれて所定の画像処理が施される。それにより、被検体の体内画像を静止画又は動画として表示することができる。 In the endoscope field, capsule endoscopes that have been introduced into a subject and imaged have been developed. The capsule endoscope is provided with an imaging function and a wireless communication function inside a capsule-shaped casing formed in a size that can be introduced into the digestive tract of a subject, and has been swallowed by the subject. Thereafter, imaging is performed while moving in the digestive tract by peristaltic movement or the like, and image data of an image inside the organ of the subject (hereinafter also referred to as an in-vivo image) is sequentially generated and wirelessly transmitted. The wirelessly transmitted image data is received by a receiving device provided outside the subject, and further taken into an image display device such as a workstation and subjected to predetermined image processing. Thereby, the in-vivo image of the subject can be displayed as a still image or a moving image.
 近年では、被検体内に導入されたカプセル型内視鏡を、被検体外から操作することによって誘導する誘導システムが提案されている。例えば特許文献1には、内部に永久磁石が設けられたカプセル型内視鏡を被検体の消化管(例えば胃)内に水等の液体と共に導入して浮遊させ、被検体外に設置された別の永久磁石が発生した磁界を内部の永久磁石に作用させることにより、カプセル型内視鏡の位置又は姿勢を制御するシステムが開示されている。 In recent years, a guidance system has been proposed that guides a capsule endoscope introduced into a subject by operating it from outside the subject. For example, in Patent Document 1, a capsule endoscope having a permanent magnet provided therein is introduced into a subject's digestive tract (for example, the stomach) together with a liquid such as water to float, and is placed outside the subject. A system for controlling the position or posture of a capsule endoscope by applying a magnetic field generated by another permanent magnet to the internal permanent magnet is disclosed.
 このように、ユーザの操作によりカプセル型内視鏡を誘導可能な構成とすることで、一般的な有索内視鏡を用いた検査と同様の検査を、カプセル型内視鏡によって実施できるようになることが期待されている。 As described above, the capsule endoscope can be guided by the user's operation so that the same inspection as that using a general wired endoscope can be performed by the capsule endoscope. Is expected to be.
国際公開第2007/077922号International Publication No. 2007/077922
 しかしながら、カプセル型内視鏡の場合、ユーザにとっては有索内視鏡のような挿入の感覚がないことや操作系の機構の違いから、所望の目標物にカプセル型内視鏡を近づけることが困難であり、操作に慣れが必要となる。特に、目標物が動いている場合には、カプセル型内視鏡を十分に接近させることが難しい。具体的には、十二指腸を観察するためには、カプセル型内視鏡を胃に導入した後、幽門を通過させる必要がある。ところが、幽門は収縮運動を繰り返しており、比較的カプセル型内視鏡が通過し易い中心部の位置や形状は常に変化しているため、カプセル型内視鏡を接近させることは非常に困難である。また、幽門が閉じている場合には、幽門の中心部にカプセル型内視鏡を押し当て、力を加えて前進させる必要があるため、操作はさらに困難になる。 However, in the case of a capsule endoscope, it is possible for a user to bring the capsule endoscope closer to a desired target because there is no sense of insertion like a wired endoscope and the difference in the mechanism of the operation system. It is difficult and requires familiarity with the operation. In particular, when the target is moving, it is difficult to bring the capsule endoscope sufficiently close. Specifically, in order to observe the duodenum, it is necessary to introduce a capsule endoscope into the stomach and then pass through the pylorus. However, since the pylorus repeatedly contracts and the position and shape of the center where the capsule endoscope is relatively easy to pass through are constantly changing, it is very difficult to bring the capsule endoscope closer. is there. Further, when the pylorus is closed, it is necessary to press the capsule endoscope against the center of the pylorus and move it forward with force, which makes operation more difficult.
 本発明は、上記に鑑みてなされたものであって、位置や形状が変動する幽門に対してカプセル型内視鏡を容易に接近させることができ、さらに、この幽門に向けてカプセル型内視鏡を前進させて通過させることができるカプセル型内視鏡誘導システム及びその作動方法を提供することを目的とする。 The present invention has been made in view of the above, and can easily bring a capsule endoscope closer to a pylorus whose position and shape fluctuate. Further, the capsule endoscope can be directed toward the pylorus. It is an object of the present invention to provide a capsule endoscope guidance system capable of moving a mirror forward and a method for operating the capsule endoscope guidance system.
 上述した課題を解決し、目的を達成するために、本発明に係るカプセル型内視鏡誘導システムは、被検体内に導入されて撮像を行うことにより画像信号を生成し、該画像信号を順次無線送信するカプセル型内視鏡と、前記カプセル型内視鏡を前記被検体内において誘導する誘導装置と、を備え、前記誘導装置は、前記カプセル型内視鏡の位置及び姿勢を変化させる誘導手段と、前記画像信号を順次受信する受信部と、前記画像信号に基づいて体内画像を順次生成すると共に、前記被検体内の幽門が写った領域である幽門領域を前記体内画像から抽出する画像処理部と、前記幽門領域に対応する前記被検体内の位置を目標位置として設定する目標位置設定部と、前記カプセル型内視鏡の視野の中心部が前記目標位置に合うように前記カプセル型内視鏡の位置又は姿勢を変化させる第1の誘導制御と、前記カプセル型内視鏡の視野の中心部を前記目標位置に合わせた状態のまま、前記カプセル型内視鏡を前記目標位置に向け、少なくとも前記目標位置に接触するまで前進させる第2の誘導制御とを前記誘導手段に対して実行する誘導制御部と、を有する、ことを特徴とする。 In order to solve the above-described problems and achieve the object, a capsule endoscope guidance system according to the present invention introduces an image into a subject to generate an image signal, and sequentially generates the image signal. A capsule endoscope for wireless transmission; and a guidance device for guiding the capsule endoscope in the subject, wherein the guidance device changes the position and posture of the capsule endoscope. Means for sequentially receiving the image signal; an image for sequentially generating an in-vivo image based on the image signal; and extracting a pyloric region, which is a region in which the pylorus in the subject is reflected, from the in-vivo image A processing unit, a target position setting unit that sets a position in the subject corresponding to the pylorus region as a target position, and the capsule endoscope so that a center part of the field of view of the capsule endoscope matches the target position. With the first guidance control for changing the position or posture of the endoscope and the center of the visual field of the capsule endoscope aligned with the target position, the capsule endoscope is set to the target position. And a guidance control unit that executes second guidance control to advance toward the guidance means at least until it contacts the target position.
 上記カプセル型内視鏡誘導システムにおいて、前記画像処理部は、幽門が写った画像の特徴量を予め保持し、該特徴量と前記体内画像の特徴量とに基づいて前記幽門領域を抽出する、ことを特徴とする。 In the capsule endoscope guidance system, the image processing unit holds in advance a feature amount of an image showing a pylorus, and extracts the pyloric region based on the feature amount and the feature amount of the in-vivo image. It is characterized by that.
 上記カプセル型内視鏡誘導システムにおいて、前記誘導装置は、前記体内画像を表示する表示部と、外部からなされる操作に応じて、前記体内画像内の領域を指定する操作入力部と、をさらに備え、前記画像処理部は、前記操作入力部によって指定された前記領域の特徴量を算出し、該特徴量と前記体内画像の特徴量とに基づいて前記幽門領域を抽出する、ことを特徴とする。 In the capsule endoscope guidance system, the guidance device further includes: a display unit that displays the in-vivo image; and an operation input unit that specifies a region in the in-vivo image according to an operation performed from outside. The image processing unit calculates a feature amount of the region specified by the operation input unit, and extracts the pyloric region based on the feature amount and the feature amount of the in-vivo image. To do.
 上記カプセル型内視鏡誘導システムにおいて、前記誘導装置は、外部からなされる操作に応じた指示信号を入力する操作入力部をさらに有し、前記誘導制御部は、前記第1の誘導制御を実行した後、前記操作入力部から前記指示信号が入力された場合に、前記第2の誘導制御を実行する、ことを特徴とする。 In the capsule endoscope guidance system, the guidance device further includes an operation input unit that inputs an instruction signal corresponding to an operation performed from the outside, and the guidance control unit executes the first guidance control. Then, when the instruction signal is input from the operation input unit, the second guidance control is executed.
 上記カプセル型内視鏡誘導システムにおいて、前記誘導制御部は、前記操作入力部から前記指示信号が入力された後、前記体内画像から前記幽門領域が抽出されなくなった場合に、前記第2の誘導制御を終了する、ことを特徴とする。 In the capsule endoscope guidance system, when the instruction signal is input from the operation input unit and the pyloric region is not extracted from the in-vivo image, the guidance control unit performs the second guidance. The control is terminated.
 上記カプセル型内視鏡誘導システムにおいて、前記誘導制御部は、前記操作入力部から前記指示信号が入力された後、所定時間が経過した場合に、前記第2の誘導制御を終了する、ことを特徴とする。 In the capsule endoscope guidance system, the guidance control unit ends the second guidance control when a predetermined time has elapsed after the instruction signal is input from the operation input unit. Features.
 上記カプセル型内視鏡誘導システムにおいて、前記誘導制御部は、前記目標位置が設定された際、前記第1及び第2の誘導制御を同時に実行開始する、ことを特徴とする。 In the capsule endoscope guidance system, the guidance control unit starts executing the first and second guidance controls simultaneously when the target position is set.
 上記カプセル型内視鏡誘導システムにおいて、前記誘導制御部は、前記第2の誘導制御の実行中、前記カプセル型内視鏡が前記目標位置に接触した後、前記カプセル型内視鏡をさらに前進させて前記目標位置を押圧させる誘導制御を行う、ことを特徴とする。 In the capsule endoscope guidance system, the guidance controller further advances the capsule endoscope after the capsule endoscope contacts the target position during execution of the second guidance control. Then, guidance control for pressing the target position is performed.
 上記カプセル型内視鏡誘導システムにおいて、前記カプセル型内視鏡は、内部に永久磁石を有し、前記誘導手段は、前記永久磁石に印加する磁界を生成することにより、前記カプセル型内視鏡の位置及び姿勢を変化させる、ことを特徴とする。 In the capsule endoscope guidance system, the capsule endoscope has a permanent magnet inside, and the guiding means generates a magnetic field to be applied to the permanent magnet, whereby the capsule endoscope It is characterized by changing the position and posture of the.
 本発明に係るカプセル型内視鏡誘導システムの作動方法は、被検体内に導入されて撮像を行うカプセル型内視鏡と、前記カプセル型内視鏡を誘導する誘導装置とを備えるカプセル型内視鏡誘導システムの作動方法であって、前記カプセル型内視鏡が、前記被検体内を撮像することにより画像信号を生成し、該画像信号を順次無線送信する送信ステップと、前記誘導装置が、前記カプセル型内視鏡から無線送信された前記画像信号を順次受信する受信ステップと、前記誘導装置が、前記画像信号に基づいて体内画像を順次生成すると共に、前記被検体内の幽門が写った領域である幽門領域を前記体内画像から抽出する画像処理ステップと、前記誘導装置が、前記幽門領域に対応する前記被検体内の位置を目標位置として設定する目標位置設定ステップと、前記誘導装置が、前記カプセル型内視鏡の視野の中心部が前記目標位置に合うように前記カプセル型内視鏡の位置又は姿勢を変化させる第1の誘導制御と、前記カプセル型内視鏡の視野の中心部を前記目標位置に合わせた状態のまま、前記カプセル型内視鏡を前記目標位置に向け、少なくとも前記目標位置に接触するまで前進させる第2の誘導制御とを実行する誘導制御ステップと、を含むことを特徴とする。 An operation method of a capsule endoscope guidance system according to the present invention includes a capsule endoscope that is introduced into a subject and performs imaging, and a guidance device that guides the capsule endoscope. An operation method of an endoscope guidance system, wherein the capsule endoscope generates an image signal by imaging the inside of the subject and sequentially transmits the image signal wirelessly, and the guidance device includes: A receiving step for sequentially receiving the image signals wirelessly transmitted from the capsule endoscope; and the guidance device sequentially generates in-vivo images based on the image signals, and the pylorus in the subject is captured. Image processing step of extracting a pyloric region, which is a region, from the in-vivo image, and target position setting in which the guidance device sets a position in the subject corresponding to the pyloric region as a target position A first guidance control for changing a position or posture of the capsule endoscope so that a center portion of a visual field of the capsule endoscope matches the target position; and the capsule type A second guidance control is performed in which the capsule endoscope is advanced toward the target position at least until it comes into contact with the target position while keeping the center of the visual field of the endoscope at the target position. And a guidance control step.
 本発明によれば、体内画像から抽出した幽門領域に対応する被検体内の位置を目標位置として設定し、カプセル型内視鏡の視野の中心部が目標位置に合うようにカプセル型内視鏡を誘導し、さらに、この状態のまま、カプセル型内視鏡を目標位置に向け、少なくとも目標位置に接触するまでカプセル型内視鏡を前進させるので、位置や形状が変動する幽門に対してカプセル型内視鏡を容易に接近させて通過させることが可能となる。 According to the present invention, the position in the subject corresponding to the pyloric region extracted from the in-vivo image is set as the target position, and the capsule endoscope is set so that the center of the visual field of the capsule endoscope matches the target position. In this state, the capsule endoscope is directed to the target position, and the capsule endoscope is advanced at least until it comes into contact with the target position. The mold endoscope can be made to approach and pass easily.
図1は、本発明の実施の形態1に係るカプセル型内視鏡誘導システムの構成例を示す模式図である。FIG. 1 is a schematic diagram showing a configuration example of a capsule endoscope guidance system according to Embodiment 1 of the present invention. 図2は、図1に示すカプセル型内視鏡の内部構造の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope shown in FIG. 図3は、図1に示す磁界生成部の構成例を示す模式図である。FIG. 3 is a schematic diagram illustrating a configuration example of the magnetic field generation unit illustrated in FIG. 1. 図4は、本発明の実施の形態1に係るカプセル型内視鏡誘導システムの動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the capsule endoscope guidance system according to the first embodiment of the present invention. 図5は、本発明の実施の形態1に係るカプセル型内視鏡誘導システムを用いた検査におけるユーザの動作を示すフローチャートである。FIG. 5 is a flowchart showing a user's operation in an examination using the capsule endoscope guidance system according to the first embodiment of the present invention. 図6は、被検体内の消化管を示す模式図である。FIG. 6 is a schematic diagram showing a digestive tract in a subject. 図7は、図1に示す表示部に表示される体内画像の表示画面を示す模式図である。FIG. 7 is a schematic diagram showing a display screen of the in-vivo image displayed on the display unit shown in FIG. 図8は、視野の中心部が目標位置に合った旨の通知画面の表示例を示す模式図である。FIG. 8 is a schematic diagram illustrating a display example of a notification screen indicating that the center of the visual field matches the target position. 図9は、カプセル型内視鏡が目標位置に到達した旨の通知画面の表示例を示す模式図である。FIG. 9 is a schematic diagram illustrating a display example of a notification screen indicating that the capsule endoscope has reached the target position. 図10は、本発明の実施の形態2に係るカプセル型内視鏡誘導システムの動作を示すフローチャートである。FIG. 10 is a flowchart showing the operation of the capsule endoscope guidance system according to the second embodiment of the present invention. 図11は、本発明の実施の形態2に係るカプセル型内視鏡システムを用いた検査におけるユーザの動作を示すフローチャートである。FIG. 11 is a flowchart showing a user's operation in an examination using the capsule endoscope system according to the second embodiment of the present invention. 図12は、本発明の実施の形態2に係るカプセル型内視鏡誘導システムにおいて表示部に表示される幽門確認画面の表示例を示す模式図である。FIG. 12 is a schematic diagram illustrating a display example of a pylorus confirmation screen displayed on the display unit in the capsule endoscope guidance system according to the second embodiment of the present invention.
 以下に、本発明の実施の形態に係るカプセル型内視鏡誘導システム及びカプセル型内視鏡誘導システムの作動方法について、図面を参照しながら説明する。なお、以下の説明においては、カプセル型内視鏡の一形態として、被検体内に経口にて導入されて被検体内(管腔内)を撮像するカプセル型内視鏡を例示するが、これらの実施の形態によって本発明が限定されるものではない。即ち、本発明は、被検体の食道から肛門にかけて管腔内を移動しつつ撮像を行うカプセル型内視鏡など、カプセル型をなし、被検体内に導入されて撮像を行う種々の内視鏡に適用することが可能である。 Hereinafter, the capsule endoscope guidance system and the operation method of the capsule endoscope guidance system according to the embodiment of the present invention will be described with reference to the drawings. In the following description, capsule endoscopes that are orally introduced into a subject and image the inside of the subject (intraluminal) are illustrated as an example of a capsule endoscope. The present invention is not limited to the embodiments. That is, the present invention relates to various endoscopes that have a capsule type, such as a capsule endoscope that performs imaging while moving in the lumen from the esophagus to the anus of the subject, and that is introduced into the subject and performs imaging. It is possible to apply to.
 また、以下の説明において、各図は本発明の内容を理解でき得る程度に形状、大きさ、及び位置関係を概略的に示してあるに過ぎない。従って、本発明は各図で例示された形状、大きさ、及び位置関係のみに限定されるものではない。なお、図面の記載において、同一部分には同一の符号を付している。 In the following description, each drawing merely schematically shows the shape, size, and positional relationship to the extent that the contents of the present invention can be understood. Therefore, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing. In the description of the drawings, the same portions are denoted by the same reference numerals.
(実施の形態1)
 図1は、本発明の実施の形態1に係るカプセル型内視鏡誘導システムの構成例を示す模式図である。図1に示すように、実施の形態1に係るカプセル型内視鏡誘導システム1は、被検体内に導入されるカプセル型内視鏡10と、カプセル型内視鏡10を誘導する誘導装置20とを備える。実施の形態1においては、カプセル型内視鏡10の誘導方式として、カプセル型内視鏡10の内部に永久磁石を設け、この永久磁石に誘導装置20が発生した磁界MGを印加することによりカプセル型内視鏡10を誘導する方式を用いる。
(Embodiment 1)
FIG. 1 is a schematic diagram showing a configuration example of a capsule endoscope guidance system according to Embodiment 1 of the present invention. As shown in FIG. 1, a capsule endoscope guidance system 1 according to Embodiment 1 includes a capsule endoscope 10 that is introduced into a subject, and a guidance device 20 that guides the capsule endoscope 10. With. In the first embodiment, as a guidance method of the capsule endoscope 10, a capsule is provided by providing a permanent magnet inside the capsule endoscope 10 and applying a magnetic field MG generated by the guiding device 20 to the permanent magnet. A method of guiding the mold endoscope 10 is used.
 カプセル型内視鏡10は、経口摂取等によって所定の液体と共に被検体内に導入された後、消化管内部を移動し、最終的に被検体の外部に排出される。その間、カプセル型内視鏡10は、臓器(例えば胃)内部において液体中を漂い、磁界MGによって誘導されつつ被検体内を撮像し、体内画像の画像データを順次生成して無線送信する。 The capsule endoscope 10 is introduced into the subject together with a predetermined liquid by oral ingestion or the like, then moves inside the digestive tract and is finally discharged out of the subject. Meanwhile, the capsule endoscope 10 drifts in the liquid inside the organ (for example, the stomach), images the inside of the subject while being guided by the magnetic field MG, sequentially generates image data of the in-vivo image, and wirelessly transmits it.
 図2は、カプセル型内視鏡10の内部構造の一例を示す模式図である。図2に示すように、カプセル型内視鏡10は、被検体の臓器内部に導入し易い大きさに形成された外装ケースであるカプセル型筐体100と、互いに異なる方向の被写体を撮像する撮像部11A、11Bと、撮像部11A、11Bから入力された信号を処理すると共に、カプセル型内視鏡10の各構成部を制御する制御部15と、制御部15によって処理された信号をカプセル型内視鏡10の外部に無線送信する無線通信部16と、カプセル型内視鏡10の各構成部に電力を供給する電源部17と、誘導装置20による誘導を可能にするための永久磁石18とを備える。 FIG. 2 is a schematic diagram showing an example of the internal structure of the capsule endoscope 10. As shown in FIG. 2, the capsule endoscope 10 and the capsule casing 100 which is an exterior case formed in a size that can be easily introduced into the organ of a subject, and imaging that captures subjects in different directions. The processing unit 11A, 11B and the signals input from the imaging units 11A, 11B are processed, the control unit 15 that controls each component of the capsule endoscope 10, and the signal processed by the control unit 15 is capsule-type. A wireless communication unit 16 that wirelessly transmits to the outside of the endoscope 10, a power supply unit 17 that supplies power to each component of the capsule endoscope 10, and a permanent magnet 18 that enables guidance by the guidance device 20. With.
 カプセル型筐体100は、筒状筐体101とドーム状筐体102、103とから成り、この筒状筐体101の両側開口端をドーム状筐体102、103によって塞ぐことによって実現される。筒状筐体101は、可視光に対して略不透明な有色の筐体である。一方、ドーム状筐体102、103は、可視光等の所定波長帯域の光に対して透明な、ドーム形状をなす光学部材である。このようなカプセル型筐体100は、撮像部11A、11Bと、制御部15と、無線通信部16と、電源部17と、永久磁石18とを液密に内包する。 The capsule-type casing 100 includes a cylindrical casing 101 and dome-shaped casings 102 and 103, and is realized by closing both side opening ends of the cylindrical casing 101 with the dome-shaped casings 102 and 103. The cylindrical casing 101 is a colored casing that is substantially opaque to visible light. On the other hand, the dome-shaped casings 102 and 103 are dome-shaped optical members that are transparent to light of a predetermined wavelength band such as visible light. Such a capsule housing 100 encloses the imaging units 11A and 11B, the control unit 15, the wireless communication unit 16, the power supply unit 17, and the permanent magnet 18 in a liquid-tight manner.
 撮像部11Aは、LED(Light Emitting Diode)又はLD(Laser Diode)等からなり、白色光等の照明光を発光する照明部12Aと、集光レンズ等の光学系13Aと、CMOSイメージセンサ又はCCD等からなる撮像素子14Aとを有する。照明部12Aは、撮像素子14Aの撮像視野内の被検体に、ドーム状筐体102越しに照明光を照射する。光学系13Aは、この撮像視野からの反射光を集光し、撮像素子14Aの撮像面に結像させる。撮像素子14Aは、撮像面において受光した撮像視野からの反射光(光信号)を電気信号に変換し、画像信号として出力する。 The imaging unit 11A includes an LED (Light Emitting Diode) or an LD (Laser Diode), and the like. The imaging unit 11A emits illumination light such as white light, an optical system 13A such as a condenser lens, a CMOS image sensor, or a CCD. And an image pickup device 14A made of the same. The illumination unit 12A irradiates the subject in the imaging field of the imaging device 14A with illumination light through the dome-shaped casing 102. The optical system 13A collects the reflected light from the imaging field and forms an image on the imaging surface of the imaging element 14A. The image sensor 14A converts the reflected light (optical signal) from the imaging field received on the imaging surface into an electrical signal and outputs it as an image signal.
 撮像部11Bは、撮像部11Aと同様に、LED又はLD等の照明部12Bと、集光レンズ等の光学系13Bと、CMOSイメージセンサ又はCCD等の撮像素子14Bとを有し、ドーム状筐体103越しに撮像視野内の被検体を撮像する。 Similar to the imaging unit 11A, the imaging unit 11B includes an illumination unit 12B such as an LED or an LD, an optical system 13B such as a condenser lens, and an imaging element 14B such as a CMOS image sensor or a CCD. The subject in the imaging field is imaged through the body 103.
 制御部15は、撮像部11A、11B及び無線通信部16の各動作を制御すると共に、これらの構成部間における信号の入出力を制御する。具体的には、制御部15は、撮像部11A、11Bにおける撮像フレームレートを設定し、この設定した撮像フレームレートで、照明部12Aによって照明された撮像視野内の被検体を撮像素子14Aに撮像させると共に、照明部12Bによって照明された撮像視野内の被検体を撮像素子14Bに撮像させる。そして、制御部15は、撮像素子14A、14Bから出力された画像信号に所定の信号処理を施す。さらに、制御部15は、上記画像信号を順次、無線通信部16に無線送信させる。 The control unit 15 controls each operation of the imaging units 11A and 11B and the wireless communication unit 16, and controls input / output of signals between these components. Specifically, the control unit 15 sets the imaging frame rate in the imaging units 11A and 11B, and images the subject in the imaging field illuminated by the illuminating unit 12A onto the imaging element 14A at the set imaging frame rate. At the same time, the imaging element 14B images the subject in the imaging field illuminated by the illumination unit 12B. Then, the control unit 15 performs predetermined signal processing on the image signals output from the imaging elements 14A and 14B. Further, the control unit 15 causes the wireless communication unit 16 to wirelessly transmit the image signals sequentially.
 無線通信部16は、無線信号を送信するためのアンテナ16aを備える。無線通信部16は、撮像部11A、11Bが被検体を撮像して生成した体内画像の画像信号を制御部15から取得し、該画像信号に対して変調処理等を施して無線信号を生成し、アンテナ16aを介して誘導装置20に送信する。 The wireless communication unit 16 includes an antenna 16a for transmitting a wireless signal. The wireless communication unit 16 acquires from the control unit 15 an image signal of the in-vivo image generated by the imaging units 11A and 11B imaging the subject, and performs a modulation process on the image signal to generate a wireless signal. And transmitted to the guidance device 20 via the antenna 16a.
 電源部17は、ボタン型電池やキャパシタ等の蓄電部であって、磁気スイッチや光スイッチ等のスイッチ部を有する。電源部17は、磁気スイッチを有する構成とした場合、外部から印加された磁界によって電源のオンオフ状態を切り替える。電源部17は、オン状態のときに、蓄電部の電力をカプセル型内視鏡10の各構成部(撮像部11A、11B、制御部15、及び無線通信部16)に供給し、オフ状態のときに、カプセル型内視鏡10の各構成部への電力供給を停止する。 The power supply unit 17 is a power storage unit such as a button-type battery or a capacitor, and has a switch unit such as a magnetic switch or an optical switch. When the power supply unit 17 is configured to have a magnetic switch, the power supply unit 17 switches the on / off state of the power supply by a magnetic field applied from the outside. The power supply unit 17 supplies power of the power storage unit to each component (the imaging units 11A and 11B, the control unit 15, and the wireless communication unit 16) of the capsule endoscope 10 when in the on state. Sometimes, power supply to each component of the capsule endoscope 10 is stopped.
 永久磁石18は、誘導装置20が生成した磁界MGによるカプセル型内視鏡10の誘導を可能にするためのものであり、カプセル型筐体100の内部に所定の向きに固定して配置される。実施の形態1においては、永久磁石18を、矢印で示す磁化方向がカプセル型内視鏡10の長軸Laに対して直交するように配置している。永久磁石18は、外部から印加された磁界MGに追従して動作し、この結果、誘導装置20によるカプセル型内視鏡10の誘導が実現する。 The permanent magnet 18 is for enabling the capsule endoscope 10 to be guided by the magnetic field MG generated by the guiding device 20, and is fixedly arranged in a predetermined direction inside the capsule casing 100. . In the first embodiment, the permanent magnet 18 is arranged so that the magnetization direction indicated by the arrow is orthogonal to the long axis La of the capsule endoscope 10. The permanent magnet 18 operates following the magnetic field MG applied from the outside, and as a result, guidance of the capsule endoscope 10 by the guidance device 20 is realized.
 再び図1を参照すると、誘導装置20は、カプセル型内視鏡10との間で無線通信を行い、カプセル型内視鏡10から送信された無線信号を受信する受信部21と、受信部21が受信した無線信号に基づいて被検体内におけるカプセル型内視鏡10の位置を検出する位置及び姿勢検出部22と、受信部21が受信した無線信号に基づいて体内画像を生成すると共に、生成した体内画像に対して所定の画像処理を施す画像処理部23と、画像処理部23が生成した体内画像を画面に表示する表示部24と、カプセル型内視鏡10を誘導する誘導手段としての磁界生成部25と、これらの各部を制御する制御部26と、カプセル型内視鏡誘導システム1に対する指示や情報等の入力を受け付ける操作入力部27とカプセル型内視鏡10により取得された体内画像の画像データや各種情報を記憶する記憶部28とを備える。 Referring to FIG. 1 again, the guidance device 20 performs wireless communication with the capsule endoscope 10 and receives a wireless signal transmitted from the capsule endoscope 10; The position and posture detection unit 22 for detecting the position of the capsule endoscope 10 in the subject based on the wireless signal received by the patient and the in-vivo image based on the wireless signal received by the reception unit 21 and the generation An image processing unit 23 that performs predetermined image processing on the in-vivo image, a display unit 24 that displays the in-vivo image generated by the image processing unit 23 on a screen, and a guidance unit that guides the capsule endoscope 10 The magnetic field generation unit 25, the control unit 26 that controls each of these units, the operation input unit 27 that receives input of instructions and information to the capsule endoscope guidance system 1, and the capsule endoscope 10 And a storage unit 28 for storing image data and various kinds of information have been vivo image.
 受信部21は、複数の受信アンテナ21aを備え、これらの受信アンテナ21aを介して、カプセル型内視鏡10から送信された無線信号を順次受信する。受信部21は、これらの受信アンテナ21aの中から最も受信電界強度の高いアンテナを選択し、選択したアンテナを介して受信した無線信号に対して復調処理等を行うことにより画像信号を抽出する。 The receiving unit 21 includes a plurality of receiving antennas 21a, and sequentially receives the radio signals transmitted from the capsule endoscope 10 via these receiving antennas 21a. The receiving unit 21 selects an antenna having the highest received electric field strength from these receiving antennas 21a, and extracts an image signal by performing a demodulation process or the like on the radio signal received through the selected antenna.
 位置及び姿勢検出部22は、受信部21が受信した無線信号の強度に基づいて、被検体内におけるカプセル型内視鏡10の位置及び姿勢を検出し、カプセル型内視鏡10の位置に関する情報(以下、位置情報という)を生成して出力する。詳細には、位置及び姿勢検出部22は、カプセル型内視鏡10の位置の初期値を適宜設定し、各受信アンテナ21aが受信した無線信号の強度分布に基づき、ガウス-ニュートン法により位置の推定値を算出する処理を、算出した推定値と前回の推定値とのずれ量が所定値以下になるまで反復することにより、カプセル型内視鏡10の位置を求める(例えば、特開2007-283001号公報参照)。 The position and orientation detection unit 22 detects the position and orientation of the capsule endoscope 10 in the subject based on the intensity of the radio signal received by the reception unit 21, and information on the position of the capsule endoscope 10 (Hereinafter referred to as position information) is generated and output. Specifically, the position and orientation detection unit 22 appropriately sets an initial value of the position of the capsule endoscope 10 and determines the position by the Gauss-Newton method based on the intensity distribution of the radio signal received by each receiving antenna 21a. The position of the capsule endoscope 10 is obtained by repeating the process of calculating the estimated value until the amount of deviation between the calculated estimated value and the previous estimated value is equal to or less than a predetermined value (for example, Japanese Patent Application Laid-Open No. 2007-2007). No. 283001).
 なお、カプセル型内視鏡10の位置及び姿勢の検出方法は、上述した方法に限定されない。例えば、カプセル型内視鏡10内に磁界を発生するコイルを設けると共に、このコイルが発生する磁界を検出する複数のセンスコイルを誘導装置20側に設け、各センスコイルが検出した磁界の振幅及び位相に基づいて、カプセル型内視鏡10の位置及び姿勢を検出しても良い(例えば、国際公開第2009/031456号参照)。 Note that the method for detecting the position and orientation of the capsule endoscope 10 is not limited to the method described above. For example, a coil for generating a magnetic field is provided in the capsule endoscope 10 and a plurality of sense coils for detecting the magnetic field generated by the coils are provided on the guidance device 20 side, and the amplitude of the magnetic field detected by each sense coil and Based on the phase, the position and orientation of the capsule endoscope 10 may be detected (see, for example, International Publication No. 2009/031456).
 画像処理部23は、受信部21から画像信号を取り込み、ホワイトバランス処理、デモザイキング、色変換、濃度変換(ガンマ変換等)、平滑化(ノイズ除去等)、鮮鋭化(エッジ強調等)等の画像処理を施すことにより体内画像を生成すると共に、生成した体内画像に対して所定の画像処理を施す。詳細には、画像処理部23は、体内画像の特徴量の算出処理や画像認識処理等を行うことにより、被検体内の幽門が写った領域である幽門領域を体内画像から抽出する幽門抽出部231を備える。 The image processing unit 23 captures an image signal from the receiving unit 21 and performs white balance processing, demosaicing, color conversion, density conversion (gamma conversion, etc.), smoothing (noise removal, etc.), sharpening (edge enhancement, etc.), etc. In-vivo images are generated by performing image processing, and predetermined image processing is performed on the generated in-vivo images. Specifically, the image processing unit 23 performs a process for calculating the feature amount of the in-vivo image, an image recognition process, and the like, thereby extracting a pyloric region that is an area in which the pylorus in the subject is captured from the in-vivo image. 231.
 表示部24は、液晶ディスプレイ等の各種ディスプレイからなり、画像処理部23が生成した画像や、位置及び姿勢検出部22が検出したカプセル型内視鏡10の位置や、その他各種情報を表示する。 The display unit 24 includes various displays such as a liquid crystal display, and displays an image generated by the image processing unit 23, the position of the capsule endoscope 10 detected by the position and orientation detection unit 22, and various other information.
 磁界生成部25は、カプセル型内視鏡10が内蔵する永久磁石18に作用する磁界MGを生成することにより、カプセル型内視鏡10の位置及び姿勢を変化させる。図3は、磁界生成部25の構成例を示す模式図である。実施の形態1において、磁界生成部25は、磁界を発生する体外永久磁石25aと、体外永久磁石25aを並進及び回転させる駆動手段として、平面位置変更部25b、鉛直位置変更部25c、仰角変更部25d、及び旋回角変更部25eとを有する。このような磁界生成部25は、例えば被検体が載置されるベッド等の下に設置され、後述する誘導制御部262の制御の下で動作する。 The magnetic field generator 25 changes the position and posture of the capsule endoscope 10 by generating a magnetic field MG that acts on the permanent magnet 18 built in the capsule endoscope 10. FIG. 3 is a schematic diagram illustrating a configuration example of the magnetic field generation unit 25. In the first embodiment, the magnetic field generation unit 25 includes an extracorporeal permanent magnet 25a that generates a magnetic field, and a driving unit that translates and rotates the extracorporeal permanent magnet 25a. The planar position changing unit 25b, the vertical position changing unit 25c, and the elevation angle changing unit. 25d and a turning angle changing unit 25e. Such a magnetic field generation unit 25 is installed, for example, under a bed or the like on which a subject is placed, and operates under the control of a guidance control unit 262 described later.
 体外永久磁石25aは、好ましくは、直方体形状を有する棒磁石によって実現され、自身の磁化方向と平行な4つの面の内の1つの面PLを水平面(xy面)に投影した領域内にカプセル型内視鏡10を拘束する。 The extracorporeal permanent magnet 25a is preferably realized by a bar magnet having a rectangular parallelepiped shape, and is capsule-shaped in a region obtained by projecting one surface PL of four surfaces parallel to its magnetization direction onto a horizontal plane (xy plane). The endoscope 10 is restrained.
 平面位置変更部25bは、体外永久磁石25aを水平面内(x方向及びy方向)において並進させる。それにより、磁界MGに拘束されたカプセル型内視鏡10が水平面内で移動する。 The plane position changing unit 25b translates the extracorporeal permanent magnet 25a in the horizontal plane (x direction and y direction). Thereby, the capsule endoscope 10 restrained by the magnetic field MG moves in the horizontal plane.
 鉛直位置変更部25cは、体外永久磁石25aを鉛直方向(z方向)に並進させる。それにより、磁界MGに拘束されたカプセル型内視鏡10が鉛直方向に移動する。 The vertical position changing unit 25c translates the extracorporeal permanent magnet 25a in the vertical direction (z direction). Thereby, the capsule endoscope 10 restrained by the magnetic field MG moves in the vertical direction.
 仰角変更部25dは、体外永久磁石25aの磁化方向を含む鉛直面内において体外永久磁石25aを回転させることにより、水平面に対する磁化方向の角度を変化させる。即ち、面PLと平行且つ磁化方向と直交し、体外永久磁石25aの中心を通る軸に対して体外永久磁石25aを回転させる。それにより、磁界MGに拘束されたカプセル型内視鏡10の長軸Laの水平面に対する角度(仰角)が変化する。 The elevation angle changing unit 25d changes the angle of the magnetization direction with respect to the horizontal plane by rotating the extracorporeal permanent magnet 25a in a vertical plane including the magnetization direction of the extracorporeal permanent magnet 25a. That is, the extracorporeal permanent magnet 25a is rotated with respect to an axis parallel to the plane PL and orthogonal to the magnetization direction and passing through the center of the extracorporeal permanent magnet 25a. As a result, the angle (elevation angle) of the long axis La of the capsule endoscope 10 constrained by the magnetic field MG with respect to the horizontal plane changes.
 旋回角変更部25eは、体外永久磁石25aの中心を通る鉛直軸に対して体外永久磁石25aを回転させる。それにより、磁界MGに拘束されたカプセル型内視鏡10の長軸Laの鉛直軸回りの角度(旋回角)が変化する。 The turning angle changing unit 25e rotates the extracorporeal permanent magnet 25a with respect to the vertical axis passing through the center of the extracorporeal permanent magnet 25a. Thereby, the angle (turning angle) around the vertical axis of the long axis La of the capsule endoscope 10 constrained by the magnetic field MG changes.
 なお、磁界生成部25の構成は、図3に示す構成に限定されない。例えば、体外永久磁石25aの代わりに電磁石を設け、この電磁石を並進及び回転させることにより、カプセル型内視鏡10に作用する磁界を変化させても良い。或いは、磁界生成部25として複数の電磁石を設け、各電磁石に供給する電力を調整することにより、カプセル型内視鏡10に作用するこれらの電磁石による合成磁界を変化させても良い。 Note that the configuration of the magnetic field generation unit 25 is not limited to the configuration shown in FIG. For example, an electromagnet may be provided instead of the extracorporeal permanent magnet 25a, and the magnetic field acting on the capsule endoscope 10 may be changed by translating and rotating the electromagnet. Alternatively, a plurality of electromagnets may be provided as the magnetic field generation unit 25, and the combined magnetic field generated by these electromagnets acting on the capsule endoscope 10 may be changed by adjusting the power supplied to each electromagnet.
 制御部26は、誘導装置20の各部の動作を統括的に制御すると共に、位置及び姿勢検出部22から取り込んだカプセル型内視鏡10の位置情報と、操作入力部27から入力された信号とに基づき、被検体内においてカプセル型内視鏡10を誘導するための制御を行う。具体的には、制御部26は、カプセル型内視鏡10を接近させる被検体内の目標位置を設定する目標位置設定部261と、カプセル型内視鏡10を誘導するための磁界MGを生成する磁界生成部25の動作を制御する誘導制御部262とを備える。 The control unit 26 comprehensively controls the operation of each part of the guidance device 20, the position information of the capsule endoscope 10 captured from the position and orientation detection unit 22, and the signal input from the operation input unit 27. Based on the above, control for guiding the capsule endoscope 10 in the subject is performed. Specifically, the control unit 26 generates a target position setting unit 261 that sets a target position in the subject to which the capsule endoscope 10 is approached, and a magnetic field MG for guiding the capsule endoscope 10. And a guidance control unit 262 for controlling the operation of the magnetic field generation unit 25.
 目標位置設定部261は、操作入力部27から入力された信号に従い、表示部24に表示された体内画像に対してユーザが選択した領域に対応する被検体内の領域(例えば幽門)を目標位置として設定する。詳細には、目標位置設定部261は、カプセル型内視鏡10の位置情報(即ち、カプセル型内視鏡10の現在の位置及び姿勢)をもとに、体内画像において選択された領域の位置を算出し、この位置をカプセル型内視鏡10の目標位置とする。 In accordance with the signal input from the operation input unit 27, the target position setting unit 261 selects a region (for example, pylorus) in the subject corresponding to the region selected by the user with respect to the in-vivo image displayed on the display unit 24 as the target position. Set as. Specifically, the target position setting unit 261 determines the position of the region selected in the in-vivo image based on the position information of the capsule endoscope 10 (that is, the current position and posture of the capsule endoscope 10). And this position is set as the target position of the capsule endoscope 10.
 誘導制御部262は、カプセル型内視鏡10の位置情報と、操作入力部27から入力された誘導指示情報とに基づいて磁界生成部25に制御信号を出力することにより、ユーザ所望の位置及び姿勢にカプセル型内視鏡10を誘導するための制御を行う。また、誘導制御部262は、カプセル型内視鏡10の視野の中心部(即ち、体内画像の中心部)が目標位置に合うようにカプセル型内視鏡10の位置又は姿勢を変化させる磁界MGを磁界生成部25に生成させる第1の誘導制御と、カプセル型内視鏡10の視野の中心部に目標位置を合わせた状態のまま、カプセル型内視鏡10を目標位置に向け、少なくとも目標位置に接触するまで前進させる磁界MGを磁界生成部25に生成させる第2の誘導制御とを実行する。 The guidance control unit 262 outputs a control signal to the magnetic field generation unit 25 based on the position information of the capsule endoscope 10 and the guidance instruction information input from the operation input unit 27, so that the user desired position and Control for guiding the capsule endoscope 10 to the posture is performed. The guidance control unit 262 also changes the position or posture of the capsule endoscope 10 so that the center of the visual field of the capsule endoscope 10 (that is, the center of the in-vivo image) matches the target position. In the state where the target position is aligned with the center of the visual field of the capsule endoscope 10 and the first guidance control that causes the magnetic field generation unit 25 to generate the at least the target The second guidance control is executed to cause the magnetic field generation unit 25 to generate the magnetic field MG to be advanced until it comes into contact with the position.
 操作入力部27は、ジョイスティック、各種ボタン及び各種スイッチを備えた操作卓、キーボード、タッチパネル、マウス等からなる入力デバイスであり、外部からなされる操作に応じて、カプセル型内視鏡10を誘導するための誘導指示情報や、誘導装置20に対する指示や情報を表す信号を制御部26に入力する。誘導指示情報は、カプセル型内視鏡10の位置や姿勢を変化させるための指示情報であり、具体的には、カプセル型内視鏡10を水平方向又は鉛直方向に並進させる動作(並進動作)や、鉛直軸に対するカプセル型内視鏡10の長軸Laの傾斜角を変化させる動作(傾斜角変更動作)や、鉛直軸回りにカプセル型内視鏡10を回転させて方位角(鉛直軸回りの角度)を変更させる動作(方位角変更動作)に関する情報等が含まれる。 The operation input unit 27 is an input device including a console including a joystick, various buttons, and various switches, a keyboard, a touch panel, a mouse, and the like, and guides the capsule endoscope 10 according to an operation performed from the outside. Guidance instruction information and a signal representing instructions and information for the guidance device 20 are input to the control unit 26. The guidance instruction information is instruction information for changing the position and posture of the capsule endoscope 10, and specifically, an operation for translating the capsule endoscope 10 in the horizontal direction or the vertical direction (translation operation). Or an operation for changing the inclination angle of the long axis La of the capsule endoscope 10 with respect to the vertical axis (an inclination angle changing operation), or an azimuth angle (about the vertical axis) by rotating the capsule endoscope 10 about the vertical axis. Information on an operation (azimuth angle changing operation) or the like for changing the angle is included.
 詳細には、操作入力部27は、表示部24に表示された体内画像に対して幽門領域を指定する幽門領域指定部271を有する。幽門領域指定部271は、表示部24に対するマウス等を用いた所定のポインタ操作(例えば、ドラッグアンドドロップ操作)により領域の選択が行われると、選択された領域を幽門領域として指定する信号を制御部26に入力する。 More specifically, the operation input unit 27 includes a pyloric region specifying unit 271 that specifies a pyloric region for the in-vivo image displayed on the display unit 24. When a region is selected by a predetermined pointer operation (for example, drag and drop operation) using the mouse or the like on the display unit 24, the pyloric region specifying unit 271 controls a signal for specifying the selected region as a pyloric region. Input to the unit 26.
 また、操作入力部27は、目標位置設定部261により幽門が目標位置として設定された場合に、カプセル型内視鏡10に幽門を通過させる指示を入力する通過指示入力部272を有する。通過指示入力部272は、表示部24に表示されたアイコン(入力ボタン等)に対してマウス等を用いた所定のポインタ操作(例えば、クリック操作)がなされると、カプセル型内視鏡10に幽門を通過させる指示信号を制御部26に入力する。 Further, the operation input unit 27 includes a passage instruction input unit 272 that inputs an instruction to pass the pylorus to the capsule endoscope 10 when the pylorus is set as the target position by the target position setting unit 261. When a predetermined pointer operation (for example, a click operation) using a mouse or the like is performed on an icon (input button or the like) displayed on the display unit 24, the passage instruction input unit 272 is applied to the capsule endoscope 10. An instruction signal for passing the pylorus is input to the control unit 26.
 記憶部28は、フラッシュメモリ又はハードディスク等の書き換え可能に情報を保存する記憶メディアを用いて実現される。記憶部28は、カプセル型内視鏡10から送信された画像信号に基づく体内画像の画像データの他、制御部26が誘導装置20の各部を制御するための各種プログラムや各種パラメータ等の情報を記憶する。 The storage unit 28 is realized by using a storage medium that stores information in a rewritable manner such as a flash memory or a hard disk. In addition to the in-vivo image data based on the image signal transmitted from the capsule endoscope 10, the storage unit 28 stores information such as various programs and various parameters for the control unit 26 to control each unit of the guidance device 20. Remember.
 次に、カプセル型内視鏡誘導システム1を用いた検査方法を説明する。図4は、カプセル型内視鏡誘導システム1の動作を示すフローチャートである。また、図5は、カプセル型内視鏡誘導システム1を用いた検査におけるユーザ(検査担当の医療従事者)の動作を示すフローチャートである。 Next, an inspection method using the capsule endoscope guidance system 1 will be described. FIG. 4 is a flowchart showing the operation of the capsule endoscope guidance system 1. FIG. 5 is a flowchart showing the operation of the user (medical staff in charge of the examination) in the examination using the capsule endoscope guidance system 1.
 図5に示すように、ステップS200において、ユーザは、カプセル型内視鏡10の電源をオンにして、被検体内に導入する。具体的には、カプセル型内視鏡10を水等の液体と共に、被検体に嚥下させる。 As shown in FIG. 5, in step S200, the user turns on the power of the capsule endoscope 10 and introduces it into the subject. Specifically, the capsule endoscope 10 is swallowed by a subject together with a liquid such as water.
 図4に示すように、ステップS100においてカプセル型内視鏡10の電源がオンにされると、続くステップS101において、カプセル型内視鏡10は撮像を開始し、生成した画像信号を誘導装置20に順次送信する。さらにステップS102において、誘導装置20は、受信した画像信号をもとに体内画像を生成し、表示部24に表示する。 As shown in FIG. 4, when the capsule endoscope 10 is powered on in step S100, the capsule endoscope 10 starts imaging in the subsequent step S101, and the generated image signal is transmitted to the guidance device 20. Sequentially. Further, in step S <b> 102, the guidance device 20 generates an in-vivo image based on the received image signal and displays it on the display unit 24.
 ステップS201において、ユーザは、表示部24に表示された体内画像を観察し、カプセル型内視鏡10が被検体内の胃に到達したことを確認する。続くステップS202において、ユーザは、操作入力部27を用いて液体に浮遊するカプセル型内視鏡10を誘導しながら、表示部24に写った体内画像により胃内を観察する。なお、観察領域の重複を避けるため、好ましくは幽門部の観察順序を最後にすると良い。 In step S201, the user observes the in-vivo image displayed on the display unit 24 and confirms that the capsule endoscope 10 has reached the stomach in the subject. In subsequent step S <b> 202, the user observes the inside of the stomach from the in-vivo image captured on the display unit 24 while guiding the capsule endoscope 10 floating in the liquid using the operation input unit 27. In order to avoid overlapping of observation areas, the observation order of the pylorus is preferably last.
 ステップS103において、制御部26は、操作入力部27から誘導指示情報が入力されたか否かを判定する。誘導指示情報が入力されない場合(ステップS103:No)、誘導装置20の動作は後述するステップS105に移行する。一方、誘導指示情報が入力された場合(ステップS103:Yes)、誘導制御部262は、入力された誘導指示情報に従って磁界生成部25を制御することにより、カプセル型内視鏡10の位置又は姿勢を変化させる(ステップS104)。 In step S103, the control unit 26 determines whether or not the guidance instruction information is input from the operation input unit 27. When the guidance instruction information is not input (step S103: No), the operation of the guidance device 20 proceeds to step S105 described later. On the other hand, when the guidance instruction information is input (step S103: Yes), the guidance control unit 262 controls the magnetic field generation unit 25 according to the input guidance instruction information, so that the position or posture of the capsule endoscope 10 is determined. Is changed (step S104).
 幽門部以外の胃内の観察を終えた後、ステップS203において、ユーザは、カプセル型内視鏡10を幽門部に誘導する操作を行う。 After observing the stomach other than the pylorus, in step S203, the user performs an operation of guiding the capsule endoscope 10 to the pylorus.
 ここで、図6は、被検体内の消化管を示す模式図である。図6に示すように、胃と十二指腸との境界には、幽門輪と呼ばれるリング状の筋肉組織が存在する。幽門輪は胃の働きに応じて開閉し、胃の内容物を十二指腸に送り出す組織であり、色や形状等により、胃内の他の領域から区別することができる。また、図7は、表示部24に表示される体内画像の表示画面を示す模式図である。図7に示す画面M1は、体内画像が表示される体内画像表示領域m10と、OKボタンm11とを含んでいる。 Here, FIG. 6 is a schematic diagram showing a digestive tract in a subject. As shown in FIG. 6, a ring-shaped muscle tissue called a pyloric ring exists at the boundary between the stomach and the duodenum. The pyloric ring is a tissue that opens and closes according to the action of the stomach and sends the contents of the stomach to the duodenum, and can be distinguished from other areas in the stomach by color, shape, and the like. FIG. 7 is a schematic diagram showing a display screen for in-vivo images displayed on the display unit 24. A screen M1 shown in FIG. 7 includes an in-vivo image display area m10 in which an in-vivo image is displayed, and an OK button m11.
 ステップS204において、ユーザは、表示部24に表示された体内画像を観察し、幽門輪が写っているか否かを判断する。体内画像に幽門輪が写っていないと判断した場合(ステップS204:No)、ユーザは引き続き、カプセル型内視鏡10を幽門輪に誘導する操作を行う(ステップS203)。 In step S204, the user observes the in-vivo image displayed on the display unit 24 and determines whether or not the pyloric ring is reflected. When it is determined that the pylorus ring is not reflected in the in-vivo image (step S204: No), the user continues to perform an operation for guiding the capsule endoscope 10 to the pylorus ring (step S203).
 一方、ユーザは、体内画像に幽門輪が写っていると判断した場合(ステップS204:Yes)、操作入力部27を用い、表示部24に表示された体内画像上において幽門輪を選択する操作を行う(ステップS205)。具体的には、体内画像表示領域m10に表示された体内画像上においてカーソルをドラッグアンドドロップすることにより、幽門輪m12を含む領域を矩形の枠m13によって囲み、さらに、OKボタンm11をクリック操作する。これに応じて、幽門領域指定部271(図1参照)から制御部26に、選択された領域を幽門領域として指定する信号が入力される。 On the other hand, when the user determines that the pyloric ring is reflected in the in-vivo image (step S204: Yes), the operation input unit 27 is used to select the pyloric ring on the in-vivo image displayed on the display unit 24. This is performed (step S205). Specifically, by dragging and dropping the cursor on the in-vivo image displayed in the in-vivo image display area m10, the area including the pyloric ring m12 is surrounded by a rectangular frame m13, and the OK button m11 is clicked. . In response to this, a signal for designating the selected region as the pyloric region is input from the pyloric region designating unit 271 (see FIG. 1) to the control unit 26.
 ステップS105において、制御部26は、幽門領域を指定する信号が幽門領域指定部271から入力されたか否かを判定する。幽門領域を指定する信号の入力がない場合(ステップS105:No)、誘導装置20の動作はステップS103に戻る。 In step S105, the control unit 26 determines whether or not a signal specifying the pyloric region is input from the pyloric region specifying unit 271. When there is no input of a signal specifying the pyloric region (step S105: No), the operation of the guidance device 20 returns to step S103.
 一方、幽門領域を指定する信号が入力された場合(ステップS105:Yes)、目標位置設定部261は、体内画像における幽門領域に対応する被検体内の領域を目標位置として設定する(ステップS106)。 On the other hand, when a signal specifying the pyloric region is input (step S105: Yes), the target position setting unit 261 sets a region in the subject corresponding to the pyloric region in the in-vivo image as the target position (step S106). .
 ステップS107において、画像処理部23は、幽門領域として指定された領域の特徴量を算出する。特徴量としては、画像の拡大、縮小、回転に対して不変のパラメータを用いることが好ましい。それにより、体内画像において幽門領域の形状や位置が変動したとしても、目標位置を確実に補足し続けることができるからである。具体的には、幽門領域の平均色等の色特徴量を特徴量として用いると良い。 In step S107, the image processing unit 23 calculates the feature amount of the region designated as the pyloric region. As the feature amount, it is preferable to use a parameter that does not change with respect to enlargement, reduction, or rotation of the image. Thereby, even if the shape and position of the pyloric region in the in-vivo image fluctuate, the target position can be reliably supplemented. Specifically, a color feature amount such as an average color of the pyloric region may be used as the feature amount.
 ステップS108において、誘導制御部262は、視野(例えば撮像部11Aの視野)の中心部(即ち、体内画像表示領域m10に表示される体内画像の中心部)が目標位置に合うようにカプセル型内視鏡10の誘導制御を行う。詳細には、画像処理部23が生成した体内画像と該体内画像上の幽門領域の位置及びサイズをもとに、カプセル型内視鏡10と目標位置との距離や角度を算出し、視野の中心部が目標位置に合うようにカプセル型内視鏡10の位置及び姿勢を変化させるべく、磁界生成部25に対してフィードバック制御を行う。 In step S108, the guidance control unit 262 determines that the center of the visual field (for example, the visual field of the imaging unit 11A) (that is, the central part of the in-vivo image displayed in the in-vivo image display area m10) matches the target position. The guidance control of the endoscope 10 is performed. Specifically, based on the in-vivo image generated by the image processing unit 23 and the position and size of the pyloric region on the in-vivo image, the distance and angle between the capsule endoscope 10 and the target position are calculated, Feedback control is performed on the magnetic field generation unit 25 in order to change the position and posture of the capsule endoscope 10 so that the center portion matches the target position.
 ステップS109において、制御部26は、画像処理部23に画像認識処理を実行させ、その結果に基づいて、カプセル型内視鏡10の視野の中心部が目標位置に合ったか否かを判定する。詳細には、画像処理部23が、体内画像の中心部の特徴量を算出すると共に、この特徴量を、ステップS107において算出した幽門領域の特徴量と比較する。そして、両特徴量の差異が所定の範囲内である場合、視野の中心部が目標位置に合ったと判定する。なお、この画像認識処理は、順次生成される全フレームの体内画像に対して行っても良いし、所定の間隔で間引かれた体内画像に対して行っても良い。 In step S109, the control unit 26 causes the image processing unit 23 to perform image recognition processing, and determines whether or not the center of the visual field of the capsule endoscope 10 matches the target position based on the result. Specifically, the image processing unit 23 calculates the feature amount of the central portion of the in-vivo image, and compares this feature amount with the feature amount of the pyloric region calculated in step S107. If the difference between the two feature amounts is within a predetermined range, it is determined that the center of the field of view matches the target position. Note that this image recognition processing may be performed on in-vivo images of all frames that are sequentially generated, or may be performed on in-vivo images thinned out at a predetermined interval.
 未だ視野の中心部が目標位置に合わない場合(ステップS109:No)、誘導装置20の動作は、ステップS108に戻る。これらのステップS108~S109を繰り返すことにより、表示部24に表示される体内画像において幽門領域が中心部に近づいてくる。 If the center of the field of view still does not match the target position (step S109: No), the operation of the guidance device 20 returns to step S108. By repeating these steps S108 to S109, the pylorus region approaches the center in the in-vivo image displayed on the display unit 24.
 視野の中心部が目標位置に合った場合(ステップS109:Yes)、制御部26は、視野の中心部が目標位置に合った旨の通知画面を表示部24に表示させる(ステップS110)。 When the center of the visual field matches the target position (step S109: Yes), the control unit 26 causes the display unit 24 to display a notification screen indicating that the central part of the visual field matches the target position (step S110).
 図8は、視野の中心部が目標位置に合った旨の通知画面の表示例を示す模式図である。図8に示す画面M2は、体内画像表示領域m10に加え、カプセル型内視鏡10を目標位置まで接近させる指示を入力するための接近指示入力ボタンm14を含んでいる。また、体内画像表示領域m10には、中心部に幽門輪m12が位置した状態の体内画像が表示されている。ユーザは、画面M2に接近指示入力ボタンm14が表示されているのを確認することにより、カプセル型内視鏡10の視野の中心部が目標位置に合ったと認識することができる。 FIG. 8 is a schematic diagram showing a display example of a notification screen indicating that the center of the visual field matches the target position. The screen M2 shown in FIG. 8 includes an approach instruction input button m14 for inputting an instruction to bring the capsule endoscope 10 to the target position in addition to the in-vivo image display area m10. In the in-vivo image display area m10, an in-vivo image with the pyloric ring m12 positioned at the center is displayed. By confirming that the approach instruction input button m14 is displayed on the screen M2, the user can recognize that the center portion of the visual field of the capsule endoscope 10 matches the target position.
 ステップS206において、ユーザは、幽門部を観察する。幽門部の観察が終了すると、続くステップS207において、ユーザは、カプセル型内視鏡10を幽門部に接近させる指示の入力操作を行う。具体的には、操作入力部27を用いて、画面M2内の接近指示入力ボタンm14をクリック操作等により選択操作する。これに応じて、操作入力部27は、制御部26に接近指示信号を入力する。 In step S206, the user observes the pylorus. When the observation of the pylorus is completed, in step S207, the user performs an input operation of an instruction for causing the capsule endoscope 10 to approach the pylorus. Specifically, using the operation input unit 27, a selection operation is performed by a click operation or the like of the approach instruction input button m14 in the screen M2. In response to this, the operation input unit 27 inputs an approach instruction signal to the control unit 26.
 ステップS111において、制御部26は、操作入力部27から接近指示信号が入力されたか否かを判定する。接近指示信号が入力されない場合(ステップS111:No)、制御部26はそのまま待機する。 In step S111, the control unit 26 determines whether an approach instruction signal is input from the operation input unit 27. When the approach instruction signal is not input (step S111: No), the control unit 26 stands by as it is.
 一方、接近指示信号が入力された場合(ステップS111:Yes)、誘導制御部262は、カプセル型内視鏡10を目標位置まで前進させる誘導制御を行う(ステップS112)。このとき、目標位置は既にカプセル型内視鏡10の視野の中心に位置しているので、目標位置が存在する面(幽門輪)に対してカプセル型内視鏡10を垂直に移動させれば良い。即ち、カプセル型内視鏡10の長軸La方向にカプセル型内視鏡10を移動させれば良いことになる。 On the other hand, when the approach instruction signal is input (step S111: Yes), the guidance control unit 262 performs guidance control to advance the capsule endoscope 10 to the target position (step S112). At this time, since the target position is already located at the center of the visual field of the capsule endoscope 10, if the capsule endoscope 10 is moved vertically with respect to the surface (pylorus ring) where the target position exists. good. That is, it is only necessary to move the capsule endoscope 10 in the direction of the long axis La of the capsule endoscope 10.
 ステップS113において、制御部26は、カプセル型内視鏡10が目標位置である幽門に到着したか否かを判定する。ここで、カプセル型内視鏡10が幽門に到着し、カプセル型内視鏡10の先端が幽門に接触すると、カプセル型内視鏡10を前進させる誘導制御を行っているにもかかわらず、カプセル型内視鏡10の位置が変化しなくなる。そのため、カプセル型内視鏡10の位置が変化しなくなった場合に、カプセル型内視鏡10が幽門に到着したと判定することができる。 In step S113, the control unit 26 determines whether or not the capsule endoscope 10 has arrived at the pylorus, which is the target position. Here, when the capsule endoscope 10 arrives at the pylorus and the tip of the capsule endoscope 10 comes into contact with the pylorus, the capsule endoscope 10 is guided and controlled to move forward. The position of the mold endoscope 10 does not change. Therefore, when the position of the capsule endoscope 10 no longer changes, it can be determined that the capsule endoscope 10 has arrived at the pylorus.
 カプセル型内視鏡10が未だ目標位置である幽門に到着しない場合(ステップS113:No)、制御部26はカプセル型内視鏡10を目標位置まで前進させる誘導制御を引き続き行う(ステップS112)。 When the capsule endoscope 10 has not yet arrived at the pylorus which is the target position (step S113: No), the control unit 26 continues to perform guidance control to advance the capsule endoscope 10 to the target position (step S112).
 一方、カプセル型内視鏡10が目標位置である幽門に到着した場合(ステップS113:Yes)、制御部26は、カプセル型内視鏡10が目標位置に到達した旨の通知画面を表示部24に表示させる(ステップS114)。 On the other hand, when the capsule endoscope 10 arrives at the pylorus which is the target position (step S113: Yes), the control unit 26 displays a notification screen indicating that the capsule endoscope 10 has reached the target position. (Step S114).
 図9は、カプセル型内視鏡10が目標位置に到達した旨の通知画面の表示例を示す模式図である。図9に示す画面M3は、体内画像表示領域m10に加えて、カプセル型内視鏡10に幽門輪m12を通過させる指示を入力するための幽門通過指示入力ボタンm15を含んでいる。また、体内画像表示領域m10においては、中心部の幽門輪m12がカプセル型内視鏡10の幽門への接近に伴い、接近前に比して大きくなった状態で表示されている。ユーザは、画面M3に幽門通過指示入力ボタンm15が表示されているのを確認することにより、カプセル型内視鏡10が目標位置に到達したと認識することができる。 FIG. 9 is a schematic diagram showing a display example of a notification screen indicating that the capsule endoscope 10 has reached the target position. A screen M3 shown in FIG. 9 includes, in addition to the in-vivo image display area m10, a pyloric passage instruction input button m15 for inputting an instruction for allowing the capsule endoscope 10 to pass the pyloric ring m12. Further, in the in-vivo image display region m10, the pylorus ring m12 at the center is displayed in a larger state as the capsule endoscope 10 approaches the pylorus than before the approach. The user can recognize that the capsule endoscope 10 has reached the target position by confirming that the pyloric passage instruction input button m15 is displayed on the screen M3.
 ステップS208において、ユーザは、カプセル型内視鏡10に幽門輪を通過させる指示の入力操作を行う。具体的には、操作入力部27を用いて、画面M3内の幽門通過指示入力ボタンm15をクリック操作等により選択操作する。これに応じて、操作入力部27は、制御部26に幽門通過指示信号を入力する。 In step S208, the user performs an input operation for instructing the capsule endoscope 10 to pass the pylorus. Specifically, using the operation input unit 27, a selection operation is performed by a click operation or the like of the pylorus passage instruction input button m15 in the screen M3. In response to this, the operation input unit 27 inputs a pyloric passage instruction signal to the control unit 26.
 ステップS115において、制御部26は、操作入力部27から幽門通過指示信号が入力されたか否かを判定する。幽門通過指示信号が入力されない場合(ステップS115:No)、制御部26はそのまま待機する。 In step S115, the control unit 26 determines whether or not a pyloric passage instruction signal is input from the operation input unit 27. When the pyloric passage instruction signal is not input (step S115: No), the control unit 26 stands by as it is.
 一方、操作入力部27から幽門通過指示信号が入力された場合(ステップS115:Yes)、誘導制御部262は、カプセル型内視鏡10をさらに前進させる誘導制御を行う(ステップS116)。この際、誘導制御部262は、カプセル型内視鏡10が幽門輪に接触した場合であっても幽門輪を押圧して前進し続けるように、磁界生成部25に強い磁界を発生させる。それにより幽門輪を開口させ、カプセル型内視鏡10を通過させる。 On the other hand, when a pyloric passage instruction signal is input from the operation input unit 27 (step S115: Yes), the guidance control unit 262 performs guidance control to further advance the capsule endoscope 10 (step S116). At this time, the guidance control unit 262 causes the magnetic field generation unit 25 to generate a strong magnetic field so that the capsule endoscope 10 keeps moving forward by pressing the pyloric ring even when the capsule endoscope 10 contacts the pyloric ring. Thereby, the pylorus ring is opened and the capsule endoscope 10 is passed through.
 ステップS117において、制御部26は、カプセル型内視鏡10が幽門輪を通過したか否かを判定する。詳細には、画像処理部23に画像認識処理を実行させることにより、体内画像から幽門領域が消滅したか否かを判定し、体内画像から幽門領域が消滅した場合に、カプセル型内視鏡10が幽門輪を通過して十二指腸に移動したと判定する。なお、この画像認識処理は、ステップS109と同様に、体内画像の特徴量とステップS107において算出した幽門領域の特徴量とを比較することにより行われる。或いは、制御部26は、カプセル型内視鏡10が幽門輪に向けて前進を開始してから所定時間が経過したときに、幽門輪を通過したと判定しても良い。 In step S117, the control unit 26 determines whether or not the capsule endoscope 10 has passed through the pylorus ring. Specifically, by causing the image processing unit 23 to perform image recognition processing, it is determined whether or not the pyloric region has disappeared from the in-vivo image. When the pyloric region has disappeared from the in-vivo image, the capsule endoscope 10 Is determined to have moved through the pyloric ring to the duodenum. Note that this image recognition processing is performed by comparing the feature amount of the in-vivo image with the feature amount of the pyloric region calculated in step S107, as in step S109. Alternatively, the control unit 26 may determine that the capsule endoscope 10 has passed through the pyloric ring when a predetermined time has elapsed since the capsule endoscope 10 started moving toward the pyloric ring.
 未だカプセル型内視鏡10が幽門輪を通過しない場合(ステップS117:No)、誘導制御部262は、カプセル型内視鏡10を前進させる誘導制御を継続する(ステップS116)。一方、カプセル型内視鏡10が幽門輪を通過した場合(ステップS117:Yes)、誘導制御部262は、カプセル型内視鏡10を前進させる誘導制御を解除する(ステップS118)。 If the capsule endoscope 10 has not yet passed through the pylorus (step S117: No), the guidance control unit 262 continues the guidance control for moving the capsule endoscope 10 forward (step S116). On the other hand, when the capsule endoscope 10 passes through the pyloric ring (step S117: Yes), the guidance control unit 262 cancels the guidance control for moving the capsule endoscope 10 forward (step S118).
 この後、ユーザは、必要に応じて十二指腸や小腸の観察を行う。そして、ステップS209において、検査終了の操作を行う。具体的には、表示部24の画面に対する所定のポインタ操作(例えば終了ボタンに対するクリック操作)や、専用に設けられた入力ボタンに対する押圧操作等を行う。これに応じて、操作入力部27は、検査終了を指示する信号を制御部26に入力する。 After this, the user observes the duodenum and small intestine as necessary. In step S209, an operation for ending the inspection is performed. Specifically, a predetermined pointer operation on the screen of the display unit 24 (for example, a click operation on the end button), a pressing operation on a dedicated input button, or the like is performed. In response to this, the operation input unit 27 inputs a signal instructing the end of the inspection to the control unit 26.
 ステップS119において、制御部26は、操作入力部27から検査終了を指示する信号が入力されたか否かを判定する。検査終了を指示する信号が入力されない場合(ステップS119:No)、誘導装置20は、カプセル型内視鏡10から受信した画像信号に基づく体内画像の表示を継続する。なお、その間に操作入力部27から誘導指示情報が入力された場合には、この誘導指示情報に従ってカプセル型内視鏡10の誘導制御を行う。 In step S119, the control unit 26 determines whether or not a signal instructing the end of the inspection is input from the operation input unit 27. When the signal for instructing the end of the examination is not input (step S119: No), the guidance device 20 continues displaying the in-vivo image based on the image signal received from the capsule endoscope 10. In the meantime, when guidance instruction information is input from the operation input unit 27, guidance control of the capsule endoscope 10 is performed according to the guidance instruction information.
 一方、検査終了を指示する信号が入力された場合(ステップS119:Yes)、制御部26は、体内画像の表示を終了させ(ステップS120)、その後、誘導装置20の動作を終了させる。 On the other hand, when a signal instructing the end of the examination is input (step S119: Yes), the control unit 26 ends the display of the in-vivo image (step S120), and then ends the operation of the guidance device 20.
 以上説明したように、実施の形態1によれば、ユーザが体内画像上で選択した幽門輪に対応する被検体内の領域を目標位置として設定し、カプセル型内視鏡10の視野の中心部がこの目標位置に合うように誘導制御を行うと共に、目標位置に向けてカプセル型内視鏡10を前進させる誘導制御を行うので、被検体内において幽門輪が変動していても、カプセル型内視鏡10を幽門輪に確実に近づけ、通過させることが可能となる。 As described above, according to the first embodiment, the region in the subject corresponding to the pyloric ring selected by the user on the in-vivo image is set as the target position, and the center of the visual field of the capsule endoscope 10 is set. Since the guidance control is performed so that the capsule endoscope 10 is moved forward toward the target position, even if the pylorus fluctuates in the subject, The endoscope 10 can be surely brought close to the pylorus ring and allowed to pass through.
 なお、上記実施の形態1においては、カプセル型内視鏡10の視野の中心部を目標位置に合わせた後、操作入力部27から接近指示信号が入力された場合に、カプセル型内視鏡10を目標位置に接近させる誘導制御を行うこととしたが、目標位置設定部261が目標位置を設定した際に、カプセル型内視鏡10の視野の中心部を目標位置に合わせる誘導制御とカプセル型内視鏡10を目標位置に接近させる誘導制御とを同時に開始することとしても良い。 In the first embodiment, when the approach instruction signal is input from the operation input unit 27 after the center of the visual field of the capsule endoscope 10 is set to the target position, the capsule endoscope 10 However, when the target position setting unit 261 sets the target position, the guidance control for adjusting the center of the visual field of the capsule endoscope 10 to the target position and the capsule type are performed. The guidance control for bringing the endoscope 10 closer to the target position may be started simultaneously.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。
 実施の形態2に係るカプセル型内視鏡誘導システムの構成は図1に示すものと同様であり、幽門を目標位置として設定する動作が実施の形態1と異なる。
(Embodiment 2)
Next, a second embodiment of the present invention will be described.
The configuration of the capsule endoscope guidance system according to the second embodiment is the same as that shown in FIG. 1, and the operation for setting the pylorus as the target position is different from that of the first embodiment.
 実施の形態2においては、過去の検査等により収集された代表的な幽門輪の画像の特徴量が記憶部28に予め記憶されている。幽門抽出部231はこの特徴量を用いて、体内画像から幽門領域を自動抽出する。目標位置設定部261は、幽門抽出部231が自動抽出した幽門領域に対応する被検体内の領域を目標位置として設定する。 In the second embodiment, the characteristic amount of a typical pylorus ring image collected by past examination or the like is stored in the storage unit 28 in advance. The pylorus extraction unit 231 automatically extracts the pylorus region from the in-vivo image using this feature amount. The target position setting unit 261 sets a region in the subject corresponding to the pyloric region automatically extracted by the pyloric extraction unit 231 as a target position.
 図10は、実施の形態2に係るカプセル型内視鏡誘導システムの動作を示すフローチャートである。このうち、ステップS100~S104は実施の形態1と同様である。また、図11は、実施の形態2に係るカプセル型内視鏡誘導システムを用いた検査におけるユーザの動作を示すフローチャートである。このうち、ステップS200~S202は実施の形態1と同様である。なお、実施の形態2において、ユーザは、胃内を観察する際、幽門部の観察順序を最後にする必要はなく、所望の部位から観察を進めれば良い。 FIG. 10 is a flowchart showing the operation of the capsule endoscope guidance system according to the second embodiment. Among these, steps S100 to S104 are the same as those in the first embodiment. FIG. 11 is a flowchart showing a user operation in an examination using the capsule endoscope guidance system according to the second embodiment. Among these, steps S200 to S202 are the same as those in the first embodiment. In the second embodiment, when observing the inside of the stomach, the user does not need to end the observation order of the pylorus part, and can proceed with observation from a desired site.
 ステップS104に続くステップS130において、幽門抽出部231は、順次生成される体内画像の特徴量を算出し、算出した特徴量を記憶部28に記憶された幽門輪の画像の特徴量と比較することにより、体内画像から幽門領域の候補領域を検出する処理を行う。 In step S130 following step S104, the pylorus extraction unit 231 calculates the feature amount of the in-vivo images that are sequentially generated, and compares the calculated feature amount with the feature amount of the pylorus ring image stored in the storage unit 28. Thus, a process for detecting a candidate region of the pyloric region from the in-vivo image is performed.
 ステップS131において、体内画像から候補領域が検出されない場合(ステップS131:No)、誘導装置20の動作は後述するステップS135に移行する。一方、体内画像から候補領域が検出された場合(ステップS131:Yes)、制御部26は、検出された候補領域が幽門領域であるか否かをユーザに確認させるための画面(幽門確認画面)を作成し、表示部24に表示させる(ステップS132)。 In step S131, when the candidate area is not detected from the in-vivo image (step S131: No), the operation of the guidance device 20 proceeds to step S135 described later. On the other hand, when a candidate area is detected from the in-vivo image (step S131: Yes), the control unit 26 causes the user to check whether the detected candidate area is a pyloric area (pylorus confirmation screen). Is created and displayed on the display unit 24 (step S132).
 図12は、幽門確認画面の表示例を示す模式図である。図12に示す幽門確認画面M4は、体内画像表示領域m10に加え、ユーザが判断結果を入力するための幽門確認ボタンm17及び未確認ボタンm18を含んでいる。また、体内画像表示領域m10には、体内画像に加えて、体内画像から検出された候補領域を囲む枠m16が重畳表示されている。 FIG. 12 is a schematic diagram showing a display example of the pylorus confirmation screen. The pylorus confirmation screen M4 shown in FIG. 12 includes, in addition to the in-vivo image display area m10, a pylorus confirmation button m17 and an unconfirmed button m18 for the user to input a determination result. In addition to the in-vivo image, a frame m16 surrounding the candidate area detected from the in-vivo image is superimposed on the in-vivo image display area m10.
 ステップS220において、ユーザは、枠m16で囲まれた候補領域を目視し、この候補領域が幽門領域であるか否かの判断結果を、操作入力部27を用いて入力する。具体的には、候補領域が幽門領域であると判断した場合、操作入力部27を用いて、幽門確認画面M4内の幽門確認ボタンm17をクリック操作等により選択操作する。これに応じて、操作入力部27から制御部26に、候補領域が幽門領域である旨を示す幽門確認信号が入力される。一方、ユーザは、候補領域が幽門領域でないと判断した場合、操作入力部27を用いて、幽門確認画面M4内の未確認ボタンm18をクリック操作等により選択操作する。これに応じて、操作入力部27から制御部26に、候補領域が幽門領域でない旨を示す信号が入力される。 In step S220, the user visually checks the candidate area surrounded by the frame m16, and inputs the determination result as to whether or not this candidate area is a pyloric area using the operation input unit 27. Specifically, when it is determined that the candidate area is a pylorus area, the operation input unit 27 is used to perform a selection operation by clicking the pylorus confirmation button m17 in the pylorus confirmation screen M4. In response to this, a pylorus confirmation signal indicating that the candidate region is a pyloric region is input from the operation input unit 27 to the control unit 26. On the other hand, when the user determines that the candidate area is not the pylorus area, the user uses the operation input unit 27 to select and operate the unconfirmed button m18 in the pylorus confirmation screen M4. In response to this, a signal indicating that the candidate region is not the pyloric region is input from the operation input unit 27 to the control unit 26.
 ユーザは、胃の観察を継続する場合(ステップS221:No)、ステップS202に戻る。そして、表示部24に幽門確認画面が表示された際に、候補領域の判断を随時行えば良い。一方、ユーザは、胃の観察を終了する場合(ステップS221:Yes)、胃の観察終了の操作を行う(ステップS222)。具体的には、表示部24の画面に対する所定のポインタ操作(例えば胃観察終了ボタンに対するクリック操作)や、専用に設けられた入力ボタンに対する押圧操作等を行う。これに応じて、操作入力部27は、胃の観察終了を指示する信号を制御部26に入力する。 When the user continues to observe the stomach (step S221: No), the user returns to step S202. Then, when the pylorus confirmation screen is displayed on the display unit 24, the candidate area may be determined as needed. On the other hand, when ending the stomach observation (step S221: Yes), the user performs an operation for ending the stomach observation (step S222). Specifically, a predetermined pointer operation on the screen of the display unit 24 (for example, a click operation on the stomach observation end button), a pressing operation on a dedicated input button, or the like is performed. In response to this, the operation input unit 27 inputs a signal instructing the end of stomach observation to the control unit 26.
 ステップS133において、操作入力部27から幽門確認信号が入力されない場合(ステップS133:No)、誘導装置20の動作はそのままステップS135に移行する。一方、操作入力部27から幽門確認信号が入力された場合(ステップS133:Yes)、制御部26は、カプセル型内視鏡10の位置情報(即ち、カプセル型内視鏡10の現在の位置及び姿勢)をもとに、幽門領域として確認された候補領域の位置を算出し、この位置を表す位置情報を記憶する(ステップS134)。 In step S133, when the pylorus confirmation signal is not input from the operation input unit 27 (step S133: No), the operation of the guidance device 20 proceeds to step S135 as it is. On the other hand, when the pylorus confirmation signal is input from the operation input unit 27 (step S133: Yes), the control unit 26 detects the position information of the capsule endoscope 10 (that is, the current position of the capsule endoscope 10 and the current position of the capsule endoscope 10). The position of the candidate area confirmed as the pyloric area is calculated based on the (posture), and position information representing this position is stored (step S134).
 続くステップS135において、制御部26は、操作入力部27から胃の観察終了を指示する信号が入力されたか否かを判定する。胃の観察終了を指示する信号が入力されない場合(ステップS135:No)、誘導装置20の動作はステップS103に戻る。 In subsequent step S135, the control unit 26 determines whether or not a signal instructing the end of stomach observation is input from the operation input unit 27. When the signal for instructing the end of the stomach observation is not input (step S135: No), the operation of the guidance device 20 returns to step S103.
 一方、胃の観察終了を指示する信号が入力された場合(ステップS135:Yes)、目標位置設定部261は、ステップS134において記憶部28に記憶された位置情報を読み出し、幽門領域として確認された候補領域に対応する被検体内の位置を目標位置として設定する(ステップS136)。続くステップS108以降の動作は、実施の形態1と同様である。また、ステップS206以降のユーザの動作も、実施の形態1と同様である。 On the other hand, when a signal instructing the end of stomach observation is input (step S135: Yes), the target position setting unit 261 reads the position information stored in the storage unit 28 in step S134, and is confirmed as a pyloric region. The position in the subject corresponding to the candidate area is set as the target position (step S136). The subsequent operations after step S108 are the same as those in the first embodiment. In addition, the user operations after step S206 are the same as those in the first embodiment.
 以上説明したように、本発明の実施の形態2によれば、ユーザが胃内の観察を行っている過程で、幽門抽出部231が幽門領域の候補領域を自動的に検出し、候補領域のうち、ユーザが幽門領域と判断した候補領域及びその位置情報を記憶部28に記憶させておくので、ユーザは、所望の順序で胃内を観察することができる。 As described above, according to the second embodiment of the present invention, the pylorus extraction unit 231 automatically detects the candidate area of the pylorus area while the user is observing the stomach, and the candidate area Among them, the candidate area determined by the user as the pyloric area and the position information thereof are stored in the storage unit 28, so that the user can observe the stomach in a desired order.
(変形例)
 次に、本発明の実施の形態2の変形例について説明する。
 上記実施の形態2においては、幽門抽出部231が検出した候補領域が幽門領域であるか否かをユーザに判断させることとしたが、候補領域に対する判断を制御部26が実行することとしても良い。この場合、幽門抽出部231は、幽門領域の候補領域を検出すると、抽出した候補領域の特徴量と、このときのカプセル型内視鏡10の位置情報とを関連付けて記憶部28に記憶させる。そして、胃の観察終了を指示する信号が入力された後で(ステップS135参照)、制御部26は、記憶部28に蓄積された候補領域の特徴量を読み出し、記憶部28に予め記憶されている幽門輪画像の特徴量と最もよく一致する候補領域を幽門領域として決定し、この候補領域と関連付けられた位置情報に基づいて目標位置を設定する。
(Modification)
Next, a modification of the second embodiment of the present invention will be described.
In Embodiment 2 described above, the user is allowed to determine whether or not the candidate area detected by the pylorus extraction unit 231 is a pyloric area, but the control unit 26 may execute a determination on the candidate area. . In this case, when detecting the candidate area of the pyloric region, the pylorus extracting unit 231 associates the extracted feature amount of the candidate region with the positional information of the capsule endoscope 10 at this time and stores it in the storage unit 28. Then, after the signal for instructing the end of the stomach observation is input (see step S135), the control unit 26 reads the feature amount of the candidate area accumulated in the storage unit 28, and is stored in the storage unit 28 in advance. A candidate area that most closely matches the feature amount of the pylorus ring image is determined as a pylorus area, and a target position is set based on position information associated with the candidate area.
 或いは、胃の観察終了を指示する信号が入力された後(ステップS135参照)、制御部26は、記憶部28に蓄積された候補領域を含む体内画像を一覧表示し、一覧表示された体内画像の中から、幽門領域を含む体内画像をユーザに選択させても良い。この場合、制御部26は、ユーザが選択した体内画像内の候補領域を幽門領域として決定し、この候補領域と関連付けられた位置情報に基づいて目標位置を設定する。 Alternatively, after a signal instructing the end of stomach observation is input (see step S135), the control unit 26 displays a list of in-vivo images including candidate regions accumulated in the storage unit 28, and the in-vivo images displayed as a list are displayed. The in-vivo image including the pyloric region may be selected by the user. In this case, the control unit 26 determines a candidate area in the in-vivo image selected by the user as a pyloric area, and sets a target position based on position information associated with the candidate area.
 以上説明した実施の形態1、2及び変形例は、本発明を実施するための例にすぎず、本発明はこれらに限定されるものではない。また、本発明は、実施の形態1、2及び変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成できる。本発明は、仕様等に応じて種々変形することが可能であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは、上記記載から自明である。 Embodiments 1 and 2 and the modifications described above are merely examples for carrying out the present invention, and the present invention is not limited to these. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the first and second embodiments and the modified examples. It is obvious from the above description that the present invention can be variously modified according to specifications and the like, and that various other embodiments are possible within the scope of the present invention.
 1 カプセル型内視鏡誘導システム
 10 カプセル型内視鏡
 11A、11B 撮像部
 12A、12B 照明部
 13A、13B 光学系
 14A、14B 撮像素子
 15 制御部
 16 無線通信部
 16a アンテナ
 17 電源部
 18 永久磁石
 20 誘導装置
 21 受信部
 21a 受信アンテナ
 22 位置及び姿勢検出部
 23 画像処理部
 231 幽門抽出部
 24 表示部
 25 磁界生成部
 25a 体外永久磁石
 25b 平面位置変更部
 25c 鉛直位置変更部
 25d 仰角変更部
 25e 旋回角変更部
 26 制御部
 261 目標位置設定部
 262 誘導制御部
 27 操作入力部
 271 幽門領域指定部
 272 通過指示入力部
 28 記憶部
 100 カプセル型筐体
 101 筒状筐体
 102、103 ドーム状筐体
DESCRIPTION OF SYMBOLS 1 Capsule-type endoscope guidance system 10 Capsule- type endoscope 11A, 11B Imaging part 12A, 12B Illumination part 13A, 13B Optical system 14A, 14B Imaging element 15 Control part 16 Wireless communication part 16a Antenna 17 Power supply part 18 Permanent magnet 20 Guiding device 21 Receiving unit 21a Receiving antenna 22 Position and posture detecting unit 23 Image processing unit 231 Pyloric extraction unit 24 Display unit 25 Magnetic field generating unit 25a Extracorporeal permanent magnet 25b Planar position changing unit 25c Vertical position changing unit 25d Elevation angle changing unit 25e Turning angle Change unit 26 Control unit 261 Target position setting unit 262 Guidance control unit 27 Operation input unit 271 Pyloric region designation unit 272 Passing instruction input unit 28 Storage unit 100 Capsule-type casing 101 Cylindrical casing 102, 103 Domed casing

Claims (10)

  1.  被検体内に導入されて撮像を行うことにより画像信号を生成し、該画像信号を順次無線送信するカプセル型内視鏡と、
     前記カプセル型内視鏡を前記被検体内において誘導する誘導装置と、
    を備え、
     前記誘導装置は、
     前記カプセル型内視鏡の位置及び姿勢を変化させる誘導手段と、
     前記画像信号を順次受信する受信部と、
     前記画像信号に基づいて体内画像を順次生成すると共に、前記被検体内の幽門が写った領域である幽門領域を前記体内画像から抽出する画像処理部と、
     前記幽門領域に対応する前記被検体内の位置を目標位置として設定する目標位置設定部と、
     前記カプセル型内視鏡の視野の中心部が前記目標位置に合うように前記カプセル型内視鏡の位置又は姿勢を変化させる第1の誘導制御と、前記カプセル型内視鏡の視野の中心部を前記目標位置に合わせた状態のまま、前記カプセル型内視鏡を前記目標位置に向け、少なくとも前記目標位置に接触するまで前進させる第2の誘導制御とを前記誘導手段に対して実行する誘導制御部と、
    を有する、
    ことを特徴とするカプセル型内視鏡誘導システム。
    A capsule endoscope that is introduced into a subject and performs imaging to generate an image signal and sequentially wirelessly transmit the image signal;
    A guiding device for guiding the capsule endoscope in the subject;
    With
    The guidance device includes:
    Guiding means for changing the position and posture of the capsule endoscope;
    A receiving unit for sequentially receiving the image signals;
    An image processing unit that sequentially generates in-vivo images based on the image signals, and extracts a pyloric region that is a region in which the pylorus is reflected in the subject from the in-vivo image;
    A target position setting unit that sets a position in the subject corresponding to the pylorus region as a target position;
    A first guidance control for changing a position or posture of the capsule endoscope so that a central portion of the visual field of the capsule endoscope is aligned with the target position; and a central portion of the visual field of the capsule endoscope In a state in which the capsule endoscope is directed to the target position and advanced at least until the capsule endoscope comes into contact with the target position, in a state where the position of the capsule endoscope is adjusted to the target position. A control unit;
    Having
    A capsule endoscope guidance system characterized by the above.
  2.  前記画像処理部は、幽門が写った画像の特徴量を予め保持し、該特徴量と前記体内画像の特徴量とに基づいて前記幽門領域を抽出する、ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。 The said image processing part hold | maintains beforehand the feature-value of the image in which the pylorus was reflected, and extracts the said pylorus area | region based on this feature-value and the feature-value of the said in-vivo image. Capsule type endoscope guidance system.
  3.  前記誘導装置は、
     前記体内画像を表示する表示部と、
     外部からなされる操作に応じて、前記体内画像内の領域を指定する操作入力部と、
    をさらに備え、
     前記画像処理部は、前記操作入力部によって指定された前記領域の特徴量を算出し、該特徴量と前記体内画像の特徴量とに基づいて前記幽門領域を抽出する、
    ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。
    The guidance device includes:
    A display unit for displaying the in-vivo image;
    An operation input unit for designating a region in the in-vivo image according to an operation performed from the outside;
    Further comprising
    The image processing unit calculates a feature amount of the region specified by the operation input unit, and extracts the pyloric region based on the feature amount and the feature amount of the in-vivo image;
    The capsule endoscope guidance system according to claim 1.
  4.  前記誘導装置は、外部からなされる操作に応じた指示信号を入力する操作入力部をさらに有し、
     前記誘導制御部は、前記第1の誘導制御を実行した後、前記操作入力部から前記指示信号が入力された場合に、前記第2の誘導制御を実行する、
    ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。
    The guidance device further includes an operation input unit that inputs an instruction signal according to an operation performed from the outside,
    The guidance control unit executes the second guidance control when the instruction signal is input from the operation input unit after executing the first guidance control.
    The capsule endoscope guidance system according to claim 1.
  5.  前記誘導制御部は、前記操作入力部から前記指示信号が入力された後、前記体内画像から前記幽門領域が抽出されなくなった場合に、前記第2の誘導制御を終了する、ことを特徴とする請求項4に記載のカプセル型内視鏡誘導システム。 The guidance control unit ends the second guidance control when the pyloric region is not extracted from the in-vivo image after the instruction signal is input from the operation input unit. The capsule endoscope guidance system according to claim 4.
  6.  前記誘導制御部は、前記操作入力部から前記指示信号が入力された後、所定時間が経過した場合に、前記第2の誘導制御を終了する、ことを特徴とする請求項4に記載のカプセル型内視鏡誘導システム。 The capsule according to claim 4, wherein the guidance control unit ends the second guidance control when a predetermined time has elapsed after the instruction signal is input from the operation input unit. Type endoscope guidance system.
  7.  前記誘導制御部は、前記目標位置が設定された際、前記第1及び第2の誘導制御を同時に実行開始する、ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。 The capsule endoscope guidance system according to claim 1, wherein when the target position is set, the guidance control unit starts executing the first and second guidance controls simultaneously.
  8.  前記誘導制御部は、前記第2の誘導制御の実行中、前記カプセル型内視鏡が前記目標位置に接触した後、前記カプセル型内視鏡をさらに前進させて前記目標位置を押圧させる誘導制御を行う、ことを特徴とする請求項1に記載のカプセル型内視鏡誘導システム。 The guidance control unit is configured to perform guidance control to further advance the capsule endoscope and press the target position after the capsule endoscope comes into contact with the target position during execution of the second guidance control. The capsule endoscope guidance system according to claim 1, wherein:
  9.  前記カプセル型内視鏡は、内部に永久磁石を有し、
     前記誘導手段は、前記永久磁石に印加する磁界を生成することにより、前記カプセル型内視鏡の位置及び姿勢を変化させる、
    ことを特徴とする請求項1~8のいずれか1項に記載のカプセル型内視鏡誘導システム。
    The capsule endoscope has a permanent magnet inside,
    The guiding means changes the position and posture of the capsule endoscope by generating a magnetic field to be applied to the permanent magnet.
    The capsule endoscope guiding system according to any one of claims 1 to 8, wherein
  10.  被検体内に導入されて撮像を行うカプセル型内視鏡と、前記カプセル型内視鏡を誘導する誘導装置とを備えるカプセル型内視鏡誘導システムの作動方法であって、
     前記カプセル型内視鏡が、前記被検体内を撮像することにより画像信号を生成し、該画像信号を順次無線送信する送信ステップと、
     前記誘導装置が、前記カプセル型内視鏡から無線送信された前記画像信号を順次受信する受信ステップと、
     前記誘導装置が、前記画像信号に基づいて体内画像を順次生成すると共に、前記被検体内の幽門が写った領域である幽門領域を前記体内画像から抽出する画像処理ステップと、
     前記誘導装置が、前記幽門領域に対応する前記被検体内の位置を目標位置として設定する目標位置設定ステップと、
     前記誘導装置が、前記カプセル型内視鏡の視野の中心部が前記目標位置に合うように前記カプセル型内視鏡の位置又は姿勢を変化させる第1の誘導制御と、前記カプセル型内視鏡の視野の中心部を前記目標位置に合わせた状態のまま、前記カプセル型内視鏡を前記目標位置に向け、少なくとも前記目標位置に接触するまで前進させる第2の誘導制御とを実行する誘導制御ステップと、
    を含むことを特徴とするカプセル型内視鏡誘導システムの作動方法。
    An operation method of a capsule endoscope guidance system including a capsule endoscope that is introduced into a subject and performs imaging, and a guidance device that guides the capsule endoscope,
    A transmission step in which the capsule endoscope generates an image signal by imaging the inside of the subject and wirelessly transmits the image signal sequentially;
    A receiving step in which the guidance device sequentially receives the image signals wirelessly transmitted from the capsule endoscope;
    The guidance device sequentially generates in-vivo images based on the image signals, and an image processing step of extracting from the in-vivo image a pyloric region that is a region in which the pylorus is reflected in the subject;
    A target position setting step in which the guidance device sets a position in the subject corresponding to the pyloric region as a target position;
    The guidance device includes a first guidance control for changing a position or posture of the capsule endoscope so that a center portion of a visual field of the capsule endoscope matches the target position, and the capsule endoscope. Guidance control for executing second guidance control for moving the capsule endoscope toward the target position and moving forward at least until it contacts the target position while keeping the center of the visual field of the subject at the target position Steps,
    A method for operating a capsule endoscope guidance system, comprising:
PCT/JP2015/076194 2014-11-04 2015-09-15 Capsule-type endoscope guidance system and operation method for capsule-type endoscope guidance system WO2016072156A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016521799A JPWO2016072156A1 (en) 2014-11-04 2015-09-15 Capsule-type endoscope guidance device, capsule-type endoscope guidance system, and operation method of capsule-type endoscope guidance device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-224605 2014-11-04
JP2014224605 2014-11-04

Publications (1)

Publication Number Publication Date
WO2016072156A1 true WO2016072156A1 (en) 2016-05-12

Family

ID=55908885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076194 WO2016072156A1 (en) 2014-11-04 2015-09-15 Capsule-type endoscope guidance system and operation method for capsule-type endoscope guidance system

Country Status (2)

Country Link
JP (1) JPWO2016072156A1 (en)
WO (1) WO2016072156A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112274096A (en) * 2020-07-14 2021-01-29 王兆英 Signal feedback type organ bottom identification system and corresponding terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077922A1 (en) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp. Into-examinee introduction system and in-examinee observation method
JP2009247494A (en) * 2008-04-03 2009-10-29 Olympus Medical Systems Corp Capsule medical system
JP2010099137A (en) * 2008-10-21 2010-05-06 Olympus Medical Systems Corp Capsule guide system
JP2010099139A (en) * 2008-10-21 2010-05-06 Olympus Medical Systems Corp Image display device, image display method, and image display program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077922A1 (en) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp. Into-examinee introduction system and in-examinee observation method
JP2009247494A (en) * 2008-04-03 2009-10-29 Olympus Medical Systems Corp Capsule medical system
JP2010099137A (en) * 2008-10-21 2010-05-06 Olympus Medical Systems Corp Capsule guide system
JP2010099139A (en) * 2008-10-21 2010-05-06 Olympus Medical Systems Corp Image display device, image display method, and image display program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112274096A (en) * 2020-07-14 2021-01-29 王兆英 Signal feedback type organ bottom identification system and corresponding terminal
CN112274096B (en) * 2020-07-14 2021-05-18 青岛大学附属医院 Signal feedback type organ bottom identification system and corresponding terminal

Also Published As

Publication number Publication date
JPWO2016072156A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
EP2371263B1 (en) Guiding system for capsule type medical device and method for guiding capsule type medical device
US8419621B2 (en) Capsule medical system and method for treating desired region inside subject
JP4625146B2 (en) Capsule endoscope system
US9517001B2 (en) Capsule endoscope system
CN101801254B (en) Capsule guiding system and capsule guiding method
JP5475208B1 (en) Magnetic field generator and capsule medical device guidance system
JP4674276B1 (en) Capsule type medical device guidance system
US8460177B2 (en) Capsule medical device guidance system and method for guiding capsule medical device
CN104203068A (en) Capsule therapy device and therapy system
JP6049951B2 (en) Capsule endoscope system
US9931022B2 (en) Capsule medical device guidance system
JP6028131B1 (en) Capsule endoscope system and magnetic field generator
US20120010480A1 (en) In-vivo information acquiring system
JP6022112B2 (en) Capsule-type endoscope guidance system, guidance device, and method of operating guidance device
WO2016072156A1 (en) Capsule-type endoscope guidance system and operation method for capsule-type endoscope guidance system
JP5948524B1 (en) Capsule type medical device guidance system
WO2016157596A1 (en) Capsule endoscope guidance system and capsule endoscope guidance apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016521799

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15856832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15856832

Country of ref document: EP

Kind code of ref document: A1