WO2016056802A1 - Method for reporting channel state information in wireless access system supporting unlicensed band, and apparatus for supporting same - Google Patents
Method for reporting channel state information in wireless access system supporting unlicensed band, and apparatus for supporting same Download PDFInfo
- Publication number
- WO2016056802A1 WO2016056802A1 PCT/KR2015/010494 KR2015010494W WO2016056802A1 WO 2016056802 A1 WO2016056802 A1 WO 2016056802A1 KR 2015010494 W KR2015010494 W KR 2015010494W WO 2016056802 A1 WO2016056802 A1 WO 2016056802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- pap
- subframe set
- cell
- base station
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 107
- 210000004027 cell Anatomy 0.000 claims description 142
- 230000005540 biological transmission Effects 0.000 claims description 102
- 230000002776 aggregation Effects 0.000 claims description 52
- 238000004220 aggregation Methods 0.000 claims description 52
- 230000000737 periodic effect Effects 0.000 claims description 23
- 210000004457 myocytus nodalis Anatomy 0.000 claims description 16
- 238000005305 interferometry Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 57
- 230000008569 process Effects 0.000 description 32
- 238000010586 diagram Methods 0.000 description 27
- 239000010410 layer Substances 0.000 description 26
- 238000012544 monitoring process Methods 0.000 description 21
- 239000000969 carrier Substances 0.000 description 17
- 230000011664 signaling Effects 0.000 description 15
- 230000006870 function Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000013468 resource allocation Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000001960 triggered effect Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000013507 mapping Methods 0.000 description 5
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 4
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 238000010295 mobile communication Methods 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 210000003771 C cell Anatomy 0.000 description 3
- 210000004128 D cell Anatomy 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241000760358 Enodes Species 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/005—Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signalling for the administration of the divided path, e.g. signalling of configuration information
- H04L5/0096—Indication of changes in allocation
- H04L5/0098—Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/14—Two-way operation using the same type of signal, i.e. duplex
- H04L5/1469—Two-way operation using the same type of signal, i.e. duplex using time-sharing
Definitions
- the present invention relates to a wireless access system that supports an unlicensed band, and more particularly, to a method for reporting CSI based on a channel status information (CSI) measurement set and an apparatus for supporting the same.
- CSI channel status information
- Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data.
- a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
- multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- the present invention relates to a wireless access system supporting an unlicensed band, and more particularly, to a method for reporting channel state information and devices for supporting the same.
- An object of the present invention is to provide a method for efficiently transmitting and receiving data in a wireless access system supporting an unlicensed band and a licensed band.
- Another object of the present invention is to divide a unlicensed band into a time-based access period (PAP) and a non-shared-time period (Non-PAP), and to establish a subframe measurement set in PAP and / or Non-PAP.
- PAP time-based access period
- Non-PAP non-shared-time period
- Another object of the present invention is to provide a method for performing periodic or aperiodic CSI reporting within a limited CSI measurement set when setting a limited CSI measurement set.
- Still another object of the present invention is to provide a method for sharing configuration information on PAP and non-PAP between a base station or a cell.
- the present invention relates to a wireless access system supporting an unlicensed band, and provides a method for reporting CSI based on a channel state information (CSI) measurement set and apparatuses for supporting the same.
- CSI channel state information
- a method for a UE to report channel state information (CSI) in a wireless access system supporting an unlicensed band includes: transmitting a higher layer signal including CSI subframe set configuration information through a primary cell (P cell); Measuring and measuring the CSI for the secondary cell (S cell) in the PAS or non-PAP based on the step of receiving from the base station and the CSI subframe set configuration information And transmitting the CSI report including the CSI to the base station managing the Pcell and / or the Scell.
- P cell primary cell
- S cell secondary cell
- the non-PAP is set to the first CSI subframe set
- the PAP is set to the second CSI subframe set
- the terminal is set through the CSI subframe set configuration information
- the SCell may be configured in the unlicensed band.
- a terminal for reporting channel state information (CSI) in a wireless access system supporting an unlicensed band may include a transmitter, a receiver, and a processor operatively connected to the transmitter and the receiver to report the CSI. Can be.
- the processor receives the upper layer signal including the CSI subframe set configuration information from the primary cell (P cell) by controlling the receiver; Measuring the CSI for the secondary cell (S cell) in the shared base access section (PAP) or the non-shared base access section (non-PAP) based on the CSI subframe set configuration information; And transmit the CSI report including the measured CSI to a base station managing the Pcell and / or the Scell by controlling the transmitter, wherein the non-PAP is set to the first CSI subframe set, and the PAP is the second CSI subframe.
- the UE is configured with a frame set, the UE receives the first CSI subframe set and the second CSI subframe set through the CSI subframe set configuration information, and the SCell may be configured in the unlicensed band.
- the PAP may be set as a section in which data is transmitted and received regardless of whether or not the S cell is idle, and the non-PAP may be set as a section in which data is transmitted and received only in a transmission opportunity section (TxOP) in which the S cell is idle.
- TxOP transmission opportunity section
- the UE may be configured to measure only the CSI for the second CSI subframe set and transmit the CSI report to the base station.
- the UE can transmit the CSI report to the base station by measuring the CSI in the TxOP in the first CSI subframe set.
- the UE may receive a physical downlink control channel including an aperiodic CSI request field from the Pcell, and the aperiodic CSI request field is the first CSI subfield. It may be configured to request CSI reporting for the frame set or the second CSI subframe set.
- the terminal may be configured to perform interferometry for the neighbor cell only in the second subframe set.
- the terminal may receive downlink data from the SCell.
- a power adjustment parameter used when transmitting downlink data may be set differently for each of a first subframe set and a second subframe set.
- data can be efficiently transmitted and received in a wireless access system supporting an unlicensed band and a licensed band.
- PAP time-sharing periods
- Non-PAP non-sharing periods
- the UE may perform appropriate periodic or aperiodic CSI reporting according to the characteristics of the unlicensed band within the limited CSI measurement set.
- 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
- FIG. 2 is a diagram illustrating an example of a structure of a radio frame.
- 3 is a diagram illustrating a resource grid for a downlink slot.
- FIG. 4 is a diagram illustrating an example of a structure of an uplink subframe.
- 5 is a diagram illustrating an example of a structure of a downlink subframe.
- FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and LTE_A system.
- FIG. 7 shows a subframe structure of an LTE-A system according to cross carrier scheduling.
- FIG. 8 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling.
- FIG. 9 is a diagram illustrating one of the SRS transmission methods used in embodiments of the present invention.
- FIG. 10 is a diagram illustrating an example of a subframe to which a cell specific reference signal (CRS) is allocated, which can be used in embodiments of the present invention.
- CRS cell specific reference signal
- FIG. 11 is a diagram illustrating an example in which legacy PDCCH, PDSCH, and E-PDCCH used in an LTE / LTE-A system are multiplexed.
- FIG. 12 is a diagram illustrating an example of a CA environment supported by an LTE-U system.
- FIG. 13 is a diagram illustrating one method of setting a TxOP interval.
- FIG. 14 is a diagram illustrating one method of setting a TxOP interval.
- FIG. 15 is a diagram for explaining one of methods for performing periodic CSI reporting on a subframe set configured in an unlicensed band.
- FIG. 16 is a diagram for describing one of methods for performing aperiodic CSI reporting on a subframe set configured in an unlicensed band.
- FIG. 17 is a means in which the methods described in FIGS. 1 to 16 may be implemented.
- the present invention relates to a wireless access system supporting an unlicensed band, and proposes a method for reporting CSI based on a channel state information (CSI) measurement set, and apparatuses for supporting the same.
- CSI channel state information
- each component or feature may be considered to be optional unless otherwise stated.
- Each component or feature may be embodied in a form that is not combined with other components or features.
- some components and / or features may be combined to form an embodiment of the present invention.
- the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
- the base station is meant as a terminal node of a network that directly communicates with a mobile station.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
- various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
- the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
- a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
- UE user equipment
- MS mobile station
- SS subscriber station
- MSS mobile subscriber station
- AMS advanced mobile station
- the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service
- the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems, and in particular, the present invention.
- Embodiments of the may be supported by 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents.
- all terms disclosed in the present document can be described by the above standard document.
- Transmission Opportunity Period may be used in the same meaning as the term transmission period or RRP (Reserved Resource Period).
- RRP Resource Period
- LBT List Before Talk
- 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
- TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
- GSM Global System for Mobile communications
- GPRS General Packet Radio Service
- EDGE Enhanced Data Rates for GSM Evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
- UTRA is part of the Universal Mobile Telecommunications System (UMTS).
- 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A (Advanced) system is an improved system of the 3GPP LTE system.
- embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system and the like.
- a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL).
- the information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
- FIG. 1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
- the initial cell search operation such as synchronizing with the base station is performed in step S11.
- the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
- P-SCH Primary Synchronization Channel
- S-SCH Secondary Synchronization Channel
- the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
- PBCH physical broadcast channel
- the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
- DL RS downlink reference signal
- the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
- PDCCH physical downlink control channel
- PDSCH physical downlink control channel
- the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station.
- the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14).
- PRACH physical random access channel
- the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
- the UE After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure.
- a transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
- UCI uplink control information
- HARQ-ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK
- SR Scheduling Request
- CQI Channel Quality Indication
- PMI Precoding Matrix Indication
- RI Rank Indication
- UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time.
- the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
- FIG. 2 shows a structure of a radio frame used in embodiments of the present invention.
- the type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
- FDD Frequency Division Duplex
- One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes.
- the time taken to transmit one subframe is called a transmission time interval (TTI).
- the slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
- One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
- a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
- 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain.
- the terminal cannot simultaneously transmit and receive.
- the structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
- Type 2 frame structure is applied to the TDD system.
- the type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
- DwPTS downlink pilot time slot
- GP guard period
- UpPTS uplink pilot time slot
- the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal.
- UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
- the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
- Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
- FIG. 3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
- one downlink slot includes a plurality of OFDM symbols in the time domain.
- one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
- Each element on the resource grid is a resource element, and one resource block includes 12 ⁇ 7 resource elements.
- the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
- the structure of the uplink slot may be the same as the structure of the downlink slot.
- FIG. 4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
- an uplink subframe may be divided into a control region and a data region in the frequency domain.
- the control region is allocated a PUCCH carrying uplink control information.
- a PUSCH carrying user data is allocated.
- one UE does not simultaneously transmit a PUCCH and a PUSCH.
- the PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
- the RB pair assigned to this PUCCH is said to be frequency hopping at the slot boundary.
- FIG. 5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
- up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. to be.
- a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
- PCFICH Physical Control Format Indicator Channel
- PDCCH Physical Hybrid-ARQ Indicator Channel
- PHICH Physical Hybrid-ARQ Indicator Channel
- the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
- the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
- Control information transmitted through the PDCCH is called downlink control information (DCI).
- the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
- the PDCCH includes resource allocation and transmission format (ie, DL-Grant) of downlink shared channel (DL-SCH) and resource allocation information (ie, uplink grant (UL-) of uplink shared channel (UL-SCH). Grant)), paging information on a paging channel (PCH), system information on a DL-SCH, and an upper-layer control message such as a random access response transmitted on a PDSCH. It may carry resource allocation, a set of transmission power control commands for individual terminals in a certain terminal group, information on whether Voice over IP (VoIP) is activated or the like.
- VoIP Voice over IP
- a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
- the PDCCH consists of an aggregation of one or several consecutive control channel elements (CCEs).
- CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
- the CCE corresponds to a plurality of resource element groups (REGs).
- the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
- a plurality of multiplexed PDCCHs for a plurality of terminals may be transmitted in a control region.
- the PDCCH is composed of one or more consecutive CCE aggregations (CCE aggregation).
- CCE refers to a unit corresponding to nine sets of REGs consisting of four resource elements.
- QPSK Quadrature Phase Shift Keying
- RS reference signal
- the base station may use ⁇ 1, 2, 4, 8 ⁇ CCEs to configure one PDCCH signal, wherein ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
- the number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel state. For example, one CCE may be sufficient for a PDCCH for a terminal having a good downlink channel state (close to the base station). On the other hand, in case of a UE having a bad channel state (when it is at a cell boundary), eight CCEs may be required for sufficient robustness.
- the power level of the PDCCH may also be adjusted to match the channel state.
- Table 2 below shows a PDCCH format, and four PDCCH formats are supported as shown in Table 2 according to the CCE aggregation level.
- the reason why the CCE aggregation level is different for each UE is because a format or a modulation and coding scheme (MCS) level of control information carried on the PDCCH is different.
- MCS level refers to a code rate and a modulation order used for data coding.
- Adaptive MCS levels are used for link adaptation. In general, three to four MCS levels may be considered in a control channel for transmitting control information.
- control information transmitted through the PDCCH is referred to as downlink control information (DCI).
- DCI downlink control information
- the configuration of information carried in the PDCCH payload may vary.
- the PDCCH payload means an information bit. Table 3 below shows DCI according to DCI format.
- a DCI format includes a format 0 for PUSCH scheduling, a format 1 for scheduling one PDSCH codeword, a format 1A for compact scheduling of one PDSCH codeword, and a very much DL-SCH.
- Format 1C for simple scheduling, format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode, format 2A for PDSCH scheduling in open-loop spatial multiplexing mode, for uplink channel
- Format 3 and 3A for the transmission of Transmission Power Control (TPC) commands.
- DCI format 1A may be used for PDSCH scheduling, regardless of which transmission mode is configured for the UE.
- the PDCCH payload length may vary depending on the DCI format.
- the type and length thereof of the PDCCH payload may vary depending on whether it is a simple scheduling or a transmission mode set in the terminal.
- the transmission mode may be configured for the UE to receive downlink data through the PDSCH.
- the downlink data through the PDSCH may include scheduled data, paging, random access response, or broadcast information through BCCH.
- Downlink data through the PDSCH is related to the DCI format signaled through the PDCCH.
- the transmission mode may be set semi-statically to the terminal through higher layer signaling (eg, RRC (Radio Resource Control) signaling).
- the transmission mode may be classified into single antenna transmission or multi-antenna transmission.
- the terminal is set to a semi-static transmission mode through higher layer signaling.
- multi-antenna transmission includes transmit diversity, open-loop or closed-loop spatial multiplexing, and multi-user-multiple input multiple outputs.
- beamforming Transmit diversity is a technique of increasing transmission reliability by transmitting the same data in multiple transmit antennas.
- Spatial multiplexing is a technology that allows high-speed data transmission without increasing the bandwidth of the system by simultaneously transmitting different data from multiple transmit antennas.
- Beamforming is a technique of increasing the signal to interference plus noise ratio (SINR) of a signal by applying weights according to channel conditions in multiple antennas.
- SINR signal to interference plus noise ratio
- the DCI format is dependent on a transmission mode configured in the terminal (depend on).
- the UE has a reference DCI format that monitors according to a transmission mode configured for the UE.
- the transmission mode set in the terminal may have ten transmission modes as follows.
- transmission mode 1 single antenna port; Port 0
- Transmission mode 7 Precoding supporting single layer transmission not based on codebook
- Transmission mode 8 Precoding supporting up to two layers not based on codebook
- Transmission mode 9 Precoding supporting up to eight layers not based on codebook
- Transmission mode 10 precoding supporting up to eight layers, used for CoMP, not based on codebook
- the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
- a unique identifier for example, a Radio Network Temporary Identifier (RNTI)
- RNTI Radio Network Temporary Identifier
- a paging indication identifier (eg, P-RNTI (P-RNTI)) may be masked to the CRC.
- P-RNTI P-RNTI
- SI-RNTI System Information RNTI
- RA-RNTI random access-RNTI
- the base station performs channel coding on the control information added with the CRC to generate coded data.
- channel coding may be performed at a code rate according to the MCS level.
- the base station performs rate matching according to the CCE aggregation level allocated to the PDCCH format, modulates the coded data, and generates modulation symbols.
- a modulation sequence according to the MCS level can be used.
- the modulation symbols constituting one PDCCH may have one of 1, 2, 4, and 8 CCE aggregation levels.
- the base station maps modulation symbols to physical resource elements (CCE to RE mapping).
- a plurality of PDCCHs may be transmitted in one subframe. That is, the control region of one subframe includes a plurality of CCEs having indices 0 to N CCE, k ⁇ 1.
- N CCE, k means the total number of CCEs in the control region of the kth subframe.
- the UE monitors the plurality of PDCCHs in every subframe. Here, monitoring means that the UE attempts to decode each of the PDCCHs according to the monitored PDCCH format.
- blind decoding refers to a method in which a UE de-masks its UE ID in a CRC portion and then checks the CRC error to determine whether the corresponding PDCCH is its control channel.
- the UE monitors the PDCCH of every subframe in order to receive data transmitted to the UE.
- the UE wakes up in the monitoring interval of every DRX cycle and monitors the PDCCH in a subframe corresponding to the monitoring interval.
- a subframe in which PDCCH monitoring is performed is called a non-DRX subframe.
- the UE In order to receive the PDCCH transmitted to the UE, the UE must perform blind decoding on all CCEs present in the control region of the non-DRX subframe. Since the UE does not know which PDCCH format is transmitted, it is necessary to decode all PDCCHs at the CCE aggregation level possible until blind decoding of the PDCCH is successful in every non-DRX subframe. Since the UE does not know how many CCEs the PDCCH uses for itself, the UE should attempt detection at all possible CCE aggregation levels until the blind decoding of the PDCCH succeeds.
- a search space (SS) concept is defined for blind decoding of a terminal.
- the search space means a PDCCH candidate set for the UE to monitor and may have a different size according to each PDCCH format.
- the search space may include a common search space (CSS) and a UE-specific / dedicated search space (USS).
- the UE In the case of the common search space, all terminals can know the size of the common search space, but the terminal specific search space can be set individually for each terminal. Accordingly, the UE must monitor both the UE-specific search space and the common search space in order to decode the PDCCH, thus performing a maximum of 44 blind decoding (BDs) in one subframe. This does not include blind decoding performed according to different CRC values (eg, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI).
- CRC values eg, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI
- the base station may not be able to secure the CCE resources for transmitting the PDCCH to all the terminals to transmit the PDCCH in a given subframe. This is because resources remaining after the CCE location is allocated may not be included in the search space of a specific UE.
- a terminal specific hopping sequence may be applied to the starting point of the terminal specific search space to minimize this barrier that may continue to the next subframe.
- Table 4 shows the sizes of the common search space and the terminal specific search space.
- the UE does not simultaneously perform searches according to all defined DCI formats. Specifically, the terminal always performs a search for DCI formats 0 and 1A in the terminal specific search space (USS). In this case, the DCI formats 0 and 1A have the same size, but the UE may distinguish the DCI formats by using a flag used for distinguishing the DCI formats 0 and 1A included in the PDCCH. In addition, a DCI format other than DCI format 0 and DCI format 1A may be required for the UE. Examples of the DCI formats include 1, 1B, and 2.
- the UE may search for DCI formats 1A and 1C.
- the UE may be configured to search for DCI format 3 or 3A, and DCI formats 3 and 3A have the same size as DCI formats 0 and 1A, but the UE uses a CRC scrambled by an identifier other than the UE specific identifier.
- the DCI format can be distinguished.
- the CCE according to the PDCCH candidate set m of the search space may be determined by Equation 1 below.
- M (L) represents the number of PDCCH candidates according to CCE aggregation level L for monitoring in search space, to be.
- N s represents a slot index in a radio frame.
- the UE monitors both the UE-specific search space and the common search space to decode the PDCCH.
- the common search space (CSS) supports PDCCHs having an aggregation level of ⁇ 4, 8 ⁇
- the UE specific search space supports PDCCHs having an aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
- Table 5 shows PDCCH candidates monitored by the UE.
- Y k is defined as in Equation 2.
- CA Carrier Aggregation
- LTE system 3rd Generation Partnership Project Long Term Evolution (Rel-8 or Rel-9) system
- MCM multi-carrier modulation
- CC component carrier
- Multi-Carrier Modulation is used.
- LTE-A system a method such as Carrier Aggregation (CA) may be used in which one or more component carriers are combined to support a wider system bandwidth than the LTE system.
- CA Carrier Aggregation
- Carrier aggregation may be replaced with the words carrier aggregation, carrier matching, multi-component carrier environment (Multi-CC) or multicarrier environment.
- the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers.
- the number of component carriers aggregated between downlink and uplink may be set differently.
- the case where the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC') is the same is called symmetric merging. This is called asymmetric merging.
- Such carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
- Carrier aggregation in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system.
- the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
- the existing 3GPP LTE system supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
- the 3GPP LTE-advanced system i.e., LTE-A
- LTE-A 3GPP LTE-advanced system
- the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
- the carrier aggregation may be divided into an intra-band CA and an inter-band CA.
- Intra-band carrier merging means that a plurality of DL CCs and / or UL CCs are located adjacent to or in proximity to frequency. In other words, it may mean that the carrier frequencies of the DL CCs and / or UL CCs are located in the same band.
- an environment far from the frequency domain may be referred to as an inter-band CA.
- the terminal may use a plurality of radio frequency (RF) terminals to perform communication in a carrier aggregation environment.
- RF radio frequency
- the LTE-A system uses the concept of a cell to manage radio resources.
- the carrier aggregation environment described above may be referred to as a multiple cell environment.
- a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
- a specific UE when a specific UE has only one configured serving cell, it may have one DL CC and one UL CC. However, when a specific terminal has two or more configured serving cells, it may have as many DL CCs as the number of cells and the number of UL CCs may be the same or smaller than that. Alternatively, the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported.
- Carrier coupling may also be understood as the merging of two or more cells, each having a different carrier frequency (center frequency of the cell).
- the term 'cell' in terms of carrier combining is described in terms of frequency, and should be distinguished from 'cell' as a geographical area covered by a commonly used base station.
- intra-band carrier merging is referred to as an intra-band multi-cell
- inter-band carrier merging is referred to as an inter-band multi-cell.
- the cell used in the LTE-A system includes a primary cell (P cell) and a secondary cell (S cell).
- the PCell and the SCell may be used as serving cells.
- the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell composed of the PCell.
- one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
- Serving cells may be configured through an RRC parameter.
- PhyS cell Id is a cell's physical layer identifier and has an integer value from 0 to 503.
- SCell Index is a short identifier used to identify SCell and has an integer value from 1 to 7.
- ServCellIndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the P cell, and the S cell Index is given in advance to apply to the S cell. That is, a cell having the smallest cell ID (or cell index) in ServCellIndex becomes a P cell.
- P cell refers to a cell operating on a primary frequency (or primary CC).
- the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may also refer to a cell indicated in a handover process.
- the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure.
- E-UTRAN Evolved Universal Terrestrial Radio Access
- RRC ConnectionReconfigutaion message of a higher layer including mobility control information to a UE supporting a carrier aggregation environment. It may be.
- the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated.
- the SCell is configurable after the RRC connection is established and may be used to provide additional radio resources.
- PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among the serving cells configured in the carrier aggregation environment.
- the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal.
- the change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfigutaion message of a higher layer may be used.
- the E-UTRAN may transmit specific signaling having different parameters for each terminal, rather than broadcasting in the related SCell.
- the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
- the Pcell and the SCell may operate as respective component carriers.
- the primary component carrier (PCC) may be used in the same sense as the PCell
- the secondary component carrier (SCC) may be used in the same sense as the SCell.
- FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and an LTE_A system used in embodiments of the present invention.
- Component carriers include a DL CC and an UL CC.
- One component carrier may have a frequency range of 20 MHz.
- 6 (b) shows a carrier aggregation structure used in the LTE_A system.
- 6 (b) shows a case where three component carriers having a frequency size of 20 MHz are combined.
- the number of DL CCs and UL CCs is not limited.
- the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
- the network may allocate M (M ⁇ N) DL CCs to the UE.
- the UE may monitor only M limited DL CCs and receive a DL signal.
- the network may assign L (L ⁇ M ⁇ N) DL CCs to allocate a main DL CC to the UE, in which case the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
- the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message or system information such as an RRC message.
- a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2).
- SIB2 System Information Block Type2
- the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
- Cross carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
- Self-scheduling is transmitted through a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted in the same DL CC, or a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC in which a UL Grant has been received. It means to be.
- a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted to different DL CCs or a UL CC in which a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC having received an UL grant This means that it is transmitted through other UL CC.
- Whether to perform cross-carrier scheduling may be activated or deactivated UE-specifically and may be known for each UE semi-statically through higher layer signaling (eg, RRC signaling).
- higher layer signaling eg, RRC signaling
- a carrier indicator field (CIF: Carrier Indicator Field) indicating a PDSCH / PUSCH indicated by the corresponding PDCCH is transmitted to the PDCCH.
- the PDCCH may allocate PDSCH resource or PUSCH resource to one of a plurality of component carriers using CIF. That is, when the PDCCH on the DL CC allocates PDSCH or PUSCH resources to one of the multi-aggregated DL / UL CC, CIF is set.
- the DCI format of LTE Release-8 may be extended according to CIF.
- the set CIF may be fixed as a 3 bit field or the position of the set CIF may be fixed regardless of the DCI format size.
- the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE Release-8 may be reused.
- the PDCCH on the DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on a single linked UL CC, CIF is not configured.
- the same PDCCH structure (same coding and resource mapping based on the same CCE) and DCI format as in LTE Release-8 may be used.
- the UE When cross carrier scheduling is possible, the UE needs to monitor the PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
- the terminal DL CC set represents a set of DL CCs scheduled for the terminal to receive a PDSCH
- the terminal UL CC set represents a set of UL CCs scheduled for the terminal to transmit a PUSCH.
- the PDCCH monitoring set represents a set of at least one DL CC that performs PDCCH monitoring.
- the PDCCH monitoring set may be the same as the terminal DL CC set or may be a subset of the terminal DL CC set.
- the PDCCH monitoring set may include at least one of DL CCs in the terminal DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
- the DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
- the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be configured UE-specifically, UE group-specifically, or cell-specifically.
- cross-carrier scheduling When cross-carrier scheduling is deactivated, it means that the PDCCH monitoring set is always the same as the UE DL CC set. In this case, an indication such as separate signaling for the PDCCH monitoring set is not necessary.
- a PDCCH monitoring set is defined in the terminal DL CC set. That is, in order to schedule PDSCH or PUSCH for the UE, the base station transmits the PDCCH through only the PDCCH monitoring set.
- FIG. 7 illustrates a subframe structure of an LTE-A system according to cross carrier scheduling used in embodiments of the present invention.
- DL CC 'A' represents a case in which a PDCCH monitoring DL CC is configured.
- each DL CC may transmit a PDCCH for scheduling its PDSCH without CIF.
- the CIF is used through higher layer signaling, only one DL CC 'A' may transmit a PDCCH for scheduling its PDSCH or PDSCH of another CC using the CIF.
- DL CCs 'B' and 'C' that are not configured as PDCCH monitoring DL CCs do not transmit the PDCCH.
- FIG. 8 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling used in embodiments of the present invention.
- a base station and / or terminals may be composed of one or more serving cells.
- the base station can support a total of four serving cells, such as A cell, B cell, C cell, and D cell, and terminal A is composed of A cell, B cell, and C cell, and terminal B is B cell, C cell, and the like. It is assumed that the D cell and the terminal C is configured as a B cell. In this case, at least one of the cells configured in each terminal may be configured as a P cell.
- the PCell is always in an activated state, and the SCell may be activated or deactivated by the base station and / or the terminal.
- the cell configured in FIG. 8 is a cell capable of adding a cell to a CA based on a measurement report message from a terminal among cells of a base station, and may be configured for each terminal.
- the configured cell reserves the resources for the ACK / NACK message transmission for the PDSCH signal transmission in advance.
- An activated cell is a cell configured to transmit a real PDSCH signal and / or a PUSCH signal among configured cells, and performs CSI reporting and SRS (Sounding Reference Signal) transmission.
- a de-activated cell is a cell configured not to transmit or receive a PDSCH / PUSCH signal by a command or timer operation of a base station, and also stops CSI reporting and SRS transmission.
- CoMP transmission may be implemented using a carrier aggregation (CA) function in LTE.
- CA carrier aggregation
- a carrier operating as a PCell and a carrier operating as an SCell may use the same frequency band as the frequency axis, and are allocated to two geographically separated eNBs.
- the serving eNB of the UE1 may be allocated to the Pcell, and the neighboring cell which gives a lot of interference may be allocated to the Scell. That is, the base station of the P cell and the base station of the S cell may perform various DL / UL CoMP operations such as joint transmission (JT), CS / CB, and dynamic cell selection with respect to one UE.
- FIG. 9 shows an example of combining cells managed by two eNBs for one UE (e.g. UE1) as a Pcell and an Scell, respectively.
- one UE e.g. UE1
- three or more cells may be combined.
- some of the three or more cells may be configured to perform a CoMP operation on one terminal in the same frequency band, and other cells to perform a simple CA operation in another frequency band.
- the Pcell does not necessarily participate in CoMP operation.
- FIG. 10 is a diagram illustrating an example of a subframe to which a cell specific reference signal (CRS) is allocated, which can be used in embodiments of the present invention.
- CRS cell specific reference signal
- CRS 10 shows an allocation structure of a CRS when a system supports four antennas.
- CRS is used for decoding and channel state measurement. Accordingly, the CRS is transmitted over the entire downlink bandwidth in all downlink subframes in a cell supporting PDSCH transmission, and is transmitted in all antenna ports configured in the eNB.
- the CRS sequence is mapped to complex-valued modulation symbols used as reference symbols for antenna port p in slot n s .
- the UE can measure the CSI using the CRS, and can decode the downlink data signal received through the PDSCH in a subframe including the CRS using the CRS. That is, the eNB transmits the CRS at a predetermined position in each RB in all RBs, and the UE detects the PDSCH after performing channel estimation based on the CRS. For example, the UE measures the signal received at the CRS RE. The UE may detect the PDSCH signal from the PD to which the PDSCH is mapped by using a ratio of the reception energy for each CRS RE to the reception energy for each RE to which the PDSCH is mapped.
- the 3GPP LTE-A system further defines a UE-specific RS (hereinafter, UE-RS) and a channel state information reference signal (CSI-RS) in addition to the CRS.
- UE-RS is used for demodulation and CSI-RS is used to derive channel state information.
- UE-RS and CRS are used for demodulation, they can be referred to as demodulation RS in terms of use. That is, the UE-RS may be regarded as a kind of DM-RS (DeModulation Reference Signal).
- DM-RS Demodulation Reference Signal
- the CSI-RS and the CRS are used for channel measurement or channel estimation, the CSI-RS and CRS may be referred to as RS for channel state measurement in terms of use.
- FIG. 11 is a diagram illustrating an example of subframes in which CSI-RSs that can be used in embodiments of the present invention are allocated according to the number of antenna ports.
- the CSI-RS is a downlink reference signal introduced in the 3GPP LTE-A system not for demodulation purposes but for measuring a state of a wireless channel.
- the 3GPP LTE-A system defines a plurality of CSI-RS settings for CSI-RS transmission. In subframes in which CSI-RS transmission is configured, the CSI-RS sequence is mapped according to complex modulation symbols used as reference symbols on antenna port p.
- FIG. 11 (a) shows 20 CSI-RS configurations 0 to 19 available for CSI-RS transmission by two CSI-RS ports among CSI-RS configurations
- FIG. 11 (b) shows CSI-RS configurations. Of the configurations, 10 CSI-RS configurations available through four CSI-RS ports 0 through 9 are shown, and FIG. 11 (c) shows 5 available by eight CSI-RS ports among the CSI-RS configurations. Branch CSI-RS configuration 0-4 are shown.
- the CSI-RS port means an antenna port configured for CSI-RS transmission. Since the CSI-RS configuration varies depending on the number of CSI-RS ports, even if the CSI-RS configuration numbers are the same, different CSI-RS configurations are obtained when the number of antenna ports configured for CSI-RS transmission is different.
- the CSI-RS is configured to be transmitted every predetermined transmission period corresponding to a plurality of subframes. Therefore, the CSI-RS configuration depends not only on the positions of REs occupied by the CSI-RS in a resource block pair but also on the subframe in which the CSI-RS is configured.
- the CSI-RS configuration may be regarded as different. For example, if the CSI-RS transmission period (T CSI-RS ) is different or the start subframe ( ⁇ CSI-RS ) configured for CSI-RS transmission in one radio frame is different, the CSI-RS configuration may be different.
- the CSI-RS configuration depends on (1) the CSI-RS configuration to which the CSI-RS configuration number is assigned, and (2) the CSI-RS configuration number, the number of CSI-RS ports, and / or subframes in which the CSI-RS is configured.
- the configuration of the latter 2 is called a CSI-RS resource configuration.
- the setting of the former 1 is also referred to as CSI-RS configuration or CSI-RS pattern.
- eNB informs UE of CSI-RS resource configuration
- the number of antenna ports, CSI-RS pattern, CSI-RS subframe configuration I CSI-RS , CSI used for transmission of CSI-RSs UE assumption on reference PDSCH transmitted power for feedback (CSI) can be informed about P c , zero power CSI-RS configuration list, zero power CSI-RS subframe configuration, etc. .
- I CSI-RS is information for specifying the subframe configuration period T CSI-RS and subframe offset ⁇ CSI-RS for the presence of CSI-RSs .
- Table 4 illustrates CSI-RS subframe configuration index I CSI-RS according to T CSI-RS and ⁇ CSI-RS .
- CSI-RS-SubframeConfig I CSI-RS CSI-RS periodicity T CSI-RS (subframes) CSI-RS subframe offset ⁇ CSI-RS (subframes) 0-4 5 I CSI-RS 5-14 10 I CSI-RS -5 15-34 20 I CSI-RS -15 35-74 40 I CSI-RS -35 75-154 80 I CSI-RS -75
- subframes satisfying Equation 3 below are subframes including the CSI-RS.
- UE set to a transmission mode defined after 3GPP LTE-A system performs channel measurement using CSI-RS and PDSCH using UE-RS Can be decoded.
- UE set to a transmission mode defined after 3GPP LTE-A system performs channel measurement using CSI-RS and PDSCH using UE-RS Can be decoded.
- a cross carrier scheduling (CCS) operation in a combined situation for a plurality of component carrier (CC) cells
- CC cross carrier scheduling
- the scheduled CC may be preset to receive DL / UL scheduling only from another scheduling CC (ie, to receive a DL / UL grant PDCCH for the scheduled CC).
- the scheduling CC may basically perform DL / UL scheduling on itself.
- the number of OFDM symbols used for transmission of control channels in each subframe may be delivered to the UE dynamically through a physical channel such as PCFICH or in a semi-static manner through RRC signaling.
- the PDCCH which is a physical channel for transmitting DL / UL scheduling and various control information, has a limitation such as being transmitted through limited OFDM symbols.
- the PDCCH is transmitted through an OFDM symbol separate from the PDSCH, such as a PDCCH.
- An extended PDCCH ie E-PDCCH
- FIG. 12 is a diagram illustrating an example in which legacy PDCCH, PDSCH, and E-PDCCH used in an LTE / LTE-A system are multiplexed.
- cooperative operations may be performed between network entities. For example, during a particular subframe in which Cell A transmits data, cells other than Cell A transmit only common control information, but do not transmit data, thereby minimizing interference to users receiving data in Cell A. can do.
- the UE may perform a resource-restricted measurement (RRM) operation.
- RRM resource-restricted measurement
- Table 7 below shows an example of a higher layer signal for setting a CSI subframe set.
- CQI-ReportConfig-r10 SEQUENCE ⁇ cqi-ReportAperiodic-r10 CQI-ReportAperiodic-r10 OPTIONAL,-Need ON nomPDSCH-RS-EPRE-Offset INTEGER (-1..6), cqi-ReportPeriodic-r10 CQI-ReportPeriodic -r10 OPTIONAL,-Need ON pmi-RI-Report-r9 ENUMERATED ⁇ setup ⁇ OPTIONAL,-Cond PMIRIPCell csi-SubframePatternConfig-r10 CHOICE ⁇ release NULL, setup SEQUENCE ⁇ csi-MeasSubframeSet1-r10 MeasSubframePattern-r10, csi-MeasSubframeSet2 -r10 MeasSubframePattern-r10 ⁇ OPTIONAL-Need ON ⁇
- Table 7 shows an example of a CQI-Report Cofig message transmitted to set a CSI subframe set.
- the CQI report configuration message includes aperiodic CQI report (cqi-ReportAperiodic-r10) IE, nomPDSCH-RS-EPRE-Offset IE, periodic CQI report (cqi-ReportPeriodci-r10) IE, PMI-RI report (pmi-RI- Report-r9) IE and CSI subframe pattern configuration (csi-subframePatternConfig) IE may be included.
- the CSI subframe pattern configuration IE includes a CSI measurement subframe set 1 information (csi-MeasSubframeSet1) IE and a CSI measurement subframe set 2 information (csi-MeasSubframeSet2) IE indicating a measurement subframe pattern for each subframe set.
- the CSI measurement subframe set 1 (csi-MeasSubframeSet1-r10) information element (IE) and the CSI measurement subframe set 2 (csi-MeasSubframeSet2-r10) IE are 40 bit bitmap information and belong to each subframe set. Represents information about a subframe.
- the aperiodic CQI report (CQI-ReportAperiodic-r10) IE is an IE for performing the setting for aperiodic CQI reporting to the terminal
- the periodic CQI report (CQI-ReportPeriodic-r10) IE is set for the periodic CQI reporting IE is done.
- nomPDSCH-RS-EPRE-Offset IE Indicates a value. At this time, the actual value is Value * 2 is set to [dB].
- the PMI-RI Report IE indicates that PMI / IR reporting is configured or not. EUTRAN configures the PMI-RI Report IE only when the transmission mode is set to TM8, 9 or 10.
- the LTE-U system refers to an LTE system supporting CA conditions of the licensed band and the unlicensed band.
- the unlicensed band may be a Wi-Fi band or a Bluetooth (BT) band.
- FIG. 13 is a diagram illustrating an example of a CA environment supported by the LTE-U system.
- CCs component carriers
- a licensed CC (LCC: Licensed CC) is a major carrier (can be referred to as a primary CC (PCC or PCell)), an unlicensed carrier (Unlicensed CC: UCC) is a sub-carrier Assume a case of (Secondary CC: SCC or S cell).
- LCC Licensed CC
- UCC unlicensed carrier
- embodiments of the present invention may be extended to a situation in which a plurality of licensed bands and a plurality of unlicensed bands are used in a carrier combining method.
- the proposed schemes of the present invention can be extended to not only 3GPP LTE system but also other system.
- FIG. 13 illustrates a case in which one base station supports both a licensed band and an unlicensed band. That is, the terminal can transmit and receive control information and data through a PCC, which is a licensed band, and can also transmit and receive control information and data through an SCC, which is an unlicensed band.
- a PCC which is a licensed band
- SCC which is an unlicensed band
- the terminal may configure a P-cell and a macro base station (M-eNB: Macro eNB) and a small cell (S-eNB: Small eNB) and an S cell.
- M-eNB Macro eNB
- S-eNB Small eNB
- the macro base station and the small base station may be connected through a backhaul network.
- the unlicensed band may be operated in a contention based random access scheme.
- an eNB and / or a transmission point (TP) supporting an unlicensed band may first perform a carrier sensing (CS) process before data transmission and reception.
- the CS process is a process of determining whether the corresponding band is occupied by another entity.
- the base station eNB and / or TP of the SCell checks whether the current channel is busy or idle. If it is determined that the corresponding band is idle, the base station and / or the TP is a scheduling grant through the (E) PDCCH of the Pcell in the case of the cross carrier scheduling scheme or the PDCCH of the Scell in the case of the self scheduling scheme. Transmits to the terminal to allocate resources, and may attempt to transmit and receive data.
- the CS process may be performed in the same or similar manner as the LBT process.
- the LBT process is a process in which a base station of a Pcell checks whether a current state of a Ucell (a cell operating in an unlicensed band) is busy or idle. For example, when there is a clear channel assessment (CCA) threshold set by a preset or higher layer signal, when an energy higher than the CCA threshold is detected in the U-cell, it is determined to be busy or otherwise idle. do.
- CCA clear channel assessment
- the base station of the Pcell transmits a scheduling grant (ie, DCI, etc.) through the (E) PDCCH of the Pcell or through the PDCCH of the Ucell to schedule resources for the Ucell.
- the data can be transmitted and received through the U cell.
- the base station and / or the TP may set a transmission opportunity (TxOP) section consisting of M consecutive subframes.
- TxOP transmission opportunity
- the base station may inform the UE of the M value and the use of the M subframes in advance through a higher layer signal, a physical control channel, or a physical data channel through a Pcell.
- a TxOP period consisting of M subframes may be called a reserved resource period (RRP).
- the base station may transmit and receive data with one terminal during the TxOP period, or may set a TxOP period composed of N consecutive subframes to each of the multiple terminals and transmit and receive data in a TDM or FDM manner. At this time, the base station may transmit and receive data through the P cell and the S cell of the unlicensed band during the TxOP period.
- a timing gap may exist between the idle determination time of the unlicensed band and the actual data transmission time.
- the SCell is an unlicensed band that cannot be used exclusively by the corresponding base station and the terminal, and must be used through competition based on CS, so that another system may attempt to transmit information during such a timing gap.
- the base station may transmit a reservation signal to prevent another system from attempting to transmit information during the timing gap in the SCell.
- the reservation signal means a kind of "dummy information” or "copy of a part of PDSCH" transmitted to reserve a corresponding resource region of the SCell as its own resource.
- the reservation signal may be transmitted during a timing gap (i.e. after the idle determination time of the SCell to before the actual transmission time).
- FIG. 14 is a diagram illustrating one method of setting a TxOP interval.
- the base station may set the TxOP interval in a semi-static manner in advance through the Pcell. For example, the base station may transmit the number N of subframes constituting the TxOP interval and configuration information on the purpose of the corresponding TxOP interval to the terminal through an upper layer signal (eg, an RRC signal) (S1410).
- an upper layer signal eg, an RRC signal
- step S1410 may be performed dynamically.
- the base station may transmit the configuration information for the TxOP interval to the terminal through the PDCCH or E-PDCCH.
- the SCell may check whether a current channel state is idle or busy by performing a carrier sensing process (S1420).
- the Pcell and the Scell may be managed by different base stations or the same base station. However, when different base stations are managed, information on the channel state of the SCell may be transferred to the PCcell through the backhaul (S1430).
- the UE may transmit and receive data through the Pcell and the Scell in the subframe set to the TxOP period. If the use of the corresponding TxOP is set to downlink data transmission in step S1410, the UE may receive DL data through the Scell in the TxOP period, and if the use of the TxOP is set to uplink data transmission, the terminal is S UL data may be transmitted through the cell (S1440).
- a section for unconditionally transmitting data without performing LBT in the U cell may be configured.
- the base station of the Pcell may perform an LBT process, but may be configured to attempt an aggressive channel access by setting a relatively high CCA threshold during a specific period.
- an exclusive channel access interval may be set through information exchange between intra operator inter cells, between operators and / or inter RAT (eg Radio Access Technology) (eg, WiFi). have.
- intra operator inter cells between operators and / or inter RAT (eg Radio Access Technology) (eg, WiFi).
- inter RAT eg Radio Access Technology
- WiFi Wireless Fidelity
- intervals may be defined as a Preoccupied Access Period (PAP).
- PAP Preoccupied Access Period
- non-PAP is defined as the section other than the relevant section.
- the (non-) PAP may be set cell-specifically or may be set UE-specifically.
- the (non-) PAP may be set by higher layer signaling (eg, RRC or MAC signal) or physical layer signaling (eg, PDCCH or E-PDCCH).
- higher layer signaling eg, RRC or MAC signal
- physical layer signaling eg, PDCCH or E-PDCCH
- PAP is defined as a section that does not perform the LBT process (or CS process)
- PAP is more vulnerable to interference by inter-operator U-cell or WiFi system than non-PAP. Can lose. That is, since CSI measurement results performed in non-PAP and PAP may be different, it is preferable to set a limited CSI measurement set for each section.
- non-PAP may be set to CSI subframe set 0 and PAP to CSI subframe set 1.
- periodic CSI reporting may be configured for each CSI subframe set.
- Aperiodic CSI reporting triggering can be initiated regardless of the CSI subframe set.
- CSI reporting triggering may be defined to be set only in a TxOP period in PAP and non-PAP. This is because the interference such as the WiFi system is measured in the non-TxOP section in the non-PAP, and a larger amount of interference may be measured than the interference to be measured in the actual RRP section, thereby assigning a low MCS level. Therefore, in the embodiments of the present invention, the UE may consider that the aperiodic CSI report triggered in a section that is not a PAP or that is not a TxOP section in a non-PAP is invalid.
- periodic or aperiodic CSI reporting may be performed for all CSI subframe sets.
- CSI reporting may be performed only for one of the CSI subframe sets according to the characteristics of the PAP or non-PAP interval.
- the probability that a data transmission will actually occur during PAP is much greater than the probability that a data transmission will occur during non-PAP. Therefore, the periodic CSI report transmitted by the terminal during PAP may be more meaningful than the CSI report transmitted during non-PAP.
- the base station can greatly bring about a link adaptation effect according to periodic CSI reporting in the non-PAP.
- the base station of the Pcell may configure periodic CSI reporting only for one specific CSI subframe set among two CSI subframe sets 0 and 1 set to non-PAP or PAP in the U cell.
- the UE when two CSI subframe sets are configured in the UE, the UE performs CSI reporting on the two CSI subframe sets.
- periodic CSI reporting may be performed only for subframe set 0 or 1 configured in the unlicensed band.
- FIG. 15 is a diagram for explaining one of methods for performing periodic CSI reporting on a subframe set configured in an unlicensed band.
- a base station of a Pcell supporting a licensed band may use a higher layer signal to configure a subframe set (SF) for an Scell (or Ucell) that supports an unlicensed band. set) configuration information may be transmitted to the terminal.
- the subframe set configuration information may be set to the CSI subframe set 0 and 1 for the non-PAP and PAP configured in the SCell (S1510).
- the base station of the Pcell is a PDCCH or E-PDCCH including scheduling information on a TxOP interval in the PAP or non-PAP of the Scell.
- E PDCCH
- the Pcell and the SCell are configured in a Self Carrier Scheduling (SCS) scheme, the (E) PDCCH may be transmitted through the SCell (S1520).
- SCS Self Carrier Scheduling
- the SCell may transmit DL data to the UE through PDSCH based on the scheduling information transmitted through the (E) PDCCH.
- the terminal may receive DL data in a valid subframe (SF).
- the effective SF may mean an SF configured in the PAP or an SF corresponding to a TxOP section configured in the non-PAP (S1530).
- the UE may measure CSI and / or interference for the effective SF.
- the UE may be configured to measure CSI and / or interference only for the CSI subframe set 0 or 1.
- the UE may measure CSI in CSI subframe set 1 allocated in the PAP.
- the UE can measure CSI or interference in CSI subframe set 0 corresponding to the TxOP interval in the non-PAP (S1540).
- the UE may periodically report the CSI and / or interference measured through the PUCCH or the PUSCH to the Pcell base station or the Scell (S1550).
- the limited CSI measurement set described above may be set to a Rel-12 CSI subframe set.
- non-PAP may be set to Rel-12 CSI subframe set 0
- PAP may be set to Rel-12 CSI subframe set 1.
- the aperiodic CSI trigger may indicate which CSI subframe set is triggered in which CSI subframe set among two limited CSI measurement sets. That is, the aperiodic CSI request field (ie, CSI trigger) included in the PDCCH may be configured to indicate a set of CSI subframes that are subject to aperiodic CSI reporting. For example, when the CSI request field is 2 bits, it indicates that aperiodic CSI reporting for CSI subframe set 0 is triggered when the CSI request field is set to '00', and when set to '01', CSI subframe set 1 It may indicate that aperiodic CSI reporting for is triggered. The setting value of the CSI request field may be changed depending on the system.
- a terminal of an LTE system may measure CSI only for a set of CSI subframes configured therein.
- the UE of the LTE-A system ie, Rel-12
- the UE can measure CSI for both CSI subframe sets 1 and 0 configured for PAP and non-PAP, and can report CSI according to the CSI request field transmitted from the base station. have.
- FIG. 16 is a diagram for describing one of methods for performing aperiodic CSI reporting on a subframe set configured in an unlicensed band.
- a base station of a Pcell supporting a licensed band may use a subframe set (SF) for an SCell (or Ucell) that supports an unlicensed band using a higher layer signal. set) configuration information may be transmitted to the terminal.
- the subframe set configuration information may be set to the CSI subframe set 0 and 1 for the non-PAP and PAP configured in the SCell (S1610).
- the base station of the Pcell may include (E) PDCCH including scheduling information on the TxOP interval in the PAP or non-PAP of the Scell. Can transmit If the Pcell and the SCell are configured in a Self Carrier Scheduling (SCS) scheme, the (E) PDCCH may be transmitted through the SCell. In this case, the base station may further include a CSI request field in the (E) PDCCH to trigger the aperiodic CSI report (S1620).
- CCS Cross Carrier Scheduling
- the CSI request field transmitted in step S1620 may indicate to report the CSI for the CSI SF set 1 for the PAP or the CSI SF set 0 for the non-PAP.
- the SCell may transmit DL data to the UE through PDSCH based on the scheduling information transmitted through the PDCCH.
- the terminal may receive DL data in a valid subframe (SF).
- the effective SF may refer to SF configured in the PAP or SF corresponding to the TxOP section configured in the non-PAP (S1630).
- the UE may measure CSI and / or interference for the effective SF.
- the UE may be configured to measure CSI and interference for the CSI subframe sets 0 and 1.
- the UE may measure CSI and / or interference in the CSI subframe set 0 corresponding to the CSI for the CSI subframe set 1 allocated in the PAP and the TxOP interval in the non-PAP (S1640).
- the UE may aperiodically report the CSI for the CSI subframe set indicated by the CSI request field in step S1620 of the measured CSI subframe sets 0 and 1 to the base station.
- the aperiodic CSI may be transmitted to the Pcell or Scell through the PUSCH (S1650).
- the base station eNB may attempt data transmission unconditionally during the configured PAP, but may perform data transmission only when the channel is idle (ie, only during the configured TxOP period) during the non-PAP.
- the UE when performing interference measurement during non-PAP, the UE preferably takes time domain averaging for the amount of interference measured in the TxOP period. That is, in order to perform interference measurement, the UE preferably utilizes TxOP interval configuration information (see FIG. 14) as well as PAP configuration.
- the terminal may be configured to perform interference measurement only in the PAP interval in order to reduce the complexity thereof. For example, if PAP is defined as CSI subframe set 1 and non-PAP is defined as CSI subframe set 0, the UE may perform interference measurement only on CSI subframe set 1.
- FeICIC inter-cell interference coordination
- NAICS Network Assisted Interference Cancellation and Suppression
- the information on the cell with a severe interference received by the terminal is guaranteed only in the PAP, and during the non-PAP, the UE may be configured to determine whether the cell with a severe interference actually transmits data through blind detection (BD). .
- BD blind detection
- the UE when the UE measures CSI or only measures interference, the UE may measure interference only in the CSI subframe set defined during PAP.
- PAP is defined as a section that does not perform the LBT process (or CS process)
- the interference may significantly affect the next cell or another system, WiFi, during the corresponding section.
- power can be set differently according to whether PAP or non-PAP is used.
- downlink power control related parameters e.g., P_a, P_b, P_c, etc.
- P_a, P_b, P_c, etc. may be set differently for each CSI subframe set.
- a transmission mode (TM) or PDSCH CRS transmission can be set differently.
- the CRS is transmitted only to UEs of DM-RS based TM (ie, TM 9 or higher), not CRS based TM.
- PDSCH can be configured (eg, MBMS subframe) and transmitted.
- the above-described downlink power control related parameters may be transmitted to the terminal through higher layer signaling or physical layer signaling.
- the base station may transmit a downlink power adjustment related parameter to the terminal.
- the UE may receive DL data with reference to downlink power set differently according to PAP or noo-PAP in steps S1530 and S1630.
- a CSI reporting method is described when a limited CSI measurement set is not set according to whether PAP or non-PAP.
- the base station may set the valid CSI measurement interval only during the PAP, or only the TxOP interval of the non-PAP as a valid CSI measurement interval. If only the TxOP section of the non-PAP is set as a valid CSI measurement section, the periodic CSI report may be limited to the TxOP section of the non-PAP. For example, in FIG. 15, the UE may periodically report by measuring the CSI for the Cx subframe set for the TxOP interval and the PAP in the non-PAP interval.
- the UE may be configured to assume that only aperiodic CSI triggers within a valid CSI measurement interval are valid, and to ignore aperiodic CSI triggers of the remaining intervals. For example, in FIG. 16, the UE may perform CSI reporting to the base station only for the aperiodic CSI trigger in the PAP and / or the aperiodic CSI trigger transmitted in the TxOP period in the non-PAP.
- the terminal may be configured to perform CSI reporting on a section that is not a valid CSI measurement section through an aperiodic CSI request field. For example, if the aperiodic CSI request field value is set to '01', then CSI reporting for a valid measurement interval is triggered; if the aperiodic CSI request field is set to '10', CSI for an invalid measurement interval It may indicate that the report has been triggered. For example, referring to FIG. 16, if the CSI request field is set to '01' in step S1620, the UE may report only the CSI for the TxOP interval in the PAP and / or non-PAP to the base station. If the CSI request field is set to '10', the terminal may report to the base station about the CSI measured in the section other than the TxOP section in the non-PAP.
- SCell In the LTE-A system (ie, Rel-12 system), SCell is defined not to perform limited Radio Resource Management (RRM) measurement.
- RRM Radio Resource Management
- the RRM measurement process may be defined only within a TxOP section for a non-PAP that is not relatively exposed to interference such as WiFi.
- the RRM measurement process may be performed only within the PAP. That is, the UCell may be configured to perform a characteristically limited RRM measurement process.
- PAP and non-PAP may be set semi-statically rather than dynamically configured. Accordingly, PAP configuration information may be exchanged and shared with each other through a backhaul network between cells or between providers even with a certain amount of signaling latency.
- the shared PAP configuration information may be a start point of the PAP and a PAP length (or end point of the PAP).
- the base stations can mitigate the interference by dividing the PAP by the TDM scheme. For example, two adjacent eNBs may not interfere with each other by dividing PAP into two in a TDM manner.
- eNB1 may transmit DL data and eNB2 may not attempt transmission or may be set to non-PAP for the first 5 ms. For the remaining 5 ms, eNB2 transmits DL data, and eNB1 may not attempt to transmit or may be set to non-PAP.
- the eNB1 and the eNB2 may not use the PAP evenly, but may use the PAP differentially according to the traffic load state. That is, an eNB with a larger traffic load may be configured to be assigned more PAP intervals.
- the specific base station may receive a large interference from the eNB of the other operator periodically in the PAP. Therefore, it is desirable to reduce interference through coordination between operators.
- the eNBs of the operator B may be set to non-PAP for the PAP set by the operator A's base station.
- the eNBs of the operator A may be set to non-PAP.
- the operation of the PAP set by each provider may be defined as in Section 4.4.1.
- PAP intervals can be set differently than described in Sections 4.4.1 and 4.4.2.
- eNB1 of operator A may implicitly notify eNB2 of operator B that the interval is set to PAP by transmitting a preamble at the start and / or end of the PAP interval (or non-PAP interval). .
- the RRM measurement process may vary depending on whether the neighbor cell is currently PAP or non-PAP.
- information on whether the neighbor cell is PAP or non-PAP ie PAP configuration information
- PAP configuration information may be obtained through the inter-cell coordination method proposed in Section 4.4.
- the UE additionally needs information on whether the neighbor cell is a TxOP interval, and the UE may perform RRM measurement only in the TxOP interval.
- the base station transmits PAP configuration information of the neighbor cell to each UE, and each UE can perform the RRM measurement process for the neighboring cell only during the PAP. That is, the UE is configured to perform the RRM measurement process only when the neighbor cell corresponds to the PAP, and not perform the RRM measurement process in the case of non-PAP.
- FIG. 17 is a means in which the methods described in FIGS. 1 to 16 may be implemented.
- a UE may operate as a transmitting end in uplink and a receiving end in downlink.
- an e-Node B eNB
- eNB e-Node B
- the terminal and the base station may include transmitters 1740 and 1750 and receivers 1750 and 1770 to control the transmission and reception of information, data and / or messages, respectively.
- antennas 1700 and 1710 for transmitting and receiving messages.
- the terminal and the base station may each include a processor (1720, 1730) for performing the above-described embodiments of the present invention and a memory (1780, 1790) that can temporarily or continuously store the processing of the processor, respectively. Can be.
- Embodiments of the present invention can be performed using the components and functions of the above-described terminal and base station apparatus.
- the base station may configure PAP and non-PAP, and configure the CSI subframe set, respectively.
- the base station may transmit configuration information on the set CSI subframe set to the terminal through a higher layer signal.
- the UE may measure the CSI for the CSI subframe set configured in the PAP or non-PAP, and report the CSI periodically or aperiodically to the base station.
- the periodic CSI may be defined only for one of two CSI subframe sets configured in the terminal. For details, see Sections 1 to 4.
- the transmitter and the receiver included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission. Packet scheduling and / or channel multiplexing may be performed.
- the terminal and the base station of FIG. 17 may further include a low power radio frequency (RF) / intermediate frequency (IF) unit.
- RF radio frequency
- IF intermediate frequency
- the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS.
- PDA personal digital assistant
- PCS personal communication service
- GSM Global System for Mobile
- WCDMA Wideband CDMA
- MBS Multi Mode-Multi Band
- a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal.
- a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
- CDMA code division multiple access
- WCDMA wideband CDMA
- Embodiments of the invention may be implemented through various means.
- embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
- the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs Field programmable gate arrays
- processors controllers, microcontrollers, microprocessors, and the like.
- the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above.
- software code may be stored in the memory units 1780 and 1790 and driven by the processors 1720 and 1730.
- the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
- Embodiments of the present invention can be applied to various wireless access systems.
- various radio access systems include 3rd Generation Partnership Project (3GPP), 3GPP2 and / or IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) systems.
- Embodiments of the present invention can be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
The present invention relates to a wireless access system supporting an unlicensed band, and provides a method for reporting channel state information (CSI) on the basis of a CSI measurement set, and apparatuses for supporting the method. A method, as one embodiment of the present invention, by which a terminal reports CSI in a wireless access system supporting an unlicensed band can comprise the steps of: receiving, from a base station through a primary cell (Pcell), an upper layer signal including CSI subframe set configuration information; measuring CSI on a secondary cell (Scell) in a preoccupation access period (PAP) or a non-preoccupation access period (non-PAP) on the basis of the CSI subframe set configuration information; and transmitting a CSI report including the measured CSI to the base station. At this time, the non-PAP is set as a first CSI subframe set, the PAP is set as a second CSI subframe set, the first CSI subframe set and the second CSI subframe set are set in the terminal through the CSI subframe set configuration information, and the Scell can be configured in an unlicensed band.
Description
본 발명은 비면허 대역을 지원하는 무선 접속 시스템에 관한 것으로, 채널상태정보(CSI: Channel Status Information) 측정 집합을 기반으로 CSI를 보고하는 방법 및 이를 지원하는 장치에 관한 것이다. The present invention relates to a wireless access system that supports an unlicensed band, and more particularly, to a method for reporting CSI based on a channel status information (CSI) measurement set and an apparatus for supporting the same.
무선 접속 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선 접속 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.Wireless access systems are widely deployed to provide various kinds of communication services such as voice and data. In general, a wireless access system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, and single carrier frequency (SC-FDMA). division multiple access) system.
본 발명은 비면허 대역을 지원하는 무선 접속 시스템에 관한 것으로, 채널상태정보를 보고하는 방법 및 이를 지원하는 장치들에 관한 것이다.The present invention relates to a wireless access system supporting an unlicensed band, and more particularly, to a method for reporting channel state information and devices for supporting the same.
본 발명의 목적은 비면허 대역과 면허 대역을 지원하는 무선 접속 시스템에서 데이터를 효율적으로 송수신하는 방법을 제공하는 것이다.An object of the present invention is to provide a method for efficiently transmitting and receiving data in a wireless access system supporting an unlicensed band and a licensed band.
본 발명의 다른 목적은 비면허 대역을 시간축 상으로 기점유 접속 기간(PAP) 및 비 기점유 접속 기간(Non-PAP)으로 나누고, PAP 및/또는 Non-PAP에서 서브프레임 측정집합을 설정하는 방법을 제공하는 것이다.Another object of the present invention is to divide a unlicensed band into a time-based access period (PAP) and a non-shared-time period (Non-PAP), and to establish a subframe measurement set in PAP and / or Non-PAP. To provide.
본 발명의 또 다른 목적은 제한된 CSI 측정 집합을 설정하는 경우, 제한된 CSI 측정 집합 내에서 주기적 또는 비주기적 CSI 보고를 수행하는 방법을 제공하는 것이다. Another object of the present invention is to provide a method for performing periodic or aperiodic CSI reporting within a limited CSI measurement set when setting a limited CSI measurement set.
본 발명의 또 다른 목적은 제한된 CSI 측정 집합을 설정하지 않는 경우, 주기적 또는 비주기적 CSI 보고를 수행하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for performing periodic or aperiodic CSI reporting when no limited CSI measurement set is set.
본 발명의 또 다른 목적은 기지국 또는 셀 간 PAP 및 non-PAP에 대한 설정 정보를 공유하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for sharing configuration information on PAP and non-PAP between a base station or a cell.
본 발명의 또 다른 목적은 이러한 방법들을 지원하는 장치들을 제공하는 것이다.It is yet another object of the present invention to provide devices which support these methods.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.Technical objects to be achieved in the present invention are not limited to the above-mentioned matters, and other technical problems which are not mentioned are those skilled in the art from the embodiments of the present invention to be described below. Can be considered.
본 발명은 비면허 대역을 지원하는 무선 접속 시스템에 관한 것으로, 채널상태정보(CSI) 측정 집합을 기반으로 CSI를 보고하는 방법 및 이를 지원하는 장치들을 제공한다The present invention relates to a wireless access system supporting an unlicensed band, and provides a method for reporting CSI based on a channel state information (CSI) measurement set and apparatuses for supporting the same.
본 발명의 일 양태로서 비면허대역을 지원하는 무선접속시스템에서 단말이 채널상태정보(CSI)를 보고하는 방법은, CSI 서브프레임 집합 구성 정보를 포함하는 상위계층신호를 프라이머리셀(P셀)을 통해 기지국으로부터 수신하는 단계와 CSI 서브프레임 집합 구성 정보를 기반으로 기점유접속구간(PAP) 또는 비-기점유접속구간(non-PAP)에서 세컨더리셀(S셀)에 대한 CSI를 측정하는 단계와 측정된 CSI를 포함하는 CSI 보고를 P셀 및/또는 S셀을 관리하는 기지국으로 전송하는 단계를 포함할 수 있다. 이때, non-PAP는 제1 CSI 서브프레임 집합으로 설정되고, PAP는 제2 CSI 서브프레임 집합으로 설정되고, 단말은 CSI 서브프레임 집합 구성 정보를 통해 제1 CSI 서브프레임 집합 및 제2 CSI 서브프레임 집합을 설정 받고, S셀은 비면허대역에서 구성될 수 있다.In one aspect of the present invention, a method for a UE to report channel state information (CSI) in a wireless access system supporting an unlicensed band includes: transmitting a higher layer signal including CSI subframe set configuration information through a primary cell (P cell); Measuring and measuring the CSI for the secondary cell (S cell) in the PAS or non-PAP based on the step of receiving from the base station and the CSI subframe set configuration information And transmitting the CSI report including the CSI to the base station managing the Pcell and / or the Scell. In this case, the non-PAP is set to the first CSI subframe set, the PAP is set to the second CSI subframe set, the terminal is set through the CSI subframe set configuration information, the first CSI subframe set and the second CSI subframe After the set is established, the SCell may be configured in the unlicensed band.
본 발명의 다른 양태로서 비면허대역을 지원하는 무선접속시스템에서 채널상태정보(CSI)를 보고하기 위한 단말은 송신기, 수신기 및 이러한 송신기와 수신기와 기능적으로 연결되어 CSI를 보고하기 위해 구성된 프로세서를 포함할 수 있다. 이때, 프로세서는 CSI 서브프레임 집합 구성 정보를 포함하는 상위계층신호를 수신기를 제어하여 프라이머리셀(P셀)로부터 수신하고; CSI 서브프레임 집합 구성 정보를 기반으로 기점유접속구간(PAP) 또는 비-기점유접속구간(non-PAP)에서 세컨더리셀(S셀)에 대한 CSI를 측정하고; 측정된 CSI를 포함하는 CSI 보고를 송신기를 제어하여 P셀 및/또는 S셀을 관리하는 기지국로 전송하도록 구성되되, non-PAP는 제1 CSI 서브프레임 집합으로 설정되고, PAP는 제2 CSI 서브프레임 집합으로 설정되고, 단말은 CSI 서브프레임 집합 구성 정보를 통해 제1 CSI 서브프레임 집합 및 제2 CSI 서브프레임 집합을 설정 받고, S셀은 비면허대역에서 구성될 수 있다.In another aspect of the present invention, a terminal for reporting channel state information (CSI) in a wireless access system supporting an unlicensed band may include a transmitter, a receiver, and a processor operatively connected to the transmitter and the receiver to report the CSI. Can be. At this time, the processor receives the upper layer signal including the CSI subframe set configuration information from the primary cell (P cell) by controlling the receiver; Measuring the CSI for the secondary cell (S cell) in the shared base access section (PAP) or the non-shared base access section (non-PAP) based on the CSI subframe set configuration information; And transmit the CSI report including the measured CSI to a base station managing the Pcell and / or the Scell by controlling the transmitter, wherein the non-PAP is set to the first CSI subframe set, and the PAP is the second CSI subframe. The UE is configured with a frame set, the UE receives the first CSI subframe set and the second CSI subframe set through the CSI subframe set configuration information, and the SCell may be configured in the unlicensed band.
PAP는 S셀이 유휴 상태인지 여부에 관계 없이 데이터가 송수신되는 구간이고, non-PAP는 S셀이 유휴 상태인 전송기회구간(TxOP)에서만 데이터가 송수신되는 구간으로 설정될 수 있다.The PAP may be set as a section in which data is transmitted and received regardless of whether or not the S cell is idle, and the non-PAP may be set as a section in which data is transmitted and received only in a transmission opportunity section (TxOP) in which the S cell is idle.
만약, CSI 보고가 주기적으로 전송되는 주기적 CSI 보고이면, 단말은 제2 CSI 서브프레임 집합에 대한 CSI만을 측정하여 CSI 보고를 기지국으로 전송하도록 구성될 수 있다.If the CSI report is a periodic CSI report transmitted periodically, the UE may be configured to measure only the CSI for the second CSI subframe set and transmit the CSI report to the base station.
또는, CSI 보고가 주기적으로 전송되는 주기적 CSI 보고이면, 단말은 제1 CSI 서브프레임 집합 내의 TxOP에서 CSI를 측정하여 CSI 보고를 기지국으로 전송할 수 있다.Or, if the CSI report is periodically transmitted CSI report, the UE can transmit the CSI report to the base station by measuring the CSI in the TxOP in the first CSI subframe set.
만약, CSI 보고는 기지국의 요청에 의한 비주기적 CSI 보고이면, 단말은 P셀로부터 비주기적 CSI 요청 필드를 포함하는 물리하향링크제어채널을 수신할 수 있으며, 비주기적 CSI 요청 필드는 제1 CSI 서브프레임 집합 또는 제2 CSI 서브프레임 집합에 대한 CSI 보고를 요청하도록 설정될 수 있다.If the CSI report is an aperiodic CSI report requested by the base station, the UE may receive a physical downlink control channel including an aperiodic CSI request field from the Pcell, and the aperiodic CSI request field is the first CSI subfield. It may be configured to request CSI reporting for the frame set or the second CSI subframe set.
단말은 제2서브프레임 집합에서만 인접셀에 대한 간섭측정을 수행하도록 설정될 수 있다.The terminal may be configured to perform interferometry for the neighbor cell only in the second subframe set.
단말은 S셀로부터 하향링크 데이터를 수신할 수 있다. 이때, 하향링크 데이터를 전송 시 사용되는 전력 조절 파라미터는 제1 서브프레임 집합 및 제2 서브프레임 집합 별로 다르게 설정될 수 있다.The terminal may receive downlink data from the SCell. In this case, a power adjustment parameter used when transmitting downlink data may be set differently for each of a first subframe set and a second subframe set.
상술한 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.The above-described aspects of the present invention are merely some of the preferred embodiments of the present invention, and various embodiments reflecting the technical features of the present invention will be described in detail by those skilled in the art. Based on the description, it can be derived and understood.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.According to embodiments of the present invention has the following effects.
본 발명의 실시예들에 따르면 다음과 같은 효과가 있다.According to embodiments of the present invention has the following effects.
첫째, 비면허 대역과 면허 대역을 지원하는 무선 접속 시스템에서 데이터를 효율적으로 송수신할 수 있다.First, data can be efficiently transmitted and received in a wireless access system supporting an unlicensed band and a licensed band.
둘째, 비면허 대역을 시간축 상으로 기점유 접속 기간(PAP) 및 비 기점유 접속 기간(Non-PAP)으로 나누고, PAP 및/또는 Non-PAP에서 서브프레임 측정집합을 설정함으로써 비면허 대역을 효율적으로 운영할 수 있다.Second, dividing the unlicensed band into time-sharing periods (PAP) and non-sharing periods (Non-PAP) on the time base, and efficiently operating the unlicensed band by setting subframe measurement sets in PAP and / or Non-PAP. can do.
셋째, 제한된 CSI 측정 집합을 설정하는 경우, 단말은 제한된 CSI 측정 집합 내에서 비면허 대역의 특성에 따라 적합한 주기적 또는 비주기적 CSI 보고를 수행할 수 있다.Third, in case of setting the limited CSI measurement set, the UE may perform appropriate periodic or aperiodic CSI reporting according to the characteristics of the unlicensed band within the limited CSI measurement set.
넷째, 기지국간 또는 셀 간 PAP 및 non-PAP에 대한 설정 정보를 공유함으로써, 셀간 또는 기지국간 간섭을 최소화할 수 있다.Fourth, by sharing configuration information for PAP and non-PAP between base stations or cells, inter-cell or inter-base station interference can be minimized.
본 발명의 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.Effects obtained in the embodiments of the present invention are not limited to the above-mentioned effects, and other effects not mentioned above are usually described in the technical field to which the present invention pertains from the description of the embodiments of the present invention. Can be clearly derived and understood by those who have That is, unintended effects of practicing the present invention may also be derived from those skilled in the art from the embodiments of the present invention.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되고, 첨부된 도면들은 본 발명에 대한 다양한 실시예들을 제공한다. 또한, 첨부된 도면들은 상세한 설명과 함께 본 발명의 실시 형태들을 설명하기 위해 사용된다.It is included as part of the detailed description to assist in understanding the present invention, and the accompanying drawings provide various embodiments of the present invention. In addition, the accompanying drawings are used to describe embodiments of the present invention in conjunction with the detailed description.
도 1은 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다. 1 is a diagram illustrating a physical channel and a signal transmission method using the same.
도 2는 무선 프레임의 구조의 일례를 나타내는 도면이다. 2 is a diagram illustrating an example of a structure of a radio frame.
도 3는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다. 3 is a diagram illustrating a resource grid for a downlink slot.
도 4는 상향링크 서브 프레임의 구조의 일례를 나타내는 도면이다. 4 is a diagram illustrating an example of a structure of an uplink subframe.
도 5는 하향링크 서브 프레임의 구조의 일례를 나타내는 도면이다.5 is a diagram illustrating an example of a structure of a downlink subframe.
도 6은 컴포넌트 캐리어(CC) 및 LTE_A 시스템에서 사용되는 캐리어 병합의 일례를 나타내는 도면이다.6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and LTE_A system.
도 7은 크로스 캐리어 스케줄링에 따른 LTE-A 시스템의 서브 프레임 구조를 나타낸다. 7 shows a subframe structure of an LTE-A system according to cross carrier scheduling.
도 8은 크로스 캐리어 스케줄링에 따른 서빙셀 구성의 일례를 나타내는 도면이다. 8 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling.
도 9는 본 발명의 실시예들에서 사용되는 SRS 전송 방법 중 하나를 나타내는 도면이다.9 is a diagram illustrating one of the SRS transmission methods used in embodiments of the present invention.
도 10은 본 발명의 실시예들에서 사용될 수 있는 셀 특정 참조 신호(CRS: Cell specific Reference Signal)가 할당된 서브프레임의 일례를 나타내는 도면이다.FIG. 10 is a diagram illustrating an example of a subframe to which a cell specific reference signal (CRS) is allocated, which can be used in embodiments of the present invention.
도 11은 LTE/LTE-A 시스템에서 사용되는 레가시 PDCCH(Legacy PDCCH), PDSCH 및 E-PDCCH가 다중화되는 일례를 나타내는 도면이다.FIG. 11 is a diagram illustrating an example in which legacy PDCCH, PDSCH, and E-PDCCH used in an LTE / LTE-A system are multiplexed.
도 12는 LTE-U 시스템에서 지원하는 CA 환경의 일례를 나타내는 도면이다.12 is a diagram illustrating an example of a CA environment supported by an LTE-U system.
도 13은 TxOP 구간을 설정하는 방법 중 하나를 나타내는 도면이다.FIG. 13 is a diagram illustrating one method of setting a TxOP interval. FIG.
도 14는 TxOP 구간을 설정하는 방법 중 하나를 나타내는 도면이다.14 is a diagram illustrating one method of setting a TxOP interval.
도 15는 비면허 대역에 구성되는 서브프레임 집합에 대한 주기적 CSI 보고를 수행하는 방법 중 하나를 설명하기 위한 도면이다.FIG. 15 is a diagram for explaining one of methods for performing periodic CSI reporting on a subframe set configured in an unlicensed band.
도 16은 비면허 대역에 구성되는 서브프레임 집합에 대한 비주기적 CSI 보고를 수행하는 방법 중 하나를 설명하기 위한 도면이다.FIG. 16 is a diagram for describing one of methods for performing aperiodic CSI reporting on a subframe set configured in an unlicensed band.
도 17에서 설명하는 장치는 도 1 내지 도 16에서 설명한 방법들이 구현될 수 있는 수단이다.The apparatus described in FIG. 17 is a means in which the methods described in FIGS. 1 to 16 may be implemented.
본 발명은 비면허 대역을 지원하는 무선접속시스템에 관한 것으로 채널상태정보(CSI)측정 집합을 기반으로 CSI를 보고하는 방법 및 이를 지원하는 장치들을 제안한다.The present invention relates to a wireless access system supporting an unlicensed band, and proposes a method for reporting CSI based on a channel state information (CSI) measurement set, and apparatuses for supporting the same.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps which may obscure the gist of the present invention are not described, and procedures or steps that can be understood by those skilled in the art are not described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to "comprising" (or including) a component, this means that it may further include other components, except to exclude other components unless specifically stated otherwise. do. In addition, the terms “… unit”, “… unit”, “module”, etc. described in the specification mean a unit that processes at least one function or operation, which may be implemented by hardware or software or a combination of hardware and software. have. Also, "a or an", "one", "the", and the like are used differently in the context of describing the present invention (particularly in the context of the following claims). Unless otherwise indicated or clearly contradicted by context, it may be used in the sense including both the singular and the plural.
본 명세서에서 본 발명의 실시예들은 기지국과 이동국 간의 데이터 송수신 관계를 중심으로 설명되었다. 여기서, 기지국은 이동국과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미가 있다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다.In the present specification, embodiments of the present invention have been described based on data transmission / reception relations between a base station and a mobile station. Here, the base station is meant as a terminal node of a network that directly communicates with a mobile station. The specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases.
즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 이동국과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있다. 이때, '기지국'은 고정국(fixed station), Node B, eNode B(eNB), 발전된 기지국(ABS: Advanced Base Station) 또는 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.That is, various operations performed for communication with a mobile station in a network consisting of a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station. In this case, the 'base station' may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an advanced base station (ABS), or an access point.
또한, 본 발명의 실시예들에서 단말(Terminal)은 사용자 기기(UE: User Equipment), 이동국(MS: Mobile Station), 가입자 단말(SS: Subscriber Station), 이동 가입자 단말(MSS: Mobile Subscriber Station), 이동 단말(Mobile Terminal) 또는 발전된 이동단말(AMS: Advanced Mobile Station) 등의 용어로 대체될 수 있다.Further, in embodiments of the present invention, a terminal may be a user equipment (UE), a mobile station (MS), a subscriber station (SS), or a mobile subscriber station (MSS). It may be replaced with terms such as a mobile terminal or an advanced mobile station (AMS).
또한, 송신단은 데이터 서비스 또는 음성 서비스를 제공하는 고정 및/또는 이동 노드를 말하고, 수신단은 데이터 서비스 또는 음성 서비스를 수신하는 고정 및/또는 이동 노드를 의미한다. 따라서, 상향링크에서는 이동국이 송신단이 되고, 기지국이 수신단이 될 수 있다. 마찬가지로, 하향링크에서는 이동국이 수신단이 되고, 기지국이 송신단이 될 수 있다.Also, the transmitting end refers to a fixed and / or mobile node that provides a data service or a voice service, and the receiving end refers to a fixed and / or mobile node that receives a data service or a voice service. Therefore, in uplink, a mobile station may be a transmitting end and a base station may be a receiving end. Similarly, in downlink, a mobile station may be a receiving end and a base station may be a transmitting end.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP(3rd Generation Partnership Project) 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있으며, 특히, 본 발명의 실시예들은 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 및 3GPP TS 36.331 문서들에 의해 뒷받침 될 수 있다. 즉, 본 발명의 실시예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in at least one of the IEEE 802.xx system, the 3rd Generation Partnership Project (3GPP) system, the 3GPP LTE system, and the 3GPP2 system, which are wireless access systems, and in particular, the present invention. Embodiments of the may be supported by 3GPP TS 36.211, 3GPP TS 36.212, 3GPP TS 36.213, 3GPP TS 36.321 and 3GPP TS 36.331 documents. That is, obvious steps or portions not described among the embodiments of the present invention may be described with reference to the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the invention may be practiced.
또한, 본 발명의 실시예들에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the embodiments of the present invention are provided to help the understanding of the present invention, and the use of the specific terms may be changed into other forms without departing from the technical spirit of the present invention. .
예를 들어, 전송기회구간(TxOP: Transmission Opportunity Period)라는 용어는 전송구간 또는 RRP(Reserved Resource Period)라는 용어와 동일한 의미로 사용될 수 있다. 또한, LBT(Listen Before Talk) 과정은 채널 상태가 유휴인지 여부를 판단하기 위한 캐리어 센싱 과정과 동일한 목적으로 수행될 수 있다.For example, the term Transmission Opportunity Period (TxOP) may be used in the same meaning as the term transmission period or RRP (Reserved Resource Period). Also, the List Before Talk (LBT) process may be performed for the same purpose as the carrier sensing process for determining whether the channel state is idle.
이하에서는 본 발명의 실시예들이 사용될 수 있는 무선 접속 시스템의 일례로 3GPP LTE/LTE-A 시스템에 대해서 설명한다.Hereinafter, a 3GPP LTE / LTE-A system will be described as an example of a wireless access system in which embodiments of the present invention can be used.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 적용될 수 있다.The following techniques include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and the like. It can be applied to various radio access systems.
CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다.CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced) 시스템은 3GPP LTE 시스템이 개량된 시스템이다. 본 발명의 기술적 특징에 대한 설명을 명확하게 하기 위해, 본 발명의 실시예들을 3GPP LTE/LTE-A 시스템을 위주로 기술하지만 IEEE 802.16e/m 시스템 등에도 적용될 수 있다.UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3GPP Long Term Evolution (LTE) is part of an Evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. The LTE-A (Advanced) system is an improved system of the 3GPP LTE system. In order to clarify the description of the technical features of the present invention, embodiments of the present invention will be described based on the 3GPP LTE / LTE-A system, but can also be applied to IEEE 802.16e / m system and the like.
1. 3GPP LTE/LTE_A 시스템1.3GPP LTE / LTE_A System
무선 접속 시스템에서 단말은 하향링크(DL: Downlink)를 통해 기지국으로부터 정보를 수신하고, 상향링크(UL: Uplink)를 통해 기지국으로 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 일반 데이터 정보 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.In a wireless access system, a terminal receives information from a base station through downlink (DL) and transmits information to the base station through uplink (UL). The information transmitted and received by the base station and the terminal includes general data information and various control information, and various physical channels exist according to the type / use of the information they transmit and receive.
1.1 시스템 일반1.1 System General
도 1은 본 발명의 실시예들에서 사용될 수 있는 물리 채널들 및 이들을 이용한 신호 전송 방법을 설명하기 위한 도면이다.1 is a diagram for explaining physical channels that can be used in embodiments of the present invention and a signal transmission method using the same.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 S11 단계에서 기지국과 동기를 맞추는 등의 초기 셀 탐색 (Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 주동기 채널 (P-SCH: Primary Synchronization Channel) 및 부동기 채널 (S-SCH: Secondary Synchronization Channel)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다.When the power is turned off again or a new cell enters the cell, the initial cell search operation such as synchronizing with the base station is performed in step S11. To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
그 후, 단말은 기지국으로부터 물리방송채널 (PBCH: Physical Broadcast Channel) 신호를 수신하여 셀 내 방송 정보를 획득할 수 있다.Thereafter, the terminal may receive a physical broadcast channel (PBCH) signal from the base station to obtain broadcast information in a cell.
한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호 (DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.On the other hand, the terminal may receive a downlink reference signal (DL RS) in the initial cell search step to confirm the downlink channel state.
초기 셀 탐색을 마친 단말은 S12 단계에서 물리하향링크제어채널 (PDCCH: Physical Downlink Control Channel) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널 (PDSCH: Physical Downlink Control Channel)을 수신하여 조금 더 구체적인 시스템 정보를 획득할 수 있다.After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S12. Specific system information can be obtained.
이후, 단말은 기지국에 접속을 완료하기 위해 이후 단계 S13 내지 단계 S16과 같은 임의 접속 과정 (Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리임의접속채널 (PRACH: Physical Random Access Channel)을 통해 프리앰블 (preamble)을 전송하고(S13), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S14). 경쟁 기반 임의 접속의 경우, 단말은 추가적인 물리임의접속채널 신호의 전송(S15) 및 물리하향링크제어채널 신호 및 이에 대응하는 물리하향링크공유 채널 신호의 수신(S16)과 같은 충돌해결절차 (Contention Resolution Procedure)를 수행할 수 있다.Subsequently, the terminal may perform a random access procedure as in steps S13 to S16 to complete the access to the base station. To this end, the UE transmits a preamble through a physical random access channel (PRACH) (S13), a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. Can be received (S14). In case of contention-based random access, the UE may perform contention resolution such as transmitting an additional physical random access channel signal (S15) and receiving a physical downlink control channel signal and a corresponding physical downlink shared channel signal (S16). Procedure).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널 신호 및/또는 물리하향링크공유채널 신호의 수신(S17) 및 물리상향링크공유채널 (PUSCH: Physical Uplink Shared Channel) 신호 및/또는 물리상향링크제어채널 (PUCCH: Physical Uplink Control Channel) 신호의 전송(S18)을 수행할 수 있다.After performing the above-described procedure, the UE subsequently receives a physical downlink control channel signal and / or a physical downlink shared channel signal (S17) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure. A transmission (Uplink Shared Channel) signal and / or a Physical Uplink Control Channel (PUCCH) signal may be transmitted (S18).
단말이 기지국으로 전송하는 제어정보를 통칭하여 상향링크 제어정보(UCI: Uplink Control Information)라고 지칭한다. UCI는 HARQ-ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CQI (Channel Quality Indication), PMI (Precoding Matrix Indication), RI (Rank Indication) 정보 등을 포함한다.The control information transmitted from the terminal to the base station is collectively referred to as uplink control information (UCI). UCI includes Hybrid Automatic Repeat and reQuest Acknowledgement / Negative-ACK (HARQ-ACK / NACK), Scheduling Request (SR), Channel Quality Indication (CQI), Precoding Matrix Indication (PMI), and Rank Indication (RI). .
LTE 시스템에서 UCI는 일반적으로 PUCCH를 통해 주기적으로 전송되지만, 제어정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.In the LTE system, UCI is generally transmitted periodically through the PUCCH, but may be transmitted through the PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
도 2는 본 발명의 실시예들에서 사용되는 무선 프레임의 구조를 나타낸다.2 shows a structure of a radio frame used in embodiments of the present invention.
도 2(a)는 타입 1 프레임 구조(frame structure type 1)를 나타낸다. 타입 1 프레임 구조는 전이중(full duplex) FDD(Frequency Division Duplex) 시스템과 반이중(half duplex) FDD 시스템 모두에 적용될 수 있다.2 (a) shows a frame structure type 1. The type 1 frame structure can be applied to both full duplex Frequency Division Duplex (FDD) systems and half duplex FDD systems.
하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지고, Tslot = 15360*Ts = 0.5ms의 균등한 길이를 가지며 0부터 19의 인덱스가 부여된 20개의 슬롯으로 구성된다. 하나의 서브프레임은 2개의 연속된 슬롯으로 정의되며, i 번째 서브프레임은 2i 와 2i+1에 해당하는 슬롯으로 구성된다. 즉, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임을 전송하는 데 걸리는 시간을 TTI(transmission time interval)이라 한다. 여기서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 슬롯은 시간 영역에서 복수의 OFDM 심볼 또는 SC-FDMA 심볼을 포함하고, 주파수 영역에서 복수의 자원블록(Resource Block)을 포함한다.One radio frame has a length of Tf = 307 200 * Ts = 10 ms, an equal length of Tslot = 15360 * Ts = 0.5 ms, and consists of 20 slots indexed from 0 to 19. One subframe is defined as two consecutive slots, and the i-th subframe includes slots corresponding to 2i and 2i + 1. That is, a radio frame consists of 10 subframes. The time taken to transmit one subframe is called a transmission time interval (TTI). Here, Ts represents a sampling time and is represented by T s = 1 / (15 kHz x 2048) = 3.2552 x 10 -8 (about 33 ns). The slot includes a plurality of OFDM symbols or SC-FDMA symbols in the time domain and a plurality of resource blocks in the frequency domain.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부반송파(subcarrier)를 포함한다.One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period. A resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
전이중 FDD 시스템에서는 각 10ms 구간 동안 10개의 서브프레임은 하향링크 전송과 상향링크 전송을 위해 동시에 이용될 수 있다. 이때, 상향링크와 하향링크 전송은 주파수 영역에서 분리된다. 반면, 반이중 FDD 시스템의 경우 단말은 전송과 수신을 동시에 할 수 없다.In a full-duplex FDD system, 10 subframes may be used simultaneously for downlink transmission and uplink transmission during each 10ms period. At this time, uplink and downlink transmission are separated in the frequency domain. On the other hand, in the case of a half-duplex FDD system, the terminal cannot simultaneously transmit and receive.
상술한 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 서브 프레임의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.The structure of the radio frame described above is just one example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed.
도 2(b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 프레임 구조는 TDD 시스템에 적용된다. 하나의 무선 프레임(radio frame)은 Tf = 307200*Ts = 10ms의 길이를 가지며, 153600*Ts = 5ms 길이를 가지는 2개의 하프프레임(half-frame)으로 구성된다. 각 하프프레임은 30720*Ts = 1ms의 길이를 가지는 5개의 서브프레임으로 구성된다. i 번째 서브프레임은 2i 와 2i+1에 해당하는 각 Tslot = 15360*Ts = 0.5ms의 길이를 가지는 2개의 슬롯으로 구성된다. 여기에서, Ts 는 샘플링 시간을 나타내고, Ts=1/(15kHz×2048)=3.2552×10-8(약 33ns)로 표시된다. 2 (b) shows a frame structure type 2. Type 2 frame structure is applied to the TDD system. One radio frame has a length of Tf = 307200 * Ts = 10ms and consists of two half-frames having a length of 153600 * Ts = 5ms. Each half frame consists of five subframes having a length of 30720 * Ts = 1ms. The i-th subframe consists of two slots each having a length of Tslot = 15360 * Ts = 0.5ms corresponding to 2i and 2i + 1. Here, Ts represents a sampling time and is represented by T s = 1 / (15 kHz x 2048) = 3.2552 x 10 -8 (about 33 ns).
타입 2 프레임에는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)인 3가지의 필드로 구성되는 특별 서브프레임을 포함한다. 여기서, DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. The type 2 frame includes a special subframe consisting of three fields: a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS). Here, the DwPTS is used for initial cell search, synchronization or channel estimation in the terminal. UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal. The guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
다음 표 1는 특별 프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.Table 1 below shows the structure of the special frame (length of DwPTS / GP / UpPTS).
도 3은 본 발명의 실시예들에서 사용될 수 있는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.3 is a diagram illustrating a resource grid for a downlink slot that can be used in embodiments of the present invention.
도 3을 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.Referring to FIG. 3, one downlink slot includes a plurality of OFDM symbols in the time domain. Here, one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.Each element on the resource grid is a resource element, and one resource block includes 12 × 7 resource elements. The number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth. The structure of the uplink slot may be the same as the structure of the downlink slot.
도 4는 본 발명의 실시예들에서 사용될 수 있는 상향링크 서브 프레임의 구조를 나타낸다.4 shows a structure of an uplink subframe that can be used in embodiments of the present invention.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH가 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH가 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH를 동시에 전송하지 않는다. 하나의 단말에 대한 PUCCH에는 서브 프레임 내에 RB 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이러한 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.Referring to FIG. 4, an uplink subframe may be divided into a control region and a data region in the frequency domain. The control region is allocated a PUCCH carrying uplink control information. In the data area, a PUSCH carrying user data is allocated. In order to maintain a single carrier characteristic, one UE does not simultaneously transmit a PUCCH and a PUSCH. The PUCCH for one UE is allocated an RB pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots. The RB pair assigned to this PUCCH is said to be frequency hopping at the slot boundary.
도 5는 본 발명의 실시예들에서 사용될 수 있는 하향링크 서브 프레임의 구조를 나타낸다.5 shows a structure of a downlink subframe that can be used in embodiments of the present invention.
도 5를 참조하면, 서브 프레임내의 첫번째 슬롯에서 OFDM 심볼 인덱스 0부터 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH, PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.Referring to FIG. 5, up to three OFDM symbols from the OFDM symbol index 0 in the first slot in the subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which the PDSCH is allocated. to be. One example of a downlink control channel used in 3GPP LTE includes a Physical Control Format Indicator Channel (PCFICH), a PDCCH, and a Physical Hybrid-ARQ Indicator Channel (PHICH).
PCFICH는 서브 프레임의 첫 번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Negative-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe. The PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Negative-Acknowledgement) signal for a hybrid automatic repeat request (HARQ). Control information transmitted through the PDCCH is called downlink control information (DCI). The downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
1.2 PDCCH(Physical Downlink Control Channel)1.2 Physical Downlink Control Channel (PDCCH)
1.2.1 PDCCH 일반1.2.1 PDCCH General
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(즉, 하향링크 그랜트(DL-Grant)), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(즉, 상향링크 그랜트(UL-Grant)), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 여부에 관한 정보 등을 나를 수 있다.The PDCCH includes resource allocation and transmission format (ie, DL-Grant) of downlink shared channel (DL-SCH) and resource allocation information (ie, uplink grant (UL-) of uplink shared channel (UL-SCH). Grant)), paging information on a paging channel (PCH), system information on a DL-SCH, and an upper-layer control message such as a random access response transmitted on a PDSCH. It may carry resource allocation, a set of transmission power control commands for individual terminals in a certain terminal group, information on whether Voice over IP (VoIP) is activated or the like.
복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation)으로 구성된다. 하나 또는 몇몇 연속적인 CCE의 집합으로 구성된 PDCCH는 서브블록 인터리빙(subblock interleaving)을 거친 후에 제어 영역을 통해 전송될 수 있다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(REG: resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs. The PDCCH consists of an aggregation of one or several consecutive control channel elements (CCEs). The PDCCH composed of one or several consecutive CCEs may be transmitted through the control region after subblock interleaving. CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel. The CCE corresponds to a plurality of resource element groups (REGs). The format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
1.2.2 PDCCH 구조1.2.2 PDCCH Structure
복수의 단말에 대한 다중화된 복수의 PDCCH가 제어영역 내에서 전송될 수 있다. PDCCH는 하나 또는 2 이상의 연속적인 CCE의 집합(CCE aggregation)으로 구성된다. CCE는 4개의 자원 요소로 구성된 REG의 9개의 세트에 대응하는 단위를 말한다. 각 REG에는 4개의 QPSK(Quadrature Phase Shift Keying) 심볼이 매핑 된다. 참조 신호(RS: Reference Signal)에 의하여 점유된 자원 요소들은 REG에 포함되지 않는다. 즉, OFDM 심볼 내에서 REG의 총 개수는 셀 특정 참조 신호가 존재하는지 여부에 따라 달라질 수 있다. 4개의 자원 요소를 하나의 그룹에 매핑하는 REG의 개념은 다른 하향링크 제어 채널(예를 들어, PCFICH 또는 PHICH)에도 적용될 수 있다. PCFICH 또는 PHICH에 할당되지 않는 REG를 NREG라 하면 시스템에서 이용 가능한 CCE의 개수는 NCCE = floor(NREG/9)이며, 각 CCE는 0부터 NCCE-1 까지 인덱스를 가진다.A plurality of multiplexed PDCCHs for a plurality of terminals may be transmitted in a control region. The PDCCH is composed of one or more consecutive CCE aggregations (CCE aggregation). CCE refers to a unit corresponding to nine sets of REGs consisting of four resource elements. Four Quadrature Phase Shift Keying (QPSK) symbols are mapped to each REG. Resource elements occupied by a reference signal (RS) are not included in the REG. That is, the total number of REGs in the OFDM symbol may vary depending on whether a cell specific reference signal exists. The concept of REG, which maps four resource elements to one group, can also be applied to other downlink control channels (eg, PCFICH or PHICH). If REG not assigned to PCFICH or PHICH is N REG , the number of CCEs available in the system is N CCE = floor (N REG / 9), and each CCE has an index from 0 to N CCE -1.
단말의 디코딩 프로세스를 단순화하기 위해서, n개의 CCE를 포함하는 PDCCH 포맷은 n의 배수와 동일한 인덱스를 가지는 CCE부터 시작될 수 있다. 즉, CCE 인덱스가 i인 경우 imod(n) = 0 을 만족하는 CCE부터 시작될 수 있다.In order to simplify the decoding process of the UE, the PDCCH format including n CCEs may start with a CCE having an index equal to a multiple of n. That is, when the CCE index is i, it may start from a CCE satisfying imod (n) = 0.
기지국은 하나의 PDCCH 신호를 구성하기 위해 {1, 2, 4, 8} 개의 CCE들을 사용할 수 있으며, 이때의 {1, 2, 4, 8}은 CCE 집합 레벨(aggregation level)이라고 부른다. 특정 PDCCH의 전송을 위해 사용되는 CCE의 개수는 채널 상태에서 따라 기지국에 의하여 결정된다. 예를 들어, 양호한 하향링크 채널 상태(기지국에 가까운 경우)를 가지는 단말을 위한 PDCCH는 하나의 CCE만으로 충분할 수 있다. 반면, 좋지 않은 채널 상태(셀 경계에 있는 경우)를 가지는 단말의 경우는 8개의 CCE들이 충분한 강인함(robustness)을 위하여 요구될 수 있다. 게다가, PDCCH의 파워 레벨도 채널 상태에 매칭되어 조절될 수 있다.The base station may use {1, 2, 4, 8} CCEs to configure one PDCCH signal, wherein {1, 2, 4, 8} is called a CCE aggregation level. The number of CCEs used for transmission of a specific PDCCH is determined by the base station according to the channel state. For example, one CCE may be sufficient for a PDCCH for a terminal having a good downlink channel state (close to the base station). On the other hand, in case of a UE having a bad channel state (when it is at a cell boundary), eight CCEs may be required for sufficient robustness. In addition, the power level of the PDCCH may also be adjusted to match the channel state.
다음 표 2는 PDCCH 포맷을 나타내며, CCE 집합 레벨에 따라 표 2과 같이 4가지의 PDCCH 포맷이 지원된다.Table 2 below shows a PDCCH format, and four PDCCH formats are supported as shown in Table 2 according to the CCE aggregation level.
표 2
TABLE 2
PDCCH 포맷 | CCE 개수 (n) | REG 개수 | PDCCH 비트 수 |
0 | 1 | 9 | 72 |
1 | 2 | 18 | 144 |
2 | 4 | 36 | 288 |
3 | 8 | 72 | 576 |
PDCCH Format | CCE Count (n) | REG Count | |
0 | One | 9 | 72 |
One | 2 | 18 | 144 |
2 | 4 | 36 | 288 |
3 | 8 | 72 | 576 |
단말마다 CCE 집합 레벨이 다른 이유는 PDCCH에 실리는 제어정보의 포맷 또는 MCS(Modulation and Coding Scheme) 레벨이 다르기 때문이다. MCS 레벨은 데이터 코딩에 사용되는 코드 레이트(code rate)와 변조 차수(modulation order)를 의미한다. 적응적인 MCS 레벨은 링크 적응(link adaptation)을 위해 사용된다. 일반적으로 제어정보를 전송하는 제어채널에서는 3~4개 정도의 MCS 레벨을 고려할 수 있다.The reason why the CCE aggregation level is different for each UE is because a format or a modulation and coding scheme (MCS) level of control information carried on the PDCCH is different. The MCS level refers to a code rate and a modulation order used for data coding. Adaptive MCS levels are used for link adaptation. In general, three to four MCS levels may be considered in a control channel for transmitting control information.
제어정보의 포맷을 설명하면, PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(DCI)라고 한다. DCI 포맷에 따라 PDCCH 페이로드(payload)에 실리는 정보의 구성이 달라질 수 있다. PDCCH 페이로드는 정보 비트(information bit)를 의미한다. 다음 표 3은 DCI 포맷에 따른 DCI를 나타낸다. Referring to the format of the control information, control information transmitted through the PDCCH is referred to as downlink control information (DCI). According to the DCI format, the configuration of information carried in the PDCCH payload may vary. The PDCCH payload means an information bit. Table 3 below shows DCI according to DCI format.
표 3
TABLE 3
DCI 포맷 | 내용 |
Format 0 | Resource grants for PUSCH transmissions (uplink) |
Format 1 | Resource assignments for single codeword PDSCH transmission (transmission modes 1, 2 and 7) |
Format 1A | Compact signaling of resource assignments for sigle codeword PDSCH (all modes) |
Format 1B | Compact resource assignments for PDSCH using rank-1 closed loop precoding (mode 6) |
Format 1C | Very compact resource assignments for PDSCH (e.g., paging/broadcast system information) |
Format 1D | Compact resource assignments for PDSCH using multi-user MIMO(mode 5) |
Format 2 | Resource assignments for PDSCH for closed loop MIMO operation (mode 4) |
Format 2A | resource assignments for PDSCH for open loop MIMO operation (mode 3) |
Format 3/3A | Power control commands for PUCCH and PUSCH with 2-bit/1-bit power adjustment |
Format 4 | Scheduling of PUSCH in one UL cell with multi-antenna port transmission mode |
DCI | Contents |
Format | |
0 | Resource grants for PUSCH transmissions (uplink) |
| Resource assignments for single codeword PDSCH transmission ( |
Format 1A | Compact signaling of resource assignments for sigle codeword PDSCH (all modes) |
Format 1B | Compact resource assignments for PDSCH using rank-1 closed loop precoding (mode 6) |
Format 1C | Very compact resource assignments for PDSCH (eg, paging / broadcast system information) |
Format 1D | Compact resource assignments for PDSCH using multi-user MIMO (mode 5) |
| Resource assignments for PDSCH for closed loop MIMO operation (mode 4) |
Format 2A | resource assignments for PDSCH for open loop MIMO operation (mode 3) |
| Power control commands for PUCCH and PUSCH with 2-bit / 1-bit |
Format | |
4 | Scheduling of PUSCH in one UL cell with multi-antenna port transmission mode |
표 3을 참조하면, DCI 포맷으로는 PUSCH 스케줄링을 위한 포맷 0, 하나의 PDSCH 코드워드의 스케줄링을 위한 포맷 1, 하나의 PDSCH 코드워드의 간단한(compact) 스케줄링을 위한 포맷 1A, DL-SCH의 매우 간단한 스케줄링을 위한 포맷 1C, 폐루프(Closed-loop) 공간 다중화(spatial multiplexing) 모드에서 PDSCH 스케줄링을 위한 포맷 2, 개루프(Openloop) 공간 다중화 모드에서 PDSCH 스케줄링을 위한 포맷 2A, 상향링크 채널을 위한 TPC(Transmission Power Control) 명령의 전송을 위한 포맷 3 및 3A가 있다. DCI 포맷 1A는 단말에 어떤 전송 모드가 설정되어도 PDSCH 스케줄링을 위해 사용될 수 있다.Referring to Table 3, a DCI format includes a format 0 for PUSCH scheduling, a format 1 for scheduling one PDSCH codeword, a format 1A for compact scheduling of one PDSCH codeword, and a very much DL-SCH. Format 1C for simple scheduling, format 2 for PDSCH scheduling in closed-loop spatial multiplexing mode, format 2A for PDSCH scheduling in open-loop spatial multiplexing mode, for uplink channel There are formats 3 and 3A for the transmission of Transmission Power Control (TPC) commands. DCI format 1A may be used for PDSCH scheduling, regardless of which transmission mode is configured for the UE.
DCI 포맷에 따라 PDCCH 페이로드 길이가 달라질 수 있다. 또, PDCCH 페이로드의 종류와 그에 따른 길이는 간단한(compact) 스케줄링인지 여부 또는 단말에 설정된 전송 모드(transmission mode) 등에 의해 달라질 수 있다.The PDCCH payload length may vary depending on the DCI format. In addition, the type and length thereof of the PDCCH payload may vary depending on whether it is a simple scheduling or a transmission mode set in the terminal.
전송 모드는 단말이 PDSCH를 통한 하향링크 데이터를 수신하기 위해 설정(configuration)될 수 있다. 예를 들어, PDSCH를 통한 하향링크 데이터는 단말에 대한 스케줄된 데이터(scheduled data), 페이징, 랜덤 액세스 응답 또는 BCCH를 통한 브로드캐스트 정보 등이 있다. PDSCH를 통한 하향링크 데이터는 PDCCH를 통해 시그널되는 DCI 포맷과 관계가 있다. 전송 모드는 상위 계층 시그널링(예를 들어, RRC(Radio Resource Control) 시그널링)을 통해 단말에 반정적으로(semi-statically) 설정될 수 있다. 전송 모드는 싱글 안테나 전송(Single antenna transmission) 또는 멀티 안테나(Multi-antenna) 전송으로 구분할 수 있다.The transmission mode may be configured for the UE to receive downlink data through the PDSCH. For example, the downlink data through the PDSCH may include scheduled data, paging, random access response, or broadcast information through BCCH. Downlink data through the PDSCH is related to the DCI format signaled through the PDCCH. The transmission mode may be set semi-statically to the terminal through higher layer signaling (eg, RRC (Radio Resource Control) signaling). The transmission mode may be classified into single antenna transmission or multi-antenna transmission.
단말은 상위 계층 시그널링을 통해 반정적(semi-static)으로 전송 모드가 설정된다. 예를 들어, 멀티 안테나 전송에는 전송 다이버시티(Transmit diversity), 개루프(Open-loop) 또는 폐루프(Closed-loop) 공간 다중화(Spatial multiplexing), MU-MIMO(Multi-user-Multiple Input Multiple Output) 또는 빔 형성(Beamforming) 등이 있다. 전송 다이버시티는 다중 송신 안테나에서 동일한 데이터를 전송하여 전송 신뢰도를 높이는 기술이다. 공간 다중화는 다중 송신 안테나에서 서로 다른 데이터를 동시에 전송하여 시스템의 대역폭을 증가시키지 않고 고속의 데이터를 전송할 수 있는 기술이다. 빔 형성은 다중 안테나에서 채널 상태에 따른 가중치를 가하여 신호의 SINR(Signal to Interference plus Noise Ratio)을 증가시키는 기술이다.The terminal is set to a semi-static transmission mode through higher layer signaling. For example, multi-antenna transmission includes transmit diversity, open-loop or closed-loop spatial multiplexing, and multi-user-multiple input multiple outputs. ) Or beamforming. Transmit diversity is a technique of increasing transmission reliability by transmitting the same data in multiple transmit antennas. Spatial multiplexing is a technology that allows high-speed data transmission without increasing the bandwidth of the system by simultaneously transmitting different data from multiple transmit antennas. Beamforming is a technique of increasing the signal to interference plus noise ratio (SINR) of a signal by applying weights according to channel conditions in multiple antennas.
DCI 포맷은 단말에 설정된 전송 모드에 종속된다(depend on). 단말은 자신에게 설정된 전송 모드에 따라 모니터링하는 참조(Reference) DCI 포맷이 있다. 단말에 설정되는 전송 모드는 다음과 같이 10개의 전송 모드를 가질 수 있다.The DCI format is dependent on a transmission mode configured in the terminal (depend on). The UE has a reference DCI format that monitors according to a transmission mode configured for the UE. The transmission mode set in the terminal may have ten transmission modes as follows.
(1) 전송모드 1: 단일 안테나 포트; 포트 0(1) transmission mode 1: single antenna port; Port 0
(2) 전송모드 2: 전송 다이버시티(Transmit Diversity)(2) Transmission Mode 2: Transmit Diversity
(3) 전송모드 3: 개루프 공간 다중화 (Open-loop Spatial Multiplexing)(3) Transmission Mode 3: Open-loop Spatial Multiplexing
(4) 전송모드 4: 폐루프 공간 다중화 (Closed-loop Spatial Multiplexing)(4) Transmission Mode 4: Closed-loop Spatial Multiplexing
(5) 전송모드 5: 다중 사용자 MIMO(5) Transmission Mode 5: Multi-User MIMO
(6) 전송모드 6: 폐루프, 랭크 = 1 프리코딩(6) Transmission mode 6: closed loop, rank = 1 precoding
(7) 전송모드 7: 코드북에 기반하지 않는, 단일 레이어 전송을 지원하는 프리코딩(7) Transmission mode 7: Precoding supporting single layer transmission not based on codebook
(8) 전송모드 8: 코드북에 기반하지 않는, 두 개까지 레이어를 지원하는 프리코딩(8) Transmission mode 8: Precoding supporting up to two layers not based on codebook
(9) 전송모드 9: 코드북에 기반하지 않는, 여덟 개까지 레이어를 지원하는 프리코딩(9) Transmission mode 9: Precoding supporting up to eight layers not based on codebook
(10) 전송모드 10: 코드북에 기반하지 않는, CoMP를 위해 사용되는, 여덟 개까지 레이어를 지원하는 프리코딩(10) Transmission mode 10: precoding supporting up to eight layers, used for CoMP, not based on codebook
1.2.3 PDCCH 전송1.2.3 PDCCH Transmission
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(예를 들어, RNTI(Radio Network Temporary Identifier))가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자(예를 들어, C-RNTI(Cell-RNTI))가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자(예를 들어, P-RNTI(Paging-RNTI))가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: System Information Block)를 위한 PDCCH라면 시스템 정보 식별자(예를 들어, SI-RNTI(System Information RNTI))가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.The base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information. In the CRC, a unique identifier (for example, a Radio Network Temporary Identifier (RNTI)) is masked according to an owner or a purpose of the PDCCH. If it is a PDCCH for a specific terminal, a unique identifier (eg, C-RNTI (Cell-RNTI)) of the terminal may be masked to the CRC. Alternatively, if the PDCCH is for a paging message, a paging indication identifier (eg, P-RNTI (P-RNTI)) may be masked to the CRC. If the system information, more specifically, the PDCCH for the System Information Block (SIB), a system information identifier (eg, a System Information RNTI (SI-RNTI)) may be masked to the CRC. A random access-RNTI (RA-RNTI) may be masked to the CRC to indicate a random access response that is a response to the transmission of the random access preamble of the UE.
이어, 기지국은 CRC가 부가된 제어정보를 채널 코딩을 수행하여 부호화된 데이터(coded data)를 생성한다. 이때, MCS 레벨에 따른 코드 레이트로 채널 코딩을 수행할 수 있다. 기지국은 PDCCH 포맷에 할당된 CCE 집합 레벨에 따른 전송률 매칭(rate matching)을 수행하고, 부호화된 데이터를 변조하여 변조 심볼들을 생성한다. 이때, MCS 레벨에 따른 변조 서열을 사용할 수 있다. 하나의 PDCCH를 구성하는 변조 심볼들은 CCE 집합 레벨이 1, 2, 4, 8 중 하나일 수 있다. 이후, 기지국은 변조 심볼들을 물리적인 자원요소에 맵핑(CCE to RE mapping)한다.Subsequently, the base station performs channel coding on the control information added with the CRC to generate coded data. In this case, channel coding may be performed at a code rate according to the MCS level. The base station performs rate matching according to the CCE aggregation level allocated to the PDCCH format, modulates the coded data, and generates modulation symbols. At this time, a modulation sequence according to the MCS level can be used. The modulation symbols constituting one PDCCH may have one of 1, 2, 4, and 8 CCE aggregation levels. Thereafter, the base station maps modulation symbols to physical resource elements (CCE to RE mapping).
1.2.4 블라인드 디코딩(BS: Blind Decoding)1.2.4 Blind Decoding (BS)
하나의 서브프레임 내에서 복수의 PDCCH가 전송될 수 있다. 즉, 하나의 서브프레임의 제어영역은 인덱스 0 ~ NCCE,k-1 을 가지는 복수의 CCE로 구성된다. 여기서, NCCE,k는 k번째 서브프레임의 제어 영역 내의 총 CCE의 개수를 의미한다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 모니터링되는 PDCCH 포맷에 따라 PDCCH들의 각각의 디코딩을 시도하는 것을 말한다.A plurality of PDCCHs may be transmitted in one subframe. That is, the control region of one subframe includes a plurality of CCEs having indices 0 to N CCE, k −1. Here, N CCE, k means the total number of CCEs in the control region of the kth subframe. The UE monitors the plurality of PDCCHs in every subframe. Here, monitoring means that the UE attempts to decode each of the PDCCHs according to the monitored PDCCH format.
서브프레임 내에서 할당된 제어영역에서 기지국은 단말에게 해당하는 PDCCH가 어디에 있는지에 관한 정보를 제공하지 않는다. 단말은 기지국으로부터 전송된 제어채널을 수신하기 위해서 자신의 PDCCH가 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷으로 전송되는지 알 수 없으므로, 단말은 서브프레임 내에서 PDCCH 후보(candidate)들의 집합을 모니터링하여 자신의 PDCCH를 찾는다. 이를 블라인드 디코딩(BD)이라 한다. 블라인드 디코딩은 단말이 CRC 부분에 자신의 단말 식별자(UE ID)를 디 마스킹(De-Masking) 시킨 후, CRC 오류를 검토하여 해당 PDCCH가 자신의 제어채널인지 여부를 확인하는 방법을 말한다.In the control region allocated in the subframe, the base station does not provide information on where the PDCCH corresponding to the UE is. In order to receive the control channel transmitted from the base station, the UE cannot know where the PDCCH is transmitted in which CCE aggregation level or DCI format. Therefore, the UE monitors the aggregation of PDCCH candidates in a subframe. Find the PDCCH. This is called blind decoding (BD). Blind decoding refers to a method in which a UE de-masks its UE ID in a CRC portion and then checks the CRC error to determine whether the corresponding PDCCH is its control channel.
활성 모드(active mode)에서 단말은 자신에게 전송되는 데이터를 수신하기 위해 매 서브프레임의 PDCCH를 모니터링한다. DRX 모드에서 단말은 매 DRX 주기의 모니터링 구간에서 깨어나(wake up) 모니터링 구간에 해당하는 서브프레임에서 PDCCH를 모니터링한다. PDCCH의 모니터링이 수행되는 서브프레임을 non-DRX 서브프레임이라 한다.In the active mode, the UE monitors the PDCCH of every subframe in order to receive data transmitted to the UE. In the DRX mode, the UE wakes up in the monitoring interval of every DRX cycle and monitors the PDCCH in a subframe corresponding to the monitoring interval. A subframe in which PDCCH monitoring is performed is called a non-DRX subframe.
단말은 자신에게 전송되는 PDCCH를 수신하기 위해서는 non-DRX 서브프레임의 제어영역에 존재하는 모든 CCE에 대해 블라인드 디코딩을 수행해야 한다. 단말은 어떤 PDCCH 포맷이 전송될지 모르므로, 매 non-DRX 서브프레임 내에서 PDCCH의 블라인드 디코딩이 성공할 때까지 가능한 CCE 집단 레벨로 PDCCH를 모두 디코딩해야 한다. 단말은 자신을 위한 PDCCH가 몇 개의 CCE를 사용하는지 모르기 때문에 PDCCH의 블라인드 디코딩이 성공할 때까지 가능한 모든 CCE 집단 레벨로 검출을 시도해야 한다.In order to receive the PDCCH transmitted to the UE, the UE must perform blind decoding on all CCEs present in the control region of the non-DRX subframe. Since the UE does not know which PDCCH format is transmitted, it is necessary to decode all PDCCHs at the CCE aggregation level possible until blind decoding of the PDCCH is successful in every non-DRX subframe. Since the UE does not know how many CCEs the PDCCH uses for itself, the UE should attempt detection at all possible CCE aggregation levels until the blind decoding of the PDCCH succeeds.
LTE 시스템에서는 단말의 블라인드 디코딩을 위해서 서치 스페이스(SS: Search Space) 개념을 정의한다. 서치 스페이스는 단말이 모니터링하기 위한 PDCCH 후보 세트를 의미하며, 각 PDCCH 포맷에 따라 상이한 크기를 가질 수 있다. 서치 스페이스는 공용 서치 스페이스(CSS: Common Search Space)와 단말 특정 서치 스페이스(USS: UE-specific/Dedicated Search Space)로 구성될 수 있다.In the LTE system, a search space (SS) concept is defined for blind decoding of a terminal. The search space means a PDCCH candidate set for the UE to monitor and may have a different size according to each PDCCH format. The search space may include a common search space (CSS) and a UE-specific / dedicated search space (USS).
공용 서치 스페이스의 경우, 모든 단말이 공용 서치 스페이스의 크기에 대하여 알 수 있으나, 단말 특정 서치 스페이스는 각 단말마다 개별적으로 설정될 수 있다. 따라서, 단말은 PDCCH를 디코딩하기 위해 단말 특정 서치 스페이스 및 공용 서치 스페이스를 모두 모니터링해야 하며, 따라서 하나의 서브프레임에서 최대 44번의 블라인드 디코딩(BD)을 수행하게 된다. 여기에는 상이한 CRC 값(예를 들어, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI)에 따라 수행하는 블라인드 디코딩은 포함되지 않는다.In the case of the common search space, all terminals can know the size of the common search space, but the terminal specific search space can be set individually for each terminal. Accordingly, the UE must monitor both the UE-specific search space and the common search space in order to decode the PDCCH, thus performing a maximum of 44 blind decoding (BDs) in one subframe. This does not include blind decoding performed according to different CRC values (eg, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI).
서치 스페이스의 제약으로 인하여, 기지국은 주어진 서브프레임 내에서 PDCCH를 전송하고자 하는 단말들 모두에게 PDCCH를 전송하기 위한 CCE 자원이 확보될 수 없는 경우가 발생할 수 있다. 왜냐하면, CCE 위치가 할당되고 남은 자원들은 특정 단말의 서치 스페이스 내에 포함되지 않을 수 있기 때문이다. 다음 서브프레임에도 계속될 수 있는 이러한 장벽을 최소화하기 위하여 단말 특정 도약(hopping) 시퀀스가 단말 특정 서치 스페이스의 시작 지점에 적용될 수 있다.Due to the limitation of the search space, the base station may not be able to secure the CCE resources for transmitting the PDCCH to all the terminals to transmit the PDCCH in a given subframe. This is because resources remaining after the CCE location is allocated may not be included in the search space of a specific UE. A terminal specific hopping sequence may be applied to the starting point of the terminal specific search space to minimize this barrier that may continue to the next subframe.
표 4는 공용 서치 스페이스와 단말 특정 서치 스페이스의 크기를 나타낸다.Table 4 shows the sizes of the common search space and the terminal specific search space.
표 4
Table 4
PDCCH 포맷 | CCE 개수 (n) | CSS에서 후보 개수 | USS에서 후보 개수 |
0 | 1 | - | 6 |
1 | 2 | - | 6 |
2 | 4 | 4 | 2 |
3 | 8 | 2 | 2 |
PDCCH Format | CCE Count (n) | Candidate count in CSS | Candidate Count in |
0 | One | - | 6 |
One | 2 | - | 6 |
2 | 4 | 4 | 2 |
3 | 8 | 2 | 2 |
블라인드 디코딩을 시도하는 횟수에 따른 단말의 부하를 경감하기 위해, 단말은 정의된 모든 DCI 포맷에 따른 서치를 동시에 수행하지 않는다. 구체적으로, 단말은 단말 특정 서치 스페이스(USS)에서 항상 DCI 포맷 0 과 1A에 대한 서치를 수행한다. 이때, DCI 포맷 0과 1A는 동일한 크기를 가지나, 단말은 PDCCH에 포함된 DCI 포맷 0과 1A를 구분하는데 사용되는 플래그(flag for format 0/format 1A differentiation)를 이용하여 DCI 포맷을 구분할 수 있다. 또한, 단말에 DCI 포맷 0과 DCI 포맷 1A외에 다른 DCI 포맷이 요구될 수 있는데, 그 일례로 DCI 포맷 1, 1B, 2가 있다.In order to reduce the load of the UE according to the number of blind decoding attempts, the UE does not simultaneously perform searches according to all defined DCI formats. Specifically, the terminal always performs a search for DCI formats 0 and 1A in the terminal specific search space (USS). In this case, the DCI formats 0 and 1A have the same size, but the UE may distinguish the DCI formats by using a flag used for distinguishing the DCI formats 0 and 1A included in the PDCCH. In addition, a DCI format other than DCI format 0 and DCI format 1A may be required for the UE. Examples of the DCI formats include 1, 1B, and 2.
공용 서치 스페이스(CSS)에서 단말은 DCI 포맷 1A와 1C를 서치할 수 있다. 또한 단말은 DCI 포맷 3 또는 3A를 서치하도록 설정될 수 있으며, DCI 포맷 3과 3A는 DCI 포맷 0과 1A와 동일한 크기를 가지나, 단말은 단말 특정 식별자가 아닌 다른 식별자에 의하여 스크램블된 CRC를 이용하여 DCI 포맷을 구별할 수 있다.In the common search space (CSS), the UE may search for DCI formats 1A and 1C. In addition, the UE may be configured to search for DCI format 3 or 3A, and DCI formats 3 and 3A have the same size as DCI formats 0 and 1A, but the UE uses a CRC scrambled by an identifier other than the UE specific identifier. The DCI format can be distinguished.
서치 스페이스 는 집합 레벨 에 따른 PDCCH 후보 세트를 의미한다. 서치 스페이스의 PDCCH 후보 세트 m에 따른 CCE는 다음과 같은 수학식 1에 의해 결정될 수 있다.Search space Set level PDCCH candidate set according to the. The CCE according to the PDCCH candidate set m of the search space may be determined by Equation 1 below.
여기서, M(L)은 서치 스페이스에서 모니터하기 위한 CCE 집합 레벨 L에 따른 PDCCH 후보들의 개수를 나타내며, 이다. i는 PDCCH 에서 각 PDCCH 후보에서 개별 CCE를 지정하는 인덱스로서 i = 0, ..., L-1이다. 이며, ns는 무선 프레임 내에서 슬롯 인덱스를 나타낸다. Here, M (L) represents the number of PDCCH candidates according to CCE aggregation level L for monitoring in search space, to be. i is an index designating an individual CCE in each PDCCH candidate in the PDCCH, and i = 0, ..., L-1. N s represents a slot index in a radio frame.
상술한 바와 같이, 단말은 PDCCH를 디코딩하기 위해 단말 특정 서치 스페이스 및 공용 서치 스페이스를 모두 모니터링한다. 여기서, 공용 서치 스페이스(CSS)는 {4, 8}의 집합 레벨을 갖는 PDCCH들을 지원하고, 단말 특정 서치 스페이스(USS)는 {1, 2, 4, 8}의 집합 레벨을 갖는 PDCCH들을 지원한다. 표 5는 단말에 의하여 모니터링되는 PDCCH 후보를 나타낸다. As described above, the UE monitors both the UE-specific search space and the common search space to decode the PDCCH. Here, the common search space (CSS) supports PDCCHs having an aggregation level of {4, 8}, and the UE specific search space (USS) supports PDCCHs having an aggregation level of {1, 2, 4, 8}. . Table 5 shows PDCCH candidates monitored by the UE.
수학식 1을 참조하면, 공용 서치 스페이스의 경우 2개의 집합 레벨, L=4 및 L=8에 대해 Yk는 0으로 설정된다. 반면, 집합 레벨 L에 대해 단말 특정 서치 스페이스의 경우 Yk는 수학식 2와 같이 정의된다. Referring to Equation 1, Y k is set to 0 for two aggregation levels, L = 4 and L = 8 for a common search space. On the other hand, for the UE-specific search space for the aggregation level L, Y k is defined as in Equation 2.
여기서, 이며, nRNTI는 RNTI 값을 나타낸다. 또한, A = 39827이고, D = 65537이다. here, And n RNTI represents an RNTI value. Further, A = 39827 and D = 65537.
2. 캐리어 병합(CA: Carrier Aggregation) 환경 2. Carrier Aggregation (CA) Environment
2.1 CA 일반2.1 CA General
3GPP LTE(3rd Generation Partnership Project Long Term Evolution; Rel-8 또는 Rel-9) 시스템(이하, LTE 시스템)은 단일 컴포넌트 캐리어(CC: Component Carrier)를 여러 대역으로 분할하여 사용하는 다중 반송파 변조(MCM: Multi-Carrier Modulation) 방식을 사용한다. 그러나, 3GPP LTE-Advanced 시스템(이하, LTE-A 시스템) 에서는 LTE 시스템보다 광대역의 시스템 대역폭을 지원하기 위해서 하나 이상의 컴포넌트 캐리어를 결합하여 사용하는 캐리어 병합(CA: Carrier Aggregation)과 같은 방법을 사용할 수 있다. 캐리어 병합은 반송파 집성, 반송파 정합, 멀티 컴포넌트 캐리어 환경(Multi-CC) 또는 멀티캐리어 환경이라는 말로 대체될 수 있다.3GPP LTE (3rd Generation Partnership Project Long Term Evolution (Rel-8 or Rel-9) system (hereinafter referred to as LTE system) is a multi-carrier modulation (MCM) that divides a single component carrier (CC) into multiple bands. Multi-Carrier Modulation) is used. However, in the 3GPP LTE-Advanced system (hereinafter, LTE-A system), a method such as Carrier Aggregation (CA) may be used in which one or more component carriers are combined to support a wider system bandwidth than the LTE system. have. Carrier aggregation may be replaced with the words carrier aggregation, carrier matching, multi-component carrier environment (Multi-CC) or multicarrier environment.
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비 인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다) 수가 동일한 경우를 대칭적(symmetric) 병합이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 병합이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.In the present invention, the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers. In addition, the number of component carriers aggregated between downlink and uplink may be set differently. The case where the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC') is the same is called symmetric merging. This is called asymmetric merging. Such carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다.Carrier aggregation, in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system. When combining one or more carriers having a bandwidth smaller than the target band, the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.For example, the existing 3GPP LTE system supports {1.4, 3, 5, 10, 15, 20} MHz bandwidth, and the 3GPP LTE-advanced system (i.e., LTE-A) supports the above for compatibility with the existing system. Only bandwidths can be used to support bandwidths greater than 20 MHz. In addition, the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
또한, 위와 같은 캐리어 병합은 인트라-밴드 CA(Intra-band CA) 및 인터-밴드 CA(Inter-band CA)로 구분될 수 있다. 인트라-밴드 캐리어 병합이란, 다수의 DL CC 및/또는 UL CC들이 주파수상에서 인접하거나 근접하여 위치하는 것을 의미한다. 다시 말해, DL CC 및/또는 UL CC들의 캐리어 주파수가 동일한 밴드 내에 위치하는 것을 의미할 수 있다. 반면, 주파수 영역에서 멀리 떨어져 있는 환경을 인터-밴드 CA(Inter-Band CA)라고 부를 수 있다. 다시 말해, 다수의 DL CC 및/또는 UL CC들의 캐리어 주파수가 서로 다른 밴드들에 위치하는 것을 의미할 수 있다. 이와 같은 경우, 단말은 캐리어 병합 환경에서의 통신을 수행하기 위해서 복수의 RF(radio frequency)단을 사용할 수도 있다.In addition, the carrier aggregation may be divided into an intra-band CA and an inter-band CA. Intra-band carrier merging means that a plurality of DL CCs and / or UL CCs are located adjacent to or in proximity to frequency. In other words, it may mean that the carrier frequencies of the DL CCs and / or UL CCs are located in the same band. On the other hand, an environment far from the frequency domain may be referred to as an inter-band CA. In other words, it may mean that the carrier frequencies of the plurality of DL CCs and / or UL CCs are located in different bands. In this case, the terminal may use a plurality of radio frequency (RF) terminals to perform communication in a carrier aggregation environment.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다. 상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다.The LTE-A system uses the concept of a cell to manage radio resources. The carrier aggregation environment described above may be referred to as a multiple cell environment. A cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
예를 들어, 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있다. 그러나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다. 또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다.For example, when a specific UE has only one configured serving cell, it may have one DL CC and one UL CC. However, when a specific terminal has two or more configured serving cells, it may have as many DL CCs as the number of cells and the number of UL CCs may be the same or smaller than that. Alternatively, the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported.
또한, 캐리어 결합(CA)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 캐리어 결합에서 말하는 '셀(Cell)'은 주파수 관점에서 설명되는 것으로, 일반적으로 사용되는 기지국이 커버하는 지리적 영역으로서의 '셀'과는 구분되어야 한다. 이하, 상술한 인트라-밴드 캐리어 병합을 인트라-밴드 다중 셀이라고 지칭하며, 인터-밴드 캐리어 병합을 인터-밴드 다중 셀이라고 지칭한다.Carrier coupling (CA) may also be understood as the merging of two or more cells, each having a different carrier frequency (center frequency of the cell). The term 'cell' in terms of carrier combining is described in terms of frequency, and should be distinguished from 'cell' as a geographical area covered by a commonly used base station. Hereinafter, the above-described intra-band carrier merging is referred to as an intra-band multi-cell, and inter-band carrier merging is referred to as an inter-band multi-cell.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(P셀: Primary Cell) 및 세컨더리 셀(S셀: Secondary Cell)을 포함한다. P셀(PCell)과 S셀(SCell)은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.The cell used in the LTE-A system includes a primary cell (P cell) and a secondary cell (S cell). The PCell and the SCell may be used as serving cells. In case of the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell composed of the PCell. On the other hand, in case of a UE in RRC_CONNECTED state and carrier aggregation is configured, one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhyS셀 Id는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. S셀 Index는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, S셀Index는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.Serving cells (P cell and S cell) may be configured through an RRC parameter. PhyS cell Id is a cell's physical layer identifier and has an integer value from 0 to 503. SCell Index is a short identifier used to identify SCell and has an integer value from 1 to 7. ServCellIndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the P cell, and the S cell Index is given in advance to apply to the S cell. That is, a cell having the smallest cell ID (or cell index) in ServCellIndex becomes a P cell.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다.P cell refers to a cell operating on a primary frequency (or primary CC). The UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may also refer to a cell indicated in a handover process. In addition, the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure. E-UTRAN (Evolved Universal Terrestrial Radio Access) changes only the Pcell for the handover procedure by using an RRC ConnectionReconfigutaion message of a higher layer including mobility control information to a UE supporting a carrier aggregation environment. It may be.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다.The S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated. The SCell is configurable after the RRC connection is established and may be used to provide additional radio resources. PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among the serving cells configured in the carrier aggregation environment.
E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling)을 전송할 수 있다.When the E-UTRAN adds the SCell to the UE supporting the carrier aggregation environment, the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal. The change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfigutaion message of a higher layer may be used. The E-UTRAN may transmit specific signaling having different parameters for each terminal, rather than broadcasting in the related SCell.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.After the initial security activation process begins, the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process. In the carrier aggregation environment, the Pcell and the SCell may operate as respective component carriers. In the following embodiments, the primary component carrier (PCC) may be used in the same sense as the PCell, and the secondary component carrier (SCC) may be used in the same sense as the SCell.
도 6은 본 발명의 실시예들에서 사용되는 컴포넌트 캐리어(CC) 및 LTE_A 시스템에서 사용되는 캐리어 병합의 일례를 나타내는 도면이다.FIG. 6 is a diagram illustrating an example of carrier aggregation used in a component carrier (CC) and an LTE_A system used in embodiments of the present invention.
도 6(a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.6 (a) shows a single carrier structure used in an LTE system. Component carriers include a DL CC and an UL CC. One component carrier may have a frequency range of 20 MHz.
도 6(b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 6(b)의 경우에 20MHz의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다. 6 (b) shows a carrier aggregation structure used in the LTE_A system. 6 (b) shows a case where three component carriers having a frequency size of 20 MHz are combined. Although there are three DL CCs and three UL CCs, the number of DL CCs and UL CCs is not limited. In case of carrier aggregation, the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 UE는 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.If N DL CCs are managed in a specific cell, the network may allocate M (M ≦ N) DL CCs to the UE. In this case, the UE may monitor only M limited DL CCs and receive a DL signal. In addition, the network may assign L (L ≦ M ≦ N) DL CCs to allocate a main DL CC to the UE, in which case the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
하향링크 자원의 반송파 주파수(또는 DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.The linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message or system information such as an RRC message. For example, a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2). Specifically, the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
2.2 크로스 캐리어 스케줄링(Cross Carrier Scheduling)2.2 Cross Carrier Scheduling
캐리어 병합 시스템에서는 캐리어(또는 반송파) 또는 서빙 셀(Serving Cell)에 대한 스케줄링 관점에서 자가 스케줄링(Self-Scheduling) 방법 및 크로스 캐리어 스케줄링(Cross Carrier Scheduling) 방법의 두 가지가 있다. 크로스 캐리어 스케줄링은 크로스 컴포넌트 캐리어 스케줄링(Cross Component Carrier Scheduling) 또는 크로스 셀 스케줄링(Cross Cell Scheduling)으로 일컬을 수 있다. In a carrier aggregation system, there are two types of a self-scheduling method and a cross carrier scheduling method in terms of scheduling for a carrier (or carrier) or a serving cell. Cross carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
자가 스케줄링은 PDCCH(DL Grant)와 PDSCH가 동일한 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL Grant를 수신한 DL CC와 링크되어 있는 UL CC를 통해 전송되는 것을 의미한다.Self-scheduling is transmitted through a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted in the same DL CC, or a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC in which a UL Grant has been received. It means to be.
크로스 캐리어 스케줄링은 PDCCH(DL Grant)와 PDSCH가 각각 다른 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL 그랜트를 수신한 DL CC와 링크되어 있는 UL CC가 아닌 다른 UL CC를 통해 전송되는 것을 의미한다.In cross-carrier scheduling, a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted to different DL CCs, or a UL CC in which a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC having received an UL grant This means that it is transmitted through other UL CC.
크로스 캐리어 스케줄링 여부는 단말 특정(UE-specific)하게 활성화 또는 비활성화될 수 있으며, 상위계층 시그널링(예를 들어, RRC 시그널링)을 통해서 반정적(semi-static)으로 각 단말 별로 알려질 수 있다.Whether to perform cross-carrier scheduling may be activated or deactivated UE-specifically and may be known for each UE semi-statically through higher layer signaling (eg, RRC signaling).
크로스 캐리어 스케줄링이 활성화된 경우, PDCCH에 해당 PDCCH가 지시하는 PDSCH/PUSCH가 어느 DL/UL CC를 통해서 전송되는지를 알려주는 캐리어 지시자 필드(CIF: Carrier Indicator Field)가 필요하다. 예를 들어, PDCCH는 PDSCH 자원 또는 PUSCH 자원을 CIF를 이용하여 다수의 컴포넌트 캐리어들 중 하나에 할당할 수 있다. 즉, DL CC 상에서의 PDCCH가 다중 집성된 DL/UL CC 중 하나에 PDSCH 또는 PUSCH 자원을 할당하는 경우 CIF가 설정된다. 이 경우, LTE Release-8의 DCI 포맷은 CIF에 따라 확장될 수 있다. 이때 설정된 CIF는 3bit 필드로 고정되거나, 설정된 CIF의 위치는 DCI 포맷 크기와 무관하게 고정될 수 있다. 또한, LTE Release-8의 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)를 재사용할 수도 있다.When cross-carrier scheduling is activated, a carrier indicator field (CIF: Carrier Indicator Field) indicating a PDSCH / PUSCH indicated by the corresponding PDCCH is transmitted to the PDCCH. For example, the PDCCH may allocate PDSCH resource or PUSCH resource to one of a plurality of component carriers using CIF. That is, when the PDCCH on the DL CC allocates PDSCH or PUSCH resources to one of the multi-aggregated DL / UL CC, CIF is set. In this case, the DCI format of LTE Release-8 may be extended according to CIF. In this case, the set CIF may be fixed as a 3 bit field or the position of the set CIF may be fixed regardless of the DCI format size. In addition, the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE Release-8 may be reused.
반면, DL CC 상에서의 PDCCH가 동일한 DL CC 상에서의 PDSCH 자원을 할당하거나 단일 링크된 UL CC 상에서의 PUSCH 자원을 할당하는 경우에는 CIF가 설정되지 않는다. 이 경우, LTE Release-8과 동일한 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)와 DCI 포맷이 사용될 수 있다.On the other hand, if the PDCCH on the DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on a single linked UL CC, CIF is not configured. In this case, the same PDCCH structure (same coding and resource mapping based on the same CCE) and DCI format as in LTE Release-8 may be used.
크로스 캐리어 스케줄링이 가능할 때, 단말은 CC별 전송 모드 및/또는 대역폭에 따라 모니터링 CC의 제어영역에서 복수의 DCI에 대한 PDCCH를 모니터링하는 것이 필요하다. 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH 모니터링이 필요하다.When cross carrier scheduling is possible, the UE needs to monitor the PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
캐리어 병합 시스템에서, 단말 DL CC 집합은 단말이 PDSCH를 수신하도록 스케줄링된 DL CC의 집합을 나타내고, 단말 UL CC 집합은 단말이 PUSCH를 전송하도록 스케줄링된 UL CC의 집합을 나타낸다. 또한, PDCCH 모니터링 집합(monitoring set)은 PDCCH 모니터링을 수행하는 적어도 하나의 DL CC의 집합을 나타낸다. PDCCH 모니터링 집합은 단말 DL CC 집합과 같거나, 단말 DL CC 집합의 부집합(subset)일 수 있다. PDCCH 모니터링 집합은 단말 DL CC 집합내의 DL CC들 중 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH 모니터링 집합은 단말 DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC는 링크된 UL CC에 대한 자기-스케줄링(self-scheduling)은 항상 가능하도록 설정될 수 있다. 이러한, 단말 DL CC 집합, 단말 UL CC 집합 및 PDCCH 모니터링 집합은 단말 특정(UE-specific), 단말 그룹 특정(UE group-specific) 또는 셀 특정(Cell-specific)하게 설정될 수 있다.In the carrier aggregation system, the terminal DL CC set represents a set of DL CCs scheduled for the terminal to receive a PDSCH, and the terminal UL CC set represents a set of UL CCs scheduled for the terminal to transmit a PUSCH. In addition, the PDCCH monitoring set represents a set of at least one DL CC that performs PDCCH monitoring. The PDCCH monitoring set may be the same as the terminal DL CC set or may be a subset of the terminal DL CC set. The PDCCH monitoring set may include at least one of DL CCs in the terminal DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set. The DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC. The UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be configured UE-specifically, UE group-specifically, or cell-specifically.
크로스 캐리어 스케줄링이 비활성화된 경우에는 PDCCH 모니터링 집합이 항상 단말 DL CC 집합과 동일하다는 것을 의미하며, 이러한 경우에는 PDCCH 모니터링 집합에 대한 별도의 시그널링과 같은 지시가 필요하지 않다. 그러나, 크로스 캐리어 스케줄링이 활성화된 경우에는 PDCCH 모니터링 집합이 단말 DL CC 집합 내에서 정의되는 것이 바람직하다. 즉, 단말에 대하여 PDSCH 또는 PUSCH를 스케줄링하기 위하여 기지국은 PDCCH 모니터링 집합만을 통해 PDCCH를 전송한다.When cross-carrier scheduling is deactivated, it means that the PDCCH monitoring set is always the same as the UE DL CC set. In this case, an indication such as separate signaling for the PDCCH monitoring set is not necessary. However, when cross-carrier scheduling is activated, it is preferable that a PDCCH monitoring set is defined in the terminal DL CC set. That is, in order to schedule PDSCH or PUSCH for the UE, the base station transmits the PDCCH through only the PDCCH monitoring set.
도 7은 본 발명의 실시예들에서 사용되는 크로스 캐리어 스케줄링에 따른 LTE-A 시스템의 서브 프레임 구조를 나타낸다. 7 illustrates a subframe structure of an LTE-A system according to cross carrier scheduling used in embodiments of the present invention.
도 7을 참조하면, LTE-A 단말을 위한 DL 서브프레임은 3개의 하향링크 컴포넌트 캐리어(DL CC)가 결합되어 있으며, DL CC 'A'는 PDCCH 모니터링 DL CC로 설정된 경우를 나타낸다. CIF가 사용되지 않는 경우, 각 DL CC는 CIF 없이 자신의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 반면, CIF가 상위 계층 시그널링을 통해 사용되는 경우, 단 하나의 DL CC 'A'만이 CIF를 이용하여 자신의 PDSCH 또는 다른 CC의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 이때, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC 'B' 와 'C'는 PDCCH를 전송하지 않는다.Referring to FIG. 7, three DL component carriers (DL CCs) are combined in a DL subframe for an LTE-A terminal, and DL CC 'A' represents a case in which a PDCCH monitoring DL CC is configured. If CIF is not used, each DL CC may transmit a PDCCH for scheduling its PDSCH without CIF. On the other hand, when the CIF is used through higher layer signaling, only one DL CC 'A' may transmit a PDCCH for scheduling its PDSCH or PDSCH of another CC using the CIF. At this time, DL CCs 'B' and 'C' that are not configured as PDCCH monitoring DL CCs do not transmit the PDCCH.
도 8은 본 발명의 실시예들에서 사용되는 크로스 캐리어 스케줄링에 따른 서빙셀 구성의 일례를 나타내는 도면이다. 8 is a diagram illustrating an example of a configuration of a serving cell according to cross carrier scheduling used in embodiments of the present invention.
캐리어 결합(CA)을 지원하는 무선 접속 시스템에서 기지국 및/또는 단말들은 하나 이상의 서빙 셀들로 구성될 수 있다. 도 8에서 기지국은 A셀, B셀, C셀 및 D셀 등 총 4개의 서빙셀을 지원할 수 있으며, 단말 A는 A셀, B셀 및 C셀로 구성되고, 단말 B는 B셀, C셀 및 D셀로 구성되며, 단말 C는 B셀로 구성된 경우를 가정한다. 이때, 각 단말에 구성된 셀들 중 적어도 하나는 P셀로 설정될 수 있다. 이때, P셀은 항상 활성화된 상태이며, S셀은 기지국 및/또는 단말에 의해 활성화 또는 비활성화될 수 있다.In a radio access system supporting carrier combining (CA), a base station and / or terminals may be composed of one or more serving cells. In FIG. 8, the base station can support a total of four serving cells, such as A cell, B cell, C cell, and D cell, and terminal A is composed of A cell, B cell, and C cell, and terminal B is B cell, C cell, and the like. It is assumed that the D cell and the terminal C is configured as a B cell. In this case, at least one of the cells configured in each terminal may be configured as a P cell. In this case, the PCell is always in an activated state, and the SCell may be activated or deactivated by the base station and / or the terminal.
도 8에서 구성된 셀은 기지국의 셀 중에서 단말로부터의 측정 보고(measurement report) 메시지를 기반으로 CA에 셀 추가가 가능한 셀로서 단말별로 설정 가능하다. 구성된 셀은 PDSCH 신호 전송에 대한 ACK/NACK 메시지 전송을 위한 자원을 미리 예약해 둔다. 활성화된 셀(Activated cell)은 구성된 셀들 중에서 실제 PDSCH 신호 및/또는 PUSCH 신호를 전송하도록 설정된 셀이며, CSI 보고 및 SRS(Sounding Reference Signal) 전송을 수행하게 된다. 비활성화된 셀(De-Activated cell)은 기지국의 명령 또는 타이머 동작에 의해서 PDSCH/PUSCH 신호 송수신을 수행하지 않도록 구성되는 셀이며, CSI 보고 및 SRS 전송도 중단된다.The cell configured in FIG. 8 is a cell capable of adding a cell to a CA based on a measurement report message from a terminal among cells of a base station, and may be configured for each terminal. The configured cell reserves the resources for the ACK / NACK message transmission for the PDSCH signal transmission in advance. An activated cell is a cell configured to transmit a real PDSCH signal and / or a PUSCH signal among configured cells, and performs CSI reporting and SRS (Sounding Reference Signal) transmission. A de-activated cell is a cell configured not to transmit or receive a PDSCH / PUSCH signal by a command or timer operation of a base station, and also stops CSI reporting and SRS transmission.
2.3 CA 환경 기반의 CoMP 동작2.3 CoMP operation based on CA environment
이하에서는 본 발명의 실시예들에 적용될 수 있는 협력적 다중 포인트(CoMP: Cooperative Multi-Point) 전송 동작에 대해서 설명한다.Hereinafter, a cooperative multi-point (CoMP) transmission operation that can be applied to embodiments of the present invention will be described.
LTE-A 시스템에서 LTE에서의 CA(carrier aggregation) 기능을 이용하여 CoMP 전송을 구현할 수 있다. 도 9는 CA 환경을 기반으로 동작하는 CoMP 시스템의 개념도이다.In the LTE-A system, CoMP transmission may be implemented using a carrier aggregation (CA) function in LTE. 9 is a conceptual diagram of a CoMP system operating based on a CA environment.
도 9에서, P셀로 동작하는 캐리어와 S셀로 동작하는 캐리어는 주파수 축으로 동일한 주파수 대역을 사용할 수 있으며, 지리적으로 떨어진 두 eNB에 각각 할당된 경우를 가정한다. 이때, UE1의 서빙 eNB를 P셀로 할당하고, 많은 간섭을 주는 인접셀을 S셀로 할당할 수 있다. 즉, 하나의 단말에 대해서 P셀의 기지국과 S셀의 기지국이 서로 JT(Joint Transmission), CS/CB 및 동적 셀 선택(Dynamic cell selection) 등 다양한 DL/UL CoMP 동작을 수행할 수 있다.In FIG. 9, it is assumed that a carrier operating as a PCell and a carrier operating as an SCell may use the same frequency band as the frequency axis, and are allocated to two geographically separated eNBs. In this case, the serving eNB of the UE1 may be allocated to the Pcell, and the neighboring cell which gives a lot of interference may be allocated to the Scell. That is, the base station of the P cell and the base station of the S cell may perform various DL / UL CoMP operations such as joint transmission (JT), CS / CB, and dynamic cell selection with respect to one UE.
도 9는 하나의 단말(e.g., UE1)에 대해 두 개의 eNB들이 관리하는 셀들을 각각 P셀과 S셀로써 결합하는 경우에 대한 예시를 나타낸다. 다만, 다른 예로서 3개 이상의 셀이 결합될 수 있다. 예를 들어, 세 개 이상의 셀들 중 일부 셀들은 동일 주파수 대역에서 하나의 단말에 대해 CoMP 동작을 수행하고, 다른 셀들은 다른 주파수 대역에서 단순 CA 동작을 하도록 구성되는 것도 가능하다. 이때, P셀은 반드시 CoMP 동작에 참여할 필요는 없다.9 shows an example of combining cells managed by two eNBs for one UE (e.g. UE1) as a Pcell and an Scell, respectively. However, as another example, three or more cells may be combined. For example, some of the three or more cells may be configured to perform a CoMP operation on one terminal in the same frequency band, and other cells to perform a simple CA operation in another frequency band. At this time, the Pcell does not necessarily participate in CoMP operation.
2.4 참조신호(RS: Reference Signal)2.4 Reference Signal
이하에서는 본 발명의 실시예들에서 사용될 수 있는 참조신호들에 대해서 설명한다.Hereinafter, reference signals that can be used in embodiments of the present invention will be described.
도 10은 본 발명의 실시예들에서 사용될 수 있는 셀 특정 참조 신호(CRS: Cell specific Reference Signal)가 할당된 서브프레임의 일례를 나타내는 도면이다.FIG. 10 is a diagram illustrating an example of a subframe to which a cell specific reference signal (CRS) is allocated, which can be used in embodiments of the present invention.
도 10에서는 시스템에서 4개 안테나를 지원하는 경우에 CRS의 할당 구조를 나타낸다. 3GPP LTE/LTE-A 시스템에서 CRS는 디코딩 및 채널 상태 측정을 목적으로 사용된다. 따라서, CRS는 PDSCH 전송을 지원하는 셀(cell) 내 모든 하향링크 서브프레임에서 전체 하향링크 대역폭에 걸쳐 전송되며, 기지국(eNB)에 구성된 모든 안테나 포트에서 전송된다.10 shows an allocation structure of a CRS when a system supports four antennas. In 3GPP LTE / LTE-A system, CRS is used for decoding and channel state measurement. Accordingly, the CRS is transmitted over the entire downlink bandwidth in all downlink subframes in a cell supporting PDSCH transmission, and is transmitted in all antenna ports configured in the eNB.
구체적으로 CRS 시퀀스는 슬롯 ns에서 안테나 포트 p를 위한 참조 심볼들로서 사용되는 복소 변조 심볼(complex-valued modulation symbols)에 맵핑된다.Specifically, the CRS sequence is mapped to complex-valued modulation symbols used as reference symbols for antenna port p in slot n s .
UE는 CRS를 이용하여 CSI를 측정할 수 있으며, CRS를 이용하여 CRS를 포함하는 서브프레임에서 PDSCH를 통해 수신된 하향링크 데이터 신호를 디코딩할 수 있다. 즉, eNB는 모든 RB에서 각 RB 내 일정한 위치에 CRS를 전송하고 UE는 상기 CRS를 기준으로 채널 추정을 수행한 다음에 PDSCH를 검출하였다. 예를 들어, UE는 CRS RE에서 수신된 신호를 측정한다. UE는 CRS RE별 수신 에너지와 PDSCH이 맵핑된 RE별 수신 에너지에 대한 비를 이용하여 PDSCH가 맵핑된 RE로부터 PDSCH 신호를 검출할 수 있다.The UE can measure the CSI using the CRS, and can decode the downlink data signal received through the PDSCH in a subframe including the CRS using the CRS. That is, the eNB transmits the CRS at a predetermined position in each RB in all RBs, and the UE detects the PDSCH after performing channel estimation based on the CRS. For example, the UE measures the signal received at the CRS RE. The UE may detect the PDSCH signal from the PD to which the PDSCH is mapped by using a ratio of the reception energy for each CRS RE to the reception energy for each RE to which the PDSCH is mapped.
이와 같이, CRS를 기반으로 PDSCH 신호가 전송되는 경우에, eNB는 모든 RB에 대해서 CRS를 전송해야 하므로 불필요한 RS 오버헤드가 발생하게 된다. 이러한 문제점을 해결하기 위하여 3GPP LTE-A 시스템에서는 CRS 외에 UE-특정 RS(이하, UE-RS) 및 채널상태정보 참조신호(CSI-RS: Channel State Information Reference Signal)를 추가로 정의한다. UE-RS는 복조를 위해 사용되고, CSI-RS는 채널 상태 정보를 획득하기(derive) 위해 사용된다.As such, when the PDSCH signal is transmitted based on the CRS, the eNB needs to transmit the CRS for all RBs, which causes unnecessary RS overhead. In order to solve this problem, the 3GPP LTE-A system further defines a UE-specific RS (hereinafter, UE-RS) and a channel state information reference signal (CSI-RS) in addition to the CRS. UE-RS is used for demodulation and CSI-RS is used to derive channel state information.
UE-RS 및 CRS는 복조를 위해 사용되므로 용도의 측면에서 복조용 RS라고 할 수 있다. 즉, UE-RS는 DM-RS(DeModulation Reference Signal)의 일종으로 볼 수 있다. 또한, CSI-RS 및 CRS는 채널 측정 혹은 채널 추정에 사용되므로 용도의 측면에서는 채널 상태 측정용 RS라고 할 수 있다.Since UE-RS and CRS are used for demodulation, they can be referred to as demodulation RS in terms of use. That is, the UE-RS may be regarded as a kind of DM-RS (DeModulation Reference Signal). In addition, since the CSI-RS and the CRS are used for channel measurement or channel estimation, the CSI-RS and CRS may be referred to as RS for channel state measurement in terms of use.
도 11은 본 발명의 실시예들에서 사용될 수 있는 CSI-RS가 안테나 포트의 개수에 따라 할당된 서브프레임들의 일례를 나타내는 도면이다.FIG. 11 is a diagram illustrating an example of subframes in which CSI-RSs that can be used in embodiments of the present invention are allocated according to the number of antenna ports.
CSI-RS는 복조 목적이 아니라 무선 채널의 상태 측정을 위해 3GPP LTE-A 시스템에서 도입된 하향링크 참조신호이다. 3GPP LTE-A 시스템은 CSI-RS 전송을 위해 복수의 CSI-RS 설정들을 정의하고 있다. CSI-RS 전송이 구성된 서브프레임들에서 CSI-RS 시퀀스는 안테나 포트 p 상의 참조 심볼들로서 사용되는 복소 변조 심볼들에 따라 맵핑된다.The CSI-RS is a downlink reference signal introduced in the 3GPP LTE-A system not for demodulation purposes but for measuring a state of a wireless channel. The 3GPP LTE-A system defines a plurality of CSI-RS settings for CSI-RS transmission. In subframes in which CSI-RS transmission is configured, the CSI-RS sequence is mapped according to complex modulation symbols used as reference symbols on antenna port p.
도 11(a)는 CSI-RS 구성들 중 2개의 CSI-RS 포트들에 의한 CSI-RS 전송에 이용 가능한 20가지 CSI-RS 구성 0~19를 나타낸 것이고, 도 11(b)는 CSI-RS 구성들 중 4개의 CSI-RS 포트들에 의해 이용 가능한 10가지 CSI-RS 구성 0~9를 나타낸 것이며, 도 11(c)는 CSI-RS 구성 중 8개의 CSI-RS 포트들에 의해 이용 가능한 5가지 CSI-RS 구성 0~4를 도시한 것이다.FIG. 11 (a) shows 20 CSI-RS configurations 0 to 19 available for CSI-RS transmission by two CSI-RS ports among CSI-RS configurations, and FIG. 11 (b) shows CSI-RS configurations. Of the configurations, 10 CSI-RS configurations available through four CSI-RS ports 0 through 9 are shown, and FIG. 11 (c) shows 5 available by eight CSI-RS ports among the CSI-RS configurations. Branch CSI-RS configuration 0-4 are shown.
여기서 CSI-RS 포트는 CSI-RS 전송을 위해 설정된 안테나 포트를 의미한다. CSI-RS 포트의 개수에 따라 CSI-RS 구성이 달라지므로 CSI-RS 구성 번호가 동일하다고 하더라도 CSI-RS 전송을 위해 구성된 안테나 포트의 개수가 다르면 다른 CSI-RS 구성이 된다.Here, the CSI-RS port means an antenna port configured for CSI-RS transmission. Since the CSI-RS configuration varies depending on the number of CSI-RS ports, even if the CSI-RS configuration numbers are the same, different CSI-RS configurations are obtained when the number of antenna ports configured for CSI-RS transmission is different.
한편 CSI-RS는 매 서브프레임마다 전송되도록 구성된 CRS와 달리 다수의 서브프레임들에 해당하는 소정 전송 주기마다 전송되도록 설정된다. 따라서, CSI-RS 구성은 자원 블록 쌍 내에서 CSI-RS가 점유하는 RE들의 위치뿐만 아니라 CSI-RS가 설정되는 서브프레임에 따라서도 달라진다.On the other hand, unlike the CRS configured to be transmitted every subframe, the CSI-RS is configured to be transmitted every predetermined transmission period corresponding to a plurality of subframes. Therefore, the CSI-RS configuration depends not only on the positions of REs occupied by the CSI-RS in a resource block pair but also on the subframe in which the CSI-RS is configured.
또한, CSI-RS 구성 번호가 동일하다고 하더라도 CSI-RS 전송을 위한 서브프레임이 다르면 CSI-RS 구성도 다르다고 볼 수 있다. 예를 들어, CSI-RS 전송 주기(TCSI-RS)가 다르거나 일 무선 프레임 내에서 CSI-RS 전송이 구성된 시작 서브프레임(ΔCSI-RS)이 다르면 CSI-RS 구성이 다르다고 볼 수 있다.In addition, even if the CSI-RS configuration numbers are the same, if the subframes for CSI-RS transmission are different, the CSI-RS configuration may be regarded as different. For example, if the CSI-RS transmission period (T CSI-RS ) is different or the start subframe (Δ CSI-RS ) configured for CSI-RS transmission in one radio frame is different, the CSI-RS configuration may be different.
이하에서는 (1) CSI-RS 구성 번호가 부여된 CSI-RS 구성과 (2) CSI-RS 구성 번호, CSI-RS 포트의 개수 및/또는 CSI-RS가 구성된 서브프레임에 따라 달라지는 CSI-RS 구성을 구분하기 위하여, 후자 (2)의 구성을 CSI-RS 자원 구성(CSI-RS resource configuration)이라고 칭한다. 전자(1)의 설정은 CSI-RS 구성 또는 CSI-RS 패턴이라고도 칭한다.Hereinafter, the CSI-RS configuration depends on (1) the CSI-RS configuration to which the CSI-RS configuration number is assigned, and (2) the CSI-RS configuration number, the number of CSI-RS ports, and / or subframes in which the CSI-RS is configured. In order to distinguish between them, the configuration of the latter 2 is called a CSI-RS resource configuration. The setting of the former 1 is also referred to as CSI-RS configuration or CSI-RS pattern.
eNB는 UE에게 CSI-RS 자원 구성을 알려줄 때 CSI-RS들의 전송을 위해 사용되는 안테나 포트의 개수, CSI-RS 패턴, CSI-RS 서브프레임 구성(CSI-RS subframe configuration) ICSI-RS, CSI 피드백을 위한 참조 PDSCH 전송 전력에 관한 UE 가정 (UE assumption on reference PDSCH transmitted power for CSI feedback) Pc, 제로 파워 CSI-RS 구성 리스트, 제로 파워 CSI-RS 서브프레임 구성 등에 관한 정보를 알려 줄 수 있다. When eNB informs UE of CSI-RS resource configuration, the number of antenna ports, CSI-RS pattern, CSI-RS subframe configuration I CSI-RS , CSI used for transmission of CSI-RSs UE assumption on reference PDSCH transmitted power for feedback (CSI) can be informed about P c , zero power CSI-RS configuration list, zero power CSI-RS subframe configuration, etc. .
CSI-RS 서브프레임 구성 인덱스 ICSI-RS는 CSI-RS들의 존재(occurrence)에 대한 서브프레임 구성 주기 TCSI-RS 및 서브프레임 오프셋 ΔCSI-RS을 특정하기 위한 정보이다. 다음 표 4는 TCSI-RS 및 ΔCSI-RS에 따른 CSI-RS 서브프레임 구성 인덱스 ICSI-RS을 예시한 것이다. CSI-RS Subframe Configuration Index I CSI-RS is information for specifying the subframe configuration period T CSI-RS and subframe offset Δ CSI-RS for the presence of CSI-RSs . Table 4 below illustrates CSI-RS subframe configuration index I CSI-RS according to T CSI-RS and Δ CSI-RS .
표 6
Table 6
CSI-RS-SubframeConfig ICSI-RS | CSI-RS periodicity TCSI-RS (subframes) | CSI-RS subframe offset ΔCSI-RS (subframes) |
0-4 | 5 | ICSI-RS |
5-14 | 10 | ICSI-RS - 5 |
15-34 | 20 | ICSI-RS - 15 |
35-74 | 40 | ICSI-RS - 35 |
75-154 | 80 | ICSI-RS - 75 |
CSI-RS-SubframeConfig I CSI-RS | CSI-RS periodicity T CSI-RS (subframes) | CSI-RS subframe offset Δ CSI-RS (subframes) |
0-4 | 5 | I CSI-RS |
5-14 | 10 | I CSI-RS -5 |
15-34 | 20 | I CSI-RS -15 |
35-74 | 40 | I CSI-RS -35 |
75-154 | 80 | I CSI-RS -75 |
이때, 다음 수학식 3를 만족하는 서브프레임들이 CSI-RS를 포함하는 서브프레임들이 된다.At this time, subframes satisfying Equation 3 below are subframes including the CSI-RS.
3GPP LTE-A 시스템 이후에 정의된 전송 모드(예를 들어, 전송 모드 9 혹은 그 외 새로이 정의되는 전송 모드)로 설정된 UE는 CSI-RS를 이용하여 채널 측정을 수행하고 UE-RS를 이용하여 PDSCH를 복호할 수 있다.UE set to a transmission mode defined after 3GPP LTE-A system (for example, transmission mode 9 or another newly defined transmission mode) performs channel measurement using CSI-RS and PDSCH using UE-RS Can be decoded.
3GPP LTE-A 시스템 이후에 정의된 전송 모드(예를 들어, 전송 모드 9 혹은 그 외 새로이 정의되는 전송 모드)로 설정된 UE는 CSI-RS를 이용하여 채널 측정을 수행하고 UE-RS를 이용하여 PDSCH를 복호할 수 있다. UE set to a transmission mode defined after 3GPP LTE-A system (for example, transmission mode 9 or another newly defined transmission mode) performs channel measurement using CSI-RS and PDSCH using UE-RS Can be decoded.
2.5 Enhanced PDCCH (EPDCCH)2.5 Enhanced PDCCH (EPDCCH)
3GPP LTE/LTE-A 시스템에서 복수의 콤퍼넌트 캐리어(CC: Component Carrier = (serving) cell)에 대한 결합 상황에서의 크로스 캐리어 스케줄링(CCS: Cross Carrier Scheduling) 동작을 정의하면, 하나의 스케줄되는 CC (i.e. scheduled CC)는 다른 하나의 스케줄링 CC (i.e. scheduling CC)로부터만 DL/UL 스케줄링을 받을 수 있도록 (즉, 해당 scheduled CC에 대한 DL/UL grant PDCCH를 수신할 수 있도록) 미리 설정될 수 있다. 이때, 스케줄링 CC는 기본적으로 자기 자신에 대한 DL/UL 스케줄링을 수행할 수 있다. 다시 말해, 상기 CCS 관계에 있는 스케줄링/스케줄되는 CC를 스케줄하는 PDCCH에 대한 서치 스페이스(SS: Search Space)는 모든 스케줄링 CC의 제어채널 영역에 존재할 수 있다.In a 3GPP LTE / LTE-A system, when defining a cross carrier scheduling (CCS) operation in a combined situation for a plurality of component carrier (CC) cells, one scheduled CC (CC) is defined. In other words, the scheduled CC may be preset to receive DL / UL scheduling only from another scheduling CC (ie, to receive a DL / UL grant PDCCH for the scheduled CC). In this case, the scheduling CC may basically perform DL / UL scheduling on itself. In other words, a search space (SS) for a PDCCH for scheduling a scheduled / scheduled CC in the CCS relationship may exist in a control channel region of all scheduling CCs.
한편, LTE 시스템에서 FDD DL 캐리어 또는 TDD DL 서브프레임들은 각 서브프레임의 첫 n개(n<=4)의 OFDM 심볼을 각종 제어 정보 전송을 위한 물리 채널인 PDCCH, PHICH 및 PCFICH 등의 전송에 사용하고 나머지 OFDM 심볼들을 PDSCH 전송에 사용하도록 구성된다. 이때, 각 서브프레임에서 제어채널 전송에 사용하는 OFDM 심볼의 개수는 PCFICH 등의 물리 채널을 통해 동적으로 또는 RRC 시그널링을 통한 반 정적인 방식으로 단말에게 전달될 수 있다. Meanwhile, in an LTE system, FDD DL carriers or TDD DL subframes use the first n (n <= 4) OFDM symbols of each subframe to transmit PDCCH, PHICH, and PCFICH, which are physical channels for transmitting various control information. And use the remaining OFDM symbols for PDSCH transmission. In this case, the number of OFDM symbols used for transmission of control channels in each subframe may be delivered to the UE dynamically through a physical channel such as PCFICH or in a semi-static manner through RRC signaling.
한편, LTE/LTE-A 시스템에서는 DL/UL 스케줄링 및 각종 제어 정보를 전송하기 위한 물리채널인 PDCCH는 제한된 OFDM 심볼들을 통해서 전송되는 등의 한계가 있으므로 PDCCH와 같이 PDSCH와 분리된 OFDM 심볼을 통해 전송되는 제어 채널 대신에 PDSCH와 FDM/TDM 방식으로 조금 더 자유롭게 다중화되는 확장된 PDCCH(i.e. E-PDCCH)를 도입할 수 있다. 도 12는 LTE/LTE-A 시스템에서 사용되는 레가시 PDCCH(Legacy PDCCH), PDSCH 및 E-PDCCH가 다중화되는 일례를 나타내는 도면이다.Meanwhile, in the LTE / LTE-A system, the PDCCH, which is a physical channel for transmitting DL / UL scheduling and various control information, has a limitation such as being transmitted through limited OFDM symbols. Thus, the PDCCH is transmitted through an OFDM symbol separate from the PDSCH, such as a PDCCH. An extended PDCCH (ie E-PDCCH) may be introduced, which is more freely multiplexed by PDSCH and FDM / TDM scheme instead of the control channel. FIG. 12 is a diagram illustrating an example in which legacy PDCCH, PDSCH, and E-PDCCH used in an LTE / LTE-A system are multiplexed.
2.6 제한된 CSI 측정2.6 Limited CSI Measurement
무선 네트워크에서 셀 간에 미치는 간섭에 따른 영향을 줄이기 위해서 네트워크 개체간에 협력 동작을 수행할 수 있다. 예를 들어, 셀 A가 데이터를 전송하는 특정 서브프레임 동안 셀 A 이외의 다른 셀들은 공용 제어 정보만을 전송하고 데이터는 전송하지 않게 제한함으로써, 셀 A에서 데이터 수신을 받고 있는 사용자에 대한 간섭을 최소화할 수 있다. In order to reduce the influence of interference between cells in a wireless network, cooperative operations may be performed between network entities. For example, during a particular subframe in which Cell A transmits data, cells other than Cell A transmit only common control information, but do not transmit data, thereby minimizing interference to users receiving data in Cell A. can do.
이와 같은 방법으로, 네트워크 내에 셀 간에 협력을 통해 특정 순간에 데이터를 전송하는 셀을 제외한 다른 셀들에서 최소한의 공용 제어 정보만을 전송함으로써 셀 간 미치는 간섭의 영향을 줄일 수 있다. In this way, it is possible to reduce the influence of interference between cells by transmitting only a minimum of common control information from other cells except cells that transmit data at a specific moment through cooperation between cells in the network.
이를 위해, 상위 계층에서 두 개의 CSI 측정 서브프레임 집합 CCSI,0 및 CCSI,1을 설정하는 경우, 단말은 자원 제한 측정(RRM: Resource-Restricted Measurement) 동작을 수행할 수 있다. 이때, 두 측정 서브프레임 집합에 해당하는 CSI 참조 자원은 두 개의 서브프레임 집합 중 하나에만 속하는 것을 가정한다.To this end, when two CSI measurement subframe sets CCSI, 0 and CCSI, 1 are configured in an upper layer, the UE may perform a resource-restricted measurement (RRM) operation. In this case, it is assumed that the CSI reference resources corresponding to the two measurement subframe sets belong to only one of the two subframe sets.
다음 표 7은 CSI 서브프레임 집합(Subframe Set)을 설정하는 상위 계층 신호의 일례를 나타낸다. Table 7 below shows an example of a higher layer signal for setting a CSI subframe set.
표 7
TABLE 7
CQI-ReportConfig-r10 ::= SEQUENCE { cqi-ReportAperiodic-r10 CQI-ReportAperiodic-r10 OPTIONAL, -- Need ON nomPDSCH-RS-EPRE-Offset INTEGER (-1..6), cqi-ReportPeriodic-r10 CQI-ReportPeriodic-r10 OPTIONAL, -- Need ON pmi-RI-Report-r9 ENUMERATED {setup} OPTIONAL, -- Cond PMIRIPCell csi-SubframePatternConfig-r10 CHOICE { release NULL, setup SEQUENCE { csi-MeasSubframeSet1-r10 MeasSubframePattern-r10, csi-MeasSubframeSet2-r10 MeasSubframePattern-r10 } } OPTIONAL -- Need ON} |
CQI-ReportConfig-r10 :: = SEQUENCE {cqi-ReportAperiodic-r10 CQI-ReportAperiodic-r10 OPTIONAL,-Need ON nomPDSCH-RS-EPRE-Offset INTEGER (-1..6), cqi-ReportPeriodic-r10 CQI-ReportPeriodic -r10 OPTIONAL,-Need ON pmi-RI-Report-r9 ENUMERATED {setup} OPTIONAL,-Cond PMIRIPCell csi-SubframePatternConfig-r10 CHOICE {release NULL, setup SEQUENCE {csi-MeasSubframeSet1-r10 MeasSubframePattern-r10, csi-MeasSubframeSet2 -r10 MeasSubframePattern-r10}} OPTIONAL-Need ON} |
표 7은 CSI 서브프레임 집합을 설정하기 위해 전송되는 CQI 보고 구성(CQI-Report Cofig) 메시지의 일례를 나타낸다. 이때, CQI 보고 구성 메시지에는 비주기적 CQI 보고(cqi-ReportAperiodic-r10) IE, nomPDSCH-RS-EPRE-Offset IE, 주기적 CQI 보고 (cqi-ReportPeriodci-r10) IE, PMI-RI 리포트(pmi-RI-Report-r9) IE 및 CSI 서브프레임패턴구성(csi-subframePatternConfig) IE가 포함될 수 있다. 이때, CSI 서브프레임패턴구성 IE는 서브프레임 집합 별로 측정서브프레임패턴을 나타내는 CSI 측정서브프레임집합1 정보(csi-MeasSubframeSet1) IE 및 CSI 측정서브프레임집합2 정보(csi-MeasSubframeSet2) IE를 포함한다.Table 7 shows an example of a CQI-Report Cofig message transmitted to set a CSI subframe set. At this time, the CQI report configuration message includes aperiodic CQI report (cqi-ReportAperiodic-r10) IE, nomPDSCH-RS-EPRE-Offset IE, periodic CQI report (cqi-ReportPeriodci-r10) IE, PMI-RI report (pmi-RI- Report-r9) IE and CSI subframe pattern configuration (csi-subframePatternConfig) IE may be included. In this case, the CSI subframe pattern configuration IE includes a CSI measurement subframe set 1 information (csi-MeasSubframeSet1) IE and a CSI measurement subframe set 2 information (csi-MeasSubframeSet2) IE indicating a measurement subframe pattern for each subframe set.
여기서 CSI 측정서브프레임집합1(csi-MeasSubframeSet1-r10) 정보요소(IE: Information Element) 및 CSI 측정서브프레임집합2(csi-MeasSubframeSet2-r10) IE는 40 비트 비트맵 정보로서 각 서브프레임 집합에 속하는 서브프레임에 대한 정보를 나타낸다. 또한, 비주기적 CQI보고 (CQI-ReportAperiodic-r10) IE는 단말에 대한 비주기적 CQI 보고를 위한 설정을 수행하기 위한 IE이며, 주기적 CQI 보고(CQI-ReportPeriodic-r10) IE는 주기적 CQI 보고를 위한 설정을 수행하는 IE이다. Herein, the CSI measurement subframe set 1 (csi-MeasSubframeSet1-r10) information element (IE) and the CSI measurement subframe set 2 (csi-MeasSubframeSet2-r10) IE are 40 bit bitmap information and belong to each subframe set. Represents information about a subframe. In addition, the aperiodic CQI report (CQI-ReportAperiodic-r10) IE is an IE for performing the setting for aperiodic CQI reporting to the terminal, the periodic CQI report (CQI-ReportPeriodic-r10) IE is set for the periodic CQI reporting IE is done.
nomPDSCH-RS-EPRE-Offset IE는 값을 나타낸다. 이때, 실제 값(Actual Value)는 값 * 2 [dB]로 설정된다. 또한, PMI-RI 리포트 IE는 PMI/IR 보고가 구성되거나 되지 않는 것을 나타낸다. EUTRAN은 전송모드가 TM8, 9 또는 10으로 설정된 경우에만 PMI-RI 리포트 IE를 구성한다.nomPDSCH-RS-EPRE-Offset IE Indicates a value. At this time, the actual value is Value * 2 is set to [dB]. In addition, the PMI-RI Report IE indicates that PMI / IR reporting is configured or not. EUTRAN configures the PMI-RI Report IE only when the transmission mode is set to TM8, 9 or 10.
3. LTE-U 시스템3. LTE-U system
3.1 LTE-U 시스템 구성3.1 LTE-U system configuration
이하에서는 면허 대역(Licensed Band)인 LTE-A 대역과 비면허 대역(Unlicensed Band)의 반송파 결합 환경에서 데이터를 송수신하는 방법들에 대해서 설명한다. 본 발명의 실시예들에서 LTE-U 시스템은 이러한 면허 대역과 비면허 대역의 CA 상황을 지원하는 LTE 시스템을 의미한다. 비면허 대역은 와이파이(WiFi) 대역 또는 블루투스(BT) 대역 등이 이용될 수 있다.Hereinafter, methods for transmitting and receiving data in a carrier combining environment of a licensed band, an LTE-A band and an unlicensed band, will be described. In the embodiments of the present invention, the LTE-U system refers to an LTE system supporting CA conditions of the licensed band and the unlicensed band. The unlicensed band may be a Wi-Fi band or a Bluetooth (BT) band.
도 13은 LTE-U 시스템에서 지원하는 CA 환경의 일례를 나타내는 도면이다.13 is a diagram illustrating an example of a CA environment supported by the LTE-U system.
이하에서는 설명의 편의를 위해서, UE가 두 개의 요소 반송파(CC: Component Carrier)를 이용하여 면허 대역과 비면허 대역 각각에서 무선 통신을 수행 하도록 설정된 상황을 가정한다. 물론, UE에 세 개 이상의 CC들이 구성된 경우에도 이하 설명하는 방법들이 적용될 수 있다.Hereinafter, for convenience of description, assume a situation in which the UE is configured to perform wireless communication in each of a licensed band and an unlicensed band using two component carriers (CCs). Of course, even if three or more CCs are configured in the UE, the methods described below may be applied.
본 발명의 실시예들에서, 면허 대역의 반송파(LCC: Licensed CC)는 주요소 반송파(Primary CC: PCC 또는 P셀로 부를 수 있음)이고, 비 면허 대역의 반송파(Unlicensed CC: UCC)는 부요소 반송파(Secondary CC: SCC 또는 S셀로 부를 수 있음)인 경우를 가정한다. 다만, 본 발명의 실시예들은 다수 개의 면허 대역과 다수 개의 비면허 대역들이 캐리어 결합 방식으로 이용되는 상황에도 확장 적용될 수 있다. 또한, 본 발명의 제안 방식들은 3GPP LTE 시스템뿐만 아니라 다른 특성의 시스템 상에서도 확장 적용이 가능하다.In embodiments of the present invention, a licensed CC (LCC: Licensed CC) is a major carrier (can be referred to as a primary CC (PCC or PCell)), an unlicensed carrier (Unlicensed CC: UCC) is a sub-carrier Assume a case of (Secondary CC: SCC or S cell). However, embodiments of the present invention may be extended to a situation in which a plurality of licensed bands and a plurality of unlicensed bands are used in a carrier combining method. In addition, the proposed schemes of the present invention can be extended to not only 3GPP LTE system but also other system.
도 13에서는 하나의 기지국에서 면허 대역과 비면허 대역을 모두 지원하는 경우를 나타내었다. 즉, 단말은 면허 대역인 PCC를 통해 제어 정보 및 데이터를 송수신할 수 있고, 또한 비면허 대역인 SCC를 통해 제어 정보 및 데이터를 송수신할 수 있다. 그러나, 도 13에 도시된 상황은 하나의 일례이며, 하나의 단말이 다수 개의 기지국과 접속하는 CA 환경에도 본 발명의 실시예들이 적용될 수 있다.FIG. 13 illustrates a case in which one base station supports both a licensed band and an unlicensed band. That is, the terminal can transmit and receive control information and data through a PCC, which is a licensed band, and can also transmit and receive control information and data through an SCC, which is an unlicensed band. However, the situation shown in FIG. 13 is one example, and embodiments of the present invention may be applied to a CA environment in which one terminal accesses a plurality of base stations.
예를 들어, 단말은 매크로 기지국(M-eNB: Macro eNB)과 P셀을 구성하고, 스몰 기지국(S-eNB: Small eNB)과 S셀을 구성할 수 있다. 이때, 매크로 기지국과 스몰 기지국은 백홀 망을 통해 연결되어 있을 수 있다.For example, the terminal may configure a P-cell and a macro base station (M-eNB: Macro eNB) and a small cell (S-eNB: Small eNB) and an S cell. At this time, the macro base station and the small base station may be connected through a backhaul network.
본 발명의 실시예들에서, 비면허 대역은 경쟁 기반의 임의 접속 방식으로 동작될 수 있다. 이때, 비면허 대역을 지원하는 eNB 및/또는 전송점(TP: Transmission Point)는 데이터 송수신 전에 먼저 케리어 센싱(CS: Carrier Sensing) 과정을 수행할 수 있다. CS 과정은 해당 대역이 다른 개체에 의해 점유되어 있는지 여부를 판단하는 과정이다.In embodiments of the present invention, the unlicensed band may be operated in a contention based random access scheme. In this case, an eNB and / or a transmission point (TP) supporting an unlicensed band may first perform a carrier sensing (CS) process before data transmission and reception. The CS process is a process of determining whether the corresponding band is occupied by another entity.
예를 들어, S셀의 기지국(eNB) 및/또는 TP는 현재 채널이 사용중인 비지(busy) 상태인지 또는 사용하지 않는 유휴(idle) 상태인지를 체크한다. 만약, 해당 대역이 유휴 상태라고 판단되면, 기지국 및/또는 TP는 크로스 캐리어 스케줄링 방식인 경우 P셀의 (E)PDCCH를 통해 또는 셀프 스케줄링 방식인 경우 S셀의 PDCCH를 통해 스케줄링 그랜트(scheduling grant)를 단말에 전송하여 자원을 할당하고, 데이터 송수신을 시도할 수 있다.For example, the base station eNB and / or TP of the SCell checks whether the current channel is busy or idle. If it is determined that the corresponding band is idle, the base station and / or the TP is a scheduling grant through the (E) PDCCH of the Pcell in the case of the cross carrier scheduling scheme or the PDCCH of the Scell in the case of the self scheduling scheme. Transmits to the terminal to allocate resources, and may attempt to transmit and receive data.
[[ CS 과정은 LBT(Listen Before Talk) 과정과 동일 또는 유사하게 수행될 수 있다. LBT 과정은 P셀의 기지국이 U셀(비면허대역에서 동작하는 셀)의 현재 상태가 비지 상태인지 또는 유휴 상태인지를 체크하는 과정이다. 예를 들어, 기설정된 또는 상위 계층 신호에 의해 설정된 CCA(Clear Channel Assessment) 임계값이 존재하는 경우, U셀에서 해당 CCA 임계값보다 높은 에너지가 검출되면 비지 상태로 판단되고, 아니면 유휴 상태로 판단된다. U셀이 유휴 상태로 판단되는 경우, P셀의 기지국은 P셀의 (E)PDCCH를 통해 또는 U셀의 PDCCH를 통해 스케줄링 그랜트(즉, DCI 등)를 전송하여 U셀에 대한 자원을 스케줄링하고, U셀을 통해 데이터 송수신을 수행할 수 있다. ]]
[[The CS process may be performed in the same or similar manner as the LBT process. The LBT process is a process in which a base station of a Pcell checks whether a current state of a Ucell (a cell operating in an unlicensed band) is busy or idle. For example, when there is a clear channel assessment (CCA) threshold set by a preset or higher layer signal, when an energy higher than the CCA threshold is detected in the U-cell, it is determined to be busy or otherwise idle. do. When the Ucell is determined to be idle, the base station of the Pcell transmits a scheduling grant (ie, DCI, etc.) through the (E) PDCCH of the Pcell or through the PDCCH of the Ucell to schedule resources for the Ucell. The data can be transmitted and received through the U cell. ]]
이때, 기지국 및/또는 TP는 M개의 연속된 서브프레임으로 구성된 전송 기회(TxOP: Transmission OPportunity) 구간을 설정할 수 있다. 여기서, M값 및 M개의 서브프레임의 용도를 사전에 기지국이 단말에게 P셀을 통해 상위 계층 시그널이나 물리 제어채널 또는 물리 데이터 채널을 통해 알려줄 수 있다. M개의 서브프레임으로 구성된 TxOP 구간은 예약된 자원 구간(RRP: Reserved Resource Period)으로 불릴 수 있다.In this case, the base station and / or the TP may set a transmission opportunity (TxOP) section consisting of M consecutive subframes. Here, the base station may inform the UE of the M value and the use of the M subframes in advance through a higher layer signal, a physical control channel, or a physical data channel through a Pcell. A TxOP period consisting of M subframes may be called a reserved resource period (RRP).
3.2 TxOP 구간3.2 TxOP section
기지국은 TxOP 구간 동안 하나의 단말과 데이터를 송수신할 수도 있고, 여러 단말들에게 각각 N개의 연속된 서브프레임으로 구성된 TxOP 구간을 설정하고 TDM 혹은 FDM 방식으로 데이터를 송수신할 수도 있다. 이때, 기지국은 TxOP 구간 동안 면허 대역인 P셀 및 비면허 대역인 S셀을 통해 데이터를 송수신할 수 있다.The base station may transmit and receive data with one terminal during the TxOP period, or may set a TxOP period composed of N consecutive subframes to each of the multiple terminals and transmit and receive data in a TDM or FDM manner. At this time, the base station may transmit and receive data through the P cell and the S cell of the unlicensed band during the TxOP period.
다만, 기지국이 면허 대역인 LTE-A 시스템의 서브프레임 경계(subframe boundary)에 맞춰서 데이터 전송을 한다면, 비면허 대역인 S셀의 유휴 판단 시점과 실제 데이터 전송 시점 사이에 타이밍 갭(timing gap)이 존재할 수 있다. 특히, S셀은 해당 기지국과 단말이 독점적으로 사용할 수 없는 비면허 대역으로, CS에 기반한 경쟁을 통하여 이용해야 하므로 이와 같은 타이밍 갭 동안에 다른 시스템이 정보 전송을 시도할 수도 있다.However, if the base station transmits data in accordance with the subframe boundary of the LTE-A system, which is a licensed band, a timing gap may exist between the idle determination time of the unlicensed band and the actual data transmission time. Can be. In particular, the SCell is an unlicensed band that cannot be used exclusively by the corresponding base station and the terminal, and must be used through competition based on CS, so that another system may attempt to transmit information during such a timing gap.
따라서, 기지국은 S셀에서 타이밍 갭 동안에 다른 시스템이 정보 전송을 시도하는 것을 방지하기 위해 예약 신호(reservation signal)를 전송할 수도 있다. 여기서 예약 신호는 S셀의 해당 자원 영역을 자신의 자원으로 예약해놓기 위해 전송하는 일종의 “dummy 정보” 혹은 “PDSCH의 일부분에 대한 복사본”을 의미한다. 예약 신호는 타이밍 갭(i.e., S셀의 유휴 판단 시점 이후부터 실제 전송 시점 이전까지) 동안 전송될 수 있다.Accordingly, the base station may transmit a reservation signal to prevent another system from attempting to transmit information during the timing gap in the SCell. Here, the reservation signal means a kind of "dummy information" or "copy of a part of PDSCH" transmitted to reserve a corresponding resource region of the SCell as its own resource. The reservation signal may be transmitted during a timing gap (i.e. after the idle determination time of the SCell to before the actual transmission time).
3.3 TxOP 구간 설정 방법3.3 How to Set TxOP Section
도 14는 TxOP 구간을 설정하는 방법 중 하나를 나타내는 도면이다.14 is a diagram illustrating one method of setting a TxOP interval.
기지국은 P셀을 통해 TxOP 구간을 미리 반 정적인 방식으로 설정할 수 있다. 예를 들어, 기지국은 상위계층신호(예를 들어, RRC 신호)를 통해 TxOP 구간을 구성하는 서브프레임의 개수 N 값과 해당 TxOP 구간의 용도에 대한 구성 정보를 단말에 전송할 수 있다 (S1410).The base station may set the TxOP interval in a semi-static manner in advance through the Pcell. For example, the base station may transmit the number N of subframes constituting the TxOP interval and configuration information on the purpose of the corresponding TxOP interval to the terminal through an upper layer signal (eg, an RRC signal) (S1410).
다만, 시스템 구성에 따라 S1410 단계는 동적으로 수행될 수 있다. 이러한 경우에 기지국은 TxOP 구간에 대한 구성 정보는 PDCCH 또는 E-PDCCH를 통해 단말에 전송될 수 있다.However, depending on the system configuration, step S1410 may be performed dynamically. In this case, the base station may transmit the configuration information for the TxOP interval to the terminal through the PDCCH or E-PDCCH.
S셀에서는 캐리어 센싱(CS) 과정을 수행하여 현재 채널 상태가 유휴 상태인지 또는 비지 상태인지를 체크할 수 있다 (S1420).The SCell may check whether a current channel state is idle or busy by performing a carrier sensing process (S1420).
P셀과 S셀은 서로 다른 기지국 또는 서로 동일한 기지국이 관리할 수 있다. 다만, 서로 다른 기지국이 관리하는 경우에는 백홀을 통해 S셀의 채널 상태에 대한 정보가 P셀에 전달될 수 있다 (S1430).The Pcell and the Scell may be managed by different base stations or the same base station. However, when different base stations are managed, information on the channel state of the SCell may be transferred to the PCcell through the backhaul (S1430).
이후, TxOP 구간으로 설정된 서브프레임에서 단말은 P셀 및 S셀을 통해 데이터를 송수신할 수 있다. 만약, S1410 단계에서 해당 TxOP의 용도가 하향링크 데이터 전송으로 설정된 경우에 단말은 TxOP 구간에서 S셀을 통해 DL 데이터를 수신할 수 있고, TxOP의 용도가 상향링크 데이터 전송으로 설정된 경우에 단말은 S셀을 통해 UL 데이터를 송신할 수 있다 (S1440).Thereafter, the UE may transmit and receive data through the Pcell and the Scell in the subframe set to the TxOP period. If the use of the corresponding TxOP is set to downlink data transmission in step S1410, the UE may receive DL data through the Scell in the TxOP period, and if the use of the TxOP is set to uplink data transmission, the terminal is S UL data may be transmitted through the cell (S1440).
4. 비면허대역에 대한 CSI 보고 방법4. CSI reporting method for unlicensed band
4.1 PAP 및 non-PAP 구성 방법4.1 How to Configure PAP and Non-PAP
LBT 과정(및/또는 CS 과정)을 수행함으로 인해서, 너무 오랜 시간 동안 UCell이 채널을 점유하지 못하는 경우에 대비하는 것이 바람직하다. 즉, 본 발명의 실시예들에서는 U셀에서 LBT를 수행하지 않고 무조건 데이터 전송하는 구간을 구성할 수 있다.By performing the LBT process (and / or the CS process), it is desirable to be prepared in case UCell does not occupy the channel for too long. That is, in the embodiments of the present invention, a section for unconditionally transmitting data without performing LBT in the U cell may be configured.
또는, P셀의 기지국이 LBT 과정을 수행하되, 특정 구간 동안 CCA 임계값을 상대적으로 높게 설정하여 공격적으로(aggressive) 채널 접속을 시도하도록 구성할 수 있다.Alternatively, the base station of the Pcell may perform an LBT process, but may be configured to attempt an aggressive channel access by setting a relatively high CCA threshold during a specific period.
또는, 사업자간 셀 내(intra operator inter cell), 사업자간 및/또는 무선접속기술 내(inter RAT(Radio Access Technology))(e.g., WiFi) 사이의 정보 교환을 통해 독점적 채널 접속 구간을 설정해 둘 수 있다.Alternatively, an exclusive channel access interval may be set through information exchange between intra operator inter cells, between operators and / or inter RAT (eg Radio Access Technology) (eg, WiFi). have.
이러한 구간들을 기점유접속구간(PAP: Preoccupied Access Period)이라고 정의할 수 있다. 또한 해당 구간 이외의 구간을 non-PAP로 정의한다. 이때, (non-)PAP은 셀 특정(cell-specific)하게 설정될 수도 있고, 단말 특정(UE-specific)하게 설정될 수도 있다.These intervals may be defined as a Preoccupied Access Period (PAP). Also, non-PAP is defined as the section other than the relevant section. In this case, the (non-) PAP may be set cell-specifically or may be set UE-specifically.
본 발명의 실시예들에서, (non-)PAP는 상위 계층 시그널링(예를 들어, RRC 또는 MAC 신호) 또는 물리 계층 시그널링(예를 들어, PDCCH 또는 E-PDCCH)에 의해 설정될 수 있다.In embodiments of the present invention, the (non-) PAP may be set by higher layer signaling (eg, RRC or MAC signal) or physical layer signaling (eg, PDCCH or E-PDCCH).
4.2 비면허 대역에서 제한적 CSI 측정 집합 설정 방법4.2 How to set up a limited set of CSI measurements in the unlicensed band
본 발명의 실시예들에서 PAP는 LBT 과정(또는 CS 과정)을 수행하지 않는 구간이라고 정의한다면, non-PAP에 비해 PAP는 사업자간(inter-operator) U셀 또는 WiFi 시스템에 의한 간섭에 취약해 질 수 있다. 즉, non-PAP와 PAP에서 수행한 CSI 측정 결과가 달라질 수 있으므로, 각 구간에 대해 제한된 CSI 측정 집합(CSI measurement set)을 다르게 설정하는 것이 바람직하다.In the embodiments of the present invention, if PAP is defined as a section that does not perform the LBT process (or CS process), PAP is more vulnerable to interference by inter-operator U-cell or WiFi system than non-PAP. Can lose. That is, since CSI measurement results performed in non-PAP and PAP may be different, it is preferable to set a limited CSI measurement set for each section.
예를 들어, non-PAP를 CSI 서브프레임 집합 0, PAP를 CSI 서브프레임 집합 1로 설정할 수 있다. 이러한 경우, 각 CSI 서브프레임 집합에 대해 주기적 CSI 보고가 구성될 수 있다.For example, non-PAP may be set to CSI subframe set 0 and PAP to CSI subframe set 1. In this case, periodic CSI reporting may be configured for each CSI subframe set.
비주기적 CSI 보고 트리거링은 CSI 서브프레임 집합에 상관없이 개시될 수 있다. 다만, CSI 보고 트리거링은 PAP 및 non-PAP 내의 TxOP 구간에서만 설정되도록 정의될 수 있다. 이는 Non-PAP 안의 TxOP 구간이 아닌 구간에서는 WiFi 시스템과 같은 간섭이 측정되어 실제 RRP 구간 안에서 측정될 간섭보다 많은 양의 간섭이 측정되어 낮은 MCS 레벨이 할당될 수 있기 때문이다. 따라서, 본 발명의 실시예들에서 단말은 PAP가 아니거나, non-PAP 내의 TxOP 구간이 아닌 구간에서 트리거된 비주기적 CSI 보고는 유효하지 않다고 간주할 수 있다.Aperiodic CSI reporting triggering can be initiated regardless of the CSI subframe set. However, CSI reporting triggering may be defined to be set only in a TxOP period in PAP and non-PAP. This is because the interference such as the WiFi system is measured in the non-TxOP section in the non-PAP, and a larger amount of interference may be measured than the interference to be measured in the actual RRP section, thereby assigning a low MCS level. Therefore, in the embodiments of the present invention, the UE may consider that the aperiodic CSI report triggered in a section that is not a PAP or that is not a TxOP section in a non-PAP is invalid.
기존 LTE/LTE-A 시스템에서는 CSI 서브프레임 집합 모두에 대해서 주기적 또는 비주기적 CSI 보고가 수행될 수 있다. 그러나, 본 발명의 실시예들에서는 PAP 또는 non-PAP 구간의 특성에 따라 CSI 서브프레임 집합 중 하나에 대해서만 CSI 보고가 수행될 수 있다.In the existing LTE / LTE-A system, periodic or aperiodic CSI reporting may be performed for all CSI subframe sets. However, in embodiments of the present invention, CSI reporting may be performed only for one of the CSI subframe sets according to the characteristics of the PAP or non-PAP interval.
4.2.1 주기적 CSI 보고 방법4.2.1 Periodic CSI Reporting Method
PAP 동안 실제로 데이터 전송이 일어날 확률은 non-PAP 동안 데이터 전송일 일어날 확률에 비해 훨씬 크다. 따라서, PAP 동안 단말이 전송하는 주기적 CSI 보고가 non-PAP 동안 전송되는 CSI 보고 보다 더 의미 있을 수 있다.The probability that a data transmission will actually occur during PAP is much greater than the probability that a data transmission will occur during non-PAP. Therefore, the periodic CSI report transmitted by the terminal during PAP may be more meaningful than the CSI report transmitted during non-PAP.
다만, non-PAP 동안 LBT를 수행함으로써 U셀이 비지 상태인 것으로 확인된 경우에는, PAP 동안에 비해 상대적으로 WiFi 등의 간섭으로 인한 영향이 적을 수 있다. 이러한 경우에는, 기지국에서 non-PAP에서 주기적 CSI 보고에 따른 링크 적응(link adaptation) 효과를 크게 가져갈 수 있다.However, when it is confirmed that the U-cell is busy by performing LBT during non-PAP, the impact due to interference such as WiFi may be less than that during the PAP. In this case, the base station can greatly bring about a link adaptation effect according to periodic CSI reporting in the non-PAP.
따라서, P셀의 기지국은 U셀에서 non-PAP 또는 PAP에 설정된 두 개의 CSI 서브프레임 집합 0 및 1 중에서 특정 하나의 CSI 서브프레임 집합에 대해서만 주기적 CSI 보고를 구성할 수 있다.Accordingly, the base station of the Pcell may configure periodic CSI reporting only for one specific CSI subframe set among two CSI subframe sets 0 and 1 set to non-PAP or PAP in the U cell.
LTE/LTE-A 시스템의 경우 단말에 두 개의 CSI 서브프레임 집합들이 구성된 경우, 단말은 두 개의 CSI 서브프레임 집합들에 대해서 CSI 보고를 수행한다. 본 발명의 실시예에서는 비면허 대역에 구성된 서브프레임 집합 0 또는 1에 대해서만 주기적 CSI 보고가 수행되도록 구성할 수 있다.In case of the LTE / LTE-A system, when two CSI subframe sets are configured in the UE, the UE performs CSI reporting on the two CSI subframe sets. In the embodiment of the present invention, periodic CSI reporting may be performed only for subframe set 0 or 1 configured in the unlicensed band.
도 15는 비면허 대역에 구성되는 서브프레임 집합에 대한 주기적 CSI 보고를 수행하는 방법 중 하나를 설명하기 위한 도면이다.FIG. 15 is a diagram for explaining one of methods for performing periodic CSI reporting on a subframe set configured in an unlicensed band.
도 15를 참조하면, 면허 대역(즉, LTE-A 시스템 대역)을 지원하는 P셀의 기지국은 상위계층신호를 이용하여 비면허 대역을 지원하는 S셀(또는 U셀)에 대한 서브프레임 집합(SF set) 구성 정보를 단말에 전송할 수 있다. 이때, 서브프레임 집합 구성정보는 S셀에 구성되는 non-PAP 및 PAP에 대해서 각각 CSI 서브프레임 집합 0 및 1로 설정될 수 있다 (S1510).Referring to FIG. 15, a base station of a Pcell supporting a licensed band (that is, an LTE-A system band) may use a higher layer signal to configure a subframe set (SF) for an Scell (or Ucell) that supports an unlicensed band. set) configuration information may be transmitted to the terminal. At this time, the subframe set configuration information may be set to the CSI subframe set 0 and 1 for the non-PAP and PAP configured in the SCell (S1510).
P셀과 S셀이 크로스 캐리어 스케줄링(CCS: Cross Carrier Scheduling) 방식으로 구성되는 경우, P셀의 기지국은 S셀의 PAP 또는 non-PAP 내의 TxOP 구간에 대한 스케줄링 정보를 포함하는 PDCCH 또는 E-PDCCH (이하, (E)PDCCH)를 전송할 수 있다. 만약, P셀과 S셀이 셀프 캐리어 스케줄링(SCS: Self Carrier Scheduling) 방식으로 구성되는 경우, (E)PDCCH는 S셀을 통해 전송될 수 있다 (S1520).When the Pcell and the Scell are configured in a cross carrier scheduling (CCS) scheme, the base station of the Pcell is a PDCCH or E-PDCCH including scheduling information on a TxOP interval in the PAP or non-PAP of the Scell. (Hereinafter, (E) PDCCH) can be transmitted. If the Pcell and the SCell are configured in a Self Carrier Scheduling (SCS) scheme, the (E) PDCCH may be transmitted through the SCell (S1520).
S셀은 (E)PDCCH를 통해 전송한 스케줄링 정보를 기반으로 DL 데이터를 PDSCH를 통해 단말에 전송할 수 있다. 이때, 단말은 유효 서브프레임(SF: SubFrame)에서 DL 데이터를 수신할 수 있다. 이때, 유효 SF란 PAP 내에 구성된 SF 또는 non-PAP 내에 구성된 TxOP 구간에 해당하는 SF를 의미할 수 있다 (S1530).The SCell may transmit DL data to the UE through PDSCH based on the scheduling information transmitted through the (E) PDCCH. In this case, the terminal may receive DL data in a valid subframe (SF). In this case, the effective SF may mean an SF configured in the PAP or an SF corresponding to a TxOP section configured in the non-PAP (S1530).
단말은 유효 SF에 대한 CSI 및/또는 간섭을 측정할 수 있다. 이때, 단말은 CSI 서브프레임 집합 0 또는 1에 대해서만 CSI 및/또는 간섭을 측정하도록 구성될 수 있다. 예를 들어, 단말은 PAP 내에 할당된 CSI 서브프레임 집합 1에서 CSI를 측정할 수 있다. 또는, 단말은 non-PAP 내의 TxOP 구간에 해당하는 CSI 서브프레임 집합 0에서 CSI 또는 간섭을 측정할 수 있다 (S1540).The UE may measure CSI and / or interference for the effective SF. In this case, the UE may be configured to measure CSI and / or interference only for the CSI subframe set 0 or 1. For example, the UE may measure CSI in CSI subframe set 1 allocated in the PAP. Or, the UE can measure CSI or interference in CSI subframe set 0 corresponding to the TxOP interval in the non-PAP (S1540).
단말은 PUCCH 또는 PUSCH를 통해 측정한 CSI 및/또는 간섭을 P셀 기지국 또는 S셀로 주기적으로 보고할 수 있다 (S1550).The UE may periodically report the CSI and / or interference measured through the PUCCH or the PUSCH to the Pcell base station or the Scell (S1550).
4.2.2 비주기적 CSI 보고 방법4.2.2 Aperiodic CSI Reporting Method
상술한 제한된 CSI 측정 집합은 Rel-12 CSI 서브프레임 집합으로 설정될 수 있다. 예를 들어, non-PAP는 Rel-12 CSI 서브프레임 집합 0으로, PAP는 Rel-12 CSI 서브프레임 집합 1로 설정될 수 있다.The limited CSI measurement set described above may be set to a Rel-12 CSI subframe set. For example, non-PAP may be set to Rel-12 CSI subframe set 0, and PAP may be set to Rel-12 CSI subframe set 1.
이때, 비주기적 CSI 트리거는 설정된 두 개의 제한된 CSI 측정 집합 중 어떤 CSI 서브프레임 집합에서 CSI 보고가 트리거되는지를 나타낼 수 있다. 즉, PDCCH에 포함되는 비주기적 CSI 요청 필드(즉, CSI 트리거)는 비주기적 CSI 보고의 대상이 되는 CSI 서브프레임 집합을 지시하도록 설정될 수 있다. 예를 들어, CSI 요청 필드가 2비트인 경우, CSI 요청 필드가 '00'으로 설정시 CSI 서브프레임 집합 0에 대한 비주기적 CSI 보고가 트리거됨을 나타내고, '01'로 설정시 CSI 서브프레임 집합 1에 대한 비주기적 CSI 보고가 트리거됨을 나타낼 수 있다. CSI 요청 필드의 설정 값은 시스템에 따라 변경될 수 있다.At this time, the aperiodic CSI trigger may indicate which CSI subframe set is triggered in which CSI subframe set among two limited CSI measurement sets. That is, the aperiodic CSI request field (ie, CSI trigger) included in the PDCCH may be configured to indicate a set of CSI subframes that are subject to aperiodic CSI reporting. For example, when the CSI request field is 2 bits, it indicates that aperiodic CSI reporting for CSI subframe set 0 is triggered when the CSI request field is set to '00', and when set to '01', CSI subframe set 1 It may indicate that aperiodic CSI reporting for is triggered. The setting value of the CSI request field may be changed depending on the system.
LTE 시스템(즉, Rel-10)의 단말은 자신에 구성된 CSI 서브프레임 집합에 대해서만 CSI를 측정할 수 있다. 다만, LTE-A 시스템(즉, Rel-12)의 단말은 자신에 구성된 CSI 서브프레임 집합뿐 아니라 다른 CSI 서브프레임 집합에 대해서도 CSI를 측정 및 보고할 수 있다. 따라서, 본 발명의 실시예들에서 단말은 PAP 및 non-PAP에 대해 구성된 CSI 서브프레임 집합 1 및 0에 대해서 모두 CSI를 측정할 수 있으며, 기지국으로부터 전송되는 CSI 요청 필드에 따라 CSI를 보고할 수 있다.A terminal of an LTE system (ie, Rel-10) may measure CSI only for a set of CSI subframes configured therein. However, the UE of the LTE-A system (ie, Rel-12) may measure and report the CSI not only for the CSI subframe set configured therein but also for other CSI subframe sets. Accordingly, in embodiments of the present invention, the UE can measure CSI for both CSI subframe sets 1 and 0 configured for PAP and non-PAP, and can report CSI according to the CSI request field transmitted from the base station. have.
도 16은 비면허 대역에 구성되는 서브프레임 집합에 대한 비주기적 CSI 보고를 수행하는 방법 중 하나를 설명하기 위한 도면이다.FIG. 16 is a diagram for describing one of methods for performing aperiodic CSI reporting on a subframe set configured in an unlicensed band.
도 16을 참조하면, 면허 대역(즉, LTE-A 시스템 대역)을 지원하는 P셀의 기지국은 상위계층신호를 이용하여 비면허 대역을 지원하는 S셀(또는 U셀)에 대한 서브프레임 집합(SF set) 구성정보를 단말에 전송할 수 있다. 이때, 서브프레임 집합 구성정보는 S셀에 구성되는 non-PAP 및 PAP에 대해서 각각 CSI 서브프레임 집합 0 및 1로 설정될 수 있다 (S1610).Referring to FIG. 16, a base station of a Pcell supporting a licensed band (that is, an LTE-A system band) may use a subframe set (SF) for an SCell (or Ucell) that supports an unlicensed band using a higher layer signal. set) configuration information may be transmitted to the terminal. At this time, the subframe set configuration information may be set to the CSI subframe set 0 and 1 for the non-PAP and PAP configured in the SCell (S1610).
P셀과 S셀이 크로스 캐리어 스케줄링(CCS: Cross Carrier Scheduling) 방식으로 구성되는 경우, P셀의 기지국은 S셀의 PAP 또는 non-PAP 내의 TxOP 구간에 대한 스케줄링 정보를 포함하는 (E)PDCCH를 전송할 수 있다. 만약, P셀과 S셀이 셀프 캐리어 스케줄링(SCS: Self Carrier Scheduling) 방식으로 구성되는 경우, (E)PDCCH는 S셀을 통해 전송될 수 있다. 이때, 기지국은 비주기적 CSI 보고를 트리거링하기 위해 해당 (E)PDCCH에 CSI 요청 필드를 더 포함하여 단말에 전송할 수 있다 (S1620).When the Pcell and the Scell are configured in a Cross Carrier Scheduling (CCS) scheme, the base station of the Pcell may include (E) PDCCH including scheduling information on the TxOP interval in the PAP or non-PAP of the Scell. Can transmit If the Pcell and the SCell are configured in a Self Carrier Scheduling (SCS) scheme, the (E) PDCCH may be transmitted through the SCell. In this case, the base station may further include a CSI request field in the (E) PDCCH to trigger the aperiodic CSI report (S1620).
이때, S1620 단계에서 전송되는 CSI 요청 필드는 PAP에 대한 CSI SF 집합 1 또는 non-PAP에 대한 CSI SF 집합 0에 대한 CSI를 보고하도록 지시할 수 있다.In this case, the CSI request field transmitted in step S1620 may indicate to report the CSI for the CSI SF set 1 for the PAP or the CSI SF set 0 for the non-PAP.
S셀은 PDCCH를 통해 전송한 스케줄링 정보를 기반으로 DL 데이터를 PDSCH를 통해 단말에 전송할 수 있다. 이때, 단말은 유효 서브프레임(SF: SubFrame)에서 DL 데이터를 수신할 수 있다. 이때, 유효 SF란 PAP 내에 구성된 SF 또는 non-PAP 내에 구성된 TxOP 구간에 해당하는 SF를 의미할 수 있다 (S1630).The SCell may transmit DL data to the UE through PDSCH based on the scheduling information transmitted through the PDCCH. In this case, the terminal may receive DL data in a valid subframe (SF). In this case, the effective SF may refer to SF configured in the PAP or SF corresponding to the TxOP section configured in the non-PAP (S1630).
단말은 유효 SF에 대한 CSI 및/또는 간섭을 측정할 수 있다. 단말은 CSI 서브프레임 집합 0 및 1에 대해 CSI 및 간섭을 측정하도록 구성될 수 있다. 예를 들어, 단말은 PAP 내에 할당된 CSI 서브프레임 집합 1에 대한 CSI 및 non-PAP 내의 TxOP 구간에 해당하는 CSI 서브프레임 집합 0에서 CSI 및/또는 간섭을 측정할 수 있다 (S1640).The UE may measure CSI and / or interference for the effective SF. The UE may be configured to measure CSI and interference for the CSI subframe sets 0 and 1. For example, the UE may measure CSI and / or interference in the CSI subframe set 0 corresponding to the CSI for the CSI subframe set 1 allocated in the PAP and the TxOP interval in the non-PAP (S1640).
단말은 측정한 CSI 서브프레임 집합 0 및 1에 대한 CSI 중 S1620 단계에서 CSI 요청 필드가 지시하는 CSI 서브프레임 집합에 대한 CSI를 비주기적으로 기지국에게 보고할 수 있다. 이때, 비주기적 CSI는 PUSCH를 통해 P셀 또는 S셀로 전송될 수 있다 (S1650).The UE may aperiodically report the CSI for the CSI subframe set indicated by the CSI request field in step S1620 of the measured CSI subframe sets 0 and 1 to the base station. At this time, the aperiodic CSI may be transmitted to the Pcell or Scell through the PUSCH (S1650).
4.2.3 간섭 측정4.2.3 Interference Measurement
설정된 PAP 동안 기지국(eNB)은 무조건 데이터 전송을 시도할 수 있지만, non-PAP 동안에는 LBT를 수행하여 채널이 유휴 상태인 경우에만(즉, 설정된 TxOP 구간 동안에만) 데이터 전송을 시도할 수 있다. The base station eNB may attempt data transmission unconditionally during the configured PAP, but may perform data transmission only when the channel is idle (ie, only during the configured TxOP period) during the non-PAP.
Non-PAP 중 TxOP 구간이 설정되지 않은 경우는, WiFi 시스템 또는 사업자간 LTE 기지국들에 의해 예기치 않은 간섭이 발생할 수 있다. 따라서, non-PAP 중 간섭 측정을 수행할 때, 단말은 TxOP 구간에서 측정한 간섭양에 대한 시간 영역 평균(time domain averaging)을 취하는 것이 바람직하다. 즉, UE가 간섭 측정을 수행하기 위해서는 PAP 설정 뿐만 아니라, TxOP 구간 설정 정보(도 14 참조)를 활용하는 것이 바람직하다.If the TxOP interval is not set among the non-PAP, unexpected interference may occur by the LTE base station between the WiFi system or the operator. Therefore, when performing interference measurement during non-PAP, the UE preferably takes time domain averaging for the amount of interference measured in the TxOP period. That is, in order to perform interference measurement, the UE preferably utilizes TxOP interval configuration information (see FIG. 14) as well as PAP configuration.
본 발명의 실시예에서는 단말이 이에 대한 복잡도를 줄이기 위해 PAP 구간에서만 간섭 측정을 수행하도록 구성될 수 있다. 예를 들어, PAP를 CSI 서브프레임 집합 1로 non-PAP를 CSI 서브프레임 집합 0으로 정의한다면, 단말은 CSI 서브프레임 집합 1에 대해서만 간섭 측정을 수행할 수 있다.In an embodiment of the present invention, the terminal may be configured to perform interference measurement only in the PAP interval in order to reduce the complexity thereof. For example, if PAP is defined as CSI subframe set 1 and non-PAP is defined as CSI subframe set 0, the UE may perform interference measurement only on CSI subframe set 1.
기지국간 간섭제어(FeICIC: Further enhanced Inter-Cell Interference Coordination) 또는 네크워크 보조 간섭 제거(NAICS: Network Assisted Interference Cancellation and Suppression)가 사용되는 경우를 가정한다. 이때, eNB가 UE에게 간섭이 심한 셀(i.e., aggressor cell)에 대한 정보(e.g., cell ID, port number, RS type, Tx power, SF usage 등)를 알려줄 때, 해당 정보는 PAP에서만 유효하도록 정의될 수 있다. 이는 non-PAP 구간에는 간섭이 심한 셀에서 데이터 전송 여부가 확정적이지 않기 때문이다. It is assumed that further enhanced inter-cell interference coordination (FeICIC) or Network Assisted Interference Cancellation and Suppression (NAICS) is used. At this time, when the eNB informs the UE of information (eg, cell ID, port number, RS type, Tx power, SF usage, etc.) for severe interference (ie, aggressor cell), the information is defined to be valid only in the PAP. Can be. This is because data transmission is not deterministic in a cell with high interference in a non-PAP period.
또는, 단말이 수신한 간섭이 심한 셀에 대한 정보는 PAP에서만 보장되며, non-PAP 동안에는 UE가 BD(Blind Detection)를 통해 간섭이 심한 셀이 실제로 데이터를 전송하는지 여부를 판단하도록 구성될 수 있다.Or, the information on the cell with a severe interference received by the terminal is guaranteed only in the PAP, and during the non-PAP, the UE may be configured to determine whether the cell with a severe interference actually transmits data through blind detection (BD). .
예를 들어, 도 15 및 도 16에서 단말이 CSI 측정할 때 또는 간섭만을 측정하는 경우에, 단말은 PAP 동안 정의되는 CSI 서브프레임 집합에서만 간섭을 측정할 수 있다.For example, in FIG. 15 and FIG. 16, when the UE measures CSI or only measures interference, the UE may measure interference only in the CSI subframe set defined during PAP.
4.2.4 차분 전력 제어(Differential Power Control)4.2.4 Differential Power Control
PAP는 LBT 과정(또는 CS 과정)을 수행하지 않는 구간이라고 정의한다면, 해당 구간 동안 옆 셀 또는 다른 시스템인 WiFi에 간섭이 크게 미칠 수 있다. 이를 고려하여 PAP 인지 non-PAP 인지에 따라 전력을 다르게 설정할 수 있다. 예를 들어, CSI 서브프레임 집합 별로 하향링크 전력 조절 관련 파라미터 (e.g., P_a, P_b, P_c 등)를 다르게 설정할 수 있다. If PAP is defined as a section that does not perform the LBT process (or CS process), the interference may significantly affect the next cell or another system, WiFi, during the corresponding section. In consideration of this, power can be set differently according to whether PAP or non-PAP is used. For example, downlink power control related parameters (e.g., P_a, P_b, P_c, etc.) may be set differently for each CSI subframe set.
또한, PAP인지 non-PAP 인지에 따라 간섭 환경 및 전송 전력이 다르게 됨을 고려하여 전송모드(TM: Transmission Mode) 또는, PDSCH CRS 전송 여부를 다르게 설정할 수 있다. 예를 들어, 기지국은 S셀에서 PAP 동안에는 전력을 줄여서 전송할 수 있으므로, PDSCH 전송의 성공 확률을 높이기 위하여 CRS 기반의 TM이 아닌 DM-RS 기반 TM(즉, TM 9 이상)의 UE들에게만 CRS 전송 없이 PDSCH를 구성(예를 들어, MBMS subframe)하여 전송할 수 있다.In addition, considering whether the interference environment and the transmission power are different depending on whether the PAP or non-PAP, a transmission mode (TM) or PDSCH CRS transmission can be set differently. For example, since the base station can transmit with reduced power during the PAP in the SCell, in order to increase the probability of success of PDSCH transmission, the CRS is transmitted only to UEs of DM-RS based TM (ie, TM 9 or higher), not CRS based TM. PDSCH can be configured (eg, MBMS subframe) and transmitted.
상술한 하향링크 전력 조절 관련 파라미터는 상위 계층 시그널링 또는 물리 계층 시그널링을 통해 단말에 전송될 수 있다. 도 15 및 도 16을 참조시, S1510 단계 및 S1610 단계(또는, S1520, S1620 단계)에서 기지국은 하향링크 전력 조절 관련 파라미터를 단말에 전송할 수 있다. 단말은 S1530, S1630 단계에서 PAP 또는 noo-PAP에 따라 다르게 설정된 하향링크 전력을 참조하여 DL 데이터를 수신할 수 있다.The above-described downlink power control related parameters may be transmitted to the terminal through higher layer signaling or physical layer signaling. 15 and 16, in step S1510 and step S1610 (or steps S1520 and S1620), the base station may transmit a downlink power adjustment related parameter to the terminal. The UE may receive DL data with reference to downlink power set differently according to PAP or noo-PAP in steps S1530 and S1630.
4.3 제한된 측정 집합이 설정되지 않은 경우의 CSI 보고 방법4.3 CSI reporting method when no limited set of measurements is set
이하에서 설명하는 실시예에서는, PAP인지 non-PAP 인지에 따라 제한된 CSI 측정 집합을 설정하지 않는 경우의 CSI 보고 방법에 대해서 설명한다. In the embodiments described below, a CSI reporting method is described when a limited CSI measurement set is not set according to whether PAP or non-PAP.
4.3.1 주기적 CSI 보고 방법4.3.1 Periodic CSI Reporting Method
이를 위해, 기지국은 PAP 동안만을 유효한 CSI 측정 구간으로 설정하거나, non-PAP 중 TxOP 구간만을 유효한 CSI 측정 구간으로 설정할 수 있다. 만약, non-PAP 중 TxOP 구간만을 유효한 CSI 측정 구간으로 설정된다면, 주기적 CSI 보고는 non-PAP 중 TxOP 구간에 한정시킬 수 있다. 예를 들어, 도 15에서 단말은 non-PAP 구간 중 TxOP 구간 및 PAP에 대한 CSI 서브프레임 집합에 대해 CSI를 측정하여 주기적으로 보고할 수 있다.To this end, the base station may set the valid CSI measurement interval only during the PAP, or only the TxOP interval of the non-PAP as a valid CSI measurement interval. If only the TxOP section of the non-PAP is set as a valid CSI measurement section, the periodic CSI report may be limited to the TxOP section of the non-PAP. For example, in FIG. 15, the UE may periodically report by measuring the CSI for the Cx subframe set for the TxOP interval and the PAP in the non-PAP interval.
4.3.2 비주기적 CSI 보고 방법4.3.2 Aperiodic CSI Reporting Method
단말은 유효한 CSI 측정 구간 내에서의 비주기적 CSI 트리거만을 유효하다고 가정하고, 나머지 구간의 비주기적 CSI 트리거는 무시하도록 설정될 수 있다. 예를 들어, 도 16에서 단말은 PAP 내의 비주기적 CSI 트리거 및/또는 non-PAP 내의 TxOP 구간에서 전송되는 비주기적 CSI 트리거에 대해서만 기지국에 CSI 보고를 수행할 수 있다.The UE may be configured to assume that only aperiodic CSI triggers within a valid CSI measurement interval are valid, and to ignore aperiodic CSI triggers of the remaining intervals. For example, in FIG. 16, the UE may perform CSI reporting to the base station only for the aperiodic CSI trigger in the PAP and / or the aperiodic CSI trigger transmitted in the TxOP period in the non-PAP.
또는, 단말은 비주기적 CSI 요청 필드를 통해 유효한 CSI 측정 구간이 아닌 구간에 대한 CSI 보고를 수행하도록 설정될 수 있다. 예를 들어, 비주기적 CSI 요청 필드 값이‘01’로 설정되면 유효한 측정 구간에 대한 CSI 보고가 트리거된 것을 나타내고, 비주기적 CSI 요청 필드가 ‘10’로 설정되면 유효하지 않은 측정 구간에 대한 CSI 보고가 트리거된 것을 나타낼 수 있다. 예를 들어, 도 16을 참조시, S1620 단계에서 CSI 요청 필드가 '01'로 설정되면 단말은 PAP 및/또는 non-PAP 내의 TxOP 구간에 대한 CSI 만을 기지국에 보고할 수 있다. 만약, CSI 요청 필드가 '10'으로 설정되면, 단말은 non-PAP 내의 TxOP 구간이 아닌 구간에서 측정된 CSI에 대해 기지국에 보고할 수 있다.Alternatively, the terminal may be configured to perform CSI reporting on a section that is not a valid CSI measurement section through an aperiodic CSI request field. For example, if the aperiodic CSI request field value is set to '01', then CSI reporting for a valid measurement interval is triggered; if the aperiodic CSI request field is set to '10', CSI for an invalid measurement interval It may indicate that the report has been triggered. For example, referring to FIG. 16, if the CSI request field is set to '01' in step S1620, the UE may report only the CSI for the TxOP interval in the PAP and / or non-PAP to the base station. If the CSI request field is set to '10', the terminal may report to the base station about the CSI measured in the section other than the TxOP section in the non-PAP.
4.3.3 RRM 측정 방법-14.3.3 RRM Measurement Method-1
LTE-A 시스템(즉, Rel-12 시스템)에서 SCell에 대해서는 제한된 무선자원관리(RRM: Radio Resource Management) 측정을 수행하지 않도록 정의되어 있다.In the LTE-A system (ie, Rel-12 system), SCell is defined not to perform limited Radio Resource Management (RRM) measurement.
만약 PAP는 LBT 과정을 수행하지 않는 구간이라고 정의된다면, WiFi 등의 간섭에 상대적으로 노출되지 않은 non-PAP에 대한 TxOP 구간 내에서만 RRM 측정 과정이 수행되도록 정의될 수 있다.If the PAP is defined as a section that does not perform the LBT process, the RRM measurement process may be defined only within a TxOP section for a non-PAP that is not relatively exposed to interference such as WiFi.
또는, PAP가 셀 간(inter cell) 정보 교환을 통해 설정된 독점적 채널 접속 구간으로 정의된다면, PAP 내에서만 RRM 측정 과정이 수행하되도록 설정될 수 있다. 즉, UCell에 대해서는 특징적으로 제한된 RRM 측정 과정이 수행되도록 설정될 수 있다.Alternatively, if the PAP is defined as an exclusive channel access interval established through inter cell information exchange, the RRM measurement process may be performed only within the PAP. That is, the UCell may be configured to perform a characteristically limited RRM measurement process.
4.4 셀간 조정 방법4.4 How to adjust between cells
PAP 구간에 대해서, 셀 간 또는 사업자 간(inter-operator) 정보 교환을 통해 최대한 직교(orthogonal)하게 자원을 사용함으로써 간섭을 크게 완화시킬 수 있으며 효율적으로 자원을 활용할 수 있다. For the PAP section, by using resources as orthogonal as possible through cell or inter-operator information exchange, interference can be greatly mitigated and resources can be efficiently utilized.
다만, S셀에서 PAP와 non-PAP는 동적으로 구성되기 보다는 반정적으로 설정될 수 있다. 따라서, 어느 정도의 시그널링 지연(signaling latency)을 감수하고서라도 셀간 또는 사업자간 백홀 망을 통해 PAP 설정 정보를 서로 교환 및 공유할 수 있다.However, in the S cell, PAP and non-PAP may be set semi-statically rather than dynamically configured. Accordingly, PAP configuration information may be exchanged and shared with each other through a backhaul network between cells or between providers even with a certain amount of signaling latency.
4.4.1 사업자간 PAP 설정 정보 공유 방법-14.4.1 How to Share PAP Configuration Information Between Operators-1
이하에서는 사업자 기지국(intra-operator eNB)간에 PAP 설정 정보 공유를 설정하는 방법에 대해서 설명한다.Hereinafter, a method of setting sharing of PAP configuration information between an operator base station (intra-operator eNB) will be described.
PAP 설정 정보를 공유함으로써 서로 다른 사업자가 운영하는 모든 기지국들이 PAP 동안 같은 동작을 하도록 설정될 수 있다. 예를 들어, 모든 eNB들이 설정된 PAP 내에서 LBT 과정을 수행하지 않을 수 있다. 이때, 공유되는 PAP 설정 정보는 PAP의 시작 시점 및 PAP 길이(또는 PAP의 끝 지점)일 수 있다.By sharing the PAP configuration information, all base stations operated by different operators can be configured to perform the same operation during the PAP. For example, all eNBs may not perform the LBT process in the configured PAP. In this case, the shared PAP configuration information may be a start point of the PAP and a PAP length (or end point of the PAP).
모든 eNB들이 PAP에서 전송을 시도하게 되면 셀 가장자리에 위치한 UE들의 성능 열화가 심해질 수 있다. 따라서, 기지국들이 PAP를 TDM 방식으로 나눠 사용함으로써 간섭을 완화 시킬 수 있다. 예를 들어, 인접한 두 eNB이 PAP를 TDM 방식으로 둘로 나누어 사용함으로써 서로 간섭을 주지 않을 수 있다. If all eNBs attempt to transmit in PAP, performance degradation of UEs located at the cell edge may be severe. Accordingly, the base stations can mitigate the interference by dividing the PAP by the TDM scheme. For example, two adjacent eNBs may not interfere with each other by dividing PAP into two in a TDM manner.
보다 상세하게, 10 ms 동안 PAP가 설정되고 다음 20 ms 동안 non-PAP가 설정된 경우를 가정한다. 이때, 인접한 eNB1 및 eNB2는 10 ms의 PAP 구간을 2등분하여 이용할 수 있다. 예를 들어, 처음 5 ms 동안은 eNB1이 DL 데이터를 전송하고 eNB2는 전송을 시도하지 않거나 non-PAP로 설정될 수 있다. 나머지 5 ms 동안은 eNB2가 DL 데이터를 전송하고, eNB1은 전송을 시도하지 않거나 non-PAP로 설정될 수 있다.More specifically, assume that PAP is set for 10 ms and non-PAP is set for the next 20 ms. In this case, adjacent eNB1 and eNB2 may divide the PAP section of 10 ms into two parts. For example, eNB1 may transmit DL data and eNB2 may not attempt transmission or may be set to non-PAP for the first 5 ms. For the remaining 5 ms, eNB2 transmits DL data, and eNB1 may not attempt to transmit or may be set to non-PAP.
이와 다른 방식으로, eNB1 및 eNB2가 균등하게 PAP를 나눠 사용하는 것이 아니라, 트래픽 부하(traffic load) 상태에 따라 PAP를 차증적으로 사용할 수 있다. 즉, 트래픽 부하기 더 큰 eNB이 더 많은 PAP 구간을 할당받도록 설정될 수 있다.Alternatively, the eNB1 and the eNB2 may not use the PAP evenly, but may use the PAP differentially according to the traffic load state. That is, an eNB with a larger traffic load may be configured to be assigned more PAP intervals.
4.4.2 사업자간 PAP 설정 정보 공유 방법-24.4.2 How to Share PAP Setting Information Between Businesses-2
이하에서는 사업자 기지국(intra-operator eNB)간에 PAP 설정 정보 공유를 설정하는 다른 방법에 대해서 설명한다.Hereinafter, another method of configuring sharing of PAP configuration information between an operator base station (intra-operator eNB) will be described.
특정 기지국이 PAP 구간에서 다른 사업자의 기지국을 고려하지 않고 무조건 DL 데이터를 전송한다면, 해당 특정 기지국은 PAP 내에서 주기적으로 다른 사업자의 eNB로부터 큰 간섭을 받을 수 있다. 따라서, 사업자간 조정을 통해 간섭을 줄이는 것이 바람직하다. If a specific base station transmits DL data unconditionally without considering another base station of the PAP interval, the specific base station may receive a large interference from the eNB of the other operator periodically in the PAP. Therefore, it is desirable to reduce interference through coordination between operators.
즉, PAP를 TDM 방식으로 설정하되, 사업자 A의 기지국이 설정한 PAP에 대해서는 사업자 B의 eNB들은 non-PAP로 설정될 수 있다. 또는 사업자 B가 설정한 PAP에 대해서는 사업자 A의 eNB들은 non-PAP로 설정될 수 있다. 이때, 각 사업자에서 설정한 PAP의 동작은 4.4.1절과 같이 정의될 수 있다.That is, although the PAP is set to the TDM scheme, the eNBs of the operator B may be set to non-PAP for the PAP set by the operator A's base station. Alternatively, for the PAP set by the operator B, the eNBs of the operator A may be set to non-PAP. At this time, the operation of the PAP set by each provider may be defined as in Section 4.4.1.
4.4.1절 및 4.4.2에서 설명한 방식과 다르게 PAP 구간을 설정할 수 있다. 예를 들어, 사업자 A의 eNB1은 PAP 구간(또는, non-PAP 구간)의 시작 시점 및/또는 끝 시점에서 프리엠블을 전송함으로써 사업자 B의 eNB2에게 해당 구간이 PAP로 설정되었음을 암묵적으로 알릴 수 있다.PAP intervals can be set differently than described in Sections 4.4.1 and 4.4.2. For example, eNB1 of operator A may implicitly notify eNB2 of operator B that the interval is set to PAP by transmitting a preamble at the start and / or end of the PAP interval (or non-PAP interval). .
4.5 RRM 측정 방법-24.5 RRM Measurement Method-2
단말이 인접 셀에 대한 RRM 측정을 수행하는 경우에, 인접 셀이 현재 PAP인지 non-PAP인지에 따라 RRM 측정 과정이 달라질 수 있다. 이때, 인접 셀이 PAP인지 non-PAP인지에 관한 정보(즉, PAP 설정 정보)는 4.4절에서 제안한 셀 간 조정 방법을 통해 획득될 수 있다.When the UE performs the RRM measurement for the neighbor cell, the RRM measurement process may vary depending on whether the neighbor cell is currently PAP or non-PAP. In this case, information on whether the neighbor cell is PAP or non-PAP (ie PAP configuration information) may be obtained through the inter-cell coordination method proposed in Section 4.4.
인접 셀이 non-PAP라면 해당 셀에서 DL 데이터가 항상 전송되는 것이 아니다. 따라서, 단말은 인접 셀이 TxOP 구간인지에 대한 정보가 추가적으로 필요하며, TxOP 구간인 경우에만 단말은 RRM 측정을 수행할 수 있다.If the neighbor cell is non-PAP, DL data is not always transmitted in the cell. Therefore, the UE additionally needs information on whether the neighbor cell is a TxOP interval, and the UE may perform RRM measurement only in the TxOP interval.
하지만 TxOP 구간은 동적으로 설정되므로 백홀을 통해 셀 간 조정을 수행하는 것은 어려울 수 있다. 따라서 기지국은 인접 셀의 PAP 설정 정보를 각 UE에게 전달하고, 각 UE는 PAP 동안만 옆 셀에 대한 RRM 측정 과정을 수행할 수 있다. 즉, 단말은 인접 셀이 PAP에 해당되는 경우에만 RRM 측정 과정을 수행하고, non-PAP인 경우에는 RRM 측정 과정을 수행하지 않도록 설정된다.However, since the TxOP interval is set dynamically, it may be difficult to perform intercell adjustment through the backhaul. Accordingly, the base station transmits PAP configuration information of the neighbor cell to each UE, and each UE can perform the RRM measurement process for the neighboring cell only during the PAP. That is, the UE is configured to perform the RRM measurement process only when the neighbor cell corresponds to the PAP, and not perform the RRM measurement process in the case of non-PAP.
5. 구현 장치5. Implement device
도 17에서 설명하는 장치는 도 1 내지 도 16에서 설명한 방법들이 구현될 수 있는 수단이다.The apparatus described in FIG. 17 is a means in which the methods described in FIGS. 1 to 16 may be implemented.
단말(UE: User Equipment)은 상향링크에서는 송신단으로 동작하고, 하향링크에서는 수신단으로 동작할 수 있다. 또한, 기지국(eNB: e-Node B)은 상향링크에서는 수신단으로 동작하고, 하향링크에서는 송신단으로 동작할 수 있다.A UE may operate as a transmitting end in uplink and a receiving end in downlink. In addition, an e-Node B (eNB) may operate as a receiving end in uplink and a transmitting end in downlink.
즉, 단말 및 기지국은 정보, 데이터 및/또는 메시지의 전송 및 수신을 제어하기 위해 각각 송신기(Transmitter: 1740, 1750) 및 수신기(Receiver: 1750, 1770)를 포함할 수 있으며, 정보, 데이터 및/또는 메시지를 송수신하기 위한 안테나(1700, 1710) 등을 포함할 수 있다.That is, the terminal and the base station may include transmitters 1740 and 1750 and receivers 1750 and 1770 to control the transmission and reception of information, data and / or messages, respectively. Or antennas 1700 and 1710 for transmitting and receiving messages.
또한, 단말 및 기지국은 각각 상술한 본 발명의 실시예들을 수행하기 위한 프로세서(Processor: 1720, 1730)와 프로세서의 처리 과정을 임시적으로 또는 지속적으로 저장할 수 있는 메모리(1780, 1790)를 각각 포함할 수 있다.In addition, the terminal and the base station may each include a processor (1720, 1730) for performing the above-described embodiments of the present invention and a memory (1780, 1790) that can temporarily or continuously store the processing of the processor, respectively. Can be.
상술한 단말 및 기지국 장치의 구성성분 및 기능들을 이용하여 본원 발명의 실시예들이 수행될 수 있다. 예를 들어, 기지국은 PAP 및 non-PAP를 설정하고, 각각 CSI 서브프레임 집합으로 구성할 수 있다. 기지국은 설정한 CSI 서브프레임 집합에 대한 구성 정보를 상위 계층 신호를 통해 단말에 전송할 수 있다. 단말은 PAP 또는 non-PAP 내에서 설정된 CSI 서브프레임 집합에 대해 CSI를 측정하고, 주기적 또는 비주기적으로 CSI를 기지국에 보고할 수 있다. 이때, 주기적 CSI는 단말에 설정된 두 개의 CSI 서브프레임 집합 중 하나에 대해서만 정의될 수 있다. 상세한 내용은 1절 내지 4절 내용을 참조할 수 있다.Embodiments of the present invention can be performed using the components and functions of the above-described terminal and base station apparatus. For example, the base station may configure PAP and non-PAP, and configure the CSI subframe set, respectively. The base station may transmit configuration information on the set CSI subframe set to the terminal through a higher layer signal. The UE may measure the CSI for the CSI subframe set configured in the PAP or non-PAP, and report the CSI periodically or aperiodically to the base station. In this case, the periodic CSI may be defined only for one of two CSI subframe sets configured in the terminal. For details, see Sections 1 to 4.
단말 및 기지국에 포함된 송신기 및 수신기는 데이터 전송을 위한 패킷 변복조 기능, 고속 패킷 채널 코딩 기능, 직교주파수분할다중접속(OFDMA: Orthogonal Frequency Division Multiple Access) 패킷 스케줄링, 시분할듀플렉스(TDD: Time Division Duplex) 패킷 스케줄링 및/또는 채널 다중화 기능을 수행할 수 있다. 또한, 도 17의 단말 및 기지국은 저전력 RF(Radio Frequency)/IF(Intermediate Frequency) 유닛을 더 포함할 수 있다.The transmitter and the receiver included in the terminal and the base station include a packet modulation and demodulation function, a high speed packet channel coding function, an orthogonal frequency division multiple access (OFDMA) packet scheduling, and a time division duplex (TDD) for data transmission. Packet scheduling and / or channel multiplexing may be performed. In addition, the terminal and the base station of FIG. 17 may further include a low power radio frequency (RF) / intermediate frequency (IF) unit.
한편, 본 발명에서 단말로 개인휴대단말기(PDA: Personal Digital Assistant), 셀룰러폰, 개인통신서비스(PCS: Personal Communication Service) 폰, GSM(Global System for Mobile) 폰, WCDMA(Wideband CDMA) 폰, MBS(Mobile Broadband System) 폰, 핸드헬드 PC(Hand-Held PC), 노트북 PC, 스마트(Smart) 폰 또는 멀티모드 멀티밴드(MM-MB: Multi Mode-Multi Band) 단말기 등이 이용될 수 있다.Meanwhile, in the present invention, the terminal is a personal digital assistant (PDA), a cellular phone, a personal communication service (PCS) phone, a GSM (Global System for Mobile) phone, a WCDMA (Wideband CDMA) phone, an MBS. A Mobile Broadband System phone, a hand-held PC, a notebook PC, a smart phone, or a Multi Mode-Multi Band (MM-MB) terminal may be used.
여기서, 스마트 폰이란 이동통신 단말기와 개인 휴대 단말기의 장점을 혼합한 단말기로서, 이동통신 단말기에 개인 휴대 단말기의 기능인 일정 관리, 팩스 송수신 및 인터넷 접속 등의 데이터 통신 기능을 통합한 단말기를 의미할 수 있다. 또한, 멀티모드 멀티밴드 단말기란 멀티 모뎀칩을 내장하여 휴대 인터넷시스템 및 다른 이동통신 시스템(예를 들어, CDMA(Code Division Multiple Access) 2000 시스템, WCDMA(Wideband CDMA) 시스템 등)에서 모두 작동할 수 있는 단말기를 말한다.Here, a smart phone is a terminal that combines the advantages of a mobile communication terminal and a personal portable terminal, and may mean a terminal incorporating data communication functions such as schedule management, fax transmission and reception, which are functions of a personal mobile terminal, in a mobile communication terminal. have. In addition, a multimode multiband terminal can be equipped with a multi-modem chip to operate in both portable Internet systems and other mobile communication systems (e.g., code division multiple access (CDMA) 2000 systems, wideband CDMA (WCDMA) systems, etc.). Speak the terminal.
본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다.Embodiments of the invention may be implemented through various means. For example, embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof.
하드웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.In the case of a hardware implementation, the method according to embodiments of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs). Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 실시예들에 따른 방법은 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등의 형태로 구현될 수 있다. 예를 들어, 소프트웨어 코드는 메모리 유닛(1780, 1790)에 저장되어 프로세서(1720, 1730)에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치할 수 있으며, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of an implementation by firmware or software, the method according to the embodiments of the present invention may be implemented in the form of a module, a procedure, or a function that performs the functions or operations described above. For example, software code may be stored in the memory units 1780 and 1790 and driven by the processors 1720 and 1730. The memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. 또한, 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함할 수 있다.The invention can be embodied in other specific forms without departing from the spirit and essential features of the invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention. In addition, the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship or may be incorporated as new claims by post-application correction.
본 발명의 실시예들은 다양한 무선접속 시스템에 적용될 수 있다. 다양한 무선접속 시스템들의 일례로서, 3GPP(3rd Generation Partnership Project), 3GPP2 및/또는 IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) 시스템 등이 있다. 본 발명의 실시예들은 상기 다양한 무선접속 시스템뿐 아니라, 상기 다양한 무선접속 시스템을 응용한 모든 기술 분야에 적용될 수 있다.Embodiments of the present invention can be applied to various wireless access systems. Examples of various radio access systems include 3rd Generation Partnership Project (3GPP), 3GPP2 and / or IEEE 802.xx (Institute of Electrical and Electronic Engineers 802) systems. Embodiments of the present invention can be applied not only to the various radio access systems, but also to all technical fields to which the various radio access systems are applied.
Claims (14)
- 비면허대역을 지원하는 무선접속시스템에서 단말이 채널상태정보(CSI)를 보고하는 방법에 있어서,In a method for a terminal to report channel state information (CSI) in a wireless access system supporting an unlicensed band,CSI 서브프레임 집합 구성 정보를 포함하는 상위계층신호를 프라이머리셀(P셀)을 통해 기지국으로부터 수신하는 단계;Receiving an upper layer signal including CSI subframe aggregation configuration information from a base station through a primary cell (P cell);상기 CSI 서브프레임 집합 구성 정보를 기반으로 기점유접속구간(PAP) 또는 비-기점유접속구간(non-PAP)에서 세컨더리셀(S셀)에 대한 CSI를 측정하는 단계; 및Measuring a CSI for a secondary cell (S cell) in a PAP or a non-PAP based on the CSI subframe set configuration information; And상기 측정된 CSI를 포함하는 CSI 보고를 상기 기지국으로 전송하는 단계를 포함하되,Transmitting the CSI report including the measured CSI to the base station,상기 non-PAP는 제1 CSI 서브프레임 집합으로 설정되고, 상기 PAP는 제2 CSI 서브프레임 집합으로 설정되고,The non-PAP is set to a first CSI subframe set, the PAP is set to a second CSI subframe set,상기 단말은 상기 CSI 서브프레임 집합 구성 정보를 통해 상기 제1 CSI 서브프레임 집합 및 상기 제2 CSI 서브프레임 집합을 설정받고,The terminal receives the first CSI subframe set and the second CSI subframe set through the CSI subframe set configuration information.상기 S셀은 상기 비면허대역에서 구성되는, CSI 보고 방법.The SCell is configured in the unlicensed band.
- 제1항에 있어서,The method of claim 1,상기 PAP는 상기 S셀이 유휴 상태인지 여부에 관계 없이 데이터가 송수신되는 구간이고,The PAP is a period in which data is transmitted and received regardless of whether the SCell is in an idle state.상기 non-PAP는 상기 S셀이 유휴 상태인 전송기회구간(TxOP)에서만 데이터가 송수신되는 구간인, CSI 보고 방법.The non-PAP is a CSI reporting method is a period in which data is transmitted and received only in the transmission opportunity period (TxOP) when the SCell is idle.
- 제2항에 있어서,The method of claim 2,상기 CSI 보고가 주기적으로 전송되는 주기적 CSI 보고이면,If the CSI report is a periodic CSI report transmitted periodically,상기 단말은 상기 제2 CSI 서브프레임 집합에 대한 CSI만을 측정하여 상기 CSI 보고를 기지국으로 전송하는, CSI 보고 방법.The terminal measures the CSI for the second CSI subframe set and transmits the CSI report to the base station, CSI reporting method.
- 제2항에 있어서,The method of claim 2,상기 CSI 보고가 주기적으로 전송되는 주기적 CSI 보고이면,If the CSI report is a periodic CSI report transmitted periodically,상기 단말은 상기 제1 CSI 서브프레임 집합 내의 상기 TxOP에서 CSI를 측정하여 상기 CSI 보고를 상기 기지국으로 전송하는, CSI 보고 방법.The terminal measures the CSI in the TxOP in the first CSI subframe set and transmits the CSI report to the base station, CSI reporting method.
- 제2항에 있어서,The method of claim 2,상기 CSI 보고는 상기 기지국의 요청에 의한 비주기적 CSI 보고이면,If the CSI report is an aperiodic CSI report requested by the base station,상기 P셀로부터 비주기적 CSI 요청 필드를 포함하는 물리하향링크제어채널을 수신하는 단계를 더 포함하되,Receiving a physical downlink control channel including an aperiodic CSI request field from the Pcell,상기 비주기적 CSI 요청 필드는 상기 제1 CSI 서브프레임 집합 또는 상기 제2 CSI 서브프레임 집합에 대한 CSI 보고를 요청하도록 설정되는, CSI 보고 방법.Wherein the aperiodic CSI request field is configured to request CSI reporting for the first CSI subframe set or the second CSI subframe set.
- 제2항에 있어서,The method of claim 2,상기 단말은 상기 제2서브프레임 집합에서만 인접셀에 대한 간섭측정을 수행하도록 설정되는, CSI 보고 방법.The terminal is configured to perform interferometry for the neighbor cell only in the second subframe set, CSI reporting method.
- 제2항에 있어서,The method of claim 2,상기 S셀로부터 하향링크 데이터를 수신하는 단계를 더 포함하되,Receiving downlink data from the SCell further;상기 하향링크 데이터를 전송시 사용되는 전력 조절 파라미터는 상기 제1 서브프레임 집합 및 상기 제2 서브프레임 집합별로 다르게 설정되는, CSI 보고 방법.The power control parameter used when transmitting the downlink data is set differently for each of the first subframe set and the second subframe set.
- 비면허대역을 지원하는 무선접속시스템에서 채널상태정보(CSI)를 보고하기 위한 단말은,A terminal for reporting channel state information (CSI) in a wireless access system supporting an unlicensed band,송신기;transmitter;수신기; 및receiving set; And상기 송신기 및 상기 수신기와 기능적으로 연결되어 상기 CSI를 보고하기 위해 구성된 프로세서를 포함하되,A processor operatively coupled with the transmitter and the receiver, the processor configured to report the CSI;상기 프로세서는:The processor is:CSI 서브프레임 집합 구성 정보를 포함하는 상위계층신호를 상기 수신기를 제어하여 프라이머리셀(P셀)을 통해 기지국으로부터 수신하고;Receiving an upper layer signal including CSI subframe aggregation configuration information from a base station through a primary cell (P cell) by controlling the receiver;상기 CSI 서브프레임 집합 구성 정보를 기반으로 기점유접속구간(PAP) 또는 비-기점유접속구간(non-PAP)에서 세컨더리셀(S셀)에 대한 CSI를 측정하고; 및Measure a CSI for a secondary cell (S cell) in a PAP or a non-PAP based on the CSI subframe set configuration information; And상기 측정된 CSI를 포함하는 CSI 보고를 상기 송신기를 제어하여 상기 기지국으로 전송하도록 구성되되,And control the transmitter to transmit the CSI report including the measured CSI to the base station,상기 non-PAP는 제1 CSI 서브프레임 집합으로 설정되고, 상기 PAP는 제2 CSI 서브프레임 집합으로 설정되고,The non-PAP is set to a first CSI subframe set, the PAP is set to a second CSI subframe set,상기 단말은 상기 CSI 서브프레임 집합 구성 정보를 통해 상기 제1 CSI 서브프레임 집합 및 상기 제2 CSI 서브프레임 집합을 설정받고,The terminal receives the first CSI subframe set and the second CSI subframe set through the CSI subframe set configuration information.상기 S셀은 상기 비면허대역에서 구성되는, 단말.The SCell is configured in the unlicensed band.
- 제8항에 있어서,The method of claim 8,상기 PAP는 상기 S셀이 유휴 상태인지 여부에 관계 없이 데이터가 송수신되는 구간이고,The PAP is a period in which data is transmitted and received regardless of whether the SCell is in an idle state.상기 non-PAP는 상기 S셀이 유휴 상태인 전송기회구간(TxOP)에서만 데이터가 송수신되는 구간인, 단말.The non-PAP is a terminal in which data is transmitted and received only in a transmission opportunity section (TxOP) in which the SCell is in an idle state.
- 제9항에 있어서,The method of claim 9,상기 CSI 보고가 주기적으로 전송되는 주기적 CSI 보고이면,If the CSI report is a periodic CSI report transmitted periodically,상기 단말은 상기 제2 CSI 서브프레임 집합에 대한 CSI만을 측정하여 상기 CSI 보고를 상기 기지국으로 전송하는, 단말.The terminal measures only the CSI for the second CSI subframe set, and transmits the CSI report to the base station.
- 제9항에 있어서,The method of claim 9,상기 CSI 보고가 주기적으로 전송되는 주기적 CSI 보고이면,If the CSI report is a periodic CSI report transmitted periodically,상기 단말은 상기 제1 CSI 서브프레임 집합 내의 상기 TxOP에서 CSI를 측정하여 상기 CSI 보고를 상기 기지국으로 전송하는, 단말.The terminal measures the CSI in the TxOP in the first set of CSI subframes, and transmits the CSI report to the base station.
- 제9항에 있어서,The method of claim 9,상기 CSI 보고는 기지국의 요청에 의한 비주기적 CSI 보고이면,If the CSI report is aperiodic CSI report by the request of the base station,상기 프로세서는 상기 수신기를 제어하여 상기 P셀로부터 비주기적 CSI 요청 필드를 포함하는 물리하향링크제어채널을 수신하도록 구성되되,The processor is configured to control the receiver to receive a physical downlink control channel including an aperiodic CSI request field from the Pcell,상기 비주기적 CSI 요청 필드는 상기 제1 CSI 서브프레임 집합 또는 상기 제2 CSI 서브프레임 집합에 대한 CSI 보고를 요청하도록 설정되는, 단말.The aperiodic CSI request field is configured to request CSI reporting for the first CSI subframe set or the second CSI subframe set.
- 제9항에 있어서,The method of claim 9,상기 단말은 상기 제2서브프레임 집합에서만 인접셀에 대한 간섭측정을 수행하도록 설정되는, 단말.The terminal is configured to perform interferometry for the neighbor cell only in the second subframe set.
- 제9항에 있어서,The method of claim 9,상기 S셀로부터 하향링크 데이터를 수신하는 단계를 더 포함하되,Receiving downlink data from the SCell further;상기 하향링크 데이터를 전송시 사용되는 전력 조절 파라미터는 상기 제1 서브프레임 집합 및 상기 제2 서브프레임 집합별로 다르게 설정되는, 단말.The power control parameter used when transmitting the downlink data is set differently for each of the first subframe set and the second subframe set.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/517,510 US10492092B2 (en) | 2014-10-06 | 2015-10-05 | Method for reporting channel state information in wireless access system supporting unlicensed band, and apparatus for supporting same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462060521P | 2014-10-06 | 2014-10-06 | |
US62/060,521 | 2014-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016056802A1 true WO2016056802A1 (en) | 2016-04-14 |
Family
ID=55653361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/010494 WO2016056802A1 (en) | 2014-10-06 | 2015-10-05 | Method for reporting channel state information in wireless access system supporting unlicensed band, and apparatus for supporting same |
Country Status (2)
Country | Link |
---|---|
US (1) | US10492092B2 (en) |
WO (1) | WO2016056802A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110622446A (en) * | 2017-05-17 | 2019-12-27 | 高通股份有限公司 | Wireless link monitoring with sub-band and interference measurement |
EP3713279A4 (en) * | 2017-11-15 | 2020-11-25 | Vivo Mobile Communication Co., Ltd. | METHOD FOR CONTROLLING THE RRM MEASUREMENT OF A NEIGHBORING CELL, MOBILE COMMUNICATION TERMINAL AND NETWORK EQUIPMENT |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104333873A (en) * | 2014-11-28 | 2015-02-04 | 东莞宇龙通信科技有限公司 | Channel detection method and system, device and terminal with base station function |
US10104568B2 (en) * | 2015-06-30 | 2018-10-16 | Qualcomm Incorporated | Periodic channel state information reporting for enhanced carrier aggregation |
US10931342B2 (en) | 2015-08-13 | 2021-02-23 | Samsung Electronics Co., Ltd. | Reference signal measurement method and apparatus for use in mobile communication system |
US11399370B2 (en) * | 2016-03-31 | 2022-07-26 | Mediatek Inc. | Virtual carrier configuration and operation for wireless systems with large carrier bandwidth |
US10517021B2 (en) | 2016-06-30 | 2019-12-24 | Evolve Cellular Inc. | Long term evolution-primary WiFi (LTE-PW) |
EP3834456A4 (en) * | 2018-08-09 | 2022-03-16 | Telefonaktiebolaget LM Ericsson (publ.) | Method and apparatus for operations in different frequency bands within a radio device |
CN111526543A (en) * | 2019-02-02 | 2020-08-11 | 索尼公司 | Electronic device, communication method, and storage medium |
CN112888012B (en) * | 2019-11-29 | 2022-09-30 | 维沃移动通信有限公司 | Method, apparatus, device and medium for determining measurement purpose |
US11924781B2 (en) * | 2021-06-17 | 2024-03-05 | Microsoft Technology Licensing, Llc | Adaptive power control for intercell interference management |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157994A2 (en) * | 2011-05-18 | 2012-11-22 | 엘지전자 주식회사 | Method and device for transmitting control information in wireless communication system |
WO2014051378A1 (en) * | 2012-09-27 | 2014-04-03 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting/receiving channel state information |
US20140204869A1 (en) * | 2013-01-22 | 2014-07-24 | Innovative Sonic Corporation | Method and apparatus for channel state information measurement in a wireless communication system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011041754A1 (en) * | 2009-10-02 | 2011-04-07 | Research In Motion Limited | Mobility in a wireless network |
KR101549763B1 (en) * | 2011-02-10 | 2015-09-02 | 엘지전자 주식회사 | Method and device for scheduling in carrier aggregate system |
US8964683B2 (en) * | 2012-04-20 | 2015-02-24 | Ofinno Technologies, Llc | Sounding signal in a multicarrier wireless device |
US9161254B2 (en) * | 2012-09-28 | 2015-10-13 | Intel Corporation | Periodic channel state information reporting for time division duplex (TDD) carrier aggregation systems |
-
2015
- 2015-10-05 WO PCT/KR2015/010494 patent/WO2016056802A1/en active Application Filing
- 2015-10-05 US US15/517,510 patent/US10492092B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012157994A2 (en) * | 2011-05-18 | 2012-11-22 | 엘지전자 주식회사 | Method and device for transmitting control information in wireless communication system |
WO2014051378A1 (en) * | 2012-09-27 | 2014-04-03 | Samsung Electronics Co., Ltd. | Method and apparatus for transmitting/receiving channel state information |
US20140204869A1 (en) * | 2013-01-22 | 2014-07-24 | Innovative Sonic Corporation | Method and apparatus for channel state information measurement in a wireless communication system |
Non-Patent Citations (2)
Title |
---|
LG ELECTRONICS: "Remaining issues for aperiodic CSI triggering", R1-110365, 3GPP TSG RAN WG1 #63BIS, 31 January 2011 (2011-01-31), Dublin, Ireland * |
MEDIATEK INC.: "Working assumption for aperiodic CSI reporting in subframe subsets", R1-110141, 3GPP TSG RAN WG1 #63BIS, 31 January 2011 (2011-01-31), Dublin, Ireland * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110622446A (en) * | 2017-05-17 | 2019-12-27 | 高通股份有限公司 | Wireless link monitoring with sub-band and interference measurement |
CN110622446B (en) * | 2017-05-17 | 2022-02-08 | 高通股份有限公司 | Wireless link monitoring with sub-band and interference measurement |
US11265742B2 (en) | 2017-05-17 | 2022-03-01 | Qualcomm Incorporated | Radio link monitoring with sub-bands and interference measurements |
US12069497B2 (en) | 2017-05-17 | 2024-08-20 | Qualcomm Incorporated | Radio link monitoring with sub-bands and interference measurements |
TWI854348B (en) * | 2017-05-17 | 2024-09-01 | 美商高通公司 | Radio link monitoring with bandwidth parts and measurements |
EP3713279A4 (en) * | 2017-11-15 | 2020-11-25 | Vivo Mobile Communication Co., Ltd. | METHOD FOR CONTROLLING THE RRM MEASUREMENT OF A NEIGHBORING CELL, MOBILE COMMUNICATION TERMINAL AND NETWORK EQUIPMENT |
US11653227B2 (en) | 2017-11-15 | 2023-05-16 | Vivo Mobile Communication Co., Ltd. | Method of controlling radio resource management measurement of neighboring cell, mobile communication terminal, and network side device |
Also Published As
Publication number | Publication date |
---|---|
US10492092B2 (en) | 2019-11-26 |
US20170332267A1 (en) | 2017-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016036097A1 (en) | Method for measuring and reporting channel state in wireless access system supporting unlicensed band | |
WO2017043878A1 (en) | Method and apparatus for receiving downlink physical broadcasting channel in radio access system that supports narrow band internet of things | |
WO2016122268A1 (en) | Method and apparatus for tranceiving common control message in wireless access system supporting narrow band internet of things | |
WO2016163802A1 (en) | Method for performing cca in wireless access system supporting unlicensed band, and apparatus for supporting same | |
WO2016114626A1 (en) | Method and device for transmitting and receiving shared control message in wireless access system supporting machine type communication | |
WO2016056802A1 (en) | Method for reporting channel state information in wireless access system supporting unlicensed band, and apparatus for supporting same | |
WO2016018125A1 (en) | Method and device for configuring transmission opportunity period in wireless access system supporting unlicensed band | |
WO2017057870A1 (en) | Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information | |
WO2016085295A1 (en) | Method and apparatus for performing direct device-to-device communication in wireless communication system supporting unlicensed band | |
WO2018016923A1 (en) | Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel | |
WO2016089185A1 (en) | Method and apparatus for terminal to transmit and receive signal using sidelinks between devices | |
WO2017018761A1 (en) | Control information reception method and user equipment, and control information reception method and base station | |
WO2017122959A1 (en) | Method and user equipment for receiving downlink channel, and method and base station for transmitting downlink channel | |
WO2014185673A1 (en) | Communication method considering carrier type and apparatus for same | |
WO2016175576A1 (en) | Method and device for feeding back channel state information in wireless access system supporting machine type communication | |
WO2017057984A1 (en) | Method and device for transmitting and receiving primary synchronization signal in wireless access system supporting narrowband internet of things | |
WO2018159999A1 (en) | Method for signal transmission/reception between terminal and base station in wireless communication system, and device supporting same | |
WO2016122258A1 (en) | Signal receiving method and user equipment, and signal receiving method and base station | |
WO2014051254A1 (en) | Uplink transmission method and uplink transmission device | |
WO2015163633A1 (en) | Method and user equipment for performing measurement | |
WO2016105129A1 (en) | Method for transceiving shortened physical downlink shared channel in wireless access system supporting unlicensed band, and device supporting same | |
WO2016021954A1 (en) | Method for transmitting uplink signal and user equipment, and method for receiving uplink signal and base station | |
WO2017039141A1 (en) | Method for adjusting contention window size considering priority class in wireless access system supporting unlicensed band, and apparatus for supporting same | |
WO2013180521A1 (en) | Method for transceiving control signals, and apparatus therefor | |
WO2010068069A2 (en) | Method for control channel detection in a multicarrier system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15848985 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15517510 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15848985 Country of ref document: EP Kind code of ref document: A1 |