[go: up one dir, main page]

WO2016051787A1 - ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法 - Google Patents

ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法 Download PDF

Info

Publication number
WO2016051787A1
WO2016051787A1 PCT/JP2015/004963 JP2015004963W WO2016051787A1 WO 2016051787 A1 WO2016051787 A1 WO 2016051787A1 JP 2015004963 W JP2015004963 W JP 2015004963W WO 2016051787 A1 WO2016051787 A1 WO 2016051787A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
glass substrate
glass
panel unit
partition
Prior art date
Application number
PCT/JP2015/004963
Other languages
English (en)
French (fr)
Inventor
阿部 裕之
瓜生 英一
長谷川 賢治
将 石橋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580053089.0A priority Critical patent/CN106795046A/zh
Priority to PL15847408T priority patent/PL3202726T3/pl
Priority to DK15847408.0T priority patent/DK3202726T3/da
Priority to EP15847408.0A priority patent/EP3202726B1/en
Priority to ES15847408T priority patent/ES2787212T3/es
Priority to US15/512,714 priority patent/US10378272B2/en
Priority to JP2016551550A priority patent/JP6471916B2/ja
Publication of WO2016051787A1 publication Critical patent/WO2016051787A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67339Working the edges of already assembled units
    • E06B3/6736Heat treatment
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67365Transporting or handling panes, spacer frames or units during assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to a glass panel unit, a temporary assembly of the glass panel unit, an assembly of the glass panel unit, and a method for manufacturing the glass panel unit.
  • Document 1 International Publication No. 2013/1720364 discloses a multilayer glass.
  • a decompressed space is formed between a pair of plate glasses.
  • the decompressed space is formed by evacuating the space between the pair of glass plates with a vacuum pump.
  • a vacuum pump In order to exhaust the space between the pair of glass plates with a vacuum pump, it is necessary to form an exhaust port in one of the pair of glass panels in advance and connect the exhaust port to the intake port of the vacuum pump with an exhaust pipe.
  • the problem to be solved by the present invention is to obtain a glass panel unit having no exhaust port and no exhaust pipe and having good heat insulation performance.
  • the glass panel unit of the form according to the present invention is a predetermined portion separated from an assembly obtained by performing a predetermined process on a temporary assembly.
  • the temporary assembly includes a first glass substrate, a second glass substrate, a frame, an internal space, a partition, an air passage, an exhaust port, and a gas adsorber.
  • the second glass substrate is disposed so as to face the first glass substrate.
  • the frame body is disposed between the first glass substrate and the second glass substrate, and airtightly bonds the first glass substrate and the second glass substrate.
  • the internal space is a space surrounded by the first glass substrate, the second glass substrate, and the frame.
  • the partition partitions the internal space into a first space and a second space.
  • the air passage is formed in the internal space and connects the first space and the second space.
  • the exhaust port connects the second space and the external space.
  • the gas adsorber has a getter and is disposed in the first space.
  • the first space is evacuated through the air passage, the second space, and the exhaust port to make the first space a vacuum space.
  • a partition corresponding to the vacuum space in the frame body and the partition wall are formed by deforming the partition to block the air passage and forming a partition wall that separates the vacuum space from the second space.
  • the first glass substrate and the second glass substrate are hermetically bonded to each other and a seal surrounding the vacuum space is formed.
  • the predetermined portion is a first glass panel that is a portion corresponding to the vacuum space in the first glass substrate, a second glass panel that is a portion corresponding to the vacuum space in the second glass substrate, A seal, the vacuum space, and the gas adsorber are provided.
  • the temporary assembly of the glass panel unit of the other form which concerns on this invention is a temporary assembly for producing the said glass panel unit, Comprising: It arrange
  • a second glass substrate, a frame body disposed between the first glass substrate and the second glass substrate and hermetically joining the first glass substrate and the second glass substrate, and the first An internal space surrounded by the glass substrate, the second glass substrate, and the frame; a partition that divides the internal space into a first space and a second space; and the first space and the first space within the internal space.
  • Another assembly of the glass panel unit according to the present invention is an assembly for producing the glass panel unit, and is arranged to face the first glass substrate and the first glass substrate.
  • a second glass substrate, a frame disposed between the first glass substrate and the second glass substrate and hermetically bonding the first glass substrate and the second glass substrate, and the first glass substrate And an internal space surrounded by the second glass substrate and the frame, a partition separating the internal space into a vacuum space and a second space, an exhaust port connecting the second space and the external space, A gas adsorber disposed in the vacuum space and having a getter.
  • the partition includes a partition that partitions the internal space into a first space and a second space, an air passage that connects the first space and the second space in the internal space, and the second space. After being exhausted through the space and the exhaust port to form the vacuum space, it is obtained by deforming so as to block the air passage.
  • the manufacturing method of the glass panel unit of the other form which concerns on this invention is the 1st glass substrate, the 2nd glass substrate arrange
  • An internal space a partition that divides the internal space into a first space and a second space, an air passage that connects the first space and the second space, and an exhaust port that connects the second space and the external space
  • An assembly step of preparing a temporary assembly comprising a gas adsorber having a getter, and evacuating the first space through the vent passage, the second space, and the exhaust port to form a vacuum space
  • a partition that deforms the partition to block the ventilation path And forming a seal surrounding the vacuum space while airtightly bonding the first glass substrate and the second glass substrate from the partition corresponding to the vacuum space and the partition wall in the frame.
  • the following disclosure relates to a glass panel unit, a temporary assembly of the glass panel unit, an assembly of the glass panel unit, and a manufacturing method of the glass panel unit, and in particular, a glass panel unit for heat insulation, a temporary assembly of the glass panel unit, and a glass
  • the present invention relates to a panel unit assembly and a glass panel unit manufacturing method.
  • Embodiment] [1-1. Constitution] 1 and 2 show a glass panel unit (finished product of a glass panel unit) 10 according to an embodiment of the present invention.
  • the glass panel unit 10 of this embodiment is a vacuum heat insulating glass unit.
  • the vacuum heat insulating glass unit is a kind of multilayer glass panel including at least a pair of glass panels, and has a vacuum space between the pair of glass panels.
  • the glass panel unit 10 of the present embodiment includes a first glass panel 20, a second glass panel 30, a seal 40, a vacuum space 50, a gas adsorber 60, and a plurality of spacers 70.
  • the glass panel unit 10 of the present embodiment is a predetermined portion separated from the assembly 110 shown in FIG. Specifically, the glass panel unit 10 of this embodiment is a part obtained by removing the unnecessary part 11 from the assembly 110 as shown in FIG.
  • the assembly 110 is obtained by performing a predetermined process on the temporary assembly 100 shown in FIGS.
  • the temporary assembly 100 includes a first glass substrate 200, a second glass substrate 300, a frame body 410, an internal space 500, a partition 420, an air passage 600, an exhaust port 700, a gas adsorber 60, A plurality of spacers 70.
  • the first glass substrate 200 includes a glass plate 210 that defines a planar shape of the first glass substrate 200 and a coating 220.
  • the glass plate 210 is a rectangular flat plate and has a first surface (lower surface in FIG. 3) and a second surface (upper surface in FIG. 3) in the thickness direction parallel to each other.
  • the first surface and the second surface of the glass plate 210 are both flat.
  • the material of the glass plate 210 is, for example, soda lime glass, high strain point glass, chemically tempered glass, alkali-free glass, quartz glass, neoceram, or physically tempered glass.
  • the coating 220 is formed on the first surface of the glass plate 210.
  • the coating 220 is a transparent infrared reflective film.
  • the coating 220 is not limited to the infrared reflective film, and may be a film having desired physical characteristics.
  • the second glass substrate 300 includes a glass plate 310 that defines the planar shape of the second glass substrate 300.
  • the glass plate 310 is a rectangular flat plate and has a first surface (upper surface in FIG. 3) and a second surface (lower surface in FIG. 3) in the thickness direction parallel to each other. Both the first surface and the second surface of the glass plate 310 are flat surfaces.
  • the planar shape and planar size of the glass plate 310 are the same as those of the glass plate 210 (that is, the planar shape of the second glass substrate 300 is the same as that of the first glass substrate 200).
  • the thickness of the glass plate 310 is the same as that of the glass plate 210.
  • the material of the glass plate 310 is, for example, soda lime glass, high strain point glass, chemically tempered glass, alkali-free glass, quartz glass, neoceram, or physically tempered glass.
  • the second glass substrate 300 is composed only of the glass plate 310. That is, the glass plate 310 is the second glass substrate 300 itself.
  • the second glass substrate 300 is disposed so as to face the first glass substrate 200. Specifically, the first glass substrate 200 and the second glass substrate 300 are disposed such that the first surface of the glass plate 210 and the first surface of the glass plate 310 are parallel to and face each other.
  • the frame body 410 is disposed between the first glass substrate 200 and the second glass substrate 300, and joins the first glass substrate 200 and the second glass substrate 300 in an airtight manner. Thus, an internal space 500 surrounded by the frame body 410, the first glass substrate 200, and the second glass substrate 300 is formed.
  • the frame 410 is formed of a thermal adhesive (a first thermal adhesive having a first softening point).
  • the first thermal adhesive is, for example, a glass frit.
  • the glass frit is, for example, a low melting point glass frit.
  • the low melting point glass frit is, for example, a bismuth glass frit, a lead glass frit, or a vanadium glass frit.
  • the frame 410 has a rectangular frame shape.
  • the planar shape of the frame 410 is the same as that of the glass plates 210 and 310, but the planar size of the frame 410 is smaller than the glass plates 210 and 310.
  • the frame body 410 is formed along the outer periphery of the second glass substrate 300. That is, the frame 410 is formed so as to surround almost all the region on the second glass substrate 300.
  • the first glass substrate 200 and the second glass substrate 300 are melted by the frame body 410 by once melting the first thermal adhesive of the frame body 410 at a predetermined temperature (first melting temperature) Tm1 equal to or higher than the first softening point. Airtightly joined.
  • the partition 420 is disposed in the internal space 500.
  • the partition 420 partitions the internal space 500 into a first space (exhaust space) 510 and a second space (venting space) 520.
  • the first space 510 is a space to be exhausted later
  • the second space 520 is a space used for exhausting the first space 510.
  • the partition 420 has a first end side in the length direction of the second glass substrate 300 (left and right direction in FIG. 4) from the center of the second glass substrate 300 so that the first space 510 is larger than the second space 520. (The right end side in FIG. 4).
  • the partition 420 includes a wall portion 421 and a pair of blocking portions 422 (a first blocking portion 4221 and a second blocking portion 4222).
  • the wall portion 421 is formed along the width direction of the second glass substrate 300 (the vertical direction in FIG. 4). However, both ends in the length direction of the wall portion 421 are not in contact with the frame body 410.
  • the pair of blocking portions 422 extend from both ends in the length direction of the wall portion 421 to the first end side in the length direction of the second glass substrate 300.
  • the partition 420 is formed of a thermal adhesive (second thermal adhesive having a second softening point).
  • the second thermal adhesive is, for example, a glass frit.
  • the glass frit is, for example, a low melting point glass frit.
  • the low melting point glass frit is, for example, a bismuth glass frit, a lead glass frit, or a vanadium glass frit.
  • the second thermal adhesive is the same as the first thermal adhesive, and the second softening point and the first softening point are equal.
  • the ventilation path 600 connects the first space 510 and the second space 520 in the internal space 500.
  • the ventilation path 600 includes a first ventilation path 610 and a second ventilation path 620.
  • the first air passage 610 is a space formed between the first blocking portion 4221 and the portion of the frame 410 that faces the first blocking portion 4221.
  • the second ventilation path 620 is a space formed between the second blocking portion 4222 and the portion of the frame 410 that faces the second blocking portion 4222.
  • the exhaust port 700 is a hole that connects the second space 520 and the external space.
  • the exhaust port 700 is used for exhausting the first space 510 through the second space 520 and the ventilation path 600. Accordingly, the ventilation path 600, the second space 520, and the exhaust port 700 constitute an exhaust path for exhausting the first space 510.
  • the exhaust port 700 is formed in the second glass substrate 300 so as to connect the second space 520 and the external space. Specifically, the exhaust port 700 is located at a corner portion of the second glass substrate 300.
  • the gas adsorber 60 is disposed in the first space 510.
  • the gas adsorber 60 has a long flat plate shape, and the second glass substrate 300 in the width direction on the second end side (left end side in FIG. 5) in the length direction of the second glass substrate 300. It is formed along. That is, the gas adsorber 60 is disposed at the end of the first space 510 (vacuum space 50). In this way, the gas adsorber 60 can be made inconspicuous. Further, the gas adsorber 60 is located away from the partition 420 and the ventilation path 600. For this reason, when the first space 510 is exhausted, the possibility that the gas adsorber 60 prevents the exhaust can be reduced.
  • the gas adsorber 60 is used for adsorbing unnecessary gas (residual gas or the like).
  • the unnecessary gas is, for example, a gas released from the frame body 410 and the partition 420 when the frame body 410 and the partition 420 are heated.
  • the gas adsorber 60 has a getter.
  • a getter is a material that has the property of adsorbing molecules smaller than a predetermined size.
  • the getter is, for example, an evaporation type getter.
  • the evaporable getter has a property of releasing adsorbed molecules when the temperature is higher than a predetermined temperature (activation temperature). Therefore, even if the adsorption ability of the evaporable getter is reduced, the adsorption ability of the evaporable getter can be recovered by heating the evaporable getter to the activation temperature or higher.
  • the evaporative getter is, for example, a zeolite or an ion exchanged zeolite (eg, a copper ion exchanged zeolite).
  • the gas adsorber 60 includes the getter powder.
  • the gas adsorbent 60 is obtained by a liquid containing getter powder (for example, a dispersion obtained by dispersing getter powder in the liquid, or by dissolving the getter powder in the liquid. It is formed by applying and solidifying a solution.
  • the gas adsorber 60 can be made small. Therefore, the gas adsorber 60 can be disposed even if the vacuum space 50 is narrow.
  • the plurality of spacers 70 are used to maintain the interval between the first glass substrate 200 and the second glass substrate 300 at a predetermined interval. That is, the plurality of spacers 70 are used to maintain the distance between the first glass panel 20 and the second glass panel 30 at a desired value.
  • the plurality of spacers 70 are arranged in the first space 510. Specifically, the plurality of spacers 70 are arranged at intersections of virtual rectangular grids. For example, the interval between the plurality of spacers 70 is 2 cm. However, the size of the spacers 70, the number of the spacers 70, the interval between the spacers 70, and the arrangement pattern of the spacers 70 can be selected as appropriate.
  • the spacer 70 has a cylindrical shape having a height substantially equal to the predetermined interval.
  • the spacer 70 has a diameter of 1 mm and a height of 100 ⁇ m.
  • Each spacer 70 may have a desired shape such as a prismatic shape or a spherical shape.
  • the spacer 70 is formed using a transparent material. However, each spacer 70 may be formed using an opaque material as long as it is sufficiently small.
  • the material of the spacer 70 is selected so that the spacer 70 is not deformed in a first melting process, an exhaust process, and a second melting process, which will be described later.
  • the material of the spacer 70 is selected to have a softening point (softening temperature) that is higher than the first softening point of the first thermal adhesive and the second softening point of the second thermal adhesive.
  • Such a temporary assembly 100 is subjected to the predetermined processing in order to obtain the assembly 110.
  • the first space 510 is evacuated to the vacuum space 50 through the ventilation path 600, the second space 520, and the exhaust port 700 at a predetermined temperature (exhaust temperature) Te.
  • the exhaust temperature Te is set higher than the activation temperature of the getter of the gas adsorber 60.
  • the partition 420 is deformed to form the partition wall 42 that closes the ventilation path 600, thereby forming the seal 40 surrounding the vacuum space 50 (see FIG. 5). Since the partition 420 contains the second thermal adhesive, the partition 420 is deformed by temporarily melting the second thermal adhesive at a predetermined temperature (second melting temperature) Tm2 that is equal to or higher than the second softening point. 42 can be formed.
  • the first melting temperature Tm1 is lower than the second melting temperature Tm2.
  • the partition 420 is modified such that the first blocking part 4221 closes the first ventilation path 610 and the second blocking part 4222 blocks the second ventilation path 620.
  • the partition wall 42 obtained by deforming the partition 420 in this way separates the vacuum space 50 from the second space 520 (spatially).
  • the partition (second portion) 42 and the portion (first portion) 41 corresponding to the vacuum space 50 in the frame 410 constitute the seal 40 surrounding the vacuum space 50.
  • the assembly 110 obtained in this way includes a first glass substrate 200, a second glass substrate 300, a seal 40, a vacuum space 50, a second space 520, and gas adsorption.
  • a body 60, a plurality of spacers 70, and an exhaust port 700 are provided.
  • the vacuum space 50 is formed by exhausting the first space 510 via the second space 520 and the exhaust port 700.
  • the vacuum space 50 is the first space 510 whose degree of vacuum is a predetermined value or less.
  • the predetermined value is, for example, 0.1 Pa. Since the vacuum space 50 is completely sealed by the first glass substrate 200, the second glass substrate 300, and the seal 40, it is separated from the second space 520 and the exhaust port 700.
  • the seal 40 completely surrounds the vacuum space 50 and airtightly bonds the first glass substrate 200 and the second glass substrate 300.
  • the seal 40 has a rectangular frame shape and includes a first portion 41 and a second portion 42.
  • the first portion 41 is a portion corresponding to the vacuum space 50 in the frame 410. That is, the first portion 41 is a portion facing the vacuum space 50 in the frame body 410.
  • the first portion 41 is substantially U-shaped and constitutes three sides of the four sides of the seal 40.
  • the second portion 42 is a partition wall obtained by deforming the partition 420.
  • the second portion 42 is I-shaped and constitutes the remaining one of the four sides of the seal 40.
  • Such an assembly 110 is cut along a cutting line 900 shown in FIG. 5, and has a portion (glass panel unit) 10 having a vacuum space 50 and a second space 520 as shown in FIG. It is divided into a portion (unnecessary portion) 11.
  • the unnecessary portion 11 is mainly composed of a portion 230 corresponding to the second space 520 in the first glass substrate 200, a portion 320 corresponding to the second space 520 in the second glass substrate 300, and the frame 410. And a portion 411 corresponding to the second space 520. In consideration of the manufacturing cost of the glass panel unit 10, it is preferable that the unnecessary portion 11 is small.
  • the glass panel unit 10 includes a first glass panel 20, a second glass panel 30, a seal 40, a vacuum space 50, a gas adsorber 60, and a plurality of spacers 70. And comprising. Since the seal 40, the vacuum space 50, the gas adsorber 60, and the plurality of spacers 70 have already been described, they will not be described in detail here.
  • the first glass panel 20 is a portion corresponding to the vacuum space 50 in the first glass substrate 200.
  • the first glass panel 20 includes a main body 21 that defines a planar shape of the first glass panel 20 and a coating 22.
  • the main body 21 is a portion corresponding to the vacuum space 50 in the glass plate 210 of the first glass substrate 200.
  • the material of the main body 21 is the same as that of the glass plate 210.
  • the main body 21 has a rectangular shape, and has a first surface (a lower surface in FIG. 1) and a second surface (an upper surface in FIG. 1) in the thickness direction parallel to each other. Both the first surface and the second surface of the main body 21 are flat surfaces.
  • the coating 22 is formed on the first surface of the main body 21.
  • the coating 22 is a portion corresponding to the vacuum space 50 in the coating 220 of the first glass substrate 200.
  • the physical properties of the coating 22 are the same as the coating 220.
  • the second glass panel 30 is a portion corresponding to the vacuum space 50 in the second glass substrate 300.
  • An exhaust port 700 for forming the vacuum space 50 exists in the portion 320 corresponding to the second space 520 in the second glass substrate 300, and the exhaust pipe 810 is connected to the portion 320. Therefore, the exhaust pipe 810 is not connected to the second glass panel 30 and the exhaust port 700 does not exist.
  • the second glass panel 30 includes a main body 31 that defines the planar shape of the second glass panel 30.
  • the main body 31 is a portion corresponding to the vacuum space 50 in the glass plate 310 of the second glass substrate 300. Therefore, the material of the main body 31 is the same as that of the glass plate 310.
  • the main body 31 has a rectangular shape and has a first surface (upper surface in FIG. 1) and a second surface (lower surface in FIG. 1) parallel to each other in the thickness direction. Both the first surface and the second surface of the main body 31 are flat surfaces.
  • the planar shape of the main body 31 is the same as that of the main body 21 (that is, the planar shape of the second glass panel 30 is the same as that of the first glass panel 20).
  • the second glass panel 30 is composed only of the main body 31. That is, the main body 31 itself is the second glass panel 30.
  • the first glass panel 20 and the second glass panel 30 are arranged so that the first surface of the main body 21 and the first surface of the main body 31 are parallel to and opposed to each other. That is, the second surface of the main body 21 is directed to the outside of the glass panel unit 10, and the first surface of the main body 21 is directed to the inside of the glass panel unit 10. Further, the first surface of the main body 31 is directed to the inside of the glass panel unit 10, and the second surface of the main body 31 is directed to the outside of the glass panel unit 10.
  • the manufacturing method of the glass panel unit 10 of this embodiment has a preparation process, an assembly process, a sealing process, and a removal process. Note that the preparation step may be omitted.
  • the preparation step in order to obtain the temporary assembly 100, the first glass substrate 200, the second glass substrate 300, the frame body 410, the partition 420, the internal space 500, the air passage 600, the exhaust port 700, the gas adsorber 60, and This is a step of forming a plurality of spacers 70.
  • the preparation step includes first to sixth steps. Note that the order of the second to fifth steps may be changed as appropriate.
  • the first step is a step of forming the first glass substrate 200 and the second glass substrate 300 (substrate forming step). For example, in the first step, the first glass substrate 200 and the second glass substrate 300 are produced. In the first step, the first glass substrate 200 and the second glass substrate 300 are cleaned as necessary.
  • the second step is a step of forming the exhaust port 700.
  • the exhaust port 700 is formed in the second glass substrate 300.
  • the second glass substrate 300 is cleaned as necessary.
  • the third step is a step of forming the frame body 410 and the partition 420 (sealing material forming step).
  • the material of the frame 410 (first thermal adhesive) and the material of the partition 420 (second thermal adhesive) are used for the second glass substrate 300 (first surface of the glass plate 310) using a dispenser or the like. ) Apply on top.
  • the material of the frame 410 and the material of the partition 420 are dried and temporarily fired.
  • the second glass substrate 300 to which the material of the frame body 410 and the material of the partition 420 are applied is heated at 480 ° C. for 20 minutes.
  • the material of the frame body 410 and the material of the partition 420 may be simply dried without performing preliminary firing.
  • first glass substrate 200 may be heated together with the second glass substrate 300. That is, the first glass substrate 200 may be heated under the same conditions as the second glass substrate 300 (20 minutes at 480 ° C.). Thereby, the difference of the curvature of the 1st glass substrate 200 and the 2nd glass substrate 300 can be reduced.
  • the fourth step is a step of forming the spacer 70 (spacer forming step).
  • a plurality of spacers 70 are formed in advance, and the plurality of spacers 70 are arranged at predetermined positions on the second glass substrate 300 using a chip mounter or the like.
  • the plurality of spacers 70 may be formed using a photolithography technique and an etching technique. In this case, the plurality of spacers 70 are formed using a photocurable material or the like. Alternatively, the plurality of spacers 70 may be formed using a known thin film forming technique.
  • the fifth step is a step of forming the gas adsorbent 60 (gas adsorbent forming step).
  • the gas adsorber 60 is formed by applying a solution in which getter powder is dispersed to a predetermined position of the second glass substrate 300 and drying the solution.
  • the frame 410, the partition 420, the ventilation path 600, the exhaust port 700, the gas adsorbent 60, and the plurality of spacers 70 as shown in FIG. 6 are formed. Two glass substrates 300 are obtained.
  • the sixth step is a step of arranging the first glass substrate 200 and the second glass substrate 300 (arrangement step).
  • the first glass substrate 200 and the second glass substrate 300 are arranged such that the first surface of the glass plate 210 and the first surface of the glass plate 310 are parallel to and face each other.
  • the assembly process is a process of preparing the temporary assembly 100. Specifically, in the assembly process, the first glass substrate 200 and the second glass substrate 300 are joined to prepare the temporary assembly 100. That is, the assembly process is a process (first melting process) in which the first glass substrate 200 and the second glass substrate 300 are hermetically bonded by the frame body 410.
  • the first glass substrate 200 and the second glass substrate 300 are hermetically bonded by once melting the first thermal adhesive at a predetermined temperature (first melting temperature) Tm1 that is equal to or higher than the first softening point.
  • first melting temperature a predetermined temperature
  • the first glass substrate 200 and the second glass substrate 300 are arranged in a melting furnace and heated at a first melting temperature Tm1 for a predetermined time (first melting time) tm1 (see FIG. 9).
  • the first glass substrate 200 and the second glass substrate 300 are hermetically bonded by the first thermal adhesive of the frame 410, but the air passage 600 is formed by the partition 420. It is set so that it is not blocked. That is, the lower limit of the first melting temperature Tm1 is the first softening point, but the upper limit of the first melting temperature Tm1 is set so that the ventilation path 600 is not blocked by the partition 420. For example, when the first softening point and the second softening point are 434 ° C., the first melting temperature Tm1 is set to 440 ° C.
  • the first melting time tm1 is, for example, 10 minutes.
  • the first melting step gas is released from the frame 410, and this gas is adsorbed by the gas adsorber 60.
  • the material of the frame 410 and the material of the partition 420 are heated. Therefore, if the material of the frame body 410 and the material of the partition 420 are not calcined in the third step, the calcining is performed in the first melting step (that is, the first melting step is calcined). Will also serve as the process). If the preliminary firing is omitted in the third step as described above, the number of steps in the method of manufacturing the glass panel unit can be reduced, and the manufacturing cost can be reduced because the cost for the preliminary firing (for example, the utility cost) is not required.
  • the amount of gas released from the frame 410 or the like in the first melting step may be increased as compared with the case where the pre-baking is performed in the third step.
  • Such a problem of an increase in the amount of gas can be solved by improving the adsorption capacity of the gas adsorber 60 (for example, increasing the amount of getter of the gas adsorber 60).
  • the temporary assembly 100 shown in FIG. 8 is obtained by the assembly process (first melting process) described above.
  • the sealing step is a step of obtaining the assembly 110 by performing the predetermined processing on the temporary assembly 100.
  • the sealing process includes an exhaust process and a melting process (second melting process). That is, the exhaust process and the second melting process correspond to the predetermined process.
  • the evacuation step is a step of evacuating the first space 510 through the ventilation path 600, the second space 520, and the exhaust port 700 at the predetermined temperature (exhaust temperature) Te to form the vacuum space 50.
  • Exhaust is performed using, for example, a vacuum pump.
  • the vacuum pump is connected to the temporary assembly 100 by an exhaust pipe 810 and a seal head 820.
  • the exhaust pipe 810 is joined to the second glass substrate 300 so that the inside of the exhaust pipe 810 and the exhaust port 700 communicate with each other.
  • a seal head 820 is attached to the exhaust pipe 810, whereby the suction port of the vacuum pump is connected to the exhaust port 700.
  • the first melting step, the evacuation step, and the second melting step include the first glass substrate 200 and the second glass substrate 300 (frame body 410, partition 420, air passage 600, exhaust port 700, gas adsorber 60, and a plurality of spacers.
  • the second glass substrate 300 on which the 70 is formed is performed while being placed in the melting furnace. Therefore, the exhaust pipe 810 is joined to the second glass substrate 300 at least before the first melting step.
  • the first space 510 is exhausted through the ventilation path 600, the second space 520, and the exhaust port 700 for a predetermined time (exhaust time) te at the exhaust temperature Te (see FIG. 9).
  • the exhaust temperature Te is set higher than the activation temperature of the getter of the gas adsorber 60 (for example, 350 ° C.) and lower than the first softening point and the second softening point (for example, 434 ° C.).
  • the exhaust temperature Te is 390 ° C.
  • the frame 410 and the partition 420 are not deformed. Further, the getter of the gas adsorber 60 is activated, and molecules (gas) adsorbed by the getter are released from the getter. Then, the molecules (that is, gas) released from the getter are discharged through the first space 510, the ventilation path 600, the second space 520, and the exhaust port 700. Therefore, in the exhaust process, the adsorption capacity of the gas adsorber 60 is recovered.
  • the exhaust time te is set so that a vacuum space 50 having a desired degree of vacuum (for example, a degree of vacuum of 0.1 Pa or less) is obtained.
  • a desired degree of vacuum for example, a degree of vacuum of 0.1 Pa or less
  • the exhaust time te is set to 120 minutes.
  • the second melting step is a step of forming the seal 40 that surrounds the vacuum space 50 by deforming the partition 420 to form the partition wall 42 that closes the ventilation path 600.
  • the partition wall 420 is formed by deforming the partition 420 by once melting the second thermal adhesive at a predetermined temperature (second melting temperature) Tm2 that is equal to or higher than the second softening point.
  • second melting temperature a predetermined temperature
  • the first glass substrate 200 and the second glass substrate 300 are heated at a second melting temperature Tm2 for a predetermined time (second melting time) tm2 in a melting furnace (see FIG. 9).
  • the second melting temperature Tm2 and the second melting time tm2 are set so that the second thermal adhesive softens and the partition wall 42 that blocks the air passage 600 is formed.
  • the lower limit of the second melting temperature Tm2 is the second softening point (434 ° C.).
  • the second melting temperature Tm2 is higher than the first melting temperature (440 ° C.) Tm1.
  • the second melting temperature Tm2 is set to 460 ° C.
  • the second melting time tm2 is, for example, 30 minutes.
  • the vacuum space 50 is separated from the second space 520. Therefore, the vacuum space 50 cannot be exhausted with the vacuum pump. Until the second melting step is completed, the frame body 410 and the partition wall 42 are heated, and thus gas may be released from the frame body 410 and the partition wall 42. However, the gas released from the frame 410 and the partition wall 42 is adsorbed by the gas adsorber 60 in the vacuum space 50. Therefore, the vacuum degree of the vacuum space 50 is prevented from deteriorating. That is, it is prevented that the heat insulation of the glass panel unit 10 deteriorates.
  • the gas adsorber 60 can sufficiently adsorb the gas released from the frame body 410 and the partition wall 42 in the second melting step. That is, it is possible to prevent the gas adsorber 60 from sufficiently adsorbing the gas released from the frame body 410 and the partition wall 42 and deteriorating the vacuum degree of the vacuum space 50.
  • the first space 510 is exhausted through the ventilation path 600, the second space 520, and the exhaust port 700 continuously from the exhaust step. That is, in the second melting process, the partition 420 is deformed while the first space 510 is evacuated through the ventilation path 600, the second space 520, and the exhaust port 700 at the second melting temperature Tm2, and the ventilation path 600 is changed. A partition wall 42 for closing is formed. This further prevents the vacuum degree of the vacuum space 50 from being deteriorated during the second melting step. However, in the second melting step, it is not always necessary to exhaust the first space 510 through the air passage 600, the second space 520, and the exhaust port 700.
  • the assembly 110 shown in FIG. 10 is obtained by the sealing process described above.
  • the removal step is a step of obtaining the glass panel unit 10 that is the portion having the vacuum space 50 by removing the portion 11 having the second space 520 from the assembly 110.
  • the assembly 110 taken out from the melting furnace is cut along a cutting line 900 shown in FIG. 5, and a predetermined portion (glass panel unit) 10 having a vacuum space 50 and a second space 520 are separated. It is divided into a portion (unnecessary portion) 11 that it has.
  • the shape of the cutting line 900 is determined by the shape of the glass panel unit 10. Since the glass panel unit 10 is rectangular, the cutting line 900 is a straight line along the length direction of the partition wall 42.
  • the glass panel unit 10 is obtained through the above-described preparation process, assembly process, sealing process, and removal process.
  • the glass panel unit 10 of the present embodiment described above is a predetermined portion separated from the assembly 110 obtained by performing a predetermined process on the temporary assembly 100.
  • the temporary assembly 100 includes a first glass substrate 200, a second glass substrate 300, a frame body 410, an internal space 500, a partition 420, an air passage 600, an exhaust port 700, a gas adsorber 60, Is provided.
  • the second glass substrate 300 is disposed so as to face the first glass substrate 200.
  • the frame body 410 is disposed between the first glass substrate 200 and the second glass substrate 300 and bonds the first glass substrate 200 and the second glass substrate 300 in an airtight manner.
  • the internal space 500 is a space surrounded by the first glass substrate 200, the second glass substrate 300, and the frame body 410.
  • the partition 420 partitions the internal space 500 into a first space 510 and a second space 520.
  • the ventilation path 600 is formed in the internal space 500 and connects the first space 510 and the second space 520.
  • the exhaust port 700 connects the second space 520 and the external space.
  • the gas adsorber 60 has a getter and is disposed in the first space 510. In the predetermined process, the first space 510 is evacuated through the ventilation path 600, the second space 520, and the exhaust port 700 to make the first space 510 a vacuum space 50.
  • the partition 420 is deformed to block the ventilation path 600 and the partition wall 42 that separates the vacuum space 50 from the second space 520 is formed, whereby the portion corresponding to the vacuum space 50 in the frame 410 and the partition wall 42 are formed.
  • a seal 40 is formed.
  • the seal 40 hermetically bonds the first glass substrate 200 and the second glass substrate 300 and surrounds the vacuum space 50.
  • the predetermined portion (glass panel unit) 10 is a first glass panel 20 that is a portion corresponding to the vacuum space 50 in the first glass substrate 200 and a portion that corresponds to the vacuum space 50 in the second glass substrate 300.
  • Two glass panels 30, a seal 40, a vacuum space 50, and a gas adsorber 60 are provided.
  • the getter is an evaporative getter.
  • the getter is a zeolite or an ion exchanged zeolite.
  • the gas adsorber 60 includes getter powder.
  • the gas adsorber 60 is disposed at the end of the vacuum space 50.
  • the getter has an activation temperature lower than the temperature (exhaust temperature) Te when exhausting the first space 510 through the air passage 600, the second space 520, and the exhaust port 700.
  • the frame body 410 includes a first thermal adhesive having a first softening point.
  • the partition 420 includes a second thermal adhesive having a second softening point equal to or higher than the first softening point.
  • the first glass substrate 200 and the second glass substrate 300 are hermetically joined by once melting the first thermal adhesive at the first melting temperature Tm1 that is equal to or higher than the first softening point.
  • the partition 420 is deformed by once melting the second thermal adhesive at the second melting temperature Tm2 equal to or higher than the second softening point.
  • first melting temperature Tm1 is lower than the second melting temperature Tm2.
  • the activation temperature of the getter is lower than the temperature (exhaust temperature) Te when the first space 510 is exhausted through the ventilation path 600, the second space 520, and the exhaust port 700.
  • the first softening point and the second softening point are higher than the temperature Te when the first space 510 is exhausted through the ventilation path 600, the second space 520, and the exhaust port 700.
  • the temporary assembly 100 for producing the glass panel unit 10 of the present embodiment includes a first glass substrate 200, a second glass substrate 300, a frame body 410, an internal space 500, a partition 420, and a ventilation path 600. And an exhaust port 700 and a gas adsorber 60.
  • the second glass substrate 300 is disposed so as to face the first glass substrate 200.
  • the frame body 410 is disposed between the first glass substrate 200 and the second glass substrate 300 and bonds the first glass substrate 200 and the second glass substrate 300 in an airtight manner.
  • the internal space 500 is a space surrounded by the first glass substrate 200, the second glass substrate 300, and the frame body 410.
  • the partition 420 partitions the internal space 500 into a first space 510 and a second space 520.
  • the ventilation path 600 is formed in the internal space 500 and connects the first space 510 and the second space 520.
  • the exhaust port 700 connects the second space 520 and the external space.
  • the gas adsorber 60 has a getter and is disposed in the first space 510.
  • the assembly 110 for producing the glass panel unit 10 of the present embodiment includes a first glass substrate 200, a second glass substrate 300, a frame body 410, an internal space 500, a partition wall 42, an exhaust port 700, And a gas adsorber 60.
  • the second glass substrate 300 is disposed so as to face the first glass substrate 200.
  • the frame body 410 is disposed between the first glass substrate 200 and the second glass substrate 300 and bonds the first glass substrate 200 and the second glass substrate 300 in an airtight manner.
  • the internal space 500 is a space surrounded by the first glass substrate 200, the second glass substrate 300, and the frame body 410.
  • the partition wall 42 partitions the internal space 500 into a vacuum space 50 and a second space 520.
  • the exhaust port 700 connects the second space 520 and the external space.
  • the gas adsorber 60 has a getter and is disposed in the first space 510.
  • the partition wall 42 includes a partition 420 that partitions the internal space 500 into a first space 510 and a second space 520, and a ventilation path 600 that connects the first space 510 within the internal space 500 to the first space 510 and the second space 520. After the vacuum space 50 is exhausted through the second space 520 and the exhaust port 700, the air passage 600 is deformed so as to be closed.
  • the method for manufacturing the glass panel unit 10 of the present embodiment described above includes an assembly process, a sealing process, and a removal process.
  • a temporary assembly 100 is prepared.
  • the temporary assembly 100 includes a first glass substrate 200, a second glass substrate 300, a frame body 410, an internal space 500, a partition 420, an air passage 600, an exhaust port 700, a gas adsorber 60, Is provided.
  • the second glass substrate 300 is disposed so as to face the first glass substrate 200.
  • the frame body 410 is disposed between the first glass substrate 200 and the second glass substrate 300 and bonds the first glass substrate 200 and the second glass substrate 300 in an airtight manner.
  • the internal space 500 is a space surrounded by the first glass substrate 200, the second glass substrate 300, and the frame body 410.
  • the partition 420 partitions the internal space 500 into a first space 510 and a second space 520.
  • the ventilation path 600 is formed in the internal space 500 and connects the first space 510 and the second space 520.
  • the exhaust port 700 connects the second space 520 and the external space.
  • the gas adsorber 60 has a getter and is disposed in the first space 510.
  • the first space 510 is evacuated through the ventilation path 600, the second space 520, and the exhaust port 700 to form the vacuum space 50, and the partition 42 is deformed to form the partition wall 42 that closes the ventilation path 600.
  • the first glass substrate 200 and the second glass substrate 300 are hermetically bonded from the portion corresponding to the vacuum space 50 in the frame 410 and the partition wall 42, and the seal 40 surrounding the vacuum space 50 is formed.
  • the glass panel unit 10 that is a predetermined part having the vacuum space 50 is obtained by removing the part 11 having the second space 520 from the assembly 110.
  • the frame body 410 includes a first thermal adhesive having a first softening point.
  • the partition 420 includes a second thermal adhesive having a second softening point equal to or higher than the first softening point.
  • the first glass substrate 200 and the second glass substrate 300 are hermetically bonded by once melting the first thermal adhesive at the first melting temperature Tm1 that is equal to or higher than the first softening point.
  • the partition wall 420 is formed by deforming the partition 420 by once melting the second thermal adhesive at the second melting temperature Tm2 that is equal to or higher than the second softening point.
  • the first melting temperature Tm1 is lower than the second melting temperature Tm2.
  • the first space 510 is exhausted through the ventilation path 600, the second space 520, and the exhaust port 700 at the exhaust temperature Te.
  • the exhaust temperature Te is higher than the activation temperature of the getter.
  • the exhaust temperature Te is lower than the first melting temperature Tm1 and the second melting temperature Tm2.
  • the partition wall 42 is formed by deforming the partition 420 while exhausting the first space 510 through the air passage 600, the second space 520, and the exhaust port 700.
  • a glass panel unit (10) is rectangular shape
  • desired shapes such as circular shape and polygonal shape
  • the first glass panel (20), the second glass panel (30), and the seal (40) may have a desired shape such as a circular shape or a polygonal shape instead of a rectangular shape.
  • each shape of a 1st glass substrate (200), a 2nd glass substrate (300), a frame (410), and a partition (42) is not limited to the shape of the said embodiment, Desired shape What is necessary is just a shape which can obtain a glass panel unit (10).
  • size of a glass panel unit (10) are determined according to the use of a glass panel unit (10).
  • first surface and the second surface of the main body (21) of the first glass panel (20) are not limited to flat surfaces.
  • neither the first surface nor the second surface of the main body (31) of the second glass panel (30) is limited to a flat surface.
  • the main body (21) of the first glass panel (20) and the main body (31) of the second glass panel (30) may not have the same planar shape and planar size. Moreover, the main body (21) and the main body (31) may not have the same thickness. Moreover, the main body (21) and the main body (31) may not be formed of the same material. Similarly, the glass plate (210) of the first glass substrate (200) and the glass plate (310) of the second glass substrate (300) may not have the same planar shape and planar size. Moreover, the glass plate (210) and the glass plate (310) do not need to have the same thickness. The glass plate (210) and the glass plate (310) may not be formed of the same material.
  • the seal (40) may not have the same planar shape as the first glass panel (20) and the second glass panel (30).
  • the frame (410) may not have the same planar shape as the first glass substrate (200) and the second glass substrate (300).
  • first glass panel (20) may further include a coating having desired physical properties and formed on the second surface of the main body (21).
  • the first glass panel (20) may not include the coating (22). That is, the 1st glass panel (20) may be comprised only with the main body (21).
  • the second glass panel (30) may further include a coating having desired physical characteristics.
  • the coating only needs to include at least one of thin films formed on the first surface and the second surface of the main body (31), for example.
  • the coating is, for example, a film that reflects light of a specific wavelength (infrared reflective film, ultraviolet reflective film).
  • the frame (410) is formed of the first thermal adhesive.
  • the frame (410) may include other elements such as a core material in addition to the first thermal adhesive. That is, the frame (410) only needs to contain the first thermal adhesive.
  • the frame (410) is formed so that the substantially all area
  • the frame (410) only needs to be formed so as to surround a predetermined region on the second glass substrate (300). That is, the frame (410) does not need to be formed so as to surround almost the entire region of the second glass substrate (300).
  • the assembly (110) may have two or more frames (410). That is, the assembly (110) may have two or more internal spaces (500). In this case, two or more glass panel units (10) can be obtained from one assembly (110).
  • the partition (420) is formed of the second thermal adhesive.
  • the partition (420) may include other elements such as a core material in addition to the second thermal adhesive. That is, the partition (420) only needs to contain the second thermal adhesive.
  • the both ends of the partition (420) are not connected with the frame (410).
  • the clearance gap between the both ends of a partition (420) and a frame (410) is a ventilation path (610,620).
  • only one of the both ends of the partition (420) may not be connected to the frame (410). In this case, one air passage (between the partition (420) and the frame (410) is provided. 600) is formed. Or the both ends of the partition (420) may be connected with the frame (410).
  • the ventilation path (600) may be a through hole formed in the partition (420).
  • the air passage (600) may be a gap between the partition (420) and the first glass substrate (200).
  • the partition (420) may be formed of two or more partitions arranged at intervals. In this case, the ventilation path (600) may be a gap between two or more partitions.
  • the internal space (500) is partitioned into one first space (510) and one second space (520).
  • the internal space (500) may be partitioned into one or more first spaces (510) and one or more second spaces (520).
  • two or more glass panel units (10) can be obtained from one assembly (110).
  • the second thermal adhesive is the same as the first thermal adhesive, and the second softening point and the first softening point are equal.
  • the second thermal adhesive may be a material different from the first thermal adhesive.
  • the second thermal adhesive may have a second softening point different from the first softening point of the first thermal adhesive.
  • the second softening point is preferably higher than the first softening point.
  • the first melting temperature Tm1 can be set to be equal to or higher than the first softening point and lower than the second softening point. By doing so, it is possible to prevent the partition 420 from being deformed in the first melting step.
  • first adhesive and the second thermal adhesive are not limited to glass frit, and may be, for example, a low melting point metal or a hot melt adhesive.
  • a melting furnace is used to heat the frame (410), the gas adsorber (60), and the partition (420).
  • the heating can be performed by an appropriate heating means.
  • the heating means is, for example, a laser or a heat transfer plate connected to a heat source.
  • the air passage (600) includes two air passages (610, 620). However, the air passage (600) may include only one air passage, or three or more air passages (600, 620). You may be comprised with the ventilation path. Moreover, the shape of the ventilation path (600) is not specifically limited.
  • the exhaust port (700) is formed in the second glass substrate (300).
  • the exhaust port (700) may be formed in the glass plate (210) of the first glass substrate (200), or may be formed in the frame (410). In short, the exhaust port (700) should just be formed in the unnecessary part (11).
  • the getter of the gas adsorbent (60) is an evaporative getter, but the getter may be a non-evaporable getter.
  • the non-evaporable getter reaches a predetermined temperature (activation temperature) or higher, the adsorbed ability is recovered by allowing the adsorbed molecules to enter the inside.
  • activation temperature a predetermined temperature
  • it does not release adsorbed molecules, so if non-evaporable getters adsorb more than a certain amount of molecules, the adsorption capacity is restored even if heated above the activation temperature. No longer.
  • the gas adsorber (60) has a long flat plate shape, but may have other shapes. Further, the gas adsorber (60) does not necessarily have to be at the end of the vacuum space (50).
  • the gas adsorber (60) is a liquid containing getter powder (for example, a dispersion obtained by dispersing getter powder in the liquid, or dissolving the getter powder in the liquid. The solution obtained in this manner is applied.
  • the gas adsorber (60) may include a substrate and a getter fixed to the substrate. Such a gas adsorber (60) can be obtained by immersing the substrate in a liquid containing getter powder and drying it.
  • the substrate may have a desired shape, for example, a long rectangular shape.
  • the gas adsorbent (60) may be a film formed entirely or partially on the surface (first surface) of the glass plate (310) of the second glass substrate (300). Such a gas adsorbent (60) can be obtained by coating the surface (first surface) of the glass plate (310) of the second glass substrate (300) with a liquid containing getter powder.
  • the gas adsorber (60) may be included in the spacer (70).
  • the spacer (70) is formed of a material including a getter, the spacer (70) including the gas adsorbent (60) can be obtained.
  • the gas adsorber (60) may be a solid formed by a getter. Such a gas adsorber (60) is comparatively large and may not be disposed between the first glass substrate (200) and the second glass substrate (300). In this case, a recess may be formed in the glass plate (310) of the second glass substrate (300), and the gas adsorber (60) may be disposed in this recess.
  • the glass panel unit (10) includes a plurality of spacers (70), but the glass panel unit (10) may include a single spacer (70). Alternatively, the glass panel unit (10) may not include the spacer (70).
  • the glass panel unit (10) of the first embodiment according to the present invention is an assembly (110) obtained by subjecting the temporary assembly (100) to a predetermined process.
  • the temporary assembly (100) is a predetermined portion (10) separated from the first glass substrate (200) and a second portion disposed to face the first glass substrate (200).
  • 600 an exhaust port (700) connecting the second space (520) and the external space, and a gas adsorber (60) disposed in the first space (510) and having a getter.
  • the predetermined treatment is performed by evacuating the first space (510) through the ventilation path (600), the second space (520), and the exhaust port (700) to evacuate the first space (510).
  • the partition (420) is deformed to close the ventilation path (600), thereby forming the partition wall (42) that separates the vacuum space (50) from the second space (520).
  • the first glass substrate (200) and the second glass substrate (300) are hermetically bonded from the portion corresponding to the vacuum space (50) and the partition wall (42), and This is a process for forming a seal (40) surrounding the vacuum space (50).
  • the predetermined portion (10) is a portion of the first glass substrate (200) corresponding to the vacuum space (50), the first glass panel (20), and the second glass substrate (300), A second glass panel (30) which is a part corresponding to the vacuum space (50), the seal (40), the vacuum space (50), and the gas adsorbent (60) are provided.
  • a glass panel unit (10) having no exhaust port (700) and an exhaust pipe (810) and having good heat insulation performance can be obtained.
  • the glass panel unit (10) of the 2nd form which concerns on this invention is implement
  • the getter is an evaporative getter.
  • the adsorption capacity of the gas adsorber (60) can be recovered.
  • the glass panel unit (10) of the third embodiment according to the present invention is realized by a combination with the second embodiment.
  • the getter is zeolite or ion-exchanged zeolite.
  • the original adsorption capacity of the gas adsorber (60) can be increased.
  • the glass panel unit (10) of the 4th form which concerns on this invention is implement
  • the getter is a non-evaporable getter.
  • the adsorption capacity of the gas adsorber (60) can be recovered.
  • the glass panel unit (10) according to the fifth aspect of the present invention is realized by a combination with any one of the first to fourth aspects.
  • the gas adsorber (60) includes the getter powder.
  • the gas adsorbent (60) can be made small. Therefore, even if the vacuum space (50) is narrow, the gas adsorber (60) can be arranged.
  • the glass panel unit (10) of the sixth aspect according to the present invention is realized by a combination with any one of the first to fifth aspects.
  • the gas adsorber (60) is disposed at an end of the vacuum space (50).
  • the gas adsorber (60) can be made inconspicuous.
  • the glass panel unit (10) of the seventh aspect according to the present invention is realized by a combination with any one of the first to sixth aspects.
  • the getter exhausts the first space (510) through the air passage (600), the second space (520), and the exhaust port (700).
  • Exhaust temperature) has an activation temperature lower than Te.
  • the gas adsorbent (60) when the first space (510) is exhausted through the air passage (600), the second space (520), and the exhaust port (700), the gas adsorbent (60) The adsorption capacity can be restored.
  • the glass panel unit (10) of the eighth embodiment according to the present invention is realized by a combination with any one of the first to sixth embodiments.
  • the frame (410) includes a first thermal adhesive having a first softening point.
  • the partition (420) includes a second thermal adhesive having a second softening point equal to or higher than the first softening point.
  • the first glass substrate (200) and the second glass substrate (300) are hermetically sealed by once melting the first thermal adhesive at a first melting temperature (Tm1) equal to or higher than the first softening point. Be joined.
  • the partition (420) is deformed by once melting the second thermal adhesive at a second melting temperature (Tm2) equal to or higher than the second softening point.
  • the first melting temperature (Tm1) is lower than the second melting temperature (Tm2).
  • the partition (420) is deformed and the air passage (600) is blocked. The possibility can be lowered.
  • the glass panel unit (10) of the ninth form according to the present invention is realized by a combination with any one of the first to sixth forms.
  • the frame (410) includes a first thermal adhesive having a first softening point.
  • the partition (420) includes a second thermal adhesive having a second softening point equal to or higher than the first softening point.
  • the first glass substrate (200) and the second glass substrate (300) are hermetically sealed by once melting the first thermal adhesive at a first melting temperature (Tm1) equal to or higher than the first softening point. Be joined.
  • the partition (420) is deformed by once melting the second thermal adhesive at a second melting temperature (Tm2) equal to or higher than the second softening point.
  • the activation temperature of the getter is a temperature (exhaust temperature) when the first space (510) is exhausted through the ventilation path (600), the second space (520), and the exhaust port (700). ) Lower than Te.
  • the first softening point and the second softening point exhaust the first space (510) through the air passage (600), the second space (520), and the exhaust port (700). Higher than the actual temperature (exhaust temperature) Te.
  • the gas adsorbent (60) when the first space (510) is exhausted through the ventilation path (600), the second space (520), and the exhaust port (700), the gas adsorbent (60) The adsorption capacity can be recovered, and the possibility that the partition (420) is deformed and the ventilation path (600) is blocked is reduced.
  • a temporary assembly (100) of a glass panel unit according to a tenth aspect of the present invention is a temporary assembly for producing any one of the glass panel units (10) according to the first to ninth aspects.
  • the first glass substrate (200), the second glass substrate (300) disposed so as to face the first glass substrate (200), the first glass substrate (200), and the second glass substrate ( 300) and a frame body (410) for airtightly bonding the first glass substrate (200) and the second glass substrate (300), the first glass substrate (200) and the first glass substrate (300).
  • a glass panel unit (10) having no exhaust port (700) and an exhaust pipe (810) and having good heat insulation performance can be obtained.
  • An assembly (110) of a glass panel unit according to an eleventh aspect of the present invention is an assembly for producing any one of the glass panel units (10) according to the first to ninth aspects.
  • 1 glass substrate (200), 2nd glass substrate (300) arrange
  • the partition wall (42) includes a partition (420) that partitions the internal space (500) into a first space (510) and a second space (520), and the first space (510) as the internal space (500). ) Through the air passage (600) connecting the first space (510) and the second space (520), the second space (520), and the exhaust port (700), and After the space (50) is formed, the air passage (600) is deformed so as to be closed.
  • a glass panel unit (10) having no exhaust port (700) and an exhaust pipe (810) and having good heat insulation performance can be obtained.
  • a glass panel unit manufacturing method includes a first glass substrate (200) and a second glass substrate (300) disposed so as to face the first glass substrate (200).
  • a frame body disposed between the first glass substrate (200) and the second glass substrate (300) to airtightly bond the first glass substrate (200) and the second glass substrate (300).
  • An assembly step of preparing a temporary assembly (100) comprising a mouth (700) and a gas adsorber (60) having a getter, the first space (510), the air passage (600) and the first
  • the space (520) and the exhaust port (700) are evacuated to form a vacuum space (50), and the partition (420) is deformed to form a partition wall (42) that closes the ventilation path (600).
  • the first glass substrate (200) and the second glass substrate (300) are hermetically bonded from the portion corresponding to the vacuum space (50) in the frame (410) and the partition wall (42). And forming a seal (40) surrounding the vacuum space (50) to obtain an assembly (110), and removing the portion having the second space (520) from the assembly (110). And the vacuum empty And a removing step to obtain a glass panel unit is a predetermined portion (10) having (50).
  • the glass panel unit (10) having no exhaust port (700) and exhaust pipe (810) and having good heat insulation performance can be obtained.
  • the frame (410) includes a first thermal adhesive having a first softening point.
  • the partition (420) includes a second thermal adhesive having a second softening point equal to or higher than the first softening point.
  • first glass substrate (200) and the second glass substrate (300) are temporarily melted at a first melting temperature (Tm1) equal to or higher than the first softening point.
  • Tm1 first melting temperature
  • second melting temperature (Tm2) second melting temperature
  • the first melting temperature (Tm1) is lower than the second melting temperature (Tm2).
  • the partition (420) is deformed and the air passage (600) is blocked. The possibility can be lowered.
  • the manufacturing method of the glass panel unit of the 14th form concerning the present invention is realized by combination with the 12th form.
  • the exhaust space (Te) is used to connect the first space (510), the ventilation path (600), the second space (520), and the exhaust port (700). Exhaust through.
  • the exhaust temperature (Te) is higher than the activation temperature of the getter.
  • the gas adsorbent (60) when the first space (510) is exhausted through the ventilation path (600), the second space (520), and the exhaust port (700), the gas adsorbent (60) The adsorption capacity can be restored.
  • the frame (410) includes a first thermal adhesive having a first softening point.
  • the partition (420) includes a second thermal adhesive having a second softening point equal to or higher than the first softening point.
  • first melting temperature (Tm1) equal to or higher than the first softening point.
  • second melting temperature (Tm2) equal to or higher than the second softening point.
  • the exhaust temperature (Te) is lower than the first melting temperature (Tm1) and the second melting temperature (Tm2).
  • the partition (420) is deformed when the first space (510) is exhausted through the ventilation path (600), the second space (520), and the exhaust port (700). The possibility that the air passage (600) is blocked can be reduced.
  • the manufacturing method of the glass panel unit of the 16th form concerning the present invention is realized by combination with the 15th form.
  • the first melting temperature (Tm1) is lower than the second melting temperature (Tm2).
  • the partition (420) is deformed and the air passage (600) is blocked. The possibility can be lowered.
  • the manufacturing method of the glass panel unit according to the seventeenth aspect of the present invention is realized by a combination with any one of the twelfth to sixteenth aspects.
  • the first space (510) is exhausted through the ventilation path (600), the second space (520), and the exhaust port (700).
  • the partition (420) is deformed to form the partition (42).
  • the possibility that the vacuum degree of the vacuum space (50) is deteriorated can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

 本発明の課題は、排気口および排気管がなく、しかも断熱性能が良いガラスパネルユニットを得ることである。本発明に係るガラスパネルユニット(10)は、仮組立て品(100)に所定の処理を行って得られる組立て品(110)から分離された所定部分である。仮組立て品(100)では、第1および第2ガラス基板(200,300)と枠体(410)とで囲まれた内部空間(500)が仕切り(420)で第1空間(510)と第2空間(520)とに仕切られ、ガス吸着体(60)が第1空間(510)内にある。所定の処理では、排気口(700)、第2空間(520)および通気路(600)を介して第1空間(510)を排気して真空空間(50)とし、仕切り(420)を変形させて通気路(600)を塞いで真空空間(50)を囲むシール(40)を形成する。所定部分は、第1および第2ガラス基板(200,300)の一部の第1および第2ガラスパネル(20,30)とシール(40)と真空空間(50)とガス吸着体(60)とを備える。

Description

ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
 本発明は、ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法に関する。
 文献1(国際公開第2013/172034号)は、複層ガラスを開示する。文献1に開示された複層ガラスでは、一対の板ガラス間に減圧された空間が形成されている。
 減圧された空間は、一対の板ガラス間の空間を真空ポンプで排気することで形成されている。一対の板ガラス間の空間を真空ポンプで排気するためには、予め一対のガラスパネルの一方に排気口を形成し、この排気口を真空ポンプの吸気口に排気管でつなぐ必要がある。
 文献1では、排気後、空間内に配置された領域形成材によって空間を分割して排気口が含まれない部分領域を形成している。その後、一対の板ガラスを切断して部分領域を切り出している。これによって、排気口および排気管がない複層ガラスを得ている。
 文献1では、部分領域を形成するためには領域形成材を加熱する必要がある。しかし、領域形成材が加熱されると、領域形成材からガスが放出されるおそれがある。部分領域が形成された後は、真空ポンプによって部分領域の真空度を改善することはできないから、領域形成材からのガスによって部分領域の真空度が悪くなるおそれがある。その結果、所望の断熱性能を有する複層ガラスが得られない場合があった。
 本発明が解決しようとする課題は、排気口および排気管がなく、しかも、断熱性能が良いガラスパネルユニットを得ることである。
 本発明に係る形態のガラスパネルユニットは、仮組立て品に所定の処理を行って得られる組立て品から分離される所定部分である。前記仮組立て品は、第1ガラス基板と、第2ガラス基板と、枠体と、内部空間と、仕切りと、通気路と、排気口と、ガス吸着体と、を備える。前記第2ガラス基板は、前記第1ガラス基板に対向するように配置される。前記枠体は、前記第1ガラス基板と前記第2ガラス基板との間に配置されて前記第1ガラス基板と前記第2ガラス基板とを気密に接合する。前記内部空間は、前記第1ガラス基板と前記第2ガラス基板と前記枠体とで囲まれた空間である。前記仕切りは、前記内部空間を第1空間と第2空間とに仕切る。前記通気路は、前記内部空間内に形成され、前記第1空間と前記第2空間とをつなぐ。前記排気口は、前記第2空間と外部空間とをつなぐ。前記ガス吸着体は、ゲッタを有し、前記第1空間内に配置される。前記所定の処理では、前記通気路と前記第2空間と前記排気口を介して前記第1空間を排気して前記第1空間を真空空間とする。前記所定の処理では、前記仕切りを変形させて前記通気路を塞いで前記真空空間を前記第2空間から分離する隔壁を形成することで前記枠体において前記真空空間に対応する部分と前記隔壁とから前記第1ガラス基板と前記第2ガラス基板とを気密に接合するとともに前記真空空間を囲むシールを形成する。前記所定部分は、前記第1ガラス基板のうち前記真空空間に対応する部分である第1ガラスパネルと、前記第2ガラス基板のうち前記真空空間に対応する部分である第2ガラスパネルと、前記シールと、前記真空空間と、前記ガス吸着体と、を備える。
 本発明に係る他の形態のガラスパネルユニットの仮組立て品は、上記ガラスパネルユニットを作製するための仮組立て品であって、第1ガラス基板と、前記第1ガラス基板に対向するように配置された第2ガラス基板と、前記第1ガラス基板と前記第2ガラス基板との間に配置されて前記第1ガラス基板と前記第2ガラス基板とを気密に接合する枠体と、前記第1ガラス基板と前記第2ガラス基板と前記枠体とで囲まれた内部空間と、前記内部空間を第1空間と第2空間とに仕切る仕切りと、前記内部空間内で前記第1空間と前記第2空間とをつなぐ通気路と、前記第2空間と外部空間とをつなぐ排気口と、前記第1空間内に配置され、ゲッタを有するガス吸着体と、を備える。
 本発明に係る他の形態のガラスパネルユニットの組立て品は、上記ガラスパネルユニットを作製するための組立て品であって、第1ガラス基板と、前記第1ガラス基板に対向するように配置された第2ガラス基板と、前記第1ガラス基板と前記第2ガラス基板との間に配置されて前記第1ガラス基板と前記第2ガラス基板とを気密に接合する枠体と、前記第1ガラス基板と前記第2ガラス基板と前記枠体とで囲まれた内部空間と、前記内部空間を真空空間と第2空間とに分離する隔壁と、前記第2空間と外部空間とをつなぐ排気口と、前記真空空間内に配置され、ゲッタを有するガス吸着体と、を備える。前記隔壁は、前記内部空間を第1空間と前記第2空間とに仕切る仕切りを、前記第1空間を前記内部空間内で前記第1空間と前記第2空間とをつなぐ通気路と前記第2空間と前記排気口とを介して排気して前記真空空間とした後に、前記通気路を塞ぐように変形させて得られる。
 本発明に係る他の形態のガラスパネルユニットの製造方法は、第1ガラス基板と、前記第1ガラス基板に対向するように配置された第2ガラス基板と、前記第1ガラス基板と前記第2ガラス基板との間に配置されて前記第1ガラス基板と前記第2ガラス基板とを気密に接合する枠体と、前記第1ガラス基板と前記第2ガラス基板と前記枠体とで囲まれた内部空間と、前記内部空間を第1空間と第2空間とに仕切る仕切りと、前記第1空間と前記第2空間とをつなぐ通気路と、前記第2空間と外部空間とをつなぐ排気口と、ゲッタを有するガス吸着体と、を備える仮組立て品を用意する組立工程と、前記第1空間を、前記通気路と前記第2空間と前記排気口とを介して排気して真空空間とし、前記仕切りを変形させて前記通気路を塞ぐ隔壁を形成することで前記枠体において前記真空空間に対応する部分と前記隔壁とから前記第1ガラス基板と前記第2ガラス基板とを気密に接合するとともに前記真空空間を囲むシールを形成して、組立て品を得る密閉工程と、前記組立て品から前記第2空間を有する部分を除去することで、前記真空空間を有する所定部分であるガラスパネルユニットを得る除去工程と、を備える。
本発明に係る一実施形態のガラスパネルユニットの概略断面図である。 上記実施形態のガラスパネルユニットの概略平面図である。 上記実施形態のガラスパネルユニットの仮組立て品の概略断面図である。 上記仮組立て品の概略平面図である。 上記実施形態のガラスパネルユニットの組立て品の概略平面図である。 上記実施形態のガラスパネルユニットの製造方法の説明図である。 上記実施形態のガラスパネルユニットの製造方法の説明図である。 上記実施形態のガラスパネルユニットの製造方法の説明図である。 上記実施形態のガラスパネルユニットの製造方法の説明図である。 上記実施形態のガラスパネルユニットの製造方法の説明図である。 上記実施形態のガラスパネルユニットの製造方法の説明図である。
 以下の開示は、ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法に関し、特に、断熱用のガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法に関する。
 [1.実施形態]
 [1-1.構成]
 図1および図2は、本発明に係る一実施形態のガラスパネルユニット(ガラスパネルユニットの完成品)10を示す。本実施形態のガラスパネルユニット10は、真空断熱ガラスユニットである。真空断熱ガラスユニットは、少なくとも一対のガラスパネルを備える複層ガラスパネルの一種であって、一対のガラスパネル間に真空空間を有している。
 本実施形態のガラスパネルユニット10は、第1ガラスパネル20と、第2ガラスパネル30と、シール40と、真空空間50と、ガス吸着体60と、複数のスペーサ70と、を備える。
 本実施形態のガラスパネルユニット10は、図5に示される組立て品110から分離された所定部分である。具体的には、本実施形態のガラスパネルユニット10は、図11に示されるように、組立て品110から不要な部分11を除去して得られる部分である。
 組立て品110は、図3および図4に示される仮組立て品100に所定の処理を行うことによって得られる。
 仮組立て品100は、第1ガラス基板200と、第2ガラス基板300と、枠体410と、内部空間500と、仕切り420と、通気路600と、排気口700と、ガス吸着体60と、複数のスペーサ70と、を備える。
 第1ガラス基板200は、第1ガラス基板200の平面形状を定めるガラス板210と、コーティング220と、を備える。
 ガラス板210は、矩形状の平板であり、互いに平行な厚み方向の第1面(図3における下面)および第2面(図3における上面)を有する。ガラス板210の第1面および第2面はいずれも平面である。ガラス板210の材料は、たとえば、ソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、物理強化ガラスである。
 コーティング220は、ガラス板210の第1面に形成される。コーティング220は、透明な赤外線反射膜である。なお、コーティング220は、赤外線反射膜に限定されず、所望の物理特性を有する膜であってもよい。
 第2ガラス基板300は、第2ガラス基板300の平面形状を定めるガラス板310を備える。ガラス板310は、矩形状の平板であり、互いに平行な厚み方向の第1面(図3における上面)および第2面(図3における下面)を有する。ガラス板310の第1面および第2面はいずれも平面である。
 ガラス板310の平面形状および平面サイズは、ガラス板210と同じである(つまり、第2ガラス基板300の平面形状は、第1ガラス基板200と同じである)。また、ガラス板310の厚みは、ガラス板210と同じである。ガラス板310の材料は、たとえば、ソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、物理強化ガラスである。
 第2ガラス基板300は、ガラス板310のみで構成されている。つまり、ガラス板310が第2ガラス基板300そのものである。第2ガラス基板300は、第1ガラス基板200に対向するように配置される。具体的には、第1ガラス基板200と第2ガラス基板300とは、ガラス板210の第1面とガラス板310の第1面とが互いに平行かつ対向するように配置される。
 枠体410は、第1ガラス基板200と第2ガラス基板300との間に配置され、第1ガラス基板200と第2ガラス基板300とを気密に接合する。これによって、枠体410と第1ガラス基板200と第2ガラス基板300とで囲まれた内部空間500が形成される。
 枠体410は、熱接着剤(第1軟化点を有する第1熱接着剤)で形成されている。第1熱接着剤は、たとえば、ガラスフリットである。ガラスフリットは、たとえば、低融点ガラスフリットである。低融点ガラスフリットは、たとえば、ビスマス系ガラスフリット、鉛系ガラスフリット、バナジウム系ガラスフリットである。
 枠体410は、矩形の枠状である。枠体410の平面形状は、ガラス板210,310と同じであるが、枠体410の平面サイズはガラス板210,310より小さい。枠体410は、第2ガラス基板300の外周に沿って形成されている。つまり、枠体410は、第2ガラス基板300上のほぼすべての領域を囲うように形成されている。
 第1ガラス基板200と第2ガラス基板300とは、第1軟化点以上の所定温度(第1溶融温度)Tm1で枠体410の第1熱接着剤を一旦溶融させることで、枠体410によって気密に接合される。
 仕切り420は、内部空間500内に配置される。仕切り420は、内部空間500を、第1空間(排気空間)510と第2空間(通気空間)520とに仕切る。第1空間510は後に排気される空間であり、第2空間520は第1空間510の排気に使用される空間である。仕切り420は、第1空間510が第2空間520よりも大きくなるように、第2ガラス基板300の中央よりも第2ガラス基板300の長さ方向(図4における左右方向)の第1端側(図4における右端側)に形成される。
 仕切り420は、壁部421と、一対の遮断部422(第1遮断部4221および第2遮断部4222)と、を備える。壁部421は、第2ガラス基板300幅方向(図4における上下方向)に沿って形成されている。ただし、壁部421の長さ方向の両端は、枠体410とは接触していない。一対の遮断部422は、壁部421の長さ方向の両端から、第2ガラス基板300の長さ方向の第1端側に延びている。
 仕切り420は、熱接着剤(第2軟化点を有する第2熱接着剤)で形成されている。第2熱接着剤は、たとえば、ガラスフリットである。ガラスフリットは、たとえば、低融点ガラスフリットである。低融点ガラスフリットは、たとえば、ビスマス系ガラスフリット、鉛系ガラスフリット、バナジウム系ガラスフリットである。第2熱接着剤は、第1熱接着剤と同じであり、第2軟化点と第1軟化点は等しい。
 通気路600は、内部空間500内で第1空間510と第2空間520とをつなぐ。通気路600は、第1通気路610と、第2通気路620と、を備える。第1通気路610は、第1遮断部4221と第1遮断部4221に対向する枠体410の部分との間に形成された空間である。第2通気路620は、第2遮断部4222と第2遮断部4222に対向する枠体410の部分との間に形成された空間である。
 排気口700は、第2空間520と外部空間とをつなぐ孔である。排気口700は、第2空間520および通気路600を介して第1空間510を排気するために用いられる。したがって、通気路600と第2空間520と排気口700とは、第1空間510を排気するための排気路を構成する。排気口700は、第2空間520と外部空間とをつなぐように第2ガラス基板300に形成されている。具体的には、排気口700は、第2ガラス基板300の角部分に位置している。
 ガス吸着体60は、第1空間510内に配置される。具体的には、ガス吸着体60は、長尺の平板状であり、第2ガラス基板300の長さ方向の第2端側(図5における左端側)に、第2ガラス基板300の幅方向に沿って形成されている。つまり、ガス吸着体60は、第1空間510(真空空間50)の端に配置される。このようにすれば、ガス吸着体60を目立たなくすることができる。また、ガス吸着体60は、仕切り420および通気路600から離れた位置にある。そのため、第1空間510の排気時に、ガス吸着体60が排気を妨げる可能性を低くできる。
 ガス吸着体60は、不要なガス(残留ガス等)を吸着するために用いられる。不要なガスは、たとえば、枠体410および仕切り420が加熱された際に、枠体410および仕切り420から放出されるガスである。
 ガス吸着体60は、ゲッタを有する。ゲッタは、所定の大きさより小さい分子を吸着する性質を有する材料である。ゲッタは、たとえば、蒸発型ゲッタである。蒸発型ゲッタは、所定温度(活性化温度)以上になると、吸着された分子を放出する性質を有している。そのため、蒸発型ゲッタの吸着能力が低下しても、蒸発型ゲッタを活性化温度以上に加熱することで、蒸発型ゲッタの吸着能力を回復させることができる。蒸発型ゲッタは、たとえば、ゼオライトまたはイオン交換されたゼオライト(たとえば、銅イオン交換されたゼオライト)である。
 ガス吸着体60は、このゲッタの粉体を備えている。具体的には、ガス吸着体60は、ゲッタの粉体を含む液体(たとえばゲッタの粉体を液体に分散して得られた分散液や、ゲッタの粉体を液体に溶解させて得られた溶液)を塗布して固形化することにより形成される。この場合、ガス吸着体60を小さくできる。したがって、真空空間50が狭くてもガス吸着体60を配置できる。
 複数のスペーサ70は、第1ガラス基板200と第2ガラス基板300との間隔を所定間隔に維持するために用いられる。つまり、複数のスペーサ70は、第1ガラスパネル20と第2ガラスパネル30との距離を所望の値に維持するために使用される。
 複数のスペーサ70は、第1空間510内に配置されている。具体的には、複数のスペーサ70は、仮想的な矩形状の格子の交差点に配置されている。たとえば、複数のスペーサ70の間隔は、2cmである。ただし、スペーサ70の大きさ、スペーサ70の数、スペーサ70の間隔、スペーサ70の配置パターンは、適宜選択することができる。
 スペーサ70は、上記所定間隔とほぼ等しい高さを有する円柱状である。たとえば、スペーサ70は、直径が1mm、高さが100μmである。なお、各スペーサ70は、角柱状や球状などの所望の形状であってもよい。
 スペーサ70は、透明な材料を用いて形成される。ただし、各スペーサ70は、十分に小さければ、不透明な材料を用いて形成されていてもよい。スペーサ70の材料は、後述する第1溶融工程、排気工程、第2溶融工程において、スペーサ70が変形しないように選択される。たとえば、スペーサ70の材料は、第1熱接着剤の第1軟化点および第2熱接着剤の第2軟化点よりも高い軟化点(軟化温度)を有するように選択される。
 このような仮組立て品100は、組立て品110を得るために、上記所定の処理に供される。
 上記所定の処理では、所定温度(排気温度)Teで、通気路600、第2空間520、および排気口700を介して第1空間510を排気して第1空間510を真空空間50とする。排気温度Teは、ガス吸着体60のゲッタの活性化温度より高くしている。これによって、第1空間510の排気とゲッタの吸着能力の回復とが同時に行える。
 また、上記所定の処理では、仕切り420を変形させて、通気路600を塞ぐ隔壁42を形成することで、真空空間50を囲むシール40を形成する(図5参照)。仕切り420は、第2熱接着剤を含んでいるから、第2軟化点以上の所定温度(第2溶融温度)Tm2で第2熱接着剤を一旦溶融させることで、仕切り420を変形させて隔壁42を形成することができる。なお、第1溶融温度Tm1は、第2溶融温度Tm2より低くしている。これによって、枠体410で第1ガラス基板200と第2ガラス基板300とを接合する際に、仕切り420が変形して通気路600が塞がれることを防止できる。
 仕切り420は、第1遮断部4221が第1通気路610を塞ぎ、第2遮断部4222が第2通気路620を塞ぐように、変形される。このようにして仕切り420を変形することで得られた隔壁42は、真空空間50を第2空間520から(空間的に)分離する。隔壁(第2部分)42と枠体410において真空空間50に対応する部分(第1部分)41とが、真空空間50を囲むシール40を構成する。
 このようにして得られる組立て品110は、図5に示されるように、第1ガラス基板200と、第2ガラス基板300と、シール40と、真空空間50と、第2空間520と、ガス吸着体60と、複数のスペーサ70と、排気口700と、を備える。
 真空空間50は、上述したように、第2空間520、および排気口700を介して第1空間510を排気することで形成される。換言すれば、真空空間50は、真空度が所定値以下の第1空間510である。所定値は、たとえば、0.1Paである。真空空間50は、第1ガラス基板200と第2ガラス基板300とシール40とで完全に密閉されているから、第2空間520および排気口700から分離されている。
 シール40は、真空空間50を完全に囲むとともに、第1ガラス基板200と第2ガラス基板300とを気密に接合する。シール40は、矩形の枠状であり、第1部分41と、第2部分42と、を有する。第1部分41は、枠体410において真空空間50に対応する部分である。つまり、第1部分41は、枠体410において真空空間50に面している部分である。第1部分41は、略U字状であり、シール40の四辺のうちの三辺を構成する。第2部分42は、仕切り420を変形することで得られる隔壁である。第2部分42は、I字状であり、シール40の四辺のうちの残りの一辺を構成する。
 このような組立て品110は、図5に示される切断線900に沿って切断され、図11に示されるように、真空空間50を有する部分(ガラスパネルユニット)10と、第2空間520を有する部分(不要な部分)11と、に分割される。
 不要な部分11は、主に、第1ガラス基板200のうち第2空間520に対応する部分230と、第2ガラス基板300のうち第2空間520に対応する部分320と、枠体410のうち第2空間520に対応する部分411と、を含んでいる。なお、ガラスパネルユニット10の製造コストを考慮すれば、不要な部分11は小さいほうが好ましい。
 ガラスパネルユニット10は、図1および図2に示されるように、第1ガラスパネル20と、第2ガラスパネル30と、シール40と、真空空間50と、ガス吸着体60と、複数のスペーサ70と、を備える。なお、シール40と、真空空間50と、ガス吸着体60と、複数のスペーサ70と、については、既に説明しているから、ここでは詳細には説明しない。
 第1ガラスパネル20は、第1ガラス基板200のうち真空空間50に対応する部分である。第1ガラスパネル20は、第1ガラスパネル20の平面形状を定める本体21と、コーティング22と、を備える。
 本体21は、第1ガラス基板200のガラス板210のうち真空空間50に対応する部分である。本体21の材料は、ガラス板210と同じである。本体21は、矩形状であり、互いに平行な厚み方向の第1面(図1における下面)および第2面(図1における上面)を有する。本体21の第1面および第2面はいずれも平面である。
 コーティング22は、本体21の第1面に形成される。コーティング22は、第1ガラス基板200のコーティング220のうち真空空間50に対応する部分である。コーティング22の物理特性は、コーティング220と同じである。
 第2ガラスパネル30は、第2ガラス基板300のうち真空空間50に対応する部分である。真空空間50を形成するための排気口700は、第2ガラス基板300において第2空間520に対応する部分320に存在し、排気管810は部分320に接続されている。そのため、第2ガラスパネル30には、排気管810が接続されておらず、排気口700も存在していない。
 第2ガラスパネル30は、第2ガラスパネル30の平面形状を定める本体31を備える。本体31は、第2ガラス基板300のガラス板310のうち真空空間50に対応する部分である。したがって、本体31の材料は、ガラス板310と同じである。
 本体31は、矩形状であり、互いに平行な厚み方向の第1面(図1における上面)および第2面(図1における下面)を有する。本体31の第1面および第2面はいずれも平面である。本体31の平面形状は、本体21と同じである(つまり、第2ガラスパネル30の平面形状は、第1ガラスパネル20と同じである)。
 第2ガラスパネル30は、本体31のみで構成されている。つまり、本体31そのものが第2ガラスパネル30である。
 第1ガラスパネル20と第2ガラスパネル30とは、本体21の第1面と本体31の第1面とが互いに平行かつ対向するように配置されている。つまり、本体21の第2面はガラスパネルユニット10の外側に向けられ、本体21の第1面はガラスパネルユニット10の内側に向けられる。また、本体31の第1面はガラスパネルユニット10の内側に向けられ、本体31の第2面はガラスパネルユニット10の外側に向けられる。
 [1-2.製造方法]
 次に、本実施形態のガラスパネルユニット10の製造方法について、図6~図11を参照して説明する。
 本実施形態のガラスパネルユニット10の製造方法は、準備工程と、組立工程と、密閉工程と、除去工程と、を有する。なお、準備工程は、省略してよい。
 準備工程は、仮組立て品100を得るために、第1ガラス基板200、第2ガラス基板300、枠体410、仕切り420、内部空間500、通気路600、排気口700、ガス吸着体60、および複数のスペーサ70を形成する工程である。準備工程は、第1~第6工程を有する。なお、第2~第5工程の順番は、適宜変更してもよい。
 第1工程は、第1ガラス基板200および第2ガラス基板300を形成する工程(基板形成工程)である。たとえば、第1工程では、第1ガラス基板200および第2ガラス基板300を作製する。また、第1工程では、必要に応じて、第1ガラス基板200および第2ガラス基板300を洗浄する。
 第2工程は、排気口700を形成する工程である。第2工程では、第2ガラス基板300に、排気口700を形成する。また、第2工程では、必要に応じて、第2ガラス基板300を洗浄する。
 第3工程は、枠体410および仕切り420を形成する工程(シール材形成工程)である。第3工程では、ディスペンサなどを利用して、枠体410の材料(第1熱接着剤)および仕切り420の材料(第2熱接着剤)を第2ガラス基板300(ガラス板310の第1面)上に塗布する。そして、枠体410の材料および仕切り420の材料を乾燥させるとともに、仮焼成する。たとえば、枠体410の材料および仕切り420の材料が塗布された第2ガラス基板300を480℃で20分間加熱する。なお、第3工程では、仮焼成を行わずに、枠体410の材料および仕切り420の材料を乾燥させるだけでもよい。なお、第1ガラス基板200を第2ガラス基板300と一緒に加熱してもよい。つまり、第1ガラス基板200を第2ガラス基板300と同じ条件(480℃で20分間)で加熱してもよい。これにより、第1ガラス基板200と第2ガラス基板300との反りの差を低減できる。
 第4工程は、スペーサ70を形成する工程(スペーサ形成工程)である。第4工程では、複数のスペーサ70を予め形成しておき、チップマウンタなどを利用して、複数のスペーサ70を、第2ガラス基板300の所定位置に配置する。なお、複数のスペーサ70は、フォトリソグラフィ技術およびエッチング技術を利用して形成されていてもよい。この場合、複数のスペーサ70は、光硬化性材料などを用いて形成される。あるいは、複数のスペーサ70は、周知の薄膜形成技術を利用して形成されていてもよい。
 第5工程は、ガス吸着体60を形成する工程(ガス吸着体形成工程)である。第5工程では、ゲッタの粉体が分散された溶液を第2ガラス基板300の所定位置に塗布し、乾燥させることで、ガス吸着体60を形成する。
 第1工程から第5工程が終了することで、図6に示されるような、枠体410、仕切り420、通気路600、排気口700、ガス吸着体60、複数のスペーサ70が形成された第2ガラス基板300が得られる。
 第6工程は、第1ガラス基板200と第2ガラス基板300とを配置する工程(配置工程)である。第6工程では、第1ガラス基板200と第2ガラス基板300とは、ガラス板210の第1面とガラス板310の第1面とが互いに平行かつ対向するように配置される。
 組立工程は、仮組立て品100を用意する工程である。具体的には、組立工程では、第1ガラス基板200と第2ガラス基板300とを接合することで、仮組立て品100を用意する。つまり、組立工程は、第1ガラス基板200と第2ガラス基板300とを枠体410により気密に接合する工程(第1溶融工程)である。
 第1溶融工程では、第1軟化点以上の所定温度(第1溶融温度)Tm1で第1熱接着剤を一旦溶融させることで、第1ガラス基板200と第2ガラス基板300とを気密に接合する。具体的には、第1ガラス基板200および第2ガラス基板300は、溶融炉内に配置され、第1溶融温度Tm1で所定時間(第1溶融時間)tm1だけ加熱される(図9参照)。
 第1溶融温度Tm1および第1溶融時間tm1は、枠体410の第1熱接着剤によって第1ガラス基板200と第2ガラス基板300とが気密に接合されるが、仕切り420によって通気路600が塞がれることがないように、設定される。つまり、第1溶融温度Tm1の下限は、第1軟化点であるが、第1溶融温度Tm1の上限は、仕切り420によって通気路600が塞がれることがないように設定される。たとえば、第1軟化点および第2軟化点が434℃である場合、第1溶融温度Tm1は、440℃に設定される。また、第1溶融時間tm1は、たとえば、10分である。なお、第1溶融工程では、枠体410からガスが放出されるが、このガスはガス吸着体60によって吸着される。なお、第1溶融工程では、枠体410の材料および仕切り420の材料が加熱される。したがって、第3工程で枠体410の材料および仕切り420の材料の仮焼成を行わなかった場合には、第1溶融工程において仮焼成が行われることになる(つまり、第1溶融工程が仮焼成の工程を兼ねることになる)。上述したように第3工程で仮焼成を省略すれば、ガラスパネルユニットの製造方法の工程数を少なくでき、また、仮焼成にかかる費用(たとえば光熱費)が必要ないから製造コストを低減できる。第3工程で仮焼成を行っていない場合、第3工程で仮焼成を行った場合と比較して、第1溶融工程において枠体410等から放出されるガスの量が増加する場合がある。このようなガスの量の増加という問題は、ガス吸着体60の吸着能力を向上させる(たとえば、ガス吸着体60のゲッタの量を増やせばよい)ことで解消できる。
 上述した組立工程(第1溶融工程)によって、図8に示される仮組立て品100が得られる。
 密閉工程は、仮組立て品100に上記所定の処理を行って組立て品110を得る工程である。密閉工程は、排気工程と、溶融工程(第2溶融工程)と、を有する。つまり、排気工程および第2溶融工程が上記所定の処理に相当する。
 排気工程は、所定温度(排気温度)Teで、第1空間510を、通気路600と第2空間520と排気口700とを介して排気して真空空間50とする工程である。
 排気は、たとえば、真空ポンプを用いて行われる。真空ポンプは、図8に示されるように、排気管810と、シールヘッド820と、により仮組立て品100に接続される。排気管810は、たとえば、排気管810の内部と排気口700とが連通するように第2ガラス基板300に接合される。そして、排気管810にシールヘッド820が取り付けられ、これによって、真空ポンプの吸気口が排気口700に接続される。
 第1溶融工程と排気工程と第2溶融工程とは、第1ガラス基板200および第2ガラス基板300(枠体410、仕切り420、通気路600、排気口700、ガス吸着体60、複数のスペーサ70が形成された第2ガラス基板300)を溶融炉内に配置したまま行われる。そのため、排気管810は、少なくとも第1溶融工程の前に、第2ガラス基板300に接合される。
 排気工程では、排気温度Teで所定時間(排気時間)teだけ、通気路600と第2空間520と排気口700とを介して第1空間510を排気する(図9参照)。
 排気温度Teは、ガス吸着体60のゲッタの活性化温度(たとえば、350℃)より高く、かつ、第1軟化点および第2軟化点(たとえば、434℃)より低く設定される。たとえば、排気温度Teは、390℃である。
 このようにすれば、枠体410および仕切り420は変形しない。また、ガス吸着体60のゲッタが活性化し、ゲッタが吸着していた分子(ガス)がゲッタから放出される。そして、ゲッタから放出された分子(つまりガス)は、第1空間510、通気路600、第2空間520、および、排気口700を通じて排出される。したがって、排気工程では、ガス吸着体60の吸着能力が回復する。
 排気時間teは、所望の真空度(たとえば、0.1Pa以下の真空度)の真空空間50が得られるように設定される。たとえば、排気時間teは、120分に設定される。
 第2溶融工程は、仕切り420を変形させて、通気路600を塞ぐ隔壁42を形成することで、真空空間50を囲むシール40を形成する工程である。第2溶融工程では、第2軟化点以上の所定温度(第2溶融温度)Tm2で第2熱接着剤を一旦溶融させることで、仕切り420を変形させて隔壁42を形成する。具体的には、第1ガラス基板200および第2ガラス基板300は、溶融炉内で、第2溶融温度Tm2で所定時間(第2溶融時間)tm2だけ加熱される(図9参照)。
 第2溶融温度Tm2および第2溶融時間tm2は、第2熱接着剤が軟化し、通気路600を塞ぐ隔壁42が形成されるように設定される。第2溶融温度Tm2の下限は、第2軟化点(434℃)である。ただし、第2溶融工程では、第1溶融工程とは異なり、仕切り420を変形させることを目的としているから、第2溶融温度Tm2は、第1溶融温度(440℃)Tm1より高くしている。たとえば、第2溶融温度Tm2は、460℃に設定される。また、第2溶融時間tm2は、たとえば、30分である。
 隔壁42が形成されると、真空空間50が第2空間520から分離される。そのため、真空ポンプで真空空間50を排気することはできなくなる。第2溶融工程が終了するまでは、枠体410および隔壁42が加熱されているから、枠体410および隔壁42からガスが放出されることがある。しかしながら、枠体410および隔壁42から放出されたガスは、真空空間50内のガス吸着体60に吸着される。そのため、真空空間50の真空度が悪化することが防止される。つまり、ガラスパネルユニット10の断熱性が悪くなることが防止される。
 第1溶融工程でも、枠体410および隔壁42が加熱されているから、枠体410および隔壁42からガスが放出されることがある。枠体410および隔壁42から放出されたガスはガス吸着体60に吸着されるから、第1溶融工程によってガス吸着体60の吸着能力が低下している場合がある。しかしながら、排気工程では、ガス吸着体60のゲッタの活性化温度以上の排気温度Teで第1空間510の排気を行い、これによって、ガス吸着体60の吸着能力を回復させている。したがって、ガス吸着体60は、第2溶融工程において、枠体410および隔壁42から放出されたガスを十分に吸着できる。つまり、ガス吸着体60が枠体410および隔壁42から放出されたガスを十分に吸着できずに真空空間50の真空度が悪化すること、を防止できる。
 また、第2溶融工程では、排気工程から継続して、通気路600と第2空間520と排気口700とを介して第1空間510を排気する。つまり、第2溶融工程では、第2溶融温度Tm2で、通気路600と第2空間520と排気口700とを介して第1空間510を排気しながら、仕切り420を変形させて通気路600を塞ぐ隔壁42を形成する。これによって、第2溶融工程中に、真空空間50の真空度が悪化することがさらに防止される。ただし、第2溶融工程では、必ずしも、通気路600と第2空間520と排気口700とを介して第1空間510を排気する必要はない。
 上述した密閉工程によって、図10に示される組立て品110が得られる。
 除去工程は、組立て品110から第2空間520を有する部分11を除去することで、真空空間50を有する部分であるガラスパネルユニット10を得る工程である。具体的には、溶融炉から取り出された組立て品110は、図5に示される切断線900に沿って切断され、真空空間50を有する所定部分(ガラスパネルユニット)10と、第2空間520を有する部分(不要な部分)11と、に分割される。なお、切断線900の形状は、ガラスパネルユニット10の形状によって定まる。ガラスパネルユニット10は矩形状であるから、切断線900は、隔壁42の長さ方向に沿った直線となっている。
 上述した、準備工程、組立工程、密閉工程、および除去工程を経て、ガラスパネルユニット10が得られる。
 [1-3.特徴]
 以上述べた本実施形態のガラスパネルユニット10は、仮組立て品100に所定の処理を行って得られる組立て品110から分離される所定部分である。仮組立て品100は、第1ガラス基板200と、第2ガラス基板300と、枠体410と、内部空間500と、仕切り420と、通気路600と、排気口700と、ガス吸着体60と、を備える。第2ガラス基板300は、第1ガラス基板200に対向するように配置される。枠体410は、第1ガラス基板200と第2ガラス基板300との間に配置され第1ガラス基板200と第2ガラス基板300とを気密に接合する。内部空間500は、第1ガラス基板200と第2ガラス基板300と枠体410とで囲まれた空間である。仕切り420は、内部空間500を第1空間510と第2空間520とに仕切る。通気路600は、内部空間500内に形成され、第1空間510と第2空間520とをつなぐ。排気口700は、第2空間520と外部空間とをつなぐ。ガス吸着体60は、ゲッタを有し、第1空間510内に配置される。所定の処理では、通気路600と第2空間520と排気口700を介して第1空間510を排気して第1空間510を真空空間50とする。所定の処理では、仕切り420を変形させて通気路600を塞いで真空空間50を第2空間520から分離する隔壁42を形成することで枠体410において真空空間50に対応する部分と隔壁42とからシール40を形成する。シール40は、第1ガラス基板200と第2ガラス基板300とを気密に接合するとともに真空空間50を囲む。所定部分(ガラスパネルユニット)10は、第1ガラス基板200のうち真空空間50に対応する部分である第1ガラスパネル20と、第2ガラス基板300のうち真空空間50に対応する部分である第2ガラスパネル30と、シール40と、真空空間50と、ガス吸着体60と、を備える。
 また、ゲッタは、蒸発型ゲッタである。特に、ゲッタは、ゼオライト、または、イオン交換されたゼオライトである。
 また、ガス吸着体60は、ゲッタの粉体を備える。ガス吸着体60は、真空空間50の端に配置される。
 また、ゲッタは、第1空間510を、通気路600、第2空間520、および排気口700を介して排気する際の温度(排気温度)Teよりも低い活性化温度を有する。
 また、枠体410は、第1軟化点を有する第1熱接着剤を含む。仕切り420は、第1軟化点以上の第2軟化点を有する第2熱接着剤を含む。第1ガラス基板200と第2ガラス基板300とは、第1軟化点以上の第1溶融温度Tm1で第1熱接着剤を一旦溶融させることで、気密に接合される。仕切り420は、第2軟化点以上の第2溶融温度Tm2で第2熱接着剤を一旦溶融させることで変形される。
 また、第1溶融温度Tm1は、第2溶融温度Tm2よりも低い。
 また、ゲッタの活性化温度は、第1空間510を、通気路600、第2空間520、および排気口700を介して排気する際の温度(排気温度)Teよりも低い。第1軟化点、および第2軟化点は、第1空間510を、通気路600、第2空間520、および排気口700を介して排気する際の温度Teよりも高い。
 本実施形態のガラスパネルユニット10を作製するための仮組立て品100は、第1ガラス基板200と、第2ガラス基板300と、枠体410と、内部空間500と、仕切り420と、通気路600と、排気口700と、ガス吸着体60と、を備える。第2ガラス基板300は、第1ガラス基板200に対向するように配置される。枠体410は、第1ガラス基板200と第2ガラス基板300との間に配置され第1ガラス基板200と第2ガラス基板300とを気密に接合する。内部空間500は、第1ガラス基板200と第2ガラス基板300と枠体410とで囲まれた空間である。仕切り420は、内部空間500を第1空間510と第2空間520とに仕切る。通気路600は、内部空間500内に形成され、第1空間510と第2空間520とをつなぐ。排気口700は、第2空間520と外部空間とをつなぐ。ガス吸着体60は、ゲッタを有し、第1空間510内に配置される。
 本実施形態のガラスパネルユニット10を作製するための組立て品110は、第1ガラス基板200と、第2ガラス基板300と、枠体410と、内部空間500と、隔壁42と、排気口700と、ガス吸着体60と、を備える。第2ガラス基板300は、第1ガラス基板200に対向するように配置される。枠体410は、第1ガラス基板200と第2ガラス基板300との間に配置され第1ガラス基板200と第2ガラス基板300とを気密に接合する。内部空間500は、第1ガラス基板200と第2ガラス基板300と枠体410とで囲まれた空間である。隔壁42は、内部空間500を真空空間50と第2空間520とに仕切る。排気口700は、第2空間520と外部空間とをつなぐ。ガス吸着体60は、ゲッタを有し、第1空間510内に配置される。隔壁42は、内部空間500を第1空間510と第2空間520とに仕切る仕切り420を、第1空間510を内部空間500内で第1空間510と第2空間520とをつなぐ通気路600と第2空間520と排気口700とを介して排気して真空空間50とした後に、通気路600を塞ぐように変形させて得られる。
 以上述べた本実施形態のガラスパネルユニット10の製造方法は、組立工程と、密閉工程と、除去工程と、を備える。組立工程では、仮組立て品100を用意する。仮組立て品100は、第1ガラス基板200と、第2ガラス基板300と、枠体410と、内部空間500と、仕切り420と、通気路600と、排気口700と、ガス吸着体60と、を備える。第2ガラス基板300は、第1ガラス基板200に対向するように配置される。枠体410は、第1ガラス基板200と第2ガラス基板300との間に配置され第1ガラス基板200と第2ガラス基板300とを気密に接合する。内部空間500は、第1ガラス基板200と第2ガラス基板300と枠体410とで囲まれた空間である。仕切り420は、内部空間500を第1空間510と第2空間520とに仕切る。通気路600は、内部空間500内に形成され、第1空間510と第2空間520とをつなぐ。排気口700は、第2空間520と外部空間とをつなぐ。ガス吸着体60は、ゲッタを有し、第1空間510内に配置される。密閉工程では、第1空間510を、通気路600と第2空間520と排気口700とを介して排気して真空空間50とし、仕切り420を変形させて通気路600を塞ぐ隔壁42を形成することで枠体410において真空空間50に対応する部分と隔壁42とから第1ガラス基板200と第2ガラス基板300とを気密に接合するとともに真空空間50を囲むシール40を形成して、組立て品110を得る。除去工程では、組立て品110から第2空間520を有する部分11を除去することで、真空空間50を有する所定部分であるガラスパネルユニット10を得る。
 また、枠体410は、第1軟化点を有する第1熱接着剤を含む。仕切り420は、第1軟化点以上の第2軟化点を有する第2熱接着剤を含む。組立工程では、第1軟化点以上の第1溶融温度Tm1で第1熱接着剤を一旦溶融させることで、第1ガラス基板200と第2ガラス基板300とを気密に接合する。密閉工程では、第2軟化点以上の第2溶融温度Tm2で第2熱接着剤を一旦溶融させることで、仕切り420を変形させて隔壁42を形成する。第1溶融温度Tm1は、第2溶融温度Tm2よりも低い。
 また、密閉工程では、排気温度Teで、第1空間510を、通気路600、第2空間520、および排気口700を介して排気する。排気温度Teは、ゲッタの活性化温度よりも高い。
 また、排気温度Teは、第1溶融温度Tm1および第2溶融温度Tm2よりも低い。
 また、密閉工程では、第1空間510を、通気路600、第2空間520、および排気口700を介して排気しながら、仕切り420を変形させて隔壁42を形成する。
 [2.変形例]
 上記実施形態では、ガラスパネルユニット(10)は矩形状であるが、ガラスパネルユニット(10)は、円形状や多角形状など所望の形状であってもよい。つまり、第1ガラスパネル(20)、第2ガラスパネル(30)、およびシール(40)は、矩形状ではなく、円形状や多角形状など所望の形状であってもよい。なお、第1ガラス基板(200)、第2ガラス基板(300)、枠体(410)、および、隔壁(42)のそれぞれの形状は、上記実施形態の形状に限定されず、所望の形状のガラスパネルユニット(10)が得られるような形状であればよい。なお、ガラスパネルユニット(10)の形状や大きさは、ガラスパネルユニット(10)の用途に応じて決定される。
 また、第1ガラスパネル(20)の本体(21)の第1面および第2面はいずれも平面に限定されない。同様に、第2ガラスパネル(30)の本体(31)の第1面および第2面はいずれも平面に限定されない。
 また、第1ガラスパネル(20)の本体(21)と第2ガラスパネル(30)の本体(31)とは同じ平面形状および平面サイズを有していなくてもよい。また、本体(21)と本体(31)とは同じ厚みを有していなくてもよい。また、本体(21)と本体(31)とは同じ材料で形成されていなくてもよい。同様に、第1ガラス基板(200)のガラス板(210)と第2ガラス基板(300)のガラス板(310)とは同じ平面形状および平面サイズを有していなくてもよい。また、ガラス板(210)とガラス板(310)とは同じ厚みを有していなくてもよい。ガラス板(210)とガラス板(310)とは同じ材料で形成されていなくてもよい。
 また、シール(40)は、第1ガラスパネル(20)および第2ガラスパネル(30)と同じ平面形状を有していなくてもよい。同様に、枠体(410)は、第1ガラス基板(200)および第2ガラス基板(300)と同じ平面形状を有していなくてもよい。
 また、第1ガラスパネル(20)は、さらに、所望の物理特性を有して本体(21)の第2面に形成されるコーティングを備えていてもよい。あるいは、第1ガラスパネル(20)は、コーティング(22)を備えていなくてもよい。つまり、第1ガラスパネル(20)は、本体(21)のみで構成されていてもよい。
 また、第2ガラスパネル(30)は、さらに、所望の物理特性を有するコーティングを備えていてもよい。コーティングは、たとえば、本体(31)の第1面および第2面にそれぞれ形成される薄膜の少なくとも一方を備えていればよい。コーティングは、たとえば、特定波長の光を反射する膜(赤外線反射膜、紫外線反射膜)などである。
 上記実施形態では、枠体(410)は、第1熱接着剤で形成されている。ただし、枠体(410)は、第1熱接着剤に加えて、芯材等の他の要素を備えていてもよい。つまり、枠体(410)は、第1熱接着剤を含んでいればよい。また、上記実施形態では、枠体(410)は、第2ガラス基板(300)のほぼすべての領域を囲うように形成されている。しかしながら、枠体(410)は、第2ガラス基板(300)上の所定の領域を囲うように形成されていればよい。つまり、枠体(410)は、第2ガラス基板(300)のほぼすべての領域を囲うように形成されている必要はない。また、組立て品(110)は、2以上の枠体(410)を有していてもよい。つまり、組立て品(110)は、2以上の内部空間(500)を有していてもよい。この場合、1つの組立て品(110)から2以上のガラスパネルユニット(10)を得ることができる。
 上記実施形態では、仕切り(420)は、第2熱接着剤で形成されている。ただし、仕切り(420)は、第2熱接着剤に加えて、芯材等の他の要素を備えていてもよい。つまり、仕切り(420)は、第2熱接着剤を含んでいればよい。また、上記実施形態では、仕切り(420)はその両端が枠体(410)とは連結されていない。そして、仕切り(420)の両端と枠体(410)との隙間が、通気路(610,620)である。ただし、仕切り(420)は、その両端の一方のみが枠体(410)に連結されていなくてもよく、この場合、仕切り(420)と枠体(410)との間に一つの通気路(600)が形成される。あるいは、仕切り(420)は、その両端が枠体(410)に連結されていてもよい。この場合、通気路(600)は、仕切り(420)に形成された貫通孔であってもよい。あるいは、通気路(600)は、仕切り(420)と第1ガラス基板(200)との隙間であってもよい。あるいは、仕切り(420)は、間隔をあけて配置された2以上の仕切りで形成されていてもよい。この場合、通気路(600)は、2以上の仕切りの隙間であってもよい。
 上記実施形態では、内部空間(500)は、一つの第1空間(510)と一つの第2空間(520)とに仕切られている。ただし、内部空間(500)は、1以上の第1空間(510)と1以上の第2空間(520)とに仕切られていてもよい。内部空間(500)が2以上の第1空間(510)を有する場合、1つの組立て品(110)から2以上のガラスパネルユニット(10)を得ることができる。
 上記実施形態では、第2熱接着剤は、第1熱接着剤と同じであり、第2軟化点と第1軟化点は等しい。ただし、第2熱接着剤は、第1熱接着剤と異なる材料であってもよい。たとえば、第2熱接着剤は、第1熱接着剤の第1軟化点と異なる第2軟化点を有していてもよい。ここで、第2軟化点は、第1軟化点より高いことが好ましい。この場合、第1溶融温度Tm1を、第1軟化点以上第2軟化点未満とすることができる。このようにすれば、第1溶融工程において、仕切り420が変形してしまうことを防止できる。
 また、第1接着剤および第2熱接着剤は、ガラスフリットに限定されず、たとえば、低融点金属や、ホットメルト接着材などであってもよい。
 上記実施形態では、枠体(410)、ガス吸着体(60)、および仕切り(420)の加熱に溶融炉を利用している。しかしながら、加熱は、適宜の加熱手段で行うことができる。加熱手段は、たとえば、レーザや、熱源に接続された伝熱板などである。
 上記実施形態では、通気路(600)は2つの通気路(610,620)を備えているが、通気路(600)は、一つの通気路だけで構成されていてもよいし、3以上の通気路で構成されていてもよい。また、通気路(600)の形状は、特に限定されない。
 上記実施形態では、排気口(700)は、第2ガラス基板(300)に形成されている。しかし、排気口(700)は、第1ガラス基板(200)のガラス板(210)に形成されていてもよいし、枠体(410)に形成されていてもよい。要するに、排気口(700)は、不要な部分(11)に形成されていればよい。
 上記実施形態では、ガス吸着体(60)のゲッタは蒸発型ゲッタであるが、ゲッタは非蒸発型ゲッタであってもよい。非蒸発型ゲッタは、所定温度(活性化温度)以上になると、吸着された分子が内部に入り込むことで、吸着能力が回復する。ただし、蒸発型ゲッタとは異なり、吸着された分子を放出するわけではないので、非蒸発型ゲッタは、ある程度以上の分子を吸着すると、たとえ活性化温度以上に加熱されても、吸着能力が回復しなくなる。
 上記実施形態では、ガス吸着体(60)は、長尺の平板状であるが、他の形状であってもよい。また、ガス吸着体(60)は、必ずしも真空空間(50)の端にある必要はない。また、上記実施形態では、ガス吸着体(60)は、ゲッタの粉体を含む液体(たとえばゲッタの粉体を液体に分散して得られた分散液や、ゲッタの粉体を液体に溶解させて得られた溶液)を塗布することにより形成される。しかしながら、ガス吸着体(60)は、基板と、基板に固着されたゲッタと、を備えていてもよい。このようなガス吸着体(60)は、ゲッタの粉末を含む液体に基板を浸漬し、乾燥することで得ることができる。なお、基板は、所望の形状であってよく、たとえば、長尺の矩形状である。
 あるいは、ガス吸着体(60)は、第2ガラス基板(300)のガラス板(310)の表面(第1面)に全体的あるいは部分的に形成された膜であってもよい。このようなガス吸着体(60)は、第2ガラス基板(300)のガラス板(310)の表面(第1面)をゲッタの粉末を含む液体でコーティングすることで得ることができる。
 あるいは、ガス吸着体(60)は、スペーサ(70)に含まれていてもよい。たとえば、スペーサ(70)を、ゲッタを含む材料で形成すれば、ガス吸着体(60)を含むスペーサ(70)を得ることができる。
 あるいは、ガス吸着体(60)は、ゲッタで形成された固形物であってもよい。このようなガス吸着体(60)は、比較大きく、第1ガラス基板(200)と第2ガラス基板(300)との間に配置できないことがある。この場合には、第2ガラス基板(300)のガラス板(310)に凹所を形成して、この凹所にガス吸着体(60)を配置すればよい。
 上記実施形態では、ガラスパネルユニット(10)は複数のスペーサ(70)を備えているが、ガラスパネルユニット(10)は、一つのスペーサ(70)を備えていてもよい。あるいは、ガラスパネルユニット(10)は、スペーサ(70)を備えていなくてもよい。
 [3.本発明に係る形態]
 以上述べた実施形態および変形例から明らかなように、本発明に係る第1の形態のガラスパネルユニット(10)は、仮組立て品(100)に所定の処理を行って得られる組立て品(110)から分離される所定部分(10)であって、前記仮組立て品(100)は、第1ガラス基板(200)と、前記第1ガラス基板(200)に対向するように配置された第2ガラス基板(300)と、前記第1ガラス基板(200)と前記第2ガラス基板(300)との間に配置されて前記第1ガラス基板(200)と前記第2ガラス基板(300)とを気密に接合する枠体(410)と、前記第1ガラス基板(200)と前記第2ガラス基板(300)と前記枠体(410)とで囲まれた内部空間(500)と、前記内部空間(500)を第1空間(510)と第2空間(520)とに仕切る仕切り(420)と、前記内部空間(500)内に形成され、前記第1空間(510)と前記第2空間(520)とをつなぐ通気路(600)と、前記第2空間(520)と外部空間とをつなぐ排気口(700)と、前記第1空間(510)内に配置され、ゲッタを有するガス吸着体(60)と、を備える。前記所定の処理は、前記通気路(600)と前記第2空間(520)と前記排気口(700)を介して前記第1空間(510)を排気して前記第1空間(510)を真空空間(50)とし、前記仕切り(420)を変形させて前記通気路(600)を塞いで前記真空空間(50)を前記第2空間(520)から分離する隔壁(42)を形成することで前記枠体(410)において前記真空空間(50)に対応する部分と前記隔壁(42)とから前記第1ガラス基板(200)と前記第2ガラス基板(300)とを気密に接合するとともに前記真空空間(50)を囲むシール(40)を形成する処理である。前記所定部分(10)は、前記第1ガラス基板(200)のうち前記真空空間(50)に対応する部分である第1ガラスパネル(20)と、前記第2ガラス基板(300)のうち前記真空空間(50)に対応する部分である第2ガラスパネル(30)と、前記シール(40)と、前記真空空間(50)と、前記ガス吸着体(60)と、を備える。
 第1の形態によれば、排気口(700)および排気管(810)がなく、しかも、断熱性能が良いガラスパネルユニット(10)が得られる。
 本発明に係る第2の形態のガラスパネルユニット(10)は、第1の形態との組み合わせにより実現される。第2の形態では、前記ゲッタは、蒸発型ゲッタである。
 第2の形態によれば、ガス吸着体(60)の吸着能力を回復させることができる。
 本発明に係る第3の形態のガラスパネルユニット(10)は、第2の形態との組み合わせにより実現される。第3の形態では、前記ゲッタは、ゼオライト、または、イオン交換されたゼオライトである。
 第3の形態によれば、ガス吸着体(60)の元来の吸着能力を高くすることができる。
 本発明に係る第4の形態のガラスパネルユニット(10)は、第1の形態との組み合わせにより実現される。第4の形態では、前記ゲッタは、非蒸発型ゲッタである。
 第4の形態によれば、ガス吸着体(60)の吸着能力を回復させることができる。
 本発明に係る第5の形態のガラスパネルユニット(10)は、第1~第4の形態のいずれか一つとの組み合わせにより実現される。第5の形態では、前記ガス吸着体(60)は、前記ゲッタの粉体を備える。
 第5の形態によれば、ガス吸着体(60)を小さくできる。したがって、真空空間(50)が狭くてもガス吸着体(60)を配置できる。
 本発明に係る第6の形態のガラスパネルユニット(10)は、第1~第5の形態のいずれか一つとの組み合わせにより実現される。第6の形態では、前記ガス吸着体(60)は、前記真空空間(50)の端に配置される。
 第6の形態によれば、ガス吸着体(60)を目立たなくすることができる。
 本発明に係る第7の形態のガラスパネルユニット(10)は、第1~第6の形態のいずれか一つとの組み合わせにより実現される。第7の形態では、前記ゲッタは、前記第1空間(510)を、前記通気路(600)、前記第2空間(520)、および前記排気口(700)を介して排気する際の温度(排気温度)Teよりも低い活性化温度を有する。
 第7の形態によれば、第1空間(510)を、通気路(600)、第2空間(520)、および排気口(700)を介して排気する際に、ガス吸着体(60)の吸着能力を回復させることができる。
 本発明に係る第8の形態のガラスパネルユニット(10)は、第1~第6の形態のいずれか一つとの組み合わせにより実現される。第8の形態では、前記枠体(410)は、第1軟化点を有する第1熱接着剤を含む。前記仕切り(420)は、前記第1軟化点以上の第2軟化点を有する第2熱接着剤を含む。前記第1ガラス基板(200)と前記第2ガラス基板(300)とは、前記第1軟化点以上の第1溶融温度(Tm1)で前記第1熱接着剤を一旦溶融させることで、気密に接合される。前記仕切り(420)は、前記第2軟化点以上の第2溶融温度(Tm2)で前記第2熱接着剤を一旦溶融させることで変形される。前記第1溶融温度(Tm1)は、前記第2溶融温度(Tm2)よりも低い。
 第8の形態によれば、第1ガラス基板(200)と第2ガラス基板(300)とを気密に接合する際に仕切り(420)が変形して通気路(600)が塞がれてしまう可能性を低くできる。
 本発明に係る第9の形態のガラスパネルユニット(10)は、第1~第6の形態のいずれか一つとの組み合わせにより実現される。第9の形態では、前記枠体(410)は、第1軟化点を有する第1熱接着剤を含む。前記仕切り(420)は、前記第1軟化点以上の第2軟化点を有する第2熱接着剤を含む。前記第1ガラス基板(200)と前記第2ガラス基板(300)とは、前記第1軟化点以上の第1溶融温度(Tm1)で前記第1熱接着剤を一旦溶融させることで、気密に接合される。前記仕切り(420)は、前記第2軟化点以上の第2溶融温度(Tm2)で前記第2熱接着剤を一旦溶融させることで変形される。前記ゲッタの活性化温度は、前記第1空間(510)を、前記通気路(600)、前記第2空間(520)、および前記排気口(700)を介して排気する際の温度(排気温度)Teよりも低い。前記第1軟化点、および前記第2軟化点は、前記第1空間(510)を、前記通気路(600)、前記第2空間(520)、および前記排気口(700)を介して排気する際の温度(排気温度)Teよりも高い。
 第9の形態によれば、第1空間(510)を、通気路(600)、第2空間(520)、および排気口(700)を介して排気する際に、ガス吸着体(60)の吸着能力を回復させることができ、しかも、仕切り(420)が変形して通気路(600)が塞がれてしまう可能性を低くできる。
 本発明に係る第10の形態のガラスパネルユニットの仮組立て品(100)は、第1~第9の形態のいずれか一つのガラスパネルユニット(10)を作製するための仮組立て品であって、第1ガラス基板(200)と、前記第1ガラス基板(200)に対向するように配置された第2ガラス基板(300)と、前記第1ガラス基板(200)と前記第2ガラス基板(300)との間に配置されて前記第1ガラス基板(200)と前記第2ガラス基板(300)とを気密に接合する枠体(410)と、前記第1ガラス基板(200)と前記第2ガラス基板(300)と前記枠体(410)とで囲まれた内部空間(500)と、前記内部空間(500)を第1空間(510)と第2空間(520)とに仕切る仕切り(420)と、前記内部空間(500)内で前記第1空間(510)と前記第2空間(520)とをつなぐ通気路(600)と、前記第2空間(520)と外部空間とをつなぐ排気口(700)と、前記第1空間(510)内に配置され、ゲッタを有するガス吸着体(60)と、を備える。
 第10の形態によれば、排気口(700)および排気管(810)がなく、しかも、断熱性能が良いガラスパネルユニット(10)を得ることができる。
 本発明に係る第11の形態のガラスパネルユニットの組立て品(110)は、第1~第9の形態のいずれか一つのガラスパネルユニット(10)を作製するための組立て品であって、第1ガラス基板(200)と、前記第1ガラス基板(200)に対向するように配置された第2ガラス基板(300)と、前記第1ガラス基板(200)と前記第2ガラス基板(300)との間に配置されて前記第1ガラス基板(200)と前記第2ガラス基板(300)とを気密に接合する枠体(410)と、前記第1ガラス基板(200)と前記第2ガラス基板(300)と前記枠体(410)とで囲まれた内部空間(500)と、前記内部空間(500)を真空空間(50)と第2空間(520)とに分離する隔壁(42)と、前記第2空間(520)と外部空間とをつなぐ排気口(700)と、前記真空空間(50)内に配置され、ゲッタを有するガス吸着体(60)と、を備える。前記隔壁(42)は、前記内部空間(500)を第1空間(510)と前記第2空間(520)とに仕切る仕切り(420)を、前記第1空間(510)を前記内部空間(500)内で前記第1空間(510)と前記第2空間(520)とをつなぐ通気路(600)と前記第2空間(520)と前記排気口(700)とを介して排気して前記真空空間(50)とした後に、前記通気路(600)を塞ぐように変形させて得られる。
 第11の形態によれば、排気口(700)および排気管(810)がなく、しかも、断熱性能が良いガラスパネルユニット(10)を得ることができる。
 本発明に係る第12の形態のガラスパネルユニットの製造方法は、第1ガラス基板(200)と、前記第1ガラス基板(200)に対向するように配置された第2ガラス基板(300)と、前記第1ガラス基板(200)と前記第2ガラス基板(300)との間に配置されて前記第1ガラス基板(200)と前記第2ガラス基板(300)とを気密に接合する枠体(410)と、前記第1ガラス基板(200)と前記第2ガラス基板(300)と前記枠体(410)とで囲まれた内部空間(500)と、前記内部空間(500)を第1空間(510)と第2空間(520)とに仕切る仕切り(420)と、前記第1空間(510)と前記第2空間(520)とをつなぐ通気路(600)と、前記第2空間(520)と外部空間とをつなぐ排気口(700)と、ゲッタを有するガス吸着体(60)と、を備える仮組立て品(100)を用意する組立工程と、前記第1空間(510)を、前記通気路(600)と前記第2空間(520)と前記排気口(700)とを介して排気して真空空間(50)とし、前記仕切り(420)を変形させて前記通気路(600)を塞ぐ隔壁(42)を形成することで前記枠体(410)において前記真空空間(50)に対応する部分と前記隔壁(42)とから前記第1ガラス基板(200)と前記第2ガラス基板(300)とを気密に接合するとともに前記真空空間(50)を囲むシール(40)を形成して、組立て品(110)を得る密閉工程と、前記組立て品(110)から前記第2空間(520)を有する部分を除去することで、前記真空空間(50)を有する所定部分(10)であるガラスパネルユニットを得る除去工程と、を備える。
 第12の形態によれば、排気口(700)および排気管(810)がなく、しかも、断熱性能が良いガラスパネルユニット(10)が得られる。
 本発明に係る第13の形態のガラスパネルユニットの製造方法は、第12の形態との組み合わせにより実現される。第13の形態では、前記枠体(410)は、第1軟化点を有する第1熱接着剤を含む。前記仕切り(420)は、前記第1軟化点以上の第2軟化点を有する第2熱接着剤を含む。前記組立工程では、前記第1軟化点以上の第1溶融温度(Tm1)で前記第1熱接着剤を一旦溶融させることで、前記第1ガラス基板(200)と前記第2ガラス基板(300)とを気密に接合する。前記密閉工程では、前記第2軟化点以上の第2溶融温度(Tm2)で前記第2熱接着剤を一旦溶融させることで、前記仕切り(420)を変形させて前記隔壁(42)を形成する。前記第1溶融温度(Tm1)は、前記第2溶融温度(Tm2)より低い。
 第13の形態によれば、第1ガラス基板(200)と第2ガラス基板(300)とを気密に接合する際に仕切り(420)が変形して通気路(600)が塞がれてしまう可能性を低くできる。
 本発明に係る第14の形態のガラスパネルユニットの製造方法は、第12の形態との組み合わせにより実現される。第14の形態では、前記密閉工程では、排気温度(Te)で、前記第1空間(510)を、前記通気路(600)、前記第2空間(520)、および前記排気口(700)を介して排気する。前記排気温度(Te)は、前記ゲッタの活性化温度よりも高い。
 第14の形態によれば、第1空間(510)を、通気路(600)、第2空間(520)、および排気口(700)を介して排気する際に、ガス吸着体(60)の吸着能力を回復させることができる。
 本発明に係る第15の形態のガラスパネルユニットの製造方法は、第14の形態との組み合わせにより実現される。第15の形態では、前記枠体(410)は、第1軟化点を有する第1熱接着剤を含む。前記仕切り(420)は、前記第1軟化点以上の第2軟化点を有する第2熱接着剤を含む。前記組立工程では、前記第1軟化点以上の第1溶融温度(Tm1)で前記第1熱接着剤を一旦溶融させることで、前記第1ガラス基板(200)と前記第2ガラス基板(300)とを気密に接合する。前記密閉工程では、前記第2軟化点以上の第2溶融温度(Tm2)で前記第2熱接着剤を一旦溶融させることで、前記仕切り(420)を変形させて前記隔壁(42)を形成する。前記排気温度(Te)は、前記第1溶融温度(Tm1)および前記第2溶融温度(Tm2)よりも低い。
 第15の形態によれば、第1空間(510)を、通気路(600)、第2空間(520)、および排気口(700)を介して排気する際に仕切り(420)が変形して通気路(600)が塞がれてしまう可能性を低くできる。
 本発明に係る第16の形態のガラスパネルユニットの製造方法は、第15の形態との組み合わせにより実現される。第16の形態では、前記第1溶融温度(Tm1)は、前記第2溶融温度(Tm2)よりも低い。
 第16の形態によれば、第1ガラス基板(200)と第2ガラス基板(300)とを気密に接合する際に仕切り(420)が変形して通気路(600)が塞がれてしまう可能性を低くできる。
 本発明に係る第17の形態のガラスパネルユニットの製造方法は、第12~第16の形態のいずれか一つとの組み合わせにより実現される。第17の形態では、前記密閉工程では、前記第1空間(510)を、前記通気路(600)、前記第2空間(520)、および前記排気口(700)を介して排気しながら、前記仕切り(420)を変形させて前記隔壁(42)を形成する。
 第17の形態によれば、仕切り(420)を変形させて隔壁(42)を形成する際に真空空間(50)の真空度が悪化する可能性を低くできる。

Claims (17)

  1.  仮組立て品に所定の処理を行って得られる組立て品から分離される所定部分であって、
     前記仮組立て品は、
      第1ガラス基板と、
      前記第1ガラス基板に対向するように配置された第2ガラス基板と、
      前記第1ガラス基板と前記第2ガラス基板との間に配置されて前記第1ガラス基板と前記第2ガラス基板とを気密に接合する枠体と、
      前記第1ガラス基板と前記第2ガラス基板と前記枠体とで囲まれた内部空間と、
      前記内部空間を第1空間と第2空間とに仕切る仕切りと、
      前記内部空間内に形成され、前記第1空間と前記第2空間とをつなぐ通気路と、
      前記第2空間と外部空間とをつなぐ排気口と、
      前記第1空間内に配置され、ゲッタを有するガス吸着体と、
     を備え、
     前記所定の処理は、
      前記通気路と前記第2空間と前記排気口を介して前記第1空間を排気して前記第1空間を真空空間とし、
      前記仕切りを変形させて前記通気路を塞いで前記真空空間を前記第2空間から分離する隔壁を形成することで前記枠体において前記真空空間に対応する部分と前記隔壁とから前記第1ガラス基板と前記第2ガラス基板とを気密に接合するとともに前記真空空間を囲むシールを形成する処理であり、
     前記所定部分は、
      前記第1ガラス基板のうち前記真空空間に対応する部分である第1ガラスパネルと、
      前記第2ガラス基板のうち前記真空空間に対応する部分である第2ガラスパネルと、
      前記シールと、
      前記真空空間と、
      前記ガス吸着体と、
     を備える、
     ガラスパネルユニット。
  2.  前記ゲッタは、蒸発型ゲッタである、
     請求項1に記載のガラスパネルユニット。
  3.  前記ゲッタは、ゼオライト、または、イオン交換されたゼオライトである、
     請求項2に記載のガラスパネルユニット。
  4.  前記ゲッタは、非蒸発型ゲッタである、
     請求項1に記載のガラスパネルユニット。
  5.  前記ガス吸着体は、前記ゲッタの粉体を備える、
     請求項1~4のいずれか一項に記載のガラスパネルユニット。
  6.  前記ガス吸着体は、前記真空空間の端に配置される、
     請求項1~5のいずれか一項に記載のガラスパネルユニット。
  7.  前記ゲッタは、前記第1空間を、前記通気路、前記第2空間、および前記排気口を介して排気する際の温度よりも低い活性化温度を有する、
     請求項1~6のいずれか一項に記載のガラスパネルユニット。
  8.  前記枠体は、第1軟化点を有する第1熱接着剤を含み、
     前記仕切りは、前記第1軟化点以上の第2軟化点を有する第2熱接着剤を含み、
     前記第1ガラス基板と前記第2ガラス基板とは、前記第1軟化点以上の第1溶融温度で前記第1熱接着剤を一旦溶融させることで、気密に接合され、
     前記仕切りは、前記第2軟化点以上の第2溶融温度で前記第2熱接着剤を一旦溶融させることで変形され、
     前記第1溶融温度は、前記第2溶融温度よりも低い、
     請求項1~6のいずれか一項に記載のガラスパネルユニット。
  9.  前記枠体は、第1軟化点を有する第1熱接着剤を含み、
     前記仕切りは、前記第1軟化点以上の第2軟化点を有する第2熱接着剤を含み、
     前記第1ガラス基板と前記第2ガラス基板とは、前記第1軟化点以上の第1溶融温度で前記第1熱接着剤を一旦溶融させることで、気密に接合され、
     前記仕切りは、前記第2軟化点以上の第2溶融温度で前記第2熱接着剤を一旦溶融させることで変形され、
     前記ゲッタの活性化温度は、前記第1空間を、前記通気路、前記第2空間、および前記排気口を介して排気する際の温度よりも低く、
     前記第1軟化点、および前記第2軟化点は、前記第1空間を、前記通気路、前記第2空間、および前記排気口を介して排気する際の前記温度よりも高い、
     請求項1~6のいずれか一項に記載のガラスパネルユニット。
  10.  請求項1~9のいずれか一つに記載のガラスパネルユニットを作製するための仮組立て品であって、
     第1ガラス基板と、
     前記第1ガラス基板に対向するように配置された第2ガラス基板と、
     前記第1ガラス基板と前記第2ガラス基板との間に配置されて前記第1ガラス基板と前記第2ガラス基板とを気密に接合する枠体と、
     前記第1ガラス基板と前記第2ガラス基板と前記枠体とで囲まれた内部空間と、
     前記内部空間を第1空間と第2空間とに仕切る仕切りと、
     前記内部空間内で前記第1空間と前記第2空間とをつなぐ通気路と、
     前記第2空間と外部空間とをつなぐ排気口と、
     前記第1空間内に配置され、ゲッタを有するガス吸着体と、
     を備える、
     ガラスパネルユニットの仮組立て品。
  11.  請求項1~9のいずれか一つに記載のガラスパネルユニットを作製するための組立て品であって、
     第1ガラス基板と、
     前記第1ガラス基板に対向するように配置された第2ガラス基板と、
     前記第1ガラス基板と前記第2ガラス基板との間に配置されて前記第1ガラス基板と前記第2ガラス基板とを気密に接合する枠体と、
     前記第1ガラス基板と前記第2ガラス基板と前記枠体とで囲まれた内部空間と、
     前記内部空間を真空空間と第2空間とに分離する隔壁と、
     前記第2空間と外部空間とをつなぐ排気口と、
     前記真空空間内に配置され、ゲッタを有するガス吸着体と、
     を備え、
     前記隔壁は、前記内部空間を第1空間と前記第2空間とに仕切る仕切りを、前記第1空間を前記内部空間内で前記第1空間と前記第2空間とをつなぐ通気路と前記第2空間と前記排気口とを介して排気して前記真空空間とした後に、前記通気路を塞ぐように変形させて得られる、
     ガラスパネルユニットの組立て品。
  12.  第1ガラス基板と、前記第1ガラス基板に対向するように配置された第2ガラス基板と、前記第1ガラス基板と前記第2ガラス基板との間に配置されて前記第1ガラス基板と前記第2ガラス基板とを気密に接合する枠体と、前記第1ガラス基板と前記第2ガラス基板と前記枠体とで囲まれた内部空間と、前記内部空間を第1空間と第2空間とに仕切る仕切りと、前記第1空間と前記第2空間とをつなぐ通気路と、前記第2空間と外部空間とをつなぐ排気口と、ゲッタを有するガス吸着体と、を備える仮組立て品を用意する組立工程と、
     前記第1空間を、前記通気路と前記第2空間と前記排気口とを介して排気して真空空間とし、前記仕切りを変形させて前記通気路を塞ぐ隔壁を形成することで前記枠体において前記真空空間に対応する部分と前記隔壁とから前記第1ガラス基板と前記第2ガラス基板とを気密に接合するとともに前記真空空間を囲むシールを形成して、組立て品を得る密閉工程と、
     前記組立て品から前記第2空間を有する部分を除去することで、前記真空空間を有する所定部分であるガラスパネルユニットを得る除去工程と、
     を備える、
     ガラスパネルユニットの製造方法。
  13.  前記枠体は、第1軟化点を有する第1熱接着剤を含み、
     前記仕切りは、前記第1軟化点以上の第2軟化点を有する第2熱接着剤を含み、
     前記組立工程では、前記第1軟化点以上の第1溶融温度で前記第1熱接着剤を一旦溶融させることで、前記第1ガラス基板と前記第2ガラス基板とを気密に接合し、
     前記密閉工程では、前記第2軟化点以上の第2溶融温度で前記第2熱接着剤を一旦溶融させることで、前記仕切りを変形させて前記隔壁を形成し、
     前記第1溶融温度は、前記第2溶融温度より低い、
     請求項12に記載のガラスパネルユニットの製造方法。
  14.  前記密閉工程では、排気温度で、前記第1空間を、前記通気路、前記第2空間、および前記排気口を介して排気し、
     前記排気温度は、前記ゲッタの活性化温度よりも高い、
     請求項12に記載のガラスパネルユニットの製造方法。
  15.  前記枠体は、第1軟化点を有する第1熱接着剤を含み、
     前記仕切りは、前記第1軟化点以上の第2軟化点を有する第2熱接着剤を含み、
     前記組立工程では、前記第1軟化点以上の第1溶融温度で前記第1熱接着剤を一旦溶融させることで、前記第1ガラス基板と前記第2ガラス基板とを気密に接合し、
     前記密閉工程では、前記第2軟化点以上の第2溶融温度で前記第2熱接着剤を一旦溶融させることで、前記仕切りを変形させて前記隔壁を形成し、
     前記排気温度は、前記第1溶融温度および前記第2溶融温度よりも低い、
     請求項14に記載のガラスパネルユニットの製造方法。
  16.  前記第1溶融温度は、前記第2溶融温度よりも低い、
     請求項15に記載のガラスパネルユニットの製造方法。
  17.  前記密閉工程では、前記第1空間を、前記通気路、前記第2空間、および前記排気口を介して排気しながら、前記仕切りを変形させて前記隔壁を形成する、
     請求項12~16のいずれか一つに記載のガラスパネルユニットの製造方法。
PCT/JP2015/004963 2014-09-30 2015-09-30 ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法 WO2016051787A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580053089.0A CN106795046A (zh) 2014-09-30 2015-09-30 玻璃面板单元、玻璃面板单元的临时组装件、玻璃面板单元的完整组装件、制造玻璃面板单元的方法
PL15847408T PL3202726T3 (pl) 2014-09-30 2015-09-30 Jednostka szklanego panelu, zespół tymczasowy jednostki szklanego panelu, kompletny zespół jednostki szklanego panelu i sposób wytwarzania jednostki szklanego panelu
DK15847408.0T DK3202726T3 (da) 2014-09-30 2015-09-30 Glasrudeenhed, midlertidig samling af glasrudeenhed, samling af glasrudeenhed og fremgangsmåde til fremstilling af glasrudeenhed
EP15847408.0A EP3202726B1 (en) 2014-09-30 2015-09-30 Glass panel unit, temporary assembly of glass panel unit, completed glass panel unit assembly, and method for manufacturing glass panel unit
ES15847408T ES2787212T3 (es) 2014-09-30 2015-09-30 Unidad de panel de vidrio, conjunto temporal de unidad de panel de vidrio, conjunto completado de unidad de panel de vidrio y procedimiento de fabricación de la unidad de panel de vidrio
US15/512,714 US10378272B2 (en) 2014-09-30 2015-09-30 Glass panel unit, temporary assembly of glass panel unit, completed assembly of glass panel unit, method for manufacturing glass panel unit
JP2016551550A JP6471916B2 (ja) 2014-09-30 2015-09-30 ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014200967 2014-09-30
JP2014-200967 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016051787A1 true WO2016051787A1 (ja) 2016-04-07

Family

ID=55629854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004963 WO2016051787A1 (ja) 2014-09-30 2015-09-30 ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法

Country Status (9)

Country Link
US (1) US10378272B2 (ja)
EP (1) EP3202726B1 (ja)
JP (1) JP6471916B2 (ja)
CN (1) CN106795046A (ja)
DK (1) DK3202726T3 (ja)
ES (1) ES2787212T3 (ja)
HU (1) HUE050694T2 (ja)
PL (1) PL3202726T3 (ja)
WO (1) WO2016051787A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018062072A1 (ja) * 2016-09-30 2019-06-24 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法、ガラス窓の製造方法、およびガラスパネルユニット
WO2019188312A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法及びガラス窓の製造方法
WO2019207971A1 (ja) * 2018-04-26 2019-10-31 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ガラスパネルユニットの仕掛り品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
WO2020017221A1 (ja) * 2018-07-18 2020-01-23 パナソニックIpマネジメント株式会社 ガラスパネルユニット、及びガラスパネルユニットの製造方法
US11326388B2 (en) * 2018-05-31 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit assembly, method for manufacturing glass panel unit, and method for manufacturing glass panel unit assembly
US11549305B2 (en) * 2018-05-31 2023-01-10 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit assembly, and method for manufacturing glass panel unit

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE045017T2 (hu) * 2014-09-30 2019-12-30 Panasonic Ip Man Co Ltd Üveg panel egység és annak minõség vizsgálati eljárása
US12187643B2 (en) * 2018-03-30 2025-01-07 Panasonic Intellectual Property Management Co., Ltd. Getter material, method for manufacturing getter material, method for manufacturing getter-material-containing composition, and method for manufacturing glass panel unit
WO2019207968A1 (ja) * 2018-04-26 2019-10-31 パナソニックIpマネジメント株式会社 ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法、ガラスパネルユニットの仕掛り品、ガラスパネルユニット
WO2020024498A1 (zh) * 2018-08-02 2020-02-06 比亚迪股份有限公司 玻璃复合体、壳体、显示装置以及终端设备
CN113074509B (zh) * 2020-01-06 2024-07-12 青岛海尔电冰箱有限公司 真空绝热体及冰箱
EP4148027A4 (en) * 2020-05-08 2024-01-17 Panasonic Intellectual Property Management Co., Ltd. GLASS PANEL UNIT, GETTER MATERIAL, GETTER MATERIAL COMPOSITION AND METHOD FOR PRODUCING A GLASS PANEL UNIT

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206740A (ja) * 2000-01-25 2001-07-31 Central Glass Co Ltd 低圧複層ガラスおよびその製造方法
JP2008063158A (ja) * 2006-09-05 2008-03-21 Matsushita Electric Ind Co Ltd ガラスパネル
JP2013088036A (ja) * 2011-10-19 2013-05-13 Hitachi Appliances Inc 断熱箱体、冷蔵庫及び貯湯式給湯器
WO2013172034A1 (ja) * 2012-05-18 2013-11-21 パナソニック株式会社 複層ガラスの製造方法
WO2014022106A1 (en) * 2012-07-31 2014-02-06 Guardian Industries Corp. Vacuum insulated glass (vig) window unit with getter structure and method of making same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990201A (en) * 1974-09-03 1976-11-09 Gerald Falbel Evacuated dual glazing system
AUPQ230499A0 (en) 1999-08-18 1999-09-09 University Of Sydney, The Evacuated glass panel with getter and method of construction thereof
JP2001342043A (ja) 2000-05-29 2001-12-11 Central Glass Co Ltd 低圧複層ガラス
WO2013172033A1 (ja) 2012-05-18 2013-11-21 パナソニック株式会社 複層ガラスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206740A (ja) * 2000-01-25 2001-07-31 Central Glass Co Ltd 低圧複層ガラスおよびその製造方法
JP2008063158A (ja) * 2006-09-05 2008-03-21 Matsushita Electric Ind Co Ltd ガラスパネル
JP2013088036A (ja) * 2011-10-19 2013-05-13 Hitachi Appliances Inc 断熱箱体、冷蔵庫及び貯湯式給湯器
WO2013172034A1 (ja) * 2012-05-18 2013-11-21 パナソニック株式会社 複層ガラスの製造方法
WO2014022106A1 (en) * 2012-07-31 2014-02-06 Guardian Industries Corp. Vacuum insulated glass (vig) window unit with getter structure and method of making same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3521256A4 (en) * 2016-09-30 2019-10-02 Panasonic Intellectual Property Management Co., Ltd. METHOD FOR PRODUCING A GLASS WIND UNIT, METHOD FOR PRODUCING A GLASS WINDOW AND GLASS UNIT
US11465938B2 (en) 2016-09-30 2022-10-11 Panasonic Intellectual Property Management Co., Ltd. Manufacturing method of glass panel unit, manufacturing method of glass window, and glass panel unit
JPWO2018062072A1 (ja) * 2016-09-30 2019-06-24 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法、ガラス窓の製造方法、およびガラスパネルユニット
US11767706B2 (en) 2018-03-30 2023-09-26 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing glass panel unit, and method for manufacturing glass window
WO2019188312A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法及びガラス窓の製造方法
JPWO2019188312A1 (ja) * 2018-03-30 2021-03-18 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法及びガラス窓の製造方法
JP7113298B2 (ja) 2018-03-30 2022-08-05 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法及びガラス窓の製造方法
JPWO2019207971A1 (ja) * 2018-04-26 2021-06-10 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ガラスパネルユニットの仕掛り品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
US12071371B2 (en) 2018-04-26 2024-08-27 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit, work in progress of glass panel unit, glass panel unit assembly, and method for manufacturing glass panel unit
JP7029703B2 (ja) 2018-04-26 2022-03-04 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ガラスパネルユニットの製造方法
WO2019207971A1 (ja) * 2018-04-26 2019-10-31 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ガラスパネルユニットの仕掛り品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
US11326388B2 (en) * 2018-05-31 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit assembly, method for manufacturing glass panel unit, and method for manufacturing glass panel unit assembly
US11549305B2 (en) * 2018-05-31 2023-01-10 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit assembly, and method for manufacturing glass panel unit
WO2020017221A1 (ja) * 2018-07-18 2020-01-23 パナソニックIpマネジメント株式会社 ガラスパネルユニット、及びガラスパネルユニットの製造方法
US20210300822A1 (en) * 2018-07-18 2021-09-30 Panasonic Intellectual Property Management Co., Ltd. Glass panel unit and method for manufacturing the glass panel unit
JPWO2020017221A1 (ja) * 2018-07-18 2021-08-12 パナソニックIpマネジメント株式会社 ガラスパネルユニット、及びガラスパネルユニットの製造方法

Also Published As

Publication number Publication date
US10378272B2 (en) 2019-08-13
DK3202726T3 (da) 2020-06-15
CN106795046A (zh) 2017-05-31
US20170298681A1 (en) 2017-10-19
PL3202726T3 (pl) 2020-08-10
EP3202726A1 (en) 2017-08-09
JPWO2016051787A1 (ja) 2017-08-10
EP3202726B1 (en) 2020-03-11
JP6471916B2 (ja) 2019-02-20
EP3202726A4 (en) 2017-09-13
HUE050694T2 (hu) 2020-12-28
ES2787212T3 (es) 2020-10-15

Similar Documents

Publication Publication Date Title
JP6471916B2 (ja) ガラスパネルユニット、ガラスパネルユニットの仮組立て品、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
JP6890276B2 (ja) ガラスパネルユニットの製造方法
WO2017056422A1 (ja) ガラスパネルユニットおよびガラス窓
JP6395080B2 (ja) ガラスパネルユニット、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
JP6865391B2 (ja) ガラスパネルユニット、ガラス窓およびガラスパネルユニットの製造方法
WO2016051714A1 (ja) ガラスパネルユニット及びその検査方法
JP6528335B2 (ja) ガラスパネルユニット
JP7029703B2 (ja) ガラスパネルユニット、ガラスパネルユニットの製造方法
JP7113298B2 (ja) ガラスパネルユニットの製造方法及びガラス窓の製造方法
US11162297B2 (en) Glass panel unit assembly, and method for manufacturing glass panel unit
JP6854453B2 (ja) ガラスパネルユニットの製造方法およびガラス窓の製造方法
JP7228819B2 (ja) ガラスパネルユニットを得るための組立て品及びガラスパネルユニットの製造方法
JP7336728B2 (ja) ガラスパネルユニットの製造方法
JP7038333B2 (ja) ガラスパネルユニットの製造方法
WO2020003830A1 (ja) ガラスパネルユニットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551550

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015847408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015847408

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15512714

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE