[go: up one dir, main page]

WO2016035876A1 - Copper foil, copper clad laminated plate, and substrate - Google Patents

Copper foil, copper clad laminated plate, and substrate Download PDF

Info

Publication number
WO2016035876A1
WO2016035876A1 PCT/JP2015/075173 JP2015075173W WO2016035876A1 WO 2016035876 A1 WO2016035876 A1 WO 2016035876A1 JP 2015075173 W JP2015075173 W JP 2015075173W WO 2016035876 A1 WO2016035876 A1 WO 2016035876A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
frequency
protrusion
height
copper
Prior art date
Application number
PCT/JP2015/075173
Other languages
French (fr)
Japanese (ja)
Inventor
井上 大輔
裕子 奥野
岳夫 宇野
鳥光 悟
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55439931&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016035876(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201580032041.1A priority Critical patent/CN106574389B/en
Priority to JP2015559749A priority patent/JP5972486B1/en
Priority to KR1020167034815A priority patent/KR101912765B1/en
Publication of WO2016035876A1 publication Critical patent/WO2016035876A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a copper foil or the like having excellent adhesion to a resin base material and excellent high-frequency signal transmission characteristics.
  • Such a printed wiring board is manufactured from a copper clad laminate in which a circuit forming copper foil is disposed and integrated on the surface of an insulating resin base material.
  • a circuit pattern is formed by applying a mask pattern to the copper foil and etching the copper-clad laminate.
  • the copper foil and the resin base material are integrated by heating and pressurization, but the adhesiveness of a predetermined level or more is required.
  • a method for ensuring such adhesion a method of subjecting a copper foil to a predetermined roughening treatment is generally used (for example, Patent Documents 1 to 3).
  • Patent Document 1 defines the shape of a fine hump formed on the surface of a copper foil in order to ensure adhesion by an anchor effect on a resin base material.
  • Patent Document 2 performs a low-roughness treatment in order to improve the linearity of the bottom line of the copper foil, and in order to ensure adhesion, a heat-resistant / rust-proof layer, a chromate film layer, and a silane coupling.
  • the agent layer is formed.
  • Patent Document 3 specifies the surface roughness and the like of the copper foil, prevents the occurrence of poor insulation due to the copper particles remaining after etching, and ensures adhesion.
  • Patent Documents 1 to 3 ensure adhesion, high frequency transmission characteristics are not always considered sufficiently.
  • coherence of transmission characteristics when using a copper-clad laminate is a major issue as well as ensuring adhesion to a resin substrate.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a copper foil or the like that has excellent adhesion to a resin base material and excellent high-frequency transmission characteristics.
  • the average number per length is 1 or more, and 80% or more of the protrusions satisfying h / d ⁇ 1, w ⁇ 0.1 ⁇ m and w / d ⁇ 0
  • the average per 5 ⁇ m length of the protrusion with h / d ⁇ 2 80% or more of the protrusions having the number of one or more and h / d ⁇ 2 satisfy w ⁇ 0.1 ⁇ m and w / d ⁇ 0.1 h / d + 1.
  • 4 is a copper foil characterized by satisfying 4.
  • H is preferably 0.4 ⁇ m or more.
  • W is desirably 0.2 ⁇ m or more.
  • the frequency f included in the high-frequency electrical signal is 20 GHz or more.
  • the ratio of the three-dimensional surface area by the optical interference microscope to the two-dimensional surface area of the roughened surface is less than three times.
  • the shape of the protrusion is standardized by the skin depth defined according to the transmission frequency, sufficient adhesion with the resin base material and high transmission characteristics suitable for the use conditions are obtained. Can be obtained. Specifically, if one or more protrusions satisfying h / d ⁇ 1 are formed on average per 5 ⁇ m length, adhesion with the resin base material can be ensured. Further, since the number of protrusions satisfying w / d ⁇ 0.1 h / d + 1.4 is 80% or more, good electrical characteristics can be obtained even when the protrusion height is high.
  • one or more protrusions satisfying h / d ⁇ 2 are formed on average per 5 ⁇ m length, and w / d ⁇ 0.1 h / d + 1.4 is satisfied. If the protrusion is 80% or more, better electrical characteristics can be obtained while maintaining adhesion.
  • the ratio of the three-dimensional surface area measured three-dimensionally with an optical interference microscope to the two-dimensional surface area of the roughened surface is less than three times, so that even better electrical characteristics can be obtained. it can.
  • the copper foil according to the first aspect and a resin base material are laminated and bonded together, and the resin base material has a dielectric constant of 4 or less and a dielectric loss tangent tan ⁇ of 0.006 or less. It is a copper clad laminated board characterized by being.
  • the resin substrate is made of a liquid crystal polymer, a fluororesin, a polyetherimide, a polyetheretherketone, a polyphenylene ether, a polycycloolefin, a bismaleimide resin, a low dielectric constant polyimide, or a mixture of these. It is desirable to be.
  • a low-loss copper-clad laminate can be obtained efficiently.
  • high frequency resins often have poor adhesion to copper foil.
  • a resin polymer or the like having a dielectric constant of 4 or less and a dielectric loss tangent tan ⁇ of 0.006 or less is used.
  • a higher effect can be acquired by applying to such resin.
  • a line is formed by patterning the copper foil on the copper clad laminate according to the second aspect of the invention, and the line has a wavelength defined by the frequency f of the high-frequency electrical signal.
  • the substrate has a length of 10 effective wavelengths or more.
  • the transmission loss reduction effect can be obtained more efficiently. This is because a longer line has a larger loss value as an effect, and if the line length is too short, the effect is small.
  • the present invention it is possible to provide a copper foil or the like that is excellent in adhesion to a resin base material and excellent in high-frequency transmission characteristics.
  • FIGS. 5A and 5B are conceptual diagrams showing a current density distribution in the vicinity of the protrusions.
  • FIG. 5A is a view showing a wide protrusion
  • FIG. 5B is a view showing a narrow protrusion.
  • FIG. 7A is a diagram showing the scope of the present invention in the apparent conductivity distribution with respect to the height h and width w of the protrusion 9 normalized by the skin depth
  • FIG. (B) is a figure shown about 80 GHz.
  • FIGS. 8A and 8B are diagrams illustrating transmission characteristics with respect to frequency.
  • FIG. 1 shows a substrate 1 according to the present invention.
  • the substrate 1 is obtained by patterning a line 5 on a resin base material 3.
  • the line 5 is formed by a copper foil 7. That is, the copper foil 7 and the resin base material 3 are bonded together, and the line 5 is formed by masking and etching.
  • the copper-clad laminate 2 is obtained by bonding and integrating the copper foil 7 and the resin base material 3 before etching.
  • a known method such as a hot press method, a continuous roll laminating method, a continuous belt pressing method, or the like can be used.
  • the copper foil 7 may be any of an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, and a rolled copper alloy foil, and can be appropriately selected according to the use of the copper clad laminate 2 and the like. The details of the copper foil 7 will be described later.
  • the resin base material 3 desirably has a dielectric constant of 4 or less and a dielectric loss tangent tan ⁇ of 0.006 or less.
  • a liquid crystal polymer can be applied as such a material.
  • the length of the line 5 has a side that can be expressed by a transmission frequency and a transmission wavelength in addition to the dimensional length.
  • the effective wavelength is on the order of about 10 wavelengths. Since the transmission loss becomes significant in a relatively long signal line of about 10 wavelength order or more with respect to the effective wavelength, it can be said that the application of the present invention is suitable.
  • the line 5 is preferably 10 or more effective wavelengths long with respect to the wavelength defined by the frequency f of the high-frequency electrical signal.
  • substrate 1 of this invention shall be used for transmission of the high frequency signal of 5 GHz or more. This is because the effect of the present invention cannot be sufficiently obtained when the frequency is lower than this.
  • FIG. 3 is an enlarged cross-sectional view of the resin contact surface of the copper foil 7 for high-frequency electrical signal transmission.
  • the copper foil 7 has protrusions 9 formed on a copper base material 11.
  • the copper foil for high-frequency circuits of the present invention is provided with roughened particles by burnt plating on the surface of the copper foil as a metal substrate (the surface roughness is not particularly limited, but Rz is preferably 5.0 ⁇ m or less). To form a roughened particle layer.
  • the roughened particles are preferably made of copper.
  • protrusions include those formed by roughened particles.
  • the silane coupling agent can be appropriately selected from epoxy, amino, methacrylic, vinyl, mercapto and the like depending on the target resin substrate 3.
  • epoxy, amino, and vinyl coupling agents that are particularly excellent in compatibility can be selected.
  • FIG. 2 is a diagram showing the relationship between the surface conductivity normalized by the skin depth and the transmission conductivity.
  • the skin depth d of the smooth copper foil at 1 GHz is about 2.1 ⁇ m and the surface roughness (indicated by Rq) is sufficiently smaller than this, for example, 0.4 ⁇ m, as shown by the dotted line O.
  • Rq surface roughness
  • the equivalent conductivity is also reduced.
  • the skin depth of about 2.1 ⁇ m at 1 GHz is about 0.9 ⁇ m at 5 GHz
  • the skin depth d is about 0.5 ⁇ m at 20 GHz
  • the surface has almost no influence like the dotted line O at 1 GHz.
  • the equivalent conductivity is significantly reduced by increasing the frequency of use such as 5 GHz and 20 GHz.
  • the deterioration of the transmission characteristics of the signal line becomes a problem.
  • the skin depth d (m) is ⁇ (1 / ( ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ f)) (where ⁇ : conductivity (S / m), ⁇ : permeability (H / m), f: (Frequency (Hz)).
  • the height of the protrusion 9 on the copper foil in the present invention is h
  • the width of the protrusion 9 at a height of h / 2 is w. More specifically, in the cross-section in the width direction of the copper foil measured by HR-SEM, the vertical direction from the boundary line between the base material 11 (part corresponding to the untreated copper foil) and the protrusion 9 toward the top of the protrusion 9 A line is drawn, and the length h of this line is defined as the protrusion height. Further, w is a protrusion width at a position half the protrusion height h. The equivalent conductivity was calculated for the protrusion shape thus defined.
  • the calculation model It is possible to calculate the above-mentioned equivalent conductivity by irradiating a plane wave of high-frequency electromagnetic waves perpendicularly to a copper foil having an arbitrary rough shape and observing the reflection characteristics.
  • the protrusion shape is a simple conical shape.
  • the calculation was performed using a model in which the same protrusions were periodically spread on the surface of the copper foil.
  • the surface roughness Rz that is conventionally considered to contribute to transmission characteristics can be considered as the protrusion height h in this model.
  • the width w of the conical protrusion at the height of h / 2 was assumed as a parameter, and the equivalent conductivity was calculated for any combination of the protrusion height h and the protrusion width w.
  • the skin depth d is uniquely determined by the frequency used.
  • the dimension parameters h and w are defined by the size normalized by the skin depth d.
  • FIG. 4 is a diagram showing the calculation result of the equivalent conductivity in each protrusion shape by normalizing each protrusion height h and protrusion width w by the skin depth. Specifically, FIG. 4 is a diagram showing a result of calculating an equivalent conductivity distribution with h / d and w / d normalized by the skin depth d taken on the horizontal axis and the vertical axis, respectively. In FIG. 4, the equivalent conductivity decreases from the lower left region to the upper right region.
  • the equivalent conductivity varies with h / d which is the vertical axis. That is, if the protrusion height h is small, there is no significant decrease in equivalent conductivity, and it is considered acceptable as transmission characteristics as a copper foil. Conventionally, it has been known that the smaller the surface roughness, the better the transmission characteristics. In order to ensure adhesion, increasing the height of the protrusion as a roughened surface to a depth greater than the skin depth is the transmission characteristic.
  • the protrusion height higher than the skin depth that is, the characteristic starts to deteriorate in the region of h / d ⁇ 1, and further, the protrusion height such as twice that height, That is, it was difficult to adopt the h / d ⁇ 2 region.
  • the phenomenon in which the equivalent conductivity rapidly changes depending on the horizontal axis w / d is an event newly discovered in the study according to the present invention. Specifically, when w / d is 1 or less, the equivalent conductivity is improved by a non-linear change. Further, by setting w / d to 0.5 or less, the above-described protrusion height h is reduced to the skin depth. The same improvement can be seen as less than twice the height. The effect of improving the equivalent conductivity due to this rapid change is particularly remarkable when the protrusion height is high (surface roughness is rough), such as h / d ⁇ 1. That is, it can be said that it is particularly effective when the projection height h needs to be sufficiently large in order to secure the adhesion with the resin substrate 3.
  • FIG. 5 is a conceptual diagram showing a high frequency conduction current density on a copper foil cross section when a high frequency electric field is applied in the horizontal direction on the paper surface in electromagnetic field analysis.
  • the dotted line in the figure is an equicurrent density line.
  • FIG. 5A shows a case where the standardized width is a relatively thick protrusion
  • FIG. 5B shows a case where the standardized width is relatively narrow.
  • point A is a point where the current density is low
  • point B is a point where the current density is high.
  • point E is a point where the current density is low
  • point F is a point where the current density is high.
  • the skin effect becomes remarkable as the conduction current increases in frequency, and the current is interpreted to flow more concentrated on the copper foil surface.
  • Such a phenomenon is based on the assumption that the copper foil has a smooth structure, and the current density in the case of having a protrusion shape on the surface as in the present invention is compared with that in the case where the copper foil is smooth. It will be very special. Specifically, in both FIG. 5A and FIG. 5B, it is confirmed that the current hardly flows on the front end side of the protrusion, which can be said to be the surface side (point A, point E). What is happening at the tip is thought to be cancellation of the conduction current, which is a phenomenon that exhibits the characteristic characteristics of the present invention.
  • This phenomenon is due to the following reasons. If most of the current is concentrated within the skin depth of the copper foil surface and the concentrated portions do not interfere with each other, a conduction current is generated. On the other hand, when the portions below the skin depth interfere with each other, such as the tip of the protrusion, the current flows in the opposite direction at the interference portion, cancels out, and the conduction current does not flow. For example, if the current flowing toward the tip of the protrusion interferes with the current flowing from the tip to the base side, the current is canceled out, and the conductive current does not flow, so that it does not become a current loss source. This is a phenomenon newly studied in the present invention.
  • the width of the protrusion is narrower than that in FIG. 5A, and the current density in the protrusion is relatively small.
  • the protrusion surface position (point D) having a current density equivalent to the current density of the protrusion inner center point (point C) connecting the protrusion base is 1/2 of the protrusion height h. Shift to the tip side of the protrusion rather than the height. That is, the current density at the surface of the center portion of the protrusion height is higher than the current density at the center of the protrusion base.
  • the protrusion surface position (point I) having a current density equivalent to the current density of the protrusion inner center point (point G) connecting the protrusion base is 1 / of the protrusion height h. It shifts to the protrusion base side rather than the height of 2. That is, the current density at the surface of the central portion of the protrusion height is lower than the current density at the center of the protrusion base. That is, in FIG. 5B, the current flowing inside the protrusion is small, and the current flowing on the base side of the protrusion tends to increase. In this way, by selecting a projection structure that reduces the amount of current flowing inside the projection (especially the tip side from the projection height h / 2) relative to the current flowing near the projection base, current loss due to the projection is reduced. It is thought that this can be reduced.
  • FIG. 6 is a view similar to FIG.
  • sufficient equivalent conductivity can be secured in a region where the projection height is low, such as h / d ⁇ 1. Therefore, the present invention is particularly effective when the projection height is high (surface roughness is rough), such as h / d ⁇ 1.
  • the ideal state (equivalent conductivity in the smooth state) is obtained at any projection height. ) Equivalent electrical conductivity of about 50% or more.
  • the straight line K is a linear function that substantially matches the tangent at 5 to 7 so that at least 50% of the ideal conductivity can be secured in the region where h / d is 7 or less, for example. Yes.
  • the region formed by the straight lines K and J is a desirable range from the viewpoint of transmission characteristics and adhesion.
  • h when it is necessary to secure adhesion, h needs to be increased, so loss due to copper foil is a problem even at a signal frequency of about 5 GHz.
  • h is preferably 0.4 ⁇ m or more.
  • the low-roughened copper foil can also improve the adhesion strength to the resin even in a situation where the protrusion height is small.
  • the protrusion height h is 1 ⁇ m or more with respect to a copper foil for a general liquid crystal polymer. Even when such collaterality of adhesion is particularly necessary, it is necessary to reduce copper foil loss.
  • the skin depth d is about 0.9 ⁇ m.
  • the present invention satisfies the relationship of h / d ⁇ 1 and satisfies the relationship of w / d ⁇ 0.1 h / d + 1.4, even when a signal frequency of 5 GHz is transmitted to the copper foil. Loss can be reduced.
  • the transmission frequency exceeds several GHz order. For example, characteristics of about 20 GHz or more are required for high-speed digital signal transmission exceeding 10 Gbps, and characteristics up to about 80 GHz are required for millimeter wave radar.
  • the frequency is in the quasi-millimeter wave or millimeter wave band such as 20 GHz or 80 GHz, the skin depth d is reduced, so that h / d is further increased. For this reason, equivalent electrical conductivity falls. Therefore, when the height of the protrusion for securing the adhesion force is secured, there is a possibility that even if there is no problem at several GHz, it becomes impossible to disregard as a cause of transmission loss with the increase of the frequency exceeding 20 GHz.
  • the protrusion width is designed so that w / d ⁇ 0.1 h / d + 1.4 according to the operating frequency. It becomes possible to reduce transmission loss.
  • the protrusion width is too narrow, there may be a problem in quality. For example, if the protrusion width becomes extremely narrow, there is a concern that powder may fall off during the process. For this reason, it is necessary to select a projection width that does not cause powder falling. Specifically, in a protrusion with w smaller than 0.1 ⁇ m, the possibility of avoiding powder falling increases, so w is desirably 0.1 ⁇ m or more, and more desirably, w is 0.2 ⁇ m or more.
  • FIG. 7 is a diagram showing a region that is particularly effective in the present invention when w is 0.1 ⁇ m or more.
  • straight lines K and J are the same as those in FIG.
  • straight lines K and J are the same as those in FIG.
  • h ⁇ 0.4 ⁇ m is desirable from the viewpoint of adhesion, but if h can be compatible with transmission characteristics, a larger h can be taken as long as etching residue does not become a problem. preferable.
  • the protrusion height h needs to be set to such an extent that no etching residue is generated.
  • the transmission characteristic of the copper foil 7 according to the operating frequency is taken into consideration, and the selection of the protrusion shape parameters Can do the design. Note that, from the viewpoint of reducing etching residue, it is assumed that the protrusion extends in a direction substantially perpendicular to the copper foil surface.
  • the present invention does not need to be particularly uniform with respect to the uniformity of the protrusion shape and height, and it is not necessary for all protrusions to be within this region.
  • the average number of protrusions having a height satisfying h / d ⁇ 1 (more desirably h / d ⁇ 2) per 1 ⁇ m is 1 or more, and 80 of these protrusions. % Or more so as to satisfy w ⁇ 0.1 ⁇ m and w / d ⁇ 0.1 h / d + 1.4, the effect of the present invention can be obtained.
  • the ratio of the three-dimensional surface area by the optical interference microscope to the two-dimensional surface area of the roughened surface is less than three times, so that the transmission characteristics can be more reliably improved. Can be increased.
  • the width and height of the protrusion can be obtained by observing with a HR-SEM (high resolution scanning electron microscope) at a measurement magnification of 3000 times or more (for example, 10,000 times). Further, the fact that one or more protrusions having a height satisfying h / d ⁇ 1 exist on average per 5 ⁇ m is determined by the average number when observing at least 20 arbitrary portions. Further, the width and height of the protrusion may be obtained by observing by a method other than HR-SEM.
  • substrate 1 bonds the copper foil 7 to the resin base material 3, forms the copper clad laminated board 2, and also forms the track
  • the transmission loss of the line 5 is expressed as the sum of dB of the conductor loss due to the copper foil 7 and the dielectric loss in the substrate 1 (resin base material 3). Therefore, ensuring the transmission characteristics as the substrate 1 requires not only the copper foil 7 but also the characteristics of the resin base material 3.
  • the dielectric loss tangent tan ⁇ cannot be said to be sufficiently good.
  • low loss resin base materials having a dielectric constant of 4 or less and tan ⁇ of less than 0.006 are provided by various companies. In order to secure transmission characteristics as the substrate 1, such low loss resin bases are provided.
  • a material is preferred.
  • the resin base material is any one of a liquid crystal polymer, a fluororesin, a polyetherimide, a polyetheretherketone, a polyphenylene ether, a polycycloolefin, a bismaleimide resin, and a low dielectric constant polyimide. Or a mixture of these, and specific examples include Megtron 6, BT resin, and the like.
  • FIG. 8 shows an example of analyzing the transmission characteristics when the protrusion shape of the resin base material and the copper foil is changed.
  • FIG. 8A shows an example using a resin base material having a dielectric constant of 3.7 and tan ⁇ of 0.01
  • FIG. 8B shows a dielectric constant of 3.7 and tan ⁇ of 0.004.
  • the case where the resin base material which is is shown is shown.
  • the line length is 100 mm in all cases.
  • the loss of the line R is small. Further, when considering the improvement effect from the line T to the line R as a percentage, the example of FIG. 8A is about 10%, whereas the example of FIG. 8B is about 20%. It will be about. That is, in combination with a low-loss resin base material, it can be said that the contribution of improvement due to the protrusion shape of the copper foil is large. Furthermore, the effect obtained by the present invention is further increased by further increasing the operating frequency and further extending the line length.
  • the example of the simple microstrip line was shown as the track
  • the type of the line 5 the same effect is exhibited in the triplate line and the differential line.
  • the pattern can be applied not only to straight lines but also to various shapes of lines including bending, branching, filters, antennas and the like. In any case, as described above, it is suitable for a portion that transmits at least a high-frequency signal for a long section having an effective wavelength of about 10 wavelengths or more.
  • High frequency applications suitable for implementing the present invention can be broadly classified into high frequency analog signal transmission applications and high speed digital signal transmission applications.
  • high-frequency analog signal transmission for example, in application to radio equipment products, the upper limit frequency that can be used depending on the application is determined by the laws and regulations relating to radio waves in each country. The upper limit frequency determined by the application and transmitting the line is considered as the frequency to be secured on the board.
  • the frequency that can be expressed as f 0.35 / t depending on the rise time (10% -90%) time t (seconds) of the digital signal input to the transmission line on the substrate.
  • high-frequency collateral design is performed.
  • the former is suitable for high-frequency applications such as millimeter-wave communication and millimeter-wave radar and large-scale applications such as base stations, and the latter is suitable for signal transmission on workstations and high-speed transmission on server backplanes. Application to the above is preferable.
  • Examples 1 to 5 Comparative Examples 1 to 3> A smooth untreated copper foil having a surface roughness Rz of about 0.5 ⁇ m and a thickness of 18 ⁇ m is prepared as a metal substrate, and the untreated copper foil is subjected to burnt plating to form a roughened particle layer (protrusion). did.
  • Burn plating is a method in which a fine projection group of granular copper is adhered by performing electrolysis near a limit current density using a copper foil as a cathode in an acidic copper electrolytic bath. The solutions used for the burnt plating are shown in Table 1.
  • the solution A can be uniformly roughened, the solution B has a roughened particle shape that becomes round and thick, and the solution C has a roughened particle shape that becomes thin.
  • the solution C is selected to reduce the thickness of the coarse particle, and when the coarse particle height is low (high frequency), a certain amount Since it is necessary to ensure the thickness of the roughened particles, it is desirable to select the solution depending on the height of the roughening, such as selecting the solution B.
  • Table 2 shows the conditions for the burnt plating.
  • capsule plating was performed on the roughened particle layer by burn plating.
  • Capsule plating covers the fine projections of granular copper applied by burn plating with a thin layer of ordinary copper plating (so-called “capsule layer”), and the fine projections of granular copper are coated on the surface of the copper foil. It is to be fixed.
  • the conditions for capsule plating are as follows.
  • both surfaces of the copper foil were subjected to rust prevention treatment with a known chromate treatment solution (corresponding to 3.0 g / L in CrO 3 concentration).
  • Each copper foil thus produced was subjected to cross-sectional processing in the width direction using ion milling (IM4000 manufactured by Hitachi High-Tech), and an acceleration voltage of 3 kV (secondary) using HR-SEM (SU8020 manufactured by Hitachi High-Tech).
  • An electron image and a low-angle reflected electron image) were subjected to cross-sectional observation at a magnification of 20,000 times, and the height and width of roughened particles in a 5 ⁇ m range of arbitrary 20 copper foil cross sections were measured.
  • said cross-sectional observation can also be performed about the circuit board produced by pattern-processing the copper foil of the copper clad laminated board which bonded copper foil and the resin base material together.
  • the cross section is processed in the longitudinal direction of the circuit pattern (line) so that the interface between the copper foil and the resin base material can be observed, and any 20 sections of the copper foil in the vicinity of the center of the circuit pattern (line). The height and width of roughened particles in the 5 ⁇ m range are measured.
  • ⁇ Surface area ratio measurement> Using the three-dimensional white-light interference microscope (BRUKER Wyko Control GT-K), the ratio of the three-dimensional surface area to the two-dimensional surface area was measured (measurement conditions were a measurement magnification of 10 times, using a high-resolution CCD camera, After measurement, it was digitized without applying a special filter), and less than 3 was “ ⁇ ”, 3 or more and less than 4.5 was “ ⁇ ”, and more was “x”.
  • the produced copper foil was laminated on a resin substrate by a hot press method, and a microstrip line as shown in FIG. 1 was produced as a signal line for evaluating transmission characteristics by etching.
  • a resin base material polyphenylene ether resin (product name: Megtron 6 manufactured by Panasonic Corporation: dielectric constant 3.7, dielectric loss tangent tan ⁇ 0.002) was used.
  • the transmission loss with respect to the high frequency signal up to 40 GHz was measured with the network analyzer.
  • the characteristic impedance was 50 ⁇ .
  • transmission loss is ⁇ 0.7 dB / 100 mm @ 5 GHz or less, ⁇ 1.8 dB / 100 mm @ 15 GHz or less, ⁇ 4.7 dB / 100 mm @ 40 GHz or less ⁇ , ⁇ 0.7 dB / Those exceeding 100 mm @ 5 GHz, those exceeding ⁇ 1.8 dB / @ 15 GHz, and those exceeding ⁇ 4.7 dB / 100 mm @ 40 GHz were evaluated as x.
  • the above boundary value is the transmission loss of the untreated copper at each frequency and the equivalent conductivity of 75% due to the roughening treatment with respect to the conductivity of copper in the ideal state (untreated copper). It calculated from the sum of dB of loss.
  • Example 1 In cross-sectional observation, in Examples 1 to 5 and Comparative Examples 1 and 3, on average, one or more protrusions satisfying h / d ⁇ 1 (hereinafter referred to as Condition A) were present per 5 ⁇ m. In Example 2, the protrusion height was low, and the average number of protrusions satisfying the condition A was less than 1 per 5 ⁇ m at any frequency.
  • condition B the ratio of the protrusions satisfying the condition of w / d ⁇ 0.1 h / d + 1.4
  • Example 1 at 5 GHz, among the protrusions satisfying the condition A, the protrusion satisfying the condition B was 80% or more, but at 15 GHz or more, it was less than 80%. Similarly, in Examples 2 and 3, the protrusion satisfying the condition B was 80% or more up to 15 GHz, but it was less than 80% at 30 GHz or more. In Examples 4 and 5, the protrusions satisfying the condition B among the protrusions satisfying the condition A were 80% or more at all frequencies.
  • Comparative Example 2 As described above, the protrusion height is low, and there are less than one protrusion satisfying the condition A, and the condition B cannot be satisfied.
  • the condition A was satisfied by repeating the burn plating and the capsule plating a plurality of times.
  • w / d was large, and the protrusion satisfying the condition B was less than 80%. It was.
  • w / d was small, and the number of protrusions satisfying w ⁇ 0.1 was less than 80%.
  • Comparative Example 2 was satisfied with the transmission loss because the protrusion height was low, but the peel strength was insufficient.
  • Comparative Example 1 since the protrusion height was sufficient, the peel strength was satisfactory, but since w / d was out of the standard, the transmission loss was x at all frequencies. Further, in Comparative Example 3, the protrusion height was sufficient, but w / d was very small, so that the peel strength was insufficient, or rough powder was generated.
  • the present invention it is possible to satisfy both securing of adhesion with a resin base material and securing of transmission characteristics, which have been difficult to achieve in the past.
  • the height of the resin base material is set to h / d ⁇ 1. Adhesion can be ensured. Furthermore, if h is 0.4 um or more, the adhesion to the resin substrate can be more reliably ensured.
  • the protrusion width satisfies w / d ⁇ 0.1 h / d + 1.4, the amount of current flowing in the vicinity of the protrusion tip can be reduced relative to the vicinity of the protrusion base. For this reason, it becomes possible to reduce the conductor loss in a protrusion structure. As a result, it is possible to provide a copper foil with good signal line transmission characteristics at the used frequency. In particular, at a high frequency such as 20 GHz or higher, the height of the protrusion necessary for ensuring adhesion can be greater than or equal to the skin depth d order, which may cause an increase in transmission loss. This is effective in a situation where it is difficult to achieve both adhesion and transmission characteristics.
  • the protrusion width is set to 0.1 um or more, which is the minimum width required for quality, it is possible to avoid quality deterioration such as powder falling. Further, although the adhesion is improved by increasing the protrusions, there is a trade-off relationship that etching residue is likely to occur. However, the present invention includes the protrusions for each frequency as shown in FIG. The optimum design of the shape becomes possible.
  • the copper foil of the present invention to a resin base material that is generally considered to have a low loss, such as a dielectric constant of 4 or less and tan ⁇ of 0.006 or less, the ratio of the characteristic improvement contribution becomes more remarkable. Therefore, it is suitable for application to a high-frequency low-loss substrate. Also, for substrates with low loss, such as liquid crystal polymers, which are difficult to ensure chemical adhesion, as described above, with sufficient protrusion height to ensure adhesion and compatibility with transmission characteristics Can be achieved.
  • the copper foil of the present invention by applying the copper foil of the present invention to a substrate having a long line pattern that effectively becomes 10 wavelengths or more specified by the transmission frequency, the effect of improving the transmission characteristics becomes remarkable, and at a higher frequency. It can contribute to securing characteristics in large applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

The present invention has a plurality of protrusions formed on a surface, wherein when a skin depth d (m) is equal to √ (1/(σ·μ·π·f)) (where σ is conductivity (S/m), μ is magnetic permeability (H/m), f is frequency included in an electrical signal (Hz)), f ≥ 5 GHz; and when h (μm) is taken as the height of a protrusion, and w (μm) is taken as the width of a protrusion at a position at a height of h/2, at least one protrusion for which h/d is ≥ 1 is formed for every 5-μm length, and in at least 80% of the protrusions having h/d ≥ 1, w is ≥ 0.1 μm, and the equation w/d ˂ -0.1 h/d + 1.4 is satisfied.

Description

銅箔、銅張積層板、および基板Copper foil, copper clad laminate, and substrate
 本発明は、樹脂基材との密着性に優れ、高周波信号の伝送特性にも優れる銅箔等に関するものである。 The present invention relates to a copper foil or the like having excellent adhesion to a resin base material and excellent high-frequency signal transmission characteristics.
 近年、電子部品の小型化や高性能化に伴い、小型かつ高密度のプリント配線基板が使用されている。このようなプリント配線基板は、絶縁性の樹脂基材の表面に、回路形成用の銅箔が配置されて一体化された銅張積層板から製造される。銅張積層板に対して、銅箔にマスクパターンを施してエッチングすることで回路パターンが形成される。 In recent years, with the miniaturization and performance enhancement of electronic components, small and high density printed wiring boards are being used. Such a printed wiring board is manufactured from a copper clad laminate in which a circuit forming copper foil is disposed and integrated on the surface of an insulating resin base material. A circuit pattern is formed by applying a mask pattern to the copper foil and etching the copper-clad laminate.
 銅箔と樹脂基材とは、加熱・加圧によって一体化されるが、所定以上の密着性が必要である。このような密着性を確保する方法として、銅箔に所定の粗面化処理を行う方法が一般的である(例えば、特許文献1~3)。 The copper foil and the resin base material are integrated by heating and pressurization, but the adhesiveness of a predetermined level or more is required. As a method for ensuring such adhesion, a method of subjecting a copper foil to a predetermined roughening treatment is generally used (for example, Patent Documents 1 to 3).
特開平7-231152号公報Japanese Patent Laid-Open No. 7-231152 特開2006-210689号公報JP 2006-210689 A 特許第5204908号公報Japanese Patent No. 5204908
 特許文献1の方法は、樹脂基材に対するアンカー効果によって密着性を確保するため、銅箔の表面に形成される微細なこぶの形状を規定したものである。 The method of Patent Document 1 defines the shape of a fine hump formed on the surface of a copper foil in order to ensure adhesion by an anchor effect on a resin base material.
 また、特許文献2は、銅箔のボトムラインの直線性を向上させるため、低粗度処理を行い、密着性の確保のために、耐熱・防錆層と、クロメート皮膜層と、シランカップリング剤層を形成するものである。 In addition, Patent Document 2 performs a low-roughness treatment in order to improve the linearity of the bottom line of the copper foil, and in order to ensure adhesion, a heat-resistant / rust-proof layer, a chromate film layer, and a silane coupling. The agent layer is formed.
 また、特許文献3は、銅箔の表面粗さ等を特定し、エッチング後に銅粒子が残ることによる絶縁不良の発生を防止するとともに、密着性を確保するものである。 Further, Patent Document 3 specifies the surface roughness and the like of the copper foil, prevents the occurrence of poor insulation due to the copper particles remaining after etching, and ensures adhesion.
 しかし、特許文献1~3は、密着性を確保するものではあるが、高周波伝送特性について、必ずしも十分に考慮されていない。高周波信号伝送用銅箔においては、樹脂基材への密着性確保とともに、銅張積層板とした際の伝送特性の両立が大きな課題である。 However, although Patent Documents 1 to 3 ensure adhesion, high frequency transmission characteristics are not always considered sufficiently. In copper foil for high-frequency signal transmission, coherence of transmission characteristics when using a copper-clad laminate is a major issue as well as ensuring adhesion to a resin substrate.
 ここで、粗化突起の高さすなわち表面粗さの程度を大きくするにつれ、伝送特性が劣化するといわれている。特許文献2では表面粗化による伝送長さの増大と解釈されているものの、定量的に示されているものではない。また、アンカー効果による密着性の確保と、伝送特性の確保を両立するような特許すべき方策について、具体的なメカニズムに基づき示すものは、現状みられない。 Here, it is said that the transmission characteristics deteriorate as the height of the roughened protrusion, that is, the degree of surface roughness is increased. In Patent Document 2, it is interpreted as an increase in transmission length due to surface roughening, but it is not quantitatively shown. In addition, there is no current state-of-the-art policy based on a specific mechanism that should be patented to achieve both the securing of adhesion by the anchor effect and the securing of transmission characteristics.
 銅箔と樹脂基材との密着性を確保するため、粗化突起の高さを大きくとると、そのトレードオフとして、別の課題が生じうる。例えば、突起を長くしすぎるとエッチング残渣が発生しやすくなる。これを回避するには十分なエッチング時間を掛けることが想定される。また突起がある長さをもった状態で突起幅を細くすると粉落ちの問題も起こりうる。これを回避するためには、銅箔製造時のハンドリング等で銅箔への物理的な接触を低減することが想定される。しかしながらいずれの回避策も製造コスト増や品質低下を招く可能性がある。 In order to ensure the adhesion between the copper foil and the resin base material, another problem may arise as a trade-off when the height of the roughening protrusion is increased. For example, if the protrusion is too long, an etching residue is likely to occur. In order to avoid this, it is assumed that a sufficient etching time is taken. Moreover, if the protrusion width is narrowed with the protrusion having a certain length, a problem of powder falling may occur. In order to avoid this, it is assumed that physical contact with the copper foil is reduced by handling or the like when manufacturing the copper foil. However, either workaround can lead to increased manufacturing costs and reduced quality.
 本発明は、このような問題に鑑みてなされたもので、樹脂基材との密着性に優れ、高周波伝送特性にも優れた銅箔等を提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a copper foil or the like that has excellent adhesion to a resin base material and excellent high-frequency transmission characteristics.
 前述した目的を達するために第1の発明は、高周波電気信号の伝送用の銅箔であって、表面に複数の突起が形成され、表皮深さd(m)=√(1/(σ・μ・π・f))(但し、σ:導電率(S/m)、μ:透磁率(H/m)、f:前記高周波電気信号に含まれる周波数(Hz))とした場合において、f≧5GHzであり、前記突起の高さをh(μm)、当該突起のh/2の高さ位置における幅をw(μm)とした際に、h/d≧1となる前記突起の、5μm長さ当たりの平均個数が1個以上であり、かつ、h/d≧1となる前記突起のうち80%以上の前記突起が、w≧0.1μmであり、かつ、w/d<-0.1h/d+1.4を満たすことを特徴とする銅箔である。 In order to achieve the above object, a first invention is a copper foil for transmitting a high-frequency electrical signal, wherein a plurality of protrusions are formed on the surface, and a skin depth d (m) = √ (1 / (σ · μ · π · f)) (where σ: conductivity (S / m), μ: permeability (H / m), f: frequency (Hz) included in the high-frequency electrical signal), f ≧ 5 GHz, 5 μm of the protrusion satisfying h / d ≧ 1 when the height of the protrusion is h (μm) and the width of the protrusion at the height of h / 2 is w (μm). The average number per length is 1 or more, and 80% or more of the protrusions satisfying h / d ≧ 1, w ≧ 0.1 μm and w / d <−0 A copper foil characterized by satisfying 1 h / d + 1.4.
 また、第1の発明は、高周波電気信号の伝送用の銅箔であって、表面に複数の突起が形成され、表皮深さd(m)=√(1/(σ・μ・π・f))(但し、σ:導電率(S/m)、μ:透磁率(H/m)、f:前記高周波電気信号に含まれる周波数(Hz))とした場合において、f≧5GHzであり、前記突起の高さをh(μm)、当該突起のh/2の高さ位置における幅をw(μm)とした際に、h/d≧2となる前記突起の、5μm長さ当たりの平均個数が1個以上であり、かつ、h/d≧2となる前記突起のうち80%以上の前記突起が、w≧0.1μmであり、かつ、w/d<-0.1h/d+1.4を満たすことを特徴とする銅箔である。 The first invention is a copper foil for transmitting a high-frequency electric signal, wherein a plurality of protrusions are formed on the surface, and a skin depth d (m) = √ (1 / (σ · μ · π · f )) (Where σ: conductivity (S / m), μ: permeability (H / m), f: frequency (Hz) included in the high-frequency electrical signal), f ≧ 5 GHz, When the height of the protrusion is h (μm) and the width of the protrusion at the height of h / 2 is w (μm), the average per 5 μm length of the protrusion with h / d ≧ 2 80% or more of the protrusions having the number of one or more and h / d ≧ 2 satisfy w ≧ 0.1 μm and w / d <−0.1 h / d + 1. 4 is a copper foil characterized by satisfying 4.
 hが0.4μm以上であることが望ましい。 H is preferably 0.4 μm or more.
 wが0.2μm以上であることが望ましい。 W is desirably 0.2 μm or more.
 前記高周波電気信号に含まれる周波数fが20GHz以上であることがさらに望ましい。 More preferably, the frequency f included in the high-frequency electrical signal is 20 GHz or more.
 該粗化処理面の二次元表面積に対する光干渉型顕微鏡による三次元表面積の比が3倍未満であることがさらに望ましい More preferably, the ratio of the three-dimensional surface area by the optical interference microscope to the two-dimensional surface area of the roughened surface is less than three times.
 第1の発明によれば、伝送周波数に応じて規定される表皮深さによって突起の形状を規格化したため、樹脂基材との十分な密着性と、使用条件に適した高い伝送特性を得ることが可能な銅箔を得ることができる。具体的には、h/d≧1となる突起が、5μm長さ当たりに平均1個以上形成されれば、樹脂基材との密着力を確保することができる。また、w/d<-0.1h/d+1.4を満たす突起が、80%以上であるため、突起高さが高くても良好な電気特性を得ることができる。 According to the first invention, since the shape of the protrusion is standardized by the skin depth defined according to the transmission frequency, sufficient adhesion with the resin base material and high transmission characteristics suitable for the use conditions are obtained. Can be obtained. Specifically, if one or more protrusions satisfying h / d ≧ 1 are formed on average per 5 μm length, adhesion with the resin base material can be ensured. Further, since the number of protrusions satisfying w / d <−0.1 h / d + 1.4 is 80% or more, good electrical characteristics can be obtained even when the protrusion height is high.
 更に確実に密着性を良好にするために、h/d≧2となる突起が、5μm長さ当たりに平均1個以上形成され、また、w/d<-0.1h/d+1.4を満たす突起が、80%以上であれば、密着性を保ちつつ更に良好な電気特性を得ることができる。 Further, in order to ensure good adhesion, one or more protrusions satisfying h / d ≧ 2 are formed on average per 5 μm length, and w / d <−0.1 h / d + 1.4 is satisfied. If the protrusion is 80% or more, better electrical characteristics can be obtained while maintaining adhesion.
 特に、hが0.4μm以上であれば、樹脂基材との密着性をより確実に得ることができる。また、wが0.2μm以上であれば、粉落ちの発生も抑制することができる。 In particular, if h is 0.4 μm or more, adhesion to the resin base material can be obtained more reliably. Moreover, if w is 0.2 μm or more, occurrence of powder falling can be suppressed.
 また、20GHz以上においては、粗化処理面の二次元表面積に対する、光干渉顕微鏡により三次元的に測定した三次元表面積の比が3倍未満であることで、更に良好な電気特性を得ることができる。 In addition, at 20 GHz or higher, the ratio of the three-dimensional surface area measured three-dimensionally with an optical interference microscope to the two-dimensional surface area of the roughened surface is less than three times, so that even better electrical characteristics can be obtained. it can.
 第2の発明は、第1の発明にかかる銅箔と、樹脂基材とが積層されて貼り合わさり、前記樹脂基材は、誘電率が4以下であり、誘電正接tanδが0.006以下であることを特徴とする銅張積層板である。 In a second aspect, the copper foil according to the first aspect and a resin base material are laminated and bonded together, and the resin base material has a dielectric constant of 4 or less and a dielectric loss tangent tan δ of 0.006 or less. It is a copper clad laminated board characterized by being.
 前記樹脂基材は、液晶ポリマー、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミドのいずれか、又はこれらを混合した樹脂からなるものであることが望ましい。 The resin substrate is made of a liquid crystal polymer, a fluororesin, a polyetherimide, a polyetheretherketone, a polyphenylene ether, a polycycloolefin, a bismaleimide resin, a low dielectric constant polyimide, or a mixture of these. It is desirable to be.
 第2の発明によれば、低損失な銅張積層板を効率よく得ることができる。通常、高周波向けの樹脂は、銅箔との密着性が悪い場合が多い。このような高周波向けの樹脂としては、樹脂ポリマーなどの、誘電率が4以下であり、誘電正接tanδが0.006以下であるものが使用されている。本発明では、このような樹脂に適用することで、より高い効果を得ることができる。 According to the second invention, a low-loss copper-clad laminate can be obtained efficiently. Usually, high frequency resins often have poor adhesion to copper foil. As such a high-frequency resin, a resin polymer or the like having a dielectric constant of 4 or less and a dielectric loss tangent tan δ of 0.006 or less is used. In this invention, a higher effect can be acquired by applying to such resin.
 第3の発明は、第2の発明にかかる銅張積層板に対し、前記銅箔がパターン加工されて線路が形成されており、前記線路は、高周波電気信号の周波数fで規定される波長に対し、10実効波長以上の長さであることを特徴とする基板である。 According to a third aspect of the present invention, a line is formed by patterning the copper foil on the copper clad laminate according to the second aspect of the invention, and the line has a wavelength defined by the frequency f of the high-frequency electrical signal. On the other hand, the substrate has a length of 10 effective wavelengths or more.
 第3の発明によれば、より効率よく伝送損失の低減効果を得ることができる。これは、より長い線路の方が、効果としてあらわれる損失値が大きくなるためであり、線路長が短すぎると、効果が小さいためである。 According to the third aspect of the invention, the transmission loss reduction effect can be obtained more efficiently. This is because a longer line has a larger loss value as an effect, and if the line length is too short, the effect is small.
 本発明によれば、樹脂基材との密着性に優れ、高周波伝送特性にも優れた銅箔等を提供することができる。 According to the present invention, it is possible to provide a copper foil or the like that is excellent in adhesion to a resin base material and excellent in high-frequency transmission characteristics.
基板1(銅張積層板2)を示す図。The figure which shows the board | substrate 1 (copper clad laminated board 2). 表面粗さを表皮深さで規格化したものと透過導電率との関係を示す図。The figure which shows the relationship between what normalized the surface roughness with skin depth, and permeation | transmission conductivity. 銅箔7の断面拡大図。The cross-sectional enlarged view of the copper foil 7. 表皮深さで規格化された突起9の高さhと幅wに対する、見かけの導電率の分布を示す図。The figure which shows distribution of the apparent electrical conductivity with respect to height h and width w of the protrusion 9 normalized by the skin depth. 突起近傍における電流密度の分布を示す概念図であり、図5(a)は広幅の突起を示す図、図5(b)は狭幅の突起を示す図。FIGS. 5A and 5B are conceptual diagrams showing a current density distribution in the vicinity of the protrusions. FIG. 5A is a view showing a wide protrusion, and FIG. 5B is a view showing a narrow protrusion. 表皮深さで規格化された突起9の高さhと幅wに対する、見かけの導電率の分布を示す図。The figure which shows distribution of the apparent electrical conductivity with respect to height h and width w of the protrusion 9 normalized by the skin depth. 表皮深さで規格化された突起9の高さhと幅wに対する、見かけの導電率の分布における、本発明の範囲を示す図で、図7(a)は、20GHzについて示す図、図7(b)は、80GHzについて示す図。FIG. 7A is a diagram showing the scope of the present invention in the apparent conductivity distribution with respect to the height h and width w of the protrusion 9 normalized by the skin depth, and FIG. (B) is a figure shown about 80 GHz. 周波数に対する伝送特性を示す図で、図8(a)は、樹脂基材の誘電正接tanδ=0.01の場合を示す図、図8(b)は、tanδ=0.004の場合を示す図。FIGS. 8A and 8B are diagrams illustrating transmission characteristics with respect to frequency. FIG. 8A illustrates a case where the dielectric tangent of the resin base material tan δ = 0.01, and FIG. 8B illustrates a case where tan δ = 0.004. .
(基板1)
 以下、図面を参照しながら、本発明の実施形態について説明する。図1は本発明にかかる基板1を示す図である。基板1は、樹脂基材3上に、線路5がパターン加工されたものである。線路5は、銅箔7によって形成される。すなわち、銅箔7と樹脂基材3とが張り合わされ、マスキングおよびエッチングによって線路5が形成されたものである。なお、エッチング前の銅箔7と樹脂基材3とが貼り合わさって一体化されたものを銅張積層板2とする。樹脂基材3と銅箔7を張り合わせて、銅張積層板2を形成する方法としては、公知の方法、例えば熱プレス方式、連続ロールラミネート方式、連続ベルトプレス方式などを用いることができる。
(Substrate 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a substrate 1 according to the present invention. The substrate 1 is obtained by patterning a line 5 on a resin base material 3. The line 5 is formed by a copper foil 7. That is, the copper foil 7 and the resin base material 3 are bonded together, and the line 5 is formed by masking and etching. In addition, the copper-clad laminate 2 is obtained by bonding and integrating the copper foil 7 and the resin base material 3 before etching. As a method for forming the copper clad laminate 2 by laminating the resin base material 3 and the copper foil 7, a known method such as a hot press method, a continuous roll laminating method, a continuous belt pressing method, or the like can be used.
 銅箔7は、電解銅箔、電解銅合金箔、圧延銅箔、圧延銅合金箔のいずれでも良く、銅張積層板2の用途等に応じて適宜選択することができる。なお、銅箔7の詳細は後述する。 The copper foil 7 may be any of an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, and a rolled copper alloy foil, and can be appropriately selected according to the use of the copper clad laminate 2 and the like. The details of the copper foil 7 will be described later.
 樹脂基材3としては、誘電率が4以下であり、誘電正接tanδが0.006以下であることが望ましい。このような材質としては、液晶ポリマーを適用することができる。 The resin base material 3 desirably has a dielectric constant of 4 or less and a dielectric loss tangent tan δ of 0.006 or less. A liquid crystal polymer can be applied as such a material.
 ここで、線路5の長短は寸法上の長さに加え、伝送周波数・伝送波長で表現できる側面がある。例えば、100mmの長さの線路5であれば、実効波長(=樹脂基材3による波長短縮を考慮した波長、線路長さの波長換算)でいうところ周波数2GHzで約1波長弱オーダであるのに対して、周波数20GHzでは実効波長約10波長弱オーダである。実効波長に対して約10波長オーダ以上といった比較的長い信号線路において伝送損が顕著になるため、本発明の適用は好適であるといえる。すなわち、線路5は、高周波電気信号の周波数fで規定される波長に対し、10実効波長以上の長さであることが望ましい。なお、本発明の基板1は、5GHz以上の高周波信号の伝送用に用いられるものとする。周波数がこれより低い場合、本発明の効果が十分に得られないためである。 Here, the length of the line 5 has a side that can be expressed by a transmission frequency and a transmission wavelength in addition to the dimensional length. For example, in the case of the line 5 having a length of 100 mm, the effective wavelength (= the wavelength considering the wavelength shortening by the resin base material 3, converted to the wavelength of the line length) is about 1 wavelength at a frequency of 2 GHz. On the other hand, at a frequency of 20 GHz, the effective wavelength is on the order of about 10 wavelengths. Since the transmission loss becomes significant in a relatively long signal line of about 10 wavelength order or more with respect to the effective wavelength, it can be said that the application of the present invention is suitable. That is, the line 5 is preferably 10 or more effective wavelengths long with respect to the wavelength defined by the frequency f of the high-frequency electrical signal. In addition, the board | substrate 1 of this invention shall be used for transmission of the high frequency signal of 5 GHz or more. This is because the effect of the present invention cannot be sufficiently obtained when the frequency is lower than this.
(銅箔)
 次に、銅箔7について詳細に説明する。図3は、高周波電気信号の伝送用の銅箔7の樹脂密着面における断面拡大図である。銅箔7は、銅の基材11上に突起9が形成される。本発明の高周波回路用銅箔は、金属基材としての銅箔表面(表面粗さは特に限定されないが、Rzが5.0μm以下であることが好ましい)に、ヤケめっきにより粗化粒子を設けて粗化粒子層を形成する。粗化粒子は、銅からなることが好ましい。なお、本発明において、「突起」とは、粗化粒子により形成されたものを含む。
(Copper foil)
Next, the copper foil 7 will be described in detail. FIG. 3 is an enlarged cross-sectional view of the resin contact surface of the copper foil 7 for high-frequency electrical signal transmission. The copper foil 7 has protrusions 9 formed on a copper base material 11. The copper foil for high-frequency circuits of the present invention is provided with roughened particles by burnt plating on the surface of the copper foil as a metal substrate (the surface roughness is not particularly limited, but Rz is preferably 5.0 μm or less). To form a roughened particle layer. The roughened particles are preferably made of copper. In the present invention, “protrusions” include those formed by roughened particles.
 また、詳細は省略するが、上記粗化粒子上に、クロメート被膜からなる防錆層を形成することが望ましい。更に、防錆層の上にシランカップリング処理を施してもよい。シランカップリング剤は対象となる樹脂基材3によりエポキシ系、アミノ系、メタクリル系、ビニル系、メルカプト系等から適宜選択することができる。高周波対応用の基板1に用いられる樹脂基材3には、特に相性の優れるエポキシ系、アミノ系、ビニル系のカップリング剤を選択することができる。 Although details are omitted, it is desirable to form a rust preventive layer made of a chromate film on the roughened particles. Furthermore, you may give a silane coupling process on a rust prevention layer. The silane coupling agent can be appropriately selected from epoxy, amino, methacrylic, vinyl, mercapto and the like depending on the target resin substrate 3. For the resin base material 3 used for the high frequency substrate 1, epoxy, amino, and vinyl coupling agents that are particularly excellent in compatibility can be selected.
 ここで、銅箔上に高周波電流が流れると、銅箔表面から表皮深さdの領域に電流分布が集中し、その集中箇所では導体抵抗により電流損失が発生する。特に、平滑導体ではなく、表面に突起が形成された粗化導体に電流が流れると、電流損失が増大する。この粗化による電流損失の増大は、導電率の低下による損失の増大と等価と置き換えることが可能である。すなわち、粗化状態における高周波特性の良し悪しを見かけの導電率として評価することができる。以下の説明では、上記見かけの導電率を等価導電率と称する。 Here, when a high-frequency current flows on the copper foil, the current distribution concentrates in the region of the skin depth d from the surface of the copper foil, and current loss occurs due to the conductor resistance at the concentrated portion. In particular, when a current flows through a roughened conductor having a protrusion formed on the surface, not a smooth conductor, current loss increases. This increase in current loss due to roughening can be replaced with an increase in loss due to a decrease in conductivity. That is, it is possible to evaluate the high-frequency characteristics in the roughened state as apparent conductivity. In the following description, the apparent conductivity is referred to as equivalent conductivity.
 銅張積層板2から形成される線路5においては、銅箔7の等価導電率の低下によって伝送特性が劣化する。このような等価導電率の低下は、表面粗さの増大に加え、高周波化によってこの影響が顕著となる。このような、粗化導体による損失増大は、表面粗さをパラメータとして、古くからHammarstedらによってモデル化されている。 In the line 5 formed from the copper clad laminate 2, the transmission characteristics deteriorate due to a decrease in the equivalent conductivity of the copper foil 7. Such a decrease in equivalent electrical conductivity becomes significant due to the increase in frequency in addition to the increase in surface roughness. Such an increase in loss due to the roughened conductor has been modeled by Hammarsted et al. For a long time using the surface roughness as a parameter.
 図2は、表面粗さを表皮深さで規格化したものと透過導電率との関係を示す図である。たとえば1GHzにおける平滑銅箔での表皮深さdは約2.1μm程度であり、表面粗さ(Rqで示す)がこれより十分小さい状況、例えば0.4μmといった場合、点線Oで示すように、等価導電率の低下にはほとんど影響はない。表面粗さRqが表皮深さdと同等オーダもしくは大きくなる場合においては等価導電率の低下が顕著となる。 FIG. 2 is a diagram showing the relationship between the surface conductivity normalized by the skin depth and the transmission conductivity. For example, in a situation where the skin depth d of the smooth copper foil at 1 GHz is about 2.1 μm and the surface roughness (indicated by Rq) is sufficiently smaller than this, for example, 0.4 μm, as shown by the dotted line O, There is almost no effect on the decrease in equivalent conductivity. In the case where the surface roughness Rq is on the same order or larger than the skin depth d, the equivalent conductivity is significantly reduced.
 一方、高周波化にともない周波数で規定される表皮深さdが表面粗さRqと同等オーダもしくは小さくなる場合も等価導電率の低下につながる。例えば1GHzの表皮深さ約2.1μmに対して、5GHzでは表皮深さ約は0.9μm、20GHzでは表皮深さdは約0.5umとなり、1GHzでは点線Oのようにほとんど影響がない表面粗さでも、5GHzでは点線Pのように、20GHzでは点線Qのようになり、高周波化により等価導電率の低下が顕著となる。このように、例えば、1GHzではほとんど影響がない表面粗さの粗化導体においても、5GHzや20GHz等の使用周波数の高周波化により等価導電率の低下が顕著となり、高周波化によって銅張積層板の信号線路の伝送特性の低下が課題となる。 On the other hand, when the skin depth d, which is defined by the frequency as the frequency increases, is on the same order or smaller than the surface roughness Rq, the equivalent conductivity is also reduced. For example, the skin depth of about 2.1 μm at 1 GHz is about 0.9 μm at 5 GHz, and the skin depth d is about 0.5 μm at 20 GHz, and the surface has almost no influence like the dotted line O at 1 GHz. Even in the roughness, it becomes like a dotted line P at 5 GHz, and like a dotted line Q at 20 GHz, and the reduction in equivalent conductivity becomes remarkable due to the increase in frequency. Thus, for example, even in the case of a roughened conductor having a surface roughness that hardly affects 1 GHz, the equivalent conductivity is significantly reduced by increasing the frequency of use such as 5 GHz and 20 GHz. The deterioration of the transmission characteristics of the signal line becomes a problem.
 発明者らは、鋭意検討の結果、このような等価導電率に影響を与える表面の突起形状を、表皮深さdによって規格化し、等価導電率の分布を調査することで、等価導電率が急激に変化する領域があることを見出した。なお、表皮深さd(m)は、√(1/(σ・μ・π・f))(但し、σ:導電率(S/m)、μ:透磁率(H/m)、f:周波数(Hz))で算出される。銅箔においては、導電率σ=5.82×10、透磁率μ=4π×10-7である。以下、突起形状と等価導電率との関係について説明する。 As a result of intensive studies, the inventors have normalized the surface protrusion shape that affects the equivalent conductivity by the skin depth d and investigated the distribution of the equivalent conductivity. I found that there are areas that change. The skin depth d (m) is √ (1 / (σ · μ · π · f)) (where σ: conductivity (S / m), μ: permeability (H / m), f: (Frequency (Hz)). In the copper foil, conductivity σ = 5.82 × 10 7 and permeability μ = 4π × 10 −7 . Hereinafter, the relationship between the protrusion shape and the equivalent conductivity will be described.
(突起形状と等価導電率の関係)
 図3に示すように、本発明における銅箔上の突起9の高さをhとし、h/2の高さにおける突起9の幅をwとする。より具体的には、HR-SEMで測定した銅箔の幅方向断面において、基材11(未処理銅箔に相当する部分)と突起9との境界線から突起9の頭頂部に向かって垂直に線を引き、この線の長さhを突起高さとする。また、突起高さhの半分の位置における突起幅をwとする。このように定義された突起形状に対して、等価導電率を計算した。
(Relationship between protrusion shape and equivalent conductivity)
As shown in FIG. 3, the height of the protrusion 9 on the copper foil in the present invention is h, and the width of the protrusion 9 at a height of h / 2 is w. More specifically, in the cross-section in the width direction of the copper foil measured by HR-SEM, the vertical direction from the boundary line between the base material 11 (part corresponding to the untreated copper foil) and the protrusion 9 toward the top of the protrusion 9 A line is drawn, and the length h of this line is defined as the protrusion height. Further, w is a protrusion width at a position half the protrusion height h. The equivalent conductivity was calculated for the protrusion shape thus defined.
 以下、計算モデルについて説明する。高周波電磁波の平面波を任意の粗化形状をもつ銅箔に対して、垂直に照射し、その反射特性を観測することで前述の等価導電率を算出することが可能である。なお、計算モデルにおいては、突起形状を、単純な円錐形状とした。また、同一の突起が周期的に無数に銅箔表面に敷き詰められるモデルで計算を行った。従来から伝送特性に寄与すると考えられている表面粗さRzは、このモデルにおける突起高さhと考えることができる。また、同様に、円錐突起のh/2の高さにおける幅wもパラメータとして想定し、任意の突起高さhと突起の幅wの組み合わせにおける等価導電率の算出を行った。 The following describes the calculation model. It is possible to calculate the above-mentioned equivalent conductivity by irradiating a plane wave of high-frequency electromagnetic waves perpendicularly to a copper foil having an arbitrary rough shape and observing the reflection characteristics. In the calculation model, the protrusion shape is a simple conical shape. In addition, the calculation was performed using a model in which the same protrusions were periodically spread on the surface of the copper foil. The surface roughness Rz that is conventionally considered to contribute to transmission characteristics can be considered as the protrusion height h in this model. Similarly, the width w of the conical protrusion at the height of h / 2 was assumed as a parameter, and the equivalent conductivity was calculated for any combination of the protrusion height h and the protrusion width w.
 ここで材質を純銅とした場合、使用周波数によって表皮深さdは一意的に求められる。前述した通り、本発明は、寸法パラメータh、wを表皮深さdで規格化した大きさにて規定する。 Here, when the material is pure copper, the skin depth d is uniquely determined by the frequency used. As described above, in the present invention, the dimension parameters h and w are defined by the size normalized by the skin depth d.
 図4は、それぞれの突起高さhや突起幅wを表皮深さで規格化し、それぞれの突起形状における等価導電率の算出結果を示す図である。具体的には、図4は、表皮深さdで規格化されたh/dと、w/dをそれぞれ横軸および縦軸にとり、等価導電率の分布を計算した結果を示す図である。図4において、左下の領域から右上の領域に行くにつれて、等価導電率が低くなる。 FIG. 4 is a diagram showing the calculation result of the equivalent conductivity in each protrusion shape by normalizing each protrusion height h and protrusion width w by the skin depth. Specifically, FIG. 4 is a diagram showing a result of calculating an equivalent conductivity distribution with h / d and w / d normalized by the skin depth d taken on the horizontal axis and the vertical axis, respectively. In FIG. 4, the equivalent conductivity decreases from the lower left region to the upper right region.
 縦軸であるh/dによって等価導電率が変化することは、従来モデルからも導くことができる。すなわち、突起高さhが小さければ、等価導電率の大幅な低下はなく、銅箔としての伝送特性として、許容できるものと考えられる。従来から表面粗さが小さいほど伝送特性が向上することが知られており、密着力を確保するため粗化形状として突起の高さを表皮深さ程度以上に大きくしていくことは、伝送特性の低下につながるため、従来特に良好な伝送特性を得る場合は、表皮深さよりも高い突起高さ、即ちh/d≧1領域では特性が劣化しはじめ、さらに、その2倍といった突起高さ、即ちh/d≧2領域の採用は難しかった。 It can be derived from the conventional model that the equivalent conductivity varies with h / d which is the vertical axis. That is, if the protrusion height h is small, there is no significant decrease in equivalent conductivity, and it is considered acceptable as transmission characteristics as a copper foil. Conventionally, it has been known that the smaller the surface roughness, the better the transmission characteristics. In order to ensure adhesion, increasing the height of the protrusion as a roughened surface to a depth greater than the skin depth is the transmission characteristic. In order to obtain particularly good transmission characteristics in the past, the protrusion height higher than the skin depth, that is, the characteristic starts to deteriorate in the region of h / d ≧ 1, and further, the protrusion height such as twice that height, That is, it was difficult to adopt the h / d ≧ 2 region.
 一方、横軸w/dによって等価導電率が急激に変化する現象は、本発明に係る検討において新たに発見された事象である。具体的には、w/dが1以下において、非線形的な変化で等価導電率の改善がみられ、さらにw/dを0.5以下とすることで、前述の突起高さhを表皮深さの2倍より小さくしたのと同様の改善が見られる。この急激な変化による等価導電率の改善効果は、特にh/d≧1のように、突起高さが高い(表面粗さが粗い)場合において顕著である。すなわち、樹脂基材3との密着力を確保するため突起高さhを十分大きくとる必要がある場合に特に有効であるといえる。 On the other hand, the phenomenon in which the equivalent conductivity rapidly changes depending on the horizontal axis w / d is an event newly discovered in the study according to the present invention. Specifically, when w / d is 1 or less, the equivalent conductivity is improved by a non-linear change. Further, by setting w / d to 0.5 or less, the above-described protrusion height h is reduced to the skin depth. The same improvement can be seen as less than twice the height. The effect of improving the equivalent conductivity due to this rapid change is particularly remarkable when the protrusion height is high (surface roughness is rough), such as h / d ≧ 1. That is, it can be said that it is particularly effective when the projection height h needs to be sufficiently large in order to secure the adhesion with the resin substrate 3.
 このような、表皮深さdで規格化された突起幅の変化によって、急激に等価導電率が変化するという現象は、以下のような原理に基づくものと考えられる。 Such a phenomenon that the equivalent conductivity suddenly changes due to the change in the protrusion width normalized by the skin depth d is considered to be based on the following principle.
(突起幅と電流密度)
 図5は、電磁界解析上において紙面水平方向に高周波電界を印加し、その際に流れた高周波伝導電流密度を銅箔断面上に示した概念図である。図中の点線は、等電流密度線である。図5(a)は規格化された幅が相対的に太い突起の場合を示し、図5(b)は規格化された幅が相対的に狭い場合を示す図である。なお、図5(a)において、A点は、電流密度が小さい点であり、B点は電流密度が高い点である。また、図5(b)において、E点は、電流密度が小さい点であり、F点は電流密度が高い点である。
(Protrusion width and current density)
FIG. 5 is a conceptual diagram showing a high frequency conduction current density on a copper foil cross section when a high frequency electric field is applied in the horizontal direction on the paper surface in electromagnetic field analysis. The dotted line in the figure is an equicurrent density line. FIG. 5A shows a case where the standardized width is a relatively thick protrusion, and FIG. 5B shows a case where the standardized width is relatively narrow. In FIG. 5A, point A is a point where the current density is low, and point B is a point where the current density is high. In FIG. 5B, point E is a point where the current density is low, and point F is a point where the current density is high.
 通常、伝導電流の高周波化に伴い表皮効果は顕著となり、電流は銅箔表面により集中して流れると解釈される。このような現象は、銅箔が平滑構造であることを前提としたものであり、本発明のように表面に突起形状をもった場合の電流の疎密の状況は、その平滑な場合と比較して非常に特殊なものとなる。具体的には、図5(a)、図5(b)共に、より表面側といえる突起先端側では電流が流れにくい状況が確認される(A点、E点)。先端部分で起こっているのは、伝導電流の相殺であると考えられ、これが本発明の特徴的な特性を示す現象である。 Usually, the skin effect becomes remarkable as the conduction current increases in frequency, and the current is interpreted to flow more concentrated on the copper foil surface. Such a phenomenon is based on the assumption that the copper foil has a smooth structure, and the current density in the case of having a protrusion shape on the surface as in the present invention is compared with that in the case where the copper foil is smooth. It will be very special. Specifically, in both FIG. 5A and FIG. 5B, it is confirmed that the current hardly flows on the front end side of the protrusion, which can be said to be the surface side (point A, point E). What is happening at the tip is thought to be cancellation of the conduction current, which is a phenomenon that exhibits the characteristic characteristics of the present invention.
 このような現象は以下の理由による。銅箔表面の表皮深さ以内に電流の大部分が集中し、その集中する部分同士がなんら干渉ない場合には伝導電流となる。一方、突起部の先端部のように表皮深さ以下となる部分が互いに干渉する(重なる)場合において、干渉部分で電流が反対方向に流れ、相殺され、伝導電流が流れなくなる。例えば、突起先端方向へ向かう電流と、先端から基部側へ流れる電流が干渉すると、電流が相殺されて導電電流が流れず、電流損失源とならない。これが本発明で新たに検討された現象である。 This phenomenon is due to the following reasons. If most of the current is concentrated within the skin depth of the copper foil surface and the concentrated portions do not interfere with each other, a conduction current is generated. On the other hand, when the portions below the skin depth interfere with each other, such as the tip of the protrusion, the current flows in the opposite direction at the interference portion, cancels out, and the conduction current does not flow. For example, if the current flowing toward the tip of the protrusion interferes with the current flowing from the tip to the base side, the current is canceled out, and the conductive current does not flow, so that it does not become a current loss source. This is a phenomenon newly studied in the present invention.
 より詳細に、図5(a)と図5(b)との差異について述べる。図5(b)の場合には、図5(a)よりも突起の幅が狭く、突起内での電流密度が相対的に小さい。例えば、図5(a)の場合、突起基部を結ぶ突起内部中央点(C点)の電流密度と等価な電流密度となる突起表面位置(D点)は、突起高さhの1/2の高さよりも突起先端側にシフトする。すなわち、突起高さの中央部の表面における電流密度は、突起基部中央の電流密度よりも高い。 In more detail, the difference between FIG. 5 (a) and FIG. 5 (b) will be described. In the case of FIG. 5B, the width of the protrusion is narrower than that in FIG. 5A, and the current density in the protrusion is relatively small. For example, in the case of FIG. 5A, the protrusion surface position (point D) having a current density equivalent to the current density of the protrusion inner center point (point C) connecting the protrusion base is 1/2 of the protrusion height h. Shift to the tip side of the protrusion rather than the height. That is, the current density at the surface of the center portion of the protrusion height is higher than the current density at the center of the protrusion base.
 これに対し、図5(b)の場合、突起基部を結ぶ突起内部中央点(G点)の電流密度と等価な電流密度となる突起表面位置(I点)は、突起高さhの1/2の高さよりも突起基部側にシフトする。すなわち、突起高さの中央部の表面における電流密度は、突起基部中央の電流密度よりも低い。すなわち、図5(b)では、突起内部を流れる電流が少なく、突起の基部側を流れる電流が多くなる傾向にある。このように、突起基部近傍に流れる電流に対して、突起内部(特に突起高さh/2よりも先端側)に流れる電流量を低減するような突起構造を選択することで突起による電流損失を低減することが可能となると考えられる。 On the other hand, in the case of FIG. 5B, the protrusion surface position (point I) having a current density equivalent to the current density of the protrusion inner center point (point G) connecting the protrusion base is 1 / of the protrusion height h. It shifts to the protrusion base side rather than the height of 2. That is, the current density at the surface of the central portion of the protrusion height is lower than the current density at the center of the protrusion base. That is, in FIG. 5B, the current flowing inside the protrusion is small, and the current flowing on the base side of the protrusion tends to increase. In this way, by selecting a projection structure that reduces the amount of current flowing inside the projection (especially the tip side from the projection height h / 2) relative to the current flowing near the projection base, current loss due to the projection is reduced. It is thought that this can be reduced.
(突起形状の設計)
 次に、本発明において、特に好ましい突起形状について説明する。図6は、図4と同様の図である。図6における直線Jは、h/d=1の直線である。前述した様に、h/d<1のように、突起高さが低い領域では、十分な等価導電率を確保できる。したがって、本発明は、特にh/d≧1のように突起高さが高い(表面粗さが粗い)場合において効果が顕著である。また、図6における直線Kは、w/d=-0.1h/d+1.4の直線である。図6に示すように、w/d<-0.1h/d+1.4となる領域(すなわち、直線Kの左側の領域)では、いかなる突起高さにおいても、理想状態(平滑状態の等価導電率)の約50%以上の等価導電率を確保できる。ここで、直線Kはh/dが例えば7以下の領域において、少なくとも等価導電率が理想状態の50%以上を確保できるようh/dが概ね5~7における接線とほぼ一致する1次関数としている。図6において、直線K、Jから形成される領域が伝送特性と密着性の観点から望ましい範囲と言える。
(Projection shape design)
Next, a particularly preferable protrusion shape in the present invention will be described. FIG. 6 is a view similar to FIG. A straight line J in FIG. 6 is a straight line with h / d = 1. As described above, sufficient equivalent conductivity can be secured in a region where the projection height is low, such as h / d <1. Therefore, the present invention is particularly effective when the projection height is high (surface roughness is rough), such as h / d ≧ 1. A straight line K in FIG. 6 is a straight line of w / d = −0.1 h / d + 1.4. As shown in FIG. 6, in the region where w / d <−0.1h / d + 1.4 (that is, the region on the left side of the straight line K), the ideal state (equivalent conductivity in the smooth state) is obtained at any projection height. ) Equivalent electrical conductivity of about 50% or more. Here, the straight line K is a linear function that substantially matches the tangent at 5 to 7 so that at least 50% of the ideal conductivity can be secured in the region where h / d is 7 or less, for example. Yes. In FIG. 6, it can be said that the region formed by the straight lines K and J is a desirable range from the viewpoint of transmission characteristics and adhesion.
 なお、特に密着力の担保が必要な場合には、hを大きくする必要があるため、5GHz程度の信号周波数においても、銅箔による損失は課題となる。しかし、本発明では、w/d<-0.1h/d+1.4となる領域にて突起形状を設計することで、銅箔の伝送損失を低減することが可能となる。なお、密着力を確保するためには、hは0.4μm以上とすることが望ましい。 In particular, when it is necessary to secure adhesion, h needs to be increased, so loss due to copper foil is a problem even at a signal frequency of about 5 GHz. However, in the present invention, it is possible to reduce the transmission loss of the copper foil by designing the protrusion shape in the region where w / d <−0.1 h / d + 1.4. In order to secure adhesion, h is preferably 0.4 μm or more.
 前述したように、突起高さが、小さい銅箔においては、従来から、伝送損失の面で大きな問題がないことが知られている。特に、シランカップリング材等の化学的な結合も利用することで、低粗化銅箔は突起高さが小さい状況においても樹脂に対する密着強度向上を図ることも可能である。 As described above, it has been known that copper foil having a small protrusion height has no major problem in terms of transmission loss. In particular, by using a chemical bond such as a silane coupling material, the low-roughened copper foil can also improve the adhesion strength to the resin even in a situation where the protrusion height is small.
 一方、液晶ポリマーのような化学的な結合が難しい材料においては、物理的形状にて密着力を担保する必要がある。すなわち、突起高さを高くとらざるを得ない基材状況がありえる。 On the other hand, for materials that are difficult to chemically bond, such as liquid crystal polymers, it is necessary to ensure adhesion with a physical shape. That is, there may be a substrate situation in which the height of the protrusions must be increased.
 一般的な液晶ポリマー向けの銅箔に関して突起高さhを1um以上とするような事例がみられる。このような特に密着力の担保が必要な場合でも、銅箔損失を低減する必要がある。例えば、5GHzの場合、表皮深さdは約0.9umである。本発明は、この場合でも、h/d≧1の関係を満たし、かつ、w/d<-0.1h/d+1.4を満たせば、5GHzの信号周波数を銅箔に伝送させる場合でも銅箔損失を低減することができる。 There are cases where the protrusion height h is 1 μm or more with respect to a copper foil for a general liquid crystal polymer. Even when such collaterality of adhesion is particularly necessary, it is necessary to reduce copper foil loss. For example, in the case of 5 GHz, the skin depth d is about 0.9 μm. Even in this case, the present invention satisfies the relationship of h / d ≧ 1 and satisfies the relationship of w / d <−0.1 h / d + 1.4, even when a signal frequency of 5 GHz is transmitted to the copper foil. Loss can be reduced.
 また、数GHzオーダを超えた伝送周波数の高周波化を想定する。例えば、10Gbpsを超えるような高速デジタル信号伝送であれば20GHz程度オーダ以上、またミリ波レーダであれば80GHz程度オーダまでの特性が要求される。このように20GHz、80GHzといったような準ミリ波、ミリ波帯の周波数になると、表皮深さdが小さくなるため、さらにh/dが大きくなる。このため、等価導電率が低下する。したがって、密着力担保のための突起高さを確保した場合、数GHzにおいて問題なくとも、20GHz以上を超えるような高周波化に伴い、伝送損失の要因として無視できなくなる恐れがある。しかし、本発明では、突起高さが表皮深さの2倍以上であっても、使用周波数に応じてw/d<-0.1h/d+1.4となるように突起幅を設計することにより、伝送損失を低減することが可能となる。 Also, it is assumed that the transmission frequency exceeds several GHz order. For example, characteristics of about 20 GHz or more are required for high-speed digital signal transmission exceeding 10 Gbps, and characteristics up to about 80 GHz are required for millimeter wave radar. In this way, when the frequency is in the quasi-millimeter wave or millimeter wave band such as 20 GHz or 80 GHz, the skin depth d is reduced, so that h / d is further increased. For this reason, equivalent electrical conductivity falls. Therefore, when the height of the protrusion for securing the adhesion force is secured, there is a possibility that even if there is no problem at several GHz, it becomes impossible to disregard as a cause of transmission loss with the increase of the frequency exceeding 20 GHz. However, in the present invention, even if the protrusion height is twice or more of the skin depth, the protrusion width is designed so that w / d <−0.1 h / d + 1.4 according to the operating frequency. It becomes possible to reduce transmission loss.
 一方で、突起幅を狭くしすぎると、品質上の課題が生じる恐れがある。例えば極端に突起幅が狭くなると、工程上の粉落ちにつながる懸念がある。このため、粉落ちが発生しない程度の突起幅を選択する必要がある。具体的にはwが0.1μmより小さな突起では、粉落ちの回避の可能性は高まるため、wは0.1μm以上であることが望ましく、さらに望ましくは、wは0.2μm以上である。 On the other hand, if the protrusion width is too narrow, there may be a problem in quality. For example, if the protrusion width becomes extremely narrow, there is a concern that powder may fall off during the process. For this reason, it is necessary to select a projection width that does not cause powder falling. Specifically, in a protrusion with w smaller than 0.1 μm, the possibility of avoiding powder falling increases, so w is desirably 0.1 μm or more, and more desirably, w is 0.2 μm or more.
 図7は、wを0.1μm以上とした際の、本発明で特に効果の大きな領域を示す図である。図7(a)において、直線K、Jは、図6と同様である。図7(a)の直線Lは、w=0.1μmとした場合であって、20GHzの高周波信号に対する表皮深さd(約0.47μm)で規格化したw/d(=約0.2)を示したものである。 FIG. 7 is a diagram showing a region that is particularly effective in the present invention when w is 0.1 μm or more. In FIG. 7A, straight lines K and J are the same as those in FIG. The straight line L in FIG. 7A is a case where w = 0.1 μm, and w / d (= about 0.2) normalized by the skin depth d (about 0.47 μm) for a high frequency signal of 20 GHz. ).
 同様に、図7(b)において、直線K、Jは、図6と同様である。図7(b)の直線Mは、w=0.1μmとした場合であって、80GHzの高周波信号に対する表皮深さd(約0.23μm)で規格化したw/d(=約0.4)を示したものである。 Similarly, in FIG. 7B, straight lines K and J are the same as those in FIG. A straight line M in FIG. 7B is a case where w = 0.1 μm, and w / d (= about 0.4) normalized by the skin depth d (about 0.23 μm) for a high-frequency signal of 80 GHz. ).
 本発明において、h/d≧1であり、かつ、w≧0.1であり、かつ、w/d<-0.1h/d+1.4であることが望ましい。したがって、20GHzの高周波信号に用いられる銅箔としては、図7(a)において、直線K、L、Jで囲まれた領域が銅箔品質も含め望ましい範囲と言える。また、80GHzの高周波信号に用いられる銅箔としては、図7(b)において、直線K、L、Mで囲まれた領域が銅箔品質も含め望ましい範囲と言える。 In the present invention, it is desirable that h / d ≧ 1, w ≧ 0.1, and w / d <−0.1 h / d + 1.4. Therefore, as a copper foil used for a high frequency signal of 20 GHz, it can be said that a region surrounded by straight lines K, L, and J in FIG. 7A is a desirable range including the copper foil quality. Moreover, as copper foil used for a high frequency signal of 80 GHz, it can be said that the area surrounded by the straight lines K, L, and M in FIG. 7B is a desirable range including the copper foil quality.
 なお、前述した様に、密着力の観点からh≧0.4μmであることが望ましいが、伝送特性との両立が可能であるなら、エッチング残渣が課題とならない範囲でより大きなhをとることが好ましい。 As described above, h ≧ 0.4 μm is desirable from the viewpoint of adhesion, but if h can be compatible with transmission characteristics, a larger h can be taken as long as etching residue does not become a problem. preferable.
 図7に示した領域内で突起形状を設定することで、銅箔7と樹脂基材3への密着性に優れ、伝送特性にも優れた基板を得ることができる。なお、極端に突起高さhを高くすると、エッチング残渣につながる懸念がある。このため、突起高さhは、エッチング残渣が発生しない程度とする必要となる。このように、本発明では、品質上選択できる実質の突起高さhや突起幅wの範囲を考慮し、使用周波数に応じた銅箔7の伝送特性を勘案して、突起形状のパラメータの選択、設計を行うことができる。なお、エッチング残渣低減の観点から突起は銅箔面に対しておおよそ垂直方向に伸ばすことを想定している。 By setting the protrusion shape in the region shown in FIG. 7, it is possible to obtain a substrate having excellent adhesion to the copper foil 7 and the resin base material 3 and excellent transmission characteristics. In addition, there is a concern that an extremely high protrusion height h may lead to an etching residue. For this reason, the protrusion height h needs to be set to such an extent that no etching residue is generated. As described above, in the present invention, in consideration of the range of the substantial protrusion height h and protrusion width w that can be selected in terms of quality, the transmission characteristic of the copper foil 7 according to the operating frequency is taken into consideration, and the selection of the protrusion shape parameters Can do the design. Note that, from the viewpoint of reducing etching residue, it is assumed that the protrusion extends in a direction substantially perpendicular to the copper foil surface.
 また、本発明は、突起形状及び高さの均一性については特に均一である必要が無く、全ての突起がこの領域内である必要はない。例えば、任意の断面において、h/d≧1(さらに望ましくはh/d≧2)となる高さをもつ突起の、5μm当たりの平均個数が1個以上であり、かつ、これらの突起の80%以上が、w≧0.1μmかつw/d<-0.1h/d+1.4を満たすように形成すれば、本発明の効果を得ることができる。 Also, the present invention does not need to be particularly uniform with respect to the uniformity of the protrusion shape and height, and it is not necessary for all protrusions to be within this region. For example, in any cross section, the average number of protrusions having a height satisfying h / d ≧ 1 (more desirably h / d ≧ 2) per 1 μm is 1 or more, and 80 of these protrusions. % Or more so as to satisfy w ≧ 0.1 μm and w / d <−0.1 h / d + 1.4, the effect of the present invention can be obtained.
 ただし、20GHz以上の高周波領域では、より伝送特性を高めるために、粗化処理面の二次元表面積に対する光干渉顕微鏡による三次元表面積の比が3倍未満であることにより、より確実に伝送特性を高めることができる。 However, in the high frequency region of 20 GHz or more, in order to further improve the transmission characteristics, the ratio of the three-dimensional surface area by the optical interference microscope to the two-dimensional surface area of the roughened surface is less than three times, so that the transmission characteristics can be more reliably improved. Can be increased.
 なお、突起の幅や高さは、例えば、HR-SEM(高分解能走査型電子顕微鏡)で、測定倍率3000倍以上(たとえば1万倍)で観察することにより求めることができる。また、h/d≧1となる高さをもつ突起が5μm当たりに平均1個以上存在するとは、最低20カ所以上の任意の部位を観察した際の平均個数により求めるものとする。また、突起の幅や高さをHR-SEM以外の方法で観察することにより求めてもよい。 Note that the width and height of the protrusion can be obtained by observing with a HR-SEM (high resolution scanning electron microscope) at a measurement magnification of 3000 times or more (for example, 10,000 times). Further, the fact that one or more protrusions having a height satisfying h / d ≧ 1 exist on average per 5 μm is determined by the average number when observing at least 20 arbitrary portions. Further, the width and height of the protrusion may be obtained by observing by a method other than HR-SEM.
(効果)
 次に、上述した銅箔を用いた基板における本発明の効果を説明する。図1に示したように、基板1は、銅箔7を樹脂基材3へ張り合わせて銅張積層板2を形成し、さらにパターン加工によって線路5が形成される。線路5の伝送損は銅箔7による導体損と基板1(樹脂基材3)中の誘電体損のdB和であらわされることが知られている。したがって、基板1としての伝送特性の確保には銅箔7だけでなく樹脂基材3の特性確保も要求される。
(effect)
Next, the effect of the present invention in the substrate using the copper foil described above will be described. As shown in FIG. 1, the board | substrate 1 bonds the copper foil 7 to the resin base material 3, forms the copper clad laminated board 2, and also forms the track | line 5 by pattern processing. It is known that the transmission loss of the line 5 is expressed as the sum of dB of the conductor loss due to the copper foil 7 and the dielectric loss in the substrate 1 (resin base material 3). Therefore, ensuring the transmission characteristics as the substrate 1 requires not only the copper foil 7 but also the characteristics of the resin base material 3.
 例えば、一般的な汎用樹脂基材としてFR4は大部分の電子機器で用いられているが、誘電正接tanδは十分に良好とはいいきれない。一方で誘電率が4以下でありtanδが0.006を下回るような低損失な樹脂基材が各社より提供されており、基板1としての伝送特性の確保にはこのような低損失な樹脂基材が好適である。このような低損失の基材としては、前記樹脂基材は、液晶ポリマー、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミドのいずれか、又はこれらを混合した樹脂を挙げることができ、具体例としては、メグトロン6、BTレジンなどを挙げることができる。 For example, although FR4 is used in most electronic devices as a general general-purpose resin base material, the dielectric loss tangent tan δ cannot be said to be sufficiently good. On the other hand, low loss resin base materials having a dielectric constant of 4 or less and tan δ of less than 0.006 are provided by various companies. In order to secure transmission characteristics as the substrate 1, such low loss resin bases are provided. A material is preferred. As such a low-loss base material, the resin base material is any one of a liquid crystal polymer, a fluororesin, a polyetherimide, a polyetheretherketone, a polyphenylene ether, a polycycloolefin, a bismaleimide resin, and a low dielectric constant polyimide. Or a mixture of these, and specific examples include Megtron 6, BT resin, and the like.
 図8は、樹脂基材および銅箔の突起形状を変化させた際の伝送特性を解析した例を示す。図8(a)は、誘電率が3.7、tanδが0.01である樹脂基材を用いた例を示し、図8(b)は、誘電率が3.7、tanδが0.004である樹脂基材を用いた場合を示す。なお、線路長は、いずれも100mmである。図中線Sは、h/d=4.3、w/d=1.6の場合であり、線Tは、h/d=3.2、w/d=1.6の場合であり、線Rは、h/d=3.2、w/d=0.4の場合である。すなわち、線Rのみが、w/d<-0.1h/d+1.4を満たすものである。 FIG. 8 shows an example of analyzing the transmission characteristics when the protrusion shape of the resin base material and the copper foil is changed. FIG. 8A shows an example using a resin base material having a dielectric constant of 3.7 and tan δ of 0.01, and FIG. 8B shows a dielectric constant of 3.7 and tan δ of 0.004. The case where the resin base material which is is shown is shown. The line length is 100 mm in all cases. The line S in the figure is for h / d = 4.3 and w / d = 1.6, and the line T is for h / d = 3.2 and w / d = 1.6. Line R is the case where h / d = 3.2 and w / d = 0.4. That is, only the line R satisfies w / d <−0.1 h / d + 1.4.
 線S、T、Rを比較すると、線Rの損失が小さいことが分かる。また、線Tから線Rへの改善効果として割合で考えた場合、図8(a)の例では、約1割程度であるのに対して、図8(b)の例では、約2割程度となる。すなわち、低損失な樹脂基材との組み合わせにおいて、銅箔の突起形状による改善の寄与が大きいといえる。さらに、使用周波数のさらなる高周波化や、さらなる線路長の延長により、本発明で得られる効果はさらに大きくなる。 Comparing the lines S, T, R, it can be seen that the loss of the line R is small. Further, when considering the improvement effect from the line T to the line R as a percentage, the example of FIG. 8A is about 10%, whereas the example of FIG. 8B is about 20%. It will be about. That is, in combination with a low-loss resin base material, it can be said that the contribution of improvement due to the protrusion shape of the copper foil is large. Furthermore, the effect obtained by the present invention is further increased by further increasing the operating frequency and further extending the line length.
 なお、線路5としては、単純なマイクロストリップラインの例を示したが、これに限るものではない。線路5の種類としてはトリプレート線路や差動線路においても同様の効果を示す。またパターンとしても直線だけでなく、曲げや分岐やフィルタやアンテナ等含むさまざまな形状の線路に適用が可能である。いずれにしても、前述した様に、少なくとも高周波信号を実効波長約10波長以上の長い区間伝送する部位に好適である。 In addition, although the example of the simple microstrip line was shown as the track | line 5, it is not restricted to this. As the type of the line 5, the same effect is exhibited in the triplate line and the differential line. The pattern can be applied not only to straight lines but also to various shapes of lines including bending, branching, filters, antennas and the like. In any case, as described above, it is suitable for a portion that transmits at least a high-frequency signal for a long section having an effective wavelength of about 10 wavelengths or more.
(本発明の適用可能な好適な高周波アプリケーション)
 本発明の実施に好適な高周波アプリケーションを大別すると、高周波アナログ信号伝送用途と高速デジタル信号伝送用途とが考えられる。高周波アナログ信号伝送に関して、例えば電波機器製品への適用においてはその用途により使用可能な上限周波数は各国電波に関する法規制により決められる。用途から決定づけられ、線路を伝送させている上限周波数が基板において担保すべき周波数と考える。
(Preferable high frequency application to which the present invention is applicable)
High frequency applications suitable for implementing the present invention can be broadly classified into high frequency analog signal transmission applications and high speed digital signal transmission applications. Regarding high-frequency analog signal transmission, for example, in application to radio equipment products, the upper limit frequency that can be used depending on the application is determined by the laws and regulations relating to radio waves in each country. The upper limit frequency determined by the application and transmitting the line is considered as the frequency to be secured on the board.
 一方、高速デジタル信号の伝送に関して、信号品質の観点から極力高い周波数成分まで考慮したいものの限界があり、担保すべき高周波特性の要件は用途による部分がある。実状はクロック基本波の3倍波や5倍波を含む周波数までの高周波担保設計を行う場合がある。高周波特性実現として本発明ではクロック基本波の最低でも3倍波となる周波数までを高周波電気信号に含まれる周波数として担保すべきと考える。さらに、10Gbpsを超える高速デジタル信号の伝送おいては、基板上の伝送線路に入力するデジタル信号の立ち上がり(10%-90%)時間t(秒)によって、f=0.35/tとして表せる周波数までの高周波担保設計を行う場合もある。これらより本発明では、伝送線路の実使用時にクロック基本波の最低でも3倍波となる周波数、或いは立ち上がり時間からきまるf=0.35/tまでを高周波電気信号に含まれる担保すべき周波数として考える。本発明では、これら周波数において好適な特性の銅箔を提供することで良好な信号伝送が実現可能となると考える。 On the other hand, regarding the transmission of high-speed digital signals, there are limits to what should be considered from the viewpoint of signal quality up to the highest possible frequency components, and the requirements of the high-frequency characteristics to be ensured depend on the application. Actually, there is a case where a high-frequency collateral design is performed up to a frequency including the third and fifth harmonics of the clock fundamental wave. In order to realize high-frequency characteristics, the present invention considers that a frequency up to at least a third harmonic of the clock fundamental wave should be secured as a frequency included in the high-frequency electric signal. Furthermore, in the transmission of high-speed digital signals exceeding 10 Gbps, the frequency that can be expressed as f = 0.35 / t depending on the rise time (10% -90%) time t (seconds) of the digital signal input to the transmission line on the substrate. In some cases, high-frequency collateral design is performed. Accordingly, in the present invention, the frequency that is at least the third harmonic of the clock fundamental wave when the transmission line is actually used, or f = 0.35 / t determined from the rise time, is the frequency to be secured in the high-frequency electrical signal. Think. In the present invention, it is considered that good signal transmission can be realized by providing a copper foil having suitable characteristics at these frequencies.
 具体的には前者においてミリ波通信、ミリ波レーダ用の高周波用途や基地局のような大型な用途への適用が好適であり、後者ではワークステーション上の信号伝送やサーバのバックプレーンにおける高速伝送などへの適用が好適である。 Specifically, the former is suitable for high-frequency applications such as millimeter-wave communication and millimeter-wave radar and large-scale applications such as base stations, and the latter is suitable for signal transmission on workstations and high-speed transmission on server backplanes. Application to the above is preferable.
 以下、種々の粗化処理銅箔に対して、伝送損失と密着性について評価した結果について説明する。 Hereinafter, the results of evaluating transmission loss and adhesion to various roughened copper foils will be described.
 <実施例1~5、比較例1~3>
 金属基材として表面粗さRzが0.5μm程度、厚さが18μmの平滑な未処理銅箔を用意し、この未処理銅箔にヤケめっき処理を施し、粗化粒子層(突起)を形成した。ヤケめっきとは、酸性銅電解浴中で銅箔を陰極とし、限界電流密度付近で電解を行うことにより粒状銅の微細な突起群を付着させるものである。ヤケめっきに用いられる溶液は表1の通りである。
<Examples 1 to 5, Comparative Examples 1 to 3>
A smooth untreated copper foil having a surface roughness Rz of about 0.5 μm and a thickness of 18 μm is prepared as a metal substrate, and the untreated copper foil is subjected to burnt plating to form a roughened particle layer (protrusion). did. Burn plating is a method in which a fine projection group of granular copper is adhered by performing electrolysis near a limit current density using a copper foil as a cathode in an acidic copper electrolytic bath. The solutions used for the burnt plating are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1において、溶液Aは、均一な粗化ができるものであり、溶液Bは、粗化粒子形状が丸く太くなるものであり、溶液Cは、粗化粒子形状が細くなるものである。なお、粗化粒子高さが高い(低い周波数)場合は、粗化粒子の太さを細くするため、溶液Cを選択し、粗化粒子高さが低い(高い周波数)の場合は、ある程度の粗化粒子の太さを確保しなくてはならないため溶液Bを選択するなど、粗化高さによって溶液の使い分けを行うことが望ましい。 In Table 1, the solution A can be uniformly roughened, the solution B has a roughened particle shape that becomes round and thick, and the solution C has a roughened particle shape that becomes thin. When the coarse particle height is high (low frequency), the solution C is selected to reduce the thickness of the coarse particle, and when the coarse particle height is low (high frequency), a certain amount Since it is necessary to ensure the thickness of the roughened particles, it is desirable to select the solution depending on the height of the roughening, such as selecting the solution B.
 上記の金属基材を用いて、ヤケめっきを行った。ヤケめっきの処理条件は、表2に示す。 Using the above metal base material, burnt plating was performed. Table 2 shows the conditions for the burnt plating.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 さらに、ヤケめっきによる粗化粒子層の上に、カプセルめっきを施した。カプセルめっきは、ヤケめっきによって施された粒状銅の微細な突起群を通常の銅めっきの薄層(いわゆる「カプセル層」)で覆って、該粒状銅の微細な突起群を銅箔の表面に固定するものである。カプセルめっきの条件は次の通りである。 Furthermore, capsule plating was performed on the roughened particle layer by burn plating. Capsule plating covers the fine projections of granular copper applied by burn plating with a thin layer of ordinary copper plating (so-called “capsule layer”), and the fine projections of granular copper are coated on the surface of the copper foil. It is to be fixed. The conditions for capsule plating are as follows.
 硫酸濃度             80~120g/L
 硫酸銅(Cu濃度として)     40~60g-Cu/L
 浴温               45~60℃
 電流密度             直流整流で10~20A/dm
Sulfuric acid concentration 80 ~ 120g / L
Copper sulfate (as Cu concentration) 40-60g-Cu / L
Bath temperature 45-60 ° C
Current density 10 ~ 20A / dm 2 by DC rectification
 上記カプセルめっきを施した後、実施例1~3、比較例1では、ヤケめっきとカプセルめっきを再度施した。 After performing the capsule plating, in Examples 1 to 3 and Comparative Example 1, burn plating and capsule plating were performed again.
 また、上記カプセルめっきを施した後、銅箔の両面を公知のクロメート処理液(CrO濃度で3.0g/L相当)にて防錆処理を行った。 In addition, after the capsule plating, both surfaces of the copper foil were subjected to rust prevention treatment with a known chromate treatment solution (corresponding to 3.0 g / L in CrO 3 concentration).
<断面観察>
 このようにして作製した各銅箔を、イオンミリング(日立ハイテク社製IM4000)を用いて幅方向に断面加工を施し、HR-SEM(日立ハイテク社製SU8020)を用い、加速電圧3kV(2次電子像,低角度反射電子像)で、20,000倍の倍率で断面観察を行い、任意の20カ所の銅箔断面の5μm範囲における粗化粒子の高さと幅を計測した。
<Section observation>
Each copper foil thus produced was subjected to cross-sectional processing in the width direction using ion milling (IM4000 manufactured by Hitachi High-Tech), and an acceleration voltage of 3 kV (secondary) using HR-SEM (SU8020 manufactured by Hitachi High-Tech). An electron image and a low-angle reflected electron image) were subjected to cross-sectional observation at a magnification of 20,000 times, and the height and width of roughened particles in a 5 μm range of arbitrary 20 copper foil cross sections were measured.
 なお、銅箔と樹脂基材とを貼り合わせた銅張積層板の銅箔をパターン加工して作成した回路基板について、上記の断面観察を行うこともできる。この場合、銅箔と樹脂基材との界面が観察できるように、回路パターン(線路)の長手方向に断面加工を施し、回路パターン(線路)の中央付近において、任意の20箇所の銅箔断面の5μm範囲における粗化粒子の高さと幅を計測するものとする。 In addition, said cross-sectional observation can also be performed about the circuit board produced by pattern-processing the copper foil of the copper clad laminated board which bonded copper foil and the resin base material together. In this case, the cross section is processed in the longitudinal direction of the circuit pattern (line) so that the interface between the copper foil and the resin base material can be observed, and any 20 sections of the copper foil in the vicinity of the center of the circuit pattern (line). The height and width of roughened particles in the 5 μm range are measured.
<表面積比測定>
 作成した銅箔を3次元白色光干渉型顕微鏡(BRUKER Wyko ContourGT-K)を用いて、二次元表面積に対する三次元表面積の比を測定(測定条件は測定倍率10倍、ハイレゾCCDカメラを使用し、測定後に特別なフィルタをかけずに数値化した)し、3未満を「○」、3以上4.5未満を「△」、それ以上を「×」とした。
<Surface area ratio measurement>
Using the three-dimensional white-light interference microscope (BRUKER Wyko Control GT-K), the ratio of the three-dimensional surface area to the two-dimensional surface area was measured (measurement conditions were a measurement magnification of 10 times, using a high-resolution CCD camera, After measurement, it was digitized without applying a special filter), and less than 3 was “◯”, 3 or more and less than 4.5 was “Δ”, and more was “x”.
<伝送特性の評価>
 作製した銅箔を熱プレス方式により樹脂基材に積層し、エッチングにより、伝送特性評価用の信号線路として図1に示すようなマイクロストリップラインを作製した。樹脂基材としては、ポリフェニレンエーテル系樹脂(製品名:パナソニック株式会社製メグトロン6:誘電率3.7、誘電正接tanδ0.002)を用いた。このマイクロストリップラインについて、ネットワークアナライザで40GHzまでの高周波信号に対する伝送損失を測定した。特性インピーダンスは50Ωとした。
<Evaluation of transmission characteristics>
The produced copper foil was laminated on a resin substrate by a hot press method, and a microstrip line as shown in FIG. 1 was produced as a signal line for evaluating transmission characteristics by etching. As the resin base material, polyphenylene ether resin (product name: Megtron 6 manufactured by Panasonic Corporation: dielectric constant 3.7, dielectric loss tangent tan δ 0.002) was used. About this microstrip line, the transmission loss with respect to the high frequency signal up to 40 GHz was measured with the network analyzer. The characteristic impedance was 50Ω.
 伝送特性の評価としては、伝送損失が-0.7dB/100mm@5GHz以下、-1.8dB/100mm@15GHz以下、-4.7dB/100mm@40GHz以下であるものを○、-0.7dB/100mm@5GHzを超えるもの、-1.8dB/@15GHzを超えるもの、-4.7dB/100mm@40GHzを超えるものを×とした。なお、上記境界値は、理想状態の銅(未処理銅)の導電率に対して、各周波数における未処理銅の伝送損失と、粗化処理により等価導電率が75%となった際の伝送損失のdB和から算出した。 The transmission characteristics are evaluated as follows: transmission loss is −0.7 dB / 100 mm @ 5 GHz or less, −1.8 dB / 100 mm @ 15 GHz or less, −4.7 dB / 100 mm @ 40 GHz or less ○, −0.7 dB / Those exceeding 100 mm @ 5 GHz, those exceeding −1.8 dB / @ 15 GHz, and those exceeding −4.7 dB / 100 mm @ 40 GHz were evaluated as x. Note that the above boundary value is the transmission loss of the untreated copper at each frequency and the equivalent conductivity of 75% due to the roughening treatment with respect to the conductivity of copper in the ideal state (untreated copper). It calculated from the sum of dB of loss.
 <ピール試験>
 作製した銅箔を熱プレス方式により樹脂基材(パナソニック株式会社製メグトロン6)に積層し、銅張積層板を作製した。この銅張積層板の銅箔部を10mm巾テープでマスキングし、塩化銅エッチングを行った後テープを除去して10mm巾の回路配線を作製した。東洋精機製作所社製 テンシロンテスターを使用し、回路配線を90度方向に50mm/分の速度で剥離してピール(剥離)強度を求めた。ピール強度の判定基準0.5kN/m以上を○、それ未満を×とした。結果を表3に示す。
<Peel test>
The produced copper foil was laminated | stacked on the resin base material (Megtron 6 by Panasonic Corporation) with the hot press system, and the copper clad laminated board was produced. The copper foil portion of this copper clad laminate was masked with a 10 mm wide tape, and after copper chloride etching, the tape was removed to produce a 10 mm wide circuit wiring. Using a Tensilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd., the circuit wiring was peeled off at a speed of 50 mm / min in the 90-degree direction to determine peel strength. Peel strength criterion 0.5 kN / m or more was evaluated as ◯, and less than it was evaluated as ×. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 断面観察において、実施例1~実施例5、比較例1、3は、いずれの条件でも、h/d≧1((以下条件A)を満たす突起が、5μm当たり平均1個以上存在した。比較例2は、突起高さが低く、いずれの周波数においても、条件Aを満たす突起が、5μm当たり平均1個未満であった。 In cross-sectional observation, in Examples 1 to 5 and Comparative Examples 1 and 3, on average, one or more protrusions satisfying h / d ≧ 1 (hereinafter referred to as Condition A) were present per 5 μm. In Example 2, the protrusion height was low, and the average number of protrusions satisfying the condition A was less than 1 per 5 μm at any frequency.
 また、条件Aを満たす突起の内、w/d<-0.1h/d+1.4の条件(以下条件B)を満たす突起の割合を評価した。ここで、先述したように、同じ突起形状(hおよびw)であっても、使用条件(周波数)に応じて、dが変動するため、上記条件は、周波数ごとに判定される。 In addition, among the protrusions satisfying the condition A, the ratio of the protrusions satisfying the condition of w / d <−0.1 h / d + 1.4 (hereinafter referred to as condition B) was evaluated. Here, as described above, even if the protrusion shape is the same (h and w), d varies depending on the use condition (frequency), so the above condition is determined for each frequency.
 具体的には、実施例1は、5GHzでは、条件Aを満たす突起の内、条件Bを満たす突起が80%以上であったが、15GHz以上では、80%未満であった。同様に、実施例2、3は、15GHzまでは条件Aを満たす突起の内、条件Bを満たす突起が80%以上であったが、30GHz以上では、80%未満であった。実施例4、5は、全ての周波数において、条件Aを満たす突起の内、条件Bを満たす突起が80%以上であった。 Specifically, in Example 1, at 5 GHz, among the protrusions satisfying the condition A, the protrusion satisfying the condition B was 80% or more, but at 15 GHz or more, it was less than 80%. Similarly, in Examples 2 and 3, the protrusion satisfying the condition B was 80% or more up to 15 GHz, but it was less than 80% at 30 GHz or more. In Examples 4 and 5, the protrusions satisfying the condition B among the protrusions satisfying the condition A were 80% or more at all frequencies.
 また、比較例2は、前述した様に、突起高さが低く、条件Aを満たす突起が1個未満であり、条件Bは満足できない。また、比較例1、3は、やけめっきとカプセルめっきを複数回繰り返すことで、条件Aは満たしたが、比較例1ではw/dが大きくなり、条件Bを満たす突起が80%未満であった。比較例3はw/dが小さくなり、w≧0.1を満たす突起が80%未満であった。 In Comparative Example 2, as described above, the protrusion height is low, and there are less than one protrusion satisfying the condition A, and the condition B cannot be satisfied. In Comparative Examples 1 and 3, the condition A was satisfied by repeating the burn plating and the capsule plating a plurality of times. However, in Comparative Example 1, w / d was large, and the protrusion satisfying the condition B was less than 80%. It was. In Comparative Example 3, w / d was small, and the number of protrusions satisfying w ≧ 0.1 was less than 80%.
 伝送損失評価の結果、実施例1~実施例5では、各周波数における突起形状の条件Bを満足したものが80%以上であったものは、伝送損失の評価も○となった。また、実施例1~実施例5は、全て所望のピール強度を満足した。 As a result of the transmission loss evaluation, in Examples 1 to 5, the evaluation of the transmission loss was evaluated as good when 80% or more satisfied the projection shape condition B at each frequency. Examples 1 to 5 all satisfied the desired peel strength.
 一方、比較例2は、突起高さが低いため、伝送損失は満足したが、ピール強度が不足した。また、比較例1は、突起高さが十分であるため、ピール強度は満足したが、w/dが規格外であるため、全ての周波数において伝送損失が×となった。更に比較例3は突起高さが十分であるが、w/dが非常に小さいため、ピール強度が不足したり、粗化の粉落ちが発生したりした。 On the other hand, Comparative Example 2 was satisfied with the transmission loss because the protrusion height was low, but the peel strength was insufficient. In Comparative Example 1, since the protrusion height was sufficient, the peel strength was satisfactory, but since w / d was out of the standard, the transmission loss was x at all frequencies. Further, in Comparative Example 3, the protrusion height was sufficient, but w / d was very small, so that the peel strength was insufficient, or rough powder was generated.
 以上、本発明によれば、従来は両立することが困難であった、樹脂基材との密着性の確保と、伝送特性の確保の両者を満足することができる。特に、5GHz以上、さらには20GHz以上の高周波信号伝送用の用途に好適な銅箔および高周波信号の伝送方法を提供することができる。 As described above, according to the present invention, it is possible to satisfy both securing of adhesion with a resin base material and securing of transmission characteristics, which have been difficult to achieve in the past. In particular, it is possible to provide a copper foil and a high-frequency signal transmission method suitable for applications for high-frequency signal transmission of 5 GHz or more, and further 20 GHz or more.
 より具体的には、伝送周波数で規定される表皮深さdで規格化した高さをh/dとした場合に、h/d≧1となる高さにすることで、樹脂基材への密着性を確保することができる。さらに、hが0.4um以上であれば、より確実に樹脂基材への密着性を確保することができる。 More specifically, when the height normalized by the skin depth d defined by the transmission frequency is set to h / d, the height of the resin base material is set to h / d ≧ 1. Adhesion can be ensured. Furthermore, if h is 0.4 um or more, the adhesion to the resin substrate can be more reliably ensured.
 また、突起幅が、w/d<-0.1h/d+1.4を満足するため、突起基部近傍に対して、突起先端近傍を流れる電流量を低減することができる。このため、突起構造における導体損失を低減することが可能となる。その結果、使用周波数における信号線路の伝送特性が良好な銅箔を提供することができる。特に、20GHz以上のような高周波においては、密着性確保のために必要な突起の高さが、表皮深さdオーダ以上となり得るため、伝送損失の増大を招く恐れがあるが、本発明では、このような密着性と伝送特性の両立が難しい局面において有効である。 Also, since the protrusion width satisfies w / d <−0.1 h / d + 1.4, the amount of current flowing in the vicinity of the protrusion tip can be reduced relative to the vicinity of the protrusion base. For this reason, it becomes possible to reduce the conductor loss in a protrusion structure. As a result, it is possible to provide a copper foil with good signal line transmission characteristics at the used frequency. In particular, at a high frequency such as 20 GHz or higher, the height of the protrusion necessary for ensuring adhesion can be greater than or equal to the skin depth d order, which may cause an increase in transmission loss. This is effective in a situation where it is difficult to achieve both adhesion and transmission characteristics.
 また、突起幅を品質上必要とする最小限の幅である0.1um以上とすることによって、粉落ちといった品質低下を避けることができる。また、突起を高くすることにより密着性は向上するが、エッチング残渣が生じやすくなるというトレードオフの関係にあるが、本発明は、伝送特性を含めて、図6のように、周波数ごとの突起形状の最適な設計が可能となる。 Also, by setting the protrusion width to 0.1 um or more, which is the minimum width required for quality, it is possible to avoid quality deterioration such as powder falling. Further, although the adhesion is improved by increasing the protrusions, there is a trade-off relationship that etching residue is likely to occur. However, the present invention includes the protrusions for each frequency as shown in FIG. The optimum design of the shape becomes possible.
 また、誘電率が4以下でtanδが0.006以下というような、一般的に低損失とされている樹脂基材へ本発明の銅箔を張り合わせることで、特性向上寄与の割合はより顕著となり、高周波用低損失基板への適用に好適である。また、液晶ポリマーのような低損失であるが化学的な密着力担保が難しい基材に対しても、前述の通り、突起高さを十分とり密着力を確保した上で、伝送特性との両立を図ることができる。 Further, by bonding the copper foil of the present invention to a resin base material that is generally considered to have a low loss, such as a dielectric constant of 4 or less and tan δ of 0.006 or less, the ratio of the characteristic improvement contribution becomes more remarkable. Therefore, it is suitable for application to a high-frequency low-loss substrate. Also, for substrates with low loss, such as liquid crystal polymers, which are difficult to ensure chemical adhesion, as described above, with sufficient protrusion height to ensure adhesion and compatibility with transmission characteristics Can be achieved.
 また、本発明の銅箔を、伝送周波数で規定される実効的に10波長以上となるような長い線路パターンをもつ基板に適用することで、伝送特性改善の効果が顕著となり、より高周波でより大型なアプリケーションでの特性確保に寄与することができる。 In addition, by applying the copper foil of the present invention to a substrate having a long line pattern that effectively becomes 10 wavelengths or more specified by the transmission frequency, the effect of improving the transmission characteristics becomes remarkable, and at a higher frequency. It can contribute to securing characteristics in large applications.
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The embodiment of the present invention has been described above with reference to the accompanying drawings, but the technical scope of the present invention is not affected by the above-described embodiment. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.
1………基板
2………銅張積層板
3………樹脂基材
5………線路
7………銅箔
9………突起
11………基材
 
DESCRIPTION OF SYMBOLS 1 ......... Substrate 2 ...... Copper-clad laminate 3 ......... Resin base material 5 ......... Line 7 ......... Copper foil 9 ...... Protrusion 11 ...... Base material

Claims (9)

  1.  高周波電気信号の伝送用の銅箔であって、
     表面に複数の突起を有し、
     表皮深さd(m)=√(1/(σ・μ・π・f))(但し、σ:導電率(S/m)、μ:透磁率(H/m)、f:前記高周波電気信号に含まれる周波数(Hz))とした場合において、
     f≧5GHzであり、
     前記突起の高さをh(μm)、当該突起のh/2の高さ位置における幅をw(μm)とした際に、
     h/d≧1となる前記突起の、5μm長さ当たりの平均個数が1個以上であり、かつ、
     h/d≧1となる前記突起のうち80%以上の前記突起が、w≧0.1μmであり、かつ、w/d<-0.1h/d+1.4を満たすことを特徴とする銅箔。
    A copper foil for high-frequency electrical signal transmission,
    Having a plurality of protrusions on the surface,
    Skin depth d (m) = √ (1 / (σ · μ · π · f)) (where σ: conductivity (S / m), μ: permeability (H / m), f: the high-frequency electricity In the case of frequency (Hz) included in the signal,
    f ≧ 5 GHz,
    When the height of the protrusion is h (μm) and the width of the protrusion at the height of h / 2 is w (μm),
    The average number of the protrusions with h / d ≧ 1 per 5 μm length is 1 or more, and
    80% or more of the protrusions satisfying h / d ≧ 1 satisfy w ≧ 0.1 μm and satisfy w / d <−0.1 h / d + 1.4 .
  2.  高周波電気信号の伝送用の銅箔であって、
     表面に複数の突起を有し、
     表皮深さd(m)=√(1/(σ・μ・π・f))(但し、σ:導電率(S/m)、μ:透磁率(H/m)、f:前記高周波電気信号に含まれる周波数(Hz))とした場合において、
     f≧5GHzであり、
     前記突起の高さをh(μm)、当該突起のh/2の高さ位置における幅をw(μm)とした際に、
     h/d≧2となる前記突起の、5μm長さ当たりの平均個数が1個以上であり、かつ、
     h/d≧2となる前記突起のうち80%以上の前記突起が、w≧0.1μmであり、かつ、w/d<-0.1h/d+1.4を満たすことを特徴とする銅箔。
    A copper foil for high-frequency electrical signal transmission,
    Having a plurality of protrusions on the surface,
    Skin depth d (m) = √ (1 / (σ · μ · π · f)) (where σ: conductivity (S / m), μ: permeability (H / m), f: the high-frequency electricity In the case of frequency (Hz) included in the signal,
    f ≧ 5 GHz,
    When the height of the protrusion is h (μm) and the width of the protrusion at the height of h / 2 is w (μm),
    The average number of protrusions per 5 μm length of h / d ≧ 2 is 1 or more, and
    80% or more of the protrusions satisfying h / d ≧ 2 satisfy w ≧ 0.1 μm and satisfy w / d <−0.1 h / d + 1.4 .
  3.  hが0.4μm以上であることを特徴とする請求項1または請求項2記載の銅箔。 3. The copper foil according to claim 1, wherein h is 0.4 μm or more.
  4.  wが0.2μm以上であることを特徴とする請求項1または請求項2記載の銅箔。 The copper foil according to claim 1, wherein w is 0.2 μm or more.
  5.  前記高周波電気信号に含まれる周波数fが20GHz以上であることを特徴とする請求項1または請求項2記載の銅箔。 The copper foil according to claim 1 or 2, wherein the frequency f included in the high-frequency electric signal is 20 GHz or more.
  6.  粗化処理面の二次元表面積に対する光干渉顕微鏡による三次元表面積の比が3倍未満であることを特徴とする請求項5に記載の銅箔。 The copper foil according to claim 5, wherein the ratio of the three-dimensional surface area by the optical interference microscope to the two-dimensional surface area of the roughened surface is less than three times.
  7.  請求項1または請求項2記載の銅箔と、樹脂基材と、が積層貼着されてなり、
     前記樹脂基材は、誘電率が4以下であり、誘電正接tanδが0.006以下であることを特徴とする銅張積層板。
    The copper foil according to claim 1 or claim 2 and a resin base material are laminated and adhered,
    The resin base material has a dielectric constant of 4 or less and a dielectric loss tangent tan δ of 0.006 or less.
  8.  前記樹脂基材は、液晶ポリマー、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミドのいずれか、又はこれらの混合樹脂からなるものであることを特徴とする請求項7記載の銅張積層板。 The resin substrate is made of any one of a liquid crystal polymer, a fluororesin, a polyetherimide, a polyetheretherketone, a polyphenylene ether, a polycycloolefin, a bismaleimide resin, a low dielectric constant polyimide, or a mixed resin thereof. The copper clad laminate according to claim 7.
  9.  請求項7記載の銅張積層板に対し、前記銅箔がパターン加工されて線路が形成されており、
     前記線路は、高周波電気信号の周波数fで規定される波長に対し、10実効波長以上の長さであることを特徴とする基板。
    The copper-clad laminate according to claim 7, wherein the copper foil is patterned to form a line,
    The substrate, wherein the line has a length of 10 effective wavelengths or more with respect to a wavelength defined by a frequency f of a high-frequency electric signal.
PCT/JP2015/075173 2014-09-05 2015-09-04 Copper foil, copper clad laminated plate, and substrate WO2016035876A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580032041.1A CN106574389B (en) 2014-09-05 2015-09-04 Copper foil, copper clad laminate and substrate
JP2015559749A JP5972486B1 (en) 2014-09-05 2015-09-04 Copper foil, copper clad laminate, and substrate
KR1020167034815A KR101912765B1 (en) 2014-09-05 2015-09-04 Copper foil, copper clad laminated plate, and substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181180 2014-09-05
JP2014-181180 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035876A1 true WO2016035876A1 (en) 2016-03-10

Family

ID=55439931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075173 WO2016035876A1 (en) 2014-09-05 2015-09-04 Copper foil, copper clad laminated plate, and substrate

Country Status (5)

Country Link
JP (1) JP5972486B1 (en)
KR (1) KR101912765B1 (en)
CN (1) CN106574389B (en)
TW (1) TWI601835B (en)
WO (1) WO2016035876A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090906A (en) * 2016-12-06 2018-06-14 Jx金属株式会社 Surface treated copper foil, copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
WO2018181726A1 (en) * 2017-03-30 2018-10-04 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
WO2019021895A1 (en) * 2017-07-24 2019-01-31 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate sheet and printed wiring board using same
CN116240601A (en) * 2022-12-28 2023-06-09 深圳惠科新材料股份有限公司 Composite copper foil, preparation method thereof and battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111914A1 (en) 2017-12-05 2019-06-13 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board each using same
CN110505753B (en) * 2019-08-12 2021-02-12 隽美经纬电路有限公司 COP material applied to high-frequency high-speed flexible circuit board and preparation method and application thereof
CN113099605B (en) * 2021-06-08 2022-07-12 广州方邦电子股份有限公司 Metal foil, metal foil with carrier, copper-clad laminate, and printed wiring board
KR102714025B1 (en) * 2022-05-30 2024-10-07 주식회사 코젼트솔루션 Flexible copper clad laminates
CN116612951B (en) * 2023-06-27 2024-02-27 广州方邦电子股份有限公司 Thin film resistor and circuit board

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555746A (en) * 1991-08-29 1993-03-05 Hitachi Chem Co Ltd High frequency copper clad laminated board and printed circuit board
JP2005064110A (en) * 2003-08-08 2005-03-10 Tdk Corp Member for electronic component and electronic component using the same
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
JP2010013738A (en) * 2004-02-06 2010-01-21 Furukawa Electric Co Ltd:The Surface treated copper foil and method of producing the same
US20100156572A1 (en) * 2008-12-19 2010-06-24 Askey Computer Corp. Carrier for transmitting high frequency signal and carrier layout method thereof
WO2011009015A1 (en) * 2009-07-16 2011-01-20 Mallinckrodt Inc. (+) - morphinans as antagonists of toll-like receptor 9 and therapeutic uses thereof
WO2013047272A1 (en) * 2011-09-30 2013-04-04 Jx日鉱日石金属株式会社 Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524908A (en) 1975-06-30 1977-01-14 Nissan Motor Co Ltd Torch ignition type internal combustion engine
JP3476264B2 (en) 1993-12-24 2003-12-10 三井金属鉱業株式会社 Copper foil for printed circuit inner layer and method of manufacturing the same
JP5242710B2 (en) * 2010-01-22 2013-07-24 古河電気工業株式会社 Roughening copper foil, copper clad laminate and printed wiring board
CN102238805A (en) * 2010-04-22 2011-11-09 富葵精密组件(深圳)有限公司 Circuit board and manufacturing method thereof
JP5871426B2 (en) * 2012-01-31 2016-03-01 古河電気工業株式会社 Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555746A (en) * 1991-08-29 1993-03-05 Hitachi Chem Co Ltd High frequency copper clad laminated board and printed circuit board
JP2005064110A (en) * 2003-08-08 2005-03-10 Tdk Corp Member for electronic component and electronic component using the same
JP2010013738A (en) * 2004-02-06 2010-01-21 Furukawa Electric Co Ltd:The Surface treated copper foil and method of producing the same
JP2006210689A (en) * 2005-01-28 2006-08-10 Fukuda Metal Foil & Powder Co Ltd Copper foil for high frequency printed wiring board and its production method
US20100156572A1 (en) * 2008-12-19 2010-06-24 Askey Computer Corp. Carrier for transmitting high frequency signal and carrier layout method thereof
WO2011009015A1 (en) * 2009-07-16 2011-01-20 Mallinckrodt Inc. (+) - morphinans as antagonists of toll-like receptor 9 and therapeutic uses thereof
WO2013047272A1 (en) * 2011-09-30 2013-04-04 Jx日鉱日石金属株式会社 Copper foil excellent in adhesion with resin, method for manufacturing same, and printed wiring board or battery negative electrode material using electrolytic copper foil
JP5204908B1 (en) * 2012-03-26 2013-06-05 Jx日鉱日石金属株式会社 Copper foil with carrier, method for producing copper foil with carrier, copper foil with carrier for printed wiring board and printed wiring board

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090906A (en) * 2016-12-06 2018-06-14 Jx金属株式会社 Surface treated copper foil, copper foil with carrier, laminate, printed wiring board manufacturing method and electronic device manufacturing method
WO2018181726A1 (en) * 2017-03-30 2018-10-04 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
JPWO2018181726A1 (en) * 2017-03-30 2019-06-27 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same
CN110832120A (en) * 2017-03-30 2020-02-21 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and printed circuit board using the same
US10701811B2 (en) 2017-03-30 2020-06-30 Furukawa Electric Co., Ltd. Surface-treated copper foil, and copper-clad laminate and printed wiring board using same
CN110832120B (en) * 2017-03-30 2022-01-11 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and printed circuit board using the same
WO2019021895A1 (en) * 2017-07-24 2019-01-31 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate sheet and printed wiring board using same
JPWO2019021895A1 (en) * 2017-07-24 2019-08-08 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same
CN116240601A (en) * 2022-12-28 2023-06-09 深圳惠科新材料股份有限公司 Composite copper foil, preparation method thereof and battery

Also Published As

Publication number Publication date
CN106574389A (en) 2017-04-19
KR20170039084A (en) 2017-04-10
TWI601835B (en) 2017-10-11
KR101912765B1 (en) 2018-10-29
CN106574389B (en) 2018-09-21
TW201615852A (en) 2016-05-01
JP5972486B1 (en) 2016-08-17
JPWO2016035876A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5972486B1 (en) Copper foil, copper clad laminate, and substrate
KR102340473B1 (en) surface treatment copper foil
JP6462961B2 (en) Surface treated copper foil and copper clad laminate
JP6089160B1 (en) Copper foil for high frequency circuits, copper clad laminates, printed wiring boards
KR101830994B1 (en) Roughened copper foil, method for producing same, copper clad laminated board, and printed circuit board
KR101998923B1 (en) Treated copper foil for low dielectric resin substrate, and copper-clad laminate and printed writing board using the same
KR102230999B1 (en) Surface-treated copper foil and copper clad laminate manufactured using the same
JP6182584B2 (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
JP6261037B2 (en) Copper foil for high frequency circuit, copper clad laminate and printed wiring board
JP2004244656A (en) Copper foil which can deal with high-frequency application and method for manufacturing the same
JP7064563B2 (en) Surface-treated copper foil, its manufacturing method, copper foil laminated board including it, and printed wiring board including it
JP2019019414A (en) Surface-treated copper foil, laminate and printed wiring board
KR102118455B1 (en) Surface-treated copper foil and copper-clad laminate or printed circuit board produced using same
KR20170037750A (en) Surface-treated Copper Foil and Method of manufacturing of the same
JP2020164975A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
CN119403062A (en) Metal foil, metal-clad laminate, and wiring board
KR20240017841A (en) Roughened copper foil, copper clad laminate and printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015559749

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034815

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838036

Country of ref document: EP

Kind code of ref document: A1