[go: up one dir, main page]

WO2016071225A2 - Stator pour un alternateur ou une machine electrique - Google Patents

Stator pour un alternateur ou une machine electrique Download PDF

Info

Publication number
WO2016071225A2
WO2016071225A2 PCT/EP2015/075259 EP2015075259W WO2016071225A2 WO 2016071225 A2 WO2016071225 A2 WO 2016071225A2 EP 2015075259 W EP2015075259 W EP 2015075259W WO 2016071225 A2 WO2016071225 A2 WO 2016071225A2
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
width
stator
yoke
notch
Prior art date
Application number
PCT/EP2015/075259
Other languages
English (en)
Other versions
WO2016071225A3 (fr
Inventor
Eric Simon
Matthieu BONNICI
Olivier SAVINOIS
Bruno DANDRE
Vincent Ramet
Stéphane DE CLERCQ
Xavier Dunesme
Jean-François GAUTRU
Pierre Faverolle
Original Assignee
Valeo Equipements Electriques Moteur
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Equipements Electriques Moteur filed Critical Valeo Equipements Electriques Moteur
Priority to CN201580058839.3A priority Critical patent/CN107148722B/zh
Priority to JP2017523956A priority patent/JP2017537591A/ja
Priority to EP15787231.8A priority patent/EP3216111A2/fr
Priority to US15/524,189 priority patent/US20180083498A1/en
Publication of WO2016071225A2 publication Critical patent/WO2016071225A2/fr
Publication of WO2016071225A3 publication Critical patent/WO2016071225A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a stator for an alternator or for an electric machine, it also relates to an alternator or an electric machine comprising such a stator.
  • the invention finds a particularly advantageous application in the field of alternators and alternator-starters of a motor vehicle.
  • a rotary electric machine of the single phase or polyphase type comprises at least two coaxially arranged parts, namely an armature and an inductor. A first of the parts surrounds the second of the parts, which is conventionally secured to a rotary shaft.
  • the first of the parts constitutes a stator, while the second part constitutes the rotor of the machine.
  • this machine constitutes an electric motor and transforms electrical energy into mechanical energy.
  • This machine transforms mechanical energy into electrical energy when the armature is formed by the stator to operate as an electric generator and constitute for example an alternator.
  • the electric machine can be reversible and also convert electrical energy into mechanical energy to form, for example, a motor vehicle starter-alternator, in particular enabling the motor vehicle internal combustion engine to be started while having an alternator function. .
  • FIG. 1 which is a half-sectional view, shows a polyphase rotating electric machine in the form of an alternator of the three-phase type with internal ventilation for a motor vehicle with an internal combustion engine of the type described in EP-A.
  • the alternator comprises, going from left to right of FIG. 1, that is to say from front to back, a driving pulley 1 1 secured to the front end of a shaft 2, the rear end carries slip rings 10a, 10b belonging to a manifold 1.
  • the axis XX of the shaft 2 constitutes the axis of rotation of the machine and the collector.
  • the shaft 2 carries the rotor 4 with an excitation winding 5, the ends of which are connected by wire links to the collector 1, as can also be seen in FIG. 11 of the documents FR 2 710 197, FR 2. 710 199 and FR 2 710 200.
  • the rotor 4 is here a claw rotor and therefore comprises two pole wheels 6,7 each respectively carrying a front fan 8 and rear 9 each having blades as in EP-A-0 515 259.
  • Each wheel has axial teeth directed towards the other wheel with intermeshing of the teeth from one wheel to the other for forming magnetic poles when the winding 5 is activated thanks to the collector rings of the collector 1 each in contact with a brush (no referenced) carried by a brush holder 100 integral in this embodiment of a non-visible voltage regulator.
  • the brushes are radially oriented relative to the X-X axis, while the rings 10a, 10b are axially oriented with respect to the X-X axis.
  • the regulator is connected to a direct current rectifying device DC 1 10, such as a diode bridge (of which two are visible in Figure 1) or alternatively transistors of the MOSFET type, especially when the alternator is reversible type and consists of an alternator-starter as described for example in WO 01/69762.
  • DC 1 10 direct current rectifying device
  • This device 1 10 is itself electrically connected, on the one hand, to the outputs of the phases belonging to the windings 12, which comprises the stator 13 of the alternator, and on the other hand, to the onboard network and the battery of the motor vehicle.
  • This stator 13, forming an armature in the case of an alternator surrounds the rotor 4 and comprises a body 14 provided internally with axial notches (not visible) and with coils 12.
  • the axial notches are provided with the wires or pins of the coils 12.
  • These windings 12 have buns (no referenced) extending, on the one hand, in axial projection on either side of the body14; and, on the other hand, radially above the fans 8, 9.
  • the function of the voltage regulator is to control the current flowing in the excitation winding 5 in order to regulate the voltage delivered to the vehicle's on-board network and battery via the current rectifying device 1 10.
  • the fans 8, 9 extend in the vicinity respectively of a front flange, called front bearing 150, and a rear flange, called rear bearing 160 belonging to the fixed housing of the electrical machine connected to ground.
  • the bearings 150, 160 are perforated for internal ventilation of the alternator via the fans 8, 9 when the fan assembly 8, 9 - rotor 4 - shaft 2 is rotated by the pulley 1 1 connected to the engine of the motor vehicle by a transmission device comprising at least one belt engaged with the pulley 1.
  • This ventilation makes it possible to cool the windings 12, 5 as well as the brush holder 100 with its regulator and the straightening device 1 10.
  • the arrows in FIG. 1 show the path followed by the cooling fluid, here in FIG. air, through the different openings of the bearings 150, 1 60 and inside the machine.
  • This device 1 10, the brush holder 100, and a perforated protective cover (not referenced) are carried here by the rear bearing 1 60 so that the rear fan 9 is more powerful than the front fan 8.
  • the bearings 150, 160 are interconnected, here with screws or tie rods not visible, to form a housing to be mounted on a fixed part of the vehicle.
  • the bearings 150, 1 60 each centrally carry a ball bearing 17, 18 for rotatably supporting the front and rear ends of the shaft 2 passing through the bearings 150, 1 60 to carry the pulley January 1 and the rings 10a, 10b of collector 1.
  • bearings have a hollow shape and here each have a portion of perforated transverse orientation carrying the bearing 17, 18 and a portion of axial orientation perforated and internally staggered in diameter to axially centering and retaining the stator 13 when the two bearings are connected together to form the housing.
  • the blades of the fans 8, 9 extend radially above the housings that have the bearings 150, 160 for mounting the bearings 17 and 18; which are thus broken down.
  • FIG. 2 shows the cylindrical core or body 14 of the stator 13 in a plane perpendicular to the axis X-X.
  • the cylindrical core of the stator comprises in a circumferential direction an alternation of notches and teeth, each notch being delimited by two teeth. Moreover, each tooth is provided with two tooth roots extending circumferentially on either side of said tooth.
  • the stator slots have parallel flanks. That is to say that for each notch, the shape of the pair of two teeth delimiting said notch is such that the notch has two parallel flanks.
  • the design of a rotating electrical machine comprises in particular a step of determining the number of slots of the stator, a step of determining the number of phases of the winding, a step of determining the outer diameter of the stator yoke, and a sizing step. notches and teeth of the stator.
  • the sizing of the slots and stator teeth must satisfy several constraints, including three. First, the width of the teeth must be large enough to allow sufficient mechanical strength, secondly, the width of the teeth must be sufficient to allow a good recovery of the magnetic flux from the end of the teeth to the breech and thirdly the notch surface must be large enough to allow the introduction of a large amount of copper wire which avoids a winding resistance too important.
  • a satisfactory dimensioning of the notches and teeth of the stator therefore consists in obtaining a good compromise with respect to these three constraints.
  • the stator has a dimensioning of the notches and teeth of the stator illustrated in Figure 2 which is perfectible since it mainly allows an increase of the notch surface that is to say an improvement in the coefficient filling but do not address the other two criteria.
  • the invention proposes to overcome the drawbacks of known stators by providing a stator having a better dimensioning of the notches and teeth of the stator which satisfies the three constraints stated above.
  • the invention thus relates to a stator for an alternator or an electric machine, comprising:
  • stator core comprises:
  • a plurality of teeth arranged to extend from said base portion to an axial center and said plurality of slots being defined by said base portion and an adjacent pair of said teeth.
  • each notch the width at the opening of the notch is less than the width at the yoke.
  • the width at the end is greater than the width at the yoke. Because of this shape, the flow back through the teeth is optimized. Indeed, the further away from the end, the less the magnetic flux is slowed by the saturation due to the limited tooth surface. Indeed, as one moves away from the tooth end the radius increases which has the effect of limiting the saturation for a given tooth width.
  • the most critical place for the upward flow of magnetic flux from the end of the tooth to the breech is the end whereas, on the contrary, the place where the constraints are the least important of this. point of view is the breech.
  • the ratio between the width at the end and the width at the yoke is between 1.8 and 2.2.
  • the width at the end is less than the width at the yoke.
  • such a configuration allows a saturation zone on a smaller tooth height than with a tooth shape with parallel flanks.
  • the width at the end is greater than the width of the tooth obtained at a position radially spaced from the yoke by a value between 0.3 and 0.7 times the height of the tooth.
  • This recess obtained by reducing the tooth width to an intermediate position between the end and the yoke relative to the tooth width at the end allows an increase in the notch surface.
  • such a reduction in width does not increase the saturation if it is practiced at a sufficient distance from the end of the tooth since as one moves away from the tooth end the radius increases which has the effect of limiting the magnetic saturation for a given tooth width.
  • the minimum width of the tooth is obtained at a position radially spaced from the yoke by a value between 0.4 and 0.6 times the height of the tooth.
  • the positioning at the height of the tooth of the minimum width thus allows a minimization of the increase of the magnetic saturation.
  • the ratio between the minimum width of the tooth and the tooth width at the end is between 0.2 and 0.7.
  • each tooth comprises on each of these sides a flank having a straight shape of constant direction and without point of inflection.
  • the ratio between the width at the yoke and the width at the opening of the notch is between 1 .1 and 2, preferably between 1. 3 and 1 .5.
  • the teeth have at their end feet of teeth.
  • Tooth feet allow an improvement of the electrotechnical properties of the stator and a maintenance of the son in the notches.
  • the circumferential width of the tooth root to the left of the tooth is different from the circumferential width of the tooth root to the right of the tooth.
  • the method of manufacturing the stator comprises a step of installing the winding in the notches.
  • the differences in different circumferential widths make it easier to facilitate this installation step when the winding comprises conductors formed by wires. For example, in the case of a winding installation in the anticlockwise direction, a smaller tooth root on the right makes it easier to introduce wires forming the conductors.
  • the ratio between the circumferential width of the tooth root to the left of the tooth and the circumferential width of the tooth root to the right of the tooth is between 1, 2 and 1.5.
  • Such a ratio according to the tooth pitch is less important on the right allows introduction of the wires forming the conductors more simple and also from a value of the tooth feet to the right and left which are not too different one of the other a good compromise even a conservation of the electromagnetic characteristics and maintenance compared to symmetrical tooth feet.
  • the flanks of the teeth are aligned with the spokes of the stator.
  • This arrangement is particularly advantageous in the case of a hexaphase winding.
  • the invention also relates to an electric machine for example an alternator comprising a rotor, said electric machine comprises a stator as defined above which surrounds the rotor.
  • said coil mounted in said slots of the cylindrical core of the stator comprises 6 phases.
  • the coil mounted in said slots of the cylindrical core of the stator comprises conductors having in the notches a rectangular section.
  • the coil mounted in said slots of the cylindrical core of the stator comprises 4 or 6 conductors per notch.
  • Figure 1 is a schematic cross-sectional view of an electric machine rotor according to the state of the art
  • Figure 2 already described, is a representation of the cylindrical core of a stator in a plane perpendicular to the axis X-X
  • Figures 3 and 4 are representations of the cylindrical core of a stator according to the invention in a plane perpendicular to the axis X-X
  • Figures 5 and 6 are representations of a tooth of the cylindrical core of a stator according to the invention in a plane perpendicular to the axis X-X
  • Figures 7 and 8 are representations of a notch provided with a winding according to the invention in a plane perpendicular to the axis X-X.
  • Figure 3 is a representation of the cylindrical core 14 of a stator 13 in a plane perpendicular to the X-X axis.
  • the stator core 13 comprises: a cylindrical base portion 203 forming a yoke, said yoke having a radial thickness hc;
  • a plurality of teeth 202 arranged to extend from said base portion to an axial center X-X and said plurality of slots 201 being defined by said base portion 203 and an adjacent pair of said teeth 202;
  • the width at the opening of the notch l_eo is less than the width l_ec at the yoke 203 and secondly for each tooth 202 the width at the end l_do is greater than the width l_dc at the breech.
  • the ratio between the width at the end l_do and the width l_dc at the yoke 203 is between 1, 8 and 2.2.
  • Figure 4 is a representation of the cylindrical core 14 of a stator 13 in a plane perpendicular to the X-X axis.
  • the stator core 13 comprises: a cylindrical base portion forming a yoke 203;
  • a plurality of teeth 202 arranged to extend from said base portion 203 toward an axial center XX and said plurality of slots 201 being defined by said base portion 203 and an adjacent pair of said teeth 202;
  • the width at the opening of the notch l_eo is less than the width l_ec at the yoke 203 and secondly for each tooth 202 the width at the end l_do is less than the width l_dc at the yoke 203.
  • each tooth 202 comprises on each of these sides a flank having a straight shape of constant direction and no point of inflection.
  • FIG. 5 is a representation of a tooth 202 of the cylindrical core illustrated in FIG. 4. As can be seen, for each tooth 202, the width at the end l_do is less than the width l_dc at the level of the yoke 204.
  • the ratio between the width l_ec at the level of the yoke 204 and the width at the opening of the notch l_eo is between 1 .1 and 2, preferably between 1 .3 and 1 .5.
  • Figure 6 is a representation of a tooth 202 of the cylindrical core 14 of a stator 13 in a plane perpendicular to the X-X axis. As can be seen, for each tooth the width at the end l_do is less than the width l_dc at the yoke.
  • the width at the end l_do is greater than the width of the tooth 202 obtained at a radially spaced position of the yoke with a value between 0.3 and 0.7 times the height of the tooth h_d.
  • the minimum width l_min of the tooth 202 is obtained at a position radially spaced from the yoke by a value between 0.4 and 0.6 times the height of the tooth h_d.
  • the ratio between the minimum width l_min of the tooth 202 and the tooth width at the end l_do is between 0.2 and 0.7.
  • Figure 7 is a representation of a notch 201 provided with a coil in a plane perpendicular to the axis XX.
  • the notch 201 illustrated in Figure 7 is delimited by two teeth.
  • the two teeth 202 each comprise at their end and on both circumferential sides of these ends a foot of teeth d_r and d_g respectively.
  • only one flank f of each tooth 202 is illustrated, so that for each only one tooth root that of the illustrated sidewall is shown in FIG.
  • the circumferential width of the left tooth root d_g of the tooth 202 is different from the circumferential width of the tooth root to the right d_r of the tooth.
  • the ratio between the circumferential width of the tooth root to the left of the tooth is and the circumferential width of the tooth root to the right of the tooth is between 1, 2 and 1.5.
  • the notch of the stator 13 illustrated in FIG. 7 is integrated in an electric machine, for example an alternator, as illustrated in FIG. 1, which comprises a rotor, said stator surrounding said rotor 4.
  • the electric machine comprises a mounted winding 12 in said slots 201 of the cylindrical core 14 of the stator which comprises 6 phases.
  • the coil 12 mounted in said slots 201 of the cylindrical core of the stator 14 comprises conductors 204 having in the notches a rectangular section.
  • the coil 12 mounted in said slots 201 of the cylindrical core of the stator comprises 4 conductors per notch.
  • the winding 12 comprises four conductors 204 aligned radially in the notch 201 along two columns of two conductors 204, such a winding of quad is qualified.
  • Figure 8 is a representation of a notch 201 provided with a coil in a plane perpendicular to the X-X axis.
  • the notch 201 provided with a winding of FIG. 8 differs from that illustrated in FIG. 7 by the number of conductors 204 per slot 201 which is 6 for FIG. 8 whereas it is 4 for FIG. 7.
  • These conductors 204 are advantageously aligned radially in the notch 201 along two columns of three conductors 204.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

L'invention porte sur un stator (13) pour un alternateur ou une machine électrique, comprenant : 5 -un noyau cylindrique (14) dans lequel une pluralité de fentes (201) qui s'étendent dans le sens axial sont formées; -un bobinage (12) monté dans lesdites fentes; dans lequel ledit noyau de stator (14) comprend : -une partie de base cylindrique (203) formant une culasse (203); 10 -une pluralité de dents (202) disposées de manière à s'étendre à partir de ladite partie de base vers un centre axial (X-X) et ladite pluralité de fentes (201) étant définie par ladite partie de base et par une paire adjacente desdites dents (202). Pour chaque encoche (201) la largeur au niveau de l'ouverture de l'encoche (l_eo) est inférieure à la largeur (l_ec) au niveau de 15 la culasse (203).

Description

STATOR POUR UN ALTERNATEUR OU UNE MACHINE ELECTRIQUE
DOMAINE TECHNIQUE DE L'INVENTION
La présente invention porte sur un stator pour un alternateur ou pour une machine électrique, elle porte également sur un alternateur ou une machine électrique comprenant un tel stator.
L'invention trouve une application particulièrement avantageuse dans le domaine des alternateurs et des alterno-démarreurs de véhicule automobile.
ARRIERE PLAN TECHNOLOGIQUE
Ainsi qu'on le sait une machine électrique tournante du type monophasé ou polyphasé comporte au moins deux parties agencées de manière coaxiale à savoir un induit et un inducteur. Une première des parties entoure la seconde des parties, qui est classiquement solidaire d'un arbre rotatif.
La première des parties constitue un stator, tandis que la deuxième partie constitue le rotor de la machine. Lorsque l'induit est formé par le rotor cette machine constitue un moteur électrique et transforme de l'énergie électrique en énergie mécanique. Cette machine transforme de l'énergie mécanique en énergie électrique lorsque l'induit est formé par le stator pour fonctionner en générateur électrique et constituer par exemple un alternateur. Bien entendu la machine électrique peut être réversible et transformer également de l'énergie électrique en énergie mécanique pour former par exemple un alterno-démarreur de véhicule automobile permettant notamment de démarrer le moteur à combustion interne du véhicule automobile tout en ayant une fonction d'alternateur. La figure 1 , qui est une demi-vue en coupe, représente une machine électrique tournante polyphasée sous la forme d'un alternateur du type triphasé à ventilation interne pour véhicule automobile à moteur à combustion interne du type de celui décrit dans le document EP-A-0 515 259 auquel on se reportera. L'alternateur comporte, en allant de gauche à droite de la figure 1 , c'est-à- dire d'avant en arrière, une poulie d'entraînement 1 1 solidaire de l'extrémité avant d'un arbre 2, dont l'extrémité arrière porte des bagues collectrices 10a, 10b appartenant à un collecteur 1 . L'axe X-X de l'arbre 2 constitue l'axe de rotation de la machine et du collecteur.
Centralement l'arbre 2 porte à fixation le rotor 4 doté d'un bobinage d'excitation 5, dont les extrémités sont reliées par des liaisons filaires au collecteur 1 comme visible également à la figure 1 1 des documents FR 2 710 197, FR 2 710 199 et FR 2 710 200. Le rotor 4 est ici un rotor à griffes et comporte donc deux roues polaires 6,7 portant chacune respectivement un ventilateur avant 8 et arrière 9 dotés chacun de pales comme dans le document EP-A- 0 515 259.
Chaque roue présente des dents axiales dirigées vers l'autre roue avec imbrication des dents d'une roue à l'autre pour formation de pôles magnétiques lorsque le bobinage 5 est activé grâce aux bagues collectrices du collecteur 1 chacune en contact avec un balai (non référencé) porté par un porte-balais 100 solidaire dans ce mode de réalisation d'un un régulateur de tension non visible. Les balais sont d'orientation radiale par rapport à l'axe X-X, tandis que les bagues 10a, 10b sont d'orientation axiale par rapport à l'axe X-X.
Le régulateur est relié à un dispositif de redressement de courant alternatif en courant continu 1 10, tel qu'un pont de diodes (dont deux sont visibles à la figure 1 ) ou en variante des transistors du type MOSFET, notamment lorsque l'alternateur est du type réversible et consiste en un alterno-démarreur comme décrit par exemple dans le document WO 01 /69762. Ce dispositif 1 10 est lui-même relié électriquement, d'une part, aux sorties des phases appartenant aux bobinages 12, que comporte le stator 13 de l'alternateur, et d'autre part, au réseau de bord et à la batterie du véhicule automobile. Ce stator 13, formant induit dans le cas d'un alternateur, entoure le rotor 4 et comprend un corps 14 doté intérieurement d'encoches axiales (non visibles) et des bobinages 12. Les encoches axiales sont munies des fils ou des épingles des bobinages 12. Ces bobinages 12 ont des chignons (non référencés) s'étendant, d'une part, en saillie axiale de part et d'autre du corps14 ; et, d'autre part, radialement au-dessus des ventilateurs 8, 9.
Pour mémoire on rappellera que le régulateur de tension a pour fonction de contrôler le courant circulant dans le bobinage d'excitation 5 pour réguler la tension délivrée au réseau de bord et à la batterie du véhicule via le dispositif redresseur de courant 1 10.
Les ventilateurs 8, 9 s'étendent au voisinage respectivement d'un flasque avant, appelé palier avant 150, et d'un flasque arrière, appelé palier arrière 160 appartenant au carter fixe de la machine électrique relié à la masse. Les paliers 150, 160 sont ajourés pour une ventilation interne de l'alternateur par l'intermédiaire des ventilateurs 8, 9 lorsque l'ensemble ventilateurs 8, 9- rotor 4 -arbre 2 est entraîné en rotation par la poulie 1 1 reliée au moteur du véhicule automobile par un dispositif de transmission comportant au moins une courroie en prise avec la poulie 1 . Cette ventilation permet de refroidir les bobinages 12, 5 ainsi que le porte-balais 100 avec son régulateur et le dispositif de redressement 1 10. On a représenté par des flèches à la figure 1 le trajet suivi par le fluide de refroidissement, ici de l'air, à travers les différentes ouvertures des paliers 150, 1 60 et à l'intérieur de la machine.
Ce dispositif 1 10, le porte-balais 100, ainsi qu'un capot de protection ajouré (non référencé) sont portés ici par le palier arrière 1 60 en sorte que le ventilateur arrière 9 est plus puissant que le ventilateur avant 8. De manière connue, les paliers 150, 160 sont reliés entre eux, ici à l'aide de vis ou de tirants non visibles, pour former un carter destiné à être monté sur une partie fixe du véhicule. Les paliers 150, 1 60 portent chacun centralement un roulement à billes 17, 18 pour supporter à rotation les extrémités avant et arrière de l'arbre 2 traversant les paliers 150, 1 60 pour porter la poulie 1 1 et les bagues 10a, 10b du collecteur 1 .
Ces paliers ont une forme creuse et présentent ici chacun une partie d'orientation transversale ajourée portant le roulement 17, 18 et une partie d'orientation axiale ajourée et intérieurement étagée en diamètre pour centrer et retenir axialement le stator 13 lorsque les deux paliers sont reliés ensemble pour former le carter.
Les pales des ventilateurs 8, 9 s'étendent radialement au-dessus des logements que présentent les paliers 150, 160 pour montage des roulements 17 et 18 ; qui ainsi sont ventilés.
La figure 2 représente le noyau cylindrique ou corps 14 du stator 13 selon un plan perpendiculaire à l'axe X-X. Le noyau cylindrique du stator comprend selon une direction circonférentielle une alternance d'encoches et de dents, chaque encoche étant délimitée par deux dents. Par ailleurs, chaque dent est munie de deux pieds de dent s'étendant circonférentiellement de part et d'autre de ladite dent. Selon ce stator connu de l'homme du métier, les encoches de stator ont des flancs parallèles. C'est-à-dire que pour chaque encoche, la forme de la paire des deux dents délimitant ladite encoche est telle que l'encoche a deux flancs parallèles. La conception d'une machine électrique tournant comprend notamment une étape de détermination du nombre d'encoches du stator, une étape de détermination du nombre de phases du bobinage, une étape de détermination du diamètre extérieure de la culasse du stator et une étape de dimensionnement des encoches et des dents du stator. Le dimensionnement des encoches et des dents du stator doit satisfaire à plusieurs contraintes, notamment trois. Premièrement, la largeur des dents doit être suffisamment importante pour permettre une résistance mécanique suffisante, deuxièmement, la largeur des dents doit être suffisante pour permettre une bonne remontée du flux magnétique de l'extrémité des dents vers la culasse et troisièmement la surface d'encoche doit être suffisamment importante pour permettre l'introduction d'une quantité de fil cuivre importante ce qui évite une résistance du bobinage trop importante.
Il apparaît que l'optimum de chacune de ces trois contraintes n'est pas atteignable séparément. En effet, par exemple en voulant augmenter la résistance mécanique et le flux magnétique remonté de l'extrémité des dents vers la culasse, on obtient des largeurs de dents importantes qui pour un diamètre extérieur de culasse et un nombre d'encoches donnés amène à des encoches dont la surface est trop petite, ce qui induit une résistance de bobinage importante et des pertes importantes par effets joule. Et vice et versa, lorsque l'on souhaite augmenter la surface d'encoche, la largeur des dents pour un diamètre extérieur de culasse et un nombre d'encoches donnés est diminuée ce qui limite fortement le flux magnétique remonté de l'extrémité des dents vers la culasse.
Un dimensionnement des encoches et des dents du stator satisfaisant consiste donc à l'obtention d'un bon compromis vis-à-vis notamment de ces trois contraintes. Par exemple, le stator présente un dimensionnement des encoches et des dents du stator illustré sur la figure 2 qui est perfectible puisqu'il ne permet principalement qu'une augmentation de la surface d'encoche c'est-à-dire une amélioration du coefficient de remplissage mais n'adressent pas les deux autres critères. L'invention se propose de pallier aux inconvénients des stators connus en fournissant un stator présentant un meilleur dimensionnement des encoches et des dents du stator qui satisfait aux trois contraintes énoncées ci-dessus.
OBJET DE L'INVENTION
L'invention a ainsi pour objet un stator pour un alternateur ou une machine électrique, comprenant :
-un noyau cylindrique dans lequel une pluralité de fentes qui s'étendent dans le sens axial sont formées ;
-un bobinage monté dans lesdites fentes ;
dans lequel ledit noyau de stator comprend :
-une partie de base cylindrique formant une culasse;
-une pluralité de dents disposées de manière à s'étendre à partir de ladite partie de base vers un centre axial et ladite pluralité de fentes étant définie par ladite partie de base et par une paire adjacente desdites dents.
Selon une caractéristique générale de l'invention, chaque encoche la largeur au niveau de l'ouverture de l'encoche est inférieure à la largeur au niveau de la culasse. On obtient un bon compromis qui permet d'une part d'éviter la saturation des dents au niveau des bouts de dents de manière à ramener un flux important, et d'autre part d'avoir une encoche de surface importante permettant une section de cuivre plus importante, ce qui permet de limiter la résistance de phase.
Selon un mode de réalisation, pour chaque dent la largeur à l'extrémité est supérieure à la largeur au niveau de la culasse. De part cette forme, le flux remonté par les dents est optimisé. En effet, plus on s'éloigne de l'extrémité moins le flux magnétique est freiné par la saturation due à la surface de dent limitée. En effet, alors que l'on s'éloigne de l'extrémité de dent le rayon augmente ce qui a pour effet pour une largeur de dent donnée de limiter la saturation. Ainsi, pour une dent, l'endroit le plus critique pour la remontée de flux magnétique de l'extrémité de la dent vers la culasse est l'extrémité alors qu'au contraire l'endroit sur lequel les contraintes sont les moins importantes de ce point de vue est la culasse. Ainsi, en maximisant la largeur de dent au niveau de son extrémité et en la minimisant au niveau de la culasse, on obtient un flux remonté maximal tout en ayant une surface d'encoche importante grâce à des évidements réalisés dans la dent. Ces évidements étant dus à la réduction de la largeur des dents au niveau de la culasse.
Selon une caractéristique de ce mode de réalisation, pour chaque dent le ratio entre la largeur à l'extrémité et la largeur au niveau de la culasse est compris entre 1 ,8 et 2,2.
Ces ratios permettent un bon compromis entre flux remonté maximisé, bonne surface d'encoche et résistance mécanique suffisante.
Selon un autre mode de réalisation, pour chaque dent la largeur à l'extrémité est inférieure à la largeur au niveau de la culasse. Pour une largeur minimale de dent donnée, une telle configuration permet une zone de saturation sur une hauteur de dent moins importante qu'avec une forme de dent à flancs parallèles.
Selon un autre mode de réalisation, pour chaque dent la largeur à l'extrémité est supérieure à la largeur de la dent obtenue à une position radialement espacée de la culasse d'une valeur comprise entre 0.3 et 0.7 fois la hauteur de la dent. Ce décrochement obtenu par une réduction de la largeur de dent à une position intermédiaire entre l'extrémité et la culasse par rapport à la largeur de dent à l'extrémité permet une augmentation de la surface d'encoche. Toutefois, une telle réduction de largeur n'augmente pas la saturation s'il est pratiqué à une distance suffisante de l'extrémité de la dent étant donné que lorsque l'on s'éloigne de l'extrémité de dent le rayon augmente ce qui a pour effet pour une largeur de dent donnée de limiter la saturation magnétique.
Selon une autre caractéristique de cet autre mode de réalisation, la largeur minimale de la dent est obtenue à une position radialement espacée de la culasse d'une valeur comprise entre 0.4 et 0.6 fois la hauteur de la dent.
Le positionnement au niveau de la hauteur de la dent de la largeur minimale permet ainsi une minimisation de l'augmentation de la saturation magnétique.
Selon une autre caractéristique de ce mode de réalisation, le ratio entre la largeur minimale de la dent et la largeur de dent à l'extrémité est compris entre 0,2 et 0,7.
La relation entre la largeur à l'extrémité de la dent et la largeur minimale permet un bon compromis entre l'augmentation de la surface d'encoche et l'augmentation de la saturation magnétique. Selon un autre mode de réalisation, chaque dent comprend de chacun de ces côtés un flanc ayant une forme droite de direction constante et sans point d'inflexion.
On obtient ainsi une facilité d'industrialisation et de réalisation.
Selon une caractéristique de cet autre mode de réalisation, pour chaque encoche le ratio entre la largeur au niveau de la culasse et la largeur au niveau de l'ouverture de l'encoche est compris entre 1 .1 et 2, de préférence entre 1 .3 et 1 .5.
Le ratio ainsi proposé permet un compromis optimum entre amélioration électrotechnique et résistance mécanique. Selon un autre mode de réalisation, les dents présentent à leur extrémité des pieds de dents.
Les largeurs de la dent ou de l'encoche au niveau de l'ouverture définies préalablement du côté dudit centre axial s'entendent comme étant mesurées juste en dessous desdits pieds de dent, pieds de dent non compris. Les pieds de dents permettent une amélioration des propriétés électrotechniques du stator et un maintien des fils dans les encoches.
Selon une caractéristique de cet autre mode de réalisation, pour chaque dent, la largeur circonférentielle du pied de dent à gauche de la dent est différente de la largeur circonférentielle du pied de dent à droite de la dent.
Le procédé de fabrication du stator comprend une étape d'installation du bobinage dans les encoches. Les différences de largeurs circonférentielles différentes permettent lors de faciliter cette étape d'installation lorsque le bobinage comprend des conducteurs formés par des fils. Par exemple, dans le cas d'une installation du bobinage dans le sens inverse des aiguilles d'une montre, un pied de dent moins important à droite permet une introduction des fils formant les conducteurs plus simple.
Selon une autre caractéristique de cet autre mode de réalisation, le ratio entre la largeur circonférentielle du pied de dent à gauche de la dent et la largeur circonférentielle du pied de dent à droite de la dent est compris entre 1 ,2 et 1 ,5.
Un tel ratio selon le pied de dent est moins important à droite permet une introduction des fils formant les conducteurs plus simple et également de part une valeur des pieds de dent à droite et à gauche qui ne sont pas trop différents l'un de l'autre un bon compromis voire une conservation des caractéristiques électromagnétiques et de maintien par rapport à des pieds de dent symétriques.
Selon un mode de réalisation, les flancs des dents sont alignés avec des rayons du stator. Cet agencement est particulièrement avantageux dans le cas d'un bobinage hexaphasé. L'invention a également pour objet une machine électrique par exemple un alternateur comprenant un rotor, ladite machine électrique comprend un stator tel que défini précédemment qui entoure le rotor.
Selon un mode de réalisation, ledit bobinage monté dans lesdites fentes du noyau cylindrique du stator comprend 6 phases.
Selon un autre mode de réalisation, le bobinage monté dans lesdites fentes du noyau cylindrique du stator comprend des conducteurs présentant dans les encoches une section rectangulaire.
Selon encore un autre mode de réalisation, le bobinage monté dans lesdites fentes du noyau cylindrique du stator comprend 4 ou 6 conducteurs par encoche.
BREVE DESCRIPTION DES FIGURES
L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures ne sont données qu'à titre illustratif mais nullement limitatif de l'invention. la figure 1 , déjà décrite, est une vue schématique en coupe transversale d'un rotor de machine électrique selon l'état de la technique; la figure 2, déjà décrite, est une représentation du noyau cylindrique d'un stator dans un plan perpendiculaire à l'axe X-X ; les figures 3 et 4, sont des représentations du noyau cylindrique d'un stator selon l'invention dans un plan perpendiculaire à l'axe X-X ; les figures 5 et 6, sont des représentations d'une dent du noyau cylindrique d'un stator selon l'invention dans un plan perpendiculaire à l'axe X-X ; et les figures 7 et 8, sont des représentations d'une encoche munie d'un bobinage selon l'invention dans un plan perpendiculaire à l'axe X-X.
Les éléments identiques, similaires, ou analogues conservent la même référence d'une figure à l'autre. DESCRIPTION D'EXEMPLES DE REALISATION DE L'INVENTION
La figure 3 est une représentation du noyau cylindrique 14 d'un stator 13 dans un plan perpendiculaire à l'axe X-X.
Le noyau 14 de stator 13 comprend : -une partie de base cylindrique 203 formant une culasse, ladite culasse ayant une épaisseur radiale h_c;
-une pluralité de dents 202 disposées de manière à s'étendre à partir de ladite partie de base vers un centre axial X-X et ladite pluralité de fentes 201 étant définie par ladite partie de base 203 et par une paire adjacente desdites dents 202 ;
Comme on peut le voir, d'une part pour chaque encoche 201 , la largeur au niveau de l'ouverture de l'encoche l_eo est inférieure à la largeur l_ec au niveau de la culasse 203 et d'autre part pour chaque dent 202 la largeur à l'extrémité l_do est supérieure à la largeur l_dc au niveau de la culasse. Par exemple, pour chaque dent 202 le ratio entre la largeur à l'extrémité l_do et la largeur l_dc au niveau de la culasse 203 est compris entre 1 ,8 et 2,2.
La figure 4 est une représentation du noyau cylindrique 14 d'un stator 13 dans un plan perpendiculaire à l'axe X-X.
Le noyau 14 de stator 13 comprend : -une partie de base cylindrique formant une culasse 203;
-une pluralité de dents 202 disposées de manière à s'étendre à partir de ladite partie de base 203 vers un centre axial X-X et ladite pluralité de fentes 201 étant définie par ladite partie de base 203 et par une paire adjacente desdites dents 202; Comme on peut le voir, d'une part pour chaque fente formant une encoche 201 , la largeur au niveau de l'ouverture de l'encoche l_eo est inférieure à la largeur l_ec au niveau de la culasse 203 et d'autre part pour chaque dent 202 la largeur à l'extrémité l_do est inférieure à la largeur l_dc au niveau de la culasse 203.
De plus, chaque dent 202 comprend de chacun de ces côtés un flanc f ayant une forme droite de direction constante et sans point d'inflexion. La figure 5 est une représentation d'une dent 202 du noyau cylindrique illustré sur la figure 4. Comme on peut le voir, pour chaque dent 202 la largeur à l'extrémité l_do est inférieure à la largeur l_dc au niveau de la culasse 204.
Par exemple, le ratio entre la largeur l_ec au niveau de la culasse 204 et la largeur au niveau de l'ouverture de l'encoche l_eo est compris entre 1 .1 et 2, de préférence entre 1 .3 et 1 .5.
La figure 6 est une représentation d'une dent 202 du noyau cylindrique 14 d'un stator 13 dans un plan perpendiculaire à l'axe X-X. Comme on peut le voir, pour chaque dent la largeur à l'extrémité l_do est inférieure à la largeur l_dc au niveau de la culasse.
Selon la figure 6, la largeur à l'extrémité l_do est supérieure à la largeur de la dent 202 obtenue à une position radialement espacée de la culasse d'une valeur comprise entre 0.3 et 0.7 fois la hauteur de la dent h_d.
Selon un mode préférentiel, la largeur minimale l_min de la dent 202 est obtenue à une position radialement espacée de la culasse d'une valeur comprise entre 0.4 et 0.6 fois la hauteur de la dent h_d.
Par exemple, le ratio entre la largeur minimale l_min de la dent 202 et la largeur de dent à l'extrémité l_do est compris entre 0,2 et 0,7.
La figure 7 est une représentation d'une encoche 201 munie d'un bobinage dans un plan perpendiculaire à l'axe X-X. L'encoche 201 illustrée sur la figure 7 est délimitée par deux dents. Les deux dents 202 comprennent chacune à leur extrémité et des deux cotés circonférentiels de ces extrémités un pied de dents d_r et d_g respectivement. Dans la figure 7, seul un flanc f de chaque dent 202 est illustré si bien que pour chaque seul un pied de dent celui du flanc illustré est présenté sur la figure 7. Avantageusement, pour chaque dent 202, la largeur circonférentielle du pied de dent à gauche d_g de la dent 202 est différente de la largeur circonférentielle du pied de dent à droite d_r de la dent. Par exemple, le ratio entre la largeur circonférentielle du pied de dent à gauche de la dent est et la largeur circonférentielle du pied de dent à droite de la dent est compris entre 1 ,2 et 1 ,5.
L'encoche du stator 13 illustrée sur la figure 7 est intégrée dans une machine électrique par exemple un alternateur, telle qu'illustrée dans la figure 1 qui comprend un rotor, ledit stator entourant ledit rotor 4. La machine électrique comprend un bobinage 12 monté dans lesdites fentes 201 du noyau cylindrique 14 du stator qui comprend 6 phases. Par exemple, le bobinage 12 monté dans lesdites fentes 201 du noyau cylindrique du stator 14 comprend des conducteurs 204 présentant dans les encoches une section rectangulaire. Avantageusement, le bobinage 12 monté dans lesdites fentes 201 du noyau cylindrique du stator comprend 4 conducteurs par encoche. Dans le cas où le bobinage 12 comprend 4 conducteurs 204 alignés radialement dans l'encoche 201 selon deux colonnes de deux conducteurs 204, on qualifie un tel bobinage de quad.
La figure 8 est une représentation d'une encoche 201 munie d'un bobinage dans un plan perpendiculaire à l'axe X-X. L'encoche 201 munie d'un bobinage de la figure 8 se distingue de celle illustrée sur la figure 7 de part le nombre de conducteurs 204 par encoches 201 qui est de 6 pour la figure 8 alors qu'il est de 4 pour la figure 7. Ces conducteurs 204 sont avantageusement alignés radialement dans l'encoche 201 selon deux colonnes de trois conducteurs 204.

Claims

REVENDICATIONS
1 . Stator (13) pour un alternateur ou une machine électrique, comprenant :
-un noyau cylindrique (14) dans lequel sont formées une pluralité de fentes (201 ) formant des encoches qui s'étendent dans le sens axial;
-un bobinage (12) monté dans lesdites encoches ;
dans lequel ledit noyau de stator (14) comprend :
-une partie de base cylindrique (203) formant une culasse (203);
-une pluralité de dents (202) disposées de manière à s'étendre à partir de ladite partie de base vers un centre axial (X-X) et ladite pluralité de fentes
(201 ) étant définie par ladite partie de base et par une paire adjacente desdites dents (202) ;
caractérisé en ce que pour chaque encoche (201 ) la largeur au niveau de l'ouverture de l'encoche (l_eo) est inférieure à la largeur (l_ec) au niveau de la culasse (203).
2. Stator selon la revendication 1 , caractérisé en ce que pour chaque dent (202) la largeur à l'extrémité (l_do) est supérieure à la largeur (l_dc) au niveau de la culasse (203).
3. Stator selon la revendication 1 ou 2, caractérisé en ce que pour chaque dent (202) le ratio entre la largeur à l'extrémité (l_do) et la largeur (l_dc) au niveau de la culasse (203) est compris entre 1 ,8 et 2,2.
4. Stator selon la revendication 1 , caractérisé en ce que pour chaque dent (202) la largeur à l'extrémité (l_do) est inférieure à la largeur (l_dc) au niveau de la culasse (203).
5. Stator selon la revendication 4, caractérisé en ce que pour chaque dent (202) la largeur à l'extrémité (l_do) est supérieure à la largeur de la dent
(202) obtenue à une position radialement espacée de la culasse (203) d'une valeur comprise entre 0.3 et 0.7 fois la hauteur de la dent (h_d).
6. Stator selon la revendication 4 ou 5, caractérisé en ce que la largeur minimale (l_min) de la dent (202) est obtenue à une position radialement espacée de la culasse (203) d'une valeur comprise entre 0.4 et 0.6 fois la hauteur de la dent (h_d).
7. Stator selon la revendication 6, caractérisé en ce que le ratio entre la largeur minimale de la dent (l_min) et la largeur de dent à l'extrémité (l_de) est compris entre 0,2 et 0,7.
8. Stator selon la revendication 4, caractérisé en ce que chaque dent comprend de chacun de ces côtés un flanc (f) ayant une forme droite de direction constante et sans point d'inflexion.
9. Stator selon l'une quelconque des revendications 4 à 8, caractérisé en ce que pour chaque encoche (201 ) le ratio entre la largeur (l_ec) au niveau de la culasse (203) et la largeur au niveau de l'ouverture de l'encoche (l_eo) est compris entre 1 .1 et 2, de préférence entre 1 .3 et 1 .5.
10. Stator selon l'une des revendications précédentes, caractérisé en ce que les dents (202) présentent à leur extrémité des pieds de dents (d_r, d_g).
1 1 . Stator selon la revendication précédente, caractérisé en ce que pour chaque dent (202), la largeur circonférentielle du pied de dent à gauche (d_g) de la dent est différente de la largeur circonférentielle du pied de dent à droite (d_r) de la dent .
12. Stator selon la revendication précédente, caractérisé en ce que le ratio entre la largeur circonférentielle du pied de dent à gauche (d_g) de la dent et la largeur circonférentielle du pied de dent à droite (d_r) de la dent est compris entre 1 ,2 et 1 ,5.
13. Machine électrique par exemple un alternateur, comprenant un rotor (4) caractérisé en ce qu'elle comprend un stator (13) selon l'une des revendications précédentes, ledit stator entourant ledit rotor (4).
14. Machine électrique selon la revendication 13, caractérisé en ce que ledit bobinage (12) monté dans lesdites fentes (201 ) du noyau cylindrique (14) du stator comprend 6 phases.
15. Machine électrique selon la revendication 14, caractérisé en ce que ledit bobinage (12) monté dans lesdites fentes (201 ) du noyau cylindrique (14) du stator comprend des conducteurs (204) présentant dans les encoches une section rectangulaire.
1 6. Machine électrique selon la revendication 14 ou 15, ledit bobinage
(12) monté dans lesdites fentes (201 ) du noyau cylindrique du stator (14) comprend 4 ou 6 conducteurs (204) par encoche.
PCT/EP2015/075259 2014-11-03 2015-10-30 Stator pour un alternateur ou une machine electrique WO2016071225A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580058839.3A CN107148722B (zh) 2014-11-03 2015-10-30 用于交流发电机或电机的定子
JP2017523956A JP2017537591A (ja) 2014-11-03 2015-10-30 オルタネータ又は電気機械用のステータ
EP15787231.8A EP3216111A2 (fr) 2014-11-03 2015-10-30 Stator pour un alternateur ou une machine electrique
US15/524,189 US20180083498A1 (en) 2014-11-03 2015-10-30 Stator for an alternator or an electrical machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1460571A FR3028110B1 (fr) 2014-11-03 2014-11-03 Stator pour un alternateur ou une machine electrique
FR1460571 2014-11-03

Publications (2)

Publication Number Publication Date
WO2016071225A2 true WO2016071225A2 (fr) 2016-05-12
WO2016071225A3 WO2016071225A3 (fr) 2016-09-29

Family

ID=52450351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/075259 WO2016071225A2 (fr) 2014-11-03 2015-10-30 Stator pour un alternateur ou une machine electrique

Country Status (6)

Country Link
US (1) US20180083498A1 (fr)
EP (1) EP3216111A2 (fr)
JP (1) JP2017537591A (fr)
CN (1) CN107148722B (fr)
FR (1) FR3028110B1 (fr)
WO (1) WO2016071225A2 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109104004B (zh) * 2018-09-25 2024-04-05 珠海格力节能环保制冷技术研究中心有限公司 一种定子及具有其的电机
CN113632343B (zh) * 2019-03-29 2024-08-16 日本电产株式会社 定子、定子的制造方法、马达

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1823979A (en) * 1929-05-03 1931-09-22 Westinghouse Electric & Mfg Co Lamination for dynamo-electric machines
US2640956A (en) * 1950-05-16 1953-06-02 Westinghouse Electric Corp Single phase capacitor motor
DE2629532A1 (de) * 1975-07-03 1977-01-27 Sev Alternateurs Verfahren und vorrichtung fuer einen stator oder rotor einer elektrischen rotationsmaschine
US4613780A (en) * 1984-10-12 1986-09-23 General Electric Company Lanced strip and edgewise wound core
US5045742A (en) * 1990-02-23 1991-09-03 General Electric Company Electric motor with optimum core dimensions
JP2000175381A (ja) * 1998-12-03 2000-06-23 Sanyo Electric Co Ltd 集中巻方式のブラシレスdcモータ
JP3383251B2 (ja) * 1999-12-27 2003-03-04 三菱電機株式会社 車両用交流発電機の固定子
JP3593059B2 (ja) * 2001-05-28 2004-11-24 三菱電機株式会社 車両用交流発電機
DE10361858A1 (de) * 2003-12-30 2005-07-28 Robert Bosch Gmbh Ständer für eine elektrische Maschine
US7788790B2 (en) * 2006-03-27 2010-09-07 Remy Technologies, L.L.C. Method for forming a stator core
JP2008131811A (ja) * 2006-11-22 2008-06-05 Sumitomo Electric Ind Ltd モータ用分割コア
US7808148B2 (en) * 2007-09-11 2010-10-05 Remy International Stator winding assembly and method
CN101868901B (zh) * 2007-10-30 2014-03-26 伍德沃德Hrt公司 适于在电动马达中使用的具有锥形齿几何形状的叠片
US8058765B2 (en) * 2009-06-19 2011-11-15 GM Global Technology Operations LLC Methods and apparatus for a bar-wound stator with rotated conductors
US8461739B2 (en) * 2009-09-25 2013-06-11 Ford Global Technologies, Llc Stator for an electric machine
CN203368163U (zh) * 2010-08-26 2013-12-25 三菱电机株式会社 旋转电机和用于制造其定子铁芯的定子铁芯制造装置
US9548633B2 (en) * 2011-03-08 2017-01-17 Panasonic Intellectual Property Management Co., Ltd. Stator of motor having tooth portions with different widths
JP5611094B2 (ja) * 2011-03-25 2014-10-22 三菱電機株式会社 回転電機
JP5778498B2 (ja) * 2011-06-21 2015-09-16 アスモ株式会社 ステータ及びモータ

Also Published As

Publication number Publication date
JP2017537591A (ja) 2017-12-14
FR3028110B1 (fr) 2018-04-13
FR3028110A1 (fr) 2016-05-06
US20180083498A1 (en) 2018-03-22
CN107148722A (zh) 2017-09-08
WO2016071225A3 (fr) 2016-09-29
CN107148722B (zh) 2021-06-22
EP3216111A2 (fr) 2017-09-13

Similar Documents

Publication Publication Date Title
EP1929611B1 (fr) Systeme de ventilation pour machines electriques tournantes equipe d'un dispositif de refroidissement par ecoulement force d'un fluide et machine electrique tournante comportant un tel dispositif
EP2171830B1 (fr) Stator polyphasé à ventilation interne et machine electrique comportant un tel stator
EP3104501B1 (fr) Rotor pour machine electrique tournante
EP1293026B1 (fr) Ventilateur pour machine electrique tournante
EP2826135B1 (fr) Ensemble de flasques de rotor de machine electrique tournante comportant des orifices asymetriques favorisant un flux d'air axial a l'interieur du rotor et rotor de machine electrique tournante associe
FR2861225A1 (fr) Machine electrique tournante polyphasee telle qu'un alternateur ou alterno-demarreur, notamment pour vehicule automobile
EP3216111A2 (fr) Stator pour un alternateur ou une machine electrique
EP2826132B1 (fr) Ensemble de flasques munis de pions de centrage et de conducteur de chaleur favorisant le refroidissement
FR3062254B1 (fr) Stator bobine pour machine electrique tournante
WO2013093292A1 (fr) Rotor a poles saillants comportant une piece de guidage de fils de bobinage, piece de guidage de fils de bobinage et procede de bobinage associes
WO2021116040A1 (fr) Flasque pour machine électrique tournante
EP4078781B1 (fr) Machine électrique tournante munie d'un flasque ayant une face interne configurée pour le refroidissement
WO2018091822A1 (fr) Ventilateur pour rotor pour machine electrique tournante
WO2017093636A1 (fr) Rotor a griffes de machine electrique tournante muni de griffes a chanfrein de forme courbe
WO2021099023A1 (fr) Rotor pour machine électrique tournante
WO2017037389A1 (fr) Rotor pour machine electrique tournante
FR3104335A1 (fr) Roue polaire pour rotor de machine électrique tournante
FR2969839A1 (fr) Collecteur pour machine electrique tournante et machine electrique tournante equipee d'un tel collecteur
FR3103330A1 (fr) Rotor pour machine électrique tournante
FR3098057A1 (fr) Machine electrique tournante munie d'un element de conduction thermique
FR3052001A1 (fr) Machine electrique tournante a configuration amelioree
WO2017093634A1 (fr) Rotor a griffes de machine electrique tournante a performances magnetiques ameliorees
EP3059834A1 (fr) Bobine pour rotor de machine électrique tournante et rotor correspondant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15787231

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2015787231

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015787231

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017523956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15524189

Country of ref document: US