WO2016045456A1 - 适合于心律检测的超低功耗无电极电阻容积测量电路与方法 - Google Patents
适合于心律检测的超低功耗无电极电阻容积测量电路与方法 Download PDFInfo
- Publication number
- WO2016045456A1 WO2016045456A1 PCT/CN2015/086183 CN2015086183W WO2016045456A1 WO 2016045456 A1 WO2016045456 A1 WO 2016045456A1 CN 2015086183 W CN2015086183 W CN 2015086183W WO 2016045456 A1 WO2016045456 A1 WO 2016045456A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- analog switch
- operational amplifier
- analog
- low power
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 9
- 238000005259 measurement Methods 0.000 title abstract description 9
- 238000012544 monitoring process Methods 0.000 title abstract 2
- 238000005070 sampling Methods 0.000 claims abstract description 23
- 238000001514 detection method Methods 0.000 claims description 27
- 208000033707 Early-onset X-linked optic atrophy Diseases 0.000 claims description 13
- 208000025019 optic atrophy 2 Diseases 0.000 claims description 13
- 230000035900 sweating Effects 0.000 abstract description 4
- 238000009532 heart rate measurement Methods 0.000 abstract 1
- 229910000510 noble metal Inorganic materials 0.000 abstract 1
- 239000010970 precious metal Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/0245—Measuring pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
Definitions
- the present invention relates to an ultra low power electrodeless resistance volume measuring circuit and method suitable for heart rate detection.
- heart rate detection is a very common requirement.
- Resistive volumetric acquisition of capillary network congestion is a common method of signal acquisition for heart rate detection.
- an inert metal electrode is often required to contact the skin for measurement, which is not suitable for wearable devices.
- the invention does not need an inert precious metal electrode, and does not need to apply a conductive paste in advance, and the sweating of the human body has no influence on the measurement, and has the advantages of low cost and extremely low power consumption, and is suitable for a wearable device.
- the object of the present invention is to overcome the deficiencies of the prior art, and to provide a heart rhythm detection that does not require an inert precious metal electrode, does not require prior application of a conductive paste, has no effect on the measurement of sweating of the human body, is low in cost, and is suitable for a wearable device. Ultra-low power electrodeless resistance volume measurement circuit and method.
- an ultra-low power electrodeless resistance volume measuring circuit suitable for heart rate detection which includes a pulse signal source P, an integrating capacitor C1, a sampling capacitor C2, an operational amplifier ⁇ 1 , bandpass filter, analog switch SW1, analog switch SW2, analog switch SW3, analog to digital converter, MCU and two skin contact terminals, one of the skin contact ends is connected to the pulse signal source P, and the other skin contact
- the terminals are respectively connected to one ends of the analog switches SW1 and SW2, and the other one of the SW2 switches is simulated.
- the terminal is connected to the integrating capacitor CI, the output of the integrating capacitor CI is connected to one end of the analog switch SW3, the other end of the analog switch SW3 is connected to the sampling capacitor C2, and the output of the sampling capacitor C2 is connected with the non-inverting input terminal of the operational amplifier OPA1,
- the output of the amplifier OPA1 is respectively connected to the inverting input of the operational amplifier OPA1 and the input of the band pass filter, the output of the band pass filter is connected to the analog to digital converter, and the output of the analog to digital converter is connected to the MCU.
- the other end of the analog switch SW1, the other end of the integrating capacitor C1, and the other end of the sampling capacitor C2 are connected to the ground.
- An ultra-low power electrodeless resistance volume measuring circuit suitable for heart rate detection further includes a logic circuit connected to a control signal input terminal of the analog switches SW1, SW2, and SW3 for controlling the analog port. Turn off the closing of SW1, SW2, and SW3.
- the band pass filter is mainly composed of an operational amplifier OPA2, a resistor R1, a resistor R2, a capacitor C3 and a capacitor C4.
- the output of the operational amplifier OPA1 is coupled to the inverting input terminal of the operational amplifier OPA2 via a resistor R1 and a capacitor C3.
- the resistor R2 and the capacitor C4 are connected in parallel to form a negative feedback loop.
- the skin equivalent circuit S is composed of a capacitor and a resistor in series.
- the operational amplifier OPA1 and the operational amplifier OPA2 are low power operational amplifiers.
- the analog switches SW1, SW2 and SW3 are high-speed analog switches.
- the ultra low power consumption electrodeless resistance volume measuring circuit suitable for heart rate detection according to claim 1 is used for a heart rate detection method, which comprises the following substeps:
- S2 At the beginning of the detection, the two skin contact ends contact the skin, and the pulse signal source outputs a step signal sequence, and the high-speed analog switch SW1 and the high-speed analog switch SW2 are controlled under the control of the logic circuit, and the integral is performed.
- Capacitor C1 accumulates charge
- S4 The voltage of the sampling capacitor C2 is buffered by the operational amplifier OPA1, and then sent to the bandpass filter network of the operational amplifier OPA2;
- S5 It is quantized by an analog-to-digital converter and input to the microprocessor MCU for processing.
- the sequence of the high-speed analog switch SW2 is the same as the sequence of the step signal output by the pulse signal source P, high
- the speed simulation SW1 and SW2 have the same closed sequence frequency, opposite phase, equal amplitude and no overlap, and the high-speed analog switch SW3 is always closed.
- the beneficial effects of the present invention are:
- the invention detects the equivalent circuit formed on the skin contact end, and the pulse signal source outputs a step signal sequence, and under the control of the logic circuit, the SW1 and the SW2 are clamped, and the C1 integral is performed.
- the charge is accumulated on the capacitor; under the control of SW3, the charge of C1 is transferred to the C2 sampling capacitor; the voltage of the sampling capacitor is buffered by OPA1 and sent to the bandpass filter network of OPA2, and then quantized by the digital-to-analog converter.
- Algorithm processing Algorithm processing.
- the invention does not need an inert precious metal electrode, and does not need to be coated with a conductive paste in advance, and the sweating of the human body has no influence on the measurement, and has the advantages of low cost and low power consumption, and is suitable for high-performance smart wearable devices.
- FIG. 3 is a typical waveform diagram of a pulse signal source and a gate according to the present invention.
- an ultra-low power electrodeless resistance volume measuring circuit suitable for heart rate detection which includes a pulse signal source P, an integrating capacitor Cl, and a sampling Capacitor C2, Operational Amplifier ⁇ 1, Bandpass Filter, Analog Shutdown SW1, Analog Shutdown SW2, Analog Shutdown SW3, Analog to Digital Converter, MCU and Two Skin Contact Ends, One Skin Contact and Pulse Signal Source P Connected, the other skin contact end is connected to one end of the analog switch SW1 and SW2 respectively, and the other end of the analog switch SW2 is connected with the integral capacitor C1, and the output of the integral capacitor C1 is connected with one end of the analog switch SW3, and the analog SW3 is connected.
- the other end is connected to the sampling capacitor C2.
- the output of the sampling capacitor C2 is connected to the non-inverting input of the operational amplifier OPA1.
- the output of the operational amplifier OPA1 is respectively connected to the inverting input of the operational amplifier OPA 1 and the input of the band pass filter. , the output of the bandpass filter and the modulus The converter is connected, the output of the analog-to-digital converter is connected to the MCU, the other end of the analog switch SW1, the other end of the integrating capacitor C1 and the other end of the sampling capacitor C2 are connected to the ground.
- the ultra-low power electrodeless resistance volume measuring circuit suitable for heart rate detection further comprises a logic circuit, and the logic circuit is connected with the control signal input ends of the analog switches SW1, SW2 and SW3 for controlling the simulation. Turn off the closing of SW1, SW2, and SW3.
- the band pass filter is mainly composed of an operational amplifier OPA2, a resistor R1, a resistor R2, a capacitor C3 and a capacitor C4.
- the output of the operational amplifier OPA1 is coupled to the inverting input terminal of the operational amplifier OPA2 via a resistor R1 and a capacitor C3.
- the resistor R2 and the capacitor C4 are connected in parallel to form a negative feedback loop.
- the skin equivalent circuit S is composed of a capacitor and a resistor in series.
- the operational amplifier OPA1 and the operational amplifier OPA2 are low power operational amplifiers.
- the analog switches SW1, SW2 and SW3 are high speed analog switches.
- the ultra low power consumption electrodeless resistance volume measuring circuit suitable for heart rate detection according to claim 1 is used for heart rate detection and measurement, characterized in that it comprises the following substeps:
- S2 When the detection starts, the two skin contact ends contact the skin, and the pulse signal source outputs a step signal sequence, and the high-speed analog switch SW1 and the high-speed analog switch SW2 are controlled under the control of the logic circuit, and the integral is performed. Capacitor C1 accumulates charge;
- S4 The voltage of the sampling capacitor C2 is buffered by the operational amplifier OPA1, and then sent to the bandpass filter network of the operational amplifier OPA2;
- S5 It is quantized by an analog-to-digital converter and input to the microprocessor MCU for processing.
- the step signal sequence of the pulse signal source output, the high-speed analog switch SW1, the high-speed analog switch SW2, and the high-speed analog switch SW3 are shown in FIG. 3, and the high-speed analog switch SW2 is closed.
- the sequence is the same as the sequence of the step signal output from the pulse signal source P.
- the high-speed analog switches SW1 and SW2 have the same closed sequence frequency, opposite phase, equal amplitude and no overlap, and the high-speed analog switch SW3 is always closed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Signal Processing (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
一种适合于心律检测的超低功耗无电极电阻容积测量电路与方法,它包括脉冲信号源P、积分电容C1、采样电容C2、运算放大器OPA1、带通滤波器、模拟开关SW1、模拟开关SW2、模拟开关SW3、模数转换器、MCU和两个皮肤接触端,模拟开关SW2与积分电容C1连接,积分电容C1的输出通过模拟开关SW3与采样电容C2连接,采样电容C2的输出与运算放大器OPA1的输入端连接,运算放大器OPA1的输出端与带通滤波器连接,带通滤波器的输出通过与MCU连接。无需惰性贵金属电极,无需事先涂抹导电膏,人体出汗对测量没有影响,同时具有成本低、功耗极低的优点,适合于高性能智能可穿戴设备。
Description
适合于心律检测的超氐功耗无电极电阻容积测量电路与 方法
技术领域
[0001] 本发明涉及一种适合于心律检测的超低功耗无电极电阻容积测量电路与方法。
背景技术
[0002] 随着社会的进步和生活水平的提高, 人们对于健康的需求也越来越高, 传统的 针对于有病看病的健康管理模式已经不能适应人们对健康的进一步需要, 人们 更希望能够得到环境优美、 身心舒适, 绿色无害、 全面准确、 经济便捷, 并能 防患于未然的新型检测手段。
[0003] 在基于健康检测的可穿戴设备中, 心律检测是很常见的需求。 电阻容积法采集 毛细血管网充血情况是心律检测的一种常见信号采集方法。 传统的测量方法中 , 往往需要一个惰性金属电极接触皮肤进行测量, 不适合可穿戴设备使用。 而 本发明无需惰性贵金属电极, 无需事先涂抹导电膏, 人体出汗对测量没有影响 , 同吋具有成本低、 功耗极低的优点, 适合于可穿戴设备。
技术问题
[0004] 本发明的目的在于克服现有技术的不足, 提供一种无需惰性贵金属电极、 无需 事先涂抹导电膏、 人体出汗对测量没有影响、 成本低、 适合于可穿戴设备的适 合于心律检测的超低功耗无电极电阻容积测量电路与方法。
问题的解决方案
技术解决方案
[0005] 本发明的目的是通过以下技术方案来实现的: 适合于心律检测的超低功耗无电 极电阻容积测量电路, 它包括脉冲信号源 P、 积分电容 Cl、 采样电容 C2、 运算放 大器 ΟΡΑ1、 带通滤波器、 模拟幵关 SW1、 模拟幵关 SW2、 模拟幵关 SW3、 模数 转换器、 MCU和两个皮肤接触端, 其中一个皮肤接触端与脉冲信号源 P连接, 另 一个皮肤接触端分别与模拟幵关 SW1和 SW2的一端连接, 模拟幵关 SW2的另一
端与积分电容 CI连接, 积分电容 CI的输出与模拟幵关 SW3的一端连接, 模拟幵 关 SW3的另一端与采样电容 C2连接, 采样电容 C2的输出与运算放大器 OPA1的同 相输入端连接, 运算放大器 OPA1的输出端分别与运算放大器 OPA1的反向输入 端和带通滤波器的输入端连接, 带通滤波器的输出端与模数转换器连接, 模数 转换器的输出端与 MCU连接, 模拟幵关 SW1的另一端、 积分电容 C1的另一端和 采样电容 C2的另一端对地连接。
[0006] 适合于心律检测的超低功耗无电极电阻容积测量电路还包括一个逻辑电路, 所 述的逻辑电路与模拟幵关 SW1、 SW2、 SW3的控制信号输入端相连, 用于控制 模拟幵关 SW1、 SW2、 SW3的幵闭。
[0007] 所述带通滤波器主要由运算放大器 OPA2、 电阻 Rl、 电阻 R2、 电容 C3和电容 C4 组成, 运算放大器 OPA1的输出经电阻 Rl、 电容 C3耦合至运算放大器 OPA2的反 向输入端, 电阻 R2、 电容 C4并联构成负反馈回路。
[0008] 所述的皮肤等效电路 S由一个电容和一个电阻串联组成。
[0009] 所述的运算放大器 OPA1和运算放大器 OPA2为低功耗运算放大器。
[0010] 所述的模拟幵关 SW1、 SW2和 SW3为高速模拟幵关。
[0011] 如权利要求 1所述的适合于心律检测的超低功耗无电极电阻容积测量电路用于 心率检测测的方法, 它包括以下子步骤:
[0012] S1 : 在检测前, 高速模拟幵关 SW1和高速模拟幵关 SW2在吋序控制下将积分电 容 C1进行放电;
[0013] S2: 检测幵始, 两个皮肤接触端接触皮肤, 脉冲信号源输出一个阶跃信号序列 , 在逻辑电路的控制下对高速模拟幵关 SW1和高速模拟幵关 SW2进行幵关, 积 分电容 C1累计电荷;
[0014] S3: 在高速模拟幵关 SW3的控制下, 将积分电容 C1累积的电荷转移到采样电容 C2上;
[0015] S4: 采样电容 C2的电压经过运算放大器 OPA1缓冲后, 送入运算放大器 OPA2的 带通滤波器网络中;
[0016] S5: 再经过模数转换器进行量化, 输入至微处理器 MCU进行处理。
[0017] 高速模拟幵关 SW2的幵闭序列与脉冲信号源 P输出的阶跃信号的序列相同, 高
速模拟幵关 SW1与 SW2的幵闭序列频率相同、 相位相反、 振幅相等而不重叠, 高速模拟幵关 SW3始终闭合。
发明的有益效果
有益效果
[0018] 本发明的有益效果是: 本发明对皮肤接触端形成的等效电路进行检测, 脉冲信 号源输出一个阶跃信号序列, 在逻辑电路控制下, 对 SW1和 SW2进行幵关, C1 积分电容器上累积电荷; 在 SW3控制下, 把 C1的电荷转移到 C2采样电容上; 采 样电容的电压经过 OPA1缓冲后送入 OPA2的带通滤波器网络中, 再经过数模转 换器进行量化, 进入算法处理。 本发明无需惰性贵金属电极, 无需事先涂抹导 电膏, 人体出汗对测量没有影响, 同吋具有成本低、 功耗极低的优点, 适合于 高性能智能可穿戴设备。
对附图的简要说明
附图说明
[0019] 图 1为本发明电路结构图;
[0020] 图 2为本发明方法流程图;
[0021] 图 3为本发明脉冲信号源与幵关的典型波形图。
本发明的实施方式
[0022] 下面结合附图进一步详细描述本发明的技术方案: 如图 1所示, 适合于心律检 测的超低功耗无电极电阻容积测量电路, 它包括脉冲信号源 P、 积分电容 Cl、 采 样电容 C2、 运算放大器 ΟΡΑ1、 带通滤波器、 模拟幵关 SW1、 模拟幵关 SW2、 模 拟幵关 SW3、 模数转换器、 MCU和两个皮肤接触端, 其中一个皮肤接触端与脉 冲信号源 P连接, 另一个皮肤接触端分别与模拟幵关 SW1和 SW2的一端连接, 模 拟幵关 SW2的另一端与积分电容 C1连接, 积分电容 C1的输出与模拟幵关 SW3的 一端连接, 模拟幵关 SW3的另一端与采样电容 C2连接, 采样电容 C2的输出与运 算放大器 OPA1的同相输入端连接, 运算放大器 OPA1的输出端分别与运算放大 器 OPA 1的反向输入端和带通滤波器的输入端连接, 带通滤波器的输出端与模数
转换器连接, 模数转换器的输出端与 MCU连接, 模拟幵关 SW1的另一端、 积分 电容 C1的另一端和采样电容 C2的另一端对地连接。
[0023] 适合于心律检测的超低功耗无电极电阻容积测量电路还包括一个逻辑电路, 所 述的逻辑电路与模拟幵关 SW1、 SW2、 SW3的控制信号输入端相连, 用于控制 模拟幵关 SW1、 SW2、 SW3的幵闭。
[0024] 所述带通滤波器主要由运算放大器 OPA2、 电阻 Rl、 电阻 R2、 电容 C3和电容 C4 组成, 运算放大器 OPA1的输出经电阻 Rl、 电容 C3耦合至运算放大器 OPA2的反 向输入端, 电阻 R2、 电容 C4并联构成负反馈回路。
[0025] 所述的皮肤等效电路 S由一个电容和一个电阻串联组成。
[0026] 所述的运算放大器 OPA1和运算放大器 OPA2为低功耗运算放大器。
[0027] 所述的模拟幵关 SW1、 SW2和 SW3为高速模拟幵关。
[0028] 如图 2所示, 如权利要求 1所述的适合于心律检测的超低功耗无电极电阻容积测 量电路用于心率检测测的方法, 其特征在于: 它包括以下子步骤:
[0029] S1 : 在检测前, 高速模拟幵关 SW1和高速模拟幵关 SW2在吋序控制下将积分电 容 C1进行放电;
[0030] S2: 检测幵始, 两个皮肤接触端接触皮肤, 脉冲信号源输出一个阶跃信号序列 , 在逻辑电路的控制下对高速模拟幵关 SW1和高速模拟幵关 SW2进行幵关, 积 分电容 C1累计电荷;
[0031] S3: 在高速模拟幵关 SW3的控制下, 将积分电容 C1累积的电荷转移到采样电容 C2上;
[0032] S4: 采样电容 C2的电压经过运算放大器 OPA1缓冲后, 送入运算放大器 OPA2的 带通滤波器网络中;
[0033] S5: 再经过模数转换器进行量化, 输入至微处理器 MCU进行处理。
[0034] 脉冲信号源输出的阶跃信号序列, 高速模拟幵关 SW1、 高速模拟幵关 SW2和高 速模拟幵关 SW3的幵闭波形关系图如图 3所示, 高速模拟幵关 SW2的幵闭序列与 脉冲信号源 P输出的阶跃信号的序列相同, 高速模拟幵关 SW1与 SW2的幵闭序列 频率相同、 相位相反、 振幅相等而不重叠, 高速模拟幵关 SW3始终闭合。
Claims
[权利要求 1] 适合于心律检测的超低功耗无电极电阻容积测量电路, 其特征在于: 它包括脉冲信号源 P、 积分电容 Cl、 采样电容 C2、 运算放大器 OPA1 、 带通滤波器、 模拟幵关 SW1、 模拟幵关 SW2、 模拟幵关 SW3、 模数 转换器、 MCU和两个皮肤接触端, 其中一个皮肤接触端与脉冲信号 源 P连接, 另一个皮肤接触端分别与模拟幵关 SW1和 SW2的一端连接 , 模拟幵关 SW2的另一端与积分电容 C1连接, 积分电容 C1的输出与 模拟幵关 SW3的一端连接, 模拟幵关 SW3的另一端与采样电容 C2连 接, 采样电容 C2的输出与运算放大器 OPA1的同相输入端连接, 运算 放大器 OPA1的输出端分别与运算放大器 OPA1的反向输入端和带通滤 波器的输入端连接, 带通滤波器的输出端与模数转换器连接, 模数转 换器的输出端与 MCU连接, 模拟幵关 SW1的另一端、 积分电容 C1的 另一端和采样电容 C2的另一端对地连接。
[权利要求 2] 根据权利要求 1所述的适合于心律检测的超低功耗无电极电阻容积测 量电路, 其特征在于: 它还包括一个逻辑电路, 所述的逻辑电路与模 拟幵关 SW1、 SW2、 SW3的控制信号输入端相连, 用于控制模拟幵关 SW1、 SW2、 SW3的幵闭。
[权利要求 3] 根据权利要求 1所述的适合于心律检测的超低功耗无电极电阻容积测 量电路, 其特征在于: 所述带通滤波器主要由运算放大器 OPA2、 电 阻 Rl、 电阻 R2、 电容 C3和电容 C4组成, 运算放大器 OPA1的输出经 电阻 Rl、 电容 C3耦合至运算放大器 OPA2的反向输入端, 电阻 R2、 电 容 C4并联构成负反馈回路。
[权利要求 4] 根据权利要求 1所述的适合于心律检测的超低功耗无电极电阻容积测 量电路, 其特征在于: 所述的皮肤等效电路 S由一个电容和一个电阻 串联组成。
[权利要求 5] 根据权利要求 1或 3所述的适合于心律检测的超低功耗无电极电阻容积 测量电路, 其特征在于: 所述的运算放大器 OPA1和运算放大器 OPA2 为低功耗运算放大器。
[权利要求 6] 根据权利要求 1所述的适合于心律检测的超低功耗无电极电阻容积测 量电路, 其特征在于: 所述的模拟幵关 SW1、 SW2和 SW3为高速模拟 幵关。
[权利要求 7] 适合于心律检测的超低功耗无电极电阻容积测量方法, 其特征在于: 它包括以下子步骤:
S1 : 在检测前, 高速模拟幵关 SW1和高速模拟幵关 SW2在吋序控制下 将积分电容 C1进行放电;
S2: 检测幵始, 两个皮肤接触端接触皮肤, 脉冲信号源输出一个阶跃 信号序列, 在逻辑电路的控制下对高速模拟幵关 SW1和高速模拟幵关 SW2进行幵关, 积分电容 C1累计电荷;
S3: 在高速模拟幵关 SW3的控制下, 将积分电容 C1累积的电荷转移 到采样电容 C2上;
S4: 采样电容 C2的电压经过运算放大器 OPA1缓冲后, 送入运算放大 器 OPA2的带通滤波器网络中;
S5: 再经过模数转换器进行量化, 输入至微处理器 MCU进行处理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410507213.3 | 2014-09-28 | ||
CN201410507213.3A CN104257377B (zh) | 2014-09-28 | 2014-09-28 | 适合于心律检测的超低功耗无电极电阻容积测量电路与方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016045456A1 true WO2016045456A1 (zh) | 2016-03-31 |
Family
ID=52149049
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/086183 WO2016045456A1 (zh) | 2014-09-28 | 2015-08-05 | 适合于心律检测的超低功耗无电极电阻容积测量电路与方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104257377B (zh) |
WO (1) | WO2016045456A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113098517A (zh) * | 2021-03-04 | 2021-07-09 | 北京大学 | 一种事件触发型模数转换器和一种医疗电子设备 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104257377B (zh) * | 2014-09-28 | 2016-08-24 | 成都维客亲源健康科技有限公司 | 适合于心律检测的超低功耗无电极电阻容积测量电路与方法 |
CN114285398B (zh) * | 2022-03-04 | 2022-05-27 | 南京沁恒微电子股份有限公司 | 一种电容充电型触摸按键检测电路及检测方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986003114A1 (en) * | 1984-11-27 | 1986-06-05 | University Of North Carolina At Chapel Hill | Portable automated blood pressure monitoring apparatus and method |
CN1502298A (zh) * | 2002-11-25 | 2004-06-09 | 三洋电机株式会社 | 心搏和呼吸测量装置 |
US20050203348A1 (en) * | 2004-03-01 | 2005-09-15 | Musa Shihadeh | Remote cardiac arrest monitor |
CN1915167A (zh) * | 2006-09-05 | 2007-02-21 | 西安交通大学 | 一种光-频率转换式脉搏血氧仪的数字信号处理方法 |
CN102300499A (zh) * | 2010-05-07 | 2011-12-28 | 杨章民 | 利用布料电容传感器来产生生理信号的方法及系统 |
CN102648845A (zh) * | 2011-02-23 | 2012-08-29 | 深圳市迈迪加科技发展有限公司 | 一种睡眠中心跳、呼吸无线自动监测与预警系统 |
CN102973261A (zh) * | 2011-09-02 | 2013-03-20 | 中国科学院电子学研究所 | 一种用于动态心电监测的电容耦合式电场传感器 |
CN103385711A (zh) * | 2013-08-02 | 2013-11-13 | 临沂市拓普网络股份有限公司 | 基于mems的人体生理参数检测装置 |
US20130338460A1 (en) * | 2012-06-18 | 2013-12-19 | David Da He | Wearable Device for Continuous Cardiac Monitoring |
CN104257377A (zh) * | 2014-09-28 | 2015-01-07 | 成都金海鼎盛科技有限公司 | 适合于心律检测的超低功耗无电极电阻容积测量电路与方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL161664C (nl) * | 1972-04-05 | 1980-03-17 | Philips Nv | Hartslagvolumemeter. |
JPS58105740A (ja) * | 1981-12-17 | 1983-06-23 | セイコーインスツルメンツ株式会社 | 脈拍検出回路 |
DE3861466D1 (de) * | 1988-09-17 | 1991-02-07 | Hewlett Packard Gmbh | Synchrondemodulator. |
CN104622452A (zh) * | 2013-11-13 | 2015-05-20 | 成都闰世科技有限公司 | 一种低功耗的脉搏测试仪 |
-
2014
- 2014-09-28 CN CN201410507213.3A patent/CN104257377B/zh active Active
-
2015
- 2015-08-05 WO PCT/CN2015/086183 patent/WO2016045456A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986003114A1 (en) * | 1984-11-27 | 1986-06-05 | University Of North Carolina At Chapel Hill | Portable automated blood pressure monitoring apparatus and method |
CN1502298A (zh) * | 2002-11-25 | 2004-06-09 | 三洋电机株式会社 | 心搏和呼吸测量装置 |
US20050203348A1 (en) * | 2004-03-01 | 2005-09-15 | Musa Shihadeh | Remote cardiac arrest monitor |
CN1915167A (zh) * | 2006-09-05 | 2007-02-21 | 西安交通大学 | 一种光-频率转换式脉搏血氧仪的数字信号处理方法 |
CN102300499A (zh) * | 2010-05-07 | 2011-12-28 | 杨章民 | 利用布料电容传感器来产生生理信号的方法及系统 |
CN102648845A (zh) * | 2011-02-23 | 2012-08-29 | 深圳市迈迪加科技发展有限公司 | 一种睡眠中心跳、呼吸无线自动监测与预警系统 |
CN102973261A (zh) * | 2011-09-02 | 2013-03-20 | 中国科学院电子学研究所 | 一种用于动态心电监测的电容耦合式电场传感器 |
US20130338460A1 (en) * | 2012-06-18 | 2013-12-19 | David Da He | Wearable Device for Continuous Cardiac Monitoring |
CN103385711A (zh) * | 2013-08-02 | 2013-11-13 | 临沂市拓普网络股份有限公司 | 基于mems的人体生理参数检测装置 |
CN104257377A (zh) * | 2014-09-28 | 2015-01-07 | 成都金海鼎盛科技有限公司 | 适合于心律检测的超低功耗无电极电阻容积测量电路与方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113098517A (zh) * | 2021-03-04 | 2021-07-09 | 北京大学 | 一种事件触发型模数转换器和一种医疗电子设备 |
CN113098517B (zh) * | 2021-03-04 | 2023-10-20 | 北京大学 | 一种事件触发型模数转换器和一种医疗电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN104257377A (zh) | 2015-01-07 |
CN104257377B (zh) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016045456A1 (zh) | 适合于心律检测的超低功耗无电极电阻容积测量电路与方法 | |
CN116584045A (zh) | 信号处理电路和方法 | |
WO2013029196A1 (zh) | 回馈控制的穿戴式上肢电刺激装置 | |
CN103638600B (zh) | 智能肌电假肢的多通道电刺激反馈系统 | |
CN104096314A (zh) | 基于矢量阻抗反馈的自适应多通道经皮电刺激器 | |
CN207575559U (zh) | 一种智能中低频体控电疗仪 | |
CN205215225U (zh) | 人体阻抗测量电路 | |
CN102832904A (zh) | 差分电容网络反馈结构cmos生物医学信号采集器 | |
CN106955104B (zh) | 电刺激治疗设备的人体负载阻抗检测设备及方法 | |
CN115607826A (zh) | 一种美容仪器 | |
CN103549965A (zh) | 一种量程自动可调的中医推拿手法力学信息获取系统 | |
CN204133464U (zh) | 一种皮肤电阻传感器 | |
CN203425376U (zh) | 一种基于恒流源控制的脑电理疗仪 | |
CN204192613U (zh) | 一种人体心电检测电路 | |
CN114680897A (zh) | 信号处理电路和方法 | |
CN108888240A (zh) | 一种睡眠监测与改善装置及其系统 | |
CN106667480A (zh) | 一种用于穿戴式生理信号检测设备进行性能检验的人体模型 | |
CN207693567U (zh) | 电刺激治疗设备的人体负载阻抗检测设备 | |
CN205333721U (zh) | 一种采用光耦隔离的中低频治疗仪的电压信号采样电路 | |
CN203328695U (zh) | 一种支持超低功耗的心电监护仪 | |
WO2016045454A1 (zh) | 适用于可穿戴设备的皮肤靠近检测电路与方法 | |
CN209281373U (zh) | 用于人体小信号采集设备的直流偏置消除电路 | |
CN210958320U (zh) | 一种心血管数据采集装置的信号采集电路 | |
CN115444539A (zh) | 一种高压脉冲治疗设备的实时电学信号监测装置 | |
WO2023029287A1 (zh) | 肌电采集参考电极的动态切换装置以及动态切换方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15843392 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30.08.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15843392 Country of ref document: EP Kind code of ref document: A1 |