[go: up one dir, main page]

WO2016065950A1 - 一种碱式氯化锌的制备方法 - Google Patents

一种碱式氯化锌的制备方法 Download PDF

Info

Publication number
WO2016065950A1
WO2016065950A1 PCT/CN2015/084103 CN2015084103W WO2016065950A1 WO 2016065950 A1 WO2016065950 A1 WO 2016065950A1 CN 2015084103 W CN2015084103 W CN 2015084103W WO 2016065950 A1 WO2016065950 A1 WO 2016065950A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc chloride
basic zinc
ammonia water
basic
induction system
Prior art date
Application number
PCT/CN2015/084103
Other languages
English (en)
French (fr)
Inventor
朱军强
徐文彬
王彦杰
陈龙
袁城
曾志佳
范兵
Original Assignee
东江环保股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东江环保股份有限公司 filed Critical 东江环保股份有限公司
Priority to US15/028,318 priority Critical patent/US9731978B2/en
Publication of WO2016065950A1 publication Critical patent/WO2016065950A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/04Halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/53Particles with a specific particle size distribution bimodal size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a process for preparing a chemical raw material, and more particularly to a method for preparing a basic zinc chloride.
  • Basic zinc chloride the molecular formula is ZnCl 2 ⁇ 4 ⁇ ( ⁇ ) 2 ⁇ 2 0 (or Zn 5 (OH) 8 C1 2 ⁇ 2 0), good biological effect, and good adaptability When mixed with food, it does not react with other ingredients. It is an excellent micronutrient additive. It has a tendency to replace other inorganic zinc such as zinc sulfate and zinc oxide. In addition, its biological properties are close to that of organic zinc, but the market price Lower than the latter, the market prospects for basic zinc chloride are broad.
  • ⁇ 1 2 is a zinc source and zinc oxide synthesis;
  • hydrochloric acid or zinc chloride method using zinc-containing basic compound and hydrochloric acid or zinc chloride to react under suitable conditions, the specific zinc compound is ZnO, Zn ( OH) 2 and basic zinc carbonate, etc., such as the patent CN100564263, CN100366539C adopt this method.
  • the above patent generally has a liquid-solid phase heterogeneous reaction, and the operation process is complicated, and the generated basic zinc chloride is easily adsorbed on the surface of the raw material to form a coating or a package, and the product chemical group The quality is difficult to ensure due to the determination of the raw materials.
  • the basic zinc chloride prepared by the above process has a large specific surface area, high water content, poor filtration and washing performance, centrifugal dewatering, complicated equipment and operation, and fixed investment. High, high energy consumption for drying and high cost of industrialization.
  • the technical problem to be solved by the present invention is to avoid a disadvantage of the above prior art and to propose a method for preparing a basic zinc chloride which is simple in process, low in impurity content, easy to control in product quality, and suitable for industrialization.
  • a method for preparing basic zinc chloride comprises the following steps:
  • Raw material preparation zinc chloride solution, ammonia water and induction system; the zinc chloride solution has a zinc content of 50.
  • the ammonia water is arranged by industrial grade ammonia water, and the concentration of NH 3 is 45.0g/L ⁇ 95.0g/L;
  • the induction system is a hydrochloric acid solution in which an inducer is dissolved, and the pH value is 0 ⁇ 5.0;
  • the amount of the induction system added is 0.05% of the total mass of the reaction system. ⁇ 1.0%, the molar ratio of zinc chloride solution to ammonia water is 0.5:1 ⁇ 0.65:1;
  • the zinc chloride solution is prepared by dissolving and purifying industrial grade zinc chloride, or by leaching and removing impurities from industrial grade zinc-containing waste.
  • the pH of the induction system is between 0 and 3.0.
  • the inducer is a chlorinated or brominated quaternary ammonium salt
  • the quaternary ammonium salt includes tetrabutylammonium chloride, tetrabutylammonium chloride, cetyltrimethylammonium chloride, Cetyltrimethylammonium bromide, octadecyltrimethylammonium chloride or octadecyltrimethylammonium bromide.
  • the amount of the induction system added is 0.1% of the total mass of the reaction system. ⁇ 5.0%. .
  • the inducing system may also be such that the inducing agent is directly dissolved in aqueous ammonia.
  • the beneficial effects of the preparation method of the basic zinc chloride of the invention are as follows: 1.
  • the basic zinc chloride has stable quality, can ensure that the impurity content of the zinc chloride solution does not exceed the standard, and the Pb in the product
  • the content of key indicators such as Cd, Hg, F and As can easily meet the domestic and European standards
  • the water content is low, the comparison area is small, and the synthetic basic zinc chloride is washed and filtered, the water content is 45.0.
  • the pressure is filtered or centrifuged, the water content is lower; after the crude product is dried, the specific surface area of the basic zinc chloride product is below 0.6 m 2 /g, even less than 0.3 m 2 / g;
  • the synthesis process is simple and easy to control, and the prepared basic zinc chloride has a uniform particle size distribution, and the operating conditions can be appropriately changed to prepare a series of products having a volume average particle diameter of 20.0 ⁇ m to 110.0 ⁇ m.
  • Example 1 is a particle size distribution diagram of a basic zinc chloride product obtained in Example 1;
  • Example 2 is a particle size distribution diagram of a basic zinc chloride product obtained in Example 2;
  • Example 3 is a particle size distribution diagram of a basic zinc chloride product obtained in Example 3;
  • Example 4 is an XRD analysis diagram of a basic zinc chloride product prepared in Example 3.
  • Figure 5 is a SEM image (100 times) of the basic zinc chloride product prepared in Example 3.
  • FIG. 6 is a SEM image (5000 times) of a basic zinc chloride product obtained in Example 3.
  • the preparation method of the basic zinc chloride of the present invention comprises the following steps:
  • the ammonia water is arranged by industrial grade ammonia water, and the concentration of NH3 is 45.0g/L ⁇ 95.0g/L;
  • the induction system is a hydrochloric acid solution in which an inducer is dissolved, and the pH value is 0 ⁇ 5.0 The optimum pH is 0-3.0;
  • the inducer is a chlorinated or quaternary ammonium bromide salt, and the quaternary ammonium salt includes tetrabutylammonium chloride, tetrabutylammonium chloride, cetyl Trimethylammonium chloride, cetyltrimethylammonium bromide, octadecyltrimethylammonium chloride Or octadecyltrimethylammonium bromide; the amount of the induction system added is 0.05% of the total mass of the reaction system.
  • the molar ratio of zinc chloride solution to ammonia water is 0.5:1 ⁇ 0.65:1; the zinc chloride solution is prepared by dissolving and purifying industrial grade zinc chloride, or by industrial grade zinc-containing waste by leaching and impurity removal Obtained (impurities such as Fe, Mn, Pb, Cd, Hg and As, etc., all below 5.0 mg / L);
  • the product basic zinc chloride is subjected to chemical composition, X-ray diffraction, scanning electron microscopy, and laser particle size analysis as needed.
  • the inducing agent may also be dissolved directly in the aqueous ammonia.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Ammonia water with a content of 68.0g/L, and O.lg octadecyltrimethylammonium bromide dissolved in ammonia water first transfer 100.0m 1 of the hydrochloric acid into a 2000.0ml reactor, stir and heat up, control The temperature is about 58.0 °C, and 27 0.0 ml of ammonia water and 416.2 ml of zinc chloride are added to the reactor in parallel. After the addition is completed, the reaction is continued for half a hour, filtered and washed, and finally dried at 90.0 ° C for 6.0 h to obtain basic chlorine. Zinc products.
  • composition and particle size analysis of the finished product showed that: Zn 58.8%, C1 12.0% ⁇ Pb 3.5ppm, Cd 4.0ppm, As 3.17ppm, the chemical index reached the national standard of feed grade basic zinc chloride;
  • the specific surface area is 0.523 m 2 /g, and the volume average particle diameter is 22.063 ⁇ , d (0.1) 5.422 ⁇ , d (0.5) 18.037 ⁇ , d (0.9) 47.961 ⁇ , and the specific particle size distribution is shown in Fig. 1.
  • composition and particle size analysis of the finished product showed that: Zn 59.5%, C1 12.6% ⁇ Pb less than 3.5ppm , Cd is less than 4.0ppm, As 7.78ppm, the chemical index meets the national standard of feed grade basic zinc chloride; specific surface area is 0.257 m 2 /g, volume average particle size is 96.913 ⁇ , d(0.1) 8.209 ⁇ , d(0.5 66.367 ⁇ , d(0.9) 195.707 ⁇ , the specific particle size distribution is shown in Figure 2.
  • 600.0ml of the hydrochloric acid was transferred to a 2000.0ml reactor, stirred and heated, and the temperature was controlled at about 82.0 °C. 310.0 ml of ammonia water and 360.0 of zinc chloride were added to the reactor, and the reaction was continued for half a small time after the addition. ⁇ , filtered and washed, and finally dried at 105.0 ° C for 3.5 h to obtain a basic zinc chloride product.
  • composition, particle size and microstructure analysis of the finished product showed: Zn 58.6%, C1 12.1%. Pb less than 3.5ppm, Cd less than 4.0ppm, As 1.13ppm, chemical index reached feed grade basic National standard requirements for zinc chloride; specific surface area 0.154 m 2 / g, volume average particle size 103.873 ⁇ , d(0.1) 38.92 ⁇ , d(0.5) 70.987 ⁇ , d(0.9) 131.553
  • Fig. 3 is the XRD diffraction pattern of the product
  • Fig. 5 and Fig. 6 are SEM images of 100 times magnification and 5000 times magnification of the respective third products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种碱式氯化锌的制备方法,包括以下步骤:A、原料准备:氯化锌溶液、氨水和诱导体系;B、合成:将氯化锌溶液与氨水以并流的方式加入到诱导体系中,控温在60.0~90.0℃;加料完毕后继续反应20.0~40.0 min;C、过滤、洗涤及干燥:将合成的碱式氯化锌过滤、洗涤后,在80~105 ℃干燥4.0~8.0 h即得产品碱式氯化锌。同现有技术相比较,该方法具有过程简单、杂质含量低、产品质量易控制且适于工业化的优点。

Description

说明书 发明名称:一种碱式氯化锌的制备方法 技术领域
[0001] 本发明涉及化工原料的制备工艺, 特别是涉及一种碱式氯化锌的制备方法。
背景技术
[0002] 碱式氯化锌, 分子式为 ZnCl 2·4Ζη(ΟΗ) 2·Η 20 (或 Zn 5(OH) 8C1 2·Η 20) , 因生 物效应好, 并具有良好的适应性, 当和食物混合吋, 与其他成份不发生反应, 是一种优良的微营养添加剂, 大有取代硫酸锌和氧化锌等其他无机锌的趋势, 另外, 其生物性能接近有机锌, 但市场价格较后者低, 因而碱式氯化锌的市场 前景广阔。
[0003] 在国际市场, 特别是欧洲市场, 除了对碱式氯化锌的化学指标, 如 Pb、 Cd、 A s、 Hg及氟等有严格控制外, 对其物理指标一颗粒大小也提出了很苛刻要求, 粒径太大, 和其他成份的混合分散性不好, 粒径小, 容易扬尘, 会给周围环境 和人体带来不利影响。
[0004] 碱式氯化锌合成方法很多, 但归纳大致有两类: (1)氧化锌法, 采用碱或碱性 化合物与氧化锌为原料制备, 如专利 CN101712485B ( 《碱式氯化锌的制备方法 》 ) 实施例中使用强碱或氨水, 而专利 CN100496278C"碱式氯化锌饲料添加剂 的制备方法"和 CN1328171C"微量元素添加剂碱式氯化锌的制备方法"分别使用碎 Zn和 2!^1 2为锌源与氧化锌合成; (2)盐酸或氯化锌法, 利用含锌碱性化合物与 盐酸或氯化锌在合适的条件下反应制得, 具体锌化合物有 ZnO、 Zn(OH) 2及碱式 碳酸锌等, 如专利 CN100564263、 CN100366539C采用此方法。
[0005] 从实施过程可看出, 上述专利普遍液体 _固相的非均相反应, 操作过程复杂, 生成的碱式氯化锌易吸附在原料表面, 形成包覆或包夹, 产品化学组分完全由 原料所决定, 其质量难以保证, 另外, 以上过程制备的碱式氯化锌比表面积大 , 以至含水量高、 过滤洗涤性能欠佳, 需要使用离心脱水, 设备及操作复杂, 固定投资高, 干燥能耗也高, 工业化成本高。
[0006] 虽然专利 CN1027457378"碱式氯化锌单晶纳米棒的合成方法 "提出了使用氯化 锌溶液和氨水的均相合成路线, 采用合适的控制手段, 能保证产品的化学指标 , 但该发明使用的氯化锌含量低 (0.08mOl/L~0.16 mol/L) , 合成的碱式氯化锌 颗粒小 (直径 70.0nm、 长约 400nm) , 使用无水乙醇脱水干燥, 量产所需的合成 、 分离及干燥设备投资大, 运行成本高, 产品很难满足市场要求, 因而工业化 前景不尽理想。
技术问题
[0007] 本发明要解决的技术问题在于避免上述现有技术的不足之处而提出一种过程简 单、 杂质含量低、 产品质量易控制且适于工业化的碱式氯化锌的制备方法。
问题的解决方案
技术解决方案
[0008] 本发明解决所述技术问题可以通过采用以下技术方案来实现:
[0009] 提出一种碱式氯化锌的制备方法, 包括以下步骤:
[0010] A . 原料准备: 氯化锌溶液、 氨水和诱导体系; 所述氯化锌溶液的含锌量为 50.
0g/L~150.0g/L; 所述氨水由工业级氨水配置, NH 3浓度为 45.0g/L~95.0g/L; 所述 诱导体系为溶有诱导剂的盐酸溶液, pH值在 0~5.0; 诱导体系的添加量为反应体 系总质量的0.05%。~1.0%, 氯化锌溶液与氨水摩尔比为 0.5:1~0.65:1;
[0011] B . 合成: 将氯化锌溶液与氨水以并流的方式加入到诱导体系中, 控温在 60.0 °C~90.0°C; 加料完毕后继续反应 20.0min~40.0min;
[0012] C.过滤、 洗涤及干燥: 将合成的碱式氯化锌过滤、 洗涤后, 在 80°C~105°C干燥 4.0h~8.0h即得产品碱式氯化锌。
[0013] 所述氯化锌溶液由工业级氯化锌经溶解、 净化后制得, 或者由工业级含锌废料 经浸出除杂制得。
[0014] 所述诱导体系的 pH值在 0~3.0。
[0015] 所述诱导剂为一种氯化或者溴化季铵盐, 所述季铵盐包括四丁基氯化铵、 四丁 基氯化铵、 十六烷基三甲基氯化铵、 十六烷基三甲基溴化铵、 十八烷基三甲基 氯化铵或十八烷基三甲基溴化铵。
[0016] 所述诱导体系的添加量为反应体系总质量的 0.1%。~5.0%。。
[0017] 所述诱导体系也可以是将诱导剂直接溶解在氨水中。 发明的有益效果
有益效果
[0018] 同现有技术相比较, 本发明碱式氯化锌的制备方法的有益效果在于: 1.碱式氯 化锌质量稳定, 能保证氯化锌溶液的杂质含量不超标, 产品中 Pb、 Cd、 Hg、 F 及 As等关键指标的含量就容易达到了国内及欧美标准要求; 2.含水量低, 比较 面积小, 合成的碱式氯化锌经洗涤抽滤后, 含水量为 45.0<¾~50.0<¾, 如经压滤或 离心, 含水量更低; 粗品经干燥后, 碱式氯化锌产品的比表面积在 0.6m 2/g以下 , 甚至小于 0.3m 2/g; 3.合成过程简单、 易控制, 制备的碱式氯化锌的粒径分布 均匀, 适当改变操作条件, 可制备体积平均粒径为 20.0μηι~110.0μιη的一系列产
Ρ 对附图的简要说明
附图说明
[0019] 图 1是实施例一制得的碱式氯化锌产品的粒径分布图;
[0020] 图 2是实施例二制得的碱式氯化锌产品的粒径分布图;
[0021] 图 3是实施例三制得的碱式氯化锌产品的粒径分布图;
[0022] 图 4是实施例三制得的碱式氯化锌产品的 XRD分析图;
[0023] 图 5是实施例三制得的碱式氯化锌产品的 SEM图 (100倍) ;
[0024] 图 6是实施例三制得的碱式氯化锌产品的 SEM图 (5000倍) 。
本发明的实施方式
[0025] 以下结合附图所示之优选实施例作进一步详述。
[0026] 本发明碱式氯化锌的制备方法, 包括以下步骤:
[0027] Α . 原料准备: 氯化锌溶液、 氨水和诱导体系; 所述氯化锌溶液的含锌量为 50.
0g/L~150.0g/L; 所述氨水由工业级氨水配置, NH3浓度为 45.0g/L~95.0g/L; 所述 诱导体系为溶有诱导剂的盐酸溶液, pH值在 0~5.0, 最优 pH值在 0~3.0; 所述诱 导剂为一种氯化或者溴化季铵盐, 所述季铵盐包括四丁基氯化铵、 四丁基氯化 铵、 十六烷基三甲基氯化铵、 十六烷基三甲基溴化铵、 十八烷基三甲基氯化铵 或十八烷基三甲基溴化铵; 诱导体系的添加量为反应体系总质量的 0.05%。~1.0% , 最优为0.1%。~5.0%。; 氯化锌溶液与氨水摩尔比为 0.5:1~0.65:1; 所述氯化锌溶 液由工业级氯化锌经溶解、 净化后制得, 或者由工业级含锌废料经浸出除杂制 得 (杂质如 Fe、 Mn、 Pb、 Cd、 Hg及 As等含量, 都低于 5.0mg/L以下) ;
[0028] B . 合成: 将氯化锌溶液与氨水以并流的方式加入到诱导体系中, 控温在 60.0 °C~90.0°C; 加料完毕后继续反应 20.0min~40.0min;
[0029] C.过滤、 洗涤及干燥: 将合成的碱式氯化锌过滤、 洗涤后, 在 80°C~105°C干燥 4.0h~8.0h即得产品碱式氯化锌。
[0030] 所述步骤 C之后, 根据需要, 对产品碱式氯化锌做化学组分、 X衍射、 扫描电 镜及激光粒度等分析。
[0031] 在实施过程中, 也可以将诱导剂直接溶解在氨水中。
[0032] 实施例一:
[0033] 准备 1.0mol/L的盐酸、 97.6g/L的氯化锌溶液和 NH 3
含量为 68.0g/L的氨水, 并将 O.lg十八烷基三甲基溴化铵溶于氨水中, 先将 100.0m 1的该盐酸转入 2000.0ml反应器中, 搅拌并升温, 控温在 58.0°C左右, 并流加入 27 0.0ml氨水和 416.2ml的氯化锌到反应器中, 加料完毕后继续反应半小吋, 过滤洗 涤, 最后在 90.0°C干燥 6.0h得到碱式氯化锌产品。
[0034] 对成品进行组分及粒径分析, 结果显示: Zn 58.8%、 C1 12.0% ^ Pb 3.5ppm、 Cd 4.0ppm、 As 3.17ppm, 化学指标达到饲料级碱式氯化锌国家标准要求; 比表面积 0.523 m 2/g, 体积平均粒径 22.063μηι, d(0.1) 5.422 μηι, d(0.5) 18.037 μηι, d(0.9) 47.961 μηι, 具体粒径分布见图 1。
[0035] 实施例二
[0036] 准备 0.25mol/L的盐酸、 110.0g/L的氯化锌溶液和 NH 3含量为 85.0g/L的氨水, 并 将 0.35g十六烷基三甲基氯化铵溶于盐酸中, 先将 200.0ml的该盐酸转入 2000.0ml 反应器中, 搅拌并升温, 控温在 70.0°C左右, 并流加入 250.0ml氨水和 450.0ml的 氯化锌到反应器中, 加料完毕后继续反应半小吋, 过滤洗涤, 最后在 85.0°C干燥 10.0h得到碱式氯化锌产品。
[0037] 对成品进行组分及粒径分析, 结果显示: Zn 59.5%、 C1 12.6% ^ Pb低于 3.5ppm 、 Cd低于 4.0ppm、 As 7.78ppm, 化学指标达到饲料级碱式氯化锌国家标准要求 ; 比表面积 0.257 m 2/g, 体积平均粒径 96.913μηι, d(0.1) 8.209 μηι, d(0.5) 66.367 μηι, d(0.9) 195.707 μηι, 具体粒径分布见图 2。
[0038] 实施例三
[0039] 准备 0.05mol/L的盐酸、 135.0g/L的氯化锌溶液和 NH 3含量为 720g/L的氨水, 并 将 0.5g十六烷基三甲基溴化铵溶于盐酸中, 先将 600.0ml的该盐酸转入 2000.0ml反 应器中, 搅拌并升温, 控温在 82.0°C左右, 并流加入 310.0ml氨水和 360.0氯化锌 到反应器中, 加料完毕后继续反应半小吋, 过滤洗涤, 最后在 105.0°C干燥 3.5h得 到碱式氯化锌产品。
[0040] 对成品进行组分、 粒径及微观结构分析, 结果显示: Zn 58.6%、 C1 12.1% . Pb 低于 3.5ppm、 Cd低于 4.0ppm、 As 1.13ppm, 化学指标达到饲料级碱式氯化锌国 家标准要求; 比表面积 0.154 m 2/g, 体积平均粒径 103.873μηι, d(0.1) 38.92 μηι, d(0.5) 70.987 μηι, d(0.9) 131.553
μηι, 具体粒径分布见图 3, 图 4为产品的 XRD衍射图谱, 图 5和图 6为分别实施例 三产品放大 100倍和放大 5000倍的 SEM图。

Claims

权利要求书
[权利要求 1] 一种碱式氯化锌的制备方法, 其特征在于, 包括以下步骤:
A . 原料准备: 氯化锌溶液、 氨水和诱导体系; 所述氯化锌溶液的含 锌量为 50.0g/L~150.0g/L; 所述氨水由工业级氨水配置, NH 3 浓度为 45.0g/L~95.0g/L; 所述诱导体系为溶有诱导剂的盐酸溶液, pH 值在 0~5.0; 诱导剂的添加量为反应体系总质量的0.05%。~1.0%, 氯化 锌溶液与氨水摩尔比为 0.5:1~0.65: 1;
B . 合成: 将氯化锌溶液与氨水以并流的方式加入到诱导体系中, 控 温在 60.0°C~90.0°C; 加料完毕后继续反应 20.0min~40.0min;
C.
过滤、 洗涤及干燥: 将合成的碱式氯化锌过滤、 洗涤后, 在 80°C~105 °C干燥 4.0h~8.0h即得产品碱式氯化锌。
[权利要求 2] 根据权利要求 1所述的碱式氯化锌的制备方法, 其特征在于: 所述氯 化锌溶液由工业级氯化锌经溶解、 净化后制得, 或者由工业级含锌废 料经浸出除杂制得。
[权利要求 3] 根据权利要求 1所述的碱式氯化锌的制备方法, 其特征在于: 所述诱 导体系的 pH值在 0~3.0。
[权利要求 4] 根据权利要求 1所述的碱式氯化锌的制备方法, 其特征在于: 所述诱 导剂为一种氯化或者溴化季铵盐, 所述季铵盐包括四丁基氯化铵、 四 丁基氯化铵、 十六烷基三甲基氯化铵、 十六烷基三甲基溴化铵、 十八 烷基三甲基氯化铵或十八烷基三甲基溴化铵。
[权利要求 5] 根据权利要求 1所述的碱式氯化锌的制备方法, 其特征在于: 所述诱 导体系的添加量为反应体系总质量的 0.1%。~5.0%。。
[权利要求 6] 根据权利要求 1所述的碱式氯化锌的制备方法, 其特征在于: 所述诱 导体系也可以是将诱导剂直接溶解在氨水中。
PCT/CN2015/084103 2014-10-28 2015-07-15 一种碱式氯化锌的制备方法 WO2016065950A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/028,318 US9731978B2 (en) 2014-10-28 2015-07-15 Method for preparing basic zinc chloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410585190.8A CN104276595B (zh) 2014-10-28 2014-10-28 一种碱式氯化锌的制备方法
CN201410585190.8 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016065950A1 true WO2016065950A1 (zh) 2016-05-06

Family

ID=52252013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084103 WO2016065950A1 (zh) 2014-10-28 2015-07-15 一种碱式氯化锌的制备方法

Country Status (3)

Country Link
US (1) US9731978B2 (zh)
CN (1) CN104276595B (zh)
WO (1) WO2016065950A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111453762A (zh) * 2020-06-08 2020-07-28 海西华汇化工机械有限公司 一种以热镀锌锌烟为原料制备碱式氯化锌的方法
CN116216761A (zh) * 2023-02-09 2023-06-06 包头稀土研究院 碱式氯化稀土颗粒及其制备方法
CN116443937A (zh) * 2023-04-03 2023-07-18 长沙兴嘉生物工程股份有限公司 一种碱式氯化锰及其在nk92细胞对肝癌细胞的自然杀伤活性增强上的应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104276595B (zh) * 2014-10-28 2016-08-17 东江环保股份有限公司 一种碱式氯化锌的制备方法
CN105901706B (zh) * 2016-04-21 2019-01-25 长江大学 一种鹅血抗氧化水解物及其微胶囊的制备方法
WO2018105738A1 (ja) * 2016-12-09 2018-06-14 Jfeミネラル株式会社 亜鉛イオン徐放性に優れる塩化水酸化亜鉛およびその製造方法
CN107324375A (zh) * 2017-06-16 2017-11-07 河北奥新金属材料科技有限公司 一种碱式氯化锌的制备方法
CN107857291B (zh) * 2017-12-01 2019-09-06 广州科城环保科技有限公司 一种碱式氯化锌颗粒物及其制备方法
CN109095495A (zh) * 2018-09-13 2018-12-28 桐乡市思远环保科技有限公司 从含锌物料中制备无水氯化锌的方法
US11998312B2 (en) 2020-09-30 2024-06-04 Nxp Usa, Inc. Systems and methods for breathing detection and rate estimation using wireless communication signals
CN114057218B (zh) * 2021-11-29 2024-03-26 天宝动物营养科技股份有限公司 一种碱式氯化锌的制备方法
CN114304395A (zh) * 2022-01-17 2022-04-12 株洲冶炼集团股份有限公司 一种以次氧化锌为原料制备饲料添加剂碱式氯化锌的方法
WO2023212667A2 (en) * 2022-04-27 2023-11-02 New York University Zinc-based materials for treatment of dental caries
CN116462220B (zh) * 2023-01-06 2024-01-23 长沙兴嘉生物工程股份有限公司 一种碱式氯化铜及其在猪卵母细胞体外成熟体系中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712485A (zh) * 2009-11-25 2010-05-26 长沙兴嘉天华农业开发有限公司 碱式氯化锌的制备方法
CN102502783A (zh) * 2011-10-14 2012-06-20 中国科学院上海硅酸盐研究所 具有六角薄片状结构的碱式氯化锌纳米粉体的制备方法
CN103043708A (zh) * 2013-01-09 2013-04-17 长沙微安生物科技有限公司 β-碱式氯化锌的制备方法及其作为动物饲料添加剂的应用
CN103121706A (zh) * 2013-03-11 2013-05-29 深圳市危险废物处理站有限公司 一种碱式氯化锌的制备方法
CN104276595A (zh) * 2014-10-28 2015-01-14 东江环保股份有限公司 一种碱式氯化锌的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865831A (en) * 1988-02-26 1989-09-12 The Dow Chemical Company Recovery of zinc and ammonium chloride
FR2809746B1 (fr) 2000-06-06 2003-03-21 Etudes Const Mecaniques Installation de cementation chauffee au gaz
CN100496278C (zh) 2004-04-26 2009-06-10 黄逸强 碱式氯化锌饲料添加剂的制备方法
CN100366539C (zh) * 2006-05-25 2008-02-06 黄逸强 一种微量元素添加剂碱式氯化锌的制备方法
CN100564263C (zh) 2008-03-27 2009-12-02 黄逸强 一种制备微量元素添加剂碱式氯化锌的方法
CN101591037B (zh) * 2009-07-03 2011-04-20 北京化工大学 一种一维氧化锌纳米材料及其制备方法
CN102745737B (zh) 2012-07-27 2014-04-09 大连交通大学 碱式氯化锌单晶纳米棒的合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101712485A (zh) * 2009-11-25 2010-05-26 长沙兴嘉天华农业开发有限公司 碱式氯化锌的制备方法
CN102502783A (zh) * 2011-10-14 2012-06-20 中国科学院上海硅酸盐研究所 具有六角薄片状结构的碱式氯化锌纳米粉体的制备方法
CN103043708A (zh) * 2013-01-09 2013-04-17 长沙微安生物科技有限公司 β-碱式氯化锌的制备方法及其作为动物饲料添加剂的应用
CN103121706A (zh) * 2013-03-11 2013-05-29 深圳市危险废物处理站有限公司 一种碱式氯化锌的制备方法
CN104276595A (zh) * 2014-10-28 2015-01-14 东江环保股份有限公司 一种碱式氯化锌的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111453762A (zh) * 2020-06-08 2020-07-28 海西华汇化工机械有限公司 一种以热镀锌锌烟为原料制备碱式氯化锌的方法
CN116216761A (zh) * 2023-02-09 2023-06-06 包头稀土研究院 碱式氯化稀土颗粒及其制备方法
CN116443937A (zh) * 2023-04-03 2023-07-18 长沙兴嘉生物工程股份有限公司 一种碱式氯化锰及其在nk92细胞对肝癌细胞的自然杀伤活性增强上的应用
CN116443937B (zh) * 2023-04-03 2024-01-23 长沙兴嘉生物工程股份有限公司 一种碱式氯化锰及其在nk92细胞对肝癌细胞的自然杀伤活性增强上的应用

Also Published As

Publication number Publication date
US20160326006A1 (en) 2016-11-10
CN104276595B (zh) 2016-08-17
US9731978B2 (en) 2017-08-15
CN104276595A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2016065950A1 (zh) 一种碱式氯化锌的制备方法
CN102677177B (zh) 一种高长径比半水硫酸钙晶须的制备方法
US20120189850A1 (en) Magnesium oxide powder having excellent dispersibility and method for producing the same
JP2009521393A5 (zh)
JP2009521392A5 (zh)
CN105271363B (zh) 一种超细氧化锌粉体的制备方法
CN108910932B (zh) 一种碳酸钠沉淀制备窄分布超细氧化钇的方法
CN103288091B (zh) 一种低模数水玻璃碳化沉淀法制备白炭黑的方法
TW201208982A (en) Titanium oxide sol and process for producing same, ultrafine particulate titanium oxide, process for producing same, and uses of same
CN104888705B (zh) 磁性氧化铁/蔗渣活性炭的制备方法
CN102390864A (zh) 一种片状六钛酸钾的制备方法
CN105129866A (zh) 一种硫酸亚铁水热法生产氧化铁红的方法
CN102139926A (zh) 一种制备高纯、高比表面积、晶粒细小纳米氧化物的方法
CN113387394A (zh) 基于生物基碳酸钙的层状双金属氢氧化物材料制备方法
CN106882842A (zh) 一种介孔花瓣状ZnCo2O4纳米固体材料的制备方法
CN105776253B (zh) 一种利用钾霞石粉体制备硝酸钾和纳米高岭石的方法
CN105347310B (zh) 一种制备高纯度钙基水滑石的方法
CN106111139A (zh) 一种天然蛋白石与TiO2的水热复合方法
CN106715330A (zh) 结晶性硅钛酸盐的制造方法
CN103449511A (zh) 一种钛酸锶亚微米晶体及其制备方法
CN101723468A (zh) 一种纳米氧化铁红的制备方法
CN101570478B (zh) 球形草酸钴粉体的制造方法
CN108311097A (zh) 一种粗醚精制吸附剂及其制备方法及基于该吸附剂的粗醚精制方法
CN102838159B (zh) 一种微乳液炭黑吸附沉淀法纳米氧化锌合成的方法
CN108516565A (zh) 一种利用铝钙粉反应渣制备p型沸石分子筛的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15028318

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15855406

Country of ref document: EP

Kind code of ref document: A1