[go: up one dir, main page]

WO2016029525A1 - 一种房车冰箱的通用能源选择电控系统 - Google Patents

一种房车冰箱的通用能源选择电控系统 Download PDF

Info

Publication number
WO2016029525A1
WO2016029525A1 PCT/CN2014/087763 CN2014087763W WO2016029525A1 WO 2016029525 A1 WO2016029525 A1 WO 2016029525A1 CN 2014087763 W CN2014087763 W CN 2014087763W WO 2016029525 A1 WO2016029525 A1 WO 2016029525A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
refrigerator
fault
electronic control
control system
Prior art date
Application number
PCT/CN2014/087763
Other languages
English (en)
French (fr)
Inventor
李达华
杨幸标
李俊宝
彼得·高登·威沙特
Original Assignee
珠海美固电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海美固电子有限公司 filed Critical 珠海美固电子有限公司
Publication of WO2016029525A1 publication Critical patent/WO2016029525A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention relates to an electric control system for a RV refrigerator, in particular to a general energy selection electronic control system for a RV refrigerator.
  • the electronic control system of the existing RV absorption refrigerator mainly includes two types: Automatic Energy Selection (AES: Automatic Energy) Selection) Electronic control system and manual energy selection (MES: Manual Energy Selection) electronic control system.
  • AES Automatic Energy Selection
  • MES Manual Energy Selection
  • the MES electronic control system further includes a mechanical MES electronic control system and an electrical MES electronic control system.
  • Mechanical MES electronic control system is pure manual control, need The combination of a model switch and a large number of duplicated mechanical components has the disadvantages of high cost, complicated process and manual selection by the user, and is gradually electronically controlled by the electrical MES. Replaced by the system.
  • the electrical MES electronic control system is implemented via a circuit board, but requires user input for each selection and does not automatically switch to the currently available energy source.
  • the AES electronic control system is fully automatic control, and the system automatically utilizes the priority order of AC (AC) / DC (DC) / LP-GAS (liquefied petroleum gas, hereinafter referred to as GAS).
  • AC AC
  • DC DC
  • LP-GAS liquefied petroleum gas
  • GAS liquefied petroleum gas
  • the technical problem to be solved by the embodiments of the present invention is that the existing MES control system cannot automatically select energy and AES The control system cannot select the energy defect according to the user's wishes, and provides a general energy selection (UES: Universal Energy Selection) electronic control system, the UES The electronic control system can work in AES mode to automatically select the available energy to work, and can work in MES mode to manually select the available energy to work according to the user's wishes.
  • UES Universal Energy Selection
  • an embodiment of the present invention provides a UES electronic control system, including: Mode switching module, automatic energy selection module and manual energy selection module;
  • the mode switching module is configured to receive a switching signal of the user, thereby switching the refrigerator between two modes: an automatic energy selection mode and a manual energy selection mode; the automatic energy selection module is configured to automatically select an available mode in the automatic energy selection mode. The energy is further supplied to the refrigerator; the manual energy selection module is configured to receive the available energy manually selected by the user in the manual energy selection mode for the refrigerator to operate.
  • the automatic energy selection module and the manual energy selection module comprise a driving unit, and the driving unit is configured to input the energy selected by the automatic energy selection module and the manual energy selection module into a refrigerator to make the refrigerator normal work.
  • the available energy sources include alternating current, direct current, and liquefied petroleum gas.
  • the priority levels of the available energy sources are: the alternating current, the direct current, and the liquefied petroleum gas.
  • the universal energy selection electronic control system of the RV refrigerator further includes a fault detecting module; the fault detecting module is configured to automatically detect a system fault, where the system fault includes: an alternating current fault, a direct current fault, a liquefied petroleum gas fault, and a temperature Sensor failure, relay failure, gas valve failure, heater failure, input voltage / Undervoltage fault and communication fault.
  • the system fault includes: an alternating current fault, a direct current fault, a liquefied petroleum gas fault, and a temperature Sensor failure, relay failure, gas valve failure, heater failure, input voltage / Undervoltage fault and communication fault.
  • the universal energy selection electronic control system of the RV refrigerator further includes a self-diagnosis module; the self-diagnosis module is configured to detect that a communication failure occurs in the system when the fault detection module detects Or when the temperature sensor fails, keep the refrigerator working until the fault is repaired.
  • the universal energy selection electronic control system of the RV refrigerator further includes a display module; the display module includes an LED warning light and a plurality of LED indicator light; the LED warning light is used to alert the liquefied petroleum gas fault, and the LED indicator indicates: the working mode of the refrigerator, the selected energy source and the set temperature of the refrigerator.
  • the display module further includes at least one LED fault indicator, and the LED fault indicator is used to indicate a system fault.
  • the universal energy selection electronic control system of the RV refrigerator further includes a brightness control module; the brightness control module is configured to automatically adjust the display module The brightness of the LED light.
  • the universal energy selection electronic control system of the RV refrigerator further includes a memory module; the memory module is configured to memorize system parameters before the refrigerator is turned off, and recall the stored system parameters when the power is turned on next time.
  • the present invention provides a vehicle-mounted refrigerator UES electronic control system
  • the UES The electronic control system can work in AES mode to automatically select the available energy to work, and can work in MES.
  • the user can manually select the available energy to work according to the user's wishes, thereby meeting the needs of various users, improving the selectivity of the electronic control system of the RV refrigerator, thereby improving the user experience.
  • the UES electronic control system provided by the present invention can also use the MES module to select DC to supply power to the refrigerator, so that the DC can be directly used to make the refrigerator work when the RV is replaced.
  • the electronic control system comes with a full-featured fault detection module, which enables users to understand the fault situation in a comprehensive and timely manner, and reduces the difficulty and cost of maintenance.
  • UES The electronic control system also includes a self-diagnostic module that allows the refrigerator to continue to work in the event of a partial failure, providing the user with sufficient time to process the food in the refrigerator, further enhancing the user experience.
  • the UES electronic control system display module provided by the invention has a brightness adjustment function of the LED lamp, and displays the module when the user does not operate.
  • the brightness of the LED light is automatically dimmed or extinguished, which saves energy on the one hand and does not affect the user's night rest on the other hand.
  • FIG. 1 is a block diagram showing the structure of a UES electronic control system for a car refrigerator according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of a UES electronic control system of a second embodiment refrigerator according to the present invention
  • FIG. 3 is a block diagram showing the structure of a UES electronic control system for a car refrigerator according to a third embodiment of the present invention.
  • 4A-4I are diagrams showing the fault detection circuit of the UES electronic control system provided by the present invention.
  • FIG. 1 is a block diagram showing the structure of a UES electronic control system for a car refrigerator according to a first embodiment of the present invention.
  • the UES electronic control system of the RV refrigerator of the present embodiment includes: an AES module 1, an MES module 2, and a mode switching module 3.
  • Mode switching module 3 is connected to AES module 1 and MES module 2 .
  • the refrigerator When working, the user selects AES module 1 and MES module 2 through mode switching module 3 One of them, which in turn allows the refrigerator to operate in AES mode or MES mode.
  • the refrigerator works in AES mode, AES module 1 Automatically select available energy and control the refrigerator to work with the selected energy source; when the user selects MES module 2 through mode switching module 3, the refrigerator works in MES mode, MES module 2 Receiving the available energy manually selected by the user and controlling the refrigerator to work with the selected energy source.
  • the refrigerator operates in the MES mode, and the user can pass the mode switching module 3 Switch the operating mode of the refrigerator to AES mode.
  • the above-mentioned available energy sources include alternating current (AC), direct current (DC), and liquefied petroleum gas ( GAS).
  • AC alternating current
  • DC direct current
  • GAS liquefied petroleum gas
  • AES module 1 Automatically selects the currently available energy in a certain priority order and controls the refrigerator to work with the currently available energy.
  • the order of priority of the above three available energy sources is: AC , DC and GAS.
  • the refrigerator can work at AES Mode to automatically select the available energy to work, and can work in MES In the mode, the user can manually select the available energy to work according to the user's wishes, thereby meeting the needs of various users, improving the selectivity of the electronic control system of the RV refrigerator, thereby improving the user experience.
  • the electronic control system can switch to the MES mode through the mode switching module 3, and then use the MES module 2 to manually select the DC to supply power to the refrigerator, thereby facilitating direct use of the DC when replacing the RV. Make the refrigerator work.
  • FIG. 2 is a block diagram showing the structure of a UES electronic control system for a car refrigerator according to a second embodiment of the present invention.
  • the UES electronic control system of the RV refrigerator provided by this embodiment further defines the AES module 1 and the MES module 2.
  • AES module 1 Further, the available energy automatic detecting unit 11 and the driving unit 1-2 are included; the MES module 2 further includes an available energy signal receiving unit 21 and a driving unit 1-2.
  • Automatic energy detection unit available when the system is operating in AES mode 11 Automatically detect the current available energy in the system.
  • the detection order is AC, DC and GAS.
  • the drive unit 1-2 After detecting the available energy, the drive unit 1-2
  • the high priority available energy is driven into the refrigerator for the refrigerator to operate in a preset priority order.
  • the priorities of the three energy sources are AC, DC, and DC in descending order of priority. GAS.
  • drive unit 1-2 When AC is detected to be available, drive unit 1-2 outputs a drive signal to drive AC to power the refrigerator; when AC is detected to be unavailable and DC is available, drive unit 1-2 A drive signal is output to drive the DC to power the refrigerator; when neither AC nor DC is available, the drive unit 1-2 outputs a drive signal to drive the valve to open and ignite, thereby providing energy for the operation of the refrigerator.
  • the user when the system works in the AES mode, the user can directly switch to the mode switching module 3 to In GAS-ONLY mode, in GAS-ONLY mode, the system only selects GAS work.
  • the user selects AC, DC and GAS by manual operation.
  • One of the energy sources is input to the refrigerator for the refrigerator to operate, and the available energy signal receiving unit 21 receives the available energy selected by the user, and the driving unit 1-2 The corresponding driving signal is output to drive the energy input by the user to the refrigerator to make the refrigerator work normally.
  • AES module 1 and MES module 2 share one drive module 1-2 .
  • AES module 1 and MES module 2 can be integrated into one MCU, and all of the above functions can be realized by adding some peripheral circuits.
  • FIG. 3 is a structural block diagram of a UES electronic control system for a car refrigerator according to a third embodiment of the present invention.
  • the electronic control system of the RV refrigerator UES includes: AES module 1, MES module 2, mode switching module 3, fault detection module 4, self-diagnosis module 5 , display module 6, brightness control module 7 and memory module 8 .
  • a fault detection module 4, a self-diagnosis module 5, a display module 6, and a brightness control module are newly added. 7 and memory module 8 A total of 5 functional modules.
  • the first three function modules AES module 1, MES module 2 and mode switching module 3 The functions and connection relationships are the same as those of the first embodiment, and will not be described here. The following five new functional modules will be highlighted.
  • the fault detection module 4 is used to automatically detect a system fault during system startup or work, and then send a fault signal to the display module 6 Perform a fault indication.
  • the fault detecting module 4 further includes: an AC fault detecting submodule, a DC fault detecting submodule, and a GAS. Ignition fault detection sub-module, temperature sensor fault detection sub-module, relay fault detection sub-module, GAS gas valve fault detection sub-module, AC heating rod fault detection sub-module, input voltage over / Undervoltage fault detection submodule and communication fault detection submodule.
  • the above fault detection sub-modules are respectively used for automatically detecting AC fault, DC fault, GAS ignition fault, temperature sensor fault, relay fault, GAS Valve failure, AC heater failure, input voltage over/under voltage failure, and communication failure.
  • the AC fault detection sub-module and the AC heating rod fault detection sub-module are uniformly outputted.
  • the GAS fault signal, and the temperature sensor fault detection submodule, the input voltage over/undervoltage fault detection submodule, and the communication fault detection submodule respectively output the temperature sensor fault signal and the input voltage over / Undervoltage fault signal and communication fault signal.
  • Fault detection module 4 when working Automatic fault detection based on the energy and operating conditions currently in use. Among them, temperature sensor fault detection, input voltage over/undervoltage fault detection and communication fault detection are shared, and will be detected according to the working status. and AC, DC, and GAS fault detection is selectively detected based on the energy selected at the time of operation. For example, the currently used energy source is GAS, and the fault detection module 4 automatically detects GAS. Faults (including GAS ignition faults and GAS gas valve faults), temperature sensor faults, input voltage over/undervoltage faults, and communication faults without detecting AC and DC Related faults, and so on.
  • the priority of each system fault signal output is: AC fault, DC fault, temperature sensor fault, input voltage over / Undervoltage faults and communication faults.
  • the GAS fault is output to the display module 6 for display. That is to say, in addition to the GAS fault alone display, when multiple faults occur at the same time, the fault detection module 4
  • the high priority fault signal is output to the display module 6 in a preset priority order for fault indication.
  • the fault detecting module 4 outputs all fault signals to the display module 6 The display module performs fault indication for all faults one by one.
  • the UES provided by the present invention
  • the electronic control system can automatically detect system faults, so that users can understand the fault situation in a comprehensive and timely manner, and at the same time reduce the difficulty of maintenance in the after-sales service and save time and labor costs.
  • the self-diagnosis module 5 is used when the fault detection module 4 detects that the system has a communication failure and / Or when the temperature sensor fails, keep the refrigerator working until the fault is repaired.
  • the refrigerator When it is detected that there is a temperature sensor failure in the system, the refrigerator continues to operate at a predetermined switching ratio according to the current working mode until the fault is repaired.
  • the predetermined switching ratio is when the refrigerator is stably operated, and before the temperature sensor is faulty. The average of the ratio of the switches for 3 runs.
  • the UES electronic control system presses AC, DC, and GAS according to the currently valid energy input.
  • the priority order selects the available energy and utilizes the selected available energy, and the temperature is set in the intermediate gear to continue working until the fault is repaired.
  • the fault detection module 4 detects that the system has a temperature sensor fault and a communication fault,
  • the UES electronic control system presses AC, DC and GAS according to the currently valid energy input.
  • the priority order selects the available energy and continues to operate at a predetermined switching ratio with the selected available energy until the fault is repaired.
  • the refrigerator can continue to work in the event of partial failure, providing users with enough time to process the food in the refrigerator, further enhancing the user experience.
  • Display module 6 contains an LED warning light, multiple LED indicators, and at least one LED fault indicator. among them, LED warning lights are used to alert GAS failures. Because GAS has certain security risks, when the GAS fault is detected, the LED on module 6 is displayed. The warning light flashes to instruct the user to take relevant measures in time to avoid dangerous accidents. Multiple LED indicators to indicate the current operating mode of the refrigerator (AES or MES mode), input energy to the refrigerator (AC , DC or GAS) and temperature settings. The LED fault indicator is used to indicate a system fault detected by fault detection module 4.
  • LED fault indicator can be an LED Flashing to display the current system fault, or multiple LEDs, with a certain number of LEDs flashing at the same time to display the highest priority system fault, and also an LED All system faults detected by the fault detection module 4 are displayed one by one in a manner corresponding to a system failure.
  • the LED fault indicator is simultaneously used to display the temperature set by the refrigerator.
  • LED The number of fault indicators is five. In the normal state, they are used to display the five temperature positions of the refrigerator. When a system failure is detected, a corresponding number of LEDs are flashed to indicate a system failure.
  • the display module 6 further includes a display panel for displaying the fault detection module in a digital or text manner.
  • the detected system is faulty.
  • Implementing the display module 6 of the present invention can clearly show system failures, especially GAS malfunction.
  • the system's security provision and fault alerting capabilities are fully ensured.
  • the fault indicator light can clearly show the system failure, which is convenient for maintenance personnel to repair, saves the time cost and labor cost of fault detection, and improves the efficiency and quality of after-sales service.
  • Brightness control module 7 is used to automatically adjust the LED of display module 6 The brightness of the light.
  • the brightness control module 7 controls the LED of the display module 6 to be dimmed or extinguished when the user does not operate the system within the predetermined time.
  • the booking time is 3 Minutes.
  • the system further includes a user setting module for setting a time for setting a brightness change of the LED lamp according to an actual need of the user.
  • the LED By implementing the brightness control module 7, when the user does not operate during the reservation time, the LED The brightness of the lamp is dimmed or even extinguished, which saves energy on the one hand, and does not affect the user's night rest on the other hand, because the space of the RV is limited, and the penetration of the LED lamp is very strong, if the LED of the display module 6 The light is always on, which will seriously affect the user's sleep.
  • the memory module 8 is used to memorize the system parameters before the refrigerator is turned off, and recalls the stored system parameters at the next power-on.
  • the system parameters of the memory include the on/off status of the refrigerator, the working mode (AES or MES), the temperature set by the refrigerator, and the parameters preset by the user.
  • the UES of the present invention is made
  • the electronic control system is more intelligent, and it is not necessary to reset the system parameters after power failure, providing users with greater convenience and improving the user experience.
  • FIG. 4A - 4F are circuit diagrams of the UES electronic control system fault detection circuit provided by the present invention.
  • the figure 4A is the AC fault detection circuit.
  • MAINS_L and MAINS_N are the live and neutral lines of the AC grid, respectively.
  • the AC fault detection circuit passes through terminal J11 and J8 is connected to MAINS_L and MAINS_N respectively.
  • the fuse of the AC power grid is protected by the fuse F4 to obtain the protected AC high voltage AC_L. And enter it into the system.
  • the AC fault detection circuit works as follows: AC_L input AC power is input to the optocoupler through the rectified AC pulse of resistors R40, R42 and diode D9.
  • the zero-crossing detection of AC is realized by optocoupler U3.
  • the optocoupler U3 output has a continuous pulse signal sent to the mainboard microprocessor U4. If the motherboard microprocessor U4 If a continuous pulse from the optocoupler U3 is not received, it is judged as an AC failure.
  • diode D10 is a reverse protection diode and resistor R49 is the bias resistor of optocoupler U3.
  • the +5V voltage is connected to the resistor R47 and then the optocoupler U3 is powered.
  • the resistor R48 and capacitor C17 are filtered before the signal of the optocoupler U3 is input to the motherboard microprocessor U4.
  • the AC fault detection circuit of the embodiment is implemented, and the input AC is passed through the diode D9. Perform half-wave rectification to improve the AC zero-crossing detection efficiency, and then convert the high-voltage pulse into a low-voltage pulse through the optocoupler U3 and send it to the motherboard microprocessor U4.
  • the use of optocoupler not only achieves high-precision detection, but also the high-low voltage circuit is completely isolated, and the optocoupler cost is low, thus enabling effective detection of AC faults.
  • optocoupler U3 input motherboard microprocessor U4 The signal is filtered by a filter circuit consisting of resistor R48 and capacitor C17 to provide detection accuracy and reliability.
  • Figure 4B1 and Figure 4B2 are DC fault detection circuits.
  • Figure 4B1 is the engine start signal D+
  • the fault detection circuit, Figure 4B2 is the DC heater power supply voltage fault detection circuit.
  • the engine starting signal D+ fault detecting circuit of this embodiment passes through the terminal J5. Connect to the external engine start signal D+, and then divide the engine start signal D+ signal through the voltage dividing resistors R35 and R39, where the resistor R35 and R39 are connected in series and the resistor R35 The other end is connected to D+, and the other end of the resistor R39 is grounded.
  • the voltage division on resistor R39 passes through the series filter circuit resistor R34 and capacitor C16 to filter the high frequency noise from the capacitor C16.
  • One end is input to the motherboard microprocessor U4, and the other end of the capacitor C16 is grounded.
  • the motherboard microprocessor determines whether the input voltage is not lower than the preset value. If yes, the DC is normal, otherwise the DC is indicated. malfunction.
  • the DC can be detected only by a simple voltage dividing circuit and the motherboard microprocessor U4. Whether it is faulty or not, in addition, the filter circuit is added to the voltage dividing circuit to improve the detection reliability.
  • VB is DC. Heating rod supply voltage.
  • the DC heater is powered by a large capacity battery with a voltage of 12V. Because the DC heater has a large relay power, give DC The power supply for the heating rod cannot use an ordinary battery, and a battery with a larger capacity, such as a battery for a car ignition, is used.
  • the DC heater power supply voltage fault detection circuit includes a resistor R13. , R52, R9, capacitor C19 and motherboard microprocessor U4.
  • the voltage VB is input to the DC heating rod supply voltage fault detection circuit through one end of the resistor R13, R13 The other end is connected to the resistors R9, R52 and C19, the other end of the resistor R52 and the capacitor C19 are grounded, and the other end of the resistor R9 is connected to the motherboard microprocessor U4. .
  • the circuit composed of the resistors R13 and R52 is a voltage dividing circuit, and the circuit composed of the resistor R9 and the capacitor C19 is a filter circuit.
  • DC voltage for powering the DC heater VB After being divided and filtered, the motherboard microprocessor U4 determines whether the input voltage signal is within the predetermined range. If not, there is a DC fault.
  • the DC heating rod power supply voltage fault detecting circuit of the embodiment is implemented, which can effectively prevent the user from forgetting to connect to the DC The heating rod battery or the battery is too low to cause the system to work properly, thereby preventing the car from being ignited when the battery is too low.
  • Figure 4C is the GAS fault detection circuit.
  • terminal J4 When an external thermocouple is connected, the external thermocouple converts the thermal signal of the flame into an electrical signal and inputs it to the GAS fault detection circuit through terminal J4.
  • the electrical signal input from terminal J4 is via R7 and R8 After being divided, it is input to the inverting terminal of the operational amplifier U2A, amplified and input to the motherboard microprocessor U4.
  • the motherboard microprocessor U4 receives a high level signal, so the microprocessor U4 The pulse signal is output again to the inverting terminal of the operational amplifier U2A, and the main board microprocessor U4 detects again whether there is more than a certain number of inverted pulses, which means that the ignition is successful, otherwise, the GAS ignition fails, and each ignition The machine is stopped for 2 minutes in 45 seconds, and if the ignition fails three times, the system reports an ignition failure.
  • the number is 2 One.
  • the preset value is related to the detection sensitivity. The higher the sensitivity, the larger the preset value.
  • the GAS fault detection circuit of the embodiment is implemented, and the GAS can be effectively detected by the operational amplifier U2A and the motherboard microprocessor U4. Fault, and judge the success or failure of the ignition by the number of pulses, which can effectively avoid the false detection caused by the level method. .
  • Figure 4D is the temperature sensor fault detection circuit.
  • the external temperature sensor is connected to terminal P2 1 Between the foot and the 2 pin, one of the pins is also connected to the value of 5VDC power supply, and the second pin is connected to the resistor R32, and then the voltage on the resistor R32 is input to the motherboard microprocessor U4. Medium.
  • the motherboard detects that the voltage of the resistor R32 is within the preset range, the temperature sensor is normal, otherwise the temperature sensor is faulty.
  • the temperature of the refrigerator corresponding to the predetermined voltage range is -10 °C to 50 °C.
  • the temperature sensor fault detecting circuit of the embodiment further includes a filter circuit, wherein the filter circuit is a series resistor R28 and a capacitor C14, and the resistor The other end of R28 inputs the voltage across resistor R32, the other end of capacitor C14 is grounded, and the filtered signal is output from capacitor to resistor to microprocessor U4.
  • Another 5VDC A capacitor C18 is also connected between the power supply and the ground for filtering the 5VDC power supply to ensure that the voltage signal input to the motherboard microprocessor U4 is free of high frequency signal interference.
  • the temperature sensor fault detecting circuit has a simple structure, and only one resistor R32 and a temperature sensor are connected in series to the 5VDC. Between the power supply and ground, and send the voltage divider on resistor R32 to the motherboard microprocessor U4 Temperature sensor fault detection can be achieved.
  • a filter circuit is added on the basis of the voltage dividing circuit, thereby improving the detection precision.
  • Figure 4E is the relay fault detection circuit.
  • the relay fault detection circuit includes terminal P3, resistor R24, R36 and motherboard microprocessor U4.
  • the external relay is connected between pins 3 and 4 of terminal P3, and the 3 pin is connected to 12V DC power supply Vint.
  • resistance R24 is connected between pin 4 and ground, and resistor R36 is connected between pin 4 and motherboard microprocessor U4.
  • the relay fault detecting circuit of the embodiment is implemented to effectively detect whether the external relay has a fault.
  • Figure 4F is the valve fault detection circuit.
  • the valve fault detection circuit includes terminal P3, the motherboard microprocessor U4, Zener diode ZD1, diode D6, MOS switch QT2 and resistors R14, R25, R26, R37 and R38. External air valve connected to the terminal P3 between pin 1 and pin 2.
  • Terminals 1 and 2 of terminal P3 are connected to the motherboard microprocessor U4 through resistor R37 and resistor R38, in addition, 1 Connect the resistor R25 from the ground to the ground and connect the resistor R26 between ground and ground.
  • a diode D6 is connected between pin 1 and pin 2 of terminal P3, and the anode of D6 is connected. Foot, D6's cathode connection 2 feet.
  • the 1 pin (gate) of the MOS switch QT2 is connected to the 12V DC power supply Vint through the resistor R14 and the 3 pin (source).
  • Pin 2 (drain) is connected to pin 2 of terminal P3.
  • the Zener diode ZD1 is connected in parallel between pins 3 and 2 of the MOS switch QT2, with the anode connected to the 2 pin.
  • Working, MCU The first signal turns QT2 on, then the pin 2 of terminal P3 sends the status signal of QT2 to the motherboard microprocessor U4 through resistors R26 and R38, if MOS switch QT2 For normal operation, resistor R38 inputs a high voltage to the motherboard microprocessor U4, otherwise it inputs a low voltage.
  • pin 1 of terminal P3 passes through resistors R25 and R37. Send the status signal of the valve to the motherboard microprocessor U4. If the valve works normally, the resistor R37 inputs a high voltage to the motherboard microprocessor U4, otherwise it inputs a low voltage; if the MOS switch QT2 For normal operation, resistor R37 inputs a high voltage to the motherboard microprocessor U4, otherwise it inputs a low voltage. If any of resistor R37 or resistor R38 is input to the motherboard microprocessor U4 The voltage in the middle is a low voltage, and it is determined that the valve is malfunctioning.
  • the MOS switch QT2 is a controlled switch, and the MOS switch QT2 is used to control the opening and closing of the valve.
  • Zener diode ZD1 Used to clamp the voltage across the MOS switch QT2 to prevent the system from damaging the MOS switch QT2 due to the transient voltage generated by the RV battery.
  • the Zener diode The stable voltage of ZD1 is 30V.
  • Diode D6 is a protection diode for suppressing the absorption of terminal P3 1 and 2
  • the valve coil connected between the feet generates a back electromotive force when the circuit is closed, preventing damage to other components.
  • the gas valve fault detecting circuit of the present embodiment By implementing the gas valve fault detecting circuit of the present embodiment, it is possible to effectively detect whether the gas valve is faulty and whether the control switch of the gas valve is faulty. At the same time, the gas valve fault detecting circuit of the embodiment also passes through the diode D6 and the Zener diode ZD1. A protection circuit is provided to prevent the system from damaging the circuit when the power is turned on or off, which improves the stability and quality of the system.
  • Figure 4G is the heating rod fault detection circuit.
  • the heater is applied to the terminals J9 and J10. If the heating rod is normal, a loop is formed between the protected AC high voltage AC_L and the neutral AC_N, and the optocoupler U6 is directed to the motherboard microprocessor U4. Output signal; if the heating rod is disconnected, the loop cannot be formed, the optocoupler U6 has no signal output, and the main board microprocessor U4 judges that the heating rod is faulty.
  • the present embodiment is coupled to the input and output optocouplers. The signals of U6 are processed.
  • the input AC high voltage is first limited by R29, and then the R55 and capacitor C11 are used to block the buck circuit and then go to the optocoupler U6.
  • the output signal is filtered by a filter circuit composed of a resistor R30 and a capacitor C13 and then input to the motherboard microprocessor U4.
  • the heating rod fault detecting circuit of the embodiment is implemented, and the high voltage alternating current is converted into a low voltage signal by the optocoupler U6, and then sent to the main board microprocessor U4.
  • the use of optocoupler not only achieves high-precision detection, but also high and low voltage isolation, and the optocoupler cost is low, thus achieving effective detection of AC faults.
  • the heating rod fault detecting circuit of the embodiment is coupled to the optocoupler U6. The input and output signals are filtered, which ensures the accuracy of the signal input to the motherboard microprocessor U4 and submits the detection efficiency.
  • Figure 4H is the input over/under fault detection circuit.
  • Input over/undervoltage fault detection circuit is for UES A circuit for detecting the supply voltage supplied by the electronic control system.
  • the supply voltage is 12V of the battery, and the system converts the voltage to 5V through a voltage conversion circuit. Therefore, the DC12V and DC5V voltages can be simultaneously supplied to the UES electronic control system.
  • the input over/undervoltage fault detection circuit includes resistors R41, R46, and R44. , capacitor C20 and motherboard microprocessor U4.
  • V+ gets +12V and is input to the input over/undervoltage fault detection circuit through one end of resistor R41, R41
  • the other end is connected to resistors R46, R44 and capacitor C20, the other end of resistor R46 and capacitor C20 are grounded, and the other end of resistor R44 is connected to motherboard microprocessor U4.
  • the circuit composed of the resistors R41 and R46 is a voltage dividing circuit
  • the circuit composed of the resistor R44 and the capacitor C20 is a filter circuit.
  • DC that powers the UES electronic control system After the voltage is divided and filtered, it is input into the motherboard microprocessor U4.
  • the motherboard microprocessor U4 determines whether the input voltage is within the predetermined range. If not, it is an input over/undervoltage fault.
  • the input over/undervoltage fault detection circuit of the embodiment is implemented by simply passing a simple voltage dividing circuit and the motherboard microprocessor U4. It can detect whether there is an input over/undervoltage fault, and in addition, the filter circuit is added on the basis of the voltage dividing circuit to improve the detection precision.
  • the communication failure refers to the motherboard microprocessor U4 and the display board microprocessor. Communication failure between U2. Motherboard microprocessor U4 and display panel microprocessor U2 through its internal TXD terminal (communication signal sender) and RXD The terminal (communication signal receiving end) implements serial communication. During operation, the display board microprocessor U2 sends a handshake signal to the motherboard microprocessor through its TXD terminal, and the motherboard microprocessor U4 passes its RXD. When receiving the handshake signal from the display board microprocessor U2, the terminal will feed back a handshake signal to the display board microprocessor U2 through its TXD terminal, and the display board microprocessor U2 passes its RXD.
  • the terminal receives this feedback handshake signal. If the display board microprocessor U2 does not receive the feedback handshake signal from the motherboard microprocessor U4 within the predetermined time, it indicates that the communication is faulty, then the corresponding LED The lamp outputs a pulse that causes it to flash to indicate a communication failure.
  • the communication failure detecting circuit structure of this embodiment is based on the motherboard microprocessor U4 and the display panel microprocessor U2.
  • the existing communication interface can realize communication failure detection by adding a simple software program to the display panel microprocessor, and has the advantages of simple circuit structure and easy implementation.
  • the motherboard microprocessor U4 detects any of the above faults, it will send a fault signal to the display panel microprocessor U2. , and then control the corresponding LED to display the detected fault.
  • UES provided by the present invention
  • the electronic control system integrates energy selection, fault detection and fault display, greatly improving the intelligent and user-friendly display interface of the electronic control system, thereby improving user satisfaction.
  • modules usually include hardware and / Or a combination of hardware and software (eg firmware, programmable software).
  • modules may also include computer readable media (e.g., permanent media) containing instructions (e.g., software instructions) that, when executed by the processor, perform various functional features of the present invention. Accordingly, the scope of the present invention is not limited to the specific hardware and / Or limitations of software features.
  • the present invention may, in an embodiment, execute software instructions (eg, stored in non-permanent) by one or more processors (eg, microprocessors, digital signal processors, baseband processors, microcontrollers) Memory and / or permanent storage).
  • the present invention can also use an application specific integrated circuit (ASIC) and / Or other hardware components to execute.
  • ASIC application specific integrated circuit
  • the above description of the various modules is divided into these modules for clarity. However, in practical implementations, the boundaries of the various modules may be ambiguous or overlapping.
  • any or all of the functional modules in this article can share various hardware and / or software component. Again, for example, any and / in this article Or all of the functional modules may be implemented in whole or in part by a shared processor executing software instructions.
  • various software sub-modules executed by one or more processors can be shared among various software modules. Accordingly, the scope of the present invention is not limited to various hardware and / or restrictions on the mandatory limits between software components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种房车冰箱的通用能源选择UES电控系统,包括:模式切换模块、自动能源选择AES模块和手动能源选择MES模块,用户可通过模式切换模块使冰箱工作在AES或MES模式,其具有如下有益效果:提供了一种房车冰箱UES电控系统,该UES电控系统既能工作在AES模式下从而自动选择可用能源来工作,又能工作于MES模式下从而按照用户的意愿手动选择可用能源来工作,进而可满足各类用户的使用需求,提高了房车冰箱电控系统的可选择性,进而提升了用户体验。而且,即使房车不带发电机反馈信号D+,该通用能源选择UES电控系统也可利用MES模块来选取DC为冰箱供电。

Description

一种房车冰箱的通用能源选择电控系统 技术领域
本发明涉及房车冰箱的电控系统,尤其涉及一种房车冰箱的通用能源选择电控系统。
背景技术
随着生活水平的不断提高,房车已逐渐进入到越来越多的家庭中,尤其是旅行房车(RV)更是受到人们的喜爱。而吸收式冰 箱是房车的必配设备之一,因为配置及接线的不同,现有房车吸收式冰箱的电控系统主要包括两种:自动能源选择(AES: Automatic Energy Selection)电控系统和手动能源选择(MES:Manual Energy Selection)电控系统 。
其中,MES电控系统又进一步包括机械方式MES电控系统和电气方式MES电控系统。机械方式MES电控系统是纯手动控制,需要 一个机型开关和大量复制的机械部件组成,具有成本高、工艺复杂和需要用户手动选择的缺点,进而逐渐被电气方式MES电控 系统所取代。电气方式MES电控系统通过电路板实现,但是每次选择都需要用户输入,不能自动切换至当前可被利用的能源。
AES电控系统是全自动控制,系统根据AC(交流)/DC(直流)/LP-GAS(液化石油气,以下简称GAS)的优先级顺序自动利用 当前存在的具有高优先级的能源来工作。也就是说,如果某优先级高的能源存在,即使用户想用某种可用的低优先级的能源 ,系统也不能按照用户的意愿使用低优先级的能源,而只能选择高优先级的能源。例如,用户只想使用GAS,但是AC或DC一直 有效,此时系统只会在AC或DC下工作,而不会工作在GAS模式下。另外,当使用DC时,系统中必须有一个发电机信号连接到D+ 端,否则即使电池电量足够,DC也不能被使用。
发明内容
本发明实施例所要解决的技术问题在于,针对现有 MES 控制系统不能自动选择能源而 AES 控制系统不能按照用户意愿选择能源的缺陷,提供一种通用能源选择( UES : Universal Energy Selection )电控系统,该 UES 电控系统既能工作在 AES 模式下从而自动选择可用能源来工作,又能工作于 MES 模式下从而按照用户的意愿手动选择可用能源来工作 。
为了解决上述技术问题,本发明实施例提供了一种 UES 电控系统,包括: 模式切换模块、自动能源选择模块和手动能源选择模块;
所述模式切换模块用于接收用户的切换信号进而使冰箱在自动能源选择模式和手动能源选择模式两种工作模式之间切换;所述自动能源选择模块用于在自动能源选择模式下自动选择可用能源进而供冰箱工作;所述手动能源选择模块用于在手动能源选择模式下接收用户手动选择的所述可用能源进而供冰箱工作。
优选地,所述自动能源选择模块和所述手动能源选择模块包括驱动单元,所述驱动单元用于将所述自动能源选择模块和所述手动能源选择模块所选择的能源输入到冰箱进而使冰箱正常工作。
优选地,所述可用能源包括交流电、直流电和液化石油气。
其中,所述自动能源选择模块自动选择所述可用能源时,所述可用能源的优先级高低顺序依次为:所述交流电、所述直流电和所述液化石油气。
优选地,所述房车冰箱的通用能源选择电控系统还包括故障检测模块;所述故障检测模块用于自动检测系统故障,所述系统故障包括:交流电故障、直流电故障、液化石油气故障、温度传感器故障、继电器故障、气阀故障、加热棒故障、输入电压过 / 欠压故障和通信故障。
其中,所述房车冰箱的通用能源选择电控系统还包括自诊断模块;所述自诊断模块用于当所述故障检测模块检测到系统存在通信故障和 / 或温度传感器故障时使冰箱持续工作,直到故障被修复。
优选地,所述房车冰箱的通用能源选择电控系统还包括显示模块;所述显示模块包含一个 LED 警示灯和多个 LED 指示灯;所述 LED 警示灯用于警示液化石油气故障,所述 LED 指示灯指示的内容包括:冰箱的工作模式、所选择的能源和冰箱的设置温度。
其中,所述显示模块还包括至少一个 LED 故障指示灯,所述 LED 故障指示灯用于指示系统故障。
优选地,所述房车冰箱的通用能源选择电控系统还包括亮度控制模块;所述亮度控制模块用于自动调节所述显示模块的 LED 灯的亮度。
优选地,所述房车冰箱的通用能源选择电控系统还包括记忆模块;所述记忆模块用于记忆关闭冰箱前的系统参数,并在下次开机时调用所记忆的系统参数。
实施本发明实施例,具有如下有益效果:本发明提供了一种房车冰箱 UES 电控系统,该 UES 电控系统既能工作在 AES 模式下从而自动选择可用能源来工作,又能工作于 MES 模式下从而按照用户的意愿手动选择可用能源来工作,进而可满足各类用户的使用需求,提高了房车冰箱电控系统的可选择性,进而提升了用户体验。而且,即使房车不带发电机反馈信号 D+ ,本发明提供的 UES 电控系统也可利用 MES 模块来选取 DC 为冰箱供电,从而便于在更换房车时直接利用 DC 使冰箱工作。
另外,本发明提供的 UES 电控系统自带全功能故障检测模块,可使用户全面及时地了解故障情况,而且降低了维修的难度和成本。同时, UES 电控系统还包含自诊断模块,可使冰箱在出现部分故障的情况下继续工作,为用户提供足够的时间处理冰箱内的食品,进一步提升用户体验。
进一步地,本发明提供的 UES 电控系统显示模块自带 LED 灯亮度调节功能,在用户不操作时显示模块的 LED 灯亮度自动变暗或熄灭,一方面节约了电能,另一方面不会影响用户夜间休息。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图 1 是本发明提供的第一实施例房车冰箱的 UES 电控系统结构方框图;
图 2 是本发明提供的第二实施例房车冰箱的 UES 电控系统结构方框图;
图 3 是本发明提供的第三实施例房车冰箱的 UES 电控系统结构方框图 ;
图 4A - 4I 是本发明提供的 UES 电控系统故障检测电路图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图 1 ,图 1 是本发明提供的第一实施例房车冰箱的 UES 电控系统结构方框图。如图 1 所示,本实施例房车冰箱 UES 电控系统包括: AES 模块 1 、 MES 模块 2 和模式切换模块 3 。模式切换模块 3 分别连接 AES 模块 1 和 MES 模块 2 。
工作时,用户通过模式切换模块 3 来选择 AES 模块 1 和 MES 模块 2 中的一个,进而使冰箱工作在 AES 模式或 MES 模式。当用户通过模式切换模块 3 选中 AES 模块 1 时,冰箱工作在 AES 模式下, AES 模块 1 自动选择可用能源并控制冰箱利用所选择的能源工作;当用户通过模式切换模块 3 选中 MES 模块 2 时,冰箱工作在 MES 模式下, MES 模块 2 接收用户手动选择的可用能源并控制冰箱利用所选择的能源工作。在本发明提供的一个优选实施例中,在默认情况下,冰箱工作在 MES 模式,用户可通过模式切换模块 3 将冰箱的工作模式切换至 AES 模式。
在本发明提供的一个优选实施例中,上述可用能源包括交流电( AC )、直流电( DC )和液化石油气( GAS )。在 MES 模式下,用户可通过手动选择上述三种能源中的任意一种输入到冰箱进而供冰箱正常工作。而在 AES 模式下,用户无需任何操作, AES 模块 1 会按照一定的优先级顺序自动选择当前可用的能源,并控制冰箱利用当前可用的能源工作。在本发明的另一优选实施例中,上述三种可用能源的优先级高低顺序依次为: AC 、 DC 和 GAS 。
实施本实施例的房车冰箱的 UES 电控系统,冰箱既能工作在 AES 模式下从而自动选择可用能源来工作,又能工作于 MES 模式下从而按照用户的意愿手动选择可用能源来工作,进而可满足各类用户的使用需求,提高了房车冰箱电控系统的可选择性,进而提升了用户体验。
另外,在现有技术和本发明中,对于 AES 技术来说,要想利用 DC 来为冰箱供电,电控系统必须接发电机反馈信号 D+ 。然而,对于本发明实施例来说,如果房车不带发电机反馈信号 D+ ,本发明提供的 UES 电控系统可通过模式切换模块 3 切换至 MES 模式,进而利用 MES 模块 2 来手动选取 DC 为冰箱供电,从而便于在更换房车时直接利用 DC 使冰箱工作。
请参见图 2 ,图 2 是本发明提供的第二实施例房车冰箱的 UES 电控系统结构方框图。如图 2 所示,在第一实施例的基础上,本实施例提供的房车冰箱的 UES 电控系统对 AES 模块 1 和 MES 模块 2 进行了进一步的限定。 AES 模块 1 进一步包括可用能源自动检测单元 11 和驱动单元 1-2 ; MES 模块 2 进一步包括可用能源信号接收单元 21 和驱动单元 1-2 。
当系统工作在 AES 模式下时,可用能源自动检测单元 11 自动检测系统中当前的可用能源,检测先后顺序依次为 AC 、 DC 和 GAS ,检测到可用能源后,驱动单元 1-2 按照预设的优先级顺序驱动高优先级的可用能源输入到冰箱以供冰箱工作。在本发明提供的一个优选实施例中,上述三种能源的优先级从高到低的顺序依次为 AC 、 DC 和 GAS 。当检测到 AC 可用时,驱动单元 1-2 输出一个驱动信号驱动 AC 为冰箱供电;当检测到 AC 不可用而 DC 可用时,驱动单元 1-2 输出一个驱动信号驱动 DC 为冰箱供电;当 AC 和 DC 都不可用时,驱动单元 1-2 输出驱动信号驱动气阀开启并进行点火,进而为冰箱工作提供能量。
在本发明提供的另一优选实施例中,当系统工作在 AES 模式下时,用户可通过模式切换模块 3 直接切换到 GAS-ONLY 模式,在 GAS-ONLY 模式下,系统只选择 GAS 工作。
当系统工作在 MES 模式下时,用户通过手动操作选择 AC 、 DC 和 GAS 中的一种能源输入到冰箱以供冰箱工作,可用能源信号接收单元 21 接收到用户选择的可用能源时,驱动单元 1-2 输出相应的驱动信号进而驱动用户所选择的能源输入到冰箱使冰箱正常工作。
在本实施例中, AES 模块 1 和 MES 模块 2 共用一个驱动模块 1-2 。在本发明提供的一个优选实施例中, AES 模块 1 和 MES 模块 2 可集成到一块 MCU 上,通过增加一些外围电路来实现上述所有的功能。
请参见图 3 ,图 3 是本发明提供的第三实施例房车冰箱的 UES 电控系统结构方框图。如图 3 所示,本实施例提供的房车冰箱 UES 电控系统包括: AES 模块 1 、 MES 模块 2 、模式切换模块 3 、故障检测模块 4 、自诊断模块 5 、显示模块 6 、亮度控制模块 7 和记忆模块 8 。本实施例在第一实施例的基础上,新增了故障检测模块 4 、自诊断模块 5 、显示模块 6 、亮度控制模块 7 和记忆模块 8 共 5 个功能模块。前面三个功能模块 AES 模块 1 、 MES 模块 2 和模式切换模块 3 的功能及连接关系与第一实施例相同,在此不再累述。下面将重点介绍新增的 5 个功能模块。
故障检测模块 4 用于在系统开机或工作过程中自动检测系统故障,进而将故障信号发送给显示模块 6 进行故障指示。在本发明提供的一个优选实施例中,故障检测模块 4 进一步包括: AC 故障检测子模块、 DC 故障检测子模块、 GAS 点火故障检测子模块、温度传感器故障检测子模块、继电器故障检测子模块、 GAS 气阀故障检测子模块、 AC 加热棒故障检测子模块、输入电压过 / 欠压故障检测子模块和通信故障检测子模块。上述故障检测子模块分别用于自动检测 AC 故障、 DC 故障、 GAS 点火故障、温度传感器故障、继电器故障、 GAS 气阀故障、 AC 加热棒故障、输入电压过 / 欠压故障和通信故障。在本发明提供的一个优选实施例中, AC 故障检测子模块和 AC 加热棒故障检测子模块统一输出 AC 故障信号, DC 故障检测子模块和继电器故障检测子模块统一输出 DC 故障信号, GAS 点火故障检测子模块和 GAS 气阀故障检测子模块统一输出 GAS 故障信号,而温度传感器故障检测子模块、输入电压过 / 欠压故障检测子模块和通信故障检测子模块分别则分别输出温度传感器故障信号、输入电压过 / 欠压故障信号和通信故障信号。
工作时,故障检测模块 4 根据当前所使用的能源和工作状态自动进行相关故障检测。其中,温度传感器故障检测、输入电压过 / 欠压故障检测和通信故障检测是共用的,会根据工作状态适时检测。而 AC 、 DC 和 GAS 故障检测则会根据工作时所选择的能源而有选择性地检测。例如,当前使用的能源为 GAS ,故障检测模块 4 自动检测 GAS 故障(包括 GAS 点火故障和 GAS 气阀故障)、温度传感器故障、输入电压过 / 欠压故障和通信故障,而不检测与 AC 和 DC 有关的故障,其他情况以此类推。 在本发明提供的另一优选实施例中,各系统故障信号输出的优先级高低为: AC 故障、 DC 故障、温度传感器故障、输入电压过 / 欠压故障和通信故障。而 GAS 故障则单独输出至显示模块 6 进行显示。也就是说,除了 GAS 故障单独显示外,当在同一时间出现多个故障时,故障检测模块 4 按照预设的优先级顺序输出高优先级的故障信号至显示模块 6 进行故障指示。在本发明提供的另一优选实施例中,故障检测模块 4 输出所有的故障信号至显示模块 6 ,显示模块对所有故障一一进行故障指示。
通过实施故障检测模块 4 ,本发明提供的 UES 电控系统可自动检测系统故障,以使用户全面及时地了解故障情况,同时可降低了售后服务中维修的难度进而节约时间和人力成本。
自诊断模块 5 用于当故障检测模块 4 检测到系统存在通信故障和 / 或温度传感器故障时使冰箱持续工作,直到故障被修复。当故障检测模块 4 检测到系统存在温度传感器故障时,冰箱按照当前的工作模式以预定的开关比例持续工作,直到故障被修复。在本发明提供的一个优选实施例中,预定的开关比例为冰箱稳定运行时,温度传感器故障前 3 次运行的开关比例的平均值。当故障检测模块 4 检测到系统存在通信故障时, UES 电控系统根据当前有效的能源输入,按 AC 、 DC 和 GAS 的优先级顺序选择可用能源并利用所选择的可用能源,按温度设置在中间档位持续工作直到故障被修复。当故障检测模块 4 检测到系统存在温度传感器故障和通信故障时, UES 电控系统根据当前有效的能源输入,按 AC 、 DC 和 GAS 的优先级顺序选择可用能源并利用所选择的可用能源以预定的开关比例持续工作,直到故障被修复。
通过实施自诊断模块 5 ,可使冰箱在出现部分故障的情况下继续工作,为用户提供足够的时间处理冰箱内的食品,进一步提升用户体验。
显示模块 6 包含一个 LED 警示灯、多个 LED 指示灯和至少一个 LED 故障指示灯。其中, LED 警示灯用于警示 GAS 故障。因为 GAS 有一定的安全隐患,当检测到 GAS 故障时,显示模块 6 上的 LED 警示灯闪烁,指示用户及时采取相关措施,避免危险事故发生。多个 LED 指示灯用于指示当前冰箱的工作模式( AES 或 MES 模式)、输入冰箱的能源( AC 、 DC 或 GAS )和温度设置。 LED 故障指示灯用于指示故障检测模块 4 所检测到的系统故障。 LED 故障指示灯可以是一个 LED ,通过闪烁来显示当前系统故障,也可以是多个 LED ,以一定数量 LED 同时闪烁来显示优先级最高的系统故障,还可以一个 LED 对应一种系统故障的方式来一一显示故障检测模块 4 所检测到的所有系统故障。
在本发明提供的一个优选实施例中, LED 故障指示灯同时用于显示冰箱设置的温度。例如, LED 故障指示灯的数量为 5 个,在常态下,分别用于显示冰箱的 5 个温度档位。而当检测到系统故障时,则相应闪烁对应数量的 LED 来指示系统故障。
在本发明提供的一个优选实施例中,显示模块 6 还包括显示面板,用于以数字或文字的方式显示故障检测模块 4 所检测的系统故障。
实施本发明显示模块 6 ,可以清楚地显示系统故障,尤其是 GAS 故障。充分确保了系统的安全提供和故障警示功能。另外,通过 LED 故障指示灯,可以清楚地显示出系统故障,便于维护人员维修,节约了故障检测的时间成本和人力成本,提高了售后服务效率和质量。
亮度控制模块 7 用于自动调节显示模块 6 的 LED 灯的亮度。当用户在预订时间内未对系统进行操作时,亮度控制模块 7 控制显示模块 6 的 LED 灯变暗或熄灭。在本发明提供的一个优选实施例中,预订时间为 3 分钟。在本发明的另一个优选实施例中,系统还包括用户设置模块,用于设置根据用户实际需要设置 LED 灯亮度变化的时间。
通过实施亮度控制模块 7 ,当用户在预订时间内不进行操作时, LED 灯亮度变暗甚至熄灭,一方面节约了电能,另一方面也不会影响用户夜间休息,因为房车的空间有限,而 LED 灯的穿透力又很强,如果显示模块 6 的 LED 灯一直亮着,会严重影响用户的睡眠。
记忆模块 8 用于记忆关闭冰箱前的系统参数,并在下次开机时调用所记忆的系统参数。记忆模块 8 记忆的系统参数包括冰箱的开 / 关机状态,工作模式( AES 或 MES ),冰箱设置的温度和用户预设的参数等。
通过实施记忆模块 8 ,使得本发明的 UES 电控系统更加智能,在掉电后不需要重新设置系统参数,为用户提供更大的便捷性,提升了用户体验。
请参见图 4A - 4I ,图 4A - 4F 是本发明提供的 UES 电控系统故障检测电路图。其中,图 4A 是 AC 故障检测电路。 MAINS_L 和 MAINS_N 分别为交流电网的火线和零线。如图 4A 所示, AC 故障检测电路通过接线端 J11 和 J8 分别连接至 MAINS_L 和 MAINS_N 。本实施例通过熔断器 F4 对交流电网的火线电进行保护后得到受保护的交流电高压电 AC_L ,进而输入到系统中。本实施例 AC 故障检测电路工作原理为: AC_L 输入的交流电经过电阻 R40 、 R42 和二极管 D9 整流后的交流脉冲输入到光耦 U3 中,通过光耦 U3 实现对 AC 的过零检测,当有 AC 输入时,光耦 U3 输出端有持续脉冲信号发送给主板微处理器 U4 。若主板微处理器 U4 没有接收到来自光耦 U3 的持续脉冲,则判断为 AC 故障。另外,在图 4A 中,二极管 D10 为反向保护二极管,电阻 R49 为光耦 U3 的偏置电阻, +5V 电压连接电阻 R47 后为光耦 U3 供电,电阻 R48 和电容 C17 在光耦 U3 的信号输入主板微处理器 U4 前对其进行滤波处理。
实施本实施例的 AC 故障检测电路,通过二极管 D9 对输入的 AC 进行半波整流以提高交流过零检测效率,再通过光耦 U3 将高压脉冲转换成低压脉冲发送至主板微处理器 U4 ,采用光耦不但实现高精度检测,高低压电路完全隔离,而且光耦成本较低,进而实现了对 AC 故障的有效检测。另外,光耦 U3 输入主板微处理器 U4 的信号经过了电阻 R48 和电容 C17 构成的滤波电路的滤波处理,提供了检测准确度和可靠性。
其中,图 4B1 和图 4B2 是 DC 故障检测电路。其中,图 4B1 是发动机启动信号 D+ 故障检测电路,图 4B2 是 DC 加热棒供电电压故障检测电路。如图 4B1 所示,本实施例发动机启动信号 D+ 故障检测电路通过接线端 J5 连接至外部发动机启动信号 D+ ,再通过分压电阻 R35 和 R39 对发动机启动信号 D+ 信号进行分压,其中电阻 R35 和 R39 串联后电阻 R35 另一端接 D+ ,电阻 R39 另一端接地。电阻 R39 上的分压经过串联滤波电路电阻 R34 和电容 C16 过滤高频杂波后从电容 C16 的一端输入到主板微处理器 U4 ,其中电容 C16 的另一端接地。主板微处理器判断输入的电压是否不低于预设值,如果是,则说明 DC 正常,否则说明 DC 故障。
实施本实施例的 DC 故障检测电路,只需通过一个简单的分压电路和主板微处理器 U4 就能检测 DC 是否故障,另外本实施例在分压电路基础上还增加了滤波电路,提高了检测可靠性。
如图 4B2 所示,本实施例 DC 加热棒供电电压检测电路中, VB 为 DC 加热棒供电电压。在本发明提供的一个优选实施例中, DC 加热棒的供电由一个大容量的蓄电池提供,电压为 12V 。因为 DC 加热棒的继电器功率较大,给 DC 加热棒供电的电源不能采用普通的蓄电池,通过采用容量较大的蓄电池,如汽车打火用的蓄电池。如图 4B2 所示, DC 加热棒供电电压故障检测电路包括电阻 R13 、 R52 、 R9 ,电容 C19 和主板微处理器 U4 。电压 VB 通过电阻 R13 的一端输入到 DC 加热棒供电电压故障检测电路中, R13 的另一端分别连接电阻 R9 、 R52 和电容 C19 ,电阻 R52 和电容 C19 的另一端都接地,电阻 R9 的另一端连接主板微处理器 U4 。其中,电阻 R13 和 R52 组成的电路为分压电路,电阻 R9 和电容 C19 组成的电路为滤波电路。为 DC 加热棒供电的 DC 电压 VB 经过分压和滤波后输入主板微处理器 U4 中,主板微处理器 U4 判断输入的电压信号是否在预定范围内,若否,则存在 DC 故障。
实施本实施例 DC 加热棒供电电压故障检测电路,可有效防止用户忘记接 DC 加热棒电池或者是电池电量过低而导致系统无法正常工作的问题,进而防止蓄电池电量过低时汽车不能打火。
其中,图 4C 是 GAS 故障检测电路。如图 4C 所示,接线端 J4 连接外部热电偶,外部热电偶将火焰的热信号转换成电信号后通过接线端 J4 输入到 GAS 故障检测电路中。从接线端 J4 输入的电信号经 R7 和 R8 分压后输入到运算放大器 U2A 反相端,放大后输入到主板微处理器 U4 中。这时主板微处理器 U4 接收到高电平信号,于是微处理器 U4 再次输出脉冲信号到运算放大器 U2A 的反相端,主板微处理器 U4 再次检测是否存在大于一定数量的反相脉冲,是则表示点火成功,否则, GAS 点火失败,每点火 45 秒钟则停机 2 分钟,如果 3 次点火失败则系统报点火故障。在本发明提供的一个优选实施例中,一定数量为 2 个。预设值与检测灵敏度有关,灵敏度越高,则预设值越大。
实施本实施例 GAS 故障检测电路,通过运算放大器 U2A 和主板微处理器 U4 可有效检测 GAS 故障,并通过脉冲数判断点火成功与否,可有效避免用电平方法产生的误检测。。
其中,图 4D 是温度传感器故障检测电路。如图 4D 所示,外部的温度传感器连接在接线端 P2 的 1 脚和 2 脚之间,其中 1 脚还连接值 5VDC 电源, 2 脚将信号输入到电阻 R32 上,进而将电阻 R32 上的电压输入点主板微处理器 U4 中。当主板检测到电阻 R32 的电压在预设范围内时,则温度传感器正常,否则温度传感器故障。在本发明提供的一个优选实施例中,预定的电压范围对应的冰箱的温度为 -10 ℃ 至 50 ℃之间。另外,如图 4D 所示,本实施例温度传感器故障检测电路还包括滤波电路,滤波电路为串联的电阻 R28 和电容 C14 ,电阻 R28 的另一端输入电阻 R32 上的电压,电容 C14 的另一端接地,滤波后的信号从电容与电阻之间输出至微处理器 U4 。另外 5VDC 电源与地之间还连接了电容 C18 ,用于对 5VDC 电源进行滤波处理,确保输入到主板微处理器 U4 的电压信号无高频信号干扰。
本实施例温度传感器故障检测电路结构简单,只采用了一个电阻 R32 与温度传感器串接于 5VDC 电源和地之间,并将电阻 R32 上的分压发送至主板微处理器 U4 ,就能实现温度传感器故障检测。另外本实施例在分压电路基础上还增加了滤波电路,提高了检测精度。
其中,图 4E 是继电器故障检测电路。如图 4E 所示,继电器故障检测电路包括接线端 P3 ,电阻 R24 、 R36 和主板微处理器 U4 。外部继电器连接到接线端 P3 的 3 脚和 4 脚之间,同时, 3 脚接 12V 直流电源 Vint 。电阻 R24 连接在 4 脚和地之间,电阻 R36 连接在 4 脚和主板微处理器 U4 之间。工作时,如果继电器正常工作,接线端 P3 的 3 脚和 4 脚连接继电器线圈导通, 12V 的直流电压通过限流电阻 R24 分压和 R36 限流之后输入到主板微处理器 U4 中, U4 内部钳位后检测到高电压信号;如果继电器故障,例如线圈开路或线圈阻值变得很大,接线端 P3 的 3 脚和 4 脚之间相当于断开,主板微处理器 U4 检测不到电压或电压很低。因此,主板 U4 通过判断电阻 R36 输入的电压的高低则可以检测到继电器是否故障。
实施本实施例继电器故障检测电路,可有效检测外部继电器是否存在故障。
其中,图 4F 是气阀故障检测电路。如图 4F 所示,气阀故障检测电路包括接线端 P3 ,主板微处理器 U4 ,稳压二极管 ZD1 ,二极管 D6 , MOS 开关 QT2 以及电阻 R14 、 R25 、 R26 、 R37 和 R38 。外部气阀连接至接线端 P3 的 1 脚和 2 脚之间。接线端 P3 的 1 脚和 2 脚分别通过电阻 R37 和电阻 R38 连接至主板微处理器 U4 中,另外, 1 脚与地之间连接电阻 R25 , 2 交与地之间连接电阻 R26 。接线端 P3 的 1 脚和 2 脚之间还连接了一个二极管 D6 ,其中 D6 的阳极连接 1 脚, D6 的阴极连接 2 脚。 MOS 开关 QT2 的 1 脚(栅极)通过电阻 R14 与 3 脚(源极)连接后连接至 12V 直流电源 Vint ,而 2 脚(漏极)连接接线端 P3 的 2 脚。稳压二极管 ZD1 并联在 MOS 开关 QT2 的 3 脚和 2 脚之间,其中阳极连接 2 脚。工作时, MCU 先发信号让 QT2 导通,则接线端 P3 的 2 脚通过电阻 R26 和 R38 将 QT2 的状态信号发送给主板微处理器 U4 ,如果 MOS 开关 QT2 正常工作,则电阻 R38 向主板微处理器 U4 输入高电压,否则输入低电压。同时接线端 P3 的 1 脚通过电阻 R25 和 R37 将气阀的状态信号发送给主板微处理器 U4 ,如果气阀正常工作,则电阻 R37 向主板微处理器 U4 输入高电压,否则输入低电压;如果 MOS 开关 QT2 正常工作,则电阻 R37 向主板微处理器 U4 输入高电压,否则输入低电压。如果电阻 R37 或电阻 R38 中任何一个输入到主板微处理器 U4 中的电压为低电压使,都判定为气阀故障。 MOS 开关 QT2 是一个受控开关,同时 MOS 开关 QT2 又用于控制气阀的开启与关闭。稳压二极管 ZD1 用于钳位 MOS 开关 QT2 两端的电压,防止系统因房车电池瞬间产生的冲击电压损坏 MOS 开关 QT2 。在本发明提供的一个优选实施例中,稳压二极管 ZD1 的稳定电压为 30V 。二极管 D6 是一个保护二极管,用于抑制吸收接线端 P3 的 1 、 2 脚之间所接的气阀线圈在电路关闭时产生反向电动势,防止对其他元器件造成损害。
实施本实施例气阀故障检测电路,可有效检测气阀是否故障以及气阀的控制开关是否故障。同时,本实施例气阀故障检测电路还通过二极管 D6 和稳压二极管 ZD1 设置了保护电路,防止系统在开机或关机时产生冲击电压损坏电路,提高了系统的稳定性和质量。
其中,图 4G 是加热棒故障检测电路。如图 4G 所示,加热棒加在接线端 J9 和 J10 之间,如果加热棒正常,则受保护的交流电高压电 AC_L 和零线电 AC_N 之间形成回路,光耦 U6 向主板微处理器 U4 输出信号;如果加热棒断开,则无法形成回路,光耦 U6 无信号输出,主板微处理器 U4 则判断为加热棒故障。另外,如图 4G 所示,本实施例对输入和输出光耦 U6 的信号都进行了处理。输入的 AC 高压电先经过 R29 限流,再经过 R55 和电容 C11 组成的阻容降压电路降压后再到光耦 U6 ,而输出信号则经过电阻 R30 和电容 C13 组成的滤波电路滤波后再输到主板微处理器 U4 。
实施本实施例加热棒故障检测电路,通过光耦 U6 将高压交流电转换成低压信号后发送至主板微处理器 U4 ,采用光耦不但实现高精度检测,高低电压完全隔离,而且光耦成本较低,进而实现了对 AC 故障的有效检测。另外,本实施例加热棒故障检测电路对光耦 U6 的输入输出信号都进行了滤波处理,充分保证了输入主板微处理器 U4 的信号的精确度,提交检测效率。
其中,图 4H 是输入过 / 欠故障检测电路。输入过 / 欠压故障检测电路是对为 UES 电控系统供电的供电电压进行检测的电路。在本发明提供的一个优选实施例中,供电电压为电池的 12V 电压,系统通过一个电压转换电路将电压转换为 5V ,因此可同时为 UES 电控系统提供 DC12V 和 DC5V 电压。如图 4H 所示,输入过 / 欠压故障检测电路包括电阻 R41 、 R46 、 R44 ,电容 C20 和主板微处理器 U4 。控制系统上电后, V+ 得到 +12V 电压,通过电阻 R41 的一端输入到输入过 / 欠压故障检测电路中, R41 的另一端分别连接电阻 R46 、 R44 和电容 C20 ,电阻 R46 和电容 C20 的另一端都接地,电阻 R44 的另一端连接主板微处理器 U4 。其中,电阻 R41 和 R46 组成的电路为分压电路,电阻 R44 和电容 C20 组成的电路为滤波电路。为 UES 电控系统供电的 DC 电压经过分压滤波后输入主板微处理器 U4 中,主板微处理器 U4 判断输入的电压是否在预定范围内,若否,则为输入过 / 欠压故障。
实施本实施例的输入过 / 欠压故障检测电路,只需通过一个简单的分压电路和主板微处理器 U4 就能检测是否存在输入过 / 欠压故障,另外本实施例在分压电路基础上还增加了滤波电路,提高了检测精度。
其中,图 4I 是通信故障检测电路。如图 4I 所示,通信故障是指主板微处理器 U4 和显示板微处理器 U2 之间的通信故障。主板微处理器 U4 和显示板微处理器 U2 通过其内部的 TXD 端(通信信号发送端)及 RXD 端(通信信号接收端)实现串行通信。工作时,显示板微处理器 U2 会通过其 TXD 端向主板微处理器发送握手信号,主板微处理器 U4 通过其 RXD 端接收到显示板微处理器 U2 的握手信号时会通过其 TXD 端向显示板微处理器 U2 反馈一个握手信号,显示板微处理器 U2 通过其 RXD 端接收这一反馈握手信号。如果显示板微处理器 U2 在预定时间内未收到主板微处理器 U4 的反馈握手信号则表示通信故障,则向相应的 LED 灯输出脉冲,使其闪烁以显示通信故障。
本实施例通信故障检测电路结构基于主板微处理器 U4 和显示板微处理器 U2 现有的通信接口,通过在显示板微处理器中添加简单的软件程序即可实现通信故障检测,具有电路结构简单,易于实现的优点。
应理解,在主板微处理器 U4 检测到上述任何故障时,都会将故障信号发送给显示板微处理器 U2 ,进而控制相应的 LED 灯显示检测到的故障。本发明提供的 UES 电控系统,集能源选择、故障检测和故障显示于一体,大大提高了电控系统的智能化和用户友好的显示界面,进而提高了用户满意度。
上述描述涉及各种模块。这些模块通常包括硬件和 / 或硬件与软件的组合(例如固化软件,可编程软件)。这些模块还可以包括包含指令(例如,软件指令)的计算机可读介质(例如,永久性介质),当处理器执行这些指令时,就可以执行本发明的各种功能性特点。相应地,除非明确要求,本发明的范围不受实施例中明确提到的模块中的特定硬件和 / 或软件特性的限制。作为非限制性例子,本发明在实施例中可以由一种或多种处理器(例如微处理器、数字信号处理器、基带处理器、微控制器)执行软件指令(例如存储在非永久性存储器和 / 或永久性存储器)。另外,本发明还可以用专用集成电路( ASIC )和 / 或其他硬件元件执行。需要指出的是,上文对各种模块的描述中,分割成这些模块,是为了说明清楚。然而,在实际实施中,各种模块的界限可以是模糊的,也可以是交叉重叠的。例如,本文中的任意或所有功能性模块可以共享各种硬件和 / 或软件元件。又例如,本文中的任何和 / 或所有功能模块可以由共有的处理器执行软件指令来全部或部分实施。另外,由一个或多个处理器执行的各种软件子模块可以在各种软件模块间共享。相应地,除非明确要求,本发明的范围不受各种硬件和 / 或软件元件间强制性界限的限制。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

  1. 一种房车冰箱的通用能源选择电控系统,其特征在于,包括:模式切换模块、自动能源选择模块和手动能源选择模块;
    所述模式切换模块用于接收用户的切换信号进而使冰箱在自动能源选择模式和手动能源选择模式两种工作模式之间切换;
    所述自动能源选择模块用于在自动能源选择模式下自动选择可用能源进而供冰箱工作;
    所述手动能源选择模块用于在手动能源选择模式下接收用户手动选择的所述可用能源进而供冰箱工作。
  2. 根据权利要求 1 所述的房车冰箱的通用能源选择电控系统,其特征在于,所述自动能源选择模块和所述手动能源选择模块包括驱动单元,所述驱动单元用于将所述自动能源选择模块和所述手动能源选择模块所选择的能源输入到冰箱进而使冰箱正常工作。
  3. 根据权利要求 1 所述的房车冰箱的通用能源选择电控系统,其特征在于,所述可用能源包括交流电、直流电和液化石油气。
  4. 根据权利要求 3 所述的房车冰箱的通用能源选择电控系统,其特征在于,所述自动能源选择模块自动选择所述可用能源时,所述可用能源的优先级高低顺序依次为:所述交流电、所述直流电和所述液化石油气。
  5. 根据权利要求 1 所述的房车冰箱的通用能源选择电控系统,其特征在于,还包括故障检测模块;
    所述故障检测模块用于自动检测系统故障,所述系统故障包括:交流电故障、直流电故障、液化石油气故障、温度传感器故障、继电器故障、气阀故障、加热棒故障、输入电压过 / 欠压故障和通信故障。
  6. 根据权利要求 5 所述的房车冰箱的通用能源选择电控系统,其特征在于,还包括自诊断模块;
    所述自诊断模块用于当所述故障检测模块检测到系统存在通信故障和 / 或温度传感器故障时使冰箱持续工作,直到故障被修复。
  7. 根据权利要求 1 所述的房车冰箱的通用能源选择电控系统,其特征在于,还包括显示模块;
    所述显示模块包含一个 LED 警示灯和多个 LED 指示灯;所述 LED 警示灯用于警示液化石油气故障,所述 LED 指示灯指示的内容包括:冰箱的工作模式、所选择的能源和冰箱的设置温度。
  8. 根据权利要求 7 所述的房车冰箱的通用能源选择电控系统,其特征在于,所述显示模块还包括至少一个 LED 故障指示灯,所述 LED 故障指示灯用于指示系统故障。
  9. 根据权利要求 7 或 8 所述的房车冰箱的通用能源选择电控系统,其特征在于,还包括亮度控制模块;
    所述亮度控制模块用于自动调节所述显示模块的 LED 灯的亮度。
  10. 根据权利要求 1 所述的房车冰箱的通用能源选择电控系统,其特征在于,还包括记忆模块;
    所述记忆模块用于记忆关闭冰箱前的系统参数,并在下次开机时调用所记忆的系统参数。
PCT/CN2014/087763 2014-08-26 2014-09-29 一种房车冰箱的通用能源选择电控系统 WO2016029525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410424517.3A CN105444510B (zh) 2014-08-26 2014-08-26 一种房车冰箱的通用能源选择电控系统
CN201410424517.3 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016029525A1 true WO2016029525A1 (zh) 2016-03-03

Family

ID=55398697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087763 WO2016029525A1 (zh) 2014-08-26 2014-09-29 一种房车冰箱的通用能源选择电控系统

Country Status (3)

Country Link
CN (1) CN105444510B (zh)
AU (1) AU2014246608B2 (zh)
WO (1) WO2016029525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK179237B1 (en) * 2016-10-31 2018-02-26 Danfoss Vaermepumpar Ab A method for controlling a compressor of a heat pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677038A (zh) * 2004-03-30 2005-10-05 三星电子株式会社 冰箱及其控制方法
CN2750263Y (zh) * 2004-08-24 2006-01-04 广东科龙电器股份有限公司 一种小型冰箱
CN202254569U (zh) * 2011-06-27 2012-05-30 海信(北京)电器有限公司 多能源供电冰箱
CN102853623A (zh) * 2011-06-27 2013-01-02 海信(北京)电器有限公司 多能源供电冰箱及其控制方法
CN103217932A (zh) * 2012-01-21 2013-07-24 电联运通股份有限公司 燃料电池与家电设备的整合控制装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3133686A1 (de) * 1981-08-26 1983-03-17 Lattek, Gabriele, 4300 Essen Kuehlschrank od.dgl. fuer reisemobile, wohnwagen u. aehnl.
FR2552281B1 (fr) * 1983-09-16 1987-04-24 Vano Sa Prod Dispositif d'asservissement d'un materiel pourvu de differents moyens de chauffage et materiel pourvu d'un tel dispositif
JP2013113548A (ja) * 2011-11-30 2013-06-10 Fuji Electric Co Ltd 車両用冷却収納装置
CN102801208B (zh) * 2012-08-31 2015-01-14 安徽新迪机电科技有限责任公司 多路供电智能调度管理器及其控制方法
CN102882752A (zh) * 2012-10-19 2013-01-16 天津光宏科技有限公司 基于物联网及安卓系统的智能家居系统及控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1677038A (zh) * 2004-03-30 2005-10-05 三星电子株式会社 冰箱及其控制方法
CN2750263Y (zh) * 2004-08-24 2006-01-04 广东科龙电器股份有限公司 一种小型冰箱
CN202254569U (zh) * 2011-06-27 2012-05-30 海信(北京)电器有限公司 多能源供电冰箱
CN102853623A (zh) * 2011-06-27 2013-01-02 海信(北京)电器有限公司 多能源供电冰箱及其控制方法
CN103217932A (zh) * 2012-01-21 2013-07-24 电联运通股份有限公司 燃料电池与家电设备的整合控制装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, YUKAI ET AL.: "Self-Diagnosis Function and Common Troubleshooting Ideas of Microcomputer Control Air-Cooled Refrigerator", ELECTRONICS WORLD, no. 2, 28 February 2005 (2005-02-28), pages 72, ISSN: 10030522 *

Also Published As

Publication number Publication date
AU2014246608A1 (en) 2016-03-17
CN105444510B (zh) 2018-02-06
AU2014246608B2 (en) 2021-04-29
CN105444510A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2012075769A1 (zh) 移动电源及其控制方法
WO2014071630A1 (zh) 一种安全电热电路、安全电热方法及电热取暖器
CN106825830B (zh) 一种安全电烙铁
TWI531131B (zh) Current detection and management device
WO2016029525A1 (zh) 一种房车冰箱的通用能源选择电控系统
CN111884306A (zh) 一种充电装置
CN205540091U (zh) 一种多功能组合式数控电镀电源系统
CN204853577U (zh) 燃气灶控制器
CN210426830U (zh) 一种带保护及自恢复功能的监测报警电路
CN205725135U (zh) 三相智能双电源无缝自动切换装置
US20080232016A1 (en) Power control circuit with alarm
CN201805220U (zh) 用于大气监测站的智能稳压供电控制装置
CN210639450U (zh) 智能检测零功耗多模式切换控制电路
CN108023405A (zh) 柴油机紧急停车电磁阀回路失效切换、报警电路及其方法
CN108258591A (zh) 电源箱
CN201114651Y (zh) 一种信号接收器
CN110391641B (zh) 电机过热保护器及电机过热保护控制方法
CN210327003U (zh) 一种自复位防火保护开关
JP2004022370A (ja) 表示装置
CN204514483U (zh) 变压器桩头防护罩温测监护系统
TW201501441A (zh) 不斷電系統電壓異常保護電路
CN210490470U (zh) 一种用电系统优化节能装置
JP2000041347A (ja) 非常用電源装置
CN108092396A (zh) 柴油机紧急停车电磁阀回路失效切换、报警电路及其方法
CN107910949A (zh) 一种紧急停车电路及其实现方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900641

Country of ref document: EP

Kind code of ref document: A1