[go: up one dir, main page]

WO2016031387A1 - Method for manufacturing shaped article, control device, and shaped article - Google Patents

Method for manufacturing shaped article, control device, and shaped article Download PDF

Info

Publication number
WO2016031387A1
WO2016031387A1 PCT/JP2015/069084 JP2015069084W WO2016031387A1 WO 2016031387 A1 WO2016031387 A1 WO 2016031387A1 JP 2015069084 W JP2015069084 W JP 2015069084W WO 2016031387 A1 WO2016031387 A1 WO 2016031387A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintering
data
layer
layers
sintered
Prior art date
Application number
PCT/JP2015/069084
Other languages
French (fr)
Japanese (ja)
Inventor
佐竹 弘之
隆彦 加藤
山賀 賢史
青田 欣也
高橋 勇
正 藤枝
孝介 桑原
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016031387A1 publication Critical patent/WO2016031387A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00

Definitions

  • the present invention relates to a molded article manufacturing method, a control device, and a molded article.
  • Patent Document 1 describes a process of dividing an irradiation plane into a plurality of modeling areas, sequentially moving a scanning head to a modeling area that is not adjacent to each other, and irradiating a light beam. ing. Thereby, the heat accumulation of sintering heat does not generate
  • Patent Document 2 describes a process of heating a formed sintered layer to remove residual stress. Thereby, an optical modeling thing with small curvature can be manufactured.
  • the main object of the present invention is to reduce the degree of deformation of the shaped object due to thermal shrinkage after sintering and to produce a highly accurate shaped object.
  • the present invention it is possible to reduce the degree of deformation of a shaped object due to thermal shrinkage after sintering, and to manufacture a highly accurate shaped object.
  • FIG. 2A is a configuration diagram illustrating a modeling apparatus including one sintering mechanism.
  • FIG. 2B is a configuration diagram illustrating a modeling apparatus including two sintering mechanisms.
  • Fig.3 (a) is a three-dimensional view which shows a molded article.
  • FIG.3 (b) is a three-dimensional view which shows each element of a molded article.
  • FIG.3 (c) is a three-dimensional view which shows the flat plate of a molded article.
  • FIG. 4A is a configuration diagram showing shape element data.
  • FIG. 4B is a configuration diagram showing element division data.
  • FIG. 4C is a three-dimensional view showing a three-dimensional display of the element division data. It is a block diagram which shows each element of the molded article based on the shape element data regarding one Embodiment of this invention.
  • FIG. 6A is a cross-sectional view showing data for lamination before division.
  • FIG. 6B is a front view showing a component obtained by stacking the stacking data of FIG.
  • FIG. 7A is a configuration diagram illustrating a division result of the stacking data illustrated in FIG.
  • FIG. 7B is a front view showing a component obtained by stacking the stacking data of FIG.
  • FIG. 8A is a configuration diagram showing the data for stacking in FIG.
  • FIG. 8B is a configuration diagram showing the connection data in FIG.
  • FIG.9 (a) is explanatory drawing which shows the formation process of the molded article of Fig.7 (a).
  • FIG.9 (b) is a front view which shows the molded article of Fig.9 (a).
  • Fig.11 (a) is a flowchart which shows the main process of modeling thing manufacture.
  • FIG. 11B is a flowchart showing details of the element division processing. It is a flowchart which shows the detail of the instruction creation process regarding one Embodiment of this invention. It is a top view which shows the sintering start time (FIG.
  • FIG. 13 (a) in the lamination
  • 14 (a) and 14 (b) are front views showing an example of a model different from FIG. 9 (b).
  • FIG. 1 is a configuration diagram illustrating a model manufacturing system.
  • the model production system includes the terminal 9, the control device 1, and the modeling device 100.
  • the terminal 9 and the control device 1 are connected by a connection line 92, and the control device 1 and the modeling apparatus 100 are connected by a connection line 91.
  • Each apparatus (the terminal 9, the control apparatus 1, and the modeling apparatus 100) of the molded article manufacturing system includes at least a memory serving as a storage unit used when performing arithmetic processing and an arithmetic processing apparatus that performs the arithmetic processing.
  • a computer is provided or built in.
  • the memory of this computer is constituted by a RAM (Random Access Memory) or the like.
  • Arithmetic processing is realized by an arithmetic processing unit configured by a CPU (Central Processing Unit) executing a program on a memory.
  • CPU Central Processing Unit
  • the terminal 9 transmits 3D shape data of the modeled object to be created by the user as the shape element data 11 to the control device 1 via the connection line 92.
  • the control device 1 creates a modeling process (operation command 18) of a modeled object that does not cause shape distortion due to residual stress due to thermal contraction, and transmits the operation command 18 to the modeling device 100 via the connection line 91.
  • the modeling apparatus 100 is driven according to the received operation command 18 and irradiates a molding material such as a metal powder with a laser or an electron beam to sinter it, thereby creating a modeled object.
  • a molding material such as a metal powder with a laser or an electron beam
  • the control device 1 includes a CPU (Central Processing Unit) that is a control mechanism for executing each processing unit (the control unit 10, the element division unit 12, the layer data creation unit 14, and the operation command creation unit 17), This is a computer having storage means for storing each data (shape element data 11, element division data 13, stacking data 15, connection data 16, and operation command 18). Each component in these control apparatuses 1 is connected by the connection line 93 which is an in-device bus.
  • a CPU Central Processing Unit
  • the control unit 10 is a central processing unit that activates other processing units (the element division unit 12, the layer data creation unit 14, and the operation command creation unit 17) and controls the operation of the entire control device 1.
  • the element dividing unit 12 specifies, from the shape element data 11, an element that causes a residual stress or a shape distortion due to thermal contraction among components of a modeled object to be created. Then, the element division unit 12 creates a division token indicating the division position for the identified element, and writes the division token as element division data 13. That is, by dividing an element at a division position that is a part of a modeled object, it is possible to reduce the influence of residual stress and shape distortion.
  • the layer data creation unit 14 creates stacking data 15 obtained by dividing the shape element data 11 according to the element division data 13 and connection data 16 for connecting the division positions.
  • the data for lamination 15 and the data for connection 16 are information necessary for a powder sintering additive manufacturing process by laser irradiation.
  • the operation instruction creating unit 17 creates an operation instruction 18 composed of a series of instructions based on the stacking data 15 and the connection data 16, and sequentially sends the created instructions to the modeling apparatus 100 via the connection line 91. Send.
  • FIG. 2A is a configuration diagram illustrating a modeling apparatus 100 including one sintering mechanism (laser apparatus for two-dimensional laser scanning).
  • the modeling apparatus 100 manufactures the modeled object 119 according to the operation command 18 from the control apparatus 1. Therefore, the modeling apparatus 100 includes a carbon dioxide laser oscillator 110, a collimator 111, a reference table 112, a galvano scanning device 113, a condensing lens 114, a squeegee 116, a base 120, a lifting table 121, and a lifting table 122. And an elevating mechanism 123 and an elevating mechanism 124.
  • the carbon dioxide laser oscillator 110 generates pulsed laser light 115.
  • the collimator 111 adjusts the beam diameter of the laser beam 115.
  • the galvano scanning device 113 guides the laser beam 115 to a predetermined location.
  • the condensing lens 114 condenses the laser beam 115 and locally sinters the metal powder.
  • the modeled object 119 is obtained by sintering and laminating a part of the metal powder 118 being modeled. That is, each component of the shaped object 119 is obtained by laminating layers of sintered metal powder 118.
  • the pulsed laser beam 115 emitted from the carbon dioxide laser oscillator 110 is adjusted in beam diameter by the collimator 111, guided to a predetermined place by the galvano scanning device 113, condensed by the condenser lens 114, and the modeled object 119.
  • the metal powder 118 placed above is irradiated.
  • a 400 watt laser device may be used as a heat source, or an electron beam device may be used instead of the carbon dioxide laser oscillator 110.
  • laser irradiation was performed with a beam spot diameter of 0.5 mm, a pulse width of 3.0 ms, an operation speed of 9 mm / s, and an oscillation frequency of 90 Hz.
  • nickel particles having a particle diameter of 65 ⁇ m to 90 ⁇ m are used for the metal powder 117, but other particles may be used.
  • other sintering means such as an electron beam may be used.
  • the reference table 112 defines a reference position for the height of the metal powder 117 and the metal powder 118.
  • the squeegee 116 supplies the metal powder 117 to the metal powder 118 being shaped.
  • the base 120 supports the metal powder 118.
  • the lifting table 121 sets the metal powder 117 to a predetermined height as needed.
  • the raising / lowering table 122 descends from the height of the reference table 112 at any time by the thickness to be laminated.
  • the elevating mechanism 123 drives the elevating table 121 up and down.
  • the elevating mechanism 124 drives the elevating table 122 up and down.
  • the amount of the metal powder 117 supplied from the lift table 121 to the lift table 122 and the lift table 122 are the same as long as the lift and drop distances of the respective tables are equal.
  • the amount of metal powder 118 that can be received from the lifting table 121 is equal.
  • FIG. 2B is a configuration diagram illustrating the modeling apparatus 100 including two sintering mechanisms.
  • the second laser beam 115b sintering mechanism (a carbon dioxide laser oscillator 110b, a collimator 111b, a galvano scanning device 113b, and a condenser lens 114b) is added to the modeling device 100 of FIG. This is an added point.
  • the laser beam 115 in FIG. 2B is irradiated for stacking according to a command LaserBeam described later.
  • the laser beam 115b in FIG. 2B is irradiated for connection according to a command JointLaserBeam described later.
  • JointLaserBeam since the order JointLaserBeam connects the objects that are sintered and laminated in a plurality of layers, the thickness of sintering performed at one time is different.
  • the connecting sintering mechanism and the laminating sintering mechanism may be configured to be different from each other, as exemplified below.
  • the laser irradiation mechanism itself is provided as a physically separate object (FIG. 2B).
  • -The laser irradiation output for connection is made stronger than the laser irradiation output for lamination.
  • -The laser irradiation time for connection is made longer than the laser irradiation time for stacking.
  • the laser irradiation range for connection is made narrower (locally) than the laser irradiation range for stacking.
  • An electron beam having a low reflectivity to the metal powder 118 is used for connection irradiation, and a laser having a high reflectivity to the metal powder 118 is used for stacking irradiation.
  • FIG. 3A is a three-dimensional view showing a modeled object.
  • the terminal 9 activates SOLIDWORK (registered trademark) of 3D-CAD (Computer Aided Design) software, for example, and causes the user to create 3D shape data of the modeled object 119. Then, the control device 1 receives the created 3D shape data from the terminal 9 and records it as shape element data 11 in its storage means.
  • SOLIDWORK registered trademark
  • 3D-CAD Computer Aided Design
  • FIG. 3 (b) is a three-dimensional view showing each element of the shaped article of FIG. 3 (a).
  • the shape element data 11 is composed of elements E (E1, E2, E3, E4, E5).
  • E1 within the element E is arranged to the right broken line where the element E2 is arranged (section where the element E3 is arranged)
  • the free movement of the element E3 due to thermal contraction is restricted.
  • the distortion of the shape due to the thermal stress occurs in the element E3 and the elements E1 and E2 in the section.
  • FIG.3 (c) is a three-dimensional view which shows the flat plate of the element E5 among the molded objects of FIG.3 (b).
  • the element dividing unit 12 logically separates one element E5 into three elements (E51, E52, E53) (instead of physically cutting the modeled object, it is separated in the computer of the control device 1 only) As data).
  • Element E51 is a section from the left dashed line to the right dashed line of element E5.
  • Element E52 is a section from the left end of element E5 to the left broken line.
  • Element E53 is a section from the right dashed line to the right end of element E5.
  • FIG. 4A is a configuration diagram showing a data format in which the shape element data 11 of FIG. 3A is stored.
  • the shape element data 11 includes, for each element, an element ID for specifying the element, a type as the shape of the element, a reference point position (x, y, z) where the element is arranged, and the element Correlate with the dimensions.
  • the numerical values of dimensions are in units of mm and are in the form of (vertical, horizontal, height) or (diameter, height).
  • connection information between elements such as “the element E3 is sandwiched between the elements E1 and E2” is also the shape element data. 11 is included.
  • FIG. 4B is a configuration diagram showing the element division data 13.
  • the element division unit 12 determines an element that needs to be divided and a division position in the element from each element of the shape element data 11, and writes the result to the element division data 13.
  • FIG. 5 is a configuration diagram showing each element of a modeled object based on the shape element data 11 of FIG.
  • the dimension of the cylinder regards the diameter as the vertical length and the horizontal length.
  • the “classification” in FIG. 5 is one of the following three types.
  • the “link part” in the classification is an element having a region where a tensile force is generated by heat shrinkage. That is, the link portion is an element (element E) connected to other elements (for example, elements E1 and E2) at a plurality of locations so that the shape of the element itself cannot be changed due to heat shrinkage.
  • the “connection part” in the classification is an element connected to the link part. That is, the connection part is an element connected to the link part so that the force is transmitted with the thermal contraction of the link part to be connected, but the shape of the link part cannot be changed by the force.
  • the “element part” in the classification is an element that does not correspond to the link part or the connection part. Since the element portion is connected to other elements at 0 to 1 places, it can move freely, so that no stress or distortion occurs.
  • the classification and dimensions of the shape element data 11 are input in advance from the terminal 9 or the like.
  • the element dividing unit 12 calculates the aspect ratio from the dimensions of the shape element data 11 as described above.
  • the element dividing unit 12 installs a dividing token in a link part in which the aspect ratio excluding the stacking direction (Z-axis height direction) exceeds the threshold value 0.8 (such as the element E3 in FIG. 4C).
  • the threshold value is 0.8 here, the user sets an appropriate numerical value depending on the metal material to be used and the strength required for the modeled object 119.
  • the reason why the stacking direction is excluded from the threshold determination process is that the stacking direction is a free end, free contraction due to thermal contraction is possible, stress is not accumulated, and the shape is not distorted.
  • FIG. 6A is a cross-sectional view showing the lamination data 15 before division.
  • FIG. 6B is a front view showing a component obtained by stacking the stacking data 15 of FIG.
  • the portion 15 to be processed is defined as the hatched region (location where powder sintering is performed), and the portion where the three-dimensional shape does not exist is defined as the white region (location where powder sintering is not performed), thereby creating the data 15 for lamination in FIG.
  • a layered object having a layer thickness of 0.5 mm is laminated by one powder sintering lamination process, and one layer indicates a layered object of twice (1 mm).
  • FIG. 6A illustrates 12 layers L1 to L12. The sectional view of each layer is stored as a separate file for each layer ID.
  • FIG. 7A is a configuration diagram showing a division result of the stacking data 15 of FIG.
  • FIG. 7B is a front view showing a component obtained by stacking the stacking data 15 of FIG.
  • the layer data creation unit 14 reflects the element division data 13 by performing the following two procedures on the stacking data 15 shown in FIG.
  • (Procedure 1) is a process of dividing the stacking data 15.
  • the layer data creation unit 14 identifies the element E3 to be divided (the division flag of the element division data 13 is 1) in the lamination data 15, and sets the division position in the element E3 to the element division data 13 from. Then, the layer data creation unit 14 divides the element E3 by converting a hatched area around the identified division position (for example, an ellipsoid 404 centered on the division position) into a white area. In FIG. 7A, as a result of the element division, the hatched area for five layers L8 to L12 is converted into a white area. As described above, the element division may extend over a plurality of layers or only one layer. That is, the layer data creation unit 14 converts the hatched region into a white region so that an unsintered portion extending over a plurality of layers is generated by (Procedure 1).
  • (Procedure 2) is a connection process of the stacking data 15 divided in (Procedure 1).
  • the layer data creation unit 14 creates a new layer J 12 (5) as the connection data 16. Note that “J” in the layer J12 (5) indicates a connection (Joint), “12” indicates the uppermost layer (L12 in this example), and “5” indicates the connection depth ( Here, five layers L8 to L12) are shown.
  • the layer data creation unit 14 includes a hatched area 403 that is an area for performing laser irradiation for connection to the division position of (Procedure 1) on the new layer J12 (5), and a connection area. And a mark 402 for clearly indicating to the user.
  • the layer data creation unit 14 associates the layer J12 (5) and the connection target L12 with the link 401. That is, the layer data creation unit 14 creates the connection data 16 so as to sinter the unsintered portion extending over the plurality of layers generated in (Procedure 1) by (Procedure 2).
  • the white region (region converted for division) in (Procedure 1) and the hatched region 403 (region converted for connection) in (Procedure 2) may be the same size or position, or white
  • the hatched area 403 may be larger than the area (for example, the hatched area 403 having the same centroid and an area increased by 30% as compared with the white area).
  • the larger region is defined by the shrinkage of the laminate in the horizontal direction (direction perpendicular to the lamination direction) due to the thermal contraction of the laminate during the cooling period after the divided layered object is formed. This is to cope with an event in which the gap between the two becomes large.
  • FIG. 8A is a configuration diagram showing the stacking data 15 of FIG.
  • the stacking data 15 associates the layer ID with the division flag for each layer number.
  • FIG. 8B is a configuration diagram showing the connection data 16 of FIG.
  • the connection data 16 is associated with a connection data ID (ID of the connection data 16) for each layer number.
  • Fig.9 (a) is explanatory drawing which shows the formation process of the molded article of Fig.7 (a).
  • the columns 301 and 302 are fixed on the base, and the lasers 303 and 304 are irradiated so as to connect the columns.
  • the beams 303 b and 304 b are formed by the lasers 303 and 304, and the space 309 between the beams is divided as indicated by the stacking data 15 in FIG.
  • the molten and solidified metal material is cooled and contracted.
  • the beams 303c and 304c are each provided with an end face that can freely move, so that a reduction in the volume of the beam due to thermal contraction does not affect the columns 301 and 302, no tensile force is generated, and no stress remains.
  • the beams 303 c and 304 c are connected by the connection unit 305 by laser irradiation based on the connection data 16 in (Procedure 2). By connecting, the two beams 303c and 304c are integrated as one beam, and the strength required for modeling is ensured.
  • FIG.9 (b) is a front view which shows the molded article of Fig.9 (a). Since the pillars 301 and 302 and the beams 303c and 304c of the modeled object are formed by lamination processing, each layer indicated by a horizontal line is illustrated in FIG. 9B. On the other hand, the connection portion 305 is formed at a time without being stacked by a connection process extending over a plurality of layers, so that it is distinguished from a layer indicated by a dotted pattern in FIG. 9B and indicated by a horizontal line. 9B and the modeled object of FIG. 13, the range in which the stress due to the thermal shrinkage of the beam is determined from the distance of the entire beam (beam 303c + connecting part 305 + beam 304c). The distance is reduced to 305. Therefore, the tensile force accompanying heat shrinkage can be reduced, and residual stress and shape distortion can be reduced.
  • FIG. 10 is a configuration diagram showing an operation command 18 for performing the formation process of the shaped article of FIG.
  • the operation command creating unit 17 creates an operation command 18 from the stacking data 15 and the connection data 16 as shown below.
  • the command Initial on the first line is a command for aligning the base 120 to the height of the reference table 112 in order to set the modeling apparatus 100 in the initial state.
  • the commands on the 2nd to 5th lines are the first sintering process in the laminating process of the first layer (L1).
  • the command UpBord01 (0.5) on the second line is a command to raise the lifting mechanism 123 (lifting table 121) by the height of the argument (0.5 mm).
  • the command DownBord02 (0.5) on the third line is a command to lower the lifting mechanism 124 (lifting table 122) by the height of the argument (0.5 mm).
  • the command Squeeg on the fourth line is a command that the squeegee 116 drives.
  • the squeegee 116 returns to the original position after carrying the metal powder 117 ascended from the lifting table 121 to the lifting table 122.
  • the command LaserBeam (L1) on the fifth line is a command for sintering the metal powder 118 by irradiating the laminating laser according to the hatched area of the laminating data 15 of the layer ID (L1) specified by the argument. is there.
  • the instructions on the 6th to 9th lines are the second sintering process in the laminating process on the first layer (L1), similar to the instructions on the 2nd to 5th lines.
  • the portion not covered by the command LaserBeam (Ln) in the nth layer (unsintered) remains without being blown off even after the n + 1th layer. To do. Thereby, even if there is a space below the sintered layer, the sintered layer does not fall.
  • the command on the 35th to 38th lines is the first sintering process in the lamination process of the twelfth layer (L12).
  • the command in the 39th to 42nd lines is the second sintering process in the laying process of the twelfth layer (L12). As described above, as shown by reference numeral 312 in FIG. 9, the layered processing of the divided shaped objects is performed.
  • the command Wait (3) on the 43rd line is a command that waits for the next command to proceed for the time (3 seconds) specified by the argument. With this waiting time for cooling, as shown by reference numeral 313 in FIG.
  • the command UpBord01 (0.5) on the 44th line is a command to raise the elevating mechanism 123 upward by 0.5 mm.
  • the instruction Squeeg on the 45th line is an instruction for supplying the metal powder 117 onto the substrate 120, similarly to the instruction Squeeg on the fourth line. By this command, the metal powder is replenished to fill the gap corresponding to the volume reduction.
  • the command Squeeg on the fourth line (powder replenishment for lamination) and the command Squeeg on the 45th line (powder replenishment for connection) may be distinguished as separate instructions.
  • the movable range of the squeegee 116 may be limited to the connection position (position 305 in FIG. 9).
  • a powder replenishment mechanism for connection is newly provided, and the powder supply unit of the powder replenishment mechanism is moved to the upper part of the connection position, and then the powder is directly supplied from the upper part to the connection position May be dropped).
  • the connecting powder and the laminating powder may be different types of powders. Thereby, the strength of the connecting portion can be increased by replenishing the connecting portions with a powder that has increased strength after sintering.
  • the command JointLaserBeam (J12,5) on the 46th line divides the element by irradiating the connection laser according to the connection data 16 “J12” and the layer depth “5 mm” specified by the arguments. Is an instruction to connect the. As a result, as shown by reference numeral 314 in FIG. 9, the modeled object is connected, so that the connected modeled object approaches the original shape before the division indicated by the stacking data 15 in FIG.
  • the command End on the 47th line is a command for informing the modeling apparatus 100 that the modeling process has ended.
  • Fig.11 (a) is a flowchart which shows the main process of modeling thing manufacture.
  • the control unit 10 stores the shape data of the modeled object 119 transmitted from the terminal 9 in the shape element data 11.
  • the element dividing unit 12 In the element dividing process (S12, details are shown in FIG. 11B), the element dividing unit 12 generates a tensile force due to thermal contraction for each element of the shape element data 11 in S11 as shown in FIG. Element division data 13 is created that indicates the division locations within the elements that are likely to occur.
  • the layer data creation process (S13), as shown in FIGS. 6 and 7, the layer data creation unit 14 divides the shape element data 11 in accordance with the element division data 13, and the division data 15 Connection data 16 for connecting positions is created.
  • the control device 1 transmits at least one of the stacking data 15 and the connection data 16 shown in FIGS. 6 and 7 to the display connected to the control device 1 or the display of the terminal 9. May be displayed. Thereby, before starting the modeling process by the modeling apparatus 100, the user can grasp
  • the operation command creation unit 17 creates the operation command 18 from the stacking data 15 and the connection data 16 as illustrated in FIG.
  • the operation command creation unit 17 transmits a series of commands in the operation command 18 of S14 to the modeling apparatus 100 in order from the top, so that the modeling object 119 along the operation command 18 is formed. 100.
  • FIG. 11B is a flowchart showing details of the element division processing (S12).
  • the element dividing unit 12 specifies, for each element of the shape element data 11, a region in which a free movement in the region is restricted and a tensile force due to thermal contraction is generated, and the specified region Based on the above, one element is subdivided (separated) into a plurality of elements. For example, in FIG. 3B, the element dividing unit 12 separates one element E5 into three elements (E51, E52, E53).
  • the element dividing unit 12 classifies each element of the shape element data 11 into one of a connection unit, a link unit, and an element unit as described with reference to FIG.
  • the element dividing unit 12 calculates the aspect ratio of each element from the shape of each element of the shape element data 11, as described with reference to FIG.
  • the element dividing unit 12 classifies the elements for each separated element (S102) and calculates an aspect ratio (S103).
  • the divided token data generation process (S104) as shown in FIG. 5, the element dividing unit 12 generates a divided token as necessary for each element based on the classification result of S102 and the aspect ratio of S103. Install.
  • FIG. 12 is a flowchart showing details of the instruction creation process (S14).
  • FIG. 12 will be described with reference to the operation instruction 18 (to the line) in FIG.
  • the operation command creating unit 17 generates a command Initial on the first line.
  • S202 to S205 are loop processes for selecting the stacking data 15 created in the layer data creation process (S13) one by one in order from the lower layer (the layer having the lowest height). The layer currently selected in the loop will be described as a “selected layer”.
  • the operation command creating unit 17 In S203, the operation command creating unit 17 generates a replenishment command (for example, UpBord01 in the second row, DownBord02 in the third row, Squeeg in the fourth row, etc.) for the selected layer.
  • the operation command creating unit 17 In S ⁇ b> 204, the operation command creating unit 17 generates a laser irradiation command (such as LaserBeam in the fifth row) for stacking the metal powder 118 replenished in S ⁇ b> 203 for the selected layer.
  • the combination of the processes in S203 and S204 may be executed a plurality of times. For example, when the lamination thickness of 0.5 mm can be formed by one sintering lamination process, and one layer is 1 mm, the combination of the processes of S203 and S204 may be executed for two sets.
  • the operation command creation unit 17 has a link with the connection data 16 as indicated by reference numeral 401 in FIG. to decide. If there is no link (S211, No), the process ends. If there is a link (S211, Yes), the process proceeds to S212.
  • the operation command creating unit 17 generates a connection preparation command (Wait on the 43rd line, UpBord01 on the 44th line, Squeeg on the 45th line).
  • the operation command creation unit 17 generates a connection laser irradiation command (command JointLaserBeam on the 46th line) and a command End on the 47th line, and ends the process.
  • a method for manufacturing a shaped article in which a plurality of sintered layers of a molding material powder-sintered using a laser beam or an electron beam are stacked and integrated is shown.
  • the modeling apparatus 100 sinters the molding material by irradiating a predetermined portion of the molding material layer with laser light to form a sintered layer. Furthermore, the modeling apparatus 100 coats a layer of the molding material on the sintered layer and irradiates a predetermined portion of the molding material with laser light to sinter the molding material so as to be integrated with the lower sintered layer.
  • a formed sintered body is formed.
  • the modeling apparatus 100 manufactures an optical modeling object having a sintered body in which a plurality of sintered layers are laminated and integrated by repeating these sintering steps.
  • control device 1 divides the elements constituting the modeled object into two or more elements, and after each of the divided elements is powder-sintered and layered, modeling is performed to connect the divided elements by powder sintering.
  • An operation instruction 18 for the apparatus 100 is created in advance.
  • the control apparatus 1 specifies the division
  • the manufacturing method of the molded object of this embodiment does not specifically limit the sintered density of the sintered body, it requires a united volume, and has a complicated lattice structure or hollow structure constructed by a plurality of thin beams. It is also suitable for manufacturing shaped objects.
  • FIG. 13 is an explanatory view showing a stacking process in which two struts are connected by a beam as a comparative example.
  • the columns 201 and 202 are formed by irradiating the metal powder 200 on the substrate 204 with laser.
  • laser is irradiated in the scanning direction 203 that reciprocates so as to connect the columns 201 and 202.
  • the beam spot diameter of 0.5 mm (the length in the Y-axis direction) can be sintered by one-way scanning in the reciprocation, so that the thickness of the beam 206 is 5 mm.
  • Fig.14 (a) is a front view which shows an example of the molded article 119 different from FIG.9 (b).
  • the connection unit 501 created from the connection data 16 connects the left laminate unit 502 and the right laminate unit 503 created from the laminate data 15.
  • connection part 501 is a connection element in the modeled object 119
  • the stacked parts 502 and 503 are connected elements in the modeled object 119, respectively.
  • FIG.14 (b) is a front view which shows an example of the molded article 119 different from FIG.9 (b) and FIG.14 (a).
  • the connection unit 511 created from the connection data 16 connects the left laminate unit 512 and the right laminate unit 513 created from the laminate data 15.
  • the modeled object 119 in FIG. 14 has a smaller number of layers than the number of layers of the elements between the elements constituting the modeled object 119 (in this example, the layered portions 502, 503 / layered portions 512, 513). It can be said that the sintered metal element (in this example, the connection portion 501/511) is interposed (positioned between). This is the same in the example of FIG.
  • the connection portion 501 (the same applies to the connection portion 511) has the following characteristics.
  • the first feature is that the number of stacked layers of the connecting portion 501 is smaller than the number of stacked layers of the stacked portions 502 and 503.
  • the command JointLaserBeam (J12,5) on the 46th line in FIG. 10 is a command to sinter (at one time) five layers of connected elements as one layer of connected elements.
  • the number of stacked layers is smaller than the number of stacked connection elements.
  • the number of stacked connection portions 501 is not limited to one, and may be two or more.
  • stacking of the molded article 119 can be analyzed by observing the cross section of a molded article with a microscope.
  • the molded article in which the connection part 501 does not exist between the laminated part 502 and the laminated part 503 may be distorted due to the residual stress of the laminated parts 502 and 503. Since the distortion does not affect other adjacent elements, the strength and durability as a model can be improved.
  • the second feature is that at least one of the stacked portions 502 and 503 connected by the connecting portion 501 has a direction along the layer to be stacked (any direction on the XY plane, for example, the X-axis direction or the Y-axis direction).
  • (Axial direction) is characterized by having a length of a predetermined length or more.
  • the element dividing unit 12 is a link unit in which the aspect ratio excluding the stacking direction (the Z-axis height direction) exceeds the threshold value 0.8 (that is, a length greater than or equal to a predetermined length).
  • a split token is installed at a certain link part).
  • connection part 501 in order to sufficiently obtain the connection effect by the connection part 501, the connection part 501 is intensively arranged at a place where the size change (reduction) after sintering is larger than simply increasing the number of the connection parts 501. It is desirable to do. Thereby, by connecting between the stacked portions 502 and 503 after cooling by the connecting portion 501, distortion and deformation due to heat shrinkage are effectively prevented.
  • the third feature is that the connecting portion 501 connects the end surface of the stacked portion 502 and the end surface of the stacked portion 503. Therefore, the connection part 501 is formed by a butt welding process, for example.
  • this invention is not limited to an above-described Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files for realizing each function is stored in memory, a hard disk, a recording device such as an SSD (Solid State Drive), an IC (Integrated Circuit) card, an SD card, a DVD (Digital Versatile Disc), etc. Can be placed on any recording medium.
  • a recording device such as an SSD (Solid State Drive), an IC (Integrated Circuit) card, an SD card, a DVD (Digital Versatile Disc), etc.
  • the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

This control device (1) comprises a layer data creation unit (14) which slices three-dimensional shape data of a shaped article into a plurality of layers, creates layer data containing, as a first sintering region, a part where the shaped article exists in each of the sliced layers, modifies the first sintering region to an unsintered region in a plurality of layers which correspond to a division position in the created layer data, and adds a second sintering area for sintering an unsintered part existing across the plurality of layers corresponding to the division position; and an operation instruction creation unit (17) which creates an operation instruction to form a connection part in the shaped article by sintering the second sintering region after sintering the first sintering region of each coating layer of a molding material.

Description

造形物製造方法、制御装置、および、造形物Modeled object manufacturing method, control device, and modeled object 参照による取り込みImport by reference
 本出願は、2014年8月29日に出願された日本特許願第2014-174707号の優先権を主張し、その内容を参照することにより本出願に取り込む。 This application claims the priority of Japanese Patent Application No. 2014-174707 filed on August 29, 2014, and is incorporated herein by reference.
 本発明は、造形物製造方法、制御装置、および、造形物に関する。 The present invention relates to a molded article manufacturing method, a control device, and a molded article.
 金属粉末にレーザ光を照射して、金属粉末を焼結させた造形物を製造する方法が、知られている。この製造工程は、金属粉末の層を焼結させた焼結層を形成し、この焼結層の上に新たに金属粉末の層を被覆し、下の焼結層と一体になった焼結体を形成させることを繰り返す工程である。 There is known a method of manufacturing a shaped object obtained by irradiating a metal powder with laser light to sinter the metal powder. In this manufacturing process, a sintered layer is formed by sintering a layer of metal powder, and a new layer of metal powder is coated on the sintered layer and integrated with the lower sintered layer. It is a process of repeatedly forming a body.
 特許文献1には、照射平面を複数の造形領域に分割し、この分割された各造形領域の内で、互いに隣接しない造形領域に走査ヘッドを順に移動させ、光ビームを照射させる工程が記載されている。これにより、焼結熱の熱溜まりが造形物に発生せず、造形物の熱歪を防ぎ、造形物の加工精度が向上する。
 特許文献2には、形成した焼結層を加熱し残留応力を除去する工程が記載されている。これにより、反りの小さな光造形物を製造できる。
Patent Document 1 describes a process of dividing an irradiation plane into a plurality of modeling areas, sequentially moving a scanning head to a modeling area that is not adjacent to each other, and irradiating a light beam. ing. Thereby, the heat accumulation of sintering heat does not generate | occur | produce in a molded article, the thermal distortion of a molded article is prevented, and the processing precision of a molded article improves.
Patent Document 2 describes a process of heating a formed sintered layer to remove residual stress. Thereby, an optical modeling thing with small curvature can be manufactured.
特開2009-108350号公報JP 2009-108350 A 特開2007-270227号公報JP 2007-270227 A
 焼結後の冷却期間によって、熱収縮に伴う引張り力が生じる焼結層の箇所が存在することもある。この引張り力は、造形物の他の箇所へと影響し、造形物全体の形状や寸法を、設計データの意図に反して、大きく変化させてしまうこともある。
 特許文献1,2の造形物の製造方法では、焼結熱への局所的な手当をしているものの、引張り力による造形物全体の意図しない変化を防ぐまでには至っていない。
Depending on the cooling period after sintering, there may be a portion of the sintered layer where a tensile force accompanying thermal contraction occurs. This tensile force affects other parts of the modeled object, and may greatly change the shape and dimensions of the entire modeled object, contrary to the intention of the design data.
Although the method for manufacturing a shaped article disclosed in Patent Documents 1 and 2 provides local allowance for the heat of sintering, it does not yet prevent an unintended change of the entire shaped article due to a tensile force.
 そこで、本発明は、焼結後の熱収縮に伴う造形物の変形度合いを軽減し、精度の高い造形物を製造することを、主な課題とする。 Therefore, the main object of the present invention is to reduce the degree of deformation of the shaped object due to thermal shrinkage after sintering and to produce a highly accurate shaped object.
 前記課題を解決するために、本発明の造形物製造方法は、
 成形材料を被覆した層の形成と、当該層の焼結とを繰り返すことで複数層を形成する造形物を製造するときに、複数層にまたがる未焼結部分が生じるように、順次、被覆と焼結とを繰り返す積層工程と、
 前記複数層にまたがる未焼結部分を焼結させることで、前記造形物に接続部分を形成する接続工程と、を有することを特徴とする。
 その他の手段は、後記する。
In order to solve the above-mentioned problem,
In order to produce a green body that forms a plurality of layers by repeating formation of a layer coated with a molding material and sintering of the layer, the coating and A lamination process that repeats sintering;
And a connecting step of forming a connecting portion on the shaped article by sintering an unsintered portion extending over the plurality of layers.
Other means will be described later.
 本発明によれば、焼結後の熱収縮に伴う造形物の変形度合いを軽減し、精度の高い造形物を製造することができる。 According to the present invention, it is possible to reduce the degree of deformation of a shaped object due to thermal shrinkage after sintering, and to manufacture a highly accurate shaped object.
本発明の一実施形態に関する造形物製造システムを示す構成図である。It is a block diagram which shows the molded article manufacturing system regarding one Embodiment of this invention. 図2(a)は、焼結機構を1つ備える造形装置を示す構成図である。図2(b)は、焼結機構を2つ備える造形装置を示す構成図である。FIG. 2A is a configuration diagram illustrating a modeling apparatus including one sintering mechanism. FIG. 2B is a configuration diagram illustrating a modeling apparatus including two sintering mechanisms. 図3(a)は、造形物を示す立体図である。図3(b)は、造形物の各要素を示す立体図である。図3(c)は、造形物の平板を示す立体図である。Fig.3 (a) is a three-dimensional view which shows a molded article. FIG.3 (b) is a three-dimensional view which shows each element of a molded article. FIG.3 (c) is a three-dimensional view which shows the flat plate of a molded article. 図4(a)は、形状要素データを示す構成図である。図4(b)は、要素分割用データを示す構成図である。図4(c)は、要素分割用データの立体表示を示す立体図である。FIG. 4A is a configuration diagram showing shape element data. FIG. 4B is a configuration diagram showing element division data. FIG. 4C is a three-dimensional view showing a three-dimensional display of the element division data. 本発明の一実施形態に関する形状要素データをもとにした造形物の各要素を示す構成図である。It is a block diagram which shows each element of the molded article based on the shape element data regarding one Embodiment of this invention. 図6(a)は、分割前の積層用データを示す断面図である。図6(b)は、図6(a)の積層用データを積層した部品を示す正面図である。FIG. 6A is a cross-sectional view showing data for lamination before division. FIG. 6B is a front view showing a component obtained by stacking the stacking data of FIG. 図7(a)は、図6(a)の積層用データの分割結果を示す構成図である。図7(b)は、図7(a)の積層用データを積層した部品を示す正面図である。FIG. 7A is a configuration diagram illustrating a division result of the stacking data illustrated in FIG. FIG. 7B is a front view showing a component obtained by stacking the stacking data of FIG. 図8(a)は、図7(a)の積層用データを示す構成図である。図8(b)は、図7(a)の接続用データを示す構成図である。FIG. 8A is a configuration diagram showing the data for stacking in FIG. FIG. 8B is a configuration diagram showing the connection data in FIG. 図9(a)は、図7(a)の造形物の形成処理を示す説明図である。図9(b)は、図9(a)の造形物を示す正面図である。Fig.9 (a) is explanatory drawing which shows the formation process of the molded article of Fig.7 (a). FIG.9 (b) is a front view which shows the molded article of Fig.9 (a). 本発明の一実施形態に関する図9(a)の造形物の形成処理を行うための操作命令を示す構成図である。It is a block diagram which shows the operation command for performing the formation process of the molded article of Fig.9 (a) regarding one Embodiment of this invention. 図11(a)は、造形物製造のメイン処理を示すフローチャートである。図11(b)は、要素分割処理の詳細を示すフローチャートである。Fig.11 (a) is a flowchart which shows the main process of modeling thing manufacture. FIG. 11B is a flowchart showing details of the element division processing. 本発明の一実施形態に関する命令作成処理の詳細を示すフローチャートである。It is a flowchart which shows the detail of the instruction creation process regarding one Embodiment of this invention. 比較例における梁の積層処理における焼結開始時点(図13(a))、焼結終了時点(図13(b))を示す平面図である。It is a top view which shows the sintering start time (FIG. 13 (a)) in the lamination | stacking process of the beam in a comparative example, and the sintering end time (FIG.13 (b)). 図14(a),(b)は、それぞれ図9(b)とは別の造形物の一例を示す正面図である。14 (a) and 14 (b) are front views showing an example of a model different from FIG. 9 (b).
 以下、本発明の一実施形態を、図面を参照して詳細に説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、造形物製造システムを示す構成図である。
 造形物製造システムは、端末9と、制御装置1と、造形装置100とを含めて構成される。端末9と制御装置1とは接続線92で接続され、制御装置1と造形装置100とは接続線91で接続される。
 造形物製造システムの各装置(端末9と、制御装置1と、造形装置100)は、それぞれ演算処理を行う際に用いられる記憶手段としてのメモリと、前記演算処理を行う演算処理装置とを少なくとも備えるコンピュータを搭載または内蔵しているものとする。このコンピュータのメモリは、RAM(Random Access Memory)などにより構成される。演算処理は、CPU(Central Processing Unit)によって構成される演算処理装置が、メモリ上のプログラムを実行することで、実現される。
FIG. 1 is a configuration diagram illustrating a model manufacturing system.
The model production system includes the terminal 9, the control device 1, and the modeling device 100. The terminal 9 and the control device 1 are connected by a connection line 92, and the control device 1 and the modeling apparatus 100 are connected by a connection line 91.
Each apparatus (the terminal 9, the control apparatus 1, and the modeling apparatus 100) of the molded article manufacturing system includes at least a memory serving as a storage unit used when performing arithmetic processing and an arithmetic processing apparatus that performs the arithmetic processing. It is assumed that a computer is provided or built in. The memory of this computer is constituted by a RAM (Random Access Memory) or the like. Arithmetic processing is realized by an arithmetic processing unit configured by a CPU (Central Processing Unit) executing a program on a memory.
 端末9は、利用者が作成しようとする造形物の3D形状データを、接続線92を介して制御装置1に形状要素データ11として送信する。
 制御装置1は、熱収縮による残留応力より形状歪みが生じないような造形物の造形プロセス(操作命令18)を作成し、その操作命令18を接続線91を介して造形装置100に送信する。
 造形装置100は、受信した操作命令18に従って駆動し、レーザや電子ビームを金属粉末などの成形材料に照射して焼結させることで、造形物を作成する。なお、図5などで後記するように、1つの造形物は、その造形物を構成するための1つ以上の要素から構成される。
The terminal 9 transmits 3D shape data of the modeled object to be created by the user as the shape element data 11 to the control device 1 via the connection line 92.
The control device 1 creates a modeling process (operation command 18) of a modeled object that does not cause shape distortion due to residual stress due to thermal contraction, and transmits the operation command 18 to the modeling device 100 via the connection line 91.
The modeling apparatus 100 is driven according to the received operation command 18 and irradiates a molding material such as a metal powder with a laser or an electron beam to sinter it, thereby creating a modeled object. Note that, as will be described later with reference to FIG. 5 and the like, one modeled object is composed of one or more elements for configuring the modeled object.
 制御装置1は、各処理部(制御部10と、要素分割部12と、レイヤデータ作成部14と、操作命令作成部17)を実行するための制御機構であるCPU(Central Processing Unit)と、各データ(形状要素データ11と、要素分割用データ13と、積層用データ15と、接続用データ16と、操作命令18と)を格納するための記憶手段とを有するコンピュータである。これらの制御装置1内の各構成要素は、装置内バスである接続線93で接続される。 The control device 1 includes a CPU (Central Processing Unit) that is a control mechanism for executing each processing unit (the control unit 10, the element division unit 12, the layer data creation unit 14, and the operation command creation unit 17), This is a computer having storage means for storing each data (shape element data 11, element division data 13, stacking data 15, connection data 16, and operation command 18). Each component in these control apparatuses 1 is connected by the connection line 93 which is an in-device bus.
 制御部10は、他の各処理部(要素分割部12、レイヤデータ作成部14、操作命令作成部17)を起動し、制御装置1全体の動作を制御する中心的な処理部である。
 要素分割部12は、形状要素データ11から、これから作成する造形物の構成要素のうち、熱収縮により残留応力や形状歪みを生じる要素を特定する。そして、要素分割部12は、特定した要素に対し分割位置を示す分割トークンを作成し、その分割トークンを要素分割用データ13として書き出す。つまり、造形物の一部である分割位置で要素を分割することで、残留応力や形状歪みの影響を減らすことができる。
The control unit 10 is a central processing unit that activates other processing units (the element division unit 12, the layer data creation unit 14, and the operation command creation unit 17) and controls the operation of the entire control device 1.
The element dividing unit 12 specifies, from the shape element data 11, an element that causes a residual stress or a shape distortion due to thermal contraction among components of a modeled object to be created. Then, the element division unit 12 creates a division token indicating the division position for the identified element, and writes the division token as element division data 13. That is, by dividing an element at a division position that is a part of a modeled object, it is possible to reduce the influence of residual stress and shape distortion.
 レイヤデータ作成部14は、形状要素データ11に対して要素分割用データ13に従って分割した積層用データ15と、その分割位置を接続するための接続用データ16とを作成する。これらの積層用データ15および接続用データ16は、レーザ照射による粉末焼結積層造形プロセスに必要な情報である。
 操作命令作成部17は、積層用データ15および接続用データ16をもとに、一連の命令からなる操作命令18を作成し、その作成した命令を逐次、接続線91を介して造形装置100に送信する。
 なお、操作命令18には、粉末焼結する造形物の積層厚さと、図10で後記する一連の命令列とが記録されており、積層厚さは通常0.1mmから0.5mmまでのいずれかの値であり、以下では「積層厚さ=0.5mm」の例を説明する。
The layer data creation unit 14 creates stacking data 15 obtained by dividing the shape element data 11 according to the element division data 13 and connection data 16 for connecting the division positions. The data for lamination 15 and the data for connection 16 are information necessary for a powder sintering additive manufacturing process by laser irradiation.
The operation instruction creating unit 17 creates an operation instruction 18 composed of a series of instructions based on the stacking data 15 and the connection data 16, and sequentially sends the created instructions to the modeling apparatus 100 via the connection line 91. Send.
The operation command 18 records the stack thickness of the shaped object to be powder-sintered and a series of command sequences described later in FIG. 10, and the stack thickness is usually any one of 0.1 mm to 0.5 mm. In the following, an example of “lamination thickness = 0.5 mm” will be described.
 図2(a)は、焼結機構(2次元のレーザスキャニングのためのレーザ装置)を1つ備える造形装置100を示す構成図である。
 造形装置100は、制御装置1からの操作命令18に従い、造形物119を製造する。そのため、造形装置100は、炭酸ガスレーザ発振器110と、コリメータ111と、基準テーブル112と、ガルバノ走査装置113と、集光レンズ114と、スキージ116と、基盤120と、昇降テーブル121と、昇降テーブル122と、昇降機構123と、昇降機構124とを含めて構成される。
FIG. 2A is a configuration diagram illustrating a modeling apparatus 100 including one sintering mechanism (laser apparatus for two-dimensional laser scanning).
The modeling apparatus 100 manufactures the modeled object 119 according to the operation command 18 from the control apparatus 1. Therefore, the modeling apparatus 100 includes a carbon dioxide laser oscillator 110, a collimator 111, a reference table 112, a galvano scanning device 113, a condensing lens 114, a squeegee 116, a base 120, a lifting table 121, and a lifting table 122. And an elevating mechanism 123 and an elevating mechanism 124.
 炭酸ガスレーザ発振器110は、パルス発振のレーザ光115を生成する。コリメータ111は、レーザ光115のビーム径を調整する。ガルバノ走査装置113は、レーザ光115を所定場所に誘導する。集光レンズ114は、レーザ光115を集光し局所的に金属粉末を焼結する。造形物119は、造形中の金属粉末118の一部が焼結され積層されたものである。すなわち、造形物119の各構成要素は、焼結された金属粉末118の層が積層されたものである。
 よって、炭酸ガスレーザ発振器110から照射されるパルス発振のレーザ光115は、コリメータ111でビーム径調整され、ガルバノ走査装置113により所定の場所に誘導され、集光レンズ114で集光され、造形物119上に設置された金属粉末118に照射される。
The carbon dioxide laser oscillator 110 generates pulsed laser light 115. The collimator 111 adjusts the beam diameter of the laser beam 115. The galvano scanning device 113 guides the laser beam 115 to a predetermined location. The condensing lens 114 condenses the laser beam 115 and locally sinters the metal powder. The modeled object 119 is obtained by sintering and laminating a part of the metal powder 118 being modeled. That is, each component of the shaped object 119 is obtained by laminating layers of sintered metal powder 118.
Therefore, the pulsed laser beam 115 emitted from the carbon dioxide laser oscillator 110 is adjusted in beam diameter by the collimator 111, guided to a predetermined place by the galvano scanning device 113, condensed by the condenser lens 114, and the modeled object 119. The metal powder 118 placed above is irradiated.
 以上説明したレーザ光115の照射機構(炭酸ガスレーザ発振器110など)について、熱源に400ワットレーザ装置を用いてもよいし、炭酸ガスレーザ発振器110の代わりに電子ビーム装置を用いてもよい。例えば、レーザ照射は、ビームスポット径0.5mm、パルス幅3.0ms、操作速度9mm/s、発振周波数90Hzとした。また、金属粉末117には、粒子径が65μmから90μmのニッケル粒子を用いたが、他の粒子を用いてもよい。
 また、レーザ光115の代わりに、電子ビームなどの他の焼結手段を用いてもよい。
As for the irradiation mechanism of the laser beam 115 described above (such as the carbon dioxide laser oscillator 110), a 400 watt laser device may be used as a heat source, or an electron beam device may be used instead of the carbon dioxide laser oscillator 110. For example, laser irradiation was performed with a beam spot diameter of 0.5 mm, a pulse width of 3.0 ms, an operation speed of 9 mm / s, and an oscillation frequency of 90 Hz. Further, nickel particles having a particle diameter of 65 μm to 90 μm are used for the metal powder 117, but other particles may be used.
Further, instead of the laser beam 115, other sintering means such as an electron beam may be used.
 基準テーブル112は、金属粉末117と金属粉末118との高さの基準位置を定める。スキージ116は、金属粉末117を造形中の金属粉末118に供給する。基盤120は、金属粉末118を支える。
 昇降テーブル121は、金属粉末117を所定の高さに随時設定する。昇降テーブル122は、積層する厚み分を基準テーブル112の高さから随時降下する。昇降機構123は、昇降テーブル121を昇降駆動する。昇降機構124は、昇降テーブル122を昇降駆動する。
 なお、昇降テーブル121と昇降テーブル122の面積は等しいとすると、各テーブルの上昇および下降の距離が等しければ、昇降テーブル121から昇降テーブル122に供給される金属粉末117の分量と、昇降テーブル122が昇降テーブル121から受け取れる金属粉末118の分量は等しくなる。
The reference table 112 defines a reference position for the height of the metal powder 117 and the metal powder 118. The squeegee 116 supplies the metal powder 117 to the metal powder 118 being shaped. The base 120 supports the metal powder 118.
The lifting table 121 sets the metal powder 117 to a predetermined height as needed. The raising / lowering table 122 descends from the height of the reference table 112 at any time by the thickness to be laminated. The elevating mechanism 123 drives the elevating table 121 up and down. The elevating mechanism 124 drives the elevating table 122 up and down.
Assuming that the lift table 121 and the lift table 122 have the same area, the amount of the metal powder 117 supplied from the lift table 121 to the lift table 122 and the lift table 122 are the same as long as the lift and drop distances of the respective tables are equal. The amount of metal powder 118 that can be received from the lifting table 121 is equal.
 図2(b)は、焼結機構を2つ備える造形装置100を示す構成図である。図2(a)との違いは、2つめのレーザ光115bの焼結機構(炭酸ガスレーザ発振器110b、コリメータ111b、ガルバノ走査装置113b、集光レンズ114b)を図2(a)の造形装置100に追加した点である。
 図2(b)でのレーザ光115は、後記する命令LaserBeamに従って、積層用に照射される。
 図2(b)でのレーザ光115bは、後記する命令JointLaserBeamに従って、接続用に照射される。なお、命令JointLaserBeamは、複数のレイヤで焼結積層された造形物を接続させるため、一回に実施する焼結の厚さが異なる。
FIG. 2B is a configuration diagram illustrating the modeling apparatus 100 including two sintering mechanisms. The difference from FIG. 2A is that the second laser beam 115b sintering mechanism (a carbon dioxide laser oscillator 110b, a collimator 111b, a galvano scanning device 113b, and a condenser lens 114b) is added to the modeling device 100 of FIG. This is an added point.
The laser beam 115 in FIG. 2B is irradiated for stacking according to a command LaserBeam described later.
The laser beam 115b in FIG. 2B is irradiated for connection according to a command JointLaserBeam described later. In addition, since the order JointLaserBeam connects the objects that are sintered and laminated in a plurality of layers, the thickness of sintering performed at one time is different.
 なお、接続用の焼結機構と、積層用の焼結機構とは、例えば以下に例示するように、互いに異なるようにして構成されるようにすることもできる。
 ・レーザ照射機構そのものを物理的に別々の物として設ける(図2(b))。
 ・接続用のレーザ照射出力を、積層用のレーザ照射出力よりも強くする。
 ・接続用のレーザ照射時間を、積層用のレーザ照射時間よりも長くする。
 ・接続用のレーザ照射範囲を、積層用のレーザ照射範囲よりも狭く(局所的に)する。
 ・接続用の照射には金属粉末118への反射率が低い電子ビームを用い、積層用の照射には金属粉末118への反射率が高いレーザを用いる。
The connecting sintering mechanism and the laminating sintering mechanism may be configured to be different from each other, as exemplified below.
The laser irradiation mechanism itself is provided as a physically separate object (FIG. 2B).
-The laser irradiation output for connection is made stronger than the laser irradiation output for lamination.
-The laser irradiation time for connection is made longer than the laser irradiation time for stacking.
The laser irradiation range for connection is made narrower (locally) than the laser irradiation range for stacking.
An electron beam having a low reflectivity to the metal powder 118 is used for connection irradiation, and a laser having a high reflectivity to the metal powder 118 is used for stacking irradiation.
 図3(a)は、造形物を示す立体図である。端末9は、例えば3D-CAD(Computer Aided Design)ソフトのSOLIDWORK(登録商標)を起動して、造形物119の3D形状データをユーザに作成させる。そして、制御装置1は、作成された3D形状データを端末9から受信し、形状要素データ11として自身の記憶手段に記録する。 FIG. 3A is a three-dimensional view showing a modeled object. The terminal 9 activates SOLIDWORK (registered trademark) of 3D-CAD (Computer Aided Design) software, for example, and causes the user to create 3D shape data of the modeled object 119. Then, the control device 1 receives the created 3D shape data from the terminal 9 and records it as shape element data 11 in its storage means.
 図3(b)は、図3(a)の造形物の各要素を示す立体図である。形状要素データ11は、要素E(E1,E2,E3,E4,E5)から構成される。要素E内の要素E1が配置される左側破線から、要素E2が配置される右側破線までの区間(要素E3が配置される区間)は、熱収縮による要素E3の自由な動きが制約されるので、熱応力による形状の歪が、当該区間の要素E3や、要素E1,E2に発生する。 FIG. 3 (b) is a three-dimensional view showing each element of the shaped article of FIG. 3 (a). The shape element data 11 is composed of elements E (E1, E2, E3, E4, E5). In the section from the left broken line where the element E1 within the element E is arranged to the right broken line where the element E2 is arranged (section where the element E3 is arranged), the free movement of the element E3 due to thermal contraction is restricted. The distortion of the shape due to the thermal stress occurs in the element E3 and the elements E1 and E2 in the section.
 図3(c)は、図3(b)の造形物のうちの要素E5の平板を示す立体図である。要素分割部12は、1つの要素E5を3つの要素(E51,E52,E53)へと論理的に分離する(物理的に造形物を切断するのではなく、あくまで制御装置1という計算機内で別々のデータとして扱う)。
 要素E51は、要素E5の左側破線から右側破線までの区間である。
 要素E52は、要素E5の左端から左側破線までの区間である。
 要素E53は、要素E5の右側破線から右端までの区間である。
 このように要素E5を、熱応力の影響を受ける要素E51と、熱応力の影響を受けない要素E52,E53として分離することで、分割対象となる要素を減らす(限定する)ことができる。
FIG.3 (c) is a three-dimensional view which shows the flat plate of the element E5 among the molded objects of FIG.3 (b). The element dividing unit 12 logically separates one element E5 into three elements (E51, E52, E53) (instead of physically cutting the modeled object, it is separated in the computer of the control device 1 only) As data).
Element E51 is a section from the left dashed line to the right dashed line of element E5.
Element E52 is a section from the left end of element E5 to the left broken line.
Element E53 is a section from the right dashed line to the right end of element E5.
Thus, by separating the element E5 as the element E51 that is affected by the thermal stress and the elements E52 and E53 that are not affected by the thermal stress, the elements to be divided can be reduced (limited).
 図4(a)は、図3(a)の形状要素データ11が格納されるデータ形式を示す構成図である。
 形状要素データ11は、要素ごとに、その要素を特定するための要素IDと、その要素の形状としての種別と、その要素が配置される基準点位置(x,y,z)と、その要素の寸法とを対応づける。
 なお、(x,y,z)の表記は、底面をz=0として設定されたxyz座標系(空間座標系)である。また、寸法の数値は単位がmmであり、(縦、横、高さ)または(直径、高さ)の形式である。
 さらに、図示は省略したが、「要素E3は要素E1と要素E2との間に挟まれている」などの各要素間の接続情報(拘束されるか否かを示す情報)も、形状要素データ11に含まれている。
FIG. 4A is a configuration diagram showing a data format in which the shape element data 11 of FIG. 3A is stored.
The shape element data 11 includes, for each element, an element ID for specifying the element, a type as the shape of the element, a reference point position (x, y, z) where the element is arranged, and the element Correlate with the dimensions.
The notation (x, y, z) is an xyz coordinate system (spatial coordinate system) in which the bottom surface is set to z = 0. The numerical values of dimensions are in units of mm and are in the form of (vertical, horizontal, height) or (diameter, height).
Further, although not shown, connection information between elements (information indicating whether or not to be restrained) such as “the element E3 is sandwiched between the elements E1 and E2” is also the shape element data. 11 is included.
 図4(b)は、要素分割用データ13を示す構成図である。要素分割部12は、形状要素データ11の各要素から、分割を要する要素と、その要素内の分割位置とを決定し、その結果を要素分割用データ13に書き出す。
 要素分割用データ13は、要素ごとに、その要素が分割を要するか(=1)否か(=0)を示す分割フラグと、分割する場合の要素内の分割位置(x,y,z)とを対応づける。この分割位置(x,y,z)は、要素の基準点位置からの相対的な値で示されている。
 図4(c)は、図4(b)の要素分割用データ13の立体表示を示す立体図である。分割フラグ=1である要素E3について、その分割位置(0,40,0)を示す分割トークンが設置されている。
FIG. 4B is a configuration diagram showing the element division data 13. The element division unit 12 determines an element that needs to be divided and a division position in the element from each element of the shape element data 11, and writes the result to the element division data 13.
The element division data 13 includes, for each element, a division flag indicating whether the element needs to be divided (= 1) or not (= 0), and a division position (x, y, z) in the element when dividing. And correspond. This division position (x, y, z) is indicated by a relative value from the reference point position of the element.
FIG. 4C is a three-dimensional view showing a three-dimensional display of the element division data 13 of FIG. A division token indicating the division position (0, 40, 0) is set for the element E3 with the division flag = 1.
 図5は、図3の形状要素データ11をもとにした造形物の各要素を示す構成図である。
 各要素は、自身から見た他要素との接続関係を示す「分類」と、自身の要素の「寸法=代表寸法(mm)(縦×横×高さ)」と、自身の要素の「アスペクト比(縦、横、高さ)」と、自身の要素の「分割位置(相対位置)」とに対応づけられている。
 要素の寸法(縦×横×高さ)=(L×W×H)とし、この要素の代表寸法Rp=L+W+Hとすると、アスペクト比(縦、横、高さ)=(L/Rp,W/Rp,H/Rp)である。なお、円柱の寸法は、直径を縦の長さおよび横の長さとみなしている。
FIG. 5 is a configuration diagram showing each element of a modeled object based on the shape element data 11 of FIG.
Each element has a "classification" that indicates the connection relationship with other elements as seen from itself, its own element "dimension = representative dimension (mm) (vertical x horizontal x height)", and its own element "aspect" The ratio (vertical, horizontal, height) "is associated with the" division position (relative position) "of its own element.
If the element dimensions (vertical x horizontal x height) = (L x W x H) and the typical dimensions of this element are Rp = L + W + H, then the aspect ratio (vertical, horizontal, height) = (L / Rp, W / Rp, H / Rp). In addition, the dimension of the cylinder regards the diameter as the vertical length and the horizontal length.
 図5の「分類」は、以下の3種類のいずれかである。
 分類のうちの「リンク部」は、熱収縮による引張り力が生じる領域を持つ要素である。つまり、リンク部は、熱収縮による自身の要素の形状変化ができないように、複数箇所で他要素(例えば、要素E1,E2)と接続されている要素(要素E)である。
 分類のうちの「接続部」は、リンク部に接続されている要素である。つまり、接続部は、接続されるリンク部の熱収縮に伴い力が伝達されるものの、その力でリンク部の形状変化ができないように、リンク部と接続されている要素である。
 分類のうちの「要素部」は、リンク部にも接続部にも該当しない要素である。要素部は、0~1箇所で他要素と接続されているため、自由に移動できるから応力や歪みが生じる事は無い。
The “classification” in FIG. 5 is one of the following three types.
The “link part” in the classification is an element having a region where a tensile force is generated by heat shrinkage. That is, the link portion is an element (element E) connected to other elements (for example, elements E1 and E2) at a plurality of locations so that the shape of the element itself cannot be changed due to heat shrinkage.
The “connection part” in the classification is an element connected to the link part. That is, the connection part is an element connected to the link part so that the force is transmitted with the thermal contraction of the link part to be connected, but the shape of the link part cannot be changed by the force.
The “element part” in the classification is an element that does not correspond to the link part or the connection part. Since the element portion is connected to other elements at 0 to 1 places, it can move freely, so that no stress or distortion occurs.
 形状要素データ11の分類および寸法は、あらかじめ端末9などから入力される。
 要素分割部12は、前記したように、形状要素データ11の寸法からアスペクト比を計算する。
 要素分割部12は、リンク部のうち、積層方向(Z軸の高さ方向)を除くアスペクト比が閾値0.8を超えるリンク部に分割トークンを設置する(図4(c)の要素E3など)。ここでは閾値を0.8としたが、用いる金属材料や造形物119に求められる強度により、ユーザは、適切な数値を設定する。
 また、閾値判定処理から積層方向を除いたのは、積層方向は自由端であり、熱収縮による自由な収縮が可能であり応力が蓄積し形状に歪を与えることは無いからである。
The classification and dimensions of the shape element data 11 are input in advance from the terminal 9 or the like.
The element dividing unit 12 calculates the aspect ratio from the dimensions of the shape element data 11 as described above.
The element dividing unit 12 installs a dividing token in a link part in which the aspect ratio excluding the stacking direction (Z-axis height direction) exceeds the threshold value 0.8 (such as the element E3 in FIG. 4C). Although the threshold value is 0.8 here, the user sets an appropriate numerical value depending on the metal material to be used and the strength required for the modeled object 119.
The reason why the stacking direction is excluded from the threshold determination process is that the stacking direction is a free end, free contraction due to thermal contraction is possible, stress is not accumulated, and the shape is not distorted.
 図6(a)は、分割前の積層用データ15を示す断面図である。図6(b)は、図6(a)の積層用データ15を積層した部品を示す正面図である。
 レイヤデータ作成部14は、図3(a)の形状要素データ11が示す立体形状を底面(z=0)から最上面に向かう各レイヤごとにXY平面で走査(スライス)し、立体形状が存在する箇所を斜線領域(粉末焼結される箇所)とし、立体形状が存在しない箇所を白領域(粉末焼結されない箇所)とすることで、図6(a)の積層用データ15を作成する。
FIG. 6A is a cross-sectional view showing the lamination data 15 before division. FIG. 6B is a front view showing a component obtained by stacking the stacking data 15 of FIG.
The layer data creation unit 14 scans (slices) the 3D shape indicated by the shape element data 11 in FIG. 3A on the XY plane for each layer from the bottom surface (z = 0) to the top surface, and the 3D shape exists. The portion 15 to be processed is defined as the hatched region (location where powder sintering is performed), and the portion where the three-dimensional shape does not exist is defined as the white region (location where powder sintering is not performed), thereby creating the data 15 for lamination in FIG.
 作成された積層用データ15は、造形物の底面(z=0)から最上面までの断面図である。以下では、1回の粉末焼結積層処理で積層厚さが0.5mm分の積層造形物が積層され、1レイヤは2回分(1mm)の積層造形物を示す。図6(a)では、レイヤL1~L12の12枚のレイヤを例示する。各レイヤの断面図は、レイヤIDごとに別々のファイルとして保管される。 The created stacking data 15 is a cross-sectional view from the bottom surface (z = 0) to the top surface of the modeled object. In the following, a layered object having a layer thickness of 0.5 mm is laminated by one powder sintering lamination process, and one layer indicates a layered object of twice (1 mm). FIG. 6A illustrates 12 layers L1 to L12. The sectional view of each layer is stored as a separate file for each layer ID.
 図7(a)は、図6(a)の積層用データ15の分割結果を示す構成図である。図7(b)は、図7(a)の積層用データ15を積層した部品を示す正面図である。
 レイヤデータ作成部14は、図6(a)の積層用データ15に対して、以下の2つの手順を行うことにより、要素分割用データ13を反映させる。
FIG. 7A is a configuration diagram showing a division result of the stacking data 15 of FIG. FIG. 7B is a front view showing a component obtained by stacking the stacking data 15 of FIG.
The layer data creation unit 14 reflects the element division data 13 by performing the following two procedures on the stacking data 15 shown in FIG.
 (手順1)は、積層用データ15の分割処理である。レイヤデータ作成部14は、積層用データ15のうちの分割対象となる(要素分割用データ13の分割フラグが1である)要素E3を特定し、その要素E3内の分割位置を要素分割用データ13から取得する。そして、レイヤデータ作成部14は、特定した分割位置周辺(例えば、分割位置を中心とした楕円体404)に存在する斜線領域を白領域に変換することで、要素E3を分割する。
 なお、図7(a)では、要素分割された結果、L8~L12の5レイヤ分の斜線領域が白領域に変換されている。このように、要素分割は複数レイヤにまたがってもよいし、1レイヤだけでもよい。
 つまり、レイヤデータ作成部14は、(手順1)により、複数層にまたがる未焼結部分が生じるように、斜線領域が白領域に変換する。
(Procedure 1) is a process of dividing the stacking data 15. The layer data creation unit 14 identifies the element E3 to be divided (the division flag of the element division data 13 is 1) in the lamination data 15, and sets the division position in the element E3 to the element division data 13 from. Then, the layer data creation unit 14 divides the element E3 by converting a hatched area around the identified division position (for example, an ellipsoid 404 centered on the division position) into a white area.
In FIG. 7A, as a result of the element division, the hatched area for five layers L8 to L12 is converted into a white area. As described above, the element division may extend over a plurality of layers or only one layer.
That is, the layer data creation unit 14 converts the hatched region into a white region so that an unsintered portion extending over a plurality of layers is generated by (Procedure 1).
 (手順2)は、(手順1)で分割された積層用データ15の接続処理である。レイヤデータ作成部14は、接続用データ16として、新たにレイヤJ12(5)を作成する。なお、レイヤJ12(5)の「J」は接続用(Joint)を示し、「12」は接続先の最上位のレイヤ(ここでは、L12)を示し、「5」は、接続の深さ(ここでは、L8~L12の5レイヤ分)を示す。
 レイヤデータ作成部14は、新たなレイヤJ12(5)上に対して、(手順1)の分割位置に対して接続用のレーザ照射を行うための領域である斜線領域403と、接続用の領域であることをユーザに明示するためのマーク402とを配置する。そして、レイヤデータ作成部14は、レイヤJ12(5)と接続対象のL12とをリンク401で対応づける。
 つまり、レイヤデータ作成部14は、(手順2)により、(手順1)で生成した複数層にまたがる未焼結部分を焼結させるように、接続用データ16を作成する。
(Procedure 2) is a connection process of the stacking data 15 divided in (Procedure 1). The layer data creation unit 14 creates a new layer J 12 (5) as the connection data 16. Note that “J” in the layer J12 (5) indicates a connection (Joint), “12” indicates the uppermost layer (L12 in this example), and “5” indicates the connection depth ( Here, five layers L8 to L12) are shown.
The layer data creation unit 14 includes a hatched area 403 that is an area for performing laser irradiation for connection to the division position of (Procedure 1) on the new layer J12 (5), and a connection area. And a mark 402 for clearly indicating to the user. Then, the layer data creation unit 14 associates the layer J12 (5) and the connection target L12 with the link 401.
That is, the layer data creation unit 14 creates the connection data 16 so as to sinter the unsintered portion extending over the plurality of layers generated in (Procedure 1) by (Procedure 2).
 なお、(手順1)の白領域(分割用に変換した領域)と、(手順2)の斜線領域403(接続用に変換した領域)とは、同じ大きさや位置の領域としてもよいし、白領域よりも斜線領域403のほうを大きめの領域(例えば、互いに同じ重心であり、白領域よりも面積を30%増加させた斜線領域403)としてもよい。大きめの領域とするのは、分割された積層造形物が形成された後の冷却期間により、積層物が熱収縮することで、積層物が水平方向(積層方向と直交する方向)に縮んで分割の隙間が大きくなる事象に対処するためである。 Note that the white region (region converted for division) in (Procedure 1) and the hatched region 403 (region converted for connection) in (Procedure 2) may be the same size or position, or white The hatched area 403 may be larger than the area (for example, the hatched area 403 having the same centroid and an area increased by 30% as compared with the white area). The larger region is defined by the shrinkage of the laminate in the horizontal direction (direction perpendicular to the lamination direction) due to the thermal contraction of the laminate during the cooling period after the divided layered object is formed. This is to cope with an event in which the gap between the two becomes large.
 図8(a)は、図7(a)の積層用データ15を示す構成図である。積層用データ15は、レイヤ番号ごとに、そのレイヤIDと、分割フラグとを対応づける。なお、図7(a)の積層用データ15では、L8~L12の5レイヤ分が分割されているが、図8(a)の積層用データ15では、L12だけが分割フラグ=1である。これは、(手順2)でレイヤデータ作成部14によって作成されたリンク401が存在するか否かを分割フラグとしているためである。つまり、分割フラグ=1のレイヤには、接続用データ16が対応づけられている。
 図8(b)は、図7(a)の接続用データ16を示す構成図である。接続用データ16は、レイヤ番号ごとに、接続データID(接続用データ16のID)が対応づけられている。
FIG. 8A is a configuration diagram showing the stacking data 15 of FIG. The stacking data 15 associates the layer ID with the division flag for each layer number. In the stacking data 15 in FIG. 7A, five layers L8 to L12 are divided, but in the stacking data 15 in FIG. 8A, only L12 has a split flag = 1. This is because the division flag indicates whether or not the link 401 created by the layer data creation unit 14 in (Procedure 2) exists. That is, the connection data 16 is associated with the layer with the division flag = 1.
FIG. 8B is a configuration diagram showing the connection data 16 of FIG. The connection data 16 is associated with a connection data ID (ID of the connection data 16) for each layer number.
 図9(a)は、図7(a)の造形物の形成処理を示す説明図である。
 符号311において、基盤上に支柱301,302が固定され、その支柱間を接続するようにレーザ303,304が照射される。
 符号312において、次に、レーザ303,304により梁303b,304bが造形され、その梁間の空間309は、図7(a)の積層用データ15が示すように、分割されている。
Fig.9 (a) is explanatory drawing which shows the formation process of the molded article of Fig.7 (a).
At reference numeral 311, the columns 301 and 302 are fixed on the base, and the lasers 303 and 304 are irradiated so as to connect the columns.
Next, at reference numeral 312, the beams 303 b and 304 b are formed by the lasers 303 and 304, and the space 309 between the beams is divided as indicated by the stacking data 15 in FIG.
 符号313において、溶融凝固した金属材料を冷却し収縮させる。このとき、梁303c,304cの間には、(手順1)の積層用データ15が分割されているので隙間がある。よって、梁303c,304cはそれぞれ自由に動ける端面を与えられることで、熱収縮による梁の体積が減少が支柱301,302に影響せず、引張り力が生じることはなく応力も残留しない。
 符号314において、空間309に金属粉末を補充し、梁の間に生じた隙間を埋めた後、(手順2)の接続用データ16をもとにレーザ照射により梁303c,304cを接続部305で接続させることで、2つの梁303c,304cを1つの梁として一体化させ、造形に必要な強度を確保する。
At 313, the molten and solidified metal material is cooled and contracted. At this time, there is a gap between the beams 303c and 304c because the stacking data 15 of (Procedure 1) is divided. Therefore, the beams 303c and 304c are each provided with an end face that can freely move, so that a reduction in the volume of the beam due to thermal contraction does not affect the columns 301 and 302, no tensile force is generated, and no stress remains.
At reference numeral 314, after filling the space 309 with metal powder and filling the gap generated between the beams, the beams 303 c and 304 c are connected by the connection unit 305 by laser irradiation based on the connection data 16 in (Procedure 2). By connecting, the two beams 303c and 304c are integrated as one beam, and the strength required for modeling is ensured.
 図9(b)は、図9(a)の造形物を示す正面図である。
 この造形物のうちの支柱301,302と、梁303c,304cとは、それぞれ積層処理により形成されているので、図9(b)では横線で示される各層が記載されている。一方、接続部305は、複数層にまたがる接続処理により積層されずに一度に形成されているので、図9(b)では点模様で示され、横線で示される層とは区別する。
 なお、図9(b)の造形物と、図13の造形物とを比較すると、梁の熱収縮による応力の生じる範囲が、梁全体(梁303c+接続部305+梁304c)の距離から、接続部305の距離へと低減されている。よって、熱収縮に伴う引張り力を削減し、残留応力および形状の歪を低減させることができる。
FIG.9 (b) is a front view which shows the molded article of Fig.9 (a).
Since the pillars 301 and 302 and the beams 303c and 304c of the modeled object are formed by lamination processing, each layer indicated by a horizontal line is illustrated in FIG. 9B. On the other hand, the connection portion 305 is formed at a time without being stacked by a connection process extending over a plurality of layers, so that it is distinguished from a layer indicated by a dotted pattern in FIG. 9B and indicated by a horizontal line.
9B and the modeled object of FIG. 13, the range in which the stress due to the thermal shrinkage of the beam is determined from the distance of the entire beam (beam 303c + connecting part 305 + beam 304c). The distance is reduced to 305. Therefore, the tensile force accompanying heat shrinkage can be reduced, and residual stress and shape distortion can be reduced.
 図10は、図9(a)の造形物の形成処理を行うための操作命令18を示す構成図である。
 まず、操作命令18を実行する前の初期状態では、金属粉末118および造形物119は存在せず、これから製造に用いる金属粉末117が充分備わっているものとする。
 操作命令作成部17は、以下に示すように、積層用データ15および接続用データ16から、操作命令18を作成する。
FIG. 10 is a configuration diagram showing an operation command 18 for performing the formation process of the shaped article of FIG.
First, it is assumed that the metal powder 118 and the modeled object 119 do not exist in the initial state before the operation instruction 18 is executed, and the metal powder 117 to be used for manufacturing from now on is sufficiently provided.
The operation command creating unit 17 creates an operation command 18 from the stacking data 15 and the connection data 16 as shown below.
 1行目の命令Initialは、造形装置100を初期状態に設定するため、基盤120を基準テーブル112の高さに揃える命令である。
 2~5行目の命令は、第1層(L1)の積層処理のうちの1回目の焼結処理である。
 2行目の命令UpBord01(0.5)は、引数の高さ(0.5mm)分、昇降機構123(昇降テーブル121)を上昇させる命令である。
 3行目の命令DownBord02(0.5)は、引数の高さ(0.5mm)分、昇降機構124(昇降テーブル122)を下降させる命令である。これにより、基盤120上に金属粉末118を設定するスペースが確保される。
The command Initial on the first line is a command for aligning the base 120 to the height of the reference table 112 in order to set the modeling apparatus 100 in the initial state.
The commands on the 2nd to 5th lines are the first sintering process in the laminating process of the first layer (L1).
The command UpBord01 (0.5) on the second line is a command to raise the lifting mechanism 123 (lifting table 121) by the height of the argument (0.5 mm).
The command DownBord02 (0.5) on the third line is a command to lower the lifting mechanism 124 (lifting table 122) by the height of the argument (0.5 mm). Thereby, the space which sets the metal powder 118 on the base | substrate 120 is ensured.
 4行目の命令Squeegは、スキージ116が駆動させる命令である。スキージ116は、昇降テーブル121から上昇した分の金属粉末117を昇降テーブル122に運んだ後、元の位置に戻る。 The command Squeeg on the fourth line is a command that the squeegee 116 drives. The squeegee 116 returns to the original position after carrying the metal powder 117 ascended from the lifting table 121 to the lifting table 122.
 5行目の命令LaserBeam(L1)は、引数で指定されたレイヤID(L1)の積層用データ15の斜線領域に従って積層用レーザを照射することで、金属粉末118を焼結させるための命令である。 The command LaserBeam (L1) on the fifth line is a command for sintering the metal powder 118 by irradiating the laminating laser according to the hatched area of the laminating data 15 of the layer ID (L1) specified by the argument. is there.
 6~9行目の命令は、2~5行目の命令と同様に、第1層(L1)の積層処理のうちの2回目の焼結処理である。なお、第n層での命令Squeegで供給された金属粉末118のうちの第n層での命令LaserBeam(Ln)の対象外(未焼結)の部分は、第n+1層以降も吹き飛ばさないで残留する。これにより、焼結層の下部に空間があっても、その焼結層は落下しない。
 35~38行目の命令は、第12層(L12)の積層処理のうちの1回目の焼結処理である。39~42行目の命令は、第12層(L12)の積層処理のうちの2回目の焼結処理である。
 以上により、図9の符号312に示すように、分割された造形物の積層処理が行われる。
The instructions on the 6th to 9th lines are the second sintering process in the laminating process on the first layer (L1), similar to the instructions on the 2nd to 5th lines. Of the metal powder 118 supplied by the command Squeeg in the nth layer, the portion not covered by the command LaserBeam (Ln) in the nth layer (unsintered) remains without being blown off even after the n + 1th layer. To do. Thereby, even if there is a space below the sintered layer, the sintered layer does not fall.
The command on the 35th to 38th lines is the first sintering process in the lamination process of the twelfth layer (L12). The command in the 39th to 42nd lines is the second sintering process in the laying process of the twelfth layer (L12).
As described above, as shown by reference numeral 312 in FIG. 9, the layered processing of the divided shaped objects is performed.
 43行目の命令Wait(3)は、引数で指定された時間(3秒間)、次の命令に進むのを待つ命令である。この冷却のための待ち時間により、図9の符号313に示すように、造形物の熱収縮が行われる。
 44行目の命令UpBord01(0.5)は、昇降機構123を上に0.5mm分上昇させる命令である。
 45行目の命令Squeegは、4行目の命令Squeegと同様に、金属粉末117を基盤120上に供給させる命令である。この命令により、体積縮小分の隙間を埋めるための金属粉末の補充が行われる。
The command Wait (3) on the 43rd line is a command that waits for the next command to proceed for the time (3 seconds) specified by the argument. With this waiting time for cooling, as shown by reference numeral 313 in FIG.
The command UpBord01 (0.5) on the 44th line is a command to raise the elevating mechanism 123 upward by 0.5 mm.
The instruction Squeeg on the 45th line is an instruction for supplying the metal powder 117 onto the substrate 120, similarly to the instruction Squeeg on the fourth line. By this command, the metal powder is replenished to fill the gap corresponding to the volume reduction.
 なお、4行目の命令Squeeg(積層用の粉末補充)と、45行目の命令Squeeg(接続用の粉末補充)とを別々の命令として区別してもよい。区別する場合は、接続用の粉末補充機構として、スキージ116の可動範囲を接続位置(図9の符号305の位置)までに限定してもよい。
 または、スキージ116の代わりに、接続用の粉末補充機構を新たに設け、その粉末補充機構の粉末供給部を接続位置の上部に移動させた後、接続位置に対して上部から直接粉末を供給(落下)させてもよい。
 さらに、接続用の粉末と、積層用の粉末とを別の種類の粉末としてもよい。これにより、焼結後に強度が強くなる粉末を接続箇所に重点的に補充することで、接続部の強度を上げることができる。
Note that the command Squeeg on the fourth line (powder replenishment for lamination) and the command Squeeg on the 45th line (powder replenishment for connection) may be distinguished as separate instructions. When distinguishing, as a powder replenishing mechanism for connection, the movable range of the squeegee 116 may be limited to the connection position (position 305 in FIG. 9).
Alternatively, instead of the squeegee 116, a powder replenishment mechanism for connection is newly provided, and the powder supply unit of the powder replenishment mechanism is moved to the upper part of the connection position, and then the powder is directly supplied from the upper part to the connection position May be dropped).
Furthermore, the connecting powder and the laminating powder may be different types of powders. Thereby, the strength of the connecting portion can be increased by replenishing the connecting portions with a powder that has increased strength after sintering.
 46行目の命令JointLaserBeam(J12,5)は、引数で指定された接続データID「J12」およびレイヤ深さ「5mm」の接続用データ16に従って接続用レーザを照射することで、分割された要素を接続させるための命令である。
 これにより、図9の符号314に示すように、造形物の接続が行われることで、その接続された造形物は、図6の積層用データ15で示される分割前の本来の形状に近づく。
 47行目の命令Endは、造形装置100に造形処理が終了したことを知らせるための命令である。
The command JointLaserBeam (J12,5) on the 46th line divides the element by irradiating the connection laser according to the connection data 16 “J12” and the layer depth “5 mm” specified by the arguments. Is an instruction to connect the.
As a result, as shown by reference numeral 314 in FIG. 9, the modeled object is connected, so that the connected modeled object approaches the original shape before the division indicated by the stacking data 15 in FIG.
The command End on the 47th line is a command for informing the modeling apparatus 100 that the modeling process has ended.
 図11(a)は、造形物製造のメイン処理を示すフローチャートである。
 形状データ格納処理(S11)では、制御部10は、端末9から送信された造形物119の形状データを、形状要素データ11に格納する。
 要素分割処理(S12、詳細は図11(b))では、要素分割部12は、S11の形状要素データ11の要素ごとに、図4(c)で示したように、熱収縮による引張り力が生じやすい要素内の分割の箇所を示した要素分割用データ13を作成する。
 レイヤデータ作成処理(S13)では、レイヤデータ作成部14は、図6,図7で示したように、形状要素データ11に対して要素分割用データ13に従って分割した積層用データ15と、その分割位置を接続するための接続用データ16とを作成する。
Fig.11 (a) is a flowchart which shows the main process of modeling thing manufacture.
In the shape data storage process (S <b> 11), the control unit 10 stores the shape data of the modeled object 119 transmitted from the terminal 9 in the shape element data 11.
In the element dividing process (S12, details are shown in FIG. 11B), the element dividing unit 12 generates a tensile force due to thermal contraction for each element of the shape element data 11 in S11 as shown in FIG. Element division data 13 is created that indicates the division locations within the elements that are likely to occur.
In the layer data creation process (S13), as shown in FIGS. 6 and 7, the layer data creation unit 14 divides the shape element data 11 in accordance with the element division data 13, and the division data 15 Connection data 16 for connecting positions is created.
 なお、制御装置1は、図6,図7で示した積層用データ15と接続用データ16とのうちの少なくとも1つのデータを、制御装置1に接続されたディスプレイや、端末9のディスプレイに対して、表示させてもよい。これにより、造形装置100による造形処理を開始する前に、ユーザはこれから造形される造形物の形状を把握することができる。 The control device 1 transmits at least one of the stacking data 15 and the connection data 16 shown in FIGS. 6 and 7 to the display connected to the control device 1 or the display of the terminal 9. May be displayed. Thereby, before starting the modeling process by the modeling apparatus 100, the user can grasp | ascertain the shape of the molded article to be modeled from now on.
 命令作成処理(S14、詳細は図12)では、操作命令作成部17は、図10で例示したように、積層用データ15および接続用データ16から、操作命令18を作成する。
 命令送信処理(S15)では、操作命令作成部17は、S14の操作命令18中の一連の命令を先頭から順に造形装置100に送信することで、操作命令18に沿った造形物119を造形装置100に造形させる。
In the command creation process (S14, details are shown in FIG. 12), the operation command creation unit 17 creates the operation command 18 from the stacking data 15 and the connection data 16 as illustrated in FIG.
In the command transmission process (S15), the operation command creation unit 17 transmits a series of commands in the operation command 18 of S14 to the modeling apparatus 100 in order from the top, so that the modeling object 119 along the operation command 18 is formed. 100.
 図11(b)は、要素分割処理(S12)の詳細を示すフローチャートである。
 要素細分化処理(S101)では、要素分割部12は、形状要素データ11の要素ごとに、その領域内の自由な動きが拘束され、熱収縮による引張り力が生じる領域を特定し、特定した領域をもとに、1つの要素を複数の要素に細分化(分離)する。例えば、図3(b)では、要素分割部12は、1つの要素E5を3つの要素(E51,E52,E53)へと分離する。
FIG. 11B is a flowchart showing details of the element division processing (S12).
In the element subdivision process (S101), the element dividing unit 12 specifies, for each element of the shape element data 11, a region in which a free movement in the region is restricted and a tensile force due to thermal contraction is generated, and the specified region Based on the above, one element is subdivided (separated) into a plurality of elements. For example, in FIG. 3B, the element dividing unit 12 separates one element E5 into three elements (E51, E52, E53).
 分類処理(S102)では、要素分割部12は、図5で説明したように、形状要素データ11の要素ごとに、接続部、リンク部、要素部のいずれかに分類する。
 アスペクト比算出処理(S103)では、要素分割部12は、図5で説明したように、形状要素データ11の各要素の形状から、各要素のアスペクト比を算出する。
 なお、S101で分離された要素が存在するときには、要素分割部12は、その分離された要素ごとに分類し(S102)、アスペクト比を算出する(S103)。
 分割トークンデータ生成処理(S104)では、要素分割部12は、図5で示したように、S102の分類結果と、S103のアスペクト比とをもとに、各要素について必要に応じて分割トークンを設置する。
In the classification process (S102), the element dividing unit 12 classifies each element of the shape element data 11 into one of a connection unit, a link unit, and an element unit as described with reference to FIG.
In the aspect ratio calculation process (S103), the element dividing unit 12 calculates the aspect ratio of each element from the shape of each element of the shape element data 11, as described with reference to FIG.
When there are elements separated in S101, the element dividing unit 12 classifies the elements for each separated element (S102) and calculates an aspect ratio (S103).
In the divided token data generation process (S104), as shown in FIG. 5, the element dividing unit 12 generates a divided token as necessary for each element based on the classification result of S102 and the aspect ratio of S103. Install.
 図12は、命令作成処理(S14)の詳細を示すフローチャートである。以下、図10の操作命令18(~行目)を参照しつつ、図12を説明する。
 S201において、操作命令作成部17は、1行目の命令Initialを生成する。
 S202~S205は、レイヤデータ作成処理(S13)で作成された積層用データ15を下層(高さが低い層)から順に1つずつ選択するループ処理である。ループ内で現在選択している層を、「選択層」として説明する。
FIG. 12 is a flowchart showing details of the instruction creation process (S14). Hereinafter, FIG. 12 will be described with reference to the operation instruction 18 (to the line) in FIG.
In S201, the operation command creating unit 17 generates a command Initial on the first line.
S202 to S205 are loop processes for selecting the stacking data 15 created in the layer data creation process (S13) one by one in order from the lower layer (the layer having the lowest height). The layer currently selected in the loop will be described as a “selected layer”.
 S203において、操作命令作成部17は、選択層について、金属粉末118の補充命令(例えば、2行目のUpBord01,3行目のDownBord02,4行目のSqueegなど)を生成する。
 S204において、操作命令作成部17は、選択層について、S203で補充された金属粉末118に対する積層用のレーザ照射命令(5行目のLaserBeamなど)を生成する。
 なお、図10で説明したように、S203,S204の処理の組み合わせは、複数回実行してもよい。例えば、1回の焼結積層処理で積層厚さ0.5mm分を造成でき、1レイヤが1mm分である場合、S203,S204の処理の組み合わせを2セット分実行すればよい。
In S203, the operation command creating unit 17 generates a replenishment command (for example, UpBord01 in the second row, DownBord02 in the third row, Squeeg in the fourth row, etc.) for the selected layer.
In S <b> 204, the operation command creating unit 17 generates a laser irradiation command (such as LaserBeam in the fifth row) for stacking the metal powder 118 replenished in S <b> 203 for the selected layer.
As described with reference to FIG. 10, the combination of the processes in S203 and S204 may be executed a plurality of times. For example, when the lamination thickness of 0.5 mm can be formed by one sintering lamination process, and one layer is 1 mm, the combination of the processes of S203 and S204 may be executed for two sets.
 S211において、操作命令作成部17は、要素分割用データ13の分割フラグが「1」であるときに、図7(a)の符号401で示したような接続用データ16とのリンクがあると判断する。リンクがないときには(S211,No)処理を終了し、リンクがあるときには(S211,Yes)処理をS212に進める。
 S212において、操作命令作成部17は、接続準備の命令(43行目のWait,44行目のUpBord01,45行目のSqueeg)を生成する。
 S213において、操作命令作成部17は、接続用のレーザ照射命令(46行目の命令JointLaserBeam)と、47行目の命令Endとを生成し、処理を終了する。
In S211, if the division flag of the element division data 13 is “1”, the operation command creation unit 17 has a link with the connection data 16 as indicated by reference numeral 401 in FIG. to decide. If there is no link (S211, No), the process ends. If there is a link (S211, Yes), the process proceeds to S212.
In S212, the operation command creating unit 17 generates a connection preparation command (Wait on the 43rd line, UpBord01 on the 44th line, Squeeg on the 45th line).
In S213, the operation command creation unit 17 generates a connection laser irradiation command (command JointLaserBeam on the 46th line) and a command End on the 47th line, and ends the process.
 以上説明した本実施形態では、レーザ光または電子ビームを用いて粉末焼結した成形材料の焼結層を複数積層して一体化した造形物の製造方法を示した。
 造形装置100は、成形材料の層の所定箇所にレーザ光を照射することで成形材料を焼結させて焼結層を形成する。さらに、造形装置100は、焼結層の上に成形材料の層を被覆すると共にこの成形材料の所定箇所にレーザ光を照射することで成形材料を焼結させて下の焼結層と一体になった焼結体を形成する。
 造形装置100は、これらの焼結工程を繰り返すことで、複数の焼結層が積層一体化された焼結体を有する光造形物を製造する。
In the present embodiment described above, a method for manufacturing a shaped article in which a plurality of sintered layers of a molding material powder-sintered using a laser beam or an electron beam are stacked and integrated is shown.
The modeling apparatus 100 sinters the molding material by irradiating a predetermined portion of the molding material layer with laser light to form a sintered layer. Furthermore, the modeling apparatus 100 coats a layer of the molding material on the sintered layer and irradiates a predetermined portion of the molding material with laser light to sinter the molding material so as to be integrated with the lower sintered layer. A formed sintered body is formed.
The modeling apparatus 100 manufactures an optical modeling object having a sintered body in which a plurality of sintered layers are laminated and integrated by repeating these sintering steps.
 そのため、制御装置1は、造形物を構成する要素を2つ以上の要素に分割し、それぞれの分割した要素を粉末焼結積層造形した後、分割した要素を粉末焼結により接続する旨の造形装置100への操作命令18を事前に作成する。制御装置1は、造形物の要素のアスペクト比と、要素の分類とから分割処理における分割箇所を特定する。 Therefore, the control device 1 divides the elements constituting the modeled object into two or more elements, and after each of the divided elements is powder-sintered and layered, modeling is performed to connect the divided elements by powder sintering. An operation instruction 18 for the apparatus 100 is created in advance. The control apparatus 1 specifies the division | segmentation location in a division | segmentation process from the aspect ratio of the element of a molded article, and the classification | category of an element.
 これにより、ある要素を分割することで、その要素と隣接する別の要素との間の拘束が解かれるので、熱収縮に伴う引張り力が隣接する別の要素へと伝達されずに済む。さらに、分割箇所を改めて接続することで、所望の形状の造成物を作成できる上、充分な強度を確保することができる。
 なお、本実施形態の造形物の製造方法は、焼結体の焼結密度をとくに限定しないので、まとまった体積を必要とし、複数の細い梁で構築されたラティス構造や中空構造を持つ複雑な形状の造形物の製造にも適している。
Thereby, by dividing a certain element, the constraint between that element and another adjacent element is released, so that the tensile force due to thermal contraction does not have to be transmitted to another adjacent element. Furthermore, by connecting the divided portions anew, it is possible to create a composition having a desired shape and to ensure sufficient strength.
In addition, since the manufacturing method of the molded object of this embodiment does not specifically limit the sintered density of the sintered body, it requires a united volume, and has a complicated lattice structure or hollow structure constructed by a plurality of thin beams. It is also suitable for manufacturing shaped objects.
 図13は、比較例として、2本の支柱間を梁で接続するような積層処理を示す説明図である。
 図13(a)の焼結開始時点において、基盤204上の金属粉末200に向かってレーザが照射されることで、支柱201,202が造成される。その後、図13(b)の梁206を造成するために、支柱201,202間を接続するように往復する走査方向203に、レーザが照射される。
 なお、走査方向203について、往復のうちの片道の走査で、ビームスポット径0.5mm分の太さ(Y軸方向の長さ)分の焼結ができるので、梁206の太さが5mmである場合は、0.5mm分ずつY軸方向にずらしながら、5往復(=5mm÷0.5mm÷2)分走査すればよい。
 図13(b)の焼結終了時点において、支柱201,202間を接続する梁206が形成される。しかし、図13(a)で短期間に支柱201,202間を接続した梁206の収縮によって、支柱201,202に対する引張り力が生じ、残留応力となって造成物の形状が意図しないように変形してしまうこともある。
FIG. 13 is an explanatory view showing a stacking process in which two struts are connected by a beam as a comparative example.
At the start of sintering in FIG. 13A, the columns 201 and 202 are formed by irradiating the metal powder 200 on the substrate 204 with laser. Thereafter, in order to construct the beam 206 of FIG. 13B, laser is irradiated in the scanning direction 203 that reciprocates so as to connect the columns 201 and 202.
In the scanning direction 203, the beam spot diameter of 0.5 mm (the length in the Y-axis direction) can be sintered by one-way scanning in the reciprocation, so that the thickness of the beam 206 is 5 mm. In this case, it is sufficient to scan 5 reciprocations (= 5 mm ÷ 0.5 mm ÷ 2) while shifting in the Y-axis direction by 0.5 mm.
At the end of sintering in FIG. 13B, a beam 206 that connects the columns 201 and 202 is formed. However, due to the contraction of the beam 206 connecting the columns 201 and 202 in a short period of time in FIG. 13A, a tensile force is generated on the columns 201 and 202, resulting in residual stress and deformation of the formed product unintentionally. Sometimes it ends up.
 以下、図14を参照して、金属粉末118を焼結した造形物119の主な特徴として、第1~第3の特徴を順に説明する。なお、造形物119が備える特徴は、以下の3つの特徴だけに限定されない。また、造形物119は、以下の3つの特徴をすべて備えていなくてもよく、例えば、第1の特徴だけを備えていてもよい。
 図14(a)は、図9(b)とは別の造形物119の一例を示す正面図である。
 接続用データ16から作成される接続部501は、積層用データ15から作成される左側の積層部502および右側の積層部503を接続する。つまり、接続部501は造形物119のうちの接続要素であり、積層部502,503は、それぞれ造形物119のうちの被接続要素である。
 図14(b)は、図9(b)や図14(a)とは別の造形物119の一例を示す正面図である。
 接続用データ16から作成される接続部511は、積層用データ15から作成される左側の積層部512および右側の積層部513を接続する。
 ちなみに、図14の造形物119は、当該造形物119を構成する要素同士(この例では積層部502,503/積層部512,513)の間に、当該要素の積層数よりも少ない積層数からなる焼結金属の要素(この例では接続部501/511)が介在している(間に位置している)構造といえる。この点は、図9などの例でも同じである。
Hereinafter, with reference to FIG. 14, the first to third features will be described in order as the main features of the shaped object 119 obtained by sintering the metal powder 118. Note that the features of the model 119 are not limited to the following three features. Further, the modeled object 119 may not include all the following three features, and may include only the first feature, for example.
Fig.14 (a) is a front view which shows an example of the molded article 119 different from FIG.9 (b).
The connection unit 501 created from the connection data 16 connects the left laminate unit 502 and the right laminate unit 503 created from the laminate data 15. That is, the connection part 501 is a connection element in the modeled object 119, and the stacked parts 502 and 503 are connected elements in the modeled object 119, respectively.
FIG.14 (b) is a front view which shows an example of the molded article 119 different from FIG.9 (b) and FIG.14 (a).
The connection unit 511 created from the connection data 16 connects the left laminate unit 512 and the right laminate unit 513 created from the laminate data 15.
Incidentally, the modeled object 119 in FIG. 14 has a smaller number of layers than the number of layers of the elements between the elements constituting the modeled object 119 (in this example, the layered portions 502, 503 / layered portions 512, 513). It can be said that the sintered metal element (in this example, the connection portion 501/511) is interposed (positioned between). This is the same in the example of FIG.
 接続部501(接続部511も同様)は、以下の特徴を有する。
 第1の特徴は、接続部501の積層数は、積層部502,503の積層数よりも少ない特徴である。例えば、図10の46行目の命令JointLaserBeam(J12,5)は、被接続要素の5層分を接続要素の1層分として(一度に)焼結する旨の命令であるので、被接続要素の積層数は、接続要素の積層数よりも少なくなる。
 なお、接続部501の積層数は、1層に限定せず、2層以上としてもよい。なお、造形物119の積層数は、造形物の断面を顕微鏡などで観察することにより、分析することができる。
 これにより、積層部502と積層部503との間に接続部501が存在しない造形物に比べて、接続部501を設ける造形物は、積層部502,503の残留応力によるひずみが発生しても、そのひずみが隣接する他の要素に影響を与えないので、造形物としての強度や耐久性を向上させることができる。
The connection portion 501 (the same applies to the connection portion 511) has the following characteristics.
The first feature is that the number of stacked layers of the connecting portion 501 is smaller than the number of stacked layers of the stacked portions 502 and 503. For example, the command JointLaserBeam (J12,5) on the 46th line in FIG. 10 is a command to sinter (at one time) five layers of connected elements as one layer of connected elements. The number of stacked layers is smaller than the number of stacked connection elements.
Note that the number of stacked connection portions 501 is not limited to one, and may be two or more. In addition, the number of lamination | stacking of the molded article 119 can be analyzed by observing the cross section of a molded article with a microscope.
Thereby, compared with the molded article in which the connection part 501 does not exist between the laminated part 502 and the laminated part 503, the molded article in which the connection part 501 is provided may be distorted due to the residual stress of the laminated parts 502 and 503. Since the distortion does not affect other adjacent elements, the strength and durability as a model can be improved.
 第2の特徴は、接続部501によって接続される積層部502,503のうちの少なくとも1つは、積層される層に沿った方向(XY平面上の任意の方向、例えば、X軸方向やY軸方向)に、所定長以上の長さがある特徴である。図5で説明したように、要素分割部12は、リンク部のうち、積層方向(Z軸の高さ方向)を除くアスペクト比が閾値0.8を超えるリンク部(つまり、所定長以上の長さがあるリンク部)に分割トークンを設置する。
 つまり、接続部501による接続効果を充分に得るためには、単に接続部501の数を増やすよりも、焼結後のサイズ変化(縮小)が大きい箇所に対して重点的に接続部501を配置することが望ましい。これにより、冷却後の積層部502,503間を接続部501で接続することで、熱収縮によるひずみや変形を効果的に防止する。
The second feature is that at least one of the stacked portions 502 and 503 connected by the connecting portion 501 has a direction along the layer to be stacked (any direction on the XY plane, for example, the X-axis direction or the Y-axis direction). (Axial direction) is characterized by having a length of a predetermined length or more. As described with reference to FIG. 5, the element dividing unit 12 is a link unit in which the aspect ratio excluding the stacking direction (the Z-axis height direction) exceeds the threshold value 0.8 (that is, a length greater than or equal to a predetermined length). A split token is installed at a certain link part).
In other words, in order to sufficiently obtain the connection effect by the connection part 501, the connection part 501 is intensively arranged at a place where the size change (reduction) after sintering is larger than simply increasing the number of the connection parts 501. It is desirable to do. Thereby, by connecting between the stacked portions 502 and 503 after cooling by the connecting portion 501, distortion and deformation due to heat shrinkage are effectively prevented.
 第3の特徴は、接続部501が、積層部502の端面と、積層部503の端面とを接続する特徴である。そのため、接続部501は、例えば、突合せ溶接工程によって形成される。 The third feature is that the connecting portion 501 connects the end surface of the stacked portion 502 and the end surface of the stacked portion 503. Therefore, the connection part 501 is formed by a butt welding process, for example.
 一方、本実施形態では、図9で説明したように、梁303c,304c間を接続部305で接続することで、引張り力の影響を隣接する支柱301,302に伝達させずに済む。 On the other hand, in this embodiment, as described with reference to FIG. 9, by connecting the beams 303 c and 304 c with the connecting portion 305, it is not necessary to transmit the influence of the tensile force to the adjacent columns 301 and 302.
 なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
 また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路で設計するなどによりハードウェアで実現してもよい。
 また、前記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。
In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
 各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリや、ハードディスク、SSD(Solid State Drive)などの記録装置、または、IC(Integrated Circuit)カード、SDカード、DVD(Digital Versatile Disc)などの記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
Information such as programs, tables, and files for realizing each function is stored in memory, a hard disk, a recording device such as an SSD (Solid State Drive), an IC (Integrated Circuit) card, an SD card, a DVD (Digital Versatile Disc), etc. Can be placed on any recording medium.
Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
 1   制御装置
 9   端末
 10  制御部
 11  形状要素データ
 12  要素分割部
 13  要素分割用データ
 14  レイヤデータ作成部
 15  積層用データ
 16  接続用データ
 17  操作命令作成部
 18  操作命令
 91~93 接続線
 100 造形装置
 110 炭酸ガスレーザ発振器
 111 コリメータ
 112 基準テーブル
 113 ガルバノ走査装置
 114 集光レンズ
 116 スキージ
 117,118 金属粉末(成形材料)
 119 造形物(金属粉末焼結部品)
 120 基盤
 121,122 昇降テーブル
 123,124 昇降機構
DESCRIPTION OF SYMBOLS 1 Control apparatus 9 Terminal 10 Control part 11 Shape element data 12 Element division part 13 Element division data 14 Layer data creation part 15 Data for lamination | stacking 16 Connection data 17 Operation instruction creation part 18 Operation instruction 91-93 Connection line 100 Modeling apparatus DESCRIPTION OF SYMBOLS 110 Carbon dioxide laser oscillator 111 Collimator 112 Reference table 113 Galvano scanning device 114 Condensing lens 116 Squeegee 117,118 Metal powder (molding material)
119 Modeled objects (metal powder sintered parts)
120 Base 121, 122 Lifting table 123, 124 Lifting mechanism

Claims (11)

  1.  成形材料を被覆した層の形成と、当該層の焼結とを繰り返すことで複数層を形成する造形物を製造するときに、複数層にまたがる未焼結部分が生じるように、順次、被覆と焼結とを繰り返す積層工程と、
     前記複数層にまたがる未焼結部分を焼結させることで、前記造形物に接続部分を形成する接続工程と、を有することを特徴とする
     造形物製造方法。
    In order to produce a green body that forms a plurality of layers by repeating formation of a layer coated with a molding material and sintering of the layer, the coating and A lamination process that repeats sintering;
    And a connecting step of forming a connecting portion on the modeled object by sintering an unsintered part extending over the plurality of layers.
  2.  前記接続工程は、前記複数層にまたがる未焼結部分に対して前記成形材料を補充した後に、前記未焼結部分を焼結させることを特徴とする
     請求項1に記載の造形物製造方法。
    The method for manufacturing a shaped article according to claim 1, wherein, in the connecting step, the green portion is sintered after the molding material is replenished to the green portion extending over the plurality of layers.
  3.  前記積層工程の終了時点から、前記接続工程の開始時点までに、所定の冷却時間を確保することを特徴とする
     請求項2に記載の造形物製造方法。
    The method for manufacturing a shaped article according to claim 2, wherein a predetermined cooling time is secured from the end of the laminating step to the start of the connecting step.
  4.  前記積層工程の焼結に用いるレーザ光の照射機構と、前記接続工程の焼結に用いるレーザ光の照射機構とを、それぞれ別々の機構として用いることを特徴とする
     請求項3に記載の造形物製造方法。
    The shaped article according to claim 3, wherein the laser beam irradiation mechanism used for sintering in the laminating step and the laser beam irradiation mechanism used for sintering in the connecting step are used as separate mechanisms. Production method.
  5.  前記接続工程の焼結に用いるレーザ光の照射機構は、前記積層工程の焼結に用いるレーザ光の照射機構よりも、レーザ出力を強くするもの、および、レーザ出力期間を長くするもののうちの少なくとも1つであることを特徴とする
     請求項4に記載の造形物製造方法。
    The laser beam irradiation mechanism used for sintering in the connection step is at least one of a laser output irradiation mechanism stronger than a laser beam irradiation mechanism used for sintering in the laminating step and a laser output period extended. It is one, The molded article manufacturing method of Claim 4 characterized by the above-mentioned.
  6.  造形物の構成要素ごとの立体形状データを読み込み、読み込んだ構成要素のうちの分割対象の構成要素およびその構成要素内の分割位置を特定する要素分割部と、
     前記造形物の立体形状データを複数層にスライスし、スライスした各層で前記造形物が存在する箇所を第1焼結領域としたレイヤデータを作成し、
     前記作成したレイヤデータのうちの前記要素分割部が特定した分割位置に該当する複数層の箇所を前記第1焼結領域から未焼結領域に修正し、前記分割位置に該当する複数層にまたがる未焼結部分を焼結させる第2焼結領域を追加するレイヤデータ作成部と、
     前記レイヤデータ作成部が作成したレイヤデータに従って、成形材料を被覆した各層の前記第1焼結領域を焼結させた後に、前記第2焼結領域を焼結させることで、前記造形物に接続部分を形成する旨の操作命令を作成する操作命令作成部と、を有することを特徴とする
     制御装置。
    An element dividing unit that reads solid shape data for each component of the modeled object, and identifies the component to be divided among the read components and the division position in the component;
    Slice the three-dimensional shape data of the modeled object into a plurality of layers, create layer data in which the modeled object exists in each sliced layer as a first sintered region,
    Of the created layer data, the location of the plurality of layers corresponding to the division position specified by the element division unit is corrected from the first sintered region to the unsintered region, and spans the plurality of layers corresponding to the division position. A layer data creation unit for adding a second sintered region for sintering the unsintered portion;
    According to the layer data created by the layer data creation unit, the first sintered region of each layer coated with the molding material is sintered, and then the second sintered region is sintered, thereby connecting to the modeled object. An operation command creating unit that creates an operation command for forming a part.
  7.  前記要素分割部は、前記造形物の構成要素のうちの、縦のアスペクト比または横のアスペクト比が所定閾値を上回り、かつ、隣接する複数の構成要素によって拘束されている構成要素を分割対象とし、その分割対象の構成要素について、アスペクト比が所定閾値を上回った辺の中点を分割位置とすることを特徴とする
     請求項6に記載の制御装置。
    The element division unit is configured to divide a component in which a vertical aspect ratio or a horizontal aspect ratio exceeds a predetermined threshold and is constrained by a plurality of adjacent components among the components of the modeled object. The control device according to claim 6, wherein, for the component to be divided, a midpoint of a side whose aspect ratio exceeds a predetermined threshold is set as a division position.
  8.  前記レイヤデータ作成部は、前記作成したレイヤデータを表示手段に画面表示することを特徴とする
     請求項6または請求項7に記載の制御装置。
    The control device according to claim 6, wherein the layer data creation unit displays the created layer data on a display unit on a screen.
  9.  金属粉末が焼結された層が積層されて構成される造形物であって、
     前記造形物を構成する被接続要素同士が、前記被接続要素の積層数よりも少ない積層数からなる焼結金属の接続要素によって接続されていることを特徴とする
     造形物。
    A layered product composed of layers of sintered metal powder,
    Connected elements constituting the modeled object are connected to each other by a sintered metal connection element having a number of stacked layers smaller than the number of stacked layers of the connected elements.
  10.  前記被接続要素の少なくとも一つは、前記積層される層に沿った方向の長さが、所定長以上であることを特徴とする
     請求項9に記載の造形物。
    The modeled object according to claim 9, wherein at least one of the connected elements has a length in a direction along the layer to be stacked that is a predetermined length or more.
  11.  前記接続要素は、前記被接続要素の端面同士を接続することを特徴とする
     請求項9または請求項10に記載の造形物。
    The shaped article according to claim 9 or 10, wherein the connecting element connects end faces of the connected elements.
PCT/JP2015/069084 2014-08-29 2015-07-02 Method for manufacturing shaped article, control device, and shaped article WO2016031387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014174707 2014-08-29
JP2014-174707 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031387A1 true WO2016031387A1 (en) 2016-03-03

Family

ID=55399291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069084 WO2016031387A1 (en) 2014-08-29 2015-07-02 Method for manufacturing shaped article, control device, and shaped article

Country Status (1)

Country Link
WO (1) WO2016031387A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106780845A (en) * 2016-11-17 2017-05-31 交控科技股份有限公司 Graphic display method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509188A (en) * 1992-04-15 1995-10-12 ソーン テクノロジーズ,インコーポレイテッド High-speed prototype 3D lithography
JP2007204828A (en) * 2006-02-03 2007-08-16 Matsuura Machinery Corp Surface finishing method for 3D additive manufacturing parts
JP2009512468A (en) * 2005-10-20 2009-03-26 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Layer formation method with effect of particle size

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07509188A (en) * 1992-04-15 1995-10-12 ソーン テクノロジーズ,インコーポレイテッド High-speed prototype 3D lithography
JP2009512468A (en) * 2005-10-20 2009-03-26 ベゴ・メディカル・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Layer formation method with effect of particle size
JP2007204828A (en) * 2006-02-03 2007-08-16 Matsuura Machinery Corp Surface finishing method for 3D additive manufacturing parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106780845A (en) * 2016-11-17 2017-05-31 交控科技股份有限公司 Graphic display method and device

Similar Documents

Publication Publication Date Title
EP3335819B1 (en) Additive manufacturing apparatus and method of producing three-dimensionally shaped object
US11090867B2 (en) Manufacturing method of three-dimensional shaped object and additive manufacturing apparatus used therefor
CN110312588B (en) Stacking control device, stacking control method, and storage medium
JP2015199197A (en) Three-dimensional object molding device and production method of three-dimensional object
JP5971266B2 (en) Stereolithography apparatus and stereolithography method
EP3541606B1 (en) Method for additive manufacturing
JP5717900B1 (en) Manufacturing equipment for three-dimensional layered objects
JP6338305B1 (en) Support member, modeling model generation device, control device, and modeling method of modeling object
US11772329B2 (en) Input data creation device for powder additive manufacturing
US20160279705A1 (en) Additive manufacturing systems and methods
US10919114B2 (en) Methods and support structures leveraging grown build envelope
JP6414588B2 (en) Manufacturing method of three-dimensional shaped object
CN110341193A (en) Three-dimensional shape data editor, molding device, system, method and storage medium
US20230122426A1 (en) Method for manufacturing three-dimensional shaped object, additive manufacturing apparatus, and article
WO2016031387A1 (en) Method for manufacturing shaped article, control device, and shaped article
CN110545940B (en) Method for manufacturing workpiece, method for establishing correction parameters, and storage medium
JP6455328B2 (en) Additive manufacturing method
WO2020235214A1 (en) Am device and method for manufacturing molded object
JP2016222963A (en) Molding control system
JP6887926B2 (en) Manufacturing method of three-dimensional structure and manufacturing equipment of three-dimensional structure
JP2023148423A (en) Three-dimensional modeling method and three-dimensional modeling apparatus
JP6760860B2 (en) Laminated molding equipment and laminated molding method
JP2017106046A (en) Metal powder sinter part and molding method thereof
TWI585558B (en) Three dimensional printing method
CN116786842A (en) 3D printing method, control system and equipment for controlling specific orientation of crystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP