[go: up one dir, main page]

WO2016031169A1 - Thick steel plate manufacturing method - Google Patents

Thick steel plate manufacturing method Download PDF

Info

Publication number
WO2016031169A1
WO2016031169A1 PCT/JP2015/004056 JP2015004056W WO2016031169A1 WO 2016031169 A1 WO2016031169 A1 WO 2016031169A1 JP 2015004056 W JP2015004056 W JP 2015004056W WO 2016031169 A1 WO2016031169 A1 WO 2016031169A1
Authority
WO
WIPO (PCT)
Prior art keywords
descaling
steel plate
thick steel
cooling
water
Prior art date
Application number
PCT/JP2015/004056
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 田村
安達 健二
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580045918.0A priority Critical patent/CN106604785B/en
Priority to JP2016544933A priority patent/JP6108041B2/en
Priority to KR1020177005018A priority patent/KR101940429B1/en
Priority to BR112017004022-0A priority patent/BR112017004022B1/en
Priority to EP15836450.5A priority patent/EP3187275B1/en
Publication of WO2016031169A1 publication Critical patent/WO2016031169A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/06Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing of strip material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature

Definitions

  • the present invention relates to a method for manufacturing a thick steel plate.
  • the application of controlled cooling is expanding.
  • the thick steel plate (not shown) is reheated in the heating furnace 1
  • the thick steel plate is descaled in the descaling device 2.
  • the thick steel plate is rolled by the rolling mill 3 and then corrected by the shape correcting device 4, and then controlled cooling by water cooling or air cooling is performed in the accelerated cooling device 5.
  • the arrow in a figure is the advancing direction of a thick steel plate.
  • the cooling stop temperature when the place where scale thickness is 40 micrometers and 20 micrometers coexists in the thickness direction of a thick steel plate, the cooling stop temperature when cooling a thick steel plate with a thickness of 25 mm from 800 ° C. to a target temperature of 500 ° C. is 40 ⁇ m. It becomes 460 degreeC in a location, and 500 degreeC in a location of 20 micrometers. At the 40 ⁇ m portion, the cooling stop temperature falls below 40 ° C. from the target temperature, and as a result, a uniform material cannot be obtained.
  • Patent Document 1 discloses a method for achieving uniform cooling stop temperature by controlling the scale thickness to equalize the cooling rate.
  • Patent Document 1 using a descaling device provided before and after the rolling mill during rolling, when the cooling stop temperature of the tail end of the thick steel plate is lower than that of the tip, the descaling injection on the tail end side is performed. The amount of water is controlled to be larger than the amount of water jetted on the tip side. In this way, by controlling the scale removal rate and the remaining thickness in the longitudinal direction of the thick steel plate, the heat transfer coefficient of the steel plate surface during controlled cooling is changed, and the cooling stop temperature in the longitudinal direction of the thick steel plate is made uniform. .
  • the cooling stop temperature has been made uniform by adjusting the amount of cooling water and the conveyance speed.
  • the cooling rate varies due to the variation in scale thickness, it is difficult not only to make the cooling rate uniform, but also to make the cooling stop temperature uniform.
  • An object of the present invention is to provide a method of manufacturing a thick steel plate that can solve the above-described problems and can secure a high-quality thick steel plate with less material variation.
  • the present invention has been made to solve the above-mentioned conventional problems, and the gist thereof is as follows. [1] In a method of manufacturing a thick steel plate in the order of a hot rolling step, a hot straightening step, and an accelerated cooling step, descaled water is injected twice between the hot straightening step and the accelerated cooling step.
  • a scaling step, and in the descaling step, the energy density of descaling water sprayed on the surface of the thick steel plate is 0.07 J / mm 2 or more in total of the two sprays, and the first descaling water is Production of a thick steel plate, characterized in that the second descaling water is jetted 0.5 s or more after the jetting, and the steel sheet surface temperature immediately before the second descaling water jet is set to the Ar 3 transformation point or less.
  • Method. [2] In the method of manufacturing a thick steel plate in the order of the hot rolling step, the hot straightening step, and the accelerated cooling step, the descaling water is injected twice or more between the hot straightening step and the accelerated cooling step.
  • a descaling step wherein in the descaling step, the energy density of descaling water sprayed on the surface of the thick steel plate is 0.07 J / mm 2 or more in total of two or more sprays,
  • a thick steel plate characterized in that the final descaling water is jetted 0.5 s or more after the scaling water is jetted, and the steel sheet surface temperature immediately before the final descaling water jet is set to the Ar 3 transformation point or less.
  • the cooling rate and the cooling stop temperature can be made uniform. As a result, it is possible to manufacture a high-quality thick steel plate with little material variation.
  • FIG. 1 is a schematic view showing a conventional equipment for producing thick steel plates.
  • FIG. 2 is a diagram showing the relationship among scale thickness, cooling time, and thick steel plate surface temperature during accelerated cooling.
  • FIG. 3 is a diagram showing the relationship between the position in the width direction of the thick steel plate and the cooling stop temperature after accelerated cooling.
  • FIG. 4 is a schematic view showing a thick steel plate manufacturing facility according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the arrangement relationship of the spray nozzles of the descaling device, (a) is a schematic diagram showing the positional relationship of the spray nozzles, and (b) is a schematic diagram showing a spray pattern.
  • FIG. 6 is a diagram illustrating the relationship between the energy density of descaling water and the scale peeling rate.
  • FIG. 7 is a diagram showing the temperature history of the thick steel plate at each time of the descaling process.
  • FIG. 8 is a transformation diagram of the thick steel plate from the first descaling to the second descaling.
  • FIG. 9 is a side view of the accelerated cooling apparatus according to the embodiment of the present invention.
  • FIG. 10 is a side view of another accelerated cooling apparatus according to an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining an example of the nozzle arrangement of the partition wall according to the embodiment of the present invention.
  • FIG. 12 is a diagram for explaining the flow of the cooling drainage on the partition wall.
  • FIG. 13 is a diagram for explaining another flow of the cooling drainage on the partition wall.
  • FIG. 14 is a diagram for explaining a temperature distribution in the width direction of a thick steel plate of a conventional example.
  • FIG. 15 is a diagram illustrating the flow of cooling water in the acceleration cooling device.
  • FIG. 16 is a diagram for explaining non-interference with cooling water on the partition wall in the accelerated cooling device.
  • FIG. 4 is a schematic view showing a thick steel plate manufacturing facility according to an embodiment of the present invention.
  • an arrow is a conveyance direction of a thick steel plate.
  • the heating furnace 1, the descaling device 2, the rolling mill 3, the shape correcting device 4, the descaling device 6, the descaling device 7, and the accelerated cooling device 5 are arranged in this order.
  • the thick steel plate (not shown) is reheated in the heating furnace 1, the thick steel plate is descaled in the descaling device 2 to remove the primary scale.
  • the thick steel plate is hot-rolled by the rolling mill 3 and corrected by the shape correcting device 4, and then descaling is performed to completely remove the scale in the descaling device 6 and the descaling device 7. Then, controlled cooling by water cooling or air cooling is performed in the acceleration cooling device 5.
  • two descaling devices that is, a descaling device 6 and a descaling device 7 are arranged between the shape correction device 4 and the acceleration cooling device 5.
  • the descaling device shown in FIG. 4 has only two columns. In addition, you may comprise in 3 or more rows. As shown in FIG. 4, when the descaling device has two rows, the energy density of descaling water sprayed from the descaling device 6 and the descaling device 7 onto the surface of the steel plate is the sum of the two rows of spray nozzles.
  • the steel sheet surface temperature is not more than the Ar 3 transformation point.
  • the total of the spray nozzles of all the descaling device rows to be configured is 0.07 J / mm 2 or more, and after the descaling water jet from the last descaling device immediately before After 0.5 s or more, the final descaling water is injected, and the surface temperature of the steel plate immediately before the final descaling water injection is set to the Ar 3 transformation point or less. By doing so, the scale can be completely removed and uniform cooling can be realized.
  • two rows of deske headers 6-1 of the descaling device 6 and deske headers 7-1 of the descaling device 7 are arranged in the longitudinal direction of the thick steel plate. .
  • Descaling water is sprayed onto the thick steel plate 1 from a plurality of spray nozzles 6-2 and 7-2 provided on the desk header, and a spray pattern 22 as shown in FIG. 6B is formed.
  • the arrangement of the injection nozzles 6-2 and 7-2 is arranged.
  • the distance is 500 mm or more in the longitudinal direction of the thick steel plate, that is, the conveying direction of the steel plate.
  • the ejection pattern in the width direction is a staggered arrangement in which the ejection nozzle 6-2 and the ejection nozzle 7-2 are shifted in the width direction.
  • the nozzle rows are spaced apart by 500 mm or more in the longitudinal direction to form a staggered arrangement, as in the case of two descaling devices.
  • the upper limit is preferably 3 rows.
  • the scale surface is cooled by the descaling water, so that thermal stress is generated on the scale and the impact force by the descaling water acts. As a result, the scale is removed by peeling or breaking.
  • the effect of the thermal stress generated at the time of descaling is obtained twice or more by performing descaling twice or more between the hot shape correction process and the accelerated cooling process. Can do.
  • the relationship between the energy density and the scale peeling rate (the ratio of the area where the scale peels and the steel sheet area) is specifically as “no transformation” in FIG.
  • the energy density of descaling water sprayed on the surface of the thick steel plate is set to 0.07 J / mm 2 or more in total of two sprays, and the descaling device 6 After the descaling water is injected on the surface of the thick steel plate, the descaling water is injected from the descaling device 7 onto the surface of the thick steel plate after 0.5 s or more, and the steel plate surface temperature at the start of the descaling water injection from the descaling device is By setting the Ar 3 transformation point or less, the scale can be removed more efficiently.
  • the effect that the scale can be removed more efficiently by setting the steel sheet surface temperature at the start of descaling water injection below the Ar 3 transformation point is confirmed even when the descaling water injection number is 3 times or more. It was done.
  • the total energy density of the two times of descaling can be calculated by summing up the energy density of each time of descaling calculated by the formula described later.
  • the Ar 3 transformation point can be calculated by the following formula (*).
  • Ar 3 (° C.) 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (*)
  • the element symbol indicates the content (mass%) of each element in steel, and 0 if not contained.
  • the energy density of descaling water sprayed on the surface of a thick steel plate was set to 0.07 J / mm 2 or more in total of two or more sprays, and immediately before the final descaling water spray
  • the steel plate surface temperature can be lowered below the Ar 3 transformation point, and the steel plate surface can be transformed. Due to the transformation of the base iron, a deviation occurs at the interface between the scale and the base iron, reducing the scale adhesion. Descaling by scaling becomes easy, and descaling is possible with descaling water with a smaller energy density.
  • the temperature history of the descaling devices 6 and 7 during the descaling water injection is as shown in FIG. Since the outermost layer part of the iron base is supercooled and the transformation is promoted, even if the holding time below the Ar 3 transformation point is a very short time of 1 s or less, only several tens of ⁇ m of the outermost surface layer of the iron iron undergoes ferrite transformation. Occur. In addition, when the present inventors investigated whether or not the ferrite transformation of the outermost layer portion of the ground iron was changed by variously changing the time of the descaling water injection of the first descaling and the second descaling, as shown in FIG. I understood it.
  • the steel plate surface temperature at the start of the descaling water injection in the second descaling is below the Ar 3 transformation point, and the time from the first descaling to the second descaling being 0.5 s or more
  • the ferrite transformation occurs in the outermost layer of the steel. Since the transformation occurs only in the tens of ⁇ m of the outermost surface layer of the ground iron, the scale can be easily peeled off by scaling without affecting the material such as strength.
  • the time from the first descaling water injection to the second descaling water injection is 0.5 s or more, and the steel sheet surface temperature immediately before the descaling water injection in the second descaling is below the Ar 3 transformation point. If it exists, the scale peeling effect in the second descaling is improved, and the energy of the descaling water at the time of descaling necessary for the scale peeling is reduced.
  • the time from the last descaling water injection immediately before the final time to the final descaling water injection time is 0.5 s or more. If the steel sheet surface temperature is below the Ar 3 transformation point, the scale peeling effect in final descaling is improved, and the energy of descaling water at the time of descaling necessary for scale peeling is reduced.
  • the inventors also examined the energy density of the first descaling by the descaling device 6 and the energy density of the second descaling by the descaling device 7. As described above, in the case where the iron surface layer undergoes ferrite transformation before the second descaling water is jetted by the first descaling, the scale peeling effect by the second descaling is improved. Therefore, the scale can be peeled off more efficiently by supplying the energy necessary for the transformation of the surface layer of the ground metal at the first time and descaling at a larger energy density at the second time. Specifically, it is preferable to set the energy density of the first descaling to 0.02 J / mm 2 or more.
  • the energy density of the last descaling is 0.02 J / mm 2 or more, as in the case of 2 times of descaling.
  • the total energy density of descaling water in the total number of times is preferably 0.7 J / mm 2 or less.
  • the energy density E (J / mm 2 ) of descaling water sprayed on the thick steel plate is an index of the ability to remove the scale by descaling and is defined as the following equation (1).
  • E Q ⁇ v 2 t ⁇ ( 2 dW) (1)
  • Q Descaling water injection flow rate [m 3 / s]
  • d Flat nozzle spray injection thickness [mm]
  • W Flat nozzle spray injection width [mm]
  • the present inventors adopted water density ⁇ injection pressure ⁇ collision time as a simple definition of the energy density E (J / mm 2 ) of descaling water injected into the thick steel plate. I found out that I should do.
  • the water density (m 3 / (mm 2 ⁇ min)) is a value calculated by “descaled water injection flow rate ⁇ descaling water collision area”.
  • the collision time (s) is a value calculated by “descaled water collision thickness ⁇ thick steel plate conveyance speed”.
  • the relationship between the energy density of the high pressure water of this invention calculated by this simple definition and a scale peeling rate is the same as that of FIG.
  • the following formula (3) can be derived based on the above formula (2). That is, when the time t [s] from the end of descaling of the thick steel plate by the descaling devices 6 and 7 to the start of cooling the thick steel plate by the accelerated cooling device 5 satisfies the following equation (3): Cooling by the acceleration cooling device 5 is stabilized. t ⁇ 5 ⁇ 10 ⁇ 9 ⁇ exp (25000 / T) (3) However, T: Thick steel plate temperature [K] before cooling.
  • the following formula (4) can be derived based on the above formula (2). That is, when the time t [s] from the end of removal of the scale of the thick steel plate by the descaling devices 6 and 7 to the start of cooling of the thick steel plate by the accelerated cooling device 5 satisfies the following equation (4): The cooling by the acceleration cooling device 5 is more stable. t ⁇ 2.2 ⁇ 10 ⁇ 9 ⁇ exp (25000 / T) (4) Furthermore, when the scale thickness is 5 ⁇ m or less, the following formula (5) can be derived based on the above formula (2).
  • the upper surface cooling facility of the accelerated cooling device 5 of the present invention includes an upper header 11 that supplies cooling water to the upper surface of the thick steel plate 10, and cooling that jets rod-shaped cooling water suspended from the upper header 11.
  • the water injection nozzle 13 and the partition 15 installed between the thick steel plate 10 and the upper header 11 are provided.
  • the partition wall 15 is provided with a plurality of water supply ports 16 for inserting the lower end portion of the cooling water injection nozzle 13 and drain ports 17 for draining the cooling water supplied to the upper surface of the thick steel plate 10 onto the partition wall 15.
  • it is.
  • the upper surface cooling facility includes an upper header 11 for supplying cooling water to the upper surface of the thick steel plate 10, a cooling water injection nozzle 13 suspended from the upper header 11, and the upper header 11 and the thick steel plate 10. And a partition wall 15 having a large number of through-holes (water supply port 16 and drain port 17) installed horizontally in the width direction of the thick steel plate.
  • the cooling water injection nozzle 13 is a circular pipe nozzle that injects rod-shaped cooling water, and its tip is inserted into a through-hole (water supply port 16) provided in the partition wall 15 and above the lower end portion of the partition wall 15. It is installed to become.
  • the cooling water injection nozzle 13 may be inserted into the upper header 11 so that the upper end of the cooling water injection nozzle 13 protrudes into the upper header 11 in order to prevent the foreign matter at the bottom in the upper header 11 from being sucked and clogged. preferable.
  • the rod-shaped cooling water in the present invention is cooling water injected in a state of being pressurized to some extent from a circular (including elliptical or polygonal) nozzle outlet, and is cooled from the nozzle outlet.
  • the water injection speed is 6 m / s or more, preferably 8 m / s or more, and the water flow jetted from the nozzle outlet has a continuous circular shape, and the water flow has a continuous and straight flow.
  • it is different from a free fall flow from a circular tube laminar nozzle or a liquid ejected in a droplet state such as a spray.
  • the reason why the tip of the cooling water spray nozzle 13 is inserted into the through hole and is located above the lower end of the partition wall 15 is that the partition wall 15 is inserted even when a thick steel plate whose tip is warped upward enters. This is to prevent the cooling water injection nozzle 13 from being damaged. As a result, the cooling water injection nozzle 13 can be cooled for a long period of time in a good state, so that it is possible to prevent the occurrence of temperature unevenness in the thick steel plate without repairing the equipment.
  • the tip of the circular tube nozzle 13 is inserted into the through hole, as shown in FIG. 16, there is no interference with the flow in the width direction of the drained water indicated by the dotted arrow flowing through the upper surface of the partition wall 15. Therefore, the cooling water jetted from the cooling water jet nozzle 13 can reach the upper surface of the thick steel plate equally regardless of the position in the width direction, and uniform cooling in the width direction can be performed.
  • a large number of through-holes having a diameter of 10 mm are opened in a grid pattern at a pitch of 80 mm in the thick steel plate width direction and 80 mm in the transport direction.
  • a cooling water injection nozzle 13 having an outer diameter of 8 mm, an inner diameter of 3 mm, and a length of 140 mm is inserted into the water supply port 16.
  • the cooling water injection nozzles 13 are arranged in a staggered pattern, and the through holes through which the cooling water injection nozzles 13 do not pass serve as cooling water drains 17.
  • the large number of through holes provided in the partition wall 15 of the accelerated cooling device of the present invention are composed of the substantially same number of water supply ports 16 and drain ports 17, and each share a role and function.
  • the total cross-sectional area of the drain port 17 is sufficiently larger than the total cross-sectional area of the inner diameter of the circular pipe nozzle 13 of the cooling water injection nozzle 13, and about 11 times the total cross-sectional area of the inner diameter of the circular pipe nozzle 13 is ensured.
  • the cooling water supplied to the upper surface of the thick steel plate is filled between the thick steel plate surface and the partition wall 15, led to the upper side of the partition wall 15 through the drain port 17, and quickly discharged.
  • the FIG. 12 is a front view for explaining the flow of cooling drainage near the end in the width direction of the thick steel plate on the partition wall.
  • the drainage direction of the drainage port 17 is upward opposite to the cooling water injection direction, and the cooling drainage drained upward from the partition wall 15 changes the direction outward in the thick steel plate width direction, between the upper header 11 and the partition wall 15. It drains through the drainage channel.
  • the drain port 17 is inclined in the thick steel plate width direction, and the slant direction is directed outward in the width direction so that the drain direction is directed outward in the thick steel plate width direction.
  • the cooling water does not easily escape above the partition wall 15 after colliding with the steel plate, and the steel plate 10. And the partition wall 15 flow toward the end in the width direction of the thick steel plate. Then, since the flow rate of the cooling drainage between the thick steel plate 10 and the partition wall 15 increases as it approaches the end in the plate width direction, the force that the jet cooling water 18 penetrates the staying water film and reaches the thick steel plate is the plate width. The direction end portion is inhibited.
  • the influence is limited because the plate width is about 2 m at most. However, the influence cannot be ignored especially in the case of a thick steel plate having a plate width of 3 m or more. Accordingly, the cooling at the end in the width direction of the thick steel plate is weakened, and the temperature distribution in the width direction of the thick steel plate in this case becomes a non-uniform temperature distribution.
  • the water supply port 16 and the water discharge port 17 are provided separately and share the roles of water supply and water discharge. 15 flows smoothly through the drainage port 17 and above the partition wall 15. Accordingly, since the drainage after cooling is quickly removed from the upper surface of the thick steel plate, the cooling water supplied subsequently can easily penetrate the staying water film, and a sufficient cooling capacity can be obtained.
  • the temperature distribution in the width direction of the thick steel plate is a uniform temperature distribution, and a uniform temperature distribution in the width direction can be obtained.
  • the cooling water is discharged quickly. This can be realized, for example, by making holes larger than the outer diameter of the circular tube nozzle 13 in the partition wall 15 and making the number of drain ports equal to or greater than the number of water supply ports.
  • the ratio of the total cross-sectional area of the drain outlet and the total cross-sectional area of the inner diameter of the circular tube nozzle 13 is preferably in the range of 1.5 to 20.
  • the gap between the outer peripheral surface of the circular tube nozzle 13 inserted in the water supply port 16 of the partition wall 15 and the inner surface of the water supply port 16 be 3 mm or less. If this gap is large, the cooling drainage discharged to the upper surface of the partition wall 15 is drawn into the gap between the outer peripheral surface of the circular pipe nozzle 13 of the water supply port 16 due to the influence of the accompanying flow of the cooling water injected from the circular pipe nozzle 13. As a result, the steel sheet is again supplied onto the thick steel plate, resulting in poor cooling efficiency. In order to prevent this, it is more preferable that the outer diameter of the circular tube nozzle 13 is substantially the same as the size of the water supply port 16. However, in consideration of machining accuracy and mounting errors, a gap of up to 3 mm that has substantially little influence is allowed. More preferably, it is 2 mm or less.
  • the nozzle inner diameter is preferably 3 to 8 mm. If it is smaller than 3 mm, the bundle of water sprayed from the nozzle becomes thin and the momentum becomes weak. On the other hand, when the nozzle diameter exceeds 8 mm, the flow rate becomes slow, and the force penetrating the staying water film becomes weak.
  • the length of the circular tube nozzle 13 is preferably 120 to 240 mm.
  • the length of the circular tube nozzle 13 here means the length from the inlet at the upper end of the nozzle that penetrates into the header to some extent to the lower end of the nozzle inserted into the water supply port of the partition wall.
  • the distance between the lower surface of the header and the upper surface of the partition wall becomes too short (for example, the header thickness is 20 mm, the protrusion amount of the nozzle upper end into the header is 20 mm, and the insertion amount of the nozzle lower end into the partition wall is 10 mm. Therefore, the drainage space above the partition wall becomes small, and the cooling drainage cannot be discharged smoothly.
  • the pressure loss of the circular tube nozzle 13 becomes large, and the force penetrating the staying water film becomes weak.
  • the jet speed of cooling water from the nozzle is required to be 6 m / s or more, preferably 8 m / s or more. This is because if it is less than 6 m / s, the force of the cooling water penetrating through the staying water film becomes extremely weak. If it is 8 m / s or more, a larger cooling capacity can be secured, which is preferable.
  • the distance from the lower end of the cooling water spray nozzle 13 for upper surface cooling to the surface of the thick steel plate 10 is preferably 30 to 120 mm. If it is less than 30 mm, the frequency with which the thick steel plate 10 collides with the partition wall 15 becomes extremely high, and equipment maintenance becomes difficult. If it exceeds 120 mm, the force through which the cooling water penetrates the staying water film becomes extremely weak.
  • draining rolls 20 When cooling the upper surface of the thick steel plate, it is preferable to install draining rolls 20 before and after the upper header 11 so that the cooling water does not spread in the longitudinal direction of the thick steel plate. Thereby, the cooling zone length becomes constant and the temperature control becomes easy.
  • the cooling drainage since the flow of the cooling water in the direction of transporting the thick steel plate is blocked by the draining roll 20, the cooling drainage flows outward in the width direction of the thick steel plate. However, the cooling water tends to stay in the vicinity of the draining roll 20.
  • the cooling water jet nozzle in the uppermost stream side row in the thick steel plate transport direction is 15 to upstream in the thick steel plate transport direction. It is preferable that the cooling water jet nozzles at the most downstream side in the thick steel plate conveyance direction are inclined 15 to 60 degrees in the downstream direction in the thick steel plate conveyance direction.
  • the distance between the lower surface of the upper header 11 and the upper surface of the partition wall 15 is such that the cross-sectional area in the width direction of the thick steel plate in the space surrounded by the lower surface of the header and the upper surface of the partition wall is 1.5 times the total cross-sectional area of the cooling water spray nozzle inner diameter. It is preferable to be provided, for example, about 100 mm or more is preferable.
  • the cross-sectional area of the thick steel plate in the width direction is not 1.5 times or more than the total cross-sectional area of the cooling water jet nozzle inner diameter, the cooling drainage discharged from the drain port 17 provided on the partition wall to the top surface of the partition wall 15 is smoothly thick. There is a possibility that it cannot be discharged in the width direction of the steel sheet.
  • the range of the water density that exhibits the most effect is 1.5 m 3 / (m 2 ⁇ min) or more.
  • the water density is lower than this, the accumulated water film does not become so thick, and even if a known technique for cooling the thick steel plate by dropping the rod-shaped cooling water freely is applied, the temperature unevenness in the width direction does not become so large. In some cases.
  • the water density is higher than 4.0 m 3 / (m 2 ⁇ min)
  • it is effective to use the technique of the present invention but there are problems in practical use such as an increase in equipment cost. Therefore, 1.5 to 4.0 m 3 / (m 2 ⁇ min) is the most practical water density.
  • the application of the cooling technique of the present invention is particularly effective when a draining roll is arranged before and after the cooling header.
  • the header is relatively long in the longitudinal direction (when it is about 2 to 4 m), and it is applied to cooling equipment that sprays water spray for purging before and after the header to prevent water leakage to the non-water cooling zone. Is also possible.
  • the cooling device on the lower surface side of the thick steel plate is not particularly limited.
  • FIGS. 9 and 10 an example of the cooled header 12 including the circular tube nozzle 14 similar to the cooling device on the upper surface side is shown.
  • the injected cooling water naturally falls after colliding with the thick steel plate, so that there is no need for the partition wall 15 for discharging cooling drainage as in the upper surface side cooling in the thick steel plate width direction.
  • heating furnace 1 and the descaling device 2 of the present invention are not particularly limited, and conventional devices can be used.
  • the descaling device 2 need not have the same configuration as the descaling devices 6 and 7 of the present invention.
  • the steel plate temperature is the temperature of the steel plate surface.
  • the thick steel plate of the present invention was manufactured using a thick steel plate manufacturing facility as shown in FIG. After the slab was reheated in the heating furnace 1, the primary scale was removed in the descaling device 2, hot rolled by the rolling mill 3, and the shape was corrected by the shape correcting device 4. After shape correction, descaling was performed. In the case of descaling after hot straightening, in the case of two times, two descaling devices of a descaling device 6 and a descaling device 7 were arranged, and descaling was performed twice on the surface of the thick steel plate.
  • the descaling devices are arranged in three or more rows, and the nozzle rows are spaced apart by 500 mm or more in the longitudinal direction to form a staggered arrangement.
  • controlled cooling of the thick steel plate was performed using the accelerated cooling device 5.
  • the spray distance (the surface distance between the spray nozzle of the descaling device and the thick steel plate) was 130 mm, the nozzle spray angle was 66 °, and the angle of attack was 15 °.
  • the nozzles of the descaling device 6 and the descaling device 7 are arranged in the width direction so that the ejection regions of adjacent nozzles overlap to some extent.
  • the distance between the descaling device 6 and the descaling 7 was arranged at a distance of 1.1 m in the longitudinal direction.
  • the nozzle was a flat spray nozzle.
  • the spray pressure of the descaling nozzle after hot rolling and the spray flow rate per nozzle were the same for both the descaling device 6 and the descaling device 7 and were performed under the conditions shown in Table 1. Further, the Ar 3 transformation point of the used steel sheet was 780 ° C. The sheet thickness after rolling in the rolling mill 3 was 30 mm, and the steel plate temperature was 830 ° C. or 840 ° C.
  • the cooling conditions calculated from the above-described equations (3), (4), and (5) are as follows. After removing the scale of the thick steel plate by the descaling device, the cooling of the thick steel plate is started by the acceleration cooling device. The time t until it is 42 s or less, preferably 19 s or less, more preferably 5 s or less.
  • T is the thick steel plate temperature (K) before cooling.
  • the energy density was 0.07 J / mm 2 .
  • the steel plate surface temperature at the second descaling was 785 ° C. Since the second descaling was performed in a state where the thick steel plate surface was not transformed from austenite to ferrite, the scale remained in a part of the steel plate, and the temperature unevenness became 40 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

The objective is to provide a thick steel plate manufacturing method with which a high-quality thick steel plate with minimal variation in material quality can be obtained. This thick steel plate manufacturing method, which manufactures a thick steel plate by means of a hot-rolling process, a heated correction process, and an accelerated cooling process, in this order, is characterized by having between the heated correction process and the accelerated cooling process a descaling process in which descaling water is sprayed twice, with the total energy density of the descaling water sprayed on the surface of the thick steel plate in the two sprayings in the descaling process being 0.07 J/mm2 or greater, the second spraying of descaling water occurring no less than 0.5s after the first spraying of descaling water, and the surface temperature of the steel plate immediately before the second spraying of descaling water being no greater than the Ar3 transformation point.

Description

厚鋼板の製造方法Thick steel plate manufacturing method
 本発明は、厚鋼板の製造方法に関するものである。 The present invention relates to a method for manufacturing a thick steel plate.
 熱間圧延によって厚鋼板を製造するプロセスでは、制御冷却の適用が拡大している。例えば、図1に示すように、加熱炉1で厚鋼板(図示しない。)を再加熱した後、デスケーリング装置2において厚鋼板がデスケーリングされる。そして、厚鋼板は圧延機3によって圧延されてから、形状矯正装置4によって矯正された後、加速冷却装置5において水冷または空冷による制御冷却が行われる。なお、図中の矢印は厚鋼板の進行方向である。 In the process of manufacturing thick steel plates by hot rolling, the application of controlled cooling is expanding. For example, as shown in FIG. 1, after the thick steel plate (not shown) is reheated in the heating furnace 1, the thick steel plate is descaled in the descaling device 2. The thick steel plate is rolled by the rolling mill 3 and then corrected by the shape correcting device 4, and then controlled cooling by water cooling or air cooling is performed in the accelerated cooling device 5. In addition, the arrow in a figure is the advancing direction of a thick steel plate.
 厚鋼板を加速冷却装置で水冷する場合、図2のように厚鋼板表面のスケールが厚くなるほど冷却速度が大きくなるため、冷却時間が短くなることが知られている。しかしながら、スケール厚みにばらつきがあると冷却速度が不均一になるため、強度や硬度などの材質がばらつくという問題がある。 When water-cooling a thick steel plate with an accelerated cooling device, it is known that the cooling time increases as the scale on the surface of the thick steel plate increases as shown in FIG. However, if the scale thickness varies, the cooling rate becomes non-uniform, which causes a problem that materials such as strength and hardness vary.
 また、スケール厚が不均一である場合、上述したように冷却速度が不均一になる。このような場合、厚鋼板幅方向における加速冷却停止時の厚鋼板表面温度(以下、「冷却停止温度」と称する。)の分布は、例えば図3のようにばらつくことが知られている。このように厚鋼板の冷却停止温度がばらつくため、均一な材質を得られないという問題がある。具体例を示すと、厚鋼板幅方向にスケール厚が40μmと20μmの箇所が混在する場合、板厚25mmの厚鋼板を800℃から目標温度500℃まで冷却する時の冷却停止温度は、40μmの箇所で460℃、20μmの箇所で500℃となる。40μmの箇所では、冷却停止温度が目標温度から40℃下回ってしまい、その結果、均一な材質を得ることができない。 Also, when the scale thickness is non-uniform, the cooling rate becomes non-uniform as described above. In such a case, it is known that the distribution of the steel plate surface temperature (hereinafter referred to as “cooling stop temperature”) at the time of accelerated cooling stop in the thick steel plate width direction varies as shown in FIG. Thus, since the cooling stop temperature of the thick steel plate varies, there is a problem that a uniform material cannot be obtained. When a specific example is shown, when the place where scale thickness is 40 micrometers and 20 micrometers coexists in the thickness direction of a thick steel plate, the cooling stop temperature when cooling a thick steel plate with a thickness of 25 mm from 800 ° C. to a target temperature of 500 ° C. is 40 μm. It becomes 460 degreeC in a location, and 500 degreeC in a location of 20 micrometers. At the 40 μm portion, the cooling stop temperature falls below 40 ° C. from the target temperature, and as a result, a uniform material cannot be obtained.
 そこで、特許文献1には、スケール厚みを制御して冷却速度の均一化を行い、冷却停止温度の均一化を達成する方法が開示されている。特許文献1では、圧延中に圧延機の前後に備えられたデスケーリング装置を用いて、厚鋼板の尾端が先端に比べて冷却停止温度が低くなる場合に、尾端側のデスケーリングの噴射水量を先端側の噴射水量より多くなるように制御する。こうして厚鋼板の長手方向でスケール除去率、残存厚を制御することにより、制御冷却時の鋼板表面の熱伝達係数を変化させて、厚鋼板の長手方向の冷却停止温度の均一化を行っている。 Therefore, Patent Document 1 discloses a method for achieving uniform cooling stop temperature by controlling the scale thickness to equalize the cooling rate. In Patent Document 1, using a descaling device provided before and after the rolling mill during rolling, when the cooling stop temperature of the tail end of the thick steel plate is lower than that of the tip, the descaling injection on the tail end side is performed. The amount of water is controlled to be larger than the amount of water jetted on the tip side. In this way, by controlling the scale removal rate and the remaining thickness in the longitudinal direction of the thick steel plate, the heat transfer coefficient of the steel plate surface during controlled cooling is changed, and the cooling stop temperature in the longitudinal direction of the thick steel plate is made uniform. .
特開平6-330155号公報JP-A-6-330155
 従来の技術では、冷却水量や搬送速度を調整することで冷却停止温度の均一化を図ってきた。しかし、この方法では、スケール厚のばらつきによって冷却速度がばらつくため、冷却速度の均一化のみならず、冷却停止温度の均一化も難しい。 In the conventional technology, the cooling stop temperature has been made uniform by adjusting the amount of cooling water and the conveyance speed. However, in this method, since the cooling rate varies due to the variation in scale thickness, it is difficult not only to make the cooling rate uniform, but also to make the cooling stop temperature uniform.
 また、特許文献1の方法では、オンラインでスケール除去率や残存厚を制御できなければ熱伝達係数も制御できないため、高精度の冷却速度の均一化を実現することができない。また、スケール除去率を変化させる場合、スケール残存箇所と剥離箇所で冷却停止温度が異なるため、材質にばらつきが出る。 Also, in the method of Patent Document 1, since the heat transfer coefficient cannot be controlled unless the scale removal rate and the remaining thickness can be controlled online, it is not possible to achieve a highly uniform cooling rate. Further, when the scale removal rate is changed, the cooling stop temperature is different between the remaining scale portion and the peeled portion, so that the material varies.
 本発明は、上記の問題を解決し、材質ばらつきの少ない高品質の厚鋼板を確保することができる厚鋼板の製造方法を提供することを目的とする。 An object of the present invention is to provide a method of manufacturing a thick steel plate that can solve the above-described problems and can secure a high-quality thick steel plate with less material variation.
 本発明は、前記の従来の問題点を解決するためになされたものであって、その要旨は下記のとおりである。
[1]熱間圧延工程、熱間矯正工程及び加速冷却工程の順番で厚鋼板を製造する方法において、前記熱間矯正工程と加速冷却工程との間でデスケーリング水の噴射を2回行うデスケーリング工程を有し、前記デスケーリング工程では、厚鋼板の表面に噴射されるデスケーリング水のエネルギー密度を2回の噴射の合計で0.07J/mm以上とし、1回目のデスケーリング水を噴射してから0.5s以上後に2回目のデスケーリング水を噴射させ、かつ、2回目のデスケーリング水噴射直前の鋼板表面温度がAr変態点以下にすることを特徴とする厚鋼板の製造方法。
[2]熱間圧延工程、熱間矯正工程及び加速冷却工程の順番で厚鋼板を製造する方法において、前記熱間矯正工程と加速冷却工程との間でデスケーリング水の噴射を2回以上行うデスケーリング工程を有し、前記デスケーリング工程では、厚鋼板の表面に噴射されるデスケーリング水のエネルギー密度を2回以上の噴射の合計で0.07J/mm以上とし、最終の直前のデスケーリング水を噴射してから0.5s以上後に最終のデスケーリング水を噴射させ、かつ、最終のデスケーリング水噴射直前の鋼板表面温度をAr変態点以下にすることを特徴とする厚鋼板の製造方法。
[3][1]または[2]に記載の厚鋼板の製造方法において、冷却前の厚鋼板温度をT[K]とすると、前記デスケーリング工程終了後から前記加速冷却工程の開始までの時間t[s]は、t≦5×10-9×exp(25000/T)の式を満たしていることを特徴とする厚鋼板の製造方法。
The present invention has been made to solve the above-mentioned conventional problems, and the gist thereof is as follows.
[1] In a method of manufacturing a thick steel plate in the order of a hot rolling step, a hot straightening step, and an accelerated cooling step, descaled water is injected twice between the hot straightening step and the accelerated cooling step. A scaling step, and in the descaling step, the energy density of descaling water sprayed on the surface of the thick steel plate is 0.07 J / mm 2 or more in total of the two sprays, and the first descaling water is Production of a thick steel plate, characterized in that the second descaling water is jetted 0.5 s or more after the jetting, and the steel sheet surface temperature immediately before the second descaling water jet is set to the Ar 3 transformation point or less. Method.
[2] In the method of manufacturing a thick steel plate in the order of the hot rolling step, the hot straightening step, and the accelerated cooling step, the descaling water is injected twice or more between the hot straightening step and the accelerated cooling step. A descaling step, wherein in the descaling step, the energy density of descaling water sprayed on the surface of the thick steel plate is 0.07 J / mm 2 or more in total of two or more sprays, A thick steel plate characterized in that the final descaling water is jetted 0.5 s or more after the scaling water is jetted, and the steel sheet surface temperature immediately before the final descaling water jet is set to the Ar 3 transformation point or less. Production method.
[3] In the method for producing a thick steel plate according to [1] or [2], if the thick steel plate temperature before cooling is T [K], the time from the end of the descaling step to the start of the accelerated cooling step t [s] satisfies the formula t ≦ 5 × 10 −9 × exp (25000 / T).
 本発明によれば、冷却速度および冷却停止温度の均一化を図ることができる。その結果、材質ばらつきの少ない高品質の厚鋼板の製造が可能となる。 According to the present invention, the cooling rate and the cooling stop temperature can be made uniform. As a result, it is possible to manufacture a high-quality thick steel plate with little material variation.
図1は、従来の厚鋼板の製造設備を示す概略図である。FIG. 1 is a schematic view showing a conventional equipment for producing thick steel plates. 図2は、加速冷却時における、スケール厚みと、冷却時間と、厚鋼板表面温度との関係を示す図である。FIG. 2 is a diagram showing the relationship among scale thickness, cooling time, and thick steel plate surface temperature during accelerated cooling. 図3は、加速冷却後の、厚鋼板の幅方向位置と冷却停止温度との関係を示す図である。FIG. 3 is a diagram showing the relationship between the position in the width direction of the thick steel plate and the cooling stop temperature after accelerated cooling. 図4は、本発明の一実施形態である厚鋼板の製造設備を示す概略図である。FIG. 4 is a schematic view showing a thick steel plate manufacturing facility according to an embodiment of the present invention. 図5は、デスケーリング装置の噴射ノズルの配置関係を示す模式図であり、(a)は噴射ノズルの位置関係を表す模式図、(b)はスプレーパターンを示す模式図である。FIG. 5 is a schematic diagram showing the arrangement relationship of the spray nozzles of the descaling device, (a) is a schematic diagram showing the positional relationship of the spray nozzles, and (b) is a schematic diagram showing a spray pattern. 図6は、デスケーリング水のエネルギー密度と、スケール剥離率との関係を示す図である。FIG. 6 is a diagram illustrating the relationship between the energy density of descaling water and the scale peeling rate. 図7は、デスケーリング工程の各回における、厚鋼板の温度履歴を示す図である。FIG. 7 is a diagram showing the temperature history of the thick steel plate at each time of the descaling process. 図8は、1回目のデスケーリングから2回目のデスケーリングを行うまでの厚鋼板の変態図である。FIG. 8 is a transformation diagram of the thick steel plate from the first descaling to the second descaling. 図9は、本発明の一実施形態に係る加速冷却装置の側面図である。FIG. 9 is a side view of the accelerated cooling apparatus according to the embodiment of the present invention. 図10は、本発明の一実施形態に係る他の加速冷却装置の側面図である。FIG. 10 is a side view of another accelerated cooling apparatus according to an embodiment of the present invention. 図11は、本発明の一実施形態に係る隔壁のノズル配置例を説明する図である。FIG. 11 is a diagram for explaining an example of the nozzle arrangement of the partition wall according to the embodiment of the present invention. 図12は、隔壁上の冷却排水の流れを説明する図である。FIG. 12 is a diagram for explaining the flow of the cooling drainage on the partition wall. 図13は、隔壁上の冷却排水の他の流れを説明する図である。FIG. 13 is a diagram for explaining another flow of the cooling drainage on the partition wall. 図14は、従来例の厚鋼板幅方向温度分布を説明する図である。FIG. 14 is a diagram for explaining a temperature distribution in the width direction of a thick steel plate of a conventional example. 図15は、加速冷却装置における冷却水の流れを説明する図である。FIG. 15 is a diagram illustrating the flow of cooling water in the acceleration cooling device. 図16は、加速冷却装置における隔壁上の冷却排水との非干渉を説明する図である。FIG. 16 is a diagram for explaining non-interference with cooling water on the partition wall in the accelerated cooling device.
 以下、本発明を実施するための形態を、図面を参照して本発明を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図4は、本発明の一実施形態である、厚鋼板の製造設備を示す概略図である。図4において、矢印は厚鋼板の搬送方向である。厚鋼板の搬送方向上流側から、加熱炉1、デスケーリング装置2、圧延機3、形状矯正装置4、デスケーリング装置6、デスケーリング装置7、加速冷却装置5の順に配置されている。図4において、加熱炉1で厚鋼板(図示しない。)を再加熱した後、デスケーリング装置2において一次スケール除去のために厚鋼板がデスケーリングされる。そして、厚鋼板は圧延機3によって熱間圧延され、形状矯正装置4によって矯正された後、デスケーリング装置6およびデスケーリング装置7においてスケールを完全除去するデスケーリングが行われる。そして、加速冷却装置5において水冷または空冷による制御冷却が行われる。 FIG. 4 is a schematic view showing a thick steel plate manufacturing facility according to an embodiment of the present invention. In FIG. 4, an arrow is a conveyance direction of a thick steel plate. From the upstream side in the conveying direction of the thick steel plate, the heating furnace 1, the descaling device 2, the rolling mill 3, the shape correcting device 4, the descaling device 6, the descaling device 7, and the accelerated cooling device 5 are arranged in this order. In FIG. 4, after the thick steel plate (not shown) is reheated in the heating furnace 1, the thick steel plate is descaled in the descaling device 2 to remove the primary scale. The thick steel plate is hot-rolled by the rolling mill 3 and corrected by the shape correcting device 4, and then descaling is performed to completely remove the scale in the descaling device 6 and the descaling device 7. Then, controlled cooling by water cooling or air cooling is performed in the acceleration cooling device 5.
 本発明では、形状矯正装置4と加速冷却装置5との間に、2つのデスケーリング装置、すなわち、デスケーリング装置6およびデスケーリング装置7が配置される。図4で示されたデスケーリング装置は2列のみである。なお、3列以上で構成されていても良い。図4に示すようにデスケーリング装置が2列の場合は、デスケーリング装置6およびデスケーリング装置7から厚鋼板の表面に噴射されるデスケーリング水のエネルギー密度を、2列の噴射ノズルの合計で0.07J/mm以上とし、デスケーリング装置6からのデスケーリング水噴射後、0.5s以上後にデスケーリング装置7からデスケーリング水を噴射させ、デスケーリング装置7からのデスケーリング水噴射直前の鋼板表面温度がAr変態点以下にすることを特徴とする。デスケーリング装置が3列以上の場合は、構成されるすべてのデスケーリング装置の列の噴射ノズルの合計で0.07J/mm以上とし、最終の直前のデスケーリング装置からのデスケーリング水噴射後、0.5s以上後に最終のデスケーリング水を噴射させ、最終のデスケーリング水噴射直前の鋼板表面温度をAr変態点以下にする。このようにすることにより、スケールを完全に除去して均一冷却を実現できる。 In the present invention, two descaling devices, that is, a descaling device 6 and a descaling device 7 are arranged between the shape correction device 4 and the acceleration cooling device 5. The descaling device shown in FIG. 4 has only two columns. In addition, you may comprise in 3 or more rows. As shown in FIG. 4, when the descaling device has two rows, the energy density of descaling water sprayed from the descaling device 6 and the descaling device 7 onto the surface of the steel plate is the sum of the two rows of spray nozzles. 0.07 J / mm 2 or more, and after descaling water injection from the descaling device 6, descaling water is jetted from the descaling device 7 after 0.5 s or more, and immediately before descaling water injection from the descaling device 7. The steel sheet surface temperature is not more than the Ar 3 transformation point. When the descaling device has three or more rows, the total of the spray nozzles of all the descaling device rows to be configured is 0.07 J / mm 2 or more, and after the descaling water jet from the last descaling device immediately before After 0.5 s or more, the final descaling water is injected, and the surface temperature of the steel plate immediately before the final descaling water injection is set to the Ar 3 transformation point or less. By doing so, the scale can be completely removed and uniform cooling can be realized.
 本発明では、たとえば、図5(a)のように、厚鋼板の長手方向に対してデスケーリング装置6のデスケヘッダー6-1、および、デスケーリング装置7のデスケヘッダー7-1が2列配置される。デスケヘッダーに複数設けられている噴射ノズル6-2、7-2からデスケーリング水が厚鋼板1に対して噴射され、図6(b)のようなスプレーパターン22となっている。なお、2列目のデスケーリング装置7のデスケーリング水の跳ね水が、1列目のデスケーリング装置6のデスケーリング水に干渉することを防ぐため、噴射ノズル6-2、7-2の配置関係としては、厚鋼板の長手方向、すなわち、鋼板の搬送方向において500mm以上離すことが望ましい。また、幅方向の噴射パターンは、噴射ノズル6-2と噴射ノズル7-2とで幅方向にずらした千鳥配置にすることが好ましい。図5(a)に示されたデスケーリング装置の列は2列である。なお、3列以上でも同様の効果が得られる。デスケーリング装置が3列以上の場合においてもデスケーリング装置が2列の場合と同様に、各ノズル列を長手方向に500mm以上離し、千鳥配置とすることが好ましい。ここで、3列を超える場合は上述の効果が飽和するので、上限は3列が好ましい。 In the present invention, for example, as shown in FIG. 5A, two rows of deske headers 6-1 of the descaling device 6 and deske headers 7-1 of the descaling device 7 are arranged in the longitudinal direction of the thick steel plate. . Descaling water is sprayed onto the thick steel plate 1 from a plurality of spray nozzles 6-2 and 7-2 provided on the desk header, and a spray pattern 22 as shown in FIG. 6B is formed. In order to prevent the splash water of the descaling water of the second row descaling device 7 from interfering with the descaling water of the first row descaling device 6, the arrangement of the injection nozzles 6-2 and 7-2 is arranged. As a relationship, it is desirable that the distance is 500 mm or more in the longitudinal direction of the thick steel plate, that is, the conveying direction of the steel plate. Further, it is preferable that the ejection pattern in the width direction is a staggered arrangement in which the ejection nozzle 6-2 and the ejection nozzle 7-2 are shifted in the width direction. There are two columns of the descaling apparatus shown in FIG. The same effect can be obtained with three or more rows. Even in the case where there are three or more descaling devices, it is preferable that the nozzle rows are spaced apart by 500 mm or more in the longitudinal direction to form a staggered arrangement, as in the case of two descaling devices. Here, since the above-mentioned effect is saturated when it exceeds 3 rows, the upper limit is preferably 3 rows.
 デスケーリング時、スケール表面がデスケーリング水により冷却されることによりスケールには熱応力が生じるとともに、デスケーリング水による衝突力が作用する。その結果、スケールが剥離または破壊されることで除去される。本発明者らが鋭意検討したところ、熱間の形状矯正工程と加速冷却工程との間で、デスケーリングを2回以上行うことにより、デスケーリング時に発生する熱応力の効果を2回以上得ることができる。エネルギー密度とスケール剥離率(スケールが剥離した面積と鋼板面積の割合)の関係は、具体的には図6の「変態なし」のようになる。 At the time of descaling, the scale surface is cooled by the descaling water, so that thermal stress is generated on the scale and the impact force by the descaling water acts. As a result, the scale is removed by peeling or breaking. When the present inventors diligently studied, the effect of the thermal stress generated at the time of descaling is obtained twice or more by performing descaling twice or more between the hot shape correction process and the accelerated cooling process. Can do. The relationship between the energy density and the scale peeling rate (the ratio of the area where the scale peels and the steel sheet area) is specifically as “no transformation” in FIG.
 さらに、図6の「変態あり」に示すように、厚鋼板の表面に噴射されるデスケーリング水のエネルギー密度を2回の噴射の合計で0.07J/mm以上とし、デスケーリング装置6から厚鋼板表面にデスケーリング水を噴射後、0.5s以上後にデスケーリング装置7から厚鋼板表面にデスケーリング水を噴射させ、かつ、デスケーリング装置からのデスケーリング水噴射開始時の鋼板表面温度をAr変態点以下とすることで、より効率よくスケールを除去することができる。デスケーリング水噴射開始時の鋼板表面温度をAr変態点以下とすることにより、より効率よくスケールを除去することができるという効果は、デスケーリング水の噴射回数が3回以上の場合についても確認された。ここで、2回のデスケーリングの合計のエネルギー密度は、後述の式により計算される各回のデスケーリングのエネルギー密度を合計することにより算出することができる。また、Ar変態点は、下記式(*)により算出することができる。
Ar(℃)=910-310C-80Mn-20Cu-15Cr-55Ni-80Mo…(*)
ただし、元素記号は各元素の鋼中含有量(mass%)を示し、含有されない場合は0とする。
Furthermore, as shown in “with transformation” in FIG. 6, the energy density of descaling water sprayed on the surface of the thick steel plate is set to 0.07 J / mm 2 or more in total of two sprays, and the descaling device 6 After the descaling water is injected on the surface of the thick steel plate, the descaling water is injected from the descaling device 7 onto the surface of the thick steel plate after 0.5 s or more, and the steel plate surface temperature at the start of the descaling water injection from the descaling device is By setting the Ar 3 transformation point or less, the scale can be removed more efficiently. The effect that the scale can be removed more efficiently by setting the steel sheet surface temperature at the start of descaling water injection below the Ar 3 transformation point is confirmed even when the descaling water injection number is 3 times or more. It was done. Here, the total energy density of the two times of descaling can be calculated by summing up the energy density of each time of descaling calculated by the formula described later. The Ar 3 transformation point can be calculated by the following formula (*).
Ar 3 (° C.) = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo (*)
However, the element symbol indicates the content (mass%) of each element in steel, and 0 if not contained.
 本発明者らが調査したところ、厚鋼板の表面に噴射されるデスケーリング水のエネルギー密度を2回以上の噴射の合計で0.07J/mm以上とし、かつ、最終のデスケーリング水噴射直前の厚鋼板表面温度をAr変態点以下に下げることによって、厚鋼板表面を変態させることができ、地鉄の変態によりスケールと地鉄の界面にずれが生じてスケール密着力が低下し、デスケーリングによるスケール除去が容易となり、より小さなエネルギー密度のデスケーリング水によってスケール剥離が可能となる。 When the present inventors investigated, the energy density of descaling water sprayed on the surface of a thick steel plate was set to 0.07 J / mm 2 or more in total of two or more sprays, and immediately before the final descaling water spray The steel plate surface temperature can be lowered below the Ar 3 transformation point, and the steel plate surface can be transformed. Due to the transformation of the base iron, a deviation occurs at the interface between the scale and the base iron, reducing the scale adhesion. Descaling by scaling becomes easy, and descaling is possible with descaling water with a smaller energy density.
 デスケーリング装置6、7のデスケーリング水噴射時の温度履歴は図7のようになっている。地鉄最表層部は過冷却されて変態が促進されるため、Ar変態点以下の保持時間が1s以下の非常に短い時間であっても、地鉄最表層の数十μmのみフェライト変態が起こる。また、1回目のデスケーリングと2回目のデスケーリングのデスケーリング水噴射の時間を様々に変えて地鉄最表層部のフェライト変態有無を本発明者らが調査したところ、図8のようになることがわかった。2回目のデスケーリングにおけるデスケーリング水噴射開始時の鋼板表面温度がAr変態点以下であり、かつ1回目のデスケーリングから2回目のデスケーリングが行われるまでの時間が0.5s以上であれば、地鉄最表層でフェライト変態が起こる。変態は地鉄最表層部の数十μmのみ発生するので、強度など材質にほとんど影響を与えることなく、デスケーリングによるスケールの剥離が容易となる。 The temperature history of the descaling devices 6 and 7 during the descaling water injection is as shown in FIG. Since the outermost layer part of the iron base is supercooled and the transformation is promoted, even if the holding time below the Ar 3 transformation point is a very short time of 1 s or less, only several tens of μm of the outermost surface layer of the iron iron undergoes ferrite transformation. Occur. In addition, when the present inventors investigated whether or not the ferrite transformation of the outermost layer portion of the ground iron was changed by variously changing the time of the descaling water injection of the first descaling and the second descaling, as shown in FIG. I understood it. The steel plate surface temperature at the start of the descaling water injection in the second descaling is below the Ar 3 transformation point, and the time from the first descaling to the second descaling being 0.5 s or more For example, the ferrite transformation occurs in the outermost layer of the steel. Since the transformation occurs only in the tens of μm of the outermost surface layer of the ground iron, the scale can be easily peeled off by scaling without affecting the material such as strength.
 したがって、1回目のデスケーリング水噴射後、2回目のデスケーリング水噴射までの時間が0.5s以上とし、2回目のデスケーリングにおけるデスケーリング水噴射直前の鋼板表面温度がAr変態点以下であれば、2回目のデスケーリングにおけるスケール剥離効果が向上し、スケール剥離に必要なデスケーリング時のデスケーリング水のエネルギーが小さくなる。 Therefore, the time from the first descaling water injection to the second descaling water injection is 0.5 s or more, and the steel sheet surface temperature immediately before the descaling water injection in the second descaling is below the Ar 3 transformation point. If it exists, the scale peeling effect in the second descaling is improved, and the energy of the descaling water at the time of descaling necessary for the scale peeling is reduced.
 デスケーリング水の噴射回数が3回以上の場合も同様に、最終の直前のデスケーリング水噴射後、最終のデスケーリング水噴射までの時間が0.5s以上とし、最終のデスケーリング水噴射直前の鋼板表面温度がAr変態点以下であれば、最終のデスケーリングにおけるスケール剥離効果が向上し、スケール剥離に必要なデスケーリング時のデスケーリング水のエネルギーが小さくなる。 Similarly, when the number of times of descaling water injection is 3 times or more, the time from the last descaling water injection immediately before the final time to the final descaling water injection time is 0.5 s or more. If the steel sheet surface temperature is below the Ar 3 transformation point, the scale peeling effect in final descaling is improved, and the energy of descaling water at the time of descaling necessary for scale peeling is reduced.
 また、本発明者らは、デスケーリング装置6による1回目のデスケーリングのエネルギー密度、デスケーリング装置7による2回目のデスケーリングのエネルギー密度についても検討した。上述のように、1回目のデスケーリングによって2回目のデスケーリング水が噴射される前に地鉄表層がフェライト変態する場合、2回目のデスケーリングによるスケール剥離効果が向上する。そのため、1回目は地鉄表層が変態するために必要なエネルギーを投入し、2回目でより大きなエネルギー密度でデスケーリングすることでより効率的にスケールを剥離できる。具体的には、1回目のデスケーリングのエネルギー密度を0.02J/mm2以上とすることが好ましい。これより小さいと、1回目のデスケーリング水の冷却によって地鉄表層を変態させるためには、デスケーリング開始前にあらかじめ鋼板温度を下げるなど、デスケーリング前で鋼板を冷却する必要が生じる。なお、デスケーリング能力としてデスケーリング水のエネルギー密度の上限は無い。しかしながら、2回の合計で0.7J/mm2以上になると、ポンプの吐出圧力などが膨大となるため、0.7J/mm2以下であることが好ましい。 The inventors also examined the energy density of the first descaling by the descaling device 6 and the energy density of the second descaling by the descaling device 7. As described above, in the case where the iron surface layer undergoes ferrite transformation before the second descaling water is jetted by the first descaling, the scale peeling effect by the second descaling is improved. Therefore, the scale can be peeled off more efficiently by supplying the energy necessary for the transformation of the surface layer of the ground metal at the first time and descaling at a larger energy density at the second time. Specifically, it is preferable to set the energy density of the first descaling to 0.02 J / mm 2 or more. If it is smaller than this, in order to transform the surface layer by the first descaling water cooling, it is necessary to cool the steel plate before descaling, for example, by lowering the steel plate temperature before starting descaling. There is no upper limit of the energy density of descaling water as descaling capability. However, if the sum of the two times is 0.7 J / mm 2 or more, the discharge pressure of the pump becomes enormous, and therefore it is preferably 0.7 J / mm 2 or less.
 2回目のデスケーリング時の鋼板表面温度がAr変態点より大きい、または1回目のデスケーリングから2回目のデスケーリングを行うまでの時間が0.5sより小さい場合は、2回目のデスケーリング前にフェライト変態が発生せず、変態によるスケール剥離性向上が期待できない。 If the steel plate surface temperature at the second descaling is higher than the Ar 3 transformation point, or if the time from the first descaling to the second descaling is less than 0.5 s, before the second descaling No ferrite transformation occurs and no improvement in scale peelability can be expected due to the transformation.
 この関係から、デスケーリングを2回以上行うこととし、その合計のエネルギー密度が0.07J/mm以上の場合でも、2回目のデスケーリング水噴射までに変態が発生していなければ、鋼板の一部にスケールが残存し、冷却停止温度がばらついて材質が不均一となる。 From this relationship, descaling is performed twice or more, and even if the total energy density is 0.07 J / mm 2 or more, if transformation has not occurred before the second descaling water injection, Some scale remains, the cooling stop temperature varies, and the material becomes non-uniform.
 デスケーリング回数が3回以上の場合も、デスケーリング回数が2回の場合と同様に、最終直前のデスケーリングのエネルギー密度を0.02J/mm2以上とすることが好ましく、また、全デスケーリング回数の合計のデスケーリング水のエネルギー密度の合計が0.7J/mm2以下であることが好ましい。 Even when the number of descaling is 3 times or more, it is preferable that the energy density of the last descaling is 0.02 J / mm 2 or more, as in the case of 2 times of descaling. The total energy density of descaling water in the total number of times is preferably 0.7 J / mm 2 or less.
 ここで、厚鋼板に噴射されるデスケーリング水のエネルギー密度E(J/mm)とは、デスケーリングによってスケールを除去する能力の指標であり、次の(1)式のように定義される。
E=Qρvt÷(2dW)…(1)
ただし、Q:デスケーリング水の噴射流量[m/s]、d:フラットノズルのスプレー噴射厚み[mm]、W:フラットノズルのスプレー噴射幅[mm]、流体密度ρ[kg/m]、厚鋼板衝突時の流体速度v[m/s]、衝突時間t[s](t=d/1000V、搬送速度V[m/s])である。
Here, the energy density E (J / mm 2 ) of descaling water sprayed on the thick steel plate is an index of the ability to remove the scale by descaling and is defined as the following equation (1). .
E = Qρv 2 t ÷ ( 2 dW) (1)
However, Q: Descaling water injection flow rate [m 3 / s], d: Flat nozzle spray injection thickness [mm], W: Flat nozzle spray injection width [mm], Fluid density ρ [kg / m 3 ] The fluid velocity v [m / s] at the time of collision of the thick steel plate and the collision time t [s] (t = d / 1000 V, transport velocity V [m / s]).
 しかしながら、厚鋼板衝突時の流体速度vの測定は必ずしも容易ではないため、(1)式で定義されるエネルギー密度Eを厳密に求めようとすると、多大な労力を要する。 However, since it is not always easy to measure the fluid velocity v at the time of collision with a thick steel plate, a great deal of labor is required to accurately determine the energy density E defined by the equation (1).
 そこで、本発明者らは、さらに検討を加えた結果、厚鋼板に噴射されるデスケーリング水のエネルギー密度E(J/mm)の簡便な定義として、水量密度×噴射圧力×衝突時間を採用すればよいことを見出した。ここで、水量密度(m/(mm・min))は、「デスケーリング水の噴射流量÷デスケーリング水衝突面積」で計算される値である。噴射圧力(N/m=Pa)は、デスケーリング水の吐出圧力で定義される。衝突時間(s)は、「デスケーリング水の衝突厚み÷厚鋼板の搬送速度」で計算される値である。なお、この簡便な定義で算出される本発明の高圧水のエネルギー密度とスケール剥離率との関係も、図6と同様である。 Therefore, as a result of further studies, the present inventors adopted water density × injection pressure × collision time as a simple definition of the energy density E (J / mm 2 ) of descaling water injected into the thick steel plate. I found out that I should do. The water density (m 3 / (mm 2 · min)) is a value calculated by “descaled water injection flow rate ÷ descaling water collision area”. The injection pressure (N / m 2 = Pa) is defined by the discharge pressure of descaling water. The collision time (s) is a value calculated by “descaled water collision thickness ÷ thick steel plate conveyance speed”. In addition, the relationship between the energy density of the high pressure water of this invention calculated by this simple definition and a scale peeling rate is the same as that of FIG.
 ところで、加速冷却装置5による厚鋼板の冷却時の安定性に影響を及ぼす、厚鋼板の表面のスケールについて、厚鋼板のスケールの成長は一般的に拡散律速で整理できるとされ、次の(2)式で表されることが知られている。
ξ=a×exp(-Q/RT)×t…(2)
ただし、ξ:スケール厚み、a:定数、Q:活性化エネルギー、R:定数、T:冷却前の厚鋼板温度[K]、t:時間である。
By the way, regarding the scale of the surface of the thick steel plate that affects the stability during cooling of the thick steel plate by the accelerated cooling device 5, the growth of the scale of the thick steel plate can be generally organized by diffusion rate control. It is known that
ξ 2 = a × exp (−Q / RT) × t (2)
Where ξ: scale thickness, a: constant, Q: activation energy, R: constant, T: thick steel plate temperature [K] before cooling, t: time.
 そこで、デスケーリング装置6、7によるスケール除去後のスケール成長を考慮し、種々の温度、時間でスケール成長のシミュレーション実験を行い、上記(2)式の定数を実験的に導出し、さらに、スケール厚みと冷却安定性について鋭意検討した。その結果、スケール厚みが15μm以下で冷却が安定し、スケール厚みが10μm以下でより安定し、スケール厚みが5μm以下で非常に安定するという知見を得た。 Therefore, in consideration of the scale growth after descaling by the descaling devices 6 and 7, a scale growth simulation experiment is performed at various temperatures and times, and the constant of the above equation (2) is experimentally derived. The thickness and cooling stability were studied earnestly. As a result, it was found that cooling was stable when the scale thickness was 15 μm or less, more stable when the scale thickness was 10 μm or less, and very stable when the scale thickness was 5 μm or less.
 スケール厚みが15μm以下の場合、上記(2)式に基づき、下記式(3)を導出することができる。すなわち、デスケーリング装置6、7による厚鋼板のスケール除去終了後から、加速冷却装置5で厚鋼板の冷却を開始するまでの時間t[s]が、次の(3)式を満たす場合に、加速冷却装置5による冷却が安定する。
t≦5×10-9×exp(25000/T)…(3)
ただし、T:冷却前の厚鋼板温度[K]である。
When the scale thickness is 15 μm or less, the following formula (3) can be derived based on the above formula (2). That is, when the time t [s] from the end of descaling of the thick steel plate by the descaling devices 6 and 7 to the start of cooling the thick steel plate by the accelerated cooling device 5 satisfies the following equation (3): Cooling by the acceleration cooling device 5 is stabilized.
t ≦ 5 × 10 −9 × exp (25000 / T) (3)
However, T: Thick steel plate temperature [K] before cooling.
 また、スケール厚みが10μm以下の場合、上記(2)式に基づき、下記式(4)を導出することができる。すなわち、デスケーリング装置6、7による厚鋼板のスケールの除去終了後から、加速冷却装置5で厚鋼板の冷却を開始するまでの時間t[s]が、次の(4)式を満たす場合に、加速冷却装置5による冷却がより安定する。
t≦2.2×10-9×exp(25000/T)…(4)
 さらに、スケール厚みが5μm以下の場合、上記(2)式に基づき、下記式(5)を導出することができる。すなわち、デスケーリング装置6、7による厚鋼板のスケール除去終了後から、加速冷却装置5で厚鋼板の冷却を開始するまでの時間t[s]が、次の(5)式を満たす場合に、加速冷却装置5による冷却が非常に安定する。
t≦5.6×10-10×exp(25000/T)…(5)
 本発明の加速冷却装置5について説明する。図9に示すように、本発明の加速冷却装置5の上面冷却設備は、厚鋼板10の上面に冷却水を供給する上ヘッダ11と、該上ヘッダ11から懸垂した棒状冷却水を噴射する冷却水噴射ノズル13と、厚鋼板10と上ヘッダ11との間に設置される隔壁15とを備える。隔壁15には、冷却水噴射ノズル13の下端部を内挿する給水口16と、厚鋼板10の上面に供給された冷却水を隔壁15上へ排水する排水口17とが、多数設けられていることが好ましい。
When the scale thickness is 10 μm or less, the following formula (4) can be derived based on the above formula (2). That is, when the time t [s] from the end of removal of the scale of the thick steel plate by the descaling devices 6 and 7 to the start of cooling of the thick steel plate by the accelerated cooling device 5 satisfies the following equation (4): The cooling by the acceleration cooling device 5 is more stable.
t ≦ 2.2 × 10 −9 × exp (25000 / T) (4)
Furthermore, when the scale thickness is 5 μm or less, the following formula (5) can be derived based on the above formula (2). That is, when the time t [s] from the end of descaling of the thick steel plate by the descaling devices 6 and 7 to the start of cooling the thick steel plate by the accelerated cooling device 5 satisfies the following equation (5): Cooling by the acceleration cooling device 5 is very stable.
t ≦ 5.6 × 10 −10 × exp (25000 / T) (5)
The accelerated cooling device 5 of the present invention will be described. As shown in FIG. 9, the upper surface cooling facility of the accelerated cooling device 5 of the present invention includes an upper header 11 that supplies cooling water to the upper surface of the thick steel plate 10, and cooling that jets rod-shaped cooling water suspended from the upper header 11. The water injection nozzle 13 and the partition 15 installed between the thick steel plate 10 and the upper header 11 are provided. The partition wall 15 is provided with a plurality of water supply ports 16 for inserting the lower end portion of the cooling water injection nozzle 13 and drain ports 17 for draining the cooling water supplied to the upper surface of the thick steel plate 10 onto the partition wall 15. Preferably it is.
 具体的には、上面冷却設備は、厚鋼板10の上面に冷却水を供給する上ヘッダ11と、該上ヘッダ11から懸垂した冷却水噴射ノズル13と、上ヘッダ11と厚鋼板10との間に厚鋼板幅方向に亘り水平に設置され多数の貫通孔(給水口16と排水口17)を有する隔壁15とを備えている。そして、冷却水噴射ノズル13は棒状の冷却水を噴射する円管ノズルからなり、その先端が前記隔壁15に設けられた貫通孔(給水口16)に内挿されて隔壁15の下端部より上方になるように設置されている。なお、冷却水噴射ノズル13は、上ヘッダ11内の底部の異物を吸い込んで詰まるのを防止するため、その上端が上ヘッダ11の内部に突出するように、上ヘッダ11内に貫入させることが好ましい。 Specifically, the upper surface cooling facility includes an upper header 11 for supplying cooling water to the upper surface of the thick steel plate 10, a cooling water injection nozzle 13 suspended from the upper header 11, and the upper header 11 and the thick steel plate 10. And a partition wall 15 having a large number of through-holes (water supply port 16 and drain port 17) installed horizontally in the width direction of the thick steel plate. The cooling water injection nozzle 13 is a circular pipe nozzle that injects rod-shaped cooling water, and its tip is inserted into a through-hole (water supply port 16) provided in the partition wall 15 and above the lower end portion of the partition wall 15. It is installed to become. The cooling water injection nozzle 13 may be inserted into the upper header 11 so that the upper end of the cooling water injection nozzle 13 protrudes into the upper header 11 in order to prevent the foreign matter at the bottom in the upper header 11 from being sucked and clogged. preferable.
 ここで、本発明における棒状冷却水とは、円形状(楕円や多角の形状も含む)のノズル噴出口からある程度加圧された状態で噴射される冷却水であって、ノズル噴出口からの冷却水の噴射速度が6m/s以上、好ましくは8m/s以上であり、ノズル噴出口から噴射された水流の断面がほぼ円形に保たれた連続性と直進性のある水流の冷却水のことをいう。すなわち、円管ラミナーノズルからの自由落下流や、スプレーのような液滴状態で噴射されるものとは異なる。 Here, the rod-shaped cooling water in the present invention is cooling water injected in a state of being pressurized to some extent from a circular (including elliptical or polygonal) nozzle outlet, and is cooled from the nozzle outlet. The water injection speed is 6 m / s or more, preferably 8 m / s or more, and the water flow jetted from the nozzle outlet has a continuous circular shape, and the water flow has a continuous and straight flow. Say. That is, it is different from a free fall flow from a circular tube laminar nozzle or a liquid ejected in a droplet state such as a spray.
 冷却水噴射ノズル13の先端が貫通孔に内挿されて隔壁15の下端部より上方になるように設置されているのは、仮に先端が上方に反った厚鋼板が進入してきた場合でも隔壁15によって冷却水噴射ノズル13が損傷するのを防止するためである。それによって冷却水噴射ノズル13が良好な状態で長期間に亘って冷却を行うことができるので、設備補修等を行うことなく、厚鋼板の温度ムラの発生を防止することができる。 The reason why the tip of the cooling water spray nozzle 13 is inserted into the through hole and is located above the lower end of the partition wall 15 is that the partition wall 15 is inserted even when a thick steel plate whose tip is warped upward enters. This is to prevent the cooling water injection nozzle 13 from being damaged. As a result, the cooling water injection nozzle 13 can be cooled for a long period of time in a good state, so that it is possible to prevent the occurrence of temperature unevenness in the thick steel plate without repairing the equipment.
 また、円管ノズル13の先端が貫通孔に内挿されているので、図16に示すように、隔壁15の上面を流れる点線矢印の排出水の幅方向流れと干渉することがない。したがって、冷却水噴射ノズル13から噴射された冷却水は、幅方向位置によらず等しく厚鋼板上面へ達することができ、幅方向に均一な冷却を行うことができる。 Further, since the tip of the circular tube nozzle 13 is inserted into the through hole, as shown in FIG. 16, there is no interference with the flow in the width direction of the drained water indicated by the dotted arrow flowing through the upper surface of the partition wall 15. Therefore, the cooling water jetted from the cooling water jet nozzle 13 can reach the upper surface of the thick steel plate equally regardless of the position in the width direction, and uniform cooling in the width direction can be performed.
 隔壁15の一例を示すと、図11に示すように隔壁15には直径10mmの貫通孔が厚鋼板幅方向に80mm、搬送方向に80mmのピッチで碁盤の目状に多数開けられている。そして、給水口16には外径8mm、内径3mm、長さ140mmの冷却水噴射ノズル13が挿入されている。冷却水噴射ノズル13は千鳥格子状に配列され、冷却水噴射ノズル13が通っていない貫通孔は冷却水の排水口17となっている。このように、本発明の加速冷却装置の隔壁15に設けられた多数の貫通孔は、ほぼ同数の給水口16と排水口17とから成り立っており、それぞれに役割、機能を分担している。 As an example of the partition wall 15, as shown in FIG. 11, a large number of through-holes having a diameter of 10 mm are opened in a grid pattern at a pitch of 80 mm in the thick steel plate width direction and 80 mm in the transport direction. A cooling water injection nozzle 13 having an outer diameter of 8 mm, an inner diameter of 3 mm, and a length of 140 mm is inserted into the water supply port 16. The cooling water injection nozzles 13 are arranged in a staggered pattern, and the through holes through which the cooling water injection nozzles 13 do not pass serve as cooling water drains 17. As described above, the large number of through holes provided in the partition wall 15 of the accelerated cooling device of the present invention are composed of the substantially same number of water supply ports 16 and drain ports 17, and each share a role and function.
 このとき、排水口17の総断面積は、冷却水噴射ノズル13の円管ノズル13の内径の総断面積よりも十分広く、円管ノズル13の内径の総断面積の11倍程度が確保されており、図9に示すように厚鋼板上面に供給された冷却水は、厚鋼板表面と隔壁15との間に充満し、排水口17を通して、隔壁15の上方に導かれ、速やかに排出される。図12は隔壁上の厚鋼板幅方向端部付近の冷却排水の流れを説明する正面図である。排水口17の排水方向が冷却水噴射方向と逆の上向きになっており、隔壁15の上方へ抜けた冷却排水は、厚鋼板幅方向外側へ向きを変え、上ヘッダ11と隔壁15との間の排水流路を流れて排水される。 At this time, the total cross-sectional area of the drain port 17 is sufficiently larger than the total cross-sectional area of the inner diameter of the circular pipe nozzle 13 of the cooling water injection nozzle 13, and about 11 times the total cross-sectional area of the inner diameter of the circular pipe nozzle 13 is ensured. As shown in FIG. 9, the cooling water supplied to the upper surface of the thick steel plate is filled between the thick steel plate surface and the partition wall 15, led to the upper side of the partition wall 15 through the drain port 17, and quickly discharged. The FIG. 12 is a front view for explaining the flow of cooling drainage near the end in the width direction of the thick steel plate on the partition wall. The drainage direction of the drainage port 17 is upward opposite to the cooling water injection direction, and the cooling drainage drained upward from the partition wall 15 changes the direction outward in the thick steel plate width direction, between the upper header 11 and the partition wall 15. It drains through the drainage channel.
 一方、図13に示す例は、排水口17を厚鋼板幅方向に傾斜させて排水方向が厚鋼板幅方向外側に向くように幅方向外側へ向けた斜め方向としたものである。このようにすることで、隔壁15上の排出水19の厚鋼板幅方向流れが円滑になり、排水が促進されるので好ましい。 On the other hand, in the example shown in FIG. 13, the drain port 17 is inclined in the thick steel plate width direction, and the slant direction is directed outward in the width direction so that the drain direction is directed outward in the thick steel plate width direction. By doing in this way, the flow of the discharged water 19 on the partition wall 15 in the thickness direction of the steel plate becomes smooth and drainage is promoted, which is preferable.
 ここで、図14に示すように排水口と給水口が同一の貫通孔に設置されていると、冷却水は、厚鋼板に衝突した後、隔壁15の上方に抜けにくくなって、厚鋼板10と隔壁15の間を厚鋼板幅方向端部へ向かって流れるようになる。そうすると厚鋼板10と隔壁15の間の冷却排水の流量は、板幅方向の端部に近づく程多くなるので、噴射冷却水18が滞留水膜を貫通して厚鋼板に到達する力が板幅方向端部ほど阻害されることとなる。 Here, as shown in FIG. 14, when the drainage port and the water supply port are installed in the same through hole, the cooling water does not easily escape above the partition wall 15 after colliding with the steel plate, and the steel plate 10. And the partition wall 15 flow toward the end in the width direction of the thick steel plate. Then, since the flow rate of the cooling drainage between the thick steel plate 10 and the partition wall 15 increases as it approaches the end in the plate width direction, the force that the jet cooling water 18 penetrates the staying water film and reaches the thick steel plate is the plate width. The direction end portion is inhibited.
 薄鋼板の場合には板幅が高々2m程度であるのでその影響は限定的である。しかしながら、特に板幅が3m以上の厚鋼板の場合には、その影響は無視できない。従って、厚鋼板幅方向端部の冷却が弱くなり、この場合の厚鋼板幅方向の温度分布は、不均一な温度分布となる。 In the case of a thin steel plate, the influence is limited because the plate width is about 2 m at most. However, the influence cannot be ignored especially in the case of a thick steel plate having a plate width of 3 m or more. Accordingly, the cooling at the end in the width direction of the thick steel plate is weakened, and the temperature distribution in the width direction of the thick steel plate in this case becomes a non-uniform temperature distribution.
 これに対して、本発明の加速冷却装置5は、図15に示すように給水口16と排水口17は別個に設けられており、給水と排水を役割分担しているので、冷却排水は隔壁15の排水口17を通過して隔壁15の上方に円滑に流れて行くようになる。従って、冷却後の排水が速やかに厚鋼板上面から排除されるので、後続で供給される冷却水は、容易に滞留水膜を貫通することができ、十分な冷却能力を得ることができる。この場合の厚鋼板幅方向の温度分布は、均一な温度分布となり、幅方向に均一な温度分布を得ることができる。 On the other hand, in the accelerated cooling device 5 of the present invention, as shown in FIG. 15, the water supply port 16 and the water discharge port 17 are provided separately and share the roles of water supply and water discharge. 15 flows smoothly through the drainage port 17 and above the partition wall 15. Accordingly, since the drainage after cooling is quickly removed from the upper surface of the thick steel plate, the cooling water supplied subsequently can easily penetrate the staying water film, and a sufficient cooling capacity can be obtained. In this case, the temperature distribution in the width direction of the thick steel plate is a uniform temperature distribution, and a uniform temperature distribution in the width direction can be obtained.
 ちなみに、排水口17の総断面積は、円管ノズル13の内径の総断面積の1.5倍以上であれば、冷却水の排出が速やかに行われる。このことは、例えば、隔壁15には円管ノズル13の外径よりも大きい穴を開け、排水口の数を給水口の数と同じか、それ以上にすれば実現できる。 Incidentally, if the total cross-sectional area of the drain port 17 is 1.5 times or more the total cross-sectional area of the inner diameter of the circular tube nozzle 13, the cooling water is discharged quickly. This can be realized, for example, by making holes larger than the outer diameter of the circular tube nozzle 13 in the partition wall 15 and making the number of drain ports equal to or greater than the number of water supply ports.
 排水口17の総断面積が円管ノズル13の内径部の総断面積の1.5倍より小さいと、排水口の流動抵抗が大きくなり、滞留水が排水されにくくなる結果、滞留水膜を貫通して厚鋼板表面に到達できる冷却水量が大幅に減り、冷却能が低下するので好ましくない。より好ましくは4倍以上である。一方、排水口が多過ぎたり、排水口の断面径が大きくなりすぎると、隔壁15の剛性が小さくなって、厚鋼板が衝突したときに損傷し易くなる。従って、排水口の総断面積と円管ノズル13の内径の総断面積の比は1.5から20の範囲が好適である。 If the total cross-sectional area of the drain port 17 is smaller than 1.5 times the total cross-sectional area of the inner diameter portion of the circular tube nozzle 13, the flow resistance of the drain port increases and the stagnant water becomes difficult to drain. The amount of cooling water that can penetrate and reach the surface of the thick steel plate is greatly reduced, and the cooling ability is lowered, which is not preferable. More preferably, it is 4 times or more. On the other hand, if there are too many drain openings or the sectional diameter of the drain openings becomes too large, the rigidity of the partition wall 15 becomes small, and it becomes easy to be damaged when a thick steel plate collides. Therefore, the ratio of the total cross-sectional area of the drain outlet and the total cross-sectional area of the inner diameter of the circular tube nozzle 13 is preferably in the range of 1.5 to 20.
 また、隔壁15の給水口16に内挿した円管ノズル13の外周面と給水口16の内面との隙間は3mm以下とすることが望ましい。この隙間が大きいと、円管ノズル13から噴射される冷却水の随伴流の影響により、隔壁15の上面へ排出された冷却排水が給水口16の円管ノズル13の外周面との隙間に引き込まれ、再び厚鋼板上に供給されることとなるので、冷却効率が悪くなる。これを防止するには、円管ノズル13の外径を給水口16の大きさとほぼ同じにすることがより好ましい。しかしながら、工作精度や取り付け誤差を考慮し、実質的に影響が少ない3mmまでの隙間は許容する。より望ましくは2mm以下とする。 Further, it is desirable that the gap between the outer peripheral surface of the circular tube nozzle 13 inserted in the water supply port 16 of the partition wall 15 and the inner surface of the water supply port 16 be 3 mm or less. If this gap is large, the cooling drainage discharged to the upper surface of the partition wall 15 is drawn into the gap between the outer peripheral surface of the circular pipe nozzle 13 of the water supply port 16 due to the influence of the accompanying flow of the cooling water injected from the circular pipe nozzle 13. As a result, the steel sheet is again supplied onto the thick steel plate, resulting in poor cooling efficiency. In order to prevent this, it is more preferable that the outer diameter of the circular tube nozzle 13 is substantially the same as the size of the water supply port 16. However, in consideration of machining accuracy and mounting errors, a gap of up to 3 mm that has substantially little influence is allowed. More preferably, it is 2 mm or less.
 さらに、冷却水が滞留水膜を貫通して厚鋼板に到達できるようにするためには、円管ノズル13の内径、長さ、冷却水の噴射速度やノズル距離も最適にする必要がある。 Furthermore, in order to allow the cooling water to penetrate the staying water film and reach the thick steel plate, it is necessary to optimize the inner diameter and length of the circular tube nozzle 13, the injection speed of the cooling water and the nozzle distance.
 即ち、ノズル内径は3~8mmが好適である。3mmより小さいとノズルから噴射する水の束が細くなり勢いが弱くなる。一方ノズル径が8mmを超えると流速が遅くなり、滞留水膜を貫通する力が弱くなる。 That is, the nozzle inner diameter is preferably 3 to 8 mm. If it is smaller than 3 mm, the bundle of water sprayed from the nozzle becomes thin and the momentum becomes weak. On the other hand, when the nozzle diameter exceeds 8 mm, the flow rate becomes slow, and the force penetrating the staying water film becomes weak.
 円管ノズル13の長さは120~240mmが好適である。ここでいう円管ノズル13の長さとは、ヘッダ内部へある程度貫入したノズル上端の流入口から、隔壁の給水口に内挿したノズルの下端までの長さを意味する。円管ノズル13が120mmより短いと、ヘッダ下面と隔壁上面との距離が短くなりすぎる(例えば、ヘッダ厚み20mm、ヘッダ内へのノズル上端の突出量20mm、隔壁へのノズル下端の挿入量10mmとすると、70mm未満となる)ため、隔壁より上側の排水スペースが小さくなり、冷却排水が円滑に排出できなくなる。一方、240mmより長いと円管ノズル13の圧力損失が大きくなり、滞留水膜を貫通する力が弱くなる。 The length of the circular tube nozzle 13 is preferably 120 to 240 mm. The length of the circular tube nozzle 13 here means the length from the inlet at the upper end of the nozzle that penetrates into the header to some extent to the lower end of the nozzle inserted into the water supply port of the partition wall. When the circular tube nozzle 13 is shorter than 120 mm, the distance between the lower surface of the header and the upper surface of the partition wall becomes too short (for example, the header thickness is 20 mm, the protrusion amount of the nozzle upper end into the header is 20 mm, and the insertion amount of the nozzle lower end into the partition wall is 10 mm. Therefore, the drainage space above the partition wall becomes small, and the cooling drainage cannot be discharged smoothly. On the other hand, if it is longer than 240 mm, the pressure loss of the circular tube nozzle 13 becomes large, and the force penetrating the staying water film becomes weak.
 ノズルからの冷却水の噴射速度は、6m/s以上、好ましくは8m/s以上が必要である。6m/s未満では、滞留水膜を冷却水が貫通する力が極端に弱くなるからである。8m/s以上であれば、より大きな冷却能力を確保できるので好ましい。また、上面冷却の冷却水噴射ノズル13の下端から厚鋼板10の表面までの距離は、30~120mmとするのが良い。30mm未満では、厚鋼板10が隔壁15に衝突する頻度が極端に多くなり設備保全が難しくなる。120mm超えでは、冷却水が滞留水膜を貫通する力が極端に弱くなる。 The jet speed of cooling water from the nozzle is required to be 6 m / s or more, preferably 8 m / s or more. This is because if it is less than 6 m / s, the force of the cooling water penetrating through the staying water film becomes extremely weak. If it is 8 m / s or more, a larger cooling capacity can be secured, which is preferable. The distance from the lower end of the cooling water spray nozzle 13 for upper surface cooling to the surface of the thick steel plate 10 is preferably 30 to 120 mm. If it is less than 30 mm, the frequency with which the thick steel plate 10 collides with the partition wall 15 becomes extremely high, and equipment maintenance becomes difficult. If it exceeds 120 mm, the force through which the cooling water penetrates the staying water film becomes extremely weak.
 厚鋼板上面の冷却では、冷却水が厚鋼板長手方向に拡がらないように、上ヘッダ11の前後に水切ロール20を設置するのが良い。これにより、冷却ゾーン長が一定となり、温度制御が容易になる。ここで水切ロール20により厚鋼板搬送方向の冷却水の流れは堰き止められるので冷却排水は厚鋼板幅方向外側に流れるようになる。しかしながら、水切ロール20の近傍は冷却水が滞留し易い。 When cooling the upper surface of the thick steel plate, it is preferable to install draining rolls 20 before and after the upper header 11 so that the cooling water does not spread in the longitudinal direction of the thick steel plate. Thereby, the cooling zone length becomes constant and the temperature control becomes easy. Here, since the flow of the cooling water in the direction of transporting the thick steel plate is blocked by the draining roll 20, the cooling drainage flows outward in the width direction of the thick steel plate. However, the cooling water tends to stay in the vicinity of the draining roll 20.
 そこで図10に示すように、厚鋼板幅方向に並んだ円管ノズル13の列のうち、厚鋼板搬送方向の最上流側列の冷却水噴射ノズルは、厚鋼板搬送方向の上流方向へ15~60度傾け、厚鋼板搬送方向の最下流側列の冷却水噴射ノズルは、厚鋼板搬送方向の下流方向へ15~60度傾けることが好ましい。こうすることにより、水切ロール20に近い位置にも冷却水を供給することができ、水切ロール20近傍に冷却水が滞留することがなく、冷却効率が上がるので好適である。 Therefore, as shown in FIG. 10, among the rows of circular tube nozzles 13 aligned in the thick steel plate width direction, the cooling water jet nozzle in the uppermost stream side row in the thick steel plate transport direction is 15 to upstream in the thick steel plate transport direction. It is preferable that the cooling water jet nozzles at the most downstream side in the thick steel plate conveyance direction are inclined 15 to 60 degrees in the downstream direction in the thick steel plate conveyance direction. By carrying out like this, a cooling water can be supplied also to the position near the draining roll 20, a cooling water does not stay in the draining roll 20 vicinity, and it is suitable for a cooling efficiency to rise.
 上ヘッダ11下面と隔壁15上面の距離は、ヘッダ下面と隔壁上面に囲まれた空間内での厚鋼板幅方向流路断面積が冷却水噴射ノズル内径の総断面積の1.5倍以上となるように設けられることが好ましく、例えば100mm程度以上であることが好ましい。この厚鋼板幅方向流路断面積が冷却水噴射ノズル内径の総断面積の1.5倍以上ない場合、隔壁に設けられた排水口17から隔壁15上面へ排出された冷却排水が円滑に厚鋼板幅方向に排出できないおそれがある。 The distance between the lower surface of the upper header 11 and the upper surface of the partition wall 15 is such that the cross-sectional area in the width direction of the thick steel plate in the space surrounded by the lower surface of the header and the upper surface of the partition wall is 1.5 times the total cross-sectional area of the cooling water spray nozzle inner diameter. It is preferable to be provided, for example, about 100 mm or more is preferable. When the cross-sectional area of the thick steel plate in the width direction is not 1.5 times or more than the total cross-sectional area of the cooling water jet nozzle inner diameter, the cooling drainage discharged from the drain port 17 provided on the partition wall to the top surface of the partition wall 15 is smoothly thick. There is a possibility that it cannot be discharged in the width direction of the steel sheet.
 本発明の加速冷却装置において、最も効果を発揮する水量密度の範囲は、1.5m/(m・min)以上である。水量密度がこれよりも低い場合には滞留水膜がそれほど厚くならず、棒状冷却水を自由落下させて厚鋼板を冷却する公知の技術を適用しても、幅方向の温度ムラはそれほど大きくならない場合もある。一方、水量密度が4.0m/(m・min)よりも高い場合でも、本発明の技術を用いることは有効であるが、設備コストが高くなるなど実用化の上での問題があるので、1.5~4.0m/(m・min)が最も実用的な水量密度である。 In the accelerated cooling device of the present invention, the range of the water density that exhibits the most effect is 1.5 m 3 / (m 2 · min) or more. When the water density is lower than this, the accumulated water film does not become so thick, and even if a known technique for cooling the thick steel plate by dropping the rod-shaped cooling water freely is applied, the temperature unevenness in the width direction does not become so large. In some cases. On the other hand, even when the water density is higher than 4.0 m 3 / (m 2 · min), it is effective to use the technique of the present invention, but there are problems in practical use such as an increase in equipment cost. Therefore, 1.5 to 4.0 m 3 / (m 2 · min) is the most practical water density.
 本発明の冷却技術を適用するのは、冷却ヘッダの前後に水切りロールを配する場合が特に効果的である。しかしながら、水切りロールがない場合にも適用することは可能である。例えば、ヘッダが長手方向に比較的長く(2~4m程度ある場合)、そのヘッダの前後でパージ用の水スプレーを噴射して、非水冷ゾーンへの水漏れを防止する冷却設備に適用することも可能である。 The application of the cooling technique of the present invention is particularly effective when a draining roll is arranged before and after the cooling header. However, it is possible to apply even when there is no draining roll. For example, the header is relatively long in the longitudinal direction (when it is about 2 to 4 m), and it is applied to cooling equipment that sprays water spray for purging before and after the header to prevent water leakage to the non-water cooling zone. Is also possible.
 なお、本発明において、厚鋼板下面側の冷却装置については、特に限定されるものではない。図9、10に示す実施形態では、上面側の冷却装置と同様の円管ノズル14を備えた冷却下ヘッダ12の例を示した。しかしながら、厚鋼板下面側の冷却では、噴射された冷却水は厚鋼板に衝突した後に自然落下するので、上面側冷却のような冷却排水を厚鋼板幅方向に排出する隔壁15はなくてよい。また、膜状冷却水や噴霧状のスプレー冷却水などを供給する公知の技術を用いてもよい。 In the present invention, the cooling device on the lower surface side of the thick steel plate is not particularly limited. In the embodiment shown in FIGS. 9 and 10, an example of the cooled header 12 including the circular tube nozzle 14 similar to the cooling device on the upper surface side is shown. However, in the cooling on the lower surface side of the thick steel plate, the injected cooling water naturally falls after colliding with the thick steel plate, so that there is no need for the partition wall 15 for discharging cooling drainage as in the upper surface side cooling in the thick steel plate width direction. Moreover, you may use the well-known technique which supplies film-form cooling water, spray-like spray cooling water, etc.
 なお、本発明の加熱炉1およびデスケーリング装置2については、特に制限されず、従来の装置を用いることができる。デスケーリング装置2については、本発明のデスケーリング装置6、7と同様の構成である必要はない。 Note that the heating furnace 1 and the descaling device 2 of the present invention are not particularly limited, and conventional devices can be used. The descaling device 2 need not have the same configuration as the descaling devices 6 and 7 of the present invention.
 以下、本発明の実施例を説明する。以下の説明で、鋼板温度はいずれも鋼板表面の温度である。 Hereinafter, examples of the present invention will be described. In the following description, the steel plate temperature is the temperature of the steel plate surface.
 図4に示すような厚鋼板の製造設備を用いて、本発明の厚鋼板を製造した。加熱炉1でスラブを再加熱した後、デスケーリング装置2において一次スケールを除去し、圧延機3で熱間圧延し、形状矯正装置4で形状矯正した。形状矯正後、デスケーリングを行った。熱間矯正後のデスケーリングについては、2回の場合は、デスケーリング装置6、デスケーリング装置7の2つのデスケーリング装置が配置されており、厚鋼板の表面に2回デスケーリングを行った。なお、デスケーリングが3回以上の場合は、デスケーリング装置を3列以上配置させるとともに、各ノズル列を長手方向に500mm以上離し、千鳥配置とした。デスケーリング終了後、加速冷却装置5を用いて厚鋼板の制御冷却を行った。 The thick steel plate of the present invention was manufactured using a thick steel plate manufacturing facility as shown in FIG. After the slab was reheated in the heating furnace 1, the primary scale was removed in the descaling device 2, hot rolled by the rolling mill 3, and the shape was corrected by the shape correcting device 4. After shape correction, descaling was performed. In the case of descaling after hot straightening, in the case of two times, two descaling devices of a descaling device 6 and a descaling device 7 were arranged, and descaling was performed twice on the surface of the thick steel plate. When the descaling is performed three times or more, the descaling devices are arranged in three or more rows, and the nozzle rows are spaced apart by 500 mm or more in the longitudinal direction to form a staggered arrangement. After the descaling was completed, controlled cooling of the thick steel plate was performed using the accelerated cooling device 5.
 デスケーリング装置6、デスケーリング装置7ともに、噴射距離(デスケーリング装置の噴射ノズルと厚鋼板の表面距離)が130mm、ノズル噴射角度が66°、迎え角が15°とした。デスケーリング装置7でのデスケーリング後、加速冷却装置5で500℃まで冷却した。また、デスケーリング装置6、デスケーリング装置7の各ノズルについては、隣り合うノズルの噴射領域がある程度ラップするように幅方向に並べたものを用いた。デスケーリング装置6とデスケーリング7との距離は、長手方向に1.1m離れた距離に配置させた。また、ノズルはフラットスプレーノズルとした。ここで、熱間圧延後のデスケーリングのノズルの噴射圧力およびノズル1本あたりの噴射流量については、デスケーリング装置6、デスケーリング装置7ともに同じとして、表1に示す条件で行った。また、用いた鋼板のAr変態点は780℃であった。圧延機3での圧延終了後の板厚は30mm、厚鋼板温度は830℃または840℃であった。
また、前述の(3)、(4)、(5)式から計算される冷却が安定する条件は、デスケーリング装置による厚鋼板のスケールを除去終了後から加速冷却装置で厚鋼板の冷却を開始するまでの時間tが42s以下で、好ましくは19s以下、さらに好ましくは5s以下である。
In both the descaling device 6 and the descaling device 7, the spray distance (the surface distance between the spray nozzle of the descaling device and the thick steel plate) was 130 mm, the nozzle spray angle was 66 °, and the angle of attack was 15 °. After descaling by the descaling device 7, it was cooled to 500 ° C. by the acceleration cooling device 5. Further, the nozzles of the descaling device 6 and the descaling device 7 are arranged in the width direction so that the ejection regions of adjacent nozzles overlap to some extent. The distance between the descaling device 6 and the descaling 7 was arranged at a distance of 1.1 m in the longitudinal direction. The nozzle was a flat spray nozzle. Here, the spray pressure of the descaling nozzle after hot rolling and the spray flow rate per nozzle were the same for both the descaling device 6 and the descaling device 7 and were performed under the conditions shown in Table 1. Further, the Ar 3 transformation point of the used steel sheet was 780 ° C. The sheet thickness after rolling in the rolling mill 3 was 30 mm, and the steel plate temperature was 830 ° C. or 840 ° C.
The cooling conditions calculated from the above-described equations (3), (4), and (5) are as follows. After removing the scale of the thick steel plate by the descaling device, the cooling of the thick steel plate is started by the acceleration cooling device. The time t until it is 42 s or less, preferably 19 s or less, more preferably 5 s or less.
 得られた厚鋼板について、材質ばらつきの少ない厚鋼板を得るために、冷却停止温度のばらつきが25℃以内の厚鋼板を合格とした。 For the obtained thick steel plate, in order to obtain a thick steel plate with less material variation, a steel plate having a cooling stop temperature variation of 25 ° C. or less was accepted.
 製造条件および結果を表1に示す。なお、表1中のTは冷却前の厚鋼板温度(K)である。 Manufacturing conditions and results are shown in Table 1. In Table 1, T is the thick steel plate temperature (K) before cooling.
Figure JPOXMLDOC01-appb-T000001
 発明例1は、厚鋼板表面がオーステナイトからフェライトに変態した後に2回目のデスケーリングを行ったので、スケールを完全に除去できた。発明例1の冷却停止温度のばらつき(以下、単に温度ムラと称する)は15℃となった。
Figure JPOXMLDOC01-appb-T000001
In Invention Example 1, since the second descaling was performed after the surface of the thick steel plate was transformed from austenite to ferrite, the scale could be completely removed. The variation in the cooling stop temperature of Invention Example 1 (hereinafter simply referred to as temperature unevenness) was 15 ° C.
 発明例2も、厚鋼板表面がオーステナイトからフェライトに変態した後に2回目のデスケーリングを行ったので、スケールを完全に除去できた。特に発明例2は、デスケーリング終了から制御冷却までの時間が3sと短いため、スケール除去終了後から冷却開始までの間に成長するスケールが薄くなる。その結果、冷却がより安定し、温度ムラは10℃となった。 Also in Invention Example 2, since the second descaling was performed after the thick steel plate surface was transformed from austenite to ferrite, the scale could be completely removed. In particular, in Invention Example 2, since the time from the end of descaling to control cooling is as short as 3 seconds, the scale that grows between the end of scale removal and the start of cooling becomes thin. As a result, the cooling was more stable and the temperature unevenness was 10 ° C.
 発明例3は、厚鋼板表面がオーステナイトからフェライトに変態した後に3回目のデスケーリングを行ったので、スケールを完全に除去できた。デスケーリング終了から制御冷却開始までの時間が3sと短いため、スケール除去終了後から冷却開始までの間に成長するスケールが薄くなり、その結果、冷却がより安定して温度ムラは10℃となった。 In Invention Example 3, since the third descaling was performed after the thick steel plate surface was transformed from austenite to ferrite, the scale could be completely removed. Since the time from the end of descaling to the start of control cooling is as short as 3 s, the scale that grows from the end of descaling to the start of cooling becomes thinner, resulting in more stable cooling and temperature unevenness of 10 ° C. It was.
 発明例4は、厚鋼板表面がオーステナイトからフェライトに変態した後に2回目のデスケーリングを行ったので、スケールを完全に除去できた。なお、デスケーリング終了から制御冷却開始までの時間が19sであり、スケール除去終了後から冷却開始までの間にスケールが成長し、温度ムラは18℃とやや大きくなった。 In Invention Example 4, since the second descaling was performed after the thick steel plate surface was transformed from austenite to ferrite, the scale could be completely removed. The time from the end of descaling to the start of control cooling was 19 s, the scale grew from the end of scale removal to the start of cooling, and the temperature unevenness slightly increased to 18 ° C.
 比較例1は、1回目から2回目のデスケーリングまでの時間が0.52s、2回目のデスケーリング時の鋼板表面温度が779℃であり、厚鋼板表面がオーステナイトからフェライトに変態した後に2回目のデスケーリングを行っている。しかしながら、エネルギー密度の合計が0.06J/mmと小さいため、鋼板の一部にスケールが残存し、温度ムラが40℃となった。 In Comparative Example 1, the time from the first to the second descaling is 0.52 s, the steel plate surface temperature at the second descaling is 779 ° C., and the second time after the thick steel plate surface is transformed from austenite to ferrite. Descaling is performed. However, since the total energy density was as small as 0.06 J / mm 2 , the scale remained in a part of the steel sheet, and the temperature unevenness was 40 ° C.
 比較例2は、エネルギー密度が0.07J/mmであった。しかしながら、2回目のデスケーリング時の鋼板表面温度が785℃であった。厚鋼板表面がオーステナイトからフェライトに変態していない状態で2回目のデスケーリングを行ったため、鋼板の一部にスケールが残存し、温度ムラが40℃となった。 In Comparative Example 2, the energy density was 0.07 J / mm 2 . However, the steel plate surface temperature at the second descaling was 785 ° C. Since the second descaling was performed in a state where the thick steel plate surface was not transformed from austenite to ferrite, the scale remained in a part of the steel plate, and the temperature unevenness became 40 ° C.
 比較例3は、エネルギー密度が0.07J/mmであった。しかしながら、1回目から2回目のデスケーリングまでの時間が0.48sであった。厚鋼板表面がオーステナイトからフェライトに変態していない状態で2回目のデスケーリングを行ったため、鋼板の一部にスケールが残存し、温度ムラが40℃となった。 In Comparative Example 3, the energy density was 0.07 J / mm 2 . However, the time from the first to the second descaling was 0.48 s. Since the second descaling was performed in a state where the thick steel plate surface was not transformed from austenite to ferrite, the scale remained in a part of the steel plate, and the temperature unevenness became 40 ° C.
 1  加熱炉
 2  デスケーリング装置
 3  圧延機
 4  形状矯正装置
 5  加速冷却装置
 6  デスケーリング装置
 6-1 デスケヘッダー
 6-2 噴射ノズル
 7  デスケーリング装置
 7-1 デスケヘッダー
 7-2 噴射ノズル
 10 厚鋼板
 11 上ヘッダ
 12 下ヘッダ
 13 上冷却水噴射ノズル(円管ノズル)
 14 下冷却水噴射ノズル(円管ノズル)
 15 隔壁
 16 給水口
 17 排水口
 18 噴射冷却水
 19 排出水
 20 水切ロール
 21 水切ロール
 22 スプレーパターン
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Descaling apparatus 3 Rolling mill 4 Shape correction apparatus 5 Acceleration cooling apparatus 6 Descaling apparatus 6-1 Deske header 6-2 Injection nozzle 7 Descaling apparatus 7-1 Deske header 7-2 Injection nozzle 10 Thick steel plate 11 Upper header 12 Lower header 13 Upper cooling water injection nozzle (circular tube nozzle)
14 Lower cooling water injection nozzle (circular tube nozzle)
15 Partition 16 Water supply port 17 Drain port 18 Injection cooling water 19 Drained water 20 Draining roll 21 Draining roll 22 Spray pattern

Claims (3)

  1.  熱間圧延工程、熱間矯正工程及び加速冷却工程の順番で厚鋼板を製造する方法において、前記熱間矯正工程と加速冷却工程との間でデスケーリング水の噴射を2回行うデスケーリング工程を有し、前記デスケーリング工程では、厚鋼板の表面に噴射されるデスケーリング水のエネルギー密度を2回の噴射の合計で0.07J/mm以上とし、1回目のデスケーリング水を噴射してから0.5s以上後に2回目のデスケーリング水を噴射させ、かつ、2回目のデスケーリング水噴射直前の鋼板表面温度をAr変態点以下にすることを特徴とする厚鋼板の製造方法。 In the method of manufacturing a thick steel plate in the order of the hot rolling step, the hot straightening step, and the accelerated cooling step, a descaling step in which injection of descaling water is performed twice between the hot straightening step and the accelerated cooling step. In the descaling step, the energy density of descaling water sprayed on the surface of the thick steel plate is 0.07 J / mm 2 or more in total of the two sprays, and the first descaling water is sprayed. A method for producing a thick steel sheet, characterized in that the second descaling water is injected 0.5 s or more after the time and the steel sheet surface temperature immediately before the second descaling water injection is set to the Ar 3 transformation point or less.
  2.  熱間圧延工程、熱間矯正工程及び加速冷却工程の順番で厚鋼板を製造する方法において、前記熱間矯正工程と加速冷却工程との間でデスケーリング水の噴射を2回以上行うデスケーリング工程を有し、前記デスケーリング工程では、厚鋼板の表面に噴射されるデスケーリング水のエネルギー密度を2回以上の噴射の合計で0.07J/mm以上とし、最終の直前のデスケーリング水を噴射してから0.5s以上後に最終のデスケーリング水を噴射させ、かつ、最終のデスケーリング水噴射直前の鋼板表面温度をAr変態点以下にすることを特徴とする厚鋼板の製造方法。 In the method of manufacturing a thick steel plate in the order of a hot rolling step, a hot straightening step, and an accelerated cooling step, a descaling step in which injection of descaling water is performed twice or more between the hot straightening step and the accelerated cooling step. In the descaling step, the energy density of descaling water sprayed on the surface of the thick steel plate is set to 0.07 J / mm 2 or more in total of two or more sprays, and the descaling water immediately before the final is used. A method for producing a thick steel plate, characterized in that a final descaling water is jetted 0.5 s or more after jetting, and a steel sheet surface temperature immediately before the final descaling water jet is set to an Ar 3 transformation point or less.
  3.  請求項1または2に記載の厚鋼板の製造方法において、冷却前の厚鋼板温度をT[K]とすると、前記デスケーリング工程終了後から前記加速冷却工程の開始までの時間t[s]は、t≦5×10-9×exp(25000/T)の式を満たしていることを特徴とする厚鋼板の製造方法。 In the manufacturing method of the thick steel plate according to claim 1 or 2, when the thick steel plate temperature before cooling is T [K], the time t [s] from the end of the descaling step to the start of the accelerated cooling step is , T ≦ 5 × 10 −9 × exp (25000 / T).
PCT/JP2015/004056 2014-08-26 2015-08-14 Thick steel plate manufacturing method WO2016031169A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580045918.0A CN106604785B (en) 2014-08-26 2015-08-14 The manufacturing method of thick steel plate
JP2016544933A JP6108041B2 (en) 2014-08-26 2015-08-14 Thick steel plate manufacturing method
KR1020177005018A KR101940429B1 (en) 2014-08-26 2015-08-14 Method for manufacturing steel plate
BR112017004022-0A BR112017004022B1 (en) 2014-08-26 2015-08-14 STEEL PLATE MANUFACTURING METHOD
EP15836450.5A EP3187275B1 (en) 2014-08-26 2015-08-14 Thick steel plate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171046 2014-08-26
JP2014-171046 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031169A1 true WO2016031169A1 (en) 2016-03-03

Family

ID=55399087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004056 WO2016031169A1 (en) 2014-08-26 2015-08-14 Thick steel plate manufacturing method

Country Status (6)

Country Link
EP (1) EP3187275B1 (en)
JP (1) JP6108041B2 (en)
KR (1) KR101940429B1 (en)
CN (1) CN106604785B (en)
BR (1) BR112017004022B1 (en)
WO (1) WO2016031169A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022192003A (en) * 2021-06-16 2022-12-28 Jfeスチール株式会社 Surface layer hardness prediction model and predictive control method for surface layer hardness of steel plate using the same, control command device, steel plate manufacturing line, and steel plate manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110473A1 (en) * 2009-03-25 2010-09-30 Jfeスチール株式会社 Steel plate manufacturing equipment and method of manufacturing
JP2012077325A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High strength steel sheet for line pipe and method for producing the same, and high strength steel pipe using high strength steel sheet for line pipe
JP2012152761A (en) * 2011-01-24 2012-08-16 Jfe Steel Corp Equipment and method for descaling thick steel plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06330155A (en) 1993-05-26 1994-11-29 Kawasaki Steel Corp Thick steel plate cooling method
JP3796133B2 (en) * 2000-04-18 2006-07-12 新日本製鐵株式会社 Thick steel plate cooling method and apparatus
JP2003181522A (en) * 2001-12-14 2003-07-02 Nippon Steel Corp Method and apparatus for producing steel sheet having excellent surface properties
CN101215624B (en) * 2008-01-08 2011-07-06 济南钢铁股份有限公司 On-line quenching production technique for high toughness thick steel plate
KR101219195B1 (en) * 2010-03-15 2013-01-09 신닛테츠스미킨 카부시키카이샤 Thick steel plate manufacturing device
CN102899557B (en) * 2012-11-02 2014-12-03 湖南华菱湘潭钢铁有限公司 Production method of low-alloy medium plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110473A1 (en) * 2009-03-25 2010-09-30 Jfeスチール株式会社 Steel plate manufacturing equipment and method of manufacturing
JP2012077325A (en) * 2010-09-30 2012-04-19 Jfe Steel Corp High strength steel sheet for line pipe and method for producing the same, and high strength steel pipe using high strength steel sheet for line pipe
JP2012152761A (en) * 2011-01-24 2012-08-16 Jfe Steel Corp Equipment and method for descaling thick steel plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187275A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022192003A (en) * 2021-06-16 2022-12-28 Jfeスチール株式会社 Surface layer hardness prediction model and predictive control method for surface layer hardness of steel plate using the same, control command device, steel plate manufacturing line, and steel plate manufacturing method
JP7513046B2 (en) 2021-06-16 2024-07-09 Jfeスチール株式会社 Surface layer hardness prediction model, method for predicting and controlling surface layer hardness of steel plate using the same, control command device, steel plate production line, and steel plate production method

Also Published As

Publication number Publication date
KR101940429B1 (en) 2019-01-18
JP6108041B2 (en) 2017-04-05
EP3187275B1 (en) 2019-12-18
CN106604785A (en) 2017-04-26
BR112017004022A2 (en) 2017-12-05
EP3187275A1 (en) 2017-07-05
BR112017004022B1 (en) 2022-08-02
CN106604785B (en) 2019-01-11
EP3187275A4 (en) 2017-09-06
KR20170033423A (en) 2017-03-24
JPWO2016031169A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5614040B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP4586791B2 (en) Cooling method for hot-rolled steel strip
JP5720714B2 (en) Manufacturing method and equipment for thick steel plate
CN101253010B (en) Steel plate cooling equipment and manufacturing method
JP5515483B2 (en) Thick steel plate cooling equipment and cooling method
JP5962849B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP2010247227A (en) Manufacturing equipment and manufacturing method for thick steel plate
JP6108041B2 (en) Thick steel plate manufacturing method
JP6264464B2 (en) Manufacturing equipment and manufacturing method for thick steel plate
JP5387093B2 (en) Thermal steel sheet cooling equipment
JP5246075B2 (en) Thermal steel sheet cooling equipment and cooling method
JP5347781B2 (en) Thermal steel sheet cooling equipment and cooling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544933

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015836450

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836450

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177005018

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017004022

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017004022

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170224