[go: up one dir, main page]

WO2016051646A1 - Ejector refrigeration cycle device - Google Patents

Ejector refrigeration cycle device Download PDF

Info

Publication number
WO2016051646A1
WO2016051646A1 PCT/JP2015/004092 JP2015004092W WO2016051646A1 WO 2016051646 A1 WO2016051646 A1 WO 2016051646A1 JP 2015004092 W JP2015004092 W JP 2015004092W WO 2016051646 A1 WO2016051646 A1 WO 2016051646A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
ejector
refrigeration cycle
pressure
evaporator
Prior art date
Application number
PCT/JP2015/004092
Other languages
French (fr)
Japanese (ja)
Inventor
佳之 横山
西嶋 春幸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016051646A1 publication Critical patent/WO2016051646A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • This disclosure relates to an ejector refrigeration cycle apparatus including an internal heat exchanger.
  • an ejector refrigeration cycle apparatus which is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression apparatus, is known.
  • the pressure of the intake refrigerant is higher than that of a normal refrigeration cycle apparatus in which the refrigerant evaporating pressure in the evaporator and the pressure of the intake refrigerant sucked into the compressor are substantially equal due to the boosting action of the ejector. Can be raised.
  • the power consumption of the compressor can be reduced and the coefficient of performance (COP) of the cycle can be improved.
  • means for adding an internal heat exchanger is known.
  • the internal heat exchanger exchanges heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the cycle, and reduces the enthalpy of the inlet-side refrigerant of the evaporator. Therefore, in the refrigeration cycle apparatus including the internal heat exchanger, the enthalpy difference (refrigeration capacity) between the enthalpy of the outlet-side refrigerant of the evaporator and the enthalpy of the inlet-side refrigerant can be increased, and COP can be improved.
  • the internal heat exchanger can also be applied to an ejector type refrigeration cycle apparatus.
  • ejector efficiency is energy conversion efficiency as the whole ejector.
  • the present disclosure aims to sufficiently improve the coefficient of performance (COP) of a cycle in an ejector refrigeration cycle apparatus including an internal heat exchanger.
  • COP coefficient of performance
  • an ejector refrigeration cycle apparatus includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, and a high-pressure side that flows out of the radiator
  • the internal heat exchanger that cools the refrigerant until it becomes a supercooled liquid phase refrigerant by exchanging heat with the low pressure side refrigerant at a lower pressure than the high pressure side refrigerant, and the supercooled liquid phase refrigerant that has flowed out of the internal heat exchanger is decompressed.
  • the ejector has a nozzle portion that injects and sucks the refrigerant from the refrigerant suction port by the suction action of the refrigerant injected from the nozzle portion, and mixes the injection refrigerant and the suction refrigerant sucked from the refrigerant suction port to increase the pressure
  • a decompressor that depressurizes the refrigerant downstream of the radiator, an evaporator that evaporates the refrigerant decompressed by the decompressor and flows out to the refrigerant suction port side, and a supercooled liquid phase refrigerant that flows into the nozzle portion. Swivel around the axis of Comprising a swirl flow generation unit which.
  • the swirl flow generator Since the swirl flow generator is provided, the refrigerant pressure on the center side of the supercooled liquid phase refrigerant flowing into the nozzle is reduced to the pressure at which it becomes a saturated liquid phase refrigerant or the pressure at which the refrigerant boils under reduced pressure (causes cavitation). Can be reduced. Accordingly, it is possible to promote wall surface boiling due to friction between the refrigerant and the wall surface of the swirl flow generator, and interface boiling at the gas-liquid interface between the gas phase refrigerant and the liquid phase refrigerant.
  • the low-pressure side refrigerant that exchanges heat with the high-pressure side refrigerant in the internal heat exchanger may specifically be a refrigerant that flows out of the ejector and is sucked into the compressor, or flows out of the evaporator and flows into the refrigerant It may be a refrigerant flowing into the suction port.
  • coolant which flows out from a decompression device and flows in into an evaporator may be sufficient.
  • the ejector-type refrigeration cycle apparatus may include a gas-liquid separation unit that separates the gas-liquid refrigerant flowing out of the ejector.
  • the inlet side of the decompression device may be connected to the refrigerant outlet of the gas-liquid separator, and the inlet side of the compressor may be connected to the refrigerant outlet of the gas-liquid separator.
  • a refrigerant flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the nozzle unit is provided, and the refrigerant flow rate adjustment unit flows into the nozzle unit so that the superheat degree of the evaporator outlet side refrigerant approaches a predetermined reference superheat degree.
  • the flow rate of the refrigerant to be adjusted may be adjusted.
  • the swirl flow generation unit may reduce the refrigerant pressure on the center side of the supercooled liquid phase refrigerant flowing into the nozzle unit to a pressure that becomes a saturated liquid phase refrigerant or a pressure at which the refrigerant is boiled under reduced pressure. It may be configured. Thereby, the coefficient of performance COP of the cycle can be improved more easily.
  • the ejector refrigeration cycle apparatus 10 of the present embodiment shown in the overall configuration diagram of FIG. 1 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is an air conditioning target space. Therefore, the cooling target fluid of the ejector refrigeration cycle apparatus 10 is blown air.
  • an HFC refrigerant (specifically, R134a) is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. It is composed.
  • an HFO refrigerant (specifically, R1234yf) or the like may be adopted as the refrigerant.
  • refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • the compressor 11 in the ejector refrigeration cycle apparatus 10 sucks the refrigerant and discharges it until it becomes a high-pressure refrigerant.
  • the compressor 11 of the present embodiment is an electric compressor configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
  • various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be adopted. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from the control device 50 described later, and any type of an AC motor or a DC motor may be adopted.
  • the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
  • the radiator 12 is a heat-dissipating heat exchanger that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown by the cooling fan 12c. is there.
  • the heat radiator 12 exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense it.
  • a receiver unit 12b that separates the gas-liquid refrigerant flowing out of the condensing unit 12a and stores excess liquid-phase refrigerant, and is a so-called receiver-integrated condenser.
  • the cooling fan 12c is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device 50.
  • the refrigerant outlet side of the radiator 12 is connected to the inlet side of the high-pressure side refrigerant passage 15 a of the internal heat exchanger 15.
  • the internal heat exchanger 15 exchanges heat between the high-pressure refrigerant flowing through the high-pressure refrigerant passage 15a and the low-pressure refrigerant flowing through the low-pressure refrigerant passage 15b, and cools the high-pressure refrigerant until it becomes a supercooled liquid phase refrigerant.
  • the temperature and pressure of the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b are lower than the temperature and pressure of the high-pressure side refrigerant flowing through the high-pressure side refrigerant passage 15a.
  • the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b of the present embodiment is an intake refrigerant that flows out of the gas-phase refrigerant outlet 31d of the ejector 13 and is sucked into the compressor 11.
  • an internal heat exchanger 15 a double-pipe heat exchanger or the like in which an inner tube forming a low-pressure side refrigerant passage 15b is arranged inside an outer tube forming a high-pressure side refrigerant passage 15a. be able to.
  • the refrigerant inlet 31 a side of the ejector 13 is connected to the outlet side of the high-pressure side refrigerant passage 15 a of the internal heat exchanger 15.
  • the ejector 13 functions as a refrigerant decompression device that decompresses the supercooled liquid phase refrigerant flowing out from the high-pressure side refrigerant passage 15a of the internal heat exchanger 15, and will be described later by the suction action of the refrigerant flow injected at a high speed. It also functions as a refrigerant circulation part (refrigerant transport part) that sucks (transports) and circulates the refrigerant that has flowed out of the evaporator 14.
  • refrigerant circulation part refrigerant transport part
  • the ejector 13 of the present embodiment also functions as a gas-liquid separation unit that separates the gas-liquid of the decompressed refrigerant. That is, the ejector 13 according to the present embodiment is configured as a gas-liquid separator integrated ejector (ejector module) in which the ejector and the gas-liquid separator are integrated (modularized).
  • ejector module gas-liquid separator integrated ejector
  • the up and down arrows in FIG. 1 indicate the up and down directions when the ejector 13 is mounted on the vehicle. Therefore, the up and down directions in a state where other cycle constituent devices are mounted on the vehicle are not limited to this.
  • the ejector 13 of the present embodiment includes a body 30 configured by combining a plurality of constituent members as shown in FIG.
  • the body 30 is formed of a prismatic or cylindrical metal or resin.
  • the body 30 is formed with a plurality of refrigerant inflow / outflow ports, a plurality of internal spaces, and the like.
  • a refrigerant inlet 31 a that allows the refrigerant that has flowed out from the high-pressure side refrigerant passage 15 a of the internal heat exchanger 15 to flow into the inside, and a refrigerant that sucks the refrigerant that has flowed out from the evaporator 14
  • the liquid-phase refrigerant outlet 31c that causes the liquid-phase refrigerant separated in the gas-liquid separation space 30f formed inside the body 30 to flow out to the refrigerant inlet side of the evaporator 14 and the gas-liquid separation space 30f
  • a gas-phase refrigerant outlet 31d for allowing the separated gas-phase refrigerant to flow out to the inlet side of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is formed.
  • the internal space formed in the body 30 includes a swirling space 30a for swirling the refrigerant flowing in from the refrigerant inlet 31a, a depressurizing space 30b for depressurizing the refrigerant flowing out of the swirling space 30a, and a depressurizing space 30b.
  • a pressurizing space 30e into which the refrigerant that has flowed out flows, a gas-liquid separation space 30f that separates the gas and liquid of the refrigerant that has flowed out from the pressurizing space 30e, and the like are formed.
  • the turning space 30a is formed in a substantially cylindrical rotating body shape.
  • the rotating body shape is a three-dimensional shape formed when a plane figure is rotated around one straight line (central axis) on the same plane.
  • the refrigerant inflow passage 31f that connects the refrigerant inlet 31a and the swirling space 30a extends in a tangential direction of the inner wall surface of the swirling space 30a when viewed from the central axis direction of the swirling space 30a.
  • the refrigerant that has flowed into the swirl space 30a from the refrigerant inflow passage 31f flows along the inner wall surface of the swirl space 30a, and swirls around the central axis of the swirl space 30a.
  • the refrigerant pressure on the central axis side is lower than the refrigerant pressure on the outer peripheral side in the swirling space 30a. Therefore, in the present embodiment, during normal operation of the ejector-type refrigeration cycle apparatus 10, the refrigerant pressure on the central axis side in the swirling space 30a is set to a pressure that becomes a saturated liquid phase refrigerant, or the refrigerant boils under reduced pressure (cavitating cavitation). ) Reduce to pressure.
  • Such adjustment of the refrigerant pressure on the central axis side in the swirling space 30a can be realized by adjusting the swirling flow velocity of the refrigerant swirling in the swirling space 30a.
  • the swirl flow velocity can be adjusted by adjusting the area ratio between the passage cross-sectional area of the refrigerant inflow passage 31f and the vertical cross-sectional area of the swirl space 30a, for example.
  • the swirling flow velocity in the present embodiment means the flow velocity in the swirling direction of the refrigerant in the vicinity of the outermost peripheral portion of the swirling space 30a.
  • the pressure reducing space 30b and the pressure increasing space 30e are formed in a substantially truncated cone-shaped rotating body shape that gradually expands from the swirl space 30a side to the gas-liquid separation space 30f side.
  • the gas-liquid separation space 30f is disposed on the lower side of the pressurizing space 30e and is formed in a substantially cylindrical rotating body shape. The central axes of these spaces are all arranged coaxially.
  • the body 30 is formed with a suction passage 13b that guides the refrigerant sucked from the refrigerant suction port 31b to the downstream side of the refrigerant flow in the decompression space 30b and to the upstream side of the refrigerant flow in the pressurization space 30e. .
  • a passage forming member 35 is disposed inside the pressure reducing space 30b and the pressure increasing space 30e.
  • the passage forming member 35 is formed in a substantially conical shape that spreads toward the outer peripheral side as it is separated from the decompression space 30b, and the central axis of the passage formation member 35 is also arranged coaxially with the central axis of the decompression space 30b and the like. ing.
  • the shape of the vertical cross section in the axial direction is annular (from the circular shape) between the inner peripheral surface of the part forming the pressure reducing space 30b and the pressure increasing space 30e of the body 30 and the conical side surface of the passage forming member 35.
  • a refrigerant passage having a donut shape excluding a small-diameter circular shape arranged on the same axis is formed.
  • the refrigerant passage formed between the portion forming the decompression space 30b of the body 30 and the portion on the top side of the conical side surface of the passage forming member 35 is a passage toward the downstream side of the refrigerant flow. It is formed in a shape that reduces the cross-sectional area small. Due to this shape, the refrigerant passage constitutes a nozzle passage 13a that functions as a nozzle portion that is isentropically decompressed and ejected.
  • the nozzle passage 13a of the present embodiment gradually reduces the passage cross-sectional area from the inlet side of the nozzle passage 13a toward the minimum passage area portion, and from the minimum passage area portion to the outlet side of the nozzle passage 13a. It is formed in a shape that gradually increases the cross-sectional area of the passage. That is, in the nozzle passage 13a of the present embodiment, the refrigerant passage cross-sectional area changes in the same manner as a so-called Laval nozzle.
  • the swirl space 30a is disposed above the nozzle passage 13a and upstream of the refrigerant flow.
  • the swirling space 30a of the present embodiment swirls the supercooled liquid phase refrigerant flowing into the nozzle passage 13a around the axis of the nozzle passage 13a. Therefore, in this embodiment, the site
  • the refrigerant passage formed between the portion forming the pressure increasing space 30e of the body 30 and the downstream portion of the conical side surface of the passage forming member 35 gradually has a passage sectional area toward the downstream side of the refrigerant flow. It is formed in a shape that expands. Due to this shape, this refrigerant passage constitutes a diffuser passage 13c that functions as a diffuser portion (pressure increase portion) for mixing and increasing the pressure of the refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked from the refrigerant suction port 31b. is doing.
  • the passage forming member 35 and the element 37 of the present embodiment constitute a refrigerant flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing into the nozzle passage 13a by changing the passage sectional area of the minimum passage area portion of the nozzle passage 13a. is doing. That is, in this embodiment, the ejector 13 and the refrigerant
  • the element 37 has a diaphragm that is displaced according to the temperature and pressure of the refrigerant flowing through the suction passage 13b (that is, the refrigerant flowing out of the evaporator 14). Then, the displacement of the diaphragm is transmitted to the passage forming member 35 through the operating rod 37a, so that the passage forming member 35 is displaced in the vertical direction.
  • this element 37 has the passage forming member 35 in a direction (vertical direction lower side) in which the passage cross-sectional area of the minimum passage area portion is enlarged as the temperature (superheat degree) of the refrigerant on the outlet side of the evaporator 14 increases. Displace. The element 37 displaces the passage forming member 35 in a direction (vertical direction upper side) in which the passage cross-sectional area of the minimum passage area portion is reduced as the temperature (superheat degree) of the refrigerant on the outlet side of the evaporator 14 decreases.
  • the element 37 displaces the passage forming member 35 according to the degree of superheat of the evaporator 14 outlet-side refrigerant in this way, so that the degree of superheat of the evaporator 14 outlet-side refrigerant becomes a predetermined reference superheat degree.
  • the passage cross-sectional area of the minimum passage area portion of the nozzle passage 13a is adjusted so as to approach.
  • the gas-liquid separation space 30 f is disposed below the passage forming member 35.
  • the gas-liquid separation space 30f constitutes a centrifugal-type gas-liquid separation unit that turns the refrigerant flowing out of the diffuser passage 13c around the central axis and separates the gas-liquid of the refrigerant by the action of centrifugal force. Accordingly, in the gas-liquid separation space 30f of the present embodiment, the gas-liquid refrigerant that has been decompressed by the nozzle passage 13a and has a pressure lower than the refrigerant discharged from the compressor 11 is separated.
  • the internal volume of the gas-liquid separation space 30f is such that even if a load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates, the surplus refrigerant cannot be substantially accumulated. .
  • the refrigerating machine oil in the separated liquid-phase refrigerant is connected to the gas phase that connects the gas-liquid separation space 30f and the liquid-phase refrigerant outlet 31c.
  • An oil return hole 31e that returns to the refrigerant passage side is formed.
  • an orifice 31i is disposed as a pressure reducing device that depressurizes the refrigerant flowing into the evaporator 14.
  • the refrigerant inlet side of the evaporator 14 is connected to the liquid-phase refrigerant outlet 31c of the ejector 13.
  • the evaporator 14 performs heat exchange between the low-pressure refrigerant decompressed by the ejector 13 and the blown air blown into the vehicle interior from the blower fan 14a, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is a vessel.
  • a refrigerant suction port 31 b of the ejector 13 is connected to the refrigerant outlet side of the evaporator 14.
  • the blower fan 14a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device 50.
  • the suction side of the compressor 11 is connected to the gas-phase refrigerant outlet 31d of the ejector 13 via the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 described above.
  • the thick solid line arrow shown in the whole block diagram of FIG. 1 shows the flow direction of the refrigerant when the ejector refrigeration cycle apparatus 10 is operated. This also applies to the entire configuration diagram of the following embodiment.
  • control device 50 includes a well-known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits.
  • the control device 50 performs various calculations and processes based on the control program stored in the ROM, and controls the operations of the various electric actuators 11, 12c, 14a and the like described above.
  • control device 50 includes an inside air temperature sensor that detects the vehicle interior temperature, an outside air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and the air temperature (evaporator temperature) of the evaporator 14.
  • sensors for air conditioning control such as an evaporator temperature sensor for detecting the temperature, an outlet side temperature sensor for detecting the temperature of the refrigerant on the outlet side of the radiator 12, and an outlet side pressure sensor for detecting the pressure of the refrigerant on the outlet side of the radiator 12.
  • the detection values of these sensor groups are input.
  • an operation panel (not shown) disposed near the instrument panel in the front part of the passenger compartment is connected to the input side of the control device 50, and operation signals from various operation switches provided on the operation panel are transmitted to the control device 50. Entered.
  • various operation switches provided on the operation panel there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
  • control device 50 of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured.
  • a configuration (hardware and software) for controlling the operation of the device constitutes a control unit of each control target device.
  • operation of the electric motor of the compressor 11 among the control apparatuses 50 comprises the discharge capability control part.
  • the control device 50 operates the electric motor of the compressor 11, the cooling fan 12c, the blower fan 14a, and the like. Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12a of the radiator 12.
  • the refrigerant flowing into the condensing unit 12a exchanges heat with the outside air blown from the cooling fan 12c, dissipates heat, and condenses.
  • the refrigerant condensed in the condensing unit 12a is gas-liquid separated in the receiver unit 12b (point a2 ⁇ b2 in FIG. 2).
  • the liquid-phase refrigerant separated from the gas and liquid by the receiver unit 12b flows into the high-pressure side refrigerant passage 15a of the internal heat exchanger 15.
  • the high-pressure liquid refrigerant flowing into the high-pressure side refrigerant passage 15a of the internal heat exchanger 15 exchanges heat with the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b, and further reduces enthalpy to become a supercooled liquid-phase refrigerant. (B2 point ⁇ c2 point in FIG. 2).
  • the supercooled liquid-phase refrigerant that has flowed out of the high-pressure side refrigerant passage 15a is decompressed and injected in an isentropic manner in the nozzle passage 13a of the ejector 13 (point c2 ⁇ point d2 in FIG. 2).
  • the refrigerant passage area in the minimum passage area portion 30m of the decompression space 30b is adjusted so that the superheat degree of the evaporator 14 outlet side refrigerant (point j2 in FIG. 2) approaches the reference superheat degree.
  • the refrigerant flowing out of the evaporator 14 is sucked into the ejector 13 from the refrigerant suction port 31b by the suction action of the refrigerant injected from the nozzle passage 13a.
  • the refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked through the suction passage 13b flow into the diffuser passage 13c and merge (point d2 ⁇ e2, point j2 ⁇ e2 in FIG. 2).
  • the kinetic energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area.
  • the pressure of the mixed refrigerant increases while the injected refrigerant and the suction refrigerant are mixed (point e2 ⁇ point f2 in FIG. 2).
  • the refrigerant that has flowed out of the diffuser passage 13c is gas-liquid separated in the gas-liquid separation space 30f (points f2 ⁇ g2, points f2 ⁇ h2 in FIG. 2).
  • the liquid-phase refrigerant separated in the gas-liquid separation space 30f is decompressed by the orifice 31i (point h2 ⁇ point i2 in FIG. 2) and flows into the evaporator 14.
  • the refrigerant flowing into the evaporator 14 absorbs heat from the blown air blown by the blower fan 14a and evaporates (point i2 ⁇ point j2 in FIG. 2). Thereby, blowing air is cooled.
  • the gas-phase refrigerant separated in the gas-liquid separation space 30f flows out from the gas-phase refrigerant outlet 31d and flows into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15.
  • the low-pressure side refrigerant flowing into the low-pressure side refrigerant passage 15b becomes a refrigerant having a slightly lower enthalpy than the saturated gas-phase refrigerant (a gas-liquid two-phase refrigerant having a relatively high dryness) (g2 point in FIG. 2). .
  • the low-pressure side refrigerant flowing into the low-pressure side refrigerant passage 15b flows into the saturated gas-phase refrigerant separated in the gas-liquid separation space 30f to the gas-phase refrigerant outlet 31d side through the oil return hole 31e. It is because it becomes the refrigerant
  • the low-pressure side refrigerant in the gas-liquid two-phase state having a relatively high dryness flowing into the low-pressure side refrigerant passage 15b exchanges heat with the high-pressure side refrigerant flowing through the high-pressure side refrigerant passage 15a to raise the enthalpy (g2 in FIG. 2). Point ⁇ k2).
  • the low-pressure refrigerant flowing out from the low-pressure refrigerant passage 15b is sucked into the compressor 11 and compressed again (point k2 ⁇ a2 in FIG. 2).
  • the ejector refrigeration cycle apparatus 10 of the present embodiment operates as described above, and can cool the blown air blown into the vehicle interior. Further, in the ejector type refrigeration cycle apparatus 10 of the present embodiment, the refrigerant that has been pressurized by the pressurizing action of the ejector 13 is sucked into the compressor 11, so that the driving power of the compressor 11 is reduced and the coefficient of performance of the cycle ( COP) can be improved.
  • the ejector refrigeration cycle apparatus 10 of the present embodiment includes the internal heat exchanger 15, the enthalpy of the refrigerant flowing into the nozzle passage 13a of the ejector 13 and the refrigerant injected from the nozzle passage 13a is reduced. Can do. For this reason, the superheat degree of the evaporator 14 outlet side refrigerant
  • coolant tends to fall rather than the cycle which is not equipped with the internal heat exchanger 15.
  • the element 37 that is the refrigerant flow rate adjustment unit is configured to have a passage cut-off in the minimum passage area portion. Reduce the area. For this reason, the refrigerant
  • the enthalpy difference (refrigeration capacity) between the enthalpy of the outlet side refrigerant of the evaporator 14 and the enthalpy of the inlet side refrigerant can be increased, and COP can be improved.
  • the nozzle passage 13a of the ejector 13 is cooled by the internal heat exchanger 15.
  • the supercooled liquid phase refrigerant flows in.
  • the refrigerant pressure on the center side of the supercooled liquid phase refrigerant flowing into the nozzle passage 13a is set to the pressure that becomes the saturated liquid phase refrigerant, Alternatively, the pressure can be reduced to a pressure at which the refrigerant boils under reduced pressure (causes cavitation).
  • the gas phase refrigerant is present in the swirl space 30a in the vicinity of the swirl center line, and the liquid single phase is surrounded by the two-phase separation so that a larger amount of gas-phase refrigerant exists on the inner periphery side than the outer periphery side of the swirl center shaft.
  • boiling wall surface boiling
  • the refrigerant in such a two-phase separation state boiling (wall surface boiling) due to friction between the swirling space 30a and the refrigerant and boiling at the gas-liquid interface (interface boiling) are promoted.
  • the ejector 13 of the present embodiment includes a passage forming member 35 and an element 37 as a refrigerant flow rate adjusting unit, and flows into the nozzle passage 13a so that the superheat degree of the evaporator 14 outlet side refrigerant approaches the reference superheat degree.
  • the refrigerant flow rate is adjusted. Therefore, the refrigeration capacity exhibited by the evaporator 14 can be expanded, and the COP of the ejector refrigeration cycle apparatus 10 can be further improved.
  • the refrigerant suction port 31 b of the ejector 13 is connected to the refrigerant outlet of the evaporator 14. Therefore, even if a relatively high temperature is set as the reference superheat degree, the temperature of the refrigerant that flows out of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 and is sucked into the compressor 11 does not increase. .
  • the COP can be sufficiently improved without adversely affecting the durability life of the compressor 11.
  • the ejector 20 includes a nozzle portion 20a and a body portion 20b.
  • the nozzle portion 20a is formed of a substantially cylindrical metal (for example, a stainless alloy) that gradually tapers in the flow direction of the refrigerant, and the refrigerant is passed through the refrigerant passage (throttle passage) formed therein. Injected with reduced pressure entropy.
  • a Laval nozzle that is set so that the flow rate of the injected refrigerant that is injected from the refrigerant injection port is equal to or higher than the sound speed during normal operation of the ejector refrigeration cycle apparatus 10a is employed as the nozzle portion 20a.
  • a tapered nozzle whose refrigerant passage cross-sectional area gradually decreases may be adopted as the nozzle portion 20a.
  • a cylindrical portion 20c extending coaxially with the axial direction of the nozzle portion 20a is provided on the refrigerant flow upstream side of the nozzle portion 20a.
  • a swirling space 20d that swirls the refrigerant that has flowed into the nozzle portion 20a is formed inside the cylindrical portion 20c.
  • the swirling space 20d is a substantially columnar space extending coaxially with the axial direction of the nozzle portion 20a.
  • the refrigerant inflow passage through which the refrigerant flows into the swirl space 20d from the outside of the ejector 20 extends in the tangential direction of the inner wall surface of the swirl space 20d when viewed from the central axis direction of the swirl space 20d.
  • the supercooled liquid refrigerant flowing out from the high-pressure side refrigerant passage 15a of the internal heat exchanger 15 and flowing into the swirl space 20d flows along the inner wall surface of the swirl space 20d, and around the central axis of the swirl space 20d.
  • the cylindrical portion 20c and the swirling space 20d constitute a swirling flow generating portion that swirls the supercooled liquid phase refrigerant flowing into the nozzle portion 20a around the axis of the nozzle portion 20a. That is, in this embodiment, the ejector 20 (specifically, the nozzle part 20a) and the swirl flow generating part are integrally configured.
  • the body portion 20b is formed of a substantially cylindrical metal (for example, aluminum) or a resin, and functions as a fixing member that supports and fixes the nozzle portion 20a therein and forms an outer shell of the ejector 20. . More specifically, the nozzle portion 20a is fixed by press-fitting so as to be housed inside the longitudinal end of the body portion 20b. Therefore, the refrigerant does not leak from the fixed portion (press-fit portion) between the nozzle portion 20a and the body portion 20b.
  • a refrigerant suction port 20e provided so as to penetrate the inside and outside of the outer peripheral surface of the body portion 20b and communicate with the refrigerant injection port of the nozzle portion 20a is provided at a portion corresponding to the outer peripheral side of the nozzle portion 20a. Is formed.
  • the refrigerant suction port 20e is a through hole that sucks the refrigerant that has flowed out of the evaporator 14 from the outside to the inside of the ejector 20 by the suction action of the injection refrigerant that is injected from the nozzle portion 20a.
  • a suction passage for leading the suction refrigerant sucked from the refrigerant suction port 20e to the refrigerant injection port side of the nozzle portion 20a, and a suction refrigerant flowing into the ejector 20 from the refrigerant suction port 20e and A diffuser portion 20f is formed as a pressure increasing portion that increases the pressure by mixing the injected refrigerant.
  • the diffuser portion 20f is arranged to be continuous with the outlet of the suction passage, and is formed by a space that gradually expands the refrigerant passage area.
  • the refrigerant outlet side of the gas-liquid separator 21 is connected to the refrigerant outlet of the diffuser portion 20f.
  • the gas / liquid separator 21 is a gas / liquid separator that separates the gas / liquid of the refrigerant that has flowed out of the diffuser portion 20f of the ejector 20.
  • the gas-liquid separator 21 performs the same function as the gas-liquid separation space 30f described in the first embodiment.
  • a gas-liquid separator 21 having a relatively small internal volume is adopted so that the separated liquid-phase refrigerant flows out from the liquid-phase refrigerant outlet without substantially accumulating.
  • the inlet side of the compressor 11 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 21 through the low-pressure side refrigerant passage 15 b of the internal heat exchanger 15.
  • the refrigerant inlet side of the evaporator 14 is connected to the liquid phase refrigerant outlet of the gas-liquid separator 21 via the fixed throttle 22.
  • the fixed aperture 22 performs the same function as the orifice 31i described in the first embodiment. Specifically, an orifice, a capillary tube, or the like can be employed as the fixed throttle 22.
  • an electric type as a refrigerant flow rate adjusting unit is provided in the refrigerant path from the outlet side of the high pressure side refrigerant path 15a of the internal heat exchanger 15 to the inlet side of the ejector 20.
  • a flow rate adjusting valve 23 is arranged.
  • the flow rate adjusting valve 23 includes a valve body that can change the refrigerant passage area, and an electric actuator that changes the refrigerant passage area by displacing the valve body.
  • the refrigerant passage area of the flow rate adjusting valve 23 is sufficiently larger than the passage sectional area of the refrigerant passage (throttle passage) of the nozzle portion 20a of the ejector 20. Therefore, the flow rate adjusting valve 23 of the present embodiment can adjust the flow rate of the refrigerant flowing into the nozzle portion 20a with almost no refrigerant decompression effect. Further, the operation of the flow rate adjusting valve 23 is controlled by a control signal output from the control device 50.
  • the superheat degree sensor 51 as a superheat degree detection means which detects the superheat degree of the evaporator 14 exit side refrigerant
  • an evaporator outlet side temperature sensor for detecting the temperature of the evaporator 14 outlet side refrigerant, and an evaporator outlet side for detecting the pressure of the evaporator 14 outlet side refrigerant.
  • a pressure sensor may be employed.
  • the control apparatus 50 may calculate a superheat degree based on the detected value of an evaporator exit side temperature sensor and an evaporator exit side pressure sensor.
  • control device 50 of the present embodiment controls the operation of the flow rate adjustment valve 23 so that the detected value of the superheat degree sensor 51 approaches the reference superheat degree.
  • operation of the flow regulating valve 23 among the control apparatuses 50 comprises the superheat degree control part.
  • the ejector refrigeration cycle apparatus 10a of the present embodiment has a cycle configuration substantially equivalent to that of the ejector refrigeration cycle apparatus 10 described in the first embodiment, and operates in the same manner as the first embodiment.
  • the COP due to the boosting action of the diffuser portion 20f of the ejector 20 is provided.
  • the improvement effect can be sufficiently obtained.
  • the COP can be sufficiently improved without adversely affecting the durability life of the compressor 11.
  • the superheat degree sensor 51 detects the superheat degree of the refrigerant sucked into the compressor 11 by being sucked into the compressor 11. More specifically, the superheat degree sensor 51 of the present embodiment detects the superheat degree of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 to the suction port of the compressor 11. To do.
  • Other configurations and operations of the ejector refrigeration cycle apparatus 10a are the same as those in the second embodiment.
  • the same effects as those of the second embodiment can be obtained, and the COP improvement effect by the boosting action of the ejector 20 can be sufficiently obtained. Furthermore, by appropriately adjusting the degree of superheat of the refrigerant sucked by the compressor 11, it is possible to suppress an unnecessary increase in the temperature of the refrigerant sucked by the compressor 11.
  • the superheat degree of the refrigerant flowing into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is detected by the superheat degree sensor 51.
  • the superheat degree sensor 51 of the present embodiment is a refrigerant that circulates in the refrigerant passage from the gas-phase refrigerant outlet of the gas-liquid separator 21 to the refrigerant inlet of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15. Detects the degree of superheat.
  • Other configurations and operations of the ejector refrigeration cycle apparatus 10a are the same as those in the second embodiment.
  • the same effects as those of the second embodiment can be obtained, and the COP improvement effect by the boosting action of the ejector 20 can be sufficiently obtained. Further, by appropriately adjusting the degree of superheat of the refrigerant flowing into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15, it is possible to suppress the temperature of the refrigerant sucked by the compressor 11 from being unnecessarily increased. Can do.
  • the low-pressure side refrigerant passage 15b of the present embodiment is disposed in the refrigerant passage from the refrigerant outlet of the evaporator 14 to the refrigerant suction port 20e of the ejector 20. That is, the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b of the present embodiment is an intake refrigerant that flows out of the evaporator 14 and flows into the refrigerant suction port 20e of the ejector 20.
  • the superheat degree sensor 51 of the present embodiment detects the superheat degree of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the low-pressure side refrigerant passage 15b to the refrigerant suction port 20e of the ejector 20.
  • Other configurations are the same as those of the second embodiment.
  • coolant in the Mollier diagram of FIG. 7 has the same thing which shows the state of the refrigerant
  • the refrigerant discharged from the compressor 11 is transferred from the radiator 12 to the internal heat exchanger 15 in the same manner as the ejector refrigeration cycle apparatus 10 according to the first embodiment.
  • the refrigerant flows in the order of the high-pressure side refrigerant passage 15a to become a supercooled liquid phase refrigerant (point a7 ⁇ b7 ⁇ c7 in FIG. 7).
  • the valve opening degree of the flow rate adjusting valve 23 is set so that the degree of superheat of the refrigerant (point j′7 in FIG. 7) flowing out from the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 approaches the reference superheat degree. Adjusted.
  • the refrigerant that has flowed into the nozzle portion 20a of the ejector 20 is isentropically depressurized and injected (point c7 ⁇ point d7 in FIG. 7). And the refrigerant
  • the refrigerant injected from the nozzle portion 20a and the suction refrigerant sucked from the refrigerant suction port 20e are merged and pressurized in the diffuser portion 20f (d7 point ⁇ e7 point ⁇ f7 point in FIG. 7, j′7 Point ⁇ e7 point ⁇ f7 point).
  • the refrigerant that has flowed out of the diffuser section 20f is gas-liquid separated by the gas-liquid separator 21 (f7 point ⁇ g7 point, f7 point ⁇ h7 point in FIG. 7).
  • the gas-phase refrigerant flowing out from the gas-phase refrigerant outlet of the gas-liquid separator 21 is sucked into the compressor 11 and compressed again (point g7 ⁇ a7 in FIG. 7).
  • the liquid-phase refrigerant flowing out from the liquid-phase refrigerant outlet of the gas-liquid separator 21 is decompressed by the fixed throttle 22 and flows into the evaporator 14 (point h7 ⁇ i7 in FIG. 7).
  • the refrigerant flowing into the evaporator 14 absorbs heat from the blown air blown by the blower fan 14a and evaporates (i7 point ⁇ j7 point in FIG. 7). Thereby, blowing air is cooled.
  • the refrigerant that has flowed out of the evaporator 14 flows into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15, and exchanges heat with the high-pressure side refrigerant that flows through the high-pressure side refrigerant passage 15a. Then, the enthalpy is increased until the gas-phase refrigerant having the reference superheat degree is reached (j7 point ⁇ j′7 point in FIG. 7). The refrigerant flowing out from the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is sucked from the refrigerant suction port 20e of the ejector 20 as described above.
  • the ejector type refrigeration cycle apparatus 10a of the present embodiment operates as described above, and can cool the blown air blown into the vehicle interior. Further, similarly to the second embodiment, even in the ejector refrigeration cycle apparatus 10a including the internal heat exchanger 15, the COP improvement effect due to the boosting action of the ejector 20 can be sufficiently obtained.
  • the low-temperature low-pressure side refrigerant that has flowed out of the evaporator 14 is caused to flow into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15, so that it flows out of the gas-liquid separator 21.
  • the high-pressure side refrigerant can be effectively cooled by the internal heat exchanger 15.
  • the suction port of the compressor 11 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 21 without passing through the low-pressure side refrigerant passage 15b of the internal heat exchanger 15. It is connected. Therefore, even if the temperature of the low-pressure side refrigerant flowing out from the low-pressure side refrigerant passage 15b increases, the temperature of the refrigerant sucked by the compressor 11 does not increase.
  • the COP can be sufficiently improved without adversely affecting the durability life of the compressor 11.
  • the evaporator 14 exhibits the cycle configuration.
  • Refrigeration capacity in FIG. 7, the enthalpy difference between the i7 point and the j7 point
  • the cooling capacity of the blown air in the evaporator 14 may be reduced.
  • the heat transfer coefficient ⁇ in the heat exchange region is lowered because the presence of boiling nuclei is reduced.
  • a relatively dry refrigerant is evaporated in the heat exchange area of the evaporator, there will be post-dryout where there is no liquid phase refrigerant that can evaporate on the heat transfer surface. The heat transfer coefficient ⁇ will be reduced.
  • the refrigerant in the intermediate region is formed in the evaporator 14 by disposing the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 on the refrigerant outlet side of the evaporator 14. It becomes easy to evaporate. As a result, in the ejector-type refrigeration cycle apparatus 10a of the present embodiment, it is possible to suppress a decrease in the cooling capacity of the blown air in the evaporator 14.
  • the low-pressure side refrigerant passage 15b of the present embodiment is disposed in the refrigerant passage extending from the refrigerant outlet of the fixed throttle 22 to the refrigerant inlet of the evaporator 14. That is, the low-pressure side refrigerant that flows through the low-pressure side refrigerant passage 15 b of the present embodiment is a refrigerant that flows out from the fixed throttle 22 and flows into the evaporator 14.
  • Other configurations are the same as those of the second embodiment.
  • the state of the refrigerant changes as shown in the Mollier diagram of FIG.
  • the refrigerant that has flowed out of the fixed throttle 22 flows into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15, exchanges heat with the high-pressure side refrigerant that flows through the high-pressure side refrigerant passage 15a, and increases enthalpy. (I10 point in FIG. 10 ⁇ j10 point).
  • Other operations are the same as those in the fifth embodiment.
  • the low pressure side refrigerant passage 15b of the internal heat exchanger 15 is arranged on the refrigerant inlet side of the evaporator 14, so that the evaporator 14 will be described with reference to FIG. It becomes easy to evaporate the refrigerant in the intermediate region.
  • the ejector type refrigeration cycle apparatus 10a of the present embodiment it is possible to suppress a decrease in the cooling capacity of the blown air in the evaporator 14 as in the fifth embodiment.
  • the ejector refrigeration cycle apparatus 10a of the present embodiment has a bypass passage 24 that guides the refrigerant flowing out from the fixed throttle 22 to the refrigerant suction port 20e side of the ejector 20 by bypassing the evaporator 14.
  • the bypass passage 24 is a refrigerant passage that guides the refrigerant upstream of the evaporator 14 to the downstream side of the evaporator 14 by bypassing the evaporator 14.
  • the passage area of the bypass passage 24 is formed to be sufficiently smaller than the passage area of the refrigerant passage that guides the refrigerant flowing out from the fixed throttle 22 to the evaporator 14. As a result, the refrigerant that has flowed out of the fixed throttle 22 is prevented from unnecessarily flowing into the bypass passage 24, and the flow rate of the refrigerant that flows into the evaporator 14 is suppressed from becoming insufficient.
  • the low-pressure side refrigerant passage 15b of the present embodiment is disposed in the bypass passage 24. Therefore, the low-pressure side refrigerant that circulates in the low-pressure side refrigerant passage 15 b of the present embodiment is a refrigerant that circulates in the bypass passage 24. Further, the superheat degree sensor 51 of the present embodiment is a refrigerant on the outlet side of the evaporator 14 and detects the degree of superheat of the refrigerant before joining the refrigerant flowing out of the bypass passage 24. Other configurations and operations are the same as those of the fifth embodiment.
  • the branch portion 25 has a three-way joint structure that branches the flow of the supercooled liquid phase refrigerant that has flowed out of the internal heat exchanger 15.
  • An inlet side of the nozzle portion 20 a of the ejector 20 is connected to one refrigerant outlet of the branch portion 25 via a flow rate adjustment valve 23.
  • a refrigerant inlet side of the evaporator 14 is connected to the other refrigerant outlet of the branch portion 25 via a fixed throttle 22.
  • the refrigerant inlet side of the second evaporator 26 is connected to the outlet side of the diffuser portion 20f of the ejector 20.
  • the basic configuration of the second evaporator 26 is the same as that of the evaporator 14.
  • the second evaporator 26 heat-exchanges the low-pressure refrigerant that has flowed out of the diffuser portion 20f of the ejector 20 and the blown air that is blown into the vehicle interior from the blower fan 26a, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. This is an endothermic heat exchanger.
  • the vehicle air conditioner of the present embodiment cools the blown air blown to the vehicle front seat side by the evaporator 14 and blows the air blown to the vehicle rear seat side by the second evaporator 26. It is configured as a so-called dual air conditioner that cools the air.
  • the evaporator 14 is referred to as a first evaporator 14 for the sake of clarity.
  • the inlet side of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is connected to the refrigerant outlet side of the second evaporator 26.
  • the superheat degree sensor 51 of the present embodiment is similar to the third embodiment in that the refrigerant flowing through the refrigerant passage extending from the refrigerant outlet of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 to the suction port of the compressor 11 is used. Detect superheat.
  • the configuration of the other ejector refrigeration cycle apparatus 10b is the same as that of the ejector refrigeration cycle apparatus 10a of the second embodiment.
  • the refrigerant discharged from the compressor 11 is discharged from the radiator 12 to the internal heat exchanger 15 as in the ejector refrigeration cycle apparatus 10 according to the first embodiment.
  • the refrigerant flows in the order of the high-pressure side refrigerant passage 15a to become a supercooled liquid phase refrigerant (point a13 ⁇ b13 ⁇ c13 in FIG. 13).
  • the flow of the supercooled liquid phase refrigerant that has flowed out of the high-pressure side refrigerant passage 15 a is branched at the branching section 25.
  • One of the branched refrigerants flows into the upstream side (specifically, the cylindrical part 20c) of the nozzle part 20a of the ejector 20 through the flow rate adjusting valve 23.
  • the valve opening degree of the flow rate adjusting valve 23 is adjusted so that the superheat degree of the refrigerant (k13 point in FIG. 13) flowing out from the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 approaches the reference superheat degree.
  • the refrigerant that has flowed into the nozzle portion 20a of the ejector 20 is isentropically decompressed and injected (point c13 ⁇ point d13 in FIG. 13). And the refrigerant
  • the refrigerant that has flowed out of the diffuser section 20f flows into the second evaporator 26.
  • the refrigerant flowing into the second evaporator 26 absorbs heat from the blown air blown by the blower fan 26a and evaporates (point f13 ⁇ m13 in FIG. 13). Thereby, the blowing air sent to the vehicle rear seat side is cooled.
  • the refrigerant that has flowed out of the second evaporator 26 flows into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15.
  • the low-pressure side refrigerant flowing into the low-pressure side refrigerant passage 15b exchanges heat with the high-pressure side refrigerant flowing through the high-pressure side refrigerant passage 15a to raise the enthalpy (m13 point ⁇ k13 point in FIG. 13).
  • the low-pressure refrigerant flowing out from the low-pressure refrigerant passage 15b is sucked into the compressor 11 and compressed again (point k13 ⁇ point a13 in FIG. 13).
  • the other refrigerant branched by the branching section 25 is decompressed by the fixed throttle 22 (point c13 ⁇ point n13 in FIG. 13) and flows into the first evaporator 14.
  • the refrigerant flowing into the first evaporator 14 absorbs heat from the blown air blown by the blower fan 14a and evaporates (n13 point ⁇ j13 point in FIG. 13). Thereby, the blowing air sent to the vehicle front seat side is cooled.
  • the refrigerant flowing out of the first evaporator 14 is sucked from the refrigerant suction port 20e.
  • the ejector type refrigeration cycle apparatus 10b of the present embodiment operates as described above, and can cool the blown air blown to the vehicle front seat side and the blown air blown to the vehicle rear seat side.
  • the refrigerant evaporating pressure in the first evaporator 14 can be made lower than the refrigerant evaporating pressure in the second evaporator 26 by the pressure increasing action of the ejector 20. Therefore, it is possible to effectively cool the blown air that is blown to the front seat side of the vehicle where the driver's seat is provided.
  • the driving power of the compressor 11 can be reduced and the COP can be improved.
  • the swirl space 20d is formed in the ejector 20, even in the ejector refrigeration cycle apparatus 10b including the internal heat exchanger 15 as in the second embodiment, the ejector 20
  • the COP improvement effect by the pressure increasing action can be sufficiently obtained.
  • the ejector refrigeration cycle apparatus 10b of the present embodiment includes the internal heat exchanger 15, the enthalpy of the refrigerant flowing into the fixed throttle 22 and the refrigerant flowing out from the diffuser portion 20f can be reduced. And the enthalpy of the refrigerant
  • the enthalpy difference (refrigeration capacity) between the enthalpy of the outlet side refrigerant and the enthalpy of the inlet side refrigerant of the first and second evaporators 14 and 26 can be increased, and COP can be improved.
  • the operation of the flow rate adjustment valve 23 is controlled so that the superheat degree of the refrigerant sucked into the compressor 11 approaches the reference superheat degree.
  • the degree of superheat of the refrigerant sucked by the compressor 11 can be adjusted appropriately, and the temperature of the refrigerant sucked by the compressor 11 can be prevented from rising unnecessarily.
  • the superheat degree sensor 51 detects and detects the superheat degree of another refrigerant.
  • the control device 50 may control the operation of the flow rate adjustment valve 23 so that the value approaches the reference superheat degree.
  • the superheat sensor 51 is arranged as indicated by P1 in FIG. 12, and the superheat of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the first evaporator 14 to the refrigerant suction port 20e of the ejector 20 by the superheat sensor 51.
  • the degree may be detected.
  • the superheat degree sensor 51 is arranged as indicated by P2 in FIG. 12, and the superheat of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the second evaporator 26 to the inlet of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is performed. The degree may be detected.
  • the low-pressure side refrigerant passage 15b of the ninth embodiment is disposed in the refrigerant passage from the refrigerant outlet of the first evaporator 14 to the refrigerant suction port 20e of the ejector 20. That is, the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b of the present embodiment is an intake refrigerant that flows out of the evaporator 14 and flows into the refrigerant suction port 20e of the ejector 20.
  • Other configurations and operations are the same as those in the eighth embodiment.
  • the internal heat exchanger 15 can cool the high-pressure side refrigerant without reducing the cooling capacity of the blown air in the first evaporator 14.
  • 10th Embodiment demonstrates the example which changed arrangement
  • the low-pressure side refrigerant passage 15b of the tenth embodiment is disposed in the refrigerant passage from the refrigerant outlet of the first evaporator 14 to the refrigerant suction port 20e of the ejector 20. That is, the low-pressure side refrigerant that flows through the low-pressure side refrigerant passage 15 b of the present embodiment is a refrigerant that flows out from the fixed throttle 22 and flows into the evaporator 14. Other configurations and operations are the same as those in the eighth embodiment.
  • the internal heat exchanger 15 can cool the high-pressure side refrigerant without reducing the cooling capacity of the blown air in the first evaporator 14.
  • 11th Embodiment demonstrates the example which changed arrangement
  • the low-pressure side refrigerant passage 15b of the eleventh embodiment is arranged in the bypass passage 24 as in the seventh embodiment. That is, the low-pressure side refrigerant that circulates in the low-pressure side refrigerant passage 15 b of the present embodiment is a refrigerant that circulates in the bypass passage 24.
  • Other configurations and operations are the same as those in the eighth embodiment.
  • Each component device constituting the ejector refrigeration cycle apparatus 10, 10a, 10b is not limited to that disclosed in the above-described embodiment.
  • an electric compressor is employed as the compressor 11
  • the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like.
  • An engine driven compressor may be employed.
  • the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
  • the radiator 12 has a supercooling unit that supercools the liquid-phase refrigerant flowing out from the receiver unit 12b.
  • a so-called subcool condenser may be employed.
  • a double-pipe heat exchanger can be adopted as the internal heat exchanger 15, but the internal heat exchanger 15 is not limited to this.
  • a stack-type heat exchanger in which a plurality of substantially flat plate heat transfer plates are stacked in parallel at intervals, and a high pressure side refrigerant passage and a low pressure side refrigerant passage are alternately formed between the heat transfer plates. May be adopted.
  • the refrigerant flow rate adjusting unit is configured by the passage forming member 35 and the element 37 or the flow rate adjusting valve 23 , but the refrigerant flow rate adjusting unit is not limited to this.
  • a temperature type expansion valve may be adopted as the refrigerant flow rate adjusting unit.
  • a temperature type expansion valve a temperature sensing part having a displacement member (diaphragm) that is displaced according to the temperature and pressure of the refrigerant flowing through a predetermined refrigerant passage, and the refrigerant passage area is changed according to the displacement of the displacement member.
  • a thing provided with a valve body part is employable.
  • the superheat sensor 51 can be eliminated.
  • the nozzle portion 20a of the ejector 20 is configured as a variable nozzle portion capable of changing the refrigerant passage area, and the refrigerant flow rate is adjusted by a needle valve that changes the refrigerant passage area of the nozzle portion 20a, an electric actuator that displaces the needle valve, and the like. You may comprise a part. In this case, it is desirable to dispose the needle valve so that the turning of the refrigerant in the turning space 20d is not hindered.
  • the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is not limited to the refrigerant disclosed in the above-described embodiments. That is, as long as the refrigerant that has flowed out of the radiator 12 can be cooled until it becomes a supercooled liquid phase refrigerant, the refrigerant that flows through any refrigerant passage in the cycle may be used.
  • R134a or R1234yf or the like can be adopted as the refrigerant, but the refrigerant is not limited to this.
  • the refrigerant is not limited to this.
  • it can form a subcritical refrigeration cycle like HC refrigerant and the refrigerant flowing out from the high-pressure side refrigerant passage 15a of the internal heat exchanger 15 becomes a supercooled liquid phase state.
  • R600a, R410A, R404A, R32, R1234yfxf, R407C, etc. can be adopted. Or you may employ
  • the ejector refrigeration cycle apparatuses 10, 10a, and 10b according to the present disclosure are applied to a vehicle air conditioner.
  • the application of the ejector refrigeration cycle apparatus 10 is limited to this.
  • the present invention may be applied to a stationary air conditioner, a cold / hot storage, a cooling / heating device for a vending machine, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

An ejector refrigeration cycle device causes a supercooled liquid phase refrigerant cooled in a high-pressure side refrigerant channel (15a) of an internal heat exchanger (15) to flow into a nozzle portion (13a) of an ejector (13) after swirling in a swirling space (30a) constituting a swirl flow generating unit until boiling under reduced pressure. Thus, the ejector efficiency of the ejector (13) is improved by boiling the refrigerant in the nozzle portion (13a). Furthermore, by connecting the refrigerant flowing from an evaporator (14) to a refrigerant intake port (31b) of the ejector (13), unnecessary temperature increases in the intake refrigerant for a compressor (11) are suppressed. Thus, the service life of the compressor (11) is not impacted negatively, and the COP of an ejector refrigeration cycle device (10) is sufficiently improved.

Description

エジェクタ式冷凍サイクル装置Ejector refrigeration cycle equipment 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年9月29日に出願された日本特許出願2014-198054号を基にしている。 This application is based on Japanese Patent Application No. 2014-198054 filed on September 29, 2014, the disclosure of which is incorporated into this application by reference.
 本開示は、内部熱交換器を備えるエジェクタ式冷凍サイクル装置に関する。 This disclosure relates to an ejector refrigeration cycle apparatus including an internal heat exchanger.
 従来、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクル装置が知られている。 Conventionally, an ejector refrigeration cycle apparatus, which is a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression apparatus, is known.
 この種のエジェクタ式冷凍サイクル装置では、エジェクタの昇圧作用によって、蒸発器における冷媒蒸発圧力と圧縮機へ吸入される吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、吸入冷媒の圧力を上昇させることができる。これにより、エジェクタ式冷凍サイクル装置では、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)の向上を狙うことができる。 In this type of ejector-type refrigeration cycle apparatus, the pressure of the intake refrigerant is higher than that of a normal refrigeration cycle apparatus in which the refrigerant evaporating pressure in the evaporator and the pressure of the intake refrigerant sucked into the compressor are substantially equal due to the boosting action of the ejector. Can be raised. Thereby, in the ejector type refrigeration cycle apparatus, the power consumption of the compressor can be reduced and the coefficient of performance (COP) of the cycle can be improved.
 また、冷凍サイクル装置のCOPを向上させる手段として、内部熱交換器を追加する手段が知られている。内部熱交換器は、サイクルの高圧側冷媒と低圧側冷媒とを熱交換させて、蒸発器の入口側冷媒のエンタルピを低下させる。従って、内部熱交換器を備える冷凍サイクル装置では、蒸発器の出口側冷媒のエンタルピと入口側冷媒のエンタルピとのエンタルピ差(冷凍能力)を拡大させて、COPを向上させることができる。 Further, as means for improving the COP of the refrigeration cycle apparatus, means for adding an internal heat exchanger is known. The internal heat exchanger exchanges heat between the high-pressure side refrigerant and the low-pressure side refrigerant of the cycle, and reduces the enthalpy of the inlet-side refrigerant of the evaporator. Therefore, in the refrigeration cycle apparatus including the internal heat exchanger, the enthalpy difference (refrigeration capacity) between the enthalpy of the outlet-side refrigerant of the evaporator and the enthalpy of the inlet-side refrigerant can be increased, and COP can be improved.
 さらに、内部熱交換器は、特許文献1に開示されているように、エジェクタ式冷凍サイクル装置に適用することもできる。 Furthermore, as disclosed in Patent Document 1, the internal heat exchanger can also be applied to an ejector type refrigeration cycle apparatus.
特開2002-349977号公報JP 2002-349977 A
 ところで、内部熱交換器を備えるエジェクタ式冷凍サイクル装置において、高圧側冷媒の圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成すると、エジェクタのノズル部に内部熱交換器で冷却された過冷却液相冷媒が流入する。 By the way, in an ejector-type refrigeration cycle apparatus equipped with an internal heat exchanger, if a subcritical refrigeration cycle in which the pressure of the high-pressure side refrigerant does not exceed the critical pressure of the refrigerant is configured, the nozzle portion of the ejector is cooled by the internal heat exchanger. Cooling liquid phase refrigerant flows in.
 ところが、エジェクタ式冷凍サイクル装置に適用される一般的なエジェクタでは、ノズル部に過冷却液相冷媒を流入させると、ノズル部における冷媒の沸騰遅れが生じやすくなり、エジェクタ効率が低下してしまいやすい。その結果、エジェクタの昇圧能力が低下してしまい、エジェクタ式冷凍サイクル装置を構成したことによるCOP向上効果を充分に得られなくなってしまう。なお、エジェクタ効率とは、エジェクタ全体としてのエネルギ変換効率である。 However, in a general ejector applied to an ejector-type refrigeration cycle device, if a supercooled liquid phase refrigerant is caused to flow into the nozzle portion, the refrigerant boiling in the nozzle portion is likely to be delayed, and the ejector efficiency is likely to be reduced. . As a result, the boosting capability of the ejector is reduced, and the COP improvement effect due to the construction of the ejector refrigeration cycle apparatus cannot be obtained sufficiently. In addition, ejector efficiency is energy conversion efficiency as the whole ejector.
 本開示は、上記点に鑑み、内部熱交換器を備えるエジェクタ式冷凍サイクル装置において、サイクルの成績係数(COP)を充分に向上させることを目的とする。 In view of the above points, the present disclosure aims to sufficiently improve the coefficient of performance (COP) of a cycle in an ejector refrigeration cycle apparatus including an internal heat exchanger.
 本開示の一つの特徴例によれば、エジェクタ式冷凍サイクル装置は、冷媒を圧縮して吐出する圧縮機と、圧縮機から吐出された冷媒を放熱させる放熱器と、放熱器から流出した高圧側冷媒を、高圧側冷媒よりも低い圧力の低圧側冷媒と熱交換させて過冷却液相冷媒となるまで冷却する内部熱交換器と、内部熱交換器から流出した過冷却液相冷媒を減圧して噴射するノズル部を有し、ノズル部から噴射された噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と冷媒吸引口から吸引された吸引冷媒とを混合させて昇圧させるエジェクタと、放熱器下流側冷媒を減圧させる減圧装置と、減圧装置にて減圧された冷媒を蒸発させて冷媒吸引口側へ流出させる蒸発器と、ノズル部へ流入する過冷却液相冷媒をノズル部の軸周りに旋回させる旋回流発生部を備える。 According to one feature example of the present disclosure, an ejector refrigeration cycle apparatus includes a compressor that compresses and discharges a refrigerant, a radiator that dissipates heat from the refrigerant discharged from the compressor, and a high-pressure side that flows out of the radiator The internal heat exchanger that cools the refrigerant until it becomes a supercooled liquid phase refrigerant by exchanging heat with the low pressure side refrigerant at a lower pressure than the high pressure side refrigerant, and the supercooled liquid phase refrigerant that has flowed out of the internal heat exchanger is decompressed. The ejector has a nozzle portion that injects and sucks the refrigerant from the refrigerant suction port by the suction action of the refrigerant injected from the nozzle portion, and mixes the injection refrigerant and the suction refrigerant sucked from the refrigerant suction port to increase the pressure A decompressor that depressurizes the refrigerant downstream of the radiator, an evaporator that evaporates the refrigerant decompressed by the decompressor and flows out to the refrigerant suction port side, and a supercooled liquid phase refrigerant that flows into the nozzle portion. Swivel around the axis of Comprising a swirl flow generation unit which.
 旋回流発生部を備えているので、ノズル部へ流入する過冷却液相冷媒の中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させることができる。従って、冷媒と旋回流発生部の壁面との摩擦による壁面沸騰、および気相冷媒と液相冷媒との気液界面における界面沸騰を促進することができる。 Since the swirl flow generator is provided, the refrigerant pressure on the center side of the supercooled liquid phase refrigerant flowing into the nozzle is reduced to the pressure at which it becomes a saturated liquid phase refrigerant or the pressure at which the refrigerant boils under reduced pressure (causes cavitation). Can be reduced. Accordingly, it is possible to promote wall surface boiling due to friction between the refrigerant and the wall surface of the swirl flow generator, and interface boiling at the gas-liquid interface between the gas phase refrigerant and the liquid phase refrigerant.
 つまり、ノズル部にて減圧される液相冷媒の沸騰を促進することができ、エジェクタ効率の低下を抑制することができる。その結果、本請求項に記載の発明によれば、内部熱交換器を備えていても、エジェクタに充分な昇圧作用を発揮させて、サイクルの成績係数COPを充分に向上させることができる。 That is, it is possible to promote the boiling of the liquid-phase refrigerant that is decompressed at the nozzle portion, and to suppress a decrease in ejector efficiency. As a result, according to the invention described in this claim, even if an internal heat exchanger is provided, the ejector can exhibit a sufficient pressure increasing action, and the coefficient of performance COP of the cycle can be sufficiently improved.
 例えば、内部熱交換器にて高圧側冷媒と熱交換する低圧側冷媒は、具体的に、エジェクタから流出して圧縮機へ吸入される冷媒であってもよいし、蒸発器から流出して冷媒吸引口へ流入する冷媒であってもよい。さらに、減圧装置から流出して蒸発器へ流入する冷媒であってもよい。 For example, the low-pressure side refrigerant that exchanges heat with the high-pressure side refrigerant in the internal heat exchanger may specifically be a refrigerant that flows out of the ejector and is sucked into the compressor, or flows out of the evaporator and flows into the refrigerant It may be a refrigerant flowing into the suction port. Furthermore, the refrigerant | coolant which flows out from a decompression device and flows in into an evaporator may be sufficient.
 エジェクタ式冷凍サイクル装置は、エジェクタから流出した冷媒の気液を分離する気液分離部を備えてもよい。この場合、気液分離部の冷媒流出口には、減圧装置の入口側が接続されており、気液分離部の冷媒流出口には、圧縮機の吸入口側が接続されていてもよい。 The ejector-type refrigeration cycle apparatus may include a gas-liquid separation unit that separates the gas-liquid refrigerant flowing out of the ejector. In this case, the inlet side of the decompression device may be connected to the refrigerant outlet of the gas-liquid separator, and the inlet side of the compressor may be connected to the refrigerant outlet of the gas-liquid separator.
 或いは、ノズル部へ流入する冷媒の流量を調整する冷媒流量調整部を備え、冷媒流量調整部が、蒸発器出口側冷媒の過熱度が予め定めた基準過熱度に近づくように、ノズル部へ流入する冷媒の流量を調整してもよい。 Alternatively, a refrigerant flow rate adjustment unit that adjusts the flow rate of the refrigerant flowing into the nozzle unit is provided, and the refrigerant flow rate adjustment unit flows into the nozzle unit so that the superheat degree of the evaporator outlet side refrigerant approaches a predetermined reference superheat degree. The flow rate of the refrigerant to be adjusted may be adjusted.
 このようなサイクル構成として、蒸発器出口側冷媒の過熱度が基準過熱度に近づくように、ノズル部へ流入する冷媒の流量を調整すれば、圧縮機へ吸入される冷媒の温度等に影響を及ぼすことなく、蒸発器にて充分な冷凍能力を発揮させることができる。 In such a cycle configuration, if the flow rate of the refrigerant flowing into the nozzle part is adjusted so that the superheat degree of the refrigerant at the outlet side of the evaporator approaches the reference superheat degree, the temperature of the refrigerant sucked into the compressor is affected. A sufficient refrigerating capacity can be exhibited in the evaporator without exerting an influence.
 例えば、前記旋回流発生部は、前記ノズル部へ流入する前記過冷却液相冷媒の中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する圧力まで低下するように構成されてもよい。これにより、サイクルの成績係数COPを更に容易に向上できる。 For example, the swirl flow generation unit may reduce the refrigerant pressure on the center side of the supercooled liquid phase refrigerant flowing into the nozzle unit to a pressure that becomes a saturated liquid phase refrigerant or a pressure at which the refrigerant is boiled under reduced pressure. It may be configured. Thereby, the coefficient of performance COP of the cycle can be improved more easily.
第1実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 1st Embodiment. 第1実施形態のエジェクタ式冷凍サイクル装置における冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant in the ejector type refrigeration cycle apparatus of 1st Embodiment. 第2実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 2nd Embodiment. 第3実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 3rd Embodiment. 第4実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 4th Embodiment. 第5実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 5th Embodiment. 第5実施形態のエジェクタ式冷凍サイクル装置における冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant in the ejector-type refrigeration cycle apparatus of 5th Embodiment. 冷媒の乾き度Xの変化に対する蒸発器の熱交換領域の熱伝達率λの変化を示すグラフである。It is a graph which shows the change of the heat transfer coefficient (lambda) of the heat exchange area | region of an evaporator with respect to the change of the dryness X of a refrigerant | coolant. 第6実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 6th Embodiment. 第6実施形態のエジェクタ式冷凍サイクル装置における冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant in the ejector type refrigeration cycle apparatus of 6th Embodiment. 第7実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 7th Embodiment. 第8実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 8th Embodiment. 第8実施形態のエジェクタ式冷凍サイクル装置における冷媒の状態を示すモリエル線図である。It is a Mollier diagram which shows the state of the refrigerant | coolant in the ejector-type refrigeration cycle apparatus of 8th Embodiment. 第9実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 9th Embodiment. 第10実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 10th Embodiment. 第11実施形態のエジェクタ式冷凍サイクル装置の模式的な全体構成図である。It is a typical whole block diagram of the ejector-type refrigeration cycle apparatus of 11th Embodiment.
 (第1実施形態)
 以下、図1、図2を用いて、本開示の第1実施形態を説明する。図1の全体構成図に示す本実施形態のエジェクタ式冷凍サイクル装置10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、このエジェクタ式冷凍サイクル装置10の冷却対象流体は、送風空気である。
(First embodiment)
Hereinafter, the first embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. The ejector refrigeration cycle apparatus 10 of the present embodiment shown in the overall configuration diagram of FIG. 1 is applied to a vehicle air conditioner, and fulfills a function of cooling blown air that is blown into a vehicle interior that is an air conditioning target space. Therefore, the cooling target fluid of the ejector refrigeration cycle apparatus 10 is blown air.
 また、本実施形態のエジェクタ式冷凍サイクル装置10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 Further, in the ejector refrigeration cycle apparatus 10 of the present embodiment, an HFC refrigerant (specifically, R134a) is adopted as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. It is composed. Of course, an HFO refrigerant (specifically, R1234yf) or the like may be adopted as the refrigerant. Furthermore, refrigeration oil for lubricating the compressor 11 is mixed in the refrigerant, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
 圧縮機11は、エジェクタ式冷凍サイクル装置10において、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。 The compressor 11 in the ejector refrigeration cycle apparatus 10 sucks the refrigerant and discharges it until it becomes a high-pressure refrigerant. Specifically, the compressor 11 of the present embodiment is an electric compressor configured by housing a fixed capacity type compression mechanism and an electric motor that drives the compression mechanism in one housing.
 この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。また、電動モータは、後述する制御装置50から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式のものを採用してもよい。 As this compression mechanism, various compression mechanisms such as a scroll-type compression mechanism and a vane-type compression mechanism can be adopted. Further, the operation (rotation speed) of the electric motor is controlled by a control signal output from the control device 50 described later, and any type of an AC motor or a DC motor may be adopted.
 圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧側冷媒と冷却ファン12cにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。 The refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11. The radiator 12 is a heat-dissipating heat exchanger that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and the outside air (outside air) blown by the cooling fan 12c. is there.
 より具体的には、放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12cから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12aと、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ部12bとを有して構成される、いわゆるレシーバ一体型の凝縮器である。 More specifically, the heat radiator 12 exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12c, and dissipates the high-pressure gas-phase refrigerant to condense it. And a receiver unit 12b that separates the gas-liquid refrigerant flowing out of the condensing unit 12a and stores excess liquid-phase refrigerant, and is a so-called receiver-integrated condenser.
 冷却ファン12cは、制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。放熱器12の冷媒出口側には、内部熱交換器15の高圧側冷媒通路15aの入口側が接続されている。 The cooling fan 12c is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device 50. The refrigerant outlet side of the radiator 12 is connected to the inlet side of the high-pressure side refrigerant passage 15 a of the internal heat exchanger 15.
 内部熱交換器15は、高圧側冷媒通路15aを流通する高圧側冷媒と低圧側冷媒通路15bを流通する低圧側冷媒とを熱交換させて、高圧側冷媒を過冷却液相冷媒となるまで冷却するものである。従って、本実施形態では、低圧側冷媒通路15bを流通する低圧側冷媒の温度および圧力が、高圧側冷媒通路15aを流通する高圧側冷媒の温度および圧力よりも低くなっている。 The internal heat exchanger 15 exchanges heat between the high-pressure refrigerant flowing through the high-pressure refrigerant passage 15a and the low-pressure refrigerant flowing through the low-pressure refrigerant passage 15b, and cools the high-pressure refrigerant until it becomes a supercooled liquid phase refrigerant. To do. Therefore, in this embodiment, the temperature and pressure of the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b are lower than the temperature and pressure of the high-pressure side refrigerant flowing through the high-pressure side refrigerant passage 15a.
 より具体的には、本実施形態の低圧側冷媒通路15bを流通する低圧側冷媒は、エジェクタ13の気相冷媒流出口31dから流出して圧縮機11へ吸入される吸入冷媒である。 More specifically, the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b of the present embodiment is an intake refrigerant that flows out of the gas-phase refrigerant outlet 31d of the ejector 13 and is sucked into the compressor 11.
 このような内部熱交換器15としては、高圧側冷媒通路15aを形成する外側管の内側に、低圧側冷媒通路15bを形成する内側管を配置した二重管方式の熱交換器等を採用することができる。内部熱交換器15の高圧側冷媒通路15aの出口側には、エジェクタ13の冷媒流入口31a側が接続されている。 As such an internal heat exchanger 15, a double-pipe heat exchanger or the like in which an inner tube forming a low-pressure side refrigerant passage 15b is arranged inside an outer tube forming a high-pressure side refrigerant passage 15a. be able to. The refrigerant inlet 31 a side of the ejector 13 is connected to the outlet side of the high-pressure side refrigerant passage 15 a of the internal heat exchanger 15.
 エジェクタ13は、内部熱交換器15の高圧側冷媒通路15aから流出した過冷却液相冷媒を減圧させる冷媒減圧装置としての機能を果たすとともに、高速度で噴射される冷媒流の吸引作用によって後述する蒸発器14から流出した冷媒を吸引(輸送)して循環させる冷媒循環部(冷媒輸送部)としての機能も果たす。 The ejector 13 functions as a refrigerant decompression device that decompresses the supercooled liquid phase refrigerant flowing out from the high-pressure side refrigerant passage 15a of the internal heat exchanger 15, and will be described later by the suction action of the refrigerant flow injected at a high speed. It also functions as a refrigerant circulation part (refrigerant transport part) that sucks (transports) and circulates the refrigerant that has flowed out of the evaporator 14.
 さらに、本実施形態のエジェクタ13は、減圧させた冷媒の気液を分離する気液分離部としての機能も果たす。つまり、本実施形態のエジェクタ13は、エジェクタと気液分離部とを一体化(モジュール化)させた気液分離器一体型エジェクタ(エジェクタモジュール)として構成されている。 Furthermore, the ejector 13 of the present embodiment also functions as a gas-liquid separation unit that separates the gas-liquid of the decompressed refrigerant. That is, the ejector 13 according to the present embodiment is configured as a gas-liquid separator integrated ejector (ejector module) in which the ejector and the gas-liquid separator are integrated (modularized).
 なお、図1における上下の各矢印は、エジェクタ13を車両に搭載した状態における上下の各方向を示すものである。従って、他のサイクル構成機器を車両に搭載した状態における上下の各方向はこれに限定されない。 In addition, the up and down arrows in FIG. 1 indicate the up and down directions when the ejector 13 is mounted on the vehicle. Therefore, the up and down directions in a state where other cycle constituent devices are mounted on the vehicle are not limited to this.
 より具体的には、本実施形態のエジェクタ13は、図1に示すように、複数の構成部材を組み合わせることによって構成されたボデー30を備えている。ボデー30は、角柱状あるいは円柱状の金属もしくは樹脂にて形成されている。このボデー30には、複数の冷媒流入出口、および複数の内部空間等が形成されている。 More specifically, the ejector 13 of the present embodiment includes a body 30 configured by combining a plurality of constituent members as shown in FIG. The body 30 is formed of a prismatic or cylindrical metal or resin. The body 30 is formed with a plurality of refrigerant inflow / outflow ports, a plurality of internal spaces, and the like.
 ボデー30に形成された複数の冷媒流入出口としては、内部熱交換器15の高圧側冷媒通路15aから流出した冷媒を内部へ流入させる冷媒流入口31a、蒸発器14から流出した冷媒を吸引する冷媒吸引口31b、ボデー30の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる液相冷媒流出口31c、および気液分離空間30fにて分離された気相冷媒を内部熱交換器15の低圧側冷媒通路15bの入口側へ流出させる気相冷媒流出口31dが形成されている。 As a plurality of refrigerant inlets / outlets formed in the body 30, a refrigerant inlet 31 a that allows the refrigerant that has flowed out from the high-pressure side refrigerant passage 15 a of the internal heat exchanger 15 to flow into the inside, and a refrigerant that sucks the refrigerant that has flowed out from the evaporator 14 The liquid-phase refrigerant outlet 31c that causes the liquid-phase refrigerant separated in the gas-liquid separation space 30f formed inside the body 30 to flow out to the refrigerant inlet side of the evaporator 14 and the gas-liquid separation space 30f A gas-phase refrigerant outlet 31d for allowing the separated gas-phase refrigerant to flow out to the inlet side of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is formed.
 また、ボデー30の内部に形成された内部空間としては、冷媒流入口31aから流入した冷媒を旋回させる旋回空間30a、旋回空間30aから流出した冷媒を減圧させる減圧用空間30b、減圧用空間30bから流出した冷媒を流入させる昇圧用空間30e、昇圧用空間30eから流出した冷媒の気液を分離する気液分離空間30f等が形成されている。 The internal space formed in the body 30 includes a swirling space 30a for swirling the refrigerant flowing in from the refrigerant inlet 31a, a depressurizing space 30b for depressurizing the refrigerant flowing out of the swirling space 30a, and a depressurizing space 30b. A pressurizing space 30e into which the refrigerant that has flowed out flows, a gas-liquid separation space 30f that separates the gas and liquid of the refrigerant that has flowed out from the pressurizing space 30e, and the like are formed.
 旋回空間30aは、略円柱状の回転体形状に形成されている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)の周りに回転させた際に形成される立体形状である。 The turning space 30a is formed in a substantially cylindrical rotating body shape. The rotating body shape is a three-dimensional shape formed when a plane figure is rotated around one straight line (central axis) on the same plane.
 さらに、冷媒流入口31aと旋回空間30aとを接続する冷媒流入通路31fは、旋回空間30aの中心軸方向から見たときに旋回空間30aの内壁面の接線方向に延びている。これにより、冷媒流入通路31fから旋回空間30aへ流入した冷媒は、旋回空間30aの内壁面に沿って流れ、旋回空間30aの中心軸周りに旋回する。 Furthermore, the refrigerant inflow passage 31f that connects the refrigerant inlet 31a and the swirling space 30a extends in a tangential direction of the inner wall surface of the swirling space 30a when viewed from the central axis direction of the swirling space 30a. Thereby, the refrigerant that has flowed into the swirl space 30a from the refrigerant inflow passage 31f flows along the inner wall surface of the swirl space 30a, and swirls around the central axis of the swirl space 30a.
 ここで、旋回空間30a内で旋回する冷媒には遠心力が作用するので、旋回空間30a内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、エジェクタ式冷凍サイクル装置10の通常運転時に、旋回空間30a内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させるようにしている。 Here, since centrifugal force acts on the refrigerant swirling in the swirling space 30a, the refrigerant pressure on the central axis side is lower than the refrigerant pressure on the outer peripheral side in the swirling space 30a. Therefore, in the present embodiment, during normal operation of the ejector-type refrigeration cycle apparatus 10, the refrigerant pressure on the central axis side in the swirling space 30a is set to a pressure that becomes a saturated liquid phase refrigerant, or the refrigerant boils under reduced pressure (cavitating cavitation). ) Reduce to pressure.
 このような旋回空間30a内の中心軸側の冷媒圧力の調整は、旋回空間30a内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路31fの通路断面積と旋回空間30aの軸方向垂直断面積との面積比を調整すること等によって行うことができる。なお、本実施形態の旋回流速とは、旋回空間30aの最外周部近傍における冷媒の旋回方向の流速を意味している。 Such adjustment of the refrigerant pressure on the central axis side in the swirling space 30a can be realized by adjusting the swirling flow velocity of the refrigerant swirling in the swirling space 30a. Furthermore, the swirl flow velocity can be adjusted by adjusting the area ratio between the passage cross-sectional area of the refrigerant inflow passage 31f and the vertical cross-sectional area of the swirl space 30a, for example. Note that the swirling flow velocity in the present embodiment means the flow velocity in the swirling direction of the refrigerant in the vicinity of the outermost peripheral portion of the swirling space 30a.
 減圧用空間30bおよび昇圧用空間30eは、旋回空間30a側から気液分離空間30f側へ向かって徐々に拡大する略円錐台状の回転体形状に形成されている。気液分離空間30fは、昇圧用空間30eの下方側に配置されて、略円柱状の回転体形状に形成されている。これらの空間の中心軸はいずれも同軸上に配置されている。 The pressure reducing space 30b and the pressure increasing space 30e are formed in a substantially truncated cone-shaped rotating body shape that gradually expands from the swirl space 30a side to the gas-liquid separation space 30f side. The gas-liquid separation space 30f is disposed on the lower side of the pressurizing space 30e and is formed in a substantially cylindrical rotating body shape. The central axes of these spaces are all arranged coaxially.
 さらに、ボデー30には、冷媒吸引口31bから吸引された冷媒を、減圧用空間30bの冷媒流れ下流側であって昇圧用空間30eの冷媒流れ上流側へ導く吸引用通路13bが形成されている。 Further, the body 30 is formed with a suction passage 13b that guides the refrigerant sucked from the refrigerant suction port 31b to the downstream side of the refrigerant flow in the decompression space 30b and to the upstream side of the refrigerant flow in the pressurization space 30e. .
 また、減圧用空間30bおよび昇圧用空間30eの内部には、通路形成部材35が配置されている。通路形成部材35は、減圧用空間30bから離れるに伴って外周側に広がる略円錐形状に形成されており、通路形成部材35の中心軸も減圧用空間30b等の中心軸と同軸上に配置されている。 In addition, a passage forming member 35 is disposed inside the pressure reducing space 30b and the pressure increasing space 30e. The passage forming member 35 is formed in a substantially conical shape that spreads toward the outer peripheral side as it is separated from the decompression space 30b, and the central axis of the passage formation member 35 is also arranged coaxially with the central axis of the decompression space 30b and the like. ing.
 そして、ボデー30の減圧用空間30bおよび昇圧用空間30eを形成する部位の内周面と通路形成部材35の円錐状側面との間には、軸方向垂直断面の形状が円環状(円形状から同軸上に配置された小径の円形状を除いたドーナツ形状)の冷媒通路が形成されている。 The shape of the vertical cross section in the axial direction is annular (from the circular shape) between the inner peripheral surface of the part forming the pressure reducing space 30b and the pressure increasing space 30e of the body 30 and the conical side surface of the passage forming member 35. A refrigerant passage having a donut shape excluding a small-diameter circular shape arranged on the same axis is formed.
 この冷媒通路のうち、ボデー30の減圧用空間30bを形成する部位と通路形成部材35の円錐状側面の頂部側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を小さく絞る形状に形成されている。この形状により、この冷媒通路は、冷媒を等エントロピ的に減圧させて噴射するノズル部として機能するノズル通路13aを構成している。 Among the refrigerant passages, the refrigerant passage formed between the portion forming the decompression space 30b of the body 30 and the portion on the top side of the conical side surface of the passage forming member 35 is a passage toward the downstream side of the refrigerant flow. It is formed in a shape that reduces the cross-sectional area small. Due to this shape, the refrigerant passage constitutes a nozzle passage 13a that functions as a nozzle portion that is isentropically decompressed and ejected.
 より具体的には、本実施形態のノズル通路13aは、ノズル通路13aの入口側から最小通路面積部へ向かって通路断面積を徐々に縮小させ、最小通路面積部からノズル通路13aの出口側に向かって通路断面積を徐々に拡大させる形状に形成されている。つまり、本実施形態のノズル通路13aでは、いわゆるラバールノズルと同様に冷媒通路断面積が変化する。 More specifically, the nozzle passage 13a of the present embodiment gradually reduces the passage cross-sectional area from the inlet side of the nozzle passage 13a toward the minimum passage area portion, and from the minimum passage area portion to the outlet side of the nozzle passage 13a. It is formed in a shape that gradually increases the cross-sectional area of the passage. That is, in the nozzle passage 13a of the present embodiment, the refrigerant passage cross-sectional area changes in the same manner as a so-called Laval nozzle.
 ここで、前述の旋回空間30aは、ノズル通路13aの上方側であって冷媒流れ上流側に配置されている。このため、本実施形態の旋回空間30aは、ノズル通路13aへ流入する過冷却液相冷媒をノズル通路13aの軸周りに旋回させている。従って、本実施形態では、ボデー30のうち旋回空間30aを形成する部位、および旋回空間30aが、特許請求の範囲に記載された旋回流発生部を構成している。つまり、本実施形態では、エジェクタ13と旋回流発生部が一体的に構成されている。 Here, the swirl space 30a is disposed above the nozzle passage 13a and upstream of the refrigerant flow. For this reason, the swirling space 30a of the present embodiment swirls the supercooled liquid phase refrigerant flowing into the nozzle passage 13a around the axis of the nozzle passage 13a. Therefore, in this embodiment, the site | part which forms the turning space 30a in the body 30, and the turning space 30a comprise the turning flow generation | occurrence | production part described in the claim. That is, in the present embodiment, the ejector 13 and the swirl flow generator are integrally configured.
 一方、ボデー30の昇圧用空間30eを形成する部位と通路形成部材35の円錐状側面の下流側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる形状に形成されている。この形状により、この冷媒通路は、ノズル通路13aから噴射された噴射冷媒と冷媒吸引口31bから吸引された吸引冷媒とを混合させて昇圧させるディフューザ部(昇圧部)として機能するディフューザ通路13cを構成している。 On the other hand, the refrigerant passage formed between the portion forming the pressure increasing space 30e of the body 30 and the downstream portion of the conical side surface of the passage forming member 35 gradually has a passage sectional area toward the downstream side of the refrigerant flow. It is formed in a shape that expands. Due to this shape, this refrigerant passage constitutes a diffuser passage 13c that functions as a diffuser portion (pressure increase portion) for mixing and increasing the pressure of the refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked from the refrigerant suction port 31b. is doing.
 また、ボデー30の内部には、通路形成部材35を変位させてノズル通路13aの最小通路面積部の通路断面積を変化させるエレメント37が配置されている。従って、本実施形態の通路形成部材35およびエレメント37は、ノズル通路13aの最小通路面積部の通路断面積を変化させることによって、ノズル通路13aへ流入する冷媒流量を調整する冷媒流量調整部を構成している。つまり、本実施形態では、エジェクタ13と冷媒流量調整部が一体的に構成されている。 In the body 30, an element 37 that displaces the passage forming member 35 to change the passage sectional area of the minimum passage area of the nozzle passage 13a is disposed. Accordingly, the passage forming member 35 and the element 37 of the present embodiment constitute a refrigerant flow rate adjusting unit that adjusts the flow rate of the refrigerant flowing into the nozzle passage 13a by changing the passage sectional area of the minimum passage area portion of the nozzle passage 13a. is doing. That is, in this embodiment, the ejector 13 and the refrigerant | coolant flow volume adjustment part are comprised integrally.
 より具体的には、エレメント37は、吸引用通路13bを流通する冷媒(すなわち、蒸発器14流出冷媒)の温度および圧力に応じて変位するダイヤフラムを有している。そして、このダイヤフラムの変位を作動棒37aを介して、通路形成部材35へ伝達することによって、通路形成部材35を上下方向に変位させる。 More specifically, the element 37 has a diaphragm that is displaced according to the temperature and pressure of the refrigerant flowing through the suction passage 13b (that is, the refrigerant flowing out of the evaporator 14). Then, the displacement of the diaphragm is transmitted to the passage forming member 35 through the operating rod 37a, so that the passage forming member 35 is displaced in the vertical direction.
 さらに、このエレメント37は、蒸発器14出口側冷媒の温度(過熱度)が上昇するに伴って、最小通路面積部の通路断面積を拡大させる方向(鉛直方向下方側)に通路形成部材35を変位させる。また、エレメント37は、蒸発器14出口側冷媒の温度(過熱度)が低下するに伴って、最小通路面積部の通路断面積を縮小させる方向(鉛直方向上方側)に通路形成部材35を変位させる。 Furthermore, this element 37 has the passage forming member 35 in a direction (vertical direction lower side) in which the passage cross-sectional area of the minimum passage area portion is enlarged as the temperature (superheat degree) of the refrigerant on the outlet side of the evaporator 14 increases. Displace. The element 37 displaces the passage forming member 35 in a direction (vertical direction upper side) in which the passage cross-sectional area of the minimum passage area portion is reduced as the temperature (superheat degree) of the refrigerant on the outlet side of the evaporator 14 decreases. Let
 本実施形態では、このように蒸発器14出口側冷媒の過熱度に応じてエレメント37が通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度が予め定めた基準過熱度に近づくように、ノズル通路13aの最小通路面積部の通路断面積が調整される。 In the present embodiment, the element 37 displaces the passage forming member 35 according to the degree of superheat of the evaporator 14 outlet-side refrigerant in this way, so that the degree of superheat of the evaporator 14 outlet-side refrigerant becomes a predetermined reference superheat degree. The passage cross-sectional area of the minimum passage area portion of the nozzle passage 13a is adjusted so as to approach.
 気液分離空間30fは、通路形成部材35の下方側に配置されている。この気液分離空間30fは、ディフューザ通路13cから流出した冷媒を中心軸周りに旋回させて、遠心力の作用によって冷媒の気液を分離する遠心分離方式の気液分離部を構成している。従って、本実施形態の気液分離空間30fでは、ノズル通路13aで減圧されて圧縮機11吐出冷媒よりも低い圧力となった冷媒の気液を分離している。 The gas-liquid separation space 30 f is disposed below the passage forming member 35. The gas-liquid separation space 30f constitutes a centrifugal-type gas-liquid separation unit that turns the refrigerant flowing out of the diffuser passage 13c around the central axis and separates the gas-liquid of the refrigerant by the action of centrifugal force. Accordingly, in the gas-liquid separation space 30f of the present embodiment, the gas-liquid refrigerant that has been decompressed by the nozzle passage 13a and has a pressure lower than the refrigerant discharged from the compressor 11 is separated.
 さらに、この気液分離空間30fの内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を溜めることができない程度の容積になっている。
また、ボデー30のうち気液分離空間30fの底面を形成する部位には、分離された液相冷媒中の冷凍機油を、気液分離空間30fと液相冷媒流出口31cとを接続する気相冷媒通路側へ戻すオイル戻し穴31eが形成されている。気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路には、蒸発器14へ流入させる冷媒を減圧させる減圧装置としてのオリフィス31iが配置されている。
Further, the internal volume of the gas-liquid separation space 30f is such that even if a load fluctuation occurs in the cycle and the refrigerant circulation flow rate circulating in the cycle fluctuates, the surplus refrigerant cannot be substantially accumulated. .
Further, in the portion of the body 30 that forms the bottom surface of the gas-liquid separation space 30f, the refrigerating machine oil in the separated liquid-phase refrigerant is connected to the gas phase that connects the gas-liquid separation space 30f and the liquid-phase refrigerant outlet 31c. An oil return hole 31e that returns to the refrigerant passage side is formed. In a liquid phase refrigerant passage connecting the gas-liquid separation space 30f and the liquid phase refrigerant outlet 31c, an orifice 31i is disposed as a pressure reducing device that depressurizes the refrigerant flowing into the evaporator 14.
 エジェクタ13の液相冷媒流出口31cには、蒸発器14の冷媒入口側が接続されている。蒸発器14は、エジェクタ13にて減圧された低圧冷媒と送風ファン14aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。蒸発器14の冷媒出口側には、エジェクタ13の冷媒吸引口31bが接続されている。 The refrigerant inlet side of the evaporator 14 is connected to the liquid-phase refrigerant outlet 31c of the ejector 13. The evaporator 14 performs heat exchange between the low-pressure refrigerant decompressed by the ejector 13 and the blown air blown into the vehicle interior from the blower fan 14a, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is a vessel. A refrigerant suction port 31 b of the ejector 13 is connected to the refrigerant outlet side of the evaporator 14.
 送風ファン14aは、制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動送風機である。エジェクタ13の気相冷媒流出口31dには、前述した内部熱交換器15の低圧側冷媒通路15bを介して、圧縮機11の吸入側が接続されている。 The blower fan 14a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device 50. The suction side of the compressor 11 is connected to the gas-phase refrigerant outlet 31d of the ejector 13 via the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 described above.
 なお、図1の全体構成図に示す太実線矢印は、エジェクタ式冷凍サイクル装置10を作動させた際の冷媒の流れ方向を示すものである。このことは、以下の実施形態の全体構成図においても同様である。 In addition, the thick solid line arrow shown in the whole block diagram of FIG. 1 shows the flow direction of the refrigerant when the ejector refrigeration cycle apparatus 10 is operated. This also applies to the entire configuration diagram of the following embodiment.
 次に、図示しない制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置50は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上述の各種電気式のアクチュエータ11、12c、14a等の作動を制御する。 Next, the control device 50 (not shown) includes a well-known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. The control device 50 performs various calculations and processes based on the control program stored in the ROM, and controls the operations of the various electric actuators 11, 12c, 14a and the like described above.
 また、制御装置50には、車室内温度を検出する内気温センサ、外気温を検出する外気温センサ、車室内の日射量を検出する日射センサ、蒸発器14の吹出空気温度(蒸発器温度)を検出する蒸発器温度センサ、放熱器12出口側冷媒の温度を検出する出口側温度センサおよび放熱器12出口側冷媒の圧力を検出する出口側圧力センサ等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。 In addition, the control device 50 includes an inside air temperature sensor that detects the vehicle interior temperature, an outside air temperature sensor that detects the outside air temperature, a solar radiation sensor that detects the amount of solar radiation in the vehicle interior, and the air temperature (evaporator temperature) of the evaporator 14. Are connected to a group of sensors for air conditioning control, such as an evaporator temperature sensor for detecting the temperature, an outlet side temperature sensor for detecting the temperature of the refrigerant on the outlet side of the radiator 12, and an outlet side pressure sensor for detecting the pressure of the refrigerant on the outlet side of the radiator 12. The detection values of these sensor groups are input.
 さらに、制御装置50の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置50へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。 Further, an operation panel (not shown) disposed near the instrument panel in the front part of the passenger compartment is connected to the input side of the control device 50, and operation signals from various operation switches provided on the operation panel are transmitted to the control device 50. Entered. As various operation switches provided on the operation panel, there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
 なお、本実施形態の制御装置50は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、制御装置50のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。例えば、本実施形態では、制御装置50のうち、圧縮機11の電動モータの作動を制御する構成が吐出能力制御部を構成している。 Note that the control device 50 of the present embodiment is configured such that a control unit that controls the operation of various control target devices connected to the output side is integrally configured. A configuration (hardware and software) for controlling the operation of the device constitutes a control unit of each control target device. For example, in this embodiment, the structure which controls the action | operation of the electric motor of the compressor 11 among the control apparatuses 50 comprises the discharge capability control part.
 次に、図2のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル装置10の作動を説明する。本実施形態では、操作パネルの作動スイッチが投入(ON)されると、制御装置50が圧縮機11の電動モータ、冷却ファン12c、送風ファン14a等を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。 Next, the operation of the ejector refrigeration cycle apparatus 10 of the present embodiment will be described using the Mollier diagram of FIG. In this embodiment, when the operation switch of the operation panel is turned on (ON), the control device 50 operates the electric motor of the compressor 11, the cooling fan 12c, the blower fan 14a, and the like. Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it.
 圧縮機11から吐出された高温高圧冷媒(図2のa2点)は、放熱器12の凝縮部12aへ流入する。凝縮部12aへ流入した冷媒は、冷却ファン12cから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される(図2のa2点→b2点)。 The high-temperature and high-pressure refrigerant discharged from the compressor 11 (point a2 in FIG. 2) flows into the condenser 12a of the radiator 12. The refrigerant flowing into the condensing unit 12a exchanges heat with the outside air blown from the cooling fan 12c, dissipates heat, and condenses. The refrigerant condensed in the condensing unit 12a is gas-liquid separated in the receiver unit 12b (point a2 → b2 in FIG. 2).
 レシーバ部12bにて気液分離された液相冷媒は、内部熱交換器15の高圧側冷媒通路15aへ流入する。内部熱交換器15の高圧側冷媒通路15aへ流入した高圧液相冷媒は、低圧側冷媒通路15bを流通する低圧側冷媒と熱交換して、さらにエンタルピを低下させて過冷却液相冷媒となる(図2のb2点→c2点)。 The liquid-phase refrigerant separated from the gas and liquid by the receiver unit 12b flows into the high-pressure side refrigerant passage 15a of the internal heat exchanger 15. The high-pressure liquid refrigerant flowing into the high-pressure side refrigerant passage 15a of the internal heat exchanger 15 exchanges heat with the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b, and further reduces enthalpy to become a supercooled liquid-phase refrigerant. (B2 point → c2 point in FIG. 2).
 高圧側冷媒通路15aから流出した過冷却液相冷媒は、エジェクタ13のノズル通路13aにて等エントロピ的に減圧されて噴射される(図2のc2点→d2点)。この際、減圧用空間30bの最小通路面積部30mにおける冷媒通路面積は、蒸発器14出口側冷媒(図2では、j2点)の過熱度が基準過熱度に近づくように調整される。 The supercooled liquid-phase refrigerant that has flowed out of the high-pressure side refrigerant passage 15a is decompressed and injected in an isentropic manner in the nozzle passage 13a of the ejector 13 (point c2 → point d2 in FIG. 2). At this time, the refrigerant passage area in the minimum passage area portion 30m of the decompression space 30b is adjusted so that the superheat degree of the evaporator 14 outlet side refrigerant (point j2 in FIG. 2) approaches the reference superheat degree.
 そして、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒が、冷媒吸引口31bからエジェクタ13の内部へ吸引される。ノズル通路13aから噴射された噴射冷媒および吸引用通路13bを介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する(図2のd2点→e2点、j2点→e2点)。 Then, the refrigerant flowing out of the evaporator 14 is sucked into the ejector 13 from the refrigerant suction port 31b by the suction action of the refrigerant injected from the nozzle passage 13a. The refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked through the suction passage 13b flow into the diffuser passage 13c and merge (point d2 → e2, point j2 → e2 in FIG. 2).
 ディフューザ通路13cでは冷媒通路面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する(図2のe2点→f2点)。 In the diffuser passage 13c, the kinetic energy of the refrigerant is converted into pressure energy by expanding the refrigerant passage area. As a result, the pressure of the mixed refrigerant increases while the injected refrigerant and the suction refrigerant are mixed (point e2 → point f2 in FIG. 2).
 ディフューザ通路13cから流出した冷媒は、気液分離空間30fにて気液分離される(図2のf2点→g2点、f2点→h2点)。気液分離空間30fにて分離された液相冷媒は、オリフィス31iにて減圧されて(図2のh2点→i2点)、蒸発器14へ流入する。蒸発器14へ流入した冷媒は、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図2のi2点→j2点)。これにより、送風空気が冷却される。 The refrigerant that has flowed out of the diffuser passage 13c is gas-liquid separated in the gas-liquid separation space 30f (points f2 → g2, points f2 → h2 in FIG. 2). The liquid-phase refrigerant separated in the gas-liquid separation space 30f is decompressed by the orifice 31i (point h2 → point i2 in FIG. 2) and flows into the evaporator 14. The refrigerant flowing into the evaporator 14 absorbs heat from the blown air blown by the blower fan 14a and evaporates (point i2 → point j2 in FIG. 2). Thereby, blowing air is cooled.
 一方、気液分離空間30fにて分離された気相冷媒は、気相冷媒流出口31dから流出して、内部熱交換器15の低圧側冷媒通路15bへ流入する。この際、低圧側冷媒通路15bへ流入する低圧側冷媒は、飽和気相冷媒よりも僅かにエンタルピの低い冷媒(比較的乾き度の高い気液二相冷媒)となる(図2のg2点)。 On the other hand, the gas-phase refrigerant separated in the gas-liquid separation space 30f flows out from the gas-phase refrigerant outlet 31d and flows into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15. At this time, the low-pressure side refrigerant flowing into the low-pressure side refrigerant passage 15b becomes a refrigerant having a slightly lower enthalpy than the saturated gas-phase refrigerant (a gas-liquid two-phase refrigerant having a relatively high dryness) (g2 point in FIG. 2). .
 その理由は、低圧側冷媒通路15bへ流入する低圧側冷媒は、気液分離空間30fにて分離された飽和気相冷媒に、オイル戻し穴31eを介して気相冷媒流出口31d側へ流出した冷凍機油の溶け込んだ液相冷媒を混入させた冷媒となるからである。 The reason is that the low-pressure side refrigerant flowing into the low-pressure side refrigerant passage 15b flows into the saturated gas-phase refrigerant separated in the gas-liquid separation space 30f to the gas-phase refrigerant outlet 31d side through the oil return hole 31e. It is because it becomes the refrigerant | coolant which mixed the liquid phase refrigerant | coolant in which refrigeration oil melt | dissolved.
 低圧側冷媒通路15bへ流入した比較的乾き度の高い気液二相状態の低圧側冷媒は、高圧側冷媒通路15aを流通する高圧側冷媒と熱交換してエンタルピを上昇させる(図2のg2点→k2点)。低圧側冷媒通路15bから流出した低圧側冷媒は、圧縮機11へ吸入され再び圧縮される(図2のk2点→a2点)。 The low-pressure side refrigerant in the gas-liquid two-phase state having a relatively high dryness flowing into the low-pressure side refrigerant passage 15b exchanges heat with the high-pressure side refrigerant flowing through the high-pressure side refrigerant passage 15a to raise the enthalpy (g2 in FIG. 2). Point → k2). The low-pressure refrigerant flowing out from the low-pressure refrigerant passage 15b is sucked into the compressor 11 and compressed again (point k2 → a2 in FIG. 2).
 本実施形態のエジェクタ式冷凍サイクル装置10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。また、本実施形態のエジェクタ式冷凍サイクル装置10では、エジェクタ13の昇圧作用によって昇圧された冷媒を、圧縮機11に吸入させるので、圧縮機11の駆動動力を低減させて、サイクルの成績係数(COP)の向上を狙うことができる。 The ejector refrigeration cycle apparatus 10 of the present embodiment operates as described above, and can cool the blown air blown into the vehicle interior. Further, in the ejector type refrigeration cycle apparatus 10 of the present embodiment, the refrigerant that has been pressurized by the pressurizing action of the ejector 13 is sucked into the compressor 11, so that the driving power of the compressor 11 is reduced and the coefficient of performance of the cycle ( COP) can be improved.
 さらに、本実施形態のエジェクタ式冷凍サイクル装置10は、内部熱交換器15を備えているので、エジェクタ13のノズル通路13aへ流入する冷媒およびノズル通路13aから噴射される冷媒のエンタルピを低下させることができる。このため、内部熱交換器15を備えていないサイクルよりも蒸発器14出口側冷媒の過熱度が低下しやすい。 Further, since the ejector refrigeration cycle apparatus 10 of the present embodiment includes the internal heat exchanger 15, the enthalpy of the refrigerant flowing into the nozzle passage 13a of the ejector 13 and the refrigerant injected from the nozzle passage 13a is reduced. Can do. For this reason, the superheat degree of the evaporator 14 outlet side refrigerant | coolant tends to fall rather than the cycle which is not equipped with the internal heat exchanger 15. FIG.
 従って、内部熱交換器15を備えていないサイクルと比較すると、蒸発器14出口側冷媒の過熱度を基準過熱度に近づけるために、冷媒流量調整部であるエレメント37が最小通路面積部の通路断面積を縮小させる。このため、気液分離空間30f内の冷媒圧力が低下し、オリフィス31iを介して蒸発器14へ流入する冷媒のエンタルピが低下する。 Therefore, in comparison with a cycle that does not include the internal heat exchanger 15, in order to make the superheat degree of the refrigerant on the outlet side of the evaporator 14 close to the reference superheat degree, the element 37 that is the refrigerant flow rate adjustment unit is configured to have a passage cut-off in the minimum passage area portion. Reduce the area. For this reason, the refrigerant | coolant pressure in the gas-liquid separation space 30f falls, and the enthalpy of the refrigerant | coolant which flows into the evaporator 14 via the orifice 31i falls.
 その結果、蒸発器14の出口側冷媒のエンタルピと入口側冷媒のエンタルピとのエンタルピ差(冷凍能力)を拡大させて、COPを向上させることができる。 As a result, the enthalpy difference (refrigeration capacity) between the enthalpy of the outlet side refrigerant of the evaporator 14 and the enthalpy of the inlet side refrigerant can be increased, and COP can be improved.
 ここで、本実施形態のように、内部熱交換器15を備えるエジェクタ式冷凍サイクル装置10において、亜臨界冷凍サイクルを構成すると、エジェクタ13のノズル通路13aに内部熱交換器15にて冷却された過冷却液相冷媒が流入する。 Here, when the subcritical refrigeration cycle is configured in the ejector refrigeration cycle apparatus 10 including the internal heat exchanger 15 as in this embodiment, the nozzle passage 13a of the ejector 13 is cooled by the internal heat exchanger 15. The supercooled liquid phase refrigerant flows in.
 ところが、エジェクタ式冷凍サイクル装置に適用される一般的なエジェクタでは、ノズル部に過冷却液相冷媒を流入させると、ノズル部における冷媒の沸騰遅れが生じやすく、エジェクタ効率が低下してしまいやすい。その結果、上述したエジェクタ13の昇圧作用によるCOP向上効果を充分に得ることができなくなってしまうおそれがある。 However, in a general ejector applied to an ejector-type refrigeration cycle device, if a supercooled liquid phase refrigerant is allowed to flow into the nozzle part, the boiling of the refrigerant in the nozzle part tends to occur, and the ejector efficiency tends to decrease. As a result, there is a possibility that the COP improvement effect by the boosting action of the ejector 13 described above cannot be obtained sufficiently.
 さらに、内部熱交換器15の低圧側冷媒通路15bから流出した冷媒を圧縮機11へ吸入させるサイクル構成では、低圧側冷媒通路15bへ流入する冷媒の温度を上昇させてしまうと、圧縮機11が吸入する冷媒の温度も上昇してしまう。その結果、圧縮機11にて圧縮過程の冷媒の温度が不必要に上昇してしまい、圧縮機11の耐久寿命に悪影響を与えてしまうおそれがある。 Furthermore, in the cycle configuration in which the refrigerant flowing out from the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is sucked into the compressor 11, if the temperature of the refrigerant flowing into the low-pressure side refrigerant passage 15b is increased, the compressor 11 The temperature of the refrigerant | coolant inhaled will also rise. As a result, the temperature of the refrigerant in the compression process is unnecessarily increased in the compressor 11, which may adversely affect the durable life of the compressor 11.
 従って、内部熱交換器15を備えるエジェクタ式冷凍サイクル装置10では、圧縮機11の耐久寿命に悪影響を与えることなく、COPを充分に向上させることが必要となる。 Therefore, in the ejector type refrigeration cycle apparatus 10 including the internal heat exchanger 15, it is necessary to sufficiently improve the COP without adversely affecting the durability life of the compressor 11.
 これに対して、本実施形態では、エジェクタ13に旋回空間30aが形成されているので、ノズル通路13aへ流入する過冷却液相冷媒の中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させることができる。 On the other hand, in this embodiment, since the swirl space 30a is formed in the ejector 13, the refrigerant pressure on the center side of the supercooled liquid phase refrigerant flowing into the nozzle passage 13a is set to the pressure that becomes the saturated liquid phase refrigerant, Alternatively, the pressure can be reduced to a pressure at which the refrigerant boils under reduced pressure (causes cavitation).
 これにより、旋回中心軸の外周側よりも内周側に気相冷媒が多く存在するようにして、旋回空間30a内の旋回中心線近傍はガス単相、その周りは液単相の二相分離状態とすることができる。このような二相分離状態の冷媒では、旋回空間30aと冷媒との摩擦による沸騰(壁面沸騰)および気液界面における沸騰(界面沸騰)が促進される。 Thus, the gas phase refrigerant is present in the swirl space 30a in the vicinity of the swirl center line, and the liquid single phase is surrounded by the two-phase separation so that a larger amount of gas-phase refrigerant exists on the inner periphery side than the outer periphery side of the swirl center shaft. State. In the refrigerant in such a two-phase separation state, boiling (wall surface boiling) due to friction between the swirling space 30a and the refrigerant and boiling at the gas-liquid interface (interface boiling) are promoted.
 従って、ノズル通路13aにて減圧される液相冷媒の沸騰を促進することができ、エジェクタ効率の低下を抑制することができる。その結果、本実施形態のように、内部熱交換器15を備えるエジェクタ式冷凍サイクル装置10であっても、エジェクタ13の昇圧作用によるCOP向上効果を充分に得ることができる。 Therefore, it is possible to promote the boiling of the liquid-phase refrigerant that is decompressed in the nozzle passage 13a, and to suppress a decrease in ejector efficiency. As a result, even in the ejector refrigeration cycle apparatus 10 including the internal heat exchanger 15 as in the present embodiment, the COP improvement effect due to the boosting action of the ejector 13 can be sufficiently obtained.
 さらに、本実施形態のエジェクタ13では、冷媒流量調整部としての通路形成部材35およびエレメント37を備え、蒸発器14出口側冷媒の過熱度が基準過熱度に近づくように、ノズル通路13aへ流入する冷媒流量を調整している。従って、蒸発器14にて発揮される冷凍能力を拡大させて、より一層、エジェクタ式冷凍サイクル装置10のCOPを向上させることができる。 Furthermore, the ejector 13 of the present embodiment includes a passage forming member 35 and an element 37 as a refrigerant flow rate adjusting unit, and flows into the nozzle passage 13a so that the superheat degree of the evaporator 14 outlet side refrigerant approaches the reference superheat degree. The refrigerant flow rate is adjusted. Therefore, the refrigeration capacity exhibited by the evaporator 14 can be expanded, and the COP of the ejector refrigeration cycle apparatus 10 can be further improved.
 また、本実施形態のエジェクタ式冷凍サイクル装置10のサイクル構成では、蒸発器14の冷媒流出口にエジェクタ13の冷媒吸引口31bが接続されている。従って、基準過熱度として比較的高い温度を設定しても、内部熱交換器15の低圧側冷媒通路15bから流出して圧縮機11に吸入される冷媒の温度等を上昇させてしまうことがない。 Further, in the cycle configuration of the ejector refrigeration cycle apparatus 10 of the present embodiment, the refrigerant suction port 31 b of the ejector 13 is connected to the refrigerant outlet of the evaporator 14. Therefore, even if a relatively high temperature is set as the reference superheat degree, the temperature of the refrigerant that flows out of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 and is sucked into the compressor 11 does not increase. .
 すなわち、本実施形態のエジェクタ式冷凍サイクル装置10によれば、圧縮機11の耐久寿命に悪影響を与えることなく、COPを充分に向上させることができる。 That is, according to the ejector refrigeration cycle apparatus 10 of the present embodiment, the COP can be sufficiently improved without adversely affecting the durability life of the compressor 11.
 (第2実施形態)
 本実施形態では、図3の全体構成図に示すように、互いに別の構成部材として構成されたエジェクタ20および気液分離器21を備えるエジェクタ式冷凍サイクル装置10aについて説明する。なお、図3では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
(Second Embodiment)
In the present embodiment, as shown in the overall configuration diagram of FIG. 3, an ejector refrigeration cycle apparatus 10 a including an ejector 20 and a gas-liquid separator 21 configured as separate components will be described. In FIG. 3, the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 本実施形態のエジェクタ20は、ノズル部20aおよびボデー部20bを有して構成されている。ノズル部20aは、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(例えば、ステンレス合金)で形成されており、その内部に形成された冷媒通路(絞り通路)にて冷媒を等エントロピ的に減圧させて噴射するものである。 The ejector 20 according to the present embodiment includes a nozzle portion 20a and a body portion 20b. The nozzle portion 20a is formed of a substantially cylindrical metal (for example, a stainless alloy) that gradually tapers in the flow direction of the refrigerant, and the refrigerant is passed through the refrigerant passage (throttle passage) formed therein. Injected with reduced pressure entropy.
 より詳細には、本実施形態では、ノズル部20aとして、エジェクタ式冷凍サイクル装置10aの通常運転時に、冷媒噴射口から噴射される噴射冷媒の流速が音速以上となるように設定されたラバールノズルが採用されている。もちろん、ノズル部20aとして、冷媒通路断面積が徐々に縮小する先細ノズルを採用してもよい。 More specifically, in the present embodiment, a Laval nozzle that is set so that the flow rate of the injected refrigerant that is injected from the refrigerant injection port is equal to or higher than the sound speed during normal operation of the ejector refrigeration cycle apparatus 10a is employed as the nozzle portion 20a. Has been. Of course, a tapered nozzle whose refrigerant passage cross-sectional area gradually decreases may be adopted as the nozzle portion 20a.
 また、ノズル部20aの冷媒流れ上流側には、ノズル部20aの軸線方向と同軸上に延びる筒状部20cが設けられている。この筒状部20cの内部には、ノズル部20aの内部へ流入した冷媒を旋回させる旋回空間20dが形成されている。旋回空間20dは、ノズル部20aの軸線方向と同軸上に延びる略円柱状の空間である。 Further, a cylindrical portion 20c extending coaxially with the axial direction of the nozzle portion 20a is provided on the refrigerant flow upstream side of the nozzle portion 20a. A swirling space 20d that swirls the refrigerant that has flowed into the nozzle portion 20a is formed inside the cylindrical portion 20c. The swirling space 20d is a substantially columnar space extending coaxially with the axial direction of the nozzle portion 20a.
 さらに、エジェクタ20の外部から旋回空間20dへ冷媒を流入させる冷媒流入通路は、旋回空間20dの中心軸方向から見たときに旋回空間20dの内壁面の接線方向に延びている。これにより、内部熱交換器15の高圧側冷媒通路15aから流出して旋回空間20dへ流入した過冷却液相冷媒は、旋回空間20dの内壁面に沿って流れ、旋回空間20dの中心軸周りに旋回する。 Furthermore, the refrigerant inflow passage through which the refrigerant flows into the swirl space 20d from the outside of the ejector 20 extends in the tangential direction of the inner wall surface of the swirl space 20d when viewed from the central axis direction of the swirl space 20d. As a result, the supercooled liquid refrigerant flowing out from the high-pressure side refrigerant passage 15a of the internal heat exchanger 15 and flowing into the swirl space 20d flows along the inner wall surface of the swirl space 20d, and around the central axis of the swirl space 20d. Turn.
 従って、本実施形態では、筒状部20cおよび旋回空間20dが、ノズル部20aへ流入する過冷却液相冷媒をノズル部20aの軸周りに旋回させる旋回流発生部を構成している。つまり、本実施形態では、エジェクタ20(具体的には、ノズル部20a)と旋回流発生部が一体的に構成されている。 Therefore, in the present embodiment, the cylindrical portion 20c and the swirling space 20d constitute a swirling flow generating portion that swirls the supercooled liquid phase refrigerant flowing into the nozzle portion 20a around the axis of the nozzle portion 20a. That is, in this embodiment, the ejector 20 (specifically, the nozzle part 20a) and the swirl flow generating part are integrally configured.
 ボデー部20bは、略円筒状の金属(例えば、アルミニウム)あるいは樹脂で形成されており、内部にノズル部20aを支持固定する固定部材として機能するとともに、エジェクタ20の外殻を形成するものである。より具体的には、ノズル部20aは、ボデー部20bの長手方向一端側の内部に収容されるように圧入にて固定されている。従って、ノズル部20aとボデー部20bとの固定部(圧入部)から冷媒が漏れることはない。 The body portion 20b is formed of a substantially cylindrical metal (for example, aluminum) or a resin, and functions as a fixing member that supports and fixes the nozzle portion 20a therein and forms an outer shell of the ejector 20. . More specifically, the nozzle portion 20a is fixed by press-fitting so as to be housed inside the longitudinal end of the body portion 20b. Therefore, the refrigerant does not leak from the fixed portion (press-fit portion) between the nozzle portion 20a and the body portion 20b.
 また、ボデー部20bの外周面のうち、ノズル部20aの外周側に対応する部位には、その内外を貫通してノズル部20aの冷媒噴射口と連通するように設けられた冷媒吸引口20eが形成されている。この冷媒吸引口20eは、ノズル部20aから噴射される噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒をエジェクタ20の外部から内部へ吸引する貫通穴である。 Further, a refrigerant suction port 20e provided so as to penetrate the inside and outside of the outer peripheral surface of the body portion 20b and communicate with the refrigerant injection port of the nozzle portion 20a is provided at a portion corresponding to the outer peripheral side of the nozzle portion 20a. Is formed. The refrigerant suction port 20e is a through hole that sucks the refrigerant that has flowed out of the evaporator 14 from the outside to the inside of the ejector 20 by the suction action of the injection refrigerant that is injected from the nozzle portion 20a.
 さらに、ボデー部20bの内部には、冷媒吸引口20eから吸引された吸引冷媒をノズル部20aの冷媒噴射口側へ導く吸引通路、および冷媒吸引口20eからエジェクタ20の内部へ流入した吸引冷媒と噴射冷媒とを混合させて昇圧させる昇圧部としてのディフューザ部20fが形成されている。 Further, inside the body portion 20b, a suction passage for leading the suction refrigerant sucked from the refrigerant suction port 20e to the refrigerant injection port side of the nozzle portion 20a, and a suction refrigerant flowing into the ejector 20 from the refrigerant suction port 20e and A diffuser portion 20f is formed as a pressure increasing portion that increases the pressure by mixing the injected refrigerant.
 ディフューザ部20fは、吸引通路の出口に連続するように配置されて、冷媒通路面積を徐々に拡大させる空間によって形成されている。これにより、噴射冷媒と吸引冷媒とを混合させながら、その流速を減速させて噴射冷媒と吸引冷媒との混合冷媒の圧力を上昇させる機能、すなわち、混合冷媒の速度エネルギを圧力エネルギに変換する機能を果たす。 The diffuser portion 20f is arranged to be continuous with the outlet of the suction passage, and is formed by a space that gradually expands the refrigerant passage area. Thereby, while mixing the injected refrigerant and the suction refrigerant, the function of decelerating the flow rate and increasing the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant, that is, the function of converting the velocity energy of the mixed refrigerant into pressure energy Fulfill.
 ディフューザ部20fの冷媒出口には、気液分離器21の冷媒入口側が接続されている。気液分離器21は、エジェクタ20のディフューザ部20fから流出した冷媒の気液を分離する気液分離部である。気液分離器21は、第1実施形態で説明した気液分離空間30fと同様の機能を果たすものである。 The refrigerant outlet side of the gas-liquid separator 21 is connected to the refrigerant outlet of the diffuser portion 20f. The gas / liquid separator 21 is a gas / liquid separator that separates the gas / liquid of the refrigerant that has flowed out of the diffuser portion 20f of the ejector 20. The gas-liquid separator 21 performs the same function as the gas-liquid separation space 30f described in the first embodiment.
 さらに、本実施形態では、気液分離器21として、分離された液相冷媒を殆ど蓄えることなく液相冷媒流出口から流出させるように比較的内容積の小さいものを採用している。もちろん、サイクル内の余剰液相冷媒を蓄える貯液部としての機能を有するものを採用してもよい。 Furthermore, in the present embodiment, a gas-liquid separator 21 having a relatively small internal volume is adopted so that the separated liquid-phase refrigerant flows out from the liquid-phase refrigerant outlet without substantially accumulating. Of course, you may employ | adopt what has a function as a liquid storage part which stores the excess liquid phase refrigerant | coolant in a cycle.
 気液分離器21の気相冷媒流出口には、内部熱交換器15の低圧側冷媒通路15bを介して圧縮機11の吸入口側が接続されている。 The inlet side of the compressor 11 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 21 through the low-pressure side refrigerant passage 15 b of the internal heat exchanger 15.
 一方、気液分離器21の液相冷媒流出口には、固定絞り22を介して、蒸発器14の冷媒入口側が接続されている。固定絞り22は、第1実施形態で説明したオリフィス31iと同様の機能を果たすものである。この固定絞り22としては、具体的には、オリフィス、キャピラリチューブ等を採用することができる。 On the other hand, the refrigerant inlet side of the evaporator 14 is connected to the liquid phase refrigerant outlet of the gas-liquid separator 21 via the fixed throttle 22. The fixed aperture 22 performs the same function as the orifice 31i described in the first embodiment. Specifically, an orifice, a capillary tube, or the like can be employed as the fixed throttle 22.
 さらに、本実施形態のエジェクタ式冷凍サイクル装置10aには、内部熱交換器15の高圧側冷媒通路15aの出口側からエジェクタ20の入口側へ至る冷媒通路に、冷媒流量調整部としての電気式の流量調整弁23が配置されている。流量調整弁23は、冷媒通路面積を変更可能に構成された弁体、およびこの弁体を変位させて冷媒通路面積を変化させる電動アクチュエータを有して構成されている。 Furthermore, in the ejector type refrigeration cycle apparatus 10a of the present embodiment, an electric type as a refrigerant flow rate adjusting unit is provided in the refrigerant path from the outlet side of the high pressure side refrigerant path 15a of the internal heat exchanger 15 to the inlet side of the ejector 20. A flow rate adjusting valve 23 is arranged. The flow rate adjusting valve 23 includes a valve body that can change the refrigerant passage area, and an electric actuator that changes the refrigerant passage area by displacing the valve body.
 この流量調整弁23の冷媒通路面積は、エジェクタ20のノズル部20aの冷媒通路(絞り通路)の通路断面積に対して充分に大きい。従って、本実施形態の流量調整弁23では、冷媒減圧作用を殆ど発揮することなく、ノズル部20aへ流入する冷媒の流量を調整することができる。さらに、流量調整弁23は、制御装置50から出力される制御信号によって、その作動が制御される。 The refrigerant passage area of the flow rate adjusting valve 23 is sufficiently larger than the passage sectional area of the refrigerant passage (throttle passage) of the nozzle portion 20a of the ejector 20. Therefore, the flow rate adjusting valve 23 of the present embodiment can adjust the flow rate of the refrigerant flowing into the nozzle portion 20a with almost no refrigerant decompression effect. Further, the operation of the flow rate adjusting valve 23 is controlled by a control signal output from the control device 50.
 また、本実施形態の制御装置50の入力側には、空調制御用のセンサ群として、蒸発器14出口側冷媒の過熱度を検出する過熱度検出手段としての過熱度センサ51が接続されている。より具体的には、本実施形態の過熱度センサ51は、蒸発器14の冷媒出口からエジェクタ20の冷媒吸引口20eへ至る冷媒通路を流通する冷媒の過熱度を検出する。 Moreover, the superheat degree sensor 51 as a superheat degree detection means which detects the superheat degree of the evaporator 14 exit side refrigerant | coolant is connected to the input side of the control apparatus 50 of this embodiment as a sensor group for air-conditioning control. . More specifically, the superheat degree sensor 51 of this embodiment detects the superheat degree of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the evaporator 14 to the refrigerant suction port 20e of the ejector 20.
 なお、過熱度検出手段として、過熱度センサ51に代えて、蒸発器14出口側冷媒の温度を検出する蒸発器出口側温度センサ、および蒸発器14出口側冷媒の圧力を検出する蒸発器出口側圧力センサを採用してもよい。そして、制御装置50が、蒸発器出口側温度センサおよび蒸発器出口側圧力センサの検出値に基づいて、過熱度を算定するようになっていてもよい。 As superheat degree detection means, instead of the superheat degree sensor 51, an evaporator outlet side temperature sensor for detecting the temperature of the evaporator 14 outlet side refrigerant, and an evaporator outlet side for detecting the pressure of the evaporator 14 outlet side refrigerant. A pressure sensor may be employed. And the control apparatus 50 may calculate a superheat degree based on the detected value of an evaporator exit side temperature sensor and an evaporator exit side pressure sensor.
 さらに、本実施形態の制御装置50は、過熱度センサ51の検出値が基準過熱度に近づくように、流量調整弁23の作動を制御する。また、本実施形態では、制御装置50のうち、流量調整弁23の作動を制御する構成(ハードウェアおよびソフトウェア)が過熱度制御部を構成している。 Furthermore, the control device 50 of the present embodiment controls the operation of the flow rate adjustment valve 23 so that the detected value of the superheat degree sensor 51 approaches the reference superheat degree. Moreover, in this embodiment, the structure (hardware and software) which controls the action | operation of the flow regulating valve 23 among the control apparatuses 50 comprises the superheat degree control part.
 その他のエジェクタ式冷凍サイクル装置10aの構成および作動については、第1実施形態のエジェクタ式冷凍サイクル装置10と同様である。従って、本実施形態のエジェクタ式冷凍サイクル装置10aは、第1実施形態で説明したエジェクタ式冷凍サイクル装置10と実質的に同等のサイクル構成になっており、第1実施形態と同様に作動する。 Other configurations and operations of the ejector refrigeration cycle apparatus 10a are the same as those of the ejector refrigeration cycle apparatus 10 of the first embodiment. Therefore, the ejector refrigeration cycle apparatus 10a of the present embodiment has a cycle configuration substantially equivalent to that of the ejector refrigeration cycle apparatus 10 described in the first embodiment, and operates in the same manner as the first embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10aによれば、第1実施形態と同様の効果を得ることができる。 Therefore, according to the ejector refrigeration cycle apparatus 10a of the present embodiment, the same effects as those of the first embodiment can be obtained.
 つまり、本実施形態のエジェクタ20には、旋回空間20dが形成されているので、内部熱交換器15を備えるエジェクタ式冷凍サイクル装置10aであっても、エジェクタ20のディフューザ部20fの昇圧作用によるCOP向上効果を充分に得ることができる。そして、圧縮機11の耐久寿命に悪影響を与えることなく、COPを充分に向上させることができる。 That is, since the swivel space 20d is formed in the ejector 20 of the present embodiment, even in the ejector type refrigeration cycle apparatus 10a including the internal heat exchanger 15, the COP due to the boosting action of the diffuser portion 20f of the ejector 20 is provided. The improvement effect can be sufficiently obtained. The COP can be sufficiently improved without adversely affecting the durability life of the compressor 11.
 (第3実施形態)
 本実施形態では、第2実施形態の変形例を説明する。本実施形態のエジェクタ式冷凍サイクル装置10aでは、図4に示すように、過熱度センサ51にて、圧縮機11へ吸入され吸入冷媒の過熱度を検出する。より具体的には、本実施形態の過熱度センサ51は、内部熱交換器15の低圧側冷媒通路15bの冷媒出口から圧縮機11の吸入口へ至る冷媒通路を流通する冷媒の過熱度を検出する。その他のエジェクタ式冷凍サイクル装置10aの構成および作動は、第2実施形態と同様である。
(Third embodiment)
In the present embodiment, a modification of the second embodiment will be described. In the ejector refrigeration cycle apparatus 10a of the present embodiment, as shown in FIG. 4, the superheat degree sensor 51 detects the superheat degree of the refrigerant sucked into the compressor 11 by being sucked into the compressor 11. More specifically, the superheat degree sensor 51 of the present embodiment detects the superheat degree of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 to the suction port of the compressor 11. To do. Other configurations and operations of the ejector refrigeration cycle apparatus 10a are the same as those in the second embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10aによれば、第2実施形態と同様の効果を得ることができ、エジェクタ20の昇圧作用によるCOP向上効果を充分に得ることができる。さらに、圧縮機11吸入冷媒の過熱度を適切に調整することで、圧縮機11が吸入する冷媒の温度が不必要に上昇してしまうことを抑制することができる。 Therefore, according to the ejector type refrigeration cycle apparatus 10a of the present embodiment, the same effects as those of the second embodiment can be obtained, and the COP improvement effect by the boosting action of the ejector 20 can be sufficiently obtained. Furthermore, by appropriately adjusting the degree of superheat of the refrigerant sucked by the compressor 11, it is possible to suppress an unnecessary increase in the temperature of the refrigerant sucked by the compressor 11.
 (第4実施形態)
 本実施形態では、第2実施形態の変形例を説明する。本実施形態のエジェクタ式冷凍サイクル装置10aでは、図5に示すように、過熱度センサ51にて、内部熱交換器15の低圧側冷媒通路15bへ流入する冷媒の過熱度を検出する。より具体的には、本実施形態の過熱度センサ51は、気液分離器21の気相冷媒流出口から内部熱交換器15の低圧側冷媒通路15bの冷媒入口へ至る冷媒通路を流通する冷媒の過熱度を検出する。その他のエジェクタ式冷凍サイクル装置10aの構成および作動は、第2実施形態と同様である。
(Fourth embodiment)
In the present embodiment, a modification of the second embodiment will be described. In the ejector refrigeration cycle apparatus 10a of this embodiment, as shown in FIG. 5, the superheat degree of the refrigerant flowing into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is detected by the superheat degree sensor 51. More specifically, the superheat degree sensor 51 of the present embodiment is a refrigerant that circulates in the refrigerant passage from the gas-phase refrigerant outlet of the gas-liquid separator 21 to the refrigerant inlet of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15. Detects the degree of superheat. Other configurations and operations of the ejector refrigeration cycle apparatus 10a are the same as those in the second embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10aによれば、第2実施形態と同様の効果を得ることができ、エジェクタ20の昇圧作用によるCOP向上効果を充分に得ることができる。さらに、内部熱交換器15の低圧側冷媒通路15bへ流入する冷媒の過熱度を適切に調整することで、圧縮機11が吸入する冷媒の温度が不必要に上昇してしまうことを抑制することができる。 Therefore, according to the ejector type refrigeration cycle apparatus 10a of the present embodiment, the same effects as those of the second embodiment can be obtained, and the COP improvement effect by the boosting action of the ejector 20 can be sufficiently obtained. Further, by appropriately adjusting the degree of superheat of the refrigerant flowing into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15, it is possible to suppress the temperature of the refrigerant sucked by the compressor 11 from being unnecessarily increased. Can do.
 (第5実施形態)
 本実施形態では、第2実施形態で説明したエジェクタ式冷凍サイクル装置10aに対して、図6の全体構成図に示すように、内部熱交換器15の低圧側冷媒通路15bの配置を変更した例を説明する。
(Fifth embodiment)
In the present embodiment, an example in which the arrangement of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is changed as shown in the overall configuration diagram of FIG. 6 with respect to the ejector refrigeration cycle apparatus 10a described in the second embodiment. Will be explained.
 より具体的には、本実施形態の低圧側冷媒通路15bは、蒸発器14の冷媒出口からエジェクタ20の冷媒吸引口20eへ至る冷媒通路に配置されている。つまり、本実施形態の低圧側冷媒通路15bを流通する低圧側冷媒は、蒸発器14から流出してエジェクタ20の冷媒吸引口20eへ流入する吸入冷媒である。 More specifically, the low-pressure side refrigerant passage 15b of the present embodiment is disposed in the refrigerant passage from the refrigerant outlet of the evaporator 14 to the refrigerant suction port 20e of the ejector 20. That is, the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b of the present embodiment is an intake refrigerant that flows out of the evaporator 14 and flows into the refrigerant suction port 20e of the ejector 20.
 また、本実施形態の過熱度センサ51は、低圧側冷媒通路15bの冷媒出口からエジェクタ20の冷媒吸引口20eへ至る冷媒通路を流通する冷媒の過熱度を検出している。その他の構成は、第2実施形態と同様である。 Further, the superheat degree sensor 51 of the present embodiment detects the superheat degree of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the low-pressure side refrigerant passage 15b to the refrigerant suction port 20e of the ejector 20. Other configurations are the same as those of the second embodiment.
 次に、図7のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル装置10aの作動を説明する。なお、図7のモリエル線図にて冷媒の状態を示す各符号は、第1実施形態で説明した図2のモリエル線図に対してサイクル構成上同等の箇所の冷媒の状態を示すものは同一のアルファベットを用いて示し、添字(数字)のみ変更している。このことは、以下のモリエル線図においても同様である。 Next, the operation of the ejector refrigeration cycle apparatus 10a of the present embodiment will be described using the Mollier diagram of FIG. In addition, each code | symbol which shows the state of a refrigerant | coolant in the Mollier diagram of FIG. 7 has the same thing which shows the state of the refrigerant | coolant of a location equivalent on a cycle structure with respect to the Mollier diagram of FIG. 2 demonstrated in 1st Embodiment. This is indicated using the alphabet, and only the subscripts (numbers) are changed. The same applies to the following Mollier diagram.
 本実施形態のエジェクタ式冷凍サイクル装置10aを作動させると、第1実施形態のエジェクタ式冷凍サイクル装置10と同様に、圧縮機11から吐出された冷媒が、放熱器12→内部熱交換器15の高圧側冷媒通路15aの順に流れて、過冷却液相冷媒となる(図7のa7点→b7点→c7点)。 When the ejector refrigeration cycle apparatus 10a according to the present embodiment is operated, the refrigerant discharged from the compressor 11 is transferred from the radiator 12 to the internal heat exchanger 15 in the same manner as the ejector refrigeration cycle apparatus 10 according to the first embodiment. The refrigerant flows in the order of the high-pressure side refrigerant passage 15a to become a supercooled liquid phase refrigerant (point a7 → b7 → c7 in FIG. 7).
 高圧側冷媒通路15aから流出した過冷却液相冷媒は、流量調整弁23を介して、エジェクタ20のノズル部20aの上流側(具体的には、筒状部20c)へ流入する。この際、流量調整弁23の弁開度は、内部熱交換器15の低圧側冷媒通路15bから流出した冷媒(図7では、j’7点)の過熱度が、基準過熱度に近づくように調整される。 The supercooled liquid phase refrigerant that has flowed out of the high-pressure side refrigerant passage 15 a flows into the upstream side (specifically, the cylindrical portion 20 c) of the nozzle portion 20 a of the ejector 20 through the flow rate adjusting valve 23. At this time, the valve opening degree of the flow rate adjusting valve 23 is set so that the degree of superheat of the refrigerant (point j′7 in FIG. 7) flowing out from the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 approaches the reference superheat degree. Adjusted.
 エジェクタ20のノズル部20aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図7のc7点→d7点)。そして、ノズル部20aから噴射された噴射冷媒の吸引作用によって、内部熱交換器15の低圧側冷媒通路15bから流出した冷媒が、冷媒吸引口20eからエジェクタ20の内部へ吸引される。 The refrigerant that has flowed into the nozzle portion 20a of the ejector 20 is isentropically depressurized and injected (point c7 → point d7 in FIG. 7). And the refrigerant | coolant which flowed out from the low voltage | pressure side refrigerant path 15b of the internal heat exchanger 15 is attracted | sucked into the inside of the ejector 20 from the refrigerant | coolant suction port 20e by the suction effect | action of the injection refrigerant | coolant injected from the nozzle part 20a.
 ノズル部20aから噴射された噴射冷媒、および冷媒吸引口20eから吸引された吸引冷媒は、ディフューザ部20fにて合流して昇圧される(図7のd7点→e7点→f7点、j’7点→e7点→f7点)。ディフューザ部20fから流出した冷媒は、気液分離器21にて気液分離される(図7のf7点→g7点、f7点→h7点)。 The refrigerant injected from the nozzle portion 20a and the suction refrigerant sucked from the refrigerant suction port 20e are merged and pressurized in the diffuser portion 20f (d7 point → e7 point → f7 point in FIG. 7, j′7 Point → e7 point → f7 point). The refrigerant that has flowed out of the diffuser section 20f is gas-liquid separated by the gas-liquid separator 21 (f7 point → g7 point, f7 point → h7 point in FIG. 7).
 気液分離器21の気相冷媒流出口から流出した気相冷媒は、圧縮機11へ吸入されて再び圧縮される(図7のg7点→a7点)。一方、気液分離器21の液相冷媒流出口から流出した液相冷媒は、固定絞り22にて減圧されて蒸発器14へ流入する(図7のh7点→i7点)。蒸発器14へ流入した冷媒は、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図7のi7点→j7点)。これにより、送風空気が冷却される。 The gas-phase refrigerant flowing out from the gas-phase refrigerant outlet of the gas-liquid separator 21 is sucked into the compressor 11 and compressed again (point g7 → a7 in FIG. 7). On the other hand, the liquid-phase refrigerant flowing out from the liquid-phase refrigerant outlet of the gas-liquid separator 21 is decompressed by the fixed throttle 22 and flows into the evaporator 14 (point h7 → i7 in FIG. 7). The refrigerant flowing into the evaporator 14 absorbs heat from the blown air blown by the blower fan 14a and evaporates (i7 point → j7 point in FIG. 7). Thereby, blowing air is cooled.
 蒸発器14から流出した冷媒は、内部熱交換器15の低圧側冷媒通路15bへ流入して、高圧側冷媒通路15aを流通する高圧側冷媒と熱交換する。そして、基準過熱度の気相冷媒となるまでエンタルピを上昇させる(図7のj7点→j’7点)。内部熱交換器15の低圧側冷媒通路15bから流出した冷媒は、前述の如く、エジェクタ20の冷媒吸引口20eから吸引される。 The refrigerant that has flowed out of the evaporator 14 flows into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15, and exchanges heat with the high-pressure side refrigerant that flows through the high-pressure side refrigerant passage 15a. Then, the enthalpy is increased until the gas-phase refrigerant having the reference superheat degree is reached (j7 point → j′7 point in FIG. 7). The refrigerant flowing out from the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is sucked from the refrigerant suction port 20e of the ejector 20 as described above.
 本実施形態のエジェクタ式冷凍サイクル装置10aは、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。また、第2実施形態と同様に、内部熱交換器15を備えるエジェクタ式冷凍サイクル装置10aであっても、エジェクタ20の昇圧作用によるCOP向上効果を充分に得ることができる。 The ejector type refrigeration cycle apparatus 10a of the present embodiment operates as described above, and can cool the blown air blown into the vehicle interior. Further, similarly to the second embodiment, even in the ejector refrigeration cycle apparatus 10a including the internal heat exchanger 15, the COP improvement effect due to the boosting action of the ejector 20 can be sufficiently obtained.
 また、本実施形態のエジェクタ式冷凍サイクル装置10aでは、内部熱交換器15の低圧側冷媒通路15bに蒸発器14から流出した低温の低圧側冷媒を流入させるので、気液分離器21から流出した低圧側冷媒を流入させる場合に対して、内部熱交換器15にて効果的に高圧側冷媒を冷却することができる。 Further, in the ejector refrigeration cycle apparatus 10a of the present embodiment, the low-temperature low-pressure side refrigerant that has flowed out of the evaporator 14 is caused to flow into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15, so that it flows out of the gas-liquid separator 21. In contrast to the case where the low-pressure side refrigerant is introduced, the high-pressure side refrigerant can be effectively cooled by the internal heat exchanger 15.
 また、本実施形態のエジェクタ式冷凍サイクル装置10aでは、気液分離器21の気相冷媒流出口に、内部熱交換器15の低圧側冷媒通路15bを介することなく、圧縮機11の吸入口が接続されている。従って、低圧側冷媒通路15bから流出する低圧側冷媒の温度が上昇しても、圧縮機11が吸入する冷媒の温度が上昇してしまうことがない。 Further, in the ejector refrigeration cycle apparatus 10a of the present embodiment, the suction port of the compressor 11 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 21 without passing through the low-pressure side refrigerant passage 15b of the internal heat exchanger 15. It is connected. Therefore, even if the temperature of the low-pressure side refrigerant flowing out from the low-pressure side refrigerant passage 15b increases, the temperature of the refrigerant sucked by the compressor 11 does not increase.
 その結果、本実施形態のエジェクタ式冷凍サイクル装置10によれば、圧縮機11の耐久寿命に悪影響を与えることなく、COPを充分に向上させることができる。 As a result, according to the ejector refrigeration cycle apparatus 10 of the present embodiment, the COP can be sufficiently improved without adversely affecting the durability life of the compressor 11.
 ここで、本実施形態のエジェクタ式冷凍サイクル装置10aのように、蒸発器14の冷媒出口側に内部熱交換器15の低圧側冷媒通路15bを配置するサイクル構成では、蒸発器14にて発揮される冷凍能力(図7では、i7点とj7点とのエンタルピ差)が低下して、蒸発器14における送風空気の冷却能力が低下してしまうおそれがある。 Here, in the cycle configuration in which the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is arranged on the refrigerant outlet side of the evaporator 14 as in the ejector refrigeration cycle apparatus 10a of the present embodiment, the evaporator 14 exhibits the cycle configuration. Refrigeration capacity (in FIG. 7, the enthalpy difference between the i7 point and the j7 point) may be reduced, and the cooling capacity of the blown air in the evaporator 14 may be reduced.
 これに対して、一般的な蒸発器では、図8に示すように、冷媒の乾き度Xの変化に伴って、熱交換領域の熱伝達率λが変化することが知られている。 On the other hand, in a general evaporator, as shown in FIG. 8, it is known that the heat transfer coefficient λ in the heat exchange region changes as the dryness X of the refrigerant changes.
 より詳細には、蒸発器の熱交換領域にて、比較的乾き度の低い冷媒を蒸発させると、沸騰核の存在が少なくなっているために熱交換領域の熱伝達率λが低下してしまう。また、蒸発器の熱交換領域にて、比較的乾き度の高い冷媒を蒸発させると、伝熱面に蒸発可能な液相冷媒が存在しなくなるポスト・ドライアウトが生じてしまうために熱交換領域の熱伝達率λが低下してしまう。 More specifically, if the refrigerant having a relatively low dryness is evaporated in the heat exchange region of the evaporator, the heat transfer coefficient λ in the heat exchange region is lowered because the presence of boiling nuclei is reduced. . In addition, if a relatively dry refrigerant is evaporated in the heat exchange area of the evaporator, there will be post-dryout where there is no liquid phase refrigerant that can evaporate on the heat transfer surface. The heat transfer coefficient λ will be reduced.
 つまり、一般的な蒸発器では、熱交換領域の熱伝達率λの低下を生じさせない範囲の乾き度Xの冷媒(図8の中間領域の冷媒)と冷却対象流体(本実施形態では、送風空気)とを熱交換させることで、効率的かつ効果的に冷却対象流体を冷却することができる。 That is, in a general evaporator, a refrigerant having a dryness X in a range that does not cause a decrease in the heat transfer coefficient λ in the heat exchange region (a refrigerant in the intermediate region in FIG. 8) and a fluid to be cooled (in this embodiment, blown air) ) And the fluid to be cooled can be efficiently and effectively cooled.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10aのように、内部熱交換器15の低圧側冷媒通路15bを蒸発器14の冷媒出口側に配置することで、蒸発器14にて中間領域の冷媒を蒸発させやすくなる。その結果、本実施形態のエジェクタ式冷凍サイクル装置10aでは、蒸発器14における送風空気の冷却能力が低下してしまうことを抑制できる。 Therefore, as in the ejector refrigeration cycle apparatus 10a of the present embodiment, the refrigerant in the intermediate region is formed in the evaporator 14 by disposing the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 on the refrigerant outlet side of the evaporator 14. It becomes easy to evaporate. As a result, in the ejector-type refrigeration cycle apparatus 10a of the present embodiment, it is possible to suppress a decrease in the cooling capacity of the blown air in the evaporator 14.
 (第6実施形態)
 本実施形態では、第2実施形態で説明したエジェクタ式冷凍サイクル装置10aに対して、図9の全体構成図に示すように、内部熱交換器15の低圧側冷媒通路15bの配置を変更した例を説明する。
(Sixth embodiment)
In the present embodiment, an example in which the arrangement of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is changed with respect to the ejector refrigeration cycle apparatus 10a described in the second embodiment, as shown in the overall configuration diagram of FIG. Will be explained.
 より具体的には、本実施形態の低圧側冷媒通路15bは、固定絞り22の冷媒出口から蒸発器14の冷媒入口へ至る冷媒通路に配置されている。つまり、本実施形態の低圧側冷媒通路15bを流通する低圧側冷媒は、固定絞り22から流出して蒸発器14へ流入する冷媒である。その他の構成は、第2実施形態と同様である。 More specifically, the low-pressure side refrigerant passage 15b of the present embodiment is disposed in the refrigerant passage extending from the refrigerant outlet of the fixed throttle 22 to the refrigerant inlet of the evaporator 14. That is, the low-pressure side refrigerant that flows through the low-pressure side refrigerant passage 15 b of the present embodiment is a refrigerant that flows out from the fixed throttle 22 and flows into the evaporator 14. Other configurations are the same as those of the second embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10aを作動させると、図10のモリエル線図に示すように、冷媒の状態が変化する。本実施形態では、固定絞り22から流出した冷媒が、内部熱交換器15の低圧側冷媒通路15bへ流入し、高圧側冷媒通路15aを流通する高圧側冷媒と熱交換して、エンタルピを上昇させる(図10のi10点→j10点)。 Therefore, when the ejector refrigeration cycle apparatus 10a of this embodiment is operated, the state of the refrigerant changes as shown in the Mollier diagram of FIG. In this embodiment, the refrigerant that has flowed out of the fixed throttle 22 flows into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15, exchanges heat with the high-pressure side refrigerant that flows through the high-pressure side refrigerant passage 15a, and increases enthalpy. (I10 point in FIG. 10 → j10 point).
 低圧側冷媒通路15bから流出した冷媒は、蒸発器14へ流入し、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図10のj10点→j’10点)。これにより、送風空気が冷却される。その他の作動は第5実施形態と同様である。 The refrigerant that has flowed out of the low-pressure side refrigerant passage 15b flows into the evaporator 14, absorbs heat from the blown air blown by the blower fan 14a, and evaporates (j10 point → j′10 point in FIG. 10). Thereby, blowing air is cooled. Other operations are the same as those in the fifth embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10aによれば、第5実施形態と同様の効果を得ることができる。 Therefore, according to the ejector refrigeration cycle apparatus 10a of the present embodiment, the same effects as those of the fifth embodiment can be obtained.
 さらに、本実施形態のエジェクタ式冷凍サイクル装置10aのように、内部熱交換器15の低圧側冷媒通路15bを蒸発器14の冷媒入口側に配置することで、蒸発器14にて図8で説明した中間領域の冷媒を蒸発させやすくなる。その結果、本実施形態のエジェクタ式冷凍サイクル装置10aでは、第5実施形態と同様に、蒸発器14における送風空気の冷却能力が低下してしまうことを抑制できる。 Furthermore, like the ejector type refrigeration cycle apparatus 10a of the present embodiment, the low pressure side refrigerant passage 15b of the internal heat exchanger 15 is arranged on the refrigerant inlet side of the evaporator 14, so that the evaporator 14 will be described with reference to FIG. It becomes easy to evaporate the refrigerant in the intermediate region. As a result, in the ejector type refrigeration cycle apparatus 10a of the present embodiment, it is possible to suppress a decrease in the cooling capacity of the blown air in the evaporator 14 as in the fifth embodiment.
 (第7実施形態)
 本実施形態では、第2実施形態で説明したエジェクタ式冷凍サイクル装置10aに対して、図11の全体構成図に示すように、内部熱交換器15の低圧側冷媒通路15bの配置を変更した例を説明する。
(Seventh embodiment)
In the present embodiment, an example in which the arrangement of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is changed with respect to the ejector refrigeration cycle apparatus 10a described in the second embodiment, as shown in the overall configuration diagram of FIG. Will be explained.
 より具体的には、本実施形態のエジェクタ式冷凍サイクル装置10aには、固定絞り22から流出した冷媒を、蒸発器14を迂回させて、エジェクタ20の冷媒吸引口20e側へ導くバイパス通路24が設けられている。つまり、このバイパス通路24は、蒸発器14の上流側の冷媒を、蒸発器14を迂回させて、蒸発器14の下流側へ導く冷媒通路である。 More specifically, the ejector refrigeration cycle apparatus 10a of the present embodiment has a bypass passage 24 that guides the refrigerant flowing out from the fixed throttle 22 to the refrigerant suction port 20e side of the ejector 20 by bypassing the evaporator 14. Is provided. That is, the bypass passage 24 is a refrigerant passage that guides the refrigerant upstream of the evaporator 14 to the downstream side of the evaporator 14 by bypassing the evaporator 14.
 このバイパス通路24の通路面積は、固定絞り22から流出した冷媒を蒸発器14へ導く冷媒通路の通路面積よりも充分に小さく形成されている。これにより、固定絞り22から流出した冷媒が、不必要にバイパス通路24側へ流入してしまうことを抑制し、蒸発器14へ流入する冷媒の流量が不足してしまうことを抑制している。 The passage area of the bypass passage 24 is formed to be sufficiently smaller than the passage area of the refrigerant passage that guides the refrigerant flowing out from the fixed throttle 22 to the evaporator 14. As a result, the refrigerant that has flowed out of the fixed throttle 22 is prevented from unnecessarily flowing into the bypass passage 24, and the flow rate of the refrigerant that flows into the evaporator 14 is suppressed from becoming insufficient.
 さらに、本実施形態の低圧側冷媒通路15bは、バイパス通路24に配置されている。従って、本実施形態の低圧側冷媒通路15bを流通する低圧側冷媒は、バイパス通路24を流通する冷媒である。また、本実施形態の過熱度センサ51は、蒸発器14出口側冷媒であって、バイパス通路24から流出した冷媒と合流する前の冷媒の過熱度を検出している。その他の構成および作動は、第5実施形態と同様である。 Furthermore, the low-pressure side refrigerant passage 15b of the present embodiment is disposed in the bypass passage 24. Therefore, the low-pressure side refrigerant that circulates in the low-pressure side refrigerant passage 15 b of the present embodiment is a refrigerant that circulates in the bypass passage 24. Further, the superheat degree sensor 51 of the present embodiment is a refrigerant on the outlet side of the evaporator 14 and detects the degree of superheat of the refrigerant before joining the refrigerant flowing out of the bypass passage 24. Other configurations and operations are the same as those of the fifth embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10aによれば、第5実施形態と同様の効果を得ることができる。 Therefore, according to the ejector refrigeration cycle apparatus 10a of the present embodiment, the same effects as those of the fifth embodiment can be obtained.
 (第8実施形態)
 本実施形態では、図12の全体構成図に示すように、第2実施形態に対して、サイクル構成を変更したエジェクタ式冷凍サイクル装置10bについて説明する。より具体的には、本実施形態のエジェクタ式冷凍サイクル装置10bでは、内部熱交換器15の高圧側冷媒通路15aの出口側に、分岐部25の冷媒流入口側が接続されている。
(Eighth embodiment)
In the present embodiment, as shown in the overall configuration diagram of FIG. 12, an ejector refrigeration cycle apparatus 10b in which the cycle configuration is changed with respect to the second embodiment will be described. More specifically, in the ejector refrigeration cycle apparatus 10b of the present embodiment, the refrigerant inlet side of the branch portion 25 is connected to the outlet side of the high-pressure side refrigerant passage 15a of the internal heat exchanger 15.
 分岐部25は、内部熱交換器15から流出した過冷却液相冷媒の流れを分岐する三方継手構造のものである。分岐部25の一方の冷媒流出口には、流量調整弁23を介してエジェクタ20のノズル部20aの入口側が接続されている。分岐部25の他方の冷媒流出口には、固定絞り22を介して蒸発器14の冷媒入口側が接続されている。 The branch portion 25 has a three-way joint structure that branches the flow of the supercooled liquid phase refrigerant that has flowed out of the internal heat exchanger 15. An inlet side of the nozzle portion 20 a of the ejector 20 is connected to one refrigerant outlet of the branch portion 25 via a flow rate adjustment valve 23. A refrigerant inlet side of the evaporator 14 is connected to the other refrigerant outlet of the branch portion 25 via a fixed throttle 22.
 また、本実施形態では、エジェクタ20のディフューザ部20fの出口側に、第2蒸発器26の冷媒入口側が接続されている。第2蒸発器26の基本的構成は、蒸発器14と同様である。第2蒸発器26は、エジェクタ20のディフューザ部20fから流出した低圧冷媒と送風ファン26aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。 In this embodiment, the refrigerant inlet side of the second evaporator 26 is connected to the outlet side of the diffuser portion 20f of the ejector 20. The basic configuration of the second evaporator 26 is the same as that of the evaporator 14. The second evaporator 26 heat-exchanges the low-pressure refrigerant that has flowed out of the diffuser portion 20f of the ejector 20 and the blown air that is blown into the vehicle interior from the blower fan 26a, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. This is an endothermic heat exchanger.
 より詳細には、本実施形態の車両用空調装置は、蒸発器14にて車両前席側へ送風される送風空気を冷却し、第2蒸発器26にて車両後席側へ送風される送風空気を冷却する、いわゆるデュアルエアコンとして構成されている。なお、以下の説明では、説明の明確化のため、蒸発器14を第1蒸発器14と記載する。 More specifically, the vehicle air conditioner of the present embodiment cools the blown air blown to the vehicle front seat side by the evaporator 14 and blows the air blown to the vehicle rear seat side by the second evaporator 26. It is configured as a so-called dual air conditioner that cools the air. In the following description, the evaporator 14 is referred to as a first evaporator 14 for the sake of clarity.
 第2蒸発器26の冷媒出口側には、内部熱交換器15の低圧側冷媒通路15bの入口側が接続されている。また、本実施形態の過熱度センサ51は、第3実施形態と同様に、内部熱交換器15の低圧側冷媒通路15bの冷媒出口から圧縮機11の吸入口へ至る冷媒通路を流通する冷媒の過熱度を検出する。その他のエジェクタ式冷凍サイクル装置10bの構成は、第2実施形態のエジェクタ式冷凍サイクル装置10aと同様である。 The inlet side of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is connected to the refrigerant outlet side of the second evaporator 26. Further, the superheat degree sensor 51 of the present embodiment is similar to the third embodiment in that the refrigerant flowing through the refrigerant passage extending from the refrigerant outlet of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 to the suction port of the compressor 11 is used. Detect superheat. The configuration of the other ejector refrigeration cycle apparatus 10b is the same as that of the ejector refrigeration cycle apparatus 10a of the second embodiment.
 次に、図13のモリエル線図を用いて、本実施形態のエジェクタ式冷凍サイクル装置10bの作動を説明する。 Next, the operation of the ejector refrigeration cycle apparatus 10b of the present embodiment will be described using the Mollier diagram of FIG.
 本実施形態のエジェクタ式冷凍サイクル装置10bを作動させると、第1実施形態のエジェクタ式冷凍サイクル装置10と同様に、圧縮機11から吐出された冷媒が、放熱器12→内部熱交換器15の高圧側冷媒通路15aの順に流れて、過冷却液相冷媒となる(図13のa13点→b13点→c13点)。高圧側冷媒通路15aから流出した過冷却液相冷媒の流れは、分岐部25にて分岐される。 When the ejector refrigeration cycle apparatus 10b according to the present embodiment is operated, the refrigerant discharged from the compressor 11 is discharged from the radiator 12 to the internal heat exchanger 15 as in the ejector refrigeration cycle apparatus 10 according to the first embodiment. The refrigerant flows in the order of the high-pressure side refrigerant passage 15a to become a supercooled liquid phase refrigerant (point a13 → b13 → c13 in FIG. 13). The flow of the supercooled liquid phase refrigerant that has flowed out of the high-pressure side refrigerant passage 15 a is branched at the branching section 25.
 分岐された一方の冷媒は、流量調整弁23を介して、エジェクタ20のノズル部20aの上流側(具体的には、筒状部20c)へ流入する。この際、流量調整弁23の弁開度は、内部熱交換器15の低圧側冷媒通路15bから流出した冷媒(図13では、k13点)の過熱度が、基準過熱度に近づくように調整される。 One of the branched refrigerants flows into the upstream side (specifically, the cylindrical part 20c) of the nozzle part 20a of the ejector 20 through the flow rate adjusting valve 23. At this time, the valve opening degree of the flow rate adjusting valve 23 is adjusted so that the superheat degree of the refrigerant (k13 point in FIG. 13) flowing out from the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 approaches the reference superheat degree. The
 エジェクタ20のノズル部20aへ流入した冷媒は、等エントロピ的に減圧されて噴射される(図13のc13点→d13点)。そして、ノズル部20aから噴射された噴射冷媒の吸引作用によって、第1蒸発器14から流出した冷媒(図13のj13点)が、冷媒吸引口20eからエジェクタ20の内部へ吸引される。 The refrigerant that has flowed into the nozzle portion 20a of the ejector 20 is isentropically decompressed and injected (point c13 → point d13 in FIG. 13). And the refrigerant | coolant (j13 point of FIG. 13) which flowed out from the 1st evaporator 14 is attracted | sucked from the refrigerant | coolant suction opening 20e to the inside of the ejector 20 by the suction effect | action of the injection refrigerant | coolant injected from the nozzle part 20a.
 ノズル部20aから噴射された噴射冷媒および冷媒吸引口20eから吸引された吸引冷媒は、ディフューザ部20fにて合流して昇圧される(図13のd13点→e13点→f13点、j13点→e13点→f13点)。 The refrigerant injected from the nozzle portion 20a and the suction refrigerant sucked from the refrigerant suction port 20e are joined and increased in the diffuser portion 20f (d13 point → e13 point → f13 point, j13 point → e13 in FIG. 13). Point → f13 point).
 ディフューザ部20fから流出した冷媒は、第2蒸発器26へ流入する。第2蒸発器26へ流入した冷媒は、送風ファン26aによって送風された送風空気から吸熱して蒸発する(図13のf13点→m13点)。これにより、車両後席側へ送風される送風空気が冷却される。 The refrigerant that has flowed out of the diffuser section 20f flows into the second evaporator 26. The refrigerant flowing into the second evaporator 26 absorbs heat from the blown air blown by the blower fan 26a and evaporates (point f13 → m13 in FIG. 13). Thereby, the blowing air sent to the vehicle rear seat side is cooled.
 第2蒸発器26から流出した冷媒は、内部熱交換器15の低圧側冷媒通路15bへ流入する。低圧側冷媒通路15bへ流入した低圧側冷媒は、高圧側冷媒通路15aを流通する高圧側冷媒と熱交換してエンタルピを上昇させる(図13のm13点→k13点)。低圧側冷媒通路15bから流出した低圧側冷媒は、圧縮機11へ吸入され再び圧縮される(図13のk13点→a13点)。 The refrigerant that has flowed out of the second evaporator 26 flows into the low-pressure side refrigerant passage 15b of the internal heat exchanger 15. The low-pressure side refrigerant flowing into the low-pressure side refrigerant passage 15b exchanges heat with the high-pressure side refrigerant flowing through the high-pressure side refrigerant passage 15a to raise the enthalpy (m13 point → k13 point in FIG. 13). The low-pressure refrigerant flowing out from the low-pressure refrigerant passage 15b is sucked into the compressor 11 and compressed again (point k13 → point a13 in FIG. 13).
 一方、分岐部25にて分岐された他方の冷媒は、固定絞り22にて減圧されて(図13のc13点→n13点)、第1蒸発器14へ流入する。第1蒸発器14へ流入した冷媒は、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図13のn13点→j13点)。これにより、車両前席側へ送風される送風空気が冷却される。第1蒸発器14から流出した冷媒は、前述の如く、冷媒吸引口20eから吸引される。 On the other hand, the other refrigerant branched by the branching section 25 is decompressed by the fixed throttle 22 (point c13 → point n13 in FIG. 13) and flows into the first evaporator 14. The refrigerant flowing into the first evaporator 14 absorbs heat from the blown air blown by the blower fan 14a and evaporates (n13 point → j13 point in FIG. 13). Thereby, the blowing air sent to the vehicle front seat side is cooled. As described above, the refrigerant flowing out of the first evaporator 14 is sucked from the refrigerant suction port 20e.
 本実施形態のエジェクタ式冷凍サイクル装置10bは、以上の如く作動して、車両前席側へ送風される送風空気および車両後席側へ送風される送風空気を冷却することができる。この際、エジェクタ20の昇圧作用によって、第1蒸発器14における冷媒蒸発圧力を第2蒸発器26における冷媒蒸発圧力よりも低くすることができる。従って、運転席が設けられる車両前席側へ送風される送風空気を効果的に冷却することができる。 The ejector type refrigeration cycle apparatus 10b of the present embodiment operates as described above, and can cool the blown air blown to the vehicle front seat side and the blown air blown to the vehicle rear seat side. At this time, the refrigerant evaporating pressure in the first evaporator 14 can be made lower than the refrigerant evaporating pressure in the second evaporator 26 by the pressure increasing action of the ejector 20. Therefore, it is possible to effectively cool the blown air that is blown to the front seat side of the vehicle where the driver's seat is provided.
 さらに、エジェクタ20にて昇圧された冷媒を圧縮機11へ吸入させるので、圧縮機11の駆動動力を低減させて、COPの向上を狙うことができる。この際、本実施形態では、エジェクタ20に旋回空間20dが形成されているので、第2実施形態と同様に、内部熱交換器15を備えるエジェクタ式冷凍サイクル装置10bであっても、エジェクタ20の昇圧作用によるCOP向上効果を充分に得ることができる。 Furthermore, since the refrigerant boosted by the ejector 20 is sucked into the compressor 11, the driving power of the compressor 11 can be reduced and the COP can be improved. At this time, in the present embodiment, since the swirl space 20d is formed in the ejector 20, even in the ejector refrigeration cycle apparatus 10b including the internal heat exchanger 15 as in the second embodiment, the ejector 20 The COP improvement effect by the pressure increasing action can be sufficiently obtained.
 また、本実施形態のエジェクタ式冷凍サイクル装置10bでは、内部熱交換器15を備えているので、固定絞り22へ流入する冷媒、およびディフューザ部20fから流出する冷媒のエンタルピを低下させることができる。そして、第1、第2蒸発器14、26へ流入する冷媒のエンタルピを低下させることができる。 In addition, since the ejector refrigeration cycle apparatus 10b of the present embodiment includes the internal heat exchanger 15, the enthalpy of the refrigerant flowing into the fixed throttle 22 and the refrigerant flowing out from the diffuser portion 20f can be reduced. And the enthalpy of the refrigerant | coolant which flows in into the 1st, 2nd evaporators 14 and 26 can be reduced.
 その結果、第1、第2蒸発器14、26の出口側冷媒のエンタルピと入口側冷媒のエンタルピとのエンタルピ差(冷凍能力)を拡大させて、COPを向上させることができる。 As a result, the enthalpy difference (refrigeration capacity) between the enthalpy of the outlet side refrigerant and the enthalpy of the inlet side refrigerant of the first and second evaporators 14 and 26 can be increased, and COP can be improved.
 また、本実施形態のエジェクタ式冷凍サイクル装置10bでは、圧縮機11へ吸入される冷媒の過熱度が基準過熱度に近づくように、流量調整弁23の作動を制御するので、第3実施形態と同様に、圧縮機11吸入冷媒の過熱度を適切に調整することができ、圧縮機11が吸入する冷媒の温度が不必要に上昇してしまうことを抑制することができる。 Further, in the ejector refrigeration cycle apparatus 10b of the present embodiment, the operation of the flow rate adjustment valve 23 is controlled so that the superheat degree of the refrigerant sucked into the compressor 11 approaches the reference superheat degree. Similarly, the degree of superheat of the refrigerant sucked by the compressor 11 can be adjusted appropriately, and the temperature of the refrigerant sucked by the compressor 11 can be prevented from rising unnecessarily.
 ここで、本実施形態では、過熱度センサ51にて圧縮機11吸入冷媒の過熱度を検出した例を説明したが、過熱度センサ51にて別の冷媒の過熱度を検出し、検出された値が基準過熱度に近づくように、制御装置50が流量調整弁23の作動を制御してもよい。 Here, in the present embodiment, an example in which the superheat degree of the refrigerant sucked by the compressor 11 is detected by the superheat degree sensor 51 is described. However, the superheat degree sensor 51 detects and detects the superheat degree of another refrigerant. The control device 50 may control the operation of the flow rate adjustment valve 23 so that the value approaches the reference superheat degree.
 例えば、過熱度センサ51を図12のP1に示すように配置し、過熱度センサ51にて第1蒸発器14の冷媒出口からエジェクタ20の冷媒吸引口20eへ至る冷媒通路を流通する冷媒の過熱度を検出してもよい。また、過熱度センサ51を図12のP2に示すように配置し、第2蒸発器26の冷媒出口から内部熱交換器15の低圧側冷媒通路15bの入口へ至る冷媒通路を流通する冷媒の過熱度を検出してもよい。 For example, the superheat sensor 51 is arranged as indicated by P1 in FIG. 12, and the superheat of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the first evaporator 14 to the refrigerant suction port 20e of the ejector 20 by the superheat sensor 51. The degree may be detected. Further, the superheat degree sensor 51 is arranged as indicated by P2 in FIG. 12, and the superheat of the refrigerant flowing through the refrigerant passage from the refrigerant outlet of the second evaporator 26 to the inlet of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is performed. The degree may be detected.
 (第9~第11実施形態)
 第9実施形態では、第8実施形態に対して、図14の全体構成図に示すように、内部熱交換器15の低圧側冷媒通路15bの配置を変更した例を説明する。
(Ninth to 11th embodiments)
In the ninth embodiment, an example in which the arrangement of the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is changed as shown in the overall configuration diagram of FIG. 14 with respect to the eighth embodiment will be described.
 より具体的には、第9実施形態の低圧側冷媒通路15bは、第1蒸発器14の冷媒出口からエジェクタ20の冷媒吸引口20eへ至る冷媒通路に配置されている。つまり、本実施形態の低圧側冷媒通路15bを流通する低圧側冷媒は、蒸発器14から流出してエジェクタ20の冷媒吸引口20eへ流入する吸入冷媒である。その他の構成および作動は、第8実施形態と同様である。 More specifically, the low-pressure side refrigerant passage 15b of the ninth embodiment is disposed in the refrigerant passage from the refrigerant outlet of the first evaporator 14 to the refrigerant suction port 20e of the ejector 20. That is, the low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b of the present embodiment is an intake refrigerant that flows out of the evaporator 14 and flows into the refrigerant suction port 20e of the ejector 20. Other configurations and operations are the same as those in the eighth embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10bを作動させると、第8実施形態と同様の効果を得ることができる。さらに、第5実施形態と同様に、第1蒸発器14における送風空気の冷却能力を低下させてしまうことなく、内部熱交換器15にて高圧側冷媒を冷却することができる。 Therefore, when the ejector refrigeration cycle apparatus 10b of the present embodiment is operated, the same effect as that of the eighth embodiment can be obtained. Furthermore, similarly to the fifth embodiment, the internal heat exchanger 15 can cool the high-pressure side refrigerant without reducing the cooling capacity of the blown air in the first evaporator 14.
 第10実施形態では、第8実施形態に対して、図15の全体構成図に示すように、内部熱交換器15の低圧側冷媒通路15bの配置を変更した例を説明する。 10th Embodiment demonstrates the example which changed arrangement | positioning of the low voltage | pressure side refrigerant path 15b of the internal heat exchanger 15 with respect to 8th Embodiment, as shown to the whole block diagram of FIG.
 より具体的には、第10実施形態の低圧側冷媒通路15bは、第1蒸発器14の冷媒出口からエジェクタ20の冷媒吸引口20eへ至る冷媒通路に配置されている。つまり、本実施形態の低圧側冷媒通路15bを流通する低圧側冷媒は、固定絞り22から流出して蒸発器14へ流入する冷媒である。その他の構成および作動は、第8実施形態と同様である。 More specifically, the low-pressure side refrigerant passage 15b of the tenth embodiment is disposed in the refrigerant passage from the refrigerant outlet of the first evaporator 14 to the refrigerant suction port 20e of the ejector 20. That is, the low-pressure side refrigerant that flows through the low-pressure side refrigerant passage 15 b of the present embodiment is a refrigerant that flows out from the fixed throttle 22 and flows into the evaporator 14. Other configurations and operations are the same as those in the eighth embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10bを作動させると、第8実施形態と同様の効果を得ることができる。さらに、第6実施形態と同様に、第1蒸発器14における送風空気の冷却能力を低下させてしまうことなく、内部熱交換器15にて高圧側冷媒を冷却することができる。 Therefore, when the ejector refrigeration cycle apparatus 10b of the present embodiment is operated, the same effect as that of the eighth embodiment can be obtained. Further, similarly to the sixth embodiment, the internal heat exchanger 15 can cool the high-pressure side refrigerant without reducing the cooling capacity of the blown air in the first evaporator 14.
 第11実施形態では、第8実施形態に対して、図16の全体構成図に示すように、内部熱交換器15の低圧側冷媒通路15bの配置を変更した例を説明する。 11th Embodiment demonstrates the example which changed arrangement | positioning of the low voltage | pressure side refrigerant path 15b of the internal heat exchanger 15 with respect to 8th Embodiment, as shown in the whole block diagram of FIG.
 より具体的には、第11実施形態の低圧側冷媒通路15bは、第7実施形態と同様に、バイパス通路24に配置されている。つまり、本実施形態の低圧側冷媒通路15bを流通する低圧側冷媒は、バイパス通路24を流通する冷媒である。その他の構成および作動は、第8実施形態と同様である。 More specifically, the low-pressure side refrigerant passage 15b of the eleventh embodiment is arranged in the bypass passage 24 as in the seventh embodiment. That is, the low-pressure side refrigerant that circulates in the low-pressure side refrigerant passage 15 b of the present embodiment is a refrigerant that circulates in the bypass passage 24. Other configurations and operations are the same as those in the eighth embodiment.
 従って、本実施形態のエジェクタ式冷凍サイクル装置10bを作動させると、第8実施形態と同様の効果を得ることができる。 Therefore, when the ejector refrigeration cycle apparatus 10b of the present embodiment is operated, the same effect as that of the eighth embodiment can be obtained.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 (1)エジェクタ式冷凍サイクル装置10、10a、10bを構成する各構成機器は、上述の実施形態に開示されたものに限定されない。 (1) Each component device constituting the ejector refrigeration cycle apparatus 10, 10a, 10b is not limited to that disclosed in the above-described embodiment.
 例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整可能な可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整可能な固定容量型圧縮機を採用することができる。 For example, in the above-described embodiment, an example in which an electric compressor is employed as the compressor 11 has been described. However, the compressor 11 is driven by a rotational driving force transmitted from a vehicle traveling engine via a pulley, a belt, or the like. An engine driven compressor may be employed. Furthermore, as an engine-driven compressor, the variable capacity compressor that can adjust the refrigerant discharge capacity by changing the discharge capacity, or the refrigerant discharge capacity can be adjusted by changing the operating rate of the compressor by intermittently connecting the electromagnetic clutch A fixed-capacity compressor can be employed.
 また、上述の実施形態では、放熱器12として、レシーバ一体型の凝縮器を採用した例を説明したが、さらに、レシーバ部12bから流出した液相冷媒を過冷却する過冷却部を有して構成される、いわゆるサブクール型の凝縮器を採用してもよい。この他にも、凝縮部12aのみからなる放熱器12、および放熱器12から流出した冷媒の気液を分離して、分離された液相冷媒を下流側へ流出させる受液器(レシーバ)を採用してもよい。 In the above-described embodiment, an example in which a receiver-integrated condenser is employed as the radiator 12 has been described. Further, the radiator 12 has a supercooling unit that supercools the liquid-phase refrigerant flowing out from the receiver unit 12b. A so-called subcool condenser may be employed. In addition, a radiator 12 including only the condensing unit 12a, and a receiver (receiver) that separates the gas-liquid refrigerant flowing out of the radiator 12 and flows the separated liquid-phase refrigerant downstream. It may be adopted.
 また、上述の実施形態では、内部熱交換器15として、二重管方式の熱交換器を採用できることを説明したが、内部熱交換器15はこれに限定されない。例えば、複数の略平板状の伝熱プレートを間隔を空けて平行に積層配置し、各伝熱プレート間に高圧側冷媒通路と低圧側冷媒通路とを交互に形成する積層型の熱交換器等を採用してもよい。 In the above-described embodiment, it has been described that a double-pipe heat exchanger can be adopted as the internal heat exchanger 15, but the internal heat exchanger 15 is not limited to this. For example, a stack-type heat exchanger in which a plurality of substantially flat plate heat transfer plates are stacked in parallel at intervals, and a high pressure side refrigerant passage and a low pressure side refrigerant passage are alternately formed between the heat transfer plates. May be adopted.
 また、上述の実施形態では、通路形成部材35およびエレメント37、あるいは、流量調整弁23によって冷媒流量調整部を構成した例を説明したが、冷媒流量調整部はこれに限定されない。 In the above-described embodiment, the example in which the refrigerant flow rate adjusting unit is configured by the passage forming member 35 and the element 37 or the flow rate adjusting valve 23 has been described, but the refrigerant flow rate adjusting unit is not limited to this.
 例えば、冷媒流量調整部として、温度式膨張弁を採用してもよい。温度式膨張弁としては、所定の冷媒通路を流通する冷媒の温度と圧力に応じて変位する変位部材(ダイヤフラム)を有する感温部、およびこの変位部材の変位に応じて冷媒通路面積を変化させる弁体部を備えるものを採用することができる。 For example, a temperature type expansion valve may be adopted as the refrigerant flow rate adjusting unit. As a temperature type expansion valve, a temperature sensing part having a displacement member (diaphragm) that is displaced according to the temperature and pressure of the refrigerant flowing through a predetermined refrigerant passage, and the refrigerant passage area is changed according to the displacement of the displacement member. A thing provided with a valve body part is employable.
 これによれば、機械的機構によって、ノズル部20aへ流入する冷媒の流量を調整することができるので、過熱度センサ51を廃止することができる。 According to this, since the flow rate of the refrigerant flowing into the nozzle portion 20a can be adjusted by a mechanical mechanism, the superheat sensor 51 can be eliminated.
 さらに、エジェクタ20のノズル部20aを冷媒通路面積を変更可能な可変ノズル部として構成し、ノズル部20aの冷媒通路面積を変化させるニードル弁、およびこのニードル弁を変位させる電動アクチュエータ等によって冷媒流量調整部を構成してもよい。この場合は、旋回空間20dにおける冷媒の旋回が阻害されないように、ニードル弁を配置することが望ましい。 Further, the nozzle portion 20a of the ejector 20 is configured as a variable nozzle portion capable of changing the refrigerant passage area, and the refrigerant flow rate is adjusted by a needle valve that changes the refrigerant passage area of the nozzle portion 20a, an electric actuator that displaces the needle valve, and the like. You may comprise a part. In this case, it is desirable to dispose the needle valve so that the turning of the refrigerant in the turning space 20d is not hindered.
 (2)内部熱交換器15の低圧側冷媒通路15bを流通させる低圧側冷媒は、上述の各実施形態に開示された冷媒に限定されない。すなわち、放熱器12から流出した冷媒を過冷却液相冷媒となるまで冷却可能な冷媒であれば、サイクル内のいずれの冷媒通路を流通する冷媒であってもよい。 (2) The low-pressure side refrigerant flowing through the low-pressure side refrigerant passage 15b of the internal heat exchanger 15 is not limited to the refrigerant disclosed in the above-described embodiments. That is, as long as the refrigerant that has flowed out of the radiator 12 can be cooled until it becomes a supercooled liquid phase refrigerant, the refrigerant that flows through any refrigerant passage in the cycle may be used.
 (3)上述の実施形態では、冷媒としてR134aあるいはR1234yf等を採用可能であることを説明したが、冷媒はこれに限定されない。他にも、HC冷媒のように、亜臨界冷凍サイクルを構成することができ、内部熱交換器15の高圧側冷媒通路15aから流出した冷媒が過冷却液相状態となるものであればよい。 (3) In the above-described embodiment, it has been described that R134a or R1234yf or the like can be adopted as the refrigerant, but the refrigerant is not limited to this. In addition, as long as it can form a subcritical refrigeration cycle like HC refrigerant and the refrigerant flowing out from the high-pressure side refrigerant passage 15a of the internal heat exchanger 15 becomes a supercooled liquid phase state.
 従って、例えば、R600a、R410A、R404A、R32、R1234yfxf、R407C等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。 Therefore, for example, R600a, R410A, R404A, R32, R1234yfxf, R407C, etc. can be adopted. Or you may employ | adopt the mixed refrigerant | coolant etc. which mixed multiple types among these refrigerant | coolants.
 (4)上述の実施形態では、本開示に係るエジェクタ式冷凍サイクル装置10、10a、10bを、車両用空調装置に適用した例を説明したが、エジェクタ式冷凍サイクル装置10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。

 
(4) In the above-described embodiment, the example in which the ejector refrigeration cycle apparatuses 10, 10a, and 10b according to the present disclosure are applied to a vehicle air conditioner has been described. However, the application of the ejector refrigeration cycle apparatus 10 is limited to this. Not. For example, the present invention may be applied to a stationary air conditioner, a cold / hot storage, a cooling / heating device for a vending machine, and the like.

Claims (11)

  1.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器(12)から流出した高圧側冷媒を、前記高圧側冷媒よりも低い圧力の低圧側冷媒と熱交換させて過冷却液相冷媒となるまで冷却する内部熱交換器(15)と、
     前記内部熱交換器(15)から流出した前記過冷却液相冷媒を減圧して噴射するノズル部(13a、20a)を有し、前記ノズル部(13a、20a)から噴射された噴射冷媒の吸引作用によって冷媒吸引口(31b、20e)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口(31b、20e)から吸引された吸引冷媒とを混合させて昇圧させるエジェクタ(13、20)と、
     前記放熱器(12)下流側冷媒を減圧させる減圧装置(22)と、
     前記減圧装置(22)にて減圧された冷媒を蒸発させて前記冷媒吸引口(31b、20e)側へ流出させる蒸発器(14)と、
     さらに、前記ノズル部(13a、20a)へ流入する前記過冷却液相冷媒を前記ノズル部(13a、20a)の軸周りに旋回させる旋回流発生部(30a、20d)を備えているエジェクタ式冷凍サイクル装置。
    A compressor (11) for compressing and discharging the refrigerant;
    A radiator (12) for radiating the refrigerant discharged from the compressor (11);
    An internal heat exchanger (15) for cooling the high-pressure side refrigerant flowing out of the radiator (12) with a low-pressure side refrigerant having a lower pressure than the high-pressure side refrigerant until it becomes a supercooled liquid phase refrigerant;
    Suction of the injected refrigerant injected from the nozzle section (13a, 20a), having a nozzle section (13a, 20a) for depressurizing and injecting the supercooled liquid phase refrigerant flowing out of the internal heat exchanger (15) An ejector (13, 20) that sucks the refrigerant from the refrigerant suction ports (31b, 20e) by the action, and mixes the injected refrigerant and the suction refrigerant sucked from the refrigerant suction ports (31b, 20e) to increase the pressure;
    A pressure reducing device (22) for depressurizing the refrigerant on the downstream side of the radiator (12);
    An evaporator (14) for evaporating the refrigerant decompressed by the decompression device (22) and causing the refrigerant to flow out toward the refrigerant suction port (31b, 20e);
    Further, an ejector type refrigeration provided with a swirl flow generating section (30a, 20d) for swirling the supercooled liquid phase refrigerant flowing into the nozzle section (13a, 20a) around the axis of the nozzle section (13a, 20a). Cycle equipment.
  2.  前記低圧側冷媒は、前記エジェクタ(13、20)から流出して前記圧縮機(11)へ吸入される冷媒である請求項1に記載のエジェクタ式冷凍サイクル装置。 The ejector refrigeration cycle apparatus according to claim 1, wherein the low-pressure side refrigerant is a refrigerant that flows out of the ejector (13, 20) and is sucked into the compressor (11).
  3.  前記低圧側冷媒は、前記蒸発器(14)から流出して前記冷媒吸引口(31b、20e)へ流入する冷媒である請求項1に記載のエジェクタ式冷凍サイクル装置。 The ejector refrigeration cycle apparatus according to claim 1, wherein the low-pressure side refrigerant is a refrigerant that flows out of the evaporator (14) and flows into the refrigerant suction port (31b, 20e).
  4.  前記低圧側冷媒は、前記減圧装置(22)から流出して前記蒸発器(14)へ流入する冷媒である請求項1に記載のエジェクタ式冷凍サイクル装置。 The ejector-type refrigeration cycle apparatus according to claim 1, wherein the low-pressure side refrigerant is a refrigerant that flows out from the decompression device (22) and flows into the evaporator (14).
  5.  前記蒸発器(14)の上流側の冷媒を、前記蒸発器(14)を迂回させて、前記蒸発器(14)の下流側へ導くバイパス通路(24)を有し、
     前記低圧側冷媒は、前記バイパス通路(24)を流通する冷媒である請求項1に記載のエジェクタ式冷凍サイクル装置。
    A bypass passage (24) for guiding the refrigerant upstream of the evaporator (14) to the downstream side of the evaporator (14) by bypassing the evaporator (14);
    The ejector refrigeration cycle apparatus according to claim 1, wherein the low-pressure side refrigerant is a refrigerant that flows through the bypass passage (24).
  6.  前記エジェクタ(13、20)から流出した冷媒の気液を分離する気液分離部(30f、21)を備え、
     前記気液分離部(30f、21)の冷媒流出口には、前記減圧装置(22)の入口側が接続されており、
     前記気液分離部(30f、21)の冷媒流出口には、前記圧縮機(11)の吸入口側が接続されている請求項1ないし5のいずれか1つに記載にエジェクタ式冷凍サイクル装置。
    A gas-liquid separator (30f, 21) that separates the gas-liquid refrigerant flowing out of the ejector (13, 20);
    The inlet side of the decompression device (22) is connected to the refrigerant outlet of the gas-liquid separator (30f, 21),
    The ejector refrigeration cycle apparatus according to any one of claims 1 to 5, wherein a suction port side of the compressor (11) is connected to a refrigerant outlet of the gas-liquid separator (30f, 21).
  7.  前記ノズル部(13a、20a)へ流入する冷媒の流量を調整する冷媒流量調整部(35、37、23)を備え、
     前記冷媒流量調整部(35、37、23)は、前記気液分離部(30f、21)から流出した気相冷媒の過熱度が予め定めた基準過熱度に近づくように、前記ノズル部(13a、20a)へ流入する冷媒の流量を調整する請求項6に記載のエジェクタ式冷凍サイクル装置。
    A refrigerant flow rate adjusting unit (35, 37, 23) for adjusting the flow rate of the refrigerant flowing into the nozzle unit (13a, 20a),
    The refrigerant flow rate adjusting unit (35, 37, 23) is arranged so that the superheat degree of the gas-phase refrigerant flowing out from the gas-liquid separation part (30f, 21) approaches a predetermined reference superheat degree. The ejector-type refrigeration cycle apparatus according to claim 6, wherein the flow rate of the refrigerant flowing into 20a) is adjusted.
  8.  前記ノズル部(13a、20a)の上流側の冷媒の流れを分岐する分岐部(25)と、
     前記分岐部(25)の一方の冷媒流出口には、前記ノズル部(13a、20a)の入口側が接続されており、
     前記分岐部(25)の他方の冷媒流出口には、前記減圧装置(22)の入口側が接続されている請求項1ないし5のいずれか1つに記載にエジェクタ式冷凍サイクル装置。
    A branch part (25) for branching the refrigerant flow upstream of the nozzle part (13a, 20a);
    An inlet side of the nozzle part (13a, 20a) is connected to one refrigerant outlet of the branch part (25),
    The ejector refrigeration cycle apparatus according to any one of claims 1 to 5, wherein an inlet side of the decompression device (22) is connected to the other refrigerant outlet of the branch portion (25).
  9.  前記ノズル部(13a、20a)へ流入する冷媒の流量を調整する冷媒流量調整部(35、37、23)を備え、
     前記冷媒流量調整部(35、37、23)は、前記蒸発器(14)出口側冷媒の過熱度が予め定めた基準過熱度に近づくように、前記ノズル部(13a、20a)へ流入する冷媒の流量を調整する請求項1ないし6、8のいずれか1つに記載のエジェクタ式冷凍サイクル装置。
    A refrigerant flow rate adjusting unit (35, 37, 23) for adjusting the flow rate of the refrigerant flowing into the nozzle unit (13a, 20a),
    The refrigerant flow rate adjusting section (35, 37, 23) is a refrigerant that flows into the nozzle section (13a, 20a) so that the superheat degree of the evaporator (14) outlet-side refrigerant approaches a predetermined reference superheat degree. The ejector type refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the flow rate is adjusted.
  10.  前記ノズル部(13a、20a)へ流入する冷媒の流量を調整する冷媒流量調整部(35、37、23)を備え、
     前記冷媒流量調整部(35、37、23)は、前記圧縮機(11)へ吸入される冷媒の過熱度が予め定めた基準過熱度に近づくように、前記ノズル部(13a、20a)へ流入する冷媒の流量を調整する請求項1ないし6、8のいずれか1つに記載のエジェクタ式冷凍サイクル装置。
    A refrigerant flow rate adjusting unit (35, 37, 23) for adjusting the flow rate of the refrigerant flowing into the nozzle unit (13a, 20a),
    The refrigerant flow rate adjusting section (35, 37, 23) flows into the nozzle section (13a, 20a) so that the superheat degree of the refrigerant sucked into the compressor (11) approaches a predetermined reference superheat degree. The ejector type refrigeration cycle apparatus according to claim 1, wherein the flow rate of the refrigerant to be adjusted is adjusted.
  11.  冷媒を圧縮して吐出する圧縮機(11)と、
     前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
     前記放熱器(12)から流出した高圧側冷媒を、前記高圧側冷媒よりも低い圧力の低圧側冷媒と熱交換させて過冷却液相冷媒となるまで冷却する内部熱交換器(15)と、
     前記内部熱交換器(15)から流出した前記過冷却液相冷媒を減圧して噴射するノズル部(13a、20a)を有し、前記ノズル部(13a、20a)から噴射された噴射冷媒の吸引作用によって冷媒吸引口(31b、20e)から冷媒を吸引し、前記噴射冷媒と前記冷媒吸引口(31b、20e)から吸引された吸引冷媒とを混合させて昇圧させるエジェクタ(13、20)と、
     前記放熱器(12)下流側冷媒を減圧させる減圧装置(22)と、
     前記減圧装置(22)にて減圧された冷媒を蒸発させて前記冷媒吸引口(31b、20e)側へ流出させる蒸発器(14)と、
     前記ノズル部(13a、20a)へ流入する前記過冷却液相冷媒を前記ノズル部(13a、20a)の軸周りに旋回させる旋回流発生部(30a、20d)とを備え、
    前記旋回流発生部(30a、20d)は、前記ノズル部(13a、20a)へ流入する前記過冷却液相冷媒の中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する圧力まで低下させるように構成されているエジェクタ式冷凍サイクル装置。

     
    A compressor (11) for compressing and discharging the refrigerant;
    A radiator (12) for radiating the refrigerant discharged from the compressor (11);
    An internal heat exchanger (15) for cooling the high-pressure side refrigerant flowing out of the radiator (12) with a low-pressure side refrigerant having a lower pressure than the high-pressure side refrigerant until it becomes a supercooled liquid phase refrigerant;
    Suction of the injected refrigerant injected from the nozzle section (13a, 20a), having a nozzle section (13a, 20a) for depressurizing and injecting the supercooled liquid phase refrigerant flowing out of the internal heat exchanger (15) An ejector (13, 20) that sucks the refrigerant from the refrigerant suction ports (31b, 20e) by the action, and mixes the injected refrigerant and the suction refrigerant sucked from the refrigerant suction ports (31b, 20e) to increase the pressure;
    A pressure reducing device (22) for depressurizing the refrigerant on the downstream side of the radiator (12);
    An evaporator (14) for evaporating the refrigerant decompressed by the decompression device (22) and causing the refrigerant to flow out toward the refrigerant suction port (31b, 20e);
    A swirl flow generating section (30a, 20d) for swirling the supercooled liquid refrigerant flowing into the nozzle section (13a, 20a) around the axis of the nozzle section (13a, 20a);
    The swirl flow generating section (30a, 20d) reduces the refrigerant pressure on the central side of the supercooled liquid phase refrigerant flowing into the nozzle section (13a, 20a) to a pressure that becomes a saturated liquid phase refrigerant or the refrigerant is depressurized. An ejector-type refrigeration cycle apparatus configured to reduce to a boiling pressure.

PCT/JP2015/004092 2014-09-29 2015-08-18 Ejector refrigeration cycle device WO2016051646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-198054 2014-09-29
JP2014198054A JP6327088B2 (en) 2014-09-29 2014-09-29 Ejector refrigeration cycle

Publications (1)

Publication Number Publication Date
WO2016051646A1 true WO2016051646A1 (en) 2016-04-07

Family

ID=55629726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004092 WO2016051646A1 (en) 2014-09-29 2015-08-18 Ejector refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6327088B2 (en)
WO (1) WO2016051646A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442274B2 (en) 2014-10-24 2019-10-15 Denso Corporation Ejector refrigeration cycle device and low outside temperature operation thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024186836A2 (en) * 2023-03-06 2024-09-12 Energy Recovery, Inc. Refrigeration systems including pressure exchangers and their control

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626718A (en) * 1992-07-08 1994-02-04 Nippondenso Co Ltd Freezing cycle
JP2004044906A (en) * 2002-07-11 2004-02-12 Denso Corp Ejector cycle
JP2008107054A (en) * 2006-10-27 2008-05-08 Denso Corp Pressure reducing device and refrigerating cycle device
JP2010112691A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector-type refrigeration cycle
JP2011052884A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Refrigerating air conditioner
JP2013177879A (en) * 2012-02-02 2013-09-09 Denso Corp Ejector
JP2014134196A (en) * 2012-12-13 2014-07-24 Denso Corp Ejector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626718A (en) * 1992-07-08 1994-02-04 Nippondenso Co Ltd Freezing cycle
JP2004044906A (en) * 2002-07-11 2004-02-12 Denso Corp Ejector cycle
JP2008107054A (en) * 2006-10-27 2008-05-08 Denso Corp Pressure reducing device and refrigerating cycle device
JP2010112691A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector-type refrigeration cycle
JP2011052884A (en) * 2009-09-01 2011-03-17 Mitsubishi Electric Corp Refrigerating air conditioner
JP2013177879A (en) * 2012-02-02 2013-09-09 Denso Corp Ejector
JP2014134196A (en) * 2012-12-13 2014-07-24 Denso Corp Ejector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10442274B2 (en) 2014-10-24 2019-10-15 Denso Corporation Ejector refrigeration cycle device and low outside temperature operation thereof

Also Published As

Publication number Publication date
JP2016070544A (en) 2016-05-09
JP6327088B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP5413393B2 (en) Refrigerant distributor and refrigeration cycle
JP4737001B2 (en) Ejector refrigeration cycle
CN107407507B (en) Ejector type refrigeration cycle
JP5999050B2 (en) Ejector refrigeration cycle and ejector
JP6277869B2 (en) Ejector refrigeration cycle
JP6350108B2 (en) Ejector and ejector refrigeration cycle
WO2012132317A1 (en) Pressure-reduction device and refrigeration cycle device
JP2008107055A (en) Ejector type refrigerating cycle
WO2015015783A1 (en) Ejector
US10603985B2 (en) Liquid ejector and ejector refrigeration cycle
WO2016021141A1 (en) Evaporator
WO2016143292A1 (en) Ejector-type refrigeration cycle
JP2008209028A (en) Ejector type refrigeration cycle
JP5999071B2 (en) Ejector
WO2016051646A1 (en) Ejector refrigeration cycle device
JP6512071B2 (en) Ejector type refrigeration cycle
JP2019020063A (en) Ejector refrigeration cycle
JP6547698B2 (en) Ejector type refrigeration cycle
JP5991271B2 (en) Ejector refrigeration cycle
WO2015015755A1 (en) Ejector
JP6380122B2 (en) Ejector
JP7040285B2 (en) Ejector
WO2018139417A1 (en) Ejector
WO2017187932A1 (en) Decompression device and refrigeration cycle device
WO2017154603A1 (en) Evaporator unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847509

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847509

Country of ref document: EP

Kind code of ref document: A1