WO2016027687A1 - 有機エレクトロルミネッセンス素子 - Google Patents
有機エレクトロルミネッセンス素子 Download PDFInfo
- Publication number
- WO2016027687A1 WO2016027687A1 PCT/JP2015/072386 JP2015072386W WO2016027687A1 WO 2016027687 A1 WO2016027687 A1 WO 2016027687A1 JP 2015072386 W JP2015072386 W JP 2015072386W WO 2016027687 A1 WO2016027687 A1 WO 2016027687A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- monovalent aromatic
- carbon atoms
- atom
- general formula
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D221/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
- C07D221/02—Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
- C07D221/04—Ortho- or peri-condensed ring systems
- C07D221/18—Ring systems of four or more rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
- C07D403/10—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/048—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/12—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
- C07D495/14—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
- C09K11/025—Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/341—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H10K85/342—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
- H10K85/626—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/94—[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/12—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/156—Hole transporting layers comprising a multilayered structure
Definitions
- the present invention relates to an organic electroluminescence element (organic EL element) which is a self-luminous element suitable for various display devices. More specifically, the present invention relates to an indenoacrylic material having a specific molecular structure in a hole transport layer. The present invention relates to an organic EL element containing a dan derivative.
- organic EL elements are self-luminous elements, they are brighter and have better visibility than liquid crystal elements, and a clear display is possible. Therefore, much research has been conducted on organic EL elements.
- organic EL element is formed by laminating a phosphor capable of transporting electrons and an organic substance capable of transporting holes, and the positive and negative charges are formed on the phosphor layer.
- high luminance of 1000 cd / m 2 or more can be obtained at a voltage of 10 V or less.
- the light emitting layer can be prepared by doping a charge transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound or a material emitting delayed fluorescence.
- a charge transporting compound generally called a host material with a fluorescent compound, a phosphorescent compound or a material emitting delayed fluorescence.
- the selection of the organic material in the organic EL element greatly affects various characteristics such as efficiency and durability of the element.
- the light injected from both electrodes is recombined in the light emitting layer to obtain light emission, but it is important how efficiently both holes and electrons are transferred to the light emitting layer. It is necessary to make the device excellent in carrier balance.
- the probability of recombination of holes and electrons is improved by improving the hole injection property and blocking the electron injected from the cathode, and further excitons generated in the light emitting layer. By confining, high luminous efficiency can be obtained. Therefore, the role of the hole transport material is important, and there is a demand for a hole transport material that has high hole injectability, high hole mobility, high electron blocking properties, and high durability against electrons. ing.
- the heat resistance and amorphous nature of the material are important for the lifetime of the element.
- thermal decomposition occurs even at a low temperature due to heat generated when the element is driven, and the material is deteriorated.
- the thin film is crystallized even in a short time, and the element is deteriorated. For this reason, the material used is required to have high heat resistance and good amorphous properties.
- NPD N, N′-diphenyl-N, N′-di ( ⁇ -naphthyl) benzidine
- various aromatic amine derivatives are known as hole transport materials that have been used in organic EL devices so far.
- NPD has a good hole transport capability, but its glass transition point (Tg), which is an index of heat resistance, is as low as 96 ° C., and device characteristics are deteriorated due to crystallization under high temperature conditions.
- Tg glass transition point
- the aromatic amine derivatives described in Patent Documents 1 and 2 there are compounds having an excellent mobility of hole mobility of 10 ⁇ 3 cm 2 / Vs or more, but the electron blocking property is inferior.
- arylamine compounds having a substituted carbazole structure have been proposed (see, for example, Patent Documents 4 to 6). Although the elements used for the hole transport layer have been improved in heat resistance, light emission efficiency, etc., they are not yet sufficient, and further lower driving voltage and higher light emission efficiency are required.
- JP-A-8-048656 Japanese Patent No. 3194657 Japanese Patent No. 4943840 International Publication No. 2006/033563 International Publication No. 2007/110228 International Publication No. 2010/147319
- An object of the present invention is that a hole transport layer is formed of a hole transport material excellent in hole injection / transport performance, electron blocking ability, stability and durability in a thin film state, and the hole transport material Other layers are combined so that the excellent characteristics are sufficiently exhibited, and as a result, an organic EL element realizing high efficiency, low drive voltage, and long life is provided.
- an indenoacridan derivative having a specific molecular structure exhibits excellent characteristics as a hole transport material, and when a hole transport layer is formed using such a compound, the light-emitting layer has an N-aromatic property.
- an organic EL device having excellent carrier balance and excellent properties can be obtained when an aromatic substituted indenoindole compound or an N-aromatic substituted carbazole compound is contained. I came to let you.
- the hole transport layer is an indenoacrylate represented by the following general formula (1).
- an organic electroluminescence device comprising a dan derivative and wherein the light-emitting layer contains an N-aromatic substituted indenoindole compound and / or an N-aromatic substituted carbazole compound.
- a 1 represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or a single bond
- B has a monovalent aromatic hydrocarbon group; a monovalent aromatic heterocyclic group; or a monovalent aromatic hydrocarbon group, a monovalent aromatic heterocyclic group or a substituent as a substituent.
- B is a di-substituted amino group, A 1 is not a single bond, and when A 1 is not a single bond, A 1 and B may have a single bond or a substituent.
- R 1 to R 10 are each a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, or 2 to 6 carbon atoms.
- R 11 to R 14 are each an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkyloxy group having 1 to 6 carbon atoms, or 5 to 10 carbon atoms.
- the N-aromatic substituted indenoindole compound used in the light emitting layer is preferably a compound represented by the following general formula (2).
- a 2 represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or a single bond
- Ar 1 represents a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group
- R 15 to R 22 are a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, or 2 to 6 carbon atoms.
- alkenyl group an alkyloxy group having 1 to 6 carbon atoms, a cycloalkyloxy group having 5 to 10 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent aromatic heterocyclic group, an aralkyl group, an aryloxy group, Or a disubstituted amino group having a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group as a substituent, and these groups may be a single bond or a methylene optionally having a substituent.
- a ring may be bonded to each other via a group, an oxygen atom or a sulfur atom, and a part of R 15 to R 18 or a part of R 19 to R 22 is eliminated, This detachment And the vacant, other groups other groups or R 19 ⁇ R 22 of R 15 ⁇ R 18 is optionally substituted methylene group, an oxygen atom, via a sulfur atom, or a mono- arylamino group They may combine to form a ring, R 23 and R 24 are an alkyl group having 1 to 6 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent aromatic heterocyclic group or an aralkyl group, and these groups are a single bond, a substituent, May be bonded to each other via a methylene group, an oxygen atom, or a sulfur atom which may have a ring.
- the N-aromatic substituted carbazole compound used for the light emitting layer is preferably a compound represented by the following general formula (3).
- a 3 represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or a single bond
- Ar 2 represents a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group
- R 25 to R 32 are each a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, or 2 to 6 carbon atoms.
- a ring may be bonded to each other via a group, an oxygen atom or a sulfur atom, or a part of R 25 to R 28 or a part of R 29 to R 32 may be eliminated.
- R 29 ⁇ R 32 of R 25 ⁇ R 28 are substituted by methylene group which may, oxygen atom, attached through a sulfur atom, or a mono- arylamino group May form a ring.
- the electron transport layer preferably contains an anthracene derivative represented by the following general formula (4).
- a 4 represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond
- E represents a monovalent aromatic heterocyclic group
- C represents a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group
- D is a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group or an alkyl group having 1 to 6 carbon atoms
- p and q are integers of 7 or 8
- q is an integer of 1 or 2 on the condition that the sum of both is 9.
- a 4 is as shown in the formula (4), Ar 9 , Ar 10 and Ar 11 are each a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group,
- R 40 is a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano group, nitro group, alkyl group having 1 to 6 carbon atoms, cycloalkyl group having 5 to 10 carbon atoms, or alkenyl group having 2 to 6 carbon atoms.
- alkyloxy group having 1 to 6 carbon atoms a cycloalkyloxy group having 5 to 10 carbon atoms, a monovalent aromatic hydrocarbon group, a monovalent aromatic heterocyclic group, an aralkyl group or an aryloxy group.
- the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, and the second hole transport layer is located on the light emitting layer side. And containing an indenoacridan derivative represented by the general formula (1), (2)
- the light emitting layer further contains a phosphorescent light emitting material, (3)
- the phosphorescent light-emitting material is a metal complex containing iridium or platinum, (4)
- the phosphorescent light emitting material is a red light emitting dopant, Is more preferable.
- the indenoacridan derivative represented by the general formula (1) contained in the hole transport layer has an indenoacridan ring in the molecule. Due to the structure in which a monovalent aromatic hydrocarbon group, monovalent aromatic heterocyclic group or specific disubstituted amino group is bonded to the nitrogen atom via a single bond or a divalent aromatic group. It has the characteristics. Indenoacridan derivatives having such a structure are (1) Good hole injection / transport properties, (2) Excellent electron blocking ability, (3) The thin film state is stable. (4) Excellent heat resistance, It has the characteristic.
- the light-emitting layer in addition to such an indenoacridan derivative being contained in the hole transport layer, the light-emitting layer has an N-aromatic substituted indenoindole compound or an N-aromatic substituted
- the carbazole compound is included, so that the excellent characteristics of the above-mentioned indenoacridan derivative are fully exhibited, holes can be efficiently injected and transported into the light emitting layer, and light emission with high efficiency and low driving voltage is realized. In addition, the lifetime of the element can be extended.
- an electron transport layer formed of the anthracene derivative represented by the general formula (4) together with the hole transport layer and the light emitting layer holes and electrons are formed in the light emitting layer. Can be injected and transported more efficiently, a high carrier balance can be secured, and higher characteristics can be realized.
- the hole transport layer has a two-layer structure of a first hole transport layer and a second hole transport layer, and the second hole transport layer located on the side adjacent to the light emitting layer is described above.
- the organic EL device of the present invention is a basic in which an anode, a hole transport layer, a light emitting layer, an electron transport layer, and a cathode are formed in this order on a transparent substrate such as a glass substrate or a transparent plastic substrate (for example, a polyethylene terephthalate substrate). It has a structure. As long as it has such a basic structure, the layer structure can take various forms. For example, the hole transport layer is adjacent to the first hole transport layer located on the anode side and the light emitting layer. It can be a two-layer structure with a second hole transport layer, a hole injection layer can be provided between the anode and the hole transport layer, and further, between the electron transport layer and the cathode.
- FIG. 1 shows a layer structure employed in an example described later.
- an anode 2 On a transparent substrate 1, an anode 2, a hole injection layer 3, a hole transport layer 5, a light emitting layer 6, and an electron transport.
- the layer 7, the electron injection layer 8, and the cathode 9 are formed in this order.
- the hole transport layer 5 has a two-layer structure of a first hole transport layer 5a and a second hole transport layer 5b.
- each layer which comprises the organic EL element of this invention is demonstrated.
- the anode 2 is formed on the transparent substrate 1 by vapor deposition of an electrode material having a large work function such as ITO or gold.
- a hole injection layer 3 is appropriately formed between the anode 2 and the hole transport layer 5 as necessary.
- the hole injection layer 3 is made of a material known per se, for example, a material such as a starburst type triphenylamine derivative or various triphenylamine tetramers; a porphyrin compound typified by copper phthalocyanine; a hexacyanoazatriphenylene Such an acceptor heterocyclic compound or a coating-type polymer material can be used.
- P-doped trisbromophenylamine hexachloroantimony, radialene derivatives see, for example, International Publication No. 2014/009310), polymer compounds having a partial structure of a benzidine derivative such as TPD, etc. Can be used.
- the hole transport layer 5 is provided between the anode 2 and the light emitting layer 6.
- the hole transport layer is an indenore represented by the following general formula (1). Contains cridane derivatives.
- a 1 represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or a single bond.
- the divalent aromatic hydrocarbon group is formed from an aromatic hydrocarbon ring having two bonds, and examples of the aromatic hydrocarbon ring include benzene, biphenyl, and terphenyl. Tetrakisphenyl, styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, pyrene, triphenylene, fluoranthene, and the like.
- a divalent aromatic heterocyclic group is formed from an aromatic heterocyclic ring having two bonds, and examples of such aromatic heterocyclic rings include pyridine, pyrimidine, triazine, pyrrole, furan.
- B in the general formula (1) represents a monovalent aromatic hydrocarbon group, a monovalent aromatic heterocyclic group, or a disubstituted amino group.
- the monovalent aromatic hydrocarbon group is formed from an aromatic hydrocarbon ring having one bond
- the monovalent aromatic heterocyclic group is an aromatic group having one bond. These are formed from group heterocycles. Examples of these are as follows.
- Monovalent aromatic hydrocarbon group Phenyl group, biphenylyl group, terphenylyl group, naphthyl group, anthracenyl group, phenanthrenyl group, fluorenyl group, indenyl group, pyrenyl group, perylenyl group, fluoranthenyl group, triphenylenyl group and the like.
- a monovalent aromatic heterocyclic group Pyridyl group, pyrimidinyl group, triazinyl group, furyl group, pyrrolyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, quinazolinyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl Group, benzoimidazolyl group, benzoquinazolinyl group, pyridopyrimidinyl group, pyrazolyl group, naphthopyrimidinyl group, dibenzofuranyl group, dibenzothienyl group, naphthyridinyl group, phenanthrolinyl group, acridinyl group, carbolinyl group and the like.
- the substituent that the disubstituted amino group has is a vinyl group (which may have a substituent), a monovalent aromatic hydrocarbon group, or a monovalent aromatic heterocyclic group.
- a vinyl group which may have a substituent
- a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group.
- monovalent aromatic hydrocarbon group and monovalent aromatic heterocyclic group include the same ones as exemplified above.
- a 1 and B when B is a disubstituted amino group, A 1 is not a single bond.
- a 1 is not a single bond, that is, when A 1 is a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group, A 1 and B have a single bond or a substituent. And may be bonded to each other via a methylene group, an oxygen atom or a sulfur atom which may be formed to form a ring.
- the disubstituted amino group represented by B has a vinyl group, the vinyl group is bonded to the aromatic ring of A 1 or the other substituent of the disubstituted amino group via a single bond.
- an aromatic ring is further formed by bonding (see compounds Nos. 1-22, 1-23, and 1-42 described later). That is, the indenoacridan derivative represented by the general formula (1) is an N-aromatic substituent in which an aromatic hydrocarbon ring or an aromatic heterocycle is bonded to a nitrogen atom in an acridan ring. It is desirable.
- a monovalent or divalent aromatic hydrocarbon group or aromatic heterocyclic group, and a disubstituted amino group may further have a substituent.
- a substituent including a substituent that the vinyl group of the disubstituted amino group may have
- examples of such a substituent include the following in addition to a deuterium atom, a cyano group, a nitro group, and the like.
- a halogen atom for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
- An alkyl group having 1 to 6 carbon atoms for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl groups and the like;
- An alkyloxy group having 1 to 6 carbon atoms such as a methyloxy group, an ethyloxy group, a propyloxy group;
- An alkenyl group such as a vinyl group, an allyl group;
- Aryl groups such as phenyl, biphenylyl, terphenylyl, naphthyl, anthracenyl, phenanthrenyl, fluor
- R 1 to R 10 are each a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 5 to 10 carbon atoms.
- a cyclic group, an aralkyl group or an aryloxy group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group And n-hexyl group.
- Examples of the cycloalkyl group having 5 to 10 carbon atoms include cyclopentyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group and the like.
- Examples of the alkenyl group having 2 to 6 carbon atoms include vinyl group, allyl group, isopropenyl group and 2-butenyl group.
- Examples of the alkyloxy group having 1 to 6 carbon atoms include a methyloxy group, an ethyloxy group, and a propyloxy group.
- Examples of the cycloalkyloxy group having 5 to 10 carbon atoms include cyclopentyloxy group, cyclohexyloxy group, 1-adamantyloxy group, 2-adamantyloxy group and the like.
- the monovalent aromatic hydrocarbon group and monovalent aromatic heterocyclic group are the same as those exemplified for “B” above.
- Examples of the aralkyl group include benzyl group and phenethyl group.
- aryloxy group phenyloxy group, tolyloxy group, biphenyloxy group, naphthyloxy group, anthracenyloxy group, phenanthrenyloxy group, fluorenyloxy group, indenyloxy group, pyrenyloxy group, perylenyloxy group Etc.
- Each of the above groups may be bonded to each other via an optionally substituted methylene group, oxygen atom or sulfur atom to form a ring.
- Each of the groups represented by R 1 to R 10 may have a substituent, and as such a substituent, the monovalent group in “B” described above may be used as long as the condition regarding the number of carbons is satisfied.
- substituents may be present independently, and these substituents are each bonded via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom. May be bonded to each other to form a ring.
- R 11 to R 14 are each an alkyl group having 1 to 6 carbon atoms, a cycloalkyl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
- Specific examples of these groups include the same groups as those exemplified for R 1 to R 10 , and these groups are further substituted with the same substituents as those of R 1 to R 10. You may have.
- R 11 and R 12 , or R 13 and R 14 are bonded to each other via a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom to form a ring. It may be.
- indenoacridan derivative represented by the general formula (1) described above include compounds (1-1) to (1-47) shown in FIGS.
- the indenoacridan derivative represented by the general formula (1) described above has a high glass transition point Tg (for example, 110 ° C. or higher) as understood from the examples described later. Is stable and has excellent heat resistance. In addition, it has a high work function as compared with the work function (about 5.4 eV) of a general hole transport material, and therefore, it has excellent hole transportability, and the hole mobility is high. It is large and has good hole injection characteristics. Furthermore, it has excellent electron blocking properties.
- Such indenoacridan derivatives can be used singly or in combination of two or more, and further, the indenoacridan derivatives have excellent characteristics.
- the hole transport layer 5 can also be formed in combination with a known hole transport material as long as it is not impaired.
- Such known hole transport materials include N, N′-diphenyl-N, N′-di (m-tolyl) benzidine (TPD), N, N′-diphenyl-N, N′-di ( ⁇ -Naphtyl) benzidine (NPD), benzidine derivatives such as N, N, N ′, N′-tetrabiphenylylbenzidine; 1,1-bis [4- (di-4-tolylamino) phenyl] cyclohexane (TAPC); And triarylamine derivatives represented by general formula (5) or general formula (6); and various other triphenylamine trimers.
- TPD N, N′-diphenyl-N, N′-di (m-tolyl) benzidine
- NPD N′-diphenyl-N, N′-di ( ⁇ -Naphtyl) benzidine
- benzidine derivatives such as N, N, N ′, N′-te
- the polymer compound containing can also be used together.
- the hole transport layer 5 described above is preferably formed by vapor deposition or co-evaporation of a gas containing the indenoacridan derivative represented by the general formula (1).
- the hole transport layer 5 may be formed by a known method such as a spin coating method or an inkjet method. Can also be formed.
- the thickness of such a hole transport layer 5 is usually about 25 to 60 nm, but can emit light with a low driving voltage. Therefore, even when the thickness is increased to, for example, 100 nm or more, an increase in driving voltage is suppressed. be able to. That is, the degree of freedom of the thickness of the hole transport layer is high, and a practical driving voltage can be maintained at a thickness of, for example, 20 to 300 nm, particularly 20 to 200 nm.
- the hole transport layer 5 containing the above-mentioned indenoacridan derivative includes, for example, the first hole transport layer 5a located on the anode side and the light emitting layer 6 side, as shown in FIG. It is preferable to have a two-layer structure with the second hole transport layer 5b located at the position.
- the hole transport layer 5 having such a two-layer structure will be described later.
- the light emitting layer 6 can be formed by a known method such as a vapor deposition method, a spin coating method, an ink jet method or the like depending on the type of material used.
- the N-aromatic substituted indenoindole is used. It is important to include a compound or an N-aromatic substituted carbazole compound. That is, the presence of these compounds in the light emitting layer 6 together with the light emitting material makes use of the hole transport / injection properties of the indenoacridan derivative contained in the hole transport layer 5 described above, Holes can be efficiently injected into the light emitting layer 6, and light emission with high efficiency and low driving voltage can be realized.
- the N-aromatic substituted indenoindole compound has an indenoindole ring structure, and an aromatic group is introduced into the nitrogen atom in the ring.
- an aromatic group is introduced into the nitrogen atom in the ring.
- it is represented by the following general formula (2). Is done.
- a 2 bonded to the nitrogen atom is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group, or a single atom, similarly to A 1 in the general formula (1). Indicates a bond.
- Examples of the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group include the same groups as those exemplified for A 1 in the general formula (1), and are exemplified for A 1.
- the substituents may be bonded to each other through a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. May be.
- Ar 1 represents a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group.
- the monovalent aromatic hydrocarbon group and monovalent aromatic heterocyclic group the same groups as those exemplified for B in the general formula (1) can be exemplified, and B is exemplified. May have the same substituent as the group, and the substituents may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. Good.
- R 15 to R 22 in the general formula (2) are each a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or a cycloalkyl having 5 to 10 carbon atoms.
- alkenyl groups having 2 to 6 carbon atoms alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, monovalent aromatic hydrocarbon groups, monovalent aromatic heterocyclic groups, An aralkyl group, an aryloxy group, or a disubstituted amino group having a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group as a substituent.
- monovalent aromatic hydrocarbon group and monovalent aromatic heterocyclic group that the above di-substituted amino group has as a substituent and other groups include B in the general formula (1) or Examples of R 1 to R 10 can be mentioned, and these groups are also bonded to each other via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom. (That is, a condensed ring) may be formed (for example, see the general formulas (2d) and (2e) described later).
- R 15 to R 18 or R 19 to R 22 are eliminated, and other groups of R 15 to R 18 or R 19 to R 22 Other groups (these other groups are the groups listed above) are bonded to each other through an optionally substituted methylene group, oxygen atom, sulfur atom or monoarylamino group (ie, a ring (ie, , A condensed ring) (see, for example, general formulas (2a) to (2c) described later).
- R 23 and R 24 in the general formula (2) are an alkyl group having 1 to 6 carbon atoms, a monovalent aromatic hydrocarbon group, or a monovalent aromatic heterocyclic group.
- Specific examples of these groups include those exemplified for B or R 1 to R 10 in the general formula (1), and these groups may also have a single bond or a substituent. They may be bonded to each other via a good methylene group, oxygen atom or sulfur atom to form a ring.
- a ring is preferably formed by R 15 to R 18 or R 19 to R 22 .
- N-aromatic substituted indenoindole compounds represented by the following general formulas (2a) to (2e) are examples when R 15 to R 18 form a ring.
- a 2 , Ar 1 , R 15 to R 24 have the same meanings as shown in the general formula (2), and X is a divalent linking group.
- a methylene group, oxygen atom, sulfur atom or monoarylamino group which is a group and may have a substituent.
- N-aromatic substituted indenoindole compounds represented by the above general formula (2) or general formulas (2a) to (2e)
- Examples thereof include compounds (2-1) to (2-15) having the structural formulas shown below.
- the N-aromatic substituted carbazole compound used for forming the light emitting layer 6 has a carbazole ring structure, and an aromatic group is introduced into a nitrogen atom in the carbazole ring. It is represented by Formula (3).
- a 3 bonded to the nitrogen atom is a divalent aromatic hydrocarbon group, divalent, like A 1 in the general formula (1) and A 2 in the general formula (2).
- the divalent aromatic hydrocarbon group and the divalent aromatic heterocyclic group include the same groups as those shown for A 1 in the general formula (1) and A 2 in the general formula (2). These groups may have the same substituents as those exemplified for A 1 , and the substituents may be a single bond, a substituted or unsubstituted methylene group, an oxygen atom or sulfur. They may be bonded to each other via an atom to form a ring.
- Ar 2 in the general formula (3) represents a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group.
- the monovalent aromatic hydrocarbon group and monovalent aromatic heterocyclic group the same groups as those exemplified for B in the general formula (1) can be exemplified, and B is exemplified. May have the same substituent as the group, and the substituents may be bonded to each other via a single bond, a substituted or unsubstituted methylene group, an oxygen atom or a sulfur atom to form a ring. Good.
- R 25 to R 32 in the general formula (3) are each a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, or a cycloalkyl having 5 to 10 carbon atoms.
- alkenyl groups having 2 to 6 carbon atoms alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, monovalent aromatic hydrocarbon groups, monovalent aromatic heterocyclic groups, An aralkyl group, an aryloxy group, or a disubstituted amino group having a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group as a substituent.
- monovalent aromatic hydrocarbon group and monovalent aromatic heterocyclic group that the above di-substituted amino group has as a substituent and other groups include B in the general formula (1) or Examples of R 1 to R 10 can be mentioned, and these groups are also bonded to each other via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom. (That is, a condensed ring) may be formed.
- R 25 to R 32 a part of the above R 25 to R 32 is eliminated, and other groups of R 25 to R 32 (particularly, groups adjacent to the eliminated groups) are present in the vacancies generated by the elimination. May be bonded via an optionally substituted methylene group, oxygen atom, sulfur atom or monoarylamino group to form a ring (that is, a condensed ring).
- a ring is formed by R 25 to R 32 . That is, a structure in which a ring is condensed to a benzene ring included in a carbazole ring is preferable.
- a vacant part of the R 25 ⁇ R 32 are eliminated, the other being adjacent
- These groups are preferably bonded via an optionally substituted methylene group, oxygen atom, sulfur atom or monoarylamino group to form a ring.
- a 3 , Ar 2 , R 25 to R 32 have the same meanings as shown in the general formula (3).
- X is a divalent linking group and represents a methylene group, oxygen atom, sulfur atom or monoarylamino group which may have a substituent.
- Formula (3a-1) is a position general formula (3) in R 25 has become vacant eliminated, have the two methyl groups as R 26 (substituents adjacent to the R 25 The indenyl group is bonded to the benzene ring via the linking group X to form a condensed ring.
- Formula (3a-2) is also the same as in the general formula (3a-1), a position general formula (3) in R 25 has become vacant eliminated, R 26 which are adjacent to the R 25 It has a structure in which (an indenyl group having two methyl groups as a substituent) is bonded to a benzene ring through a linking group X to form a condensed ring.
- Formula (3a-3) The general formula (3a-3) is perforated in a position general formula (3) in R 28 has become vacant eliminated, the two methyl groups as R 27 (substituents adjacent to the R 28 The indenyl group is bonded to the benzene ring via the linking group X to form a condensed ring.
- Formula (3a-4) is in a position general formula (3) in R 25 has become vacant eliminated, have the two phenyl groups as R 26 (substituents adjacent to the R 25 Indenyl group) has a structure in which a condensed ring is formed on the benzene ring via the linking group X.
- the general formula (3b-1) is a position general formula (3) in R 25 has become vacant desorbed, adjoining R 26 (N-phenyl-substituted indolyl group) is linked with R 25 It has a structure in which a condensed ring is formed by bonding through a group X.
- N-aromatic substituted carbazole compounds represented by the general formula (3) or general formulas (3a-1) to (3a-4) and (3b-1) described above are as follows:
- the compounds (3-1) to (3-23) having the structural formulas shown in FIGS. 23 to 27 can be mentioned.
- N-aromatic substituted indenoindole compounds and N-aromatic substituted carbazole compounds are excellent in properties as a host material for the light emitting layer, and these compounds are used alone or in combination of two or more.
- the hole transport / injection property of the indenoacridan derivative contained in the hole transport layer 5 described above is utilized, and high luminous efficiency can be achieved. It becomes.
- N-aromatic substituted carbazole compound those represented by the general formula (3) are suitable, but besides the carbazole compound represented by the general formula (3),
- carbazole compound represented by the general formula (3) for example, 4,4′-di (N-carbazolyl) biphenyl (CBP), carbazole derivatives such as TCTA and mCP can be used in combination.
- N-aromatic substituted indenoindole compounds and N-aromatic substituted carbazole compounds described above are not impaired.
- compounds having electron transport properties such as p-bis (triphenylsilyl) benzene (UGH2) and 2,2 ′, 2 ′′-(1,3,5-phenylene)- Tris (1-phenyl-1H-benzimidazole) (T BI) may be used in combination and the like.
- the light emitting material is not particularly limited, and a material known per se can be used. In the present invention, it is particularly preferable to use a phosphorescent light emitter.
- phosphorescent emitters include metal complexes such as iridium and platinum. Bis (3-methyl-2-phenylquinoline) iridium (III) acetylacetonate (Ir ( 3'-Mepq) 2 (acac)), Ir (piq) 3 , Btp 2 Ir (acac) and other red phosphorescent emitters, green phosphorescent emitters such as Ir (ppy) 3, and blue such as FIrpic and FIr6 There are phosphorescent emitters. In the present invention, among the above phosphorescent emitters, a red phosphorescent emitter is particularly preferable.
- a material that emits delayed fluorescence such as CDCB derivatives such as PIC-TRZ, CC2TA, PXZ-TRZ, and 4CzIPN can be used as a light-emitting material (see, for example, Appl. Phys. Let., 98, 0833302). ).
- the above-described light emitting material can be used as a dopant, and the above-described N-aromatic substituted indenoindole compound or N-aromatic substituted carbazole compound and other materials can be used as a host material.
- the phosphorescent light emitting material is doped into the host material, it is preferably doped by co-evaporation in the range of 1 to 30 weight percent with respect to the entire light emitting layer 6.
- the most suitable light emitting layer 6 is one using a red light emitting material (that is, a red phosphorescent light emitting material) as a dopant.
- the light emitting layer 6 is formed of the host material and the dopant as described above, quinacridone, coumarin, rubrene, perylene and derivatives thereof, benzopyran derivatives, rhodamine derivatives, aminostyryl derivatives, and the like can also be used as the dopant material.
- the electron transport layer 7 provided on the light emitting layer 6 described above can be formed by a known method such as an evaporation method using a known electron transporting material, a spin coating method, or an ink jet method. .
- the electron transport layer may be formed of a known electron transport material per se, and in addition to metal complexes of quinolinol derivatives such as Alq 3 , various metal complexes such as zinc, beryllium, and aluminum, triazole derivatives, triazine derivatives, oxalates. Diazole derivatives, thiadiazole derivatives, carbodiimide derivatives, quinoxaline derivatives, phenanthroline derivatives, silole derivatives, and the like can be used.
- an electron transport layer using an anthracene derivative represented by the following general formula (4) as an electron transport material.
- an anthracene derivative is excellent in electron injection and transport capability, and stability and durability of the thin film.
- the electron transport layer formed of such an anthracene derivative is used as the indenoacridan derivative represented by the general formula (1).
- a hole transport layer containing it is possible to efficiently inject holes and electrons into the light emitting layer 6, thereby ensuring an optimum carrier balance and greatly increasing the characteristics of the organic EL element. It becomes possible to improve.
- a 4 represents a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond
- E represents a monovalent aromatic heterocyclic group
- C represents a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group
- D is a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group or an alkyl group having 1 to 6 carbon atoms
- p and q are the number of 7 or 8 and q is the number of 1 or 2 on condition that the sum of both is 9.
- this anthracene derivative has a molecular structure in which an anthracene ring and a group E are linked by a divalent group or a single bond, and the group E is linked.
- One or two monovalent aromatic hydrocarbon groups or monovalent aromatic heterocyclic groups (group C) are bonded to the anthracene ring as a substituent.
- a 4 represents a single bond or a divalent group, and the divalent group is a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group. Specific examples thereof are as follows as in the case of A 1 in the general formula (1).
- a divalent aromatic hydrocarbon group is formed from an aromatic hydrocarbon ring having two bonds.
- aromatic hydrocarbon rings include benzene, biphenyl, terphenyl, and tetrakisphenyl. Styrene, naphthalene, anthracene, acenaphthalene, fluorene, phenanthrene, indane, pyrene, and triphenylene.
- the divalent aromatic heterocyclic group is formed from an aromatic heterocyclic ring having two bonds, and examples of such aromatic heterocyclic ring include pyridine, pyrimidine, triazine, pyrrole, furan.
- the above aromatic hydrocarbon ring and aromatic heterocyclic ring may also have a substituent that can be introduced as long as the excellent characteristics of the anthracene derivative are not impaired.
- a substituent includes a substituent that the monovalent aromatic hydrocarbon group or monovalent aromatic heterocyclic group represented by the groups R 1 to R 10 in the general formula (1) may have It is the same thing.
- particularly preferred divalent groups are those derived from a substituted or unsubstituted benzene ring, biphenyl ring, naphthalene ring and phenanthrene ring.
- the group E in the general formula (4) is a monovalent aromatic heterocyclic group, and examples of the heterocyclic group include triazinyl group, pyridyl group, pyrimidinyl group, furyl group, pyrrolyl group, thienyl group, and quinolyl group.
- Isoquinolyl group benzofuranyl group, benzothienyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzothiazolyl group, quinoxalinyl group, benzoimidazolyl group, pyrazolyl group, dibenzofuranyl group, dibenzothienyl group, naphthyridinyl group, phenanthroli Nyl group, acridinyl group, carbolinyl group and the like can be mentioned.
- the monovalent aromatic heterocyclic group in the above group E may also have a substituent that does not impair the excellent properties of the anthracene derivative.
- a substituent include a deuterium atom, cyano
- the following can be exemplified.
- Halogen atoms for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom, iodine atom;
- An alkyl group having 1 to 6 carbon atoms for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n A hexyl group;
- a cycloalkyl group having 5 to 10 carbon atoms for example, a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, a 2-adamantyl group;
- An alkyloxy group having 1 to 6 carbon atoms for example, a methyloxy group, an ethyloxy group, a propyloxy group;
- the monovalent aromatic heterocyclic group suitable as the group E includes a nitrogen-containing aromatic heterocyclic group such as a pyridyl group, a pyrimidinyl group, a pyrrolyl group, a quinolyl group, an isoquinolyl group, an indolyl group, A carbazolyl group, a benzoxazolyl group, a benzothiazolyl group, a quinoxalinyl group, a benzimidazolyl group, a pyrazolyl group, and a carbolinyl group are preferable. And a carbolinyl group is more preferable.
- C in the general formula (4) represents a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group.
- these groups include R 1 to R in the general formula (1).
- the same groups as those exemplified for 10 can be mentioned.
- these monovalent aromatic hydrocarbon groups and monovalent aromatic heterocyclic groups may also have a substituent, like the aromatic groups represented by R 1 to R 10 described above.
- the two groups C may be the same or different.
- D in the general formula (4) is a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, or an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 6 carbon atoms among them.
- groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl and the like. I can give you.
- alkyl groups may also have a substituent such as a deuterium atom, a fluorine atom, a chlorine atom, or a cyano group.
- a plurality of D may be the same as or different from each other. In the present invention, the most preferable D is a hydrogen atom.
- E is preferably a nitrogen-containing aromatic heterocyclic group and D is preferably a hydrogen atom.
- D is particularly preferably represented by the following general formula ( 4a), (4b) or (4c).
- a 4 is as shown in the formula (4), and is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond.
- the nitrogen-containing heterocyclic ring having a tricyclic structure to which A 4 is bonded corresponds to the group E in the general formula (4).
- X 1 , X 2 , X 3 and X 4 in the above formula (4a) are ring elements constituting a part of the nitrogen-containing heterocycle, and only one of these is a nitrogen atom. On the condition, a carbon atom or a nitrogen atom is shown, respectively.
- R 33 to R 39 and Ar 3 represent a group bonded to this nitrogen-containing heterocycle. That is, in the ring formed by X 1 , X 2 , X 3 and X 4 , R 33 to R 36 are shown as substituents.
- R 33 to R 36 (including a hydrogen atom) is not bonded to the atom.
- R 33 does not exist
- X 2 is a nitrogen atom
- R 34 does not exist
- X 3 is a nitrogen atom
- R 35 does not exist
- X 4 is a nitrogen atom, it means that R 36 is not present.
- R 33 to R 39 bonded to the nitrogen-containing heterocyclic ring are each a hydrogen atom, a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, A cycloalkyl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkyloxy group having 1 to 6 carbon atoms, a cycloalkyloxy group having 5 to 10 carbon atoms, a monovalent aromatic hydrocarbon group, 1 A valent aromatic heterocyclic group or an aryloxy group.
- Examples of the alkyl group having 1 to 6 carbon atoms include the same ones as exemplified for D in the general formula (4).
- Examples of the cycloalkyl group having 5 to 10 carbon atoms include a cyclopentyl group, a cyclohexyl group, a 1-adamantyl group, and a 2-adamantyl group.
- Examples of the alkenyl group having 2 to 6 carbon atoms include a vinyl group, an allyl group, an isopropenyl group, and a 2-butenyl group.
- Examples of the alkyloxy group having 1 to 6 carbon atoms include methyloxy group, ethyloxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, tert-butyloxy group, n-pentyloxy group, n-hexyloxy group Can give.
- Examples of the cycloalkyloxy group having 5 to 10 carbon atoms include a cyclopentyloxy group, a cyclohexyloxy group, a cycloheptyloxy group, a cyclooctyloxy group, a 1-adamantyloxy group, and a 2-adamantyloxy group.
- examples of the monovalent aromatic hydrocarbon group and the monovalent aromatic heterocyclic group include the same groups as those exemplified for the groups R 1 to R 10 in the general formula (1).
- Aryloxy groups include phenyloxy, biphenylyloxy, terphenylyloxy, naphthyloxy, anthracenyloxy, phenanthrenyloxy, fluorenyloxy, indenyloxy, pyrenyloxy Group, perylenyloxy group and the like.
- Each of the groups represented by R 33 to R 39 described above may have a substituent, and as such a substituent, the group R 1 in the general formula (1) may be used as long as the condition regarding the number of carbon atoms is satisfied. Examples thereof include the same groups as those exemplified as the substituents for R 10 . These substituents may be present independently, and these substituents are each bonded via a single bond, a methylene group which may have a substituent, an oxygen atom or a sulfur atom. May be bonded to each other to form a ring.
- Such Ar 3 to Ar 5 represent a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group, and these groups include those represented by R 1 to R 10 in the general formula (1). The same groups as those exemplified can be mentioned.
- these monovalent aromatic hydrocarbon groups and monovalent aromatic heterocyclic groups may also have a substituent, like the aromatic groups represented by R 1 to R 10 described above.
- anthracene derivative represented by the general formula (4a) described above include compounds (4a-1) to (4a-20) having the structural formulas shown in FIGS. .
- a 4 is as shown in the formula (4), and is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond.
- the nitrogen-containing heterocyclic ring to which A 4 is bonded corresponds to the group E in the general formula (4).
- Ar 6 to Ar 8 represent a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group. Specific examples of these groups include R 1 to R 1 in the general formula (1). it can be exemplified the same monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group represented by R 10. In addition, these monovalent aromatic hydrocarbon groups and monovalent aromatic heterocyclic groups may have a substituent as in the groups represented by R 1 to R 10 in the general formula (1).
- anthracene derivative represented by the general formula (4b) described above include compounds (4b-1) to (4b-16) having the structural formulas shown in FIGS. .
- a 4 is as shown in the formula (4), and is a divalent aromatic hydrocarbon group, a divalent aromatic heterocyclic group or a single bond.
- the nitrogen-containing heterocyclic ring to which A 4 is bonded corresponds to the group E in the general formula (4).
- Ar 9 to Ar 11 represent a monovalent aromatic hydrocarbon group or a monovalent aromatic heterocyclic group, and these groups are represented by the general formula (1) as in Ar 6 to Ar 8. Examples thereof include the same groups as those exemplified for R 1 to R 10 therein. In addition, these monovalent aromatic hydrocarbon groups and monovalent aromatic heterocyclic groups may have a substituent as in the case of Ar 6 to Ar 8 .
- R 40 bonded to the nitrogen-containing heterocycle is the same as R 33 to R 39 in the general formula (4a) described above, and is a hydrogen atom, deuterium atom, fluorine atom, chlorine atom, cyano.
- Each of the groups represented by R 40 may have the same substituent as the groups represented by R 1 to R 10 in the general formula (1), and when a plurality of such substituents are present, The groups preferably exist independently, but a plurality of substituents are bonded to each other through a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom. May be formed.
- anthracene derivative represented by the general formula (4c) described above include compounds (4c-1) to (4c-30) having the structural formulas shown in FIGS. .
- the electron transport layer is formed of the above-described anthracene derivative, and the various anthracene derivatives exemplified above can be synthesized by a method known per se (for example, International Publication No. 2011-2011). / 0593000, International Publication No. 2003/060956, Korean Published Patent No. 2013-060956).
- Each of these anthracene derivatives may form an electron transport layer alone, or a plurality of these anthracene derivatives may be mixed to form an electron transport layer.
- Electron injection layer 8 Electron injection layer; An electron injection layer 8 is appropriately provided between the cathode 9 and the electron transport layer 7.
- the electron injection layer 8 can be formed using an alkali metal salt such as lithium fluoride or cesium fluoride, an alkaline earth metal salt such as magnesium fluoride, or a metal oxide such as aluminum oxide.
- a metal having a low work function such as aluminum, or an alloy having a lower work function such as a magnesium silver alloy, a magnesium indium alloy, or an aluminum magnesium alloy is used as an electrode material. .
- the organic EL device of the present invention may have other layers as necessary.
- an electron blocking layer can be provided between the hole transport layer 5 and the light emitting layer 6, and a hole is formed between the light emitting layer 6 and the electron transport layer 7.
- a blocking layer can also be provided.
- Each layer provided as appropriate may be formed of a known material per se, and is formed by a known method such as a vapor deposition method, a spin coating method, or an ink jet method, depending on the type of the material used.
- Electron blocking layer Although not shown in FIG. 1, the electron blocking layer is provided between the hole transport layer 5 and the light emitting layer 6 to block the transmission of electrons from the light emitting layer 6 and increase the light emission efficiency. Formed.
- various compounds having an electron blocking property can be used, and the following carbazole derivatives are typical.
- a triphenylsilyl group represented by 9- [4- (carbazol-9-yl) phenyl] -9- [4- (triphenylsilyl) phenyl] -9H-fluorene is also included.
- a compound having a triarylamine skeleton in the molecule can also be used as a material for forming an electron blocking layer.
- Hole blocking layer Although the hole blocking layer is not shown in FIG. 1, it is appropriately provided between the electron transport layer 7 and the light emitting layer 6 and blocks the transmission of holes from the light emitting layer 6. Formed to enhance.
- the material for forming the hole blocking layer include phenanthroline derivatives such as bathocuproin (BCP) and quinolinol derivatives such as aluminum (III) bis (2-methyl-8-quinolinato) -4-phenylphenolate (BAlq).
- BCP bathocuproin
- BAlq aluminum
- metal complexes these are formed of various rare earth complexes, triazole derivatives, triazine derivatives, oxadiazole derivatives, and the like compounds having a hole blocking action.
- the organic EL device of the present invention may have a single layer structure in which each layer constituting the organic EL element is formed of the various materials described above, or each layer may be combined with various materials as appropriate to form a multilayer structure.
- the hole transport layer 5 having the two-layer structure will be described.
- the indenoacridan derivative represented by the general formula (1) is used for forming the hole transport layer 5, and preferably includes such an indenoacridan derivative.
- the hole transport layer 5 has a two-layer structure. That is, as shown in FIG. 1, the hole transport layer 5 includes a first hole transport layer 5a located on the anode 2 side and a second hole transport layer located on the light emitting layer 6 side. It is preferable to have a two-layer structure divided into 5b and to contain the indenoacridan derivative represented by the general formula (1) in the second hole transport layer 5b. In this case, for the formation of the first hole transport layer 5a, a hole transport material different from the indenoacridan derivative used for the second hole transport layer 5b is used.
- the second hole transport layer 5b on the light emitting layer 6 side exhibits extremely high electron blocking properties as well as hole transport properties. This is because the indenoacridan derivative represented by the general formula (1) described above exhibits high electron blocking properties in addition to hole transport properties. Therefore, in particular, as shown in FIG. 1, the second hole transport layer 5b is adjacent to the light emitting layer 6, so that the carrier balance in the light emitting layer 6 can be kept higher, and the characteristics of the organic EL element are improved. Is extremely advantageous.
- the second hole transport layer 5b is formed of an indenoacridan derivative represented by the general formula (1), but the first hole transport layer 5a is a second hole transport layer.
- the hole transport material is different from the indenoacridan derivative used for forming the transport layer 5b.
- the hole transport material may be an indenoacridan derivative represented by the general formula (1) as long as it is different from that used for forming the second hole transport layer 5b. In general, it is desirable to use a triarylamine derivative.
- the triarylamine derivative is inferior to the above-mentioned indenoacridan derivative in terms of electron blocking properties, but exhibits the same or better performance as the indenoacridan derivative in terms of hole transportability, This is because the first hole transport layer 5a that is not in direct contact with the light emitting layer 6 is not required to have an electron blocking property.
- Such a triarylamine derivative has a molecular structure in which two triarylamine skeletons are bonded by a single bond or a divalent hydrocarbon group, and 2 to 6 triarylamine skeletons are included in the molecule.
- the triarylamine represented by the following general formula (5) or (6) from the viewpoint of excellent thin film stability and heat resistance and easy synthesis. It is preferable to form the first hole transport layer 5a using a derivative, and such a triarylamine derivative can be used singly or in combination of two or more. .
- the triarylamine derivative represented by the general formula (5) has two triarylamine skeletons.
- r 41 to r 46 are each an integer indicating the number of substituents R 41 to R 46 bonded to the aromatic ring, and r 41 , r 42 , r 45 and r 46 Are each an integer from 0 to 5, and r 43 and r 44 are each an integer from 0 to 4.
- the substituents R 41 to R 46 bonded to the aromatic ring are each a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, 10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, monovalent aromatic hydrocarbon groups, monovalent aromatics A heterocyclic group, an aralkyl group or an aryloxy group;
- the plurality of substituents are preferably present independently of each other, but may have a single bond or a substituent. It may be bonded to each other via a good methylene group, oxygen atom or sulfur atom to form a ring.
- a plurality of substituents may be bonded to form a
- alkyl group, cycloalkyl group, alkenyl group, alkyloxy group, cycloalkyloxy group, aralkyl group or aryloxy group represented by the substituents R 41 to R 46 described above include a group R of the general formula (4a).
- the same groups as those exemplified for 33 to R 39 can be mentioned, and specific examples of the monovalent aromatic hydrocarbon group or monovalent aromatic heterocyclic group include the group R 1 of the general formula (1).
- the same groups as those exemplified for R 10 can be mentioned.
- the groups R 41 to R 46 may further have a substituent, like the groups represented by R 33 to R 39 or R 1 to R 10 , and such substituents exist independently of each other. However, they may be bonded to each other through a single bond, an optionally substituted methylene group, an oxygen atom or a sulfur atom to form a ring.
- L 1 is a bridging group that bonds two arylamine skeletons, and is a single bond or the following structural formulas (B), (C), (D), (E), A divalent group represented by (F) or (G) is shown.
- n1 is an integer of 1 to 4.
- triarylamine derivative represented by the general formula (5) described above include compounds (5-1) to (5-23) having the structural formulas shown in FIGS. Can do.
- the compounds (5′-1) and (5′-2) having the structural formula shown in FIG. It can be suitably used for forming the transport layer 5a.
- these compounds of the three phenyl groups bonded to the nitrogen atom of the amino group, two phenyl groups are bonded to each other through a single bond, thereby forming a carbazole ring.
- Such a compound also has a molecular structure in which two triarylamine skeletons are substantially bonded by a single bond or a divalent hydrocarbon group, and has two triarylamine skeletons in the molecule. This is because it has substantially the same molecular structure as the triarylamine derivative of the general formula (5).
- the triarylamine derivative represented by the general formula (6) has four triarylamine skeletons.
- r 47 to r 58 are each an integer indicating the number of substituents R 47 to R 58 bonded to the aromatic ring, and r 47 , r 48 , r 51 , r 54 , r 57 and r 58 are each an integer of 0 to 5. Also, r 49 , r 50 , r 52 , r 53 , r 55 and r 56 are each an integer from 0 to 4.
- the substituents R 47 to R 58 bonded to the aromatic ring are each a deuterium atom, a fluorine atom, a chlorine atom, a cyano group, a nitro group, an alkyl group having 1 to 6 carbon atoms, 10 cycloalkyl groups, alkenyl groups having 2 to 6 carbon atoms, alkyloxy groups having 1 to 6 carbon atoms, cycloalkyloxy groups having 5 to 10 carbon atoms, monovalent aromatic hydrocarbon groups, monovalent aromatics A heterocyclic group, an aralkyl group or an aryloxy group;
- the plurality of substituents are preferably present independently of each other, but may have a single bond or a substituent. It may be bonded to each other via a good methylene group, oxygen atom or sulfur atom to form a ring.
- a plurality of substituents may be bonded to form a
- R 47 to R 58 Specific examples of the groups represented by the substituents R 47 to R 58 described above include the same groups as the groups R 41 to R 46 in the general formula (5), and these groups R 41 to Similarly to R 46, it may further have a substituent, and such substituents preferably exist independently of each other, but may be a single bond or a methylene group which may have a substituent. May be bonded to each other via an oxygen atom or a sulfur atom to form a ring.
- L 2 to L 4 are bridging groups for bonding two arylamine skeletons, a single bond, a divalent group represented by the following structural formula (B ′), or a general group This is the same group as the divalent group represented by the formula (C), (D), (E), (F) or (G) in the formula (5).
- n2 is an integer of 1 to 3.
- triarylamine derivative represented by the general formula (6) described above include compounds (6-1) to (6-17) having the structural formulas shown in FIGS. Can do.
- the various triarylamine derivatives exemplified above can be synthesized by methods known per se (for example, JP-A-7-126615, JP-A-08-048656, JP-A-2005-108804). reference).
- the total thickness (t1 + t2) with the thickness t2 is preferably in the range of 20 to 300 nm, more preferably in the range of 50 to 200 nm, and particularly in the range of 50 to 150 nm.
- the organic EL device of the present invention having the above-described structure, materials for organic EL devices having excellent hole and electron injection / transport performance, thin film stability and durability are combined in consideration of carrier balance. Therefore, compared with the conventional organic EL element, the hole transport efficiency from the hole transport layer to the light emitting layer is improved, and the electron transport efficiency from the electron transport layer to the light emitting layer is also improved. Furthermore, when the hole transport layer has a two-layer structure of the first hole transport layer and the second hole transport layer, the carrier balance is further improved, the luminous efficiency is further improved, and the driving voltage is further reduced. As a result, the durability of the organic EL element is further improved. As described above, according to the present invention, an organic EL element with high efficiency, low drive voltage, and long life can be realized.
- Example 1 ⁇ Synthesis of Indenoacridan Compound 1-1> Step 1; Methyl 2-aminobenzoate 35.4g 2-Iodo-9,9-dimethyl-9H-fluorene 50.0 g Tert-butoxy sodium 22.51 g 500 ml of xylene The above components were added to a nitrogen-substituted reaction vessel, and nitrogen gas was passed through for 1 hour. Then Tris (dibenzylideneacetone) dipalladium (0) 2.9 g Tri-tert-butylphosphine in toluene solution (50%, w / v) 3.8 g The mixture was heated and stirred at 115 ° C. for 5 hours.
- Step 2 As described above, a large amount of a yellow powder of methyl 2- ⁇ (9,9-dimethyl-9H-fluoren-2-yl) amino ⁇ benzoate (hereinafter simply referred to as methyl benzoate derivative) was synthesized, The following synthesis was performed. In a reaction vessel purged with nitrogen, 31.0 g of methyl benzoate derivative obtained above THF 310ml Then, 108 ml of methylmagnesium chloride in THF (3 mol / L) was added dropwise. After stirring at room temperature for 1 hour, 300 ml of a 20% aqueous ammonium chloride solution was added, and an organic layer was collected by performing an extraction operation using toluene.
- methyl benzoate derivative methyl 2- ⁇ (9,9-dimethyl-9H-fluoren-2-yl) amino ⁇ benzoate
- Step 3 In a reaction vessel purged with nitrogen, 31.0 g of pale yellow oil obtained above Phosphoric acid 62ml And stirred at room temperature for 2 hours. Subsequently, 300 ml of toluene and 300 ml of water were added and stirred, and the resulting precipitate was collected by filtration, 7,7,13,13-tetramethyl-7,13-dihydro-5H- 26.2 g (89% yield) of indeno [1,2-b] acridine light yellow powder Got.
- Step 4 In a reaction vessel purged with nitrogen, Light yellow powder of acridine obtained in step 3 above 8.0 g 2- (4-Bromophenyl) -9,9-dimethylfluorene 9.4g 4.6g sodium tert-butoxy Toluene 100ml And nitrogen gas was bubbled through for 1 hour. Then Palladium (II) acetate 0.2g Tri-tert-butylphosphine in toluene solution (50%, w / v) 0.2 g The mixture was heated and stirred at 100 ° C. for 15 hours. After cooling to room temperature and adding 100 ml of water, an organic layer was collected by performing an extraction operation using toluene.
- Example 2> ⁇ Synthesis of Indenoacridan Compound 1-3> The following synthesis was performed using 7,7,13,13-tetramethyl-7,13-dihydro-5H-indeno [1,2-b] acridine obtained in Step 3 of Example 1. In a reaction vessel purged with nitrogen, 9.0g of the above acridine 2- (3-Bromophenyl) -9,9-dimethylfluorene 10.4 g tert-Butoxy sodium 5.3g Toluene 100ml And nitrogen gas was bubbled through for 1 hour.
- Example 3> ⁇ Synthesis of Indenoacridan Compound 1-4> The following synthesis was performed using 7,7,13,13-tetramethyl-7,13-dihydro-5H-indeno [1,2-b] acridine obtained in Step 3 of Example 1.
- a reaction vessel purged with nitrogen, 8.0g of the above acridine 4.6g sodium tert-butoxy Toluene 100ml And nitrogen gas was bubbled through for 1 hour.
- the mixture was heated and stirred at 100 ° C. for 14 hours.
- Example 4 ⁇ Synthesis of Indenoacridan Compound 1-5> The following synthesis was performed using 7,7,13,13-tetramethyl-7,13-dihydro-5H-indeno [1,2-b] acridine obtained in Step 3 of Example 1. In a reaction vessel purged with nitrogen, 8.0g of the above acridine 2-Bromo-7- (9,9-dimethylfluoren-2-yl)- 9,9-dimethylfluorene 11.5g tert-Butoxy sodium 3.5g Toluene 100ml And nitrogen gas was bubbled through for 1 hour.
- Example 5 ⁇ Synthesis of Indenoacridan Compound 1-6> The following synthesis was performed using 7,7,13,13-tetramethyl-7,13-dihydro-5H-indeno [1,2-b] acridine obtained in Step 3 of Example 1. In a reaction vessel purged with nitrogen, 5.3g of the above acridine 2- (4-Bromophenyl-1-yl) -7-phenyl- 9,9-dimethylfluorene 7.0 g tert-Butoxy sodium 3.1 g Toluene 100ml And nitrogen gas was bubbled through for 1 hour.
- Example 6> ⁇ Synthesis of Indenoacridan Compound 1-7> The following synthesis was performed using 7,7,13,13-tetramethyl-7,13-dihydro-5H-indeno [1,2-b] acridine obtained in Step 3 of Example 1. In a reaction vessel purged with nitrogen, 7.5g of the above acridine 2-Bromo-7- (naphthyl-1-yl) -9,9- Dimethylfluorene 10.1 g tert-Butoxy sodium 4.4g Toluene 100ml And nitrogen gas was bubbled through for 1 hour.
- Example 7> ⁇ Synthesis of Indenoacridan Compound 1-8> The following synthesis was performed using 7,7,13,13-tetramethyl-7,13-dihydro-5H-indeno [1,2-b] acridine obtained in Step 3 of Example 1. In a reaction vessel purged with nitrogen, 9.0g of the above acridine 9.4 g of 1-bromo-4-phenylnaphthalene tert-Butoxy sodium 5.2g Toluene 100ml And nitrogen gas was bubbled through for 1 hour.
- Example 8> ⁇ Synthesis of Indenoacridan Compound 1-9> The following synthesis was performed using 7,7,13,13-tetramethyl-7,13-dihydro-5H-indeno [1,2-b] acridine obtained in Step 3 of Example 1. In a reaction vessel purged with nitrogen, 9.5g of the above acridine 1-bromo-4,1 ′: 2 ′, 1 ′′ -terphenyl 9.9 g tert-Butoxy sodium 5.6g Toluene 100ml And nitrogen gas was bubbled through for 1 hour.
- Example 9 With respect to the indenoacridan compounds obtained in Examples 1 to 8 above, the glass transition point was determined by a high-sensitivity differential scanning calorimeter (manufactured by Bruker AXS, DSC3100SA). The results are as follows. Glass transition point Example 1 (Compound 1-1) 126 ° C. Example 2 (Compound 1-3) 116 ° C. Example 3 (Compound 1-4) 127 ° C Example 4 (Compound 1-5) 154 ° C. Example 5 (Compound 1-6) 141 ° C. Example 6 (Compound 1-7) 143 ° C Example 7 (Compound 1-8) 115 ° C. Example 8 (Compound 1-9) 167 ° C.
- the indenoacridan derivative represented by the general formula (1) has a glass transition point of 100 ° C. or higher, particularly 110 ° C. or higher, and the thin film state is stable.
- Example 10 Using the indenoacridan compounds obtained in Examples 1 to 8 above, a deposited film with a film thickness of 100 nm was prepared on an ITO substrate, and an ionization potential measuring device (PYS-202, manufactured by Sumitomo Heavy Industries, Ltd.) was prepared. Type) to measure the work function. The results are as follows.
- the indenoacridan derivative represented by the general formula (1) has a suitable energy level as compared with the work function 5.54 eV of a general hole transport material such as NPD or TPD. It can be seen that it has a good hole transport capability.
- Example 12 ⁇ Synthesis of N-Aromatic Substituted Indenoindole Compound 2-2> The reaction was carried out under the same conditions as in Example 11 except that 2-chloro-4-phenylbenzo [h] quinazoline was used instead of 2-chloro-4-phenylquinazoline. The 7,7-dimethyl-12- (4-phenylbenzo [h] quinazolin-2-yl) -7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] Indole (Compound 2-2) 3.2 g (yield 38%) was obtained.
- Example 13> Synthesis of N-Aromatic Substituted Indenoindole Compound 2-3>
- 2-chloro-4,7-diphenylquinazoline was used instead of 2-chloro-4-phenylquinazoline, it was represented by the following structural formula. 12- (4,7-Diphenylquinazolin-2-yl) -7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole ( Compound 2-3) 3.3 g (yield 38%) of was obtained.
- Example 14> Synthesis of N-Aromatic Substituted Indenoindole Compound 2-4>
- 2-chloro-4,6-diphenylquinazoline was used instead of 2-chloro-4-phenylquinazoline, it was represented by the following structural formula. 12- (4,6-Diphenylquinazolin-2-yl) -7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole ( Compound 2-4) 3.3 g (yield 38%) of was obtained.
- Example 15 ⁇ Synthesis of N-Aromatic Substituted Indenoindole Compound 2-5> Instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole, 13,13-dimethyl-8,13-dihydrobenzo
- [4,5] thieno [3,2-e] indeno [1,2-b] indole was used, it was represented by the following structural formula.
- Example 16> Synthesis of N-Aromatic Substituted Indenoindole Compound 2-6>
- 2-chloro-4,6-diphenylquinazoline was used instead of 2-chloro-4-phenylquinazoline, it was represented by the following structural formula. 8- (4,6-diphenylquinazolin-2-yl) -13,13-dimethyl-8,13-dihydrobenzo [4,5] thieno [3,2-e] indeno [1,2-b] indole ( Compound 2-6) 3.3 g (yield 38%) of was obtained.
- Example 17 ⁇ Synthesis of N-Aromatic Substituted Indenoindole Compound 2-7> 7,7,13,13-tetramethyl-7 instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole , 13-dihydro-5H-diindeno [1,2-b: 1 ′, 2′-f] indole was used, and the reaction was carried out under the same conditions as in Example 11 to obtain the following structural formula.
- Example 18 ⁇ Synthesis of N-Aromatic Substituted Indenoindole Compound 2-8>
- 2- (3-bromophenyl) -4-phenylquinazoline was used in place of 2-chloro-4-phenylquinazoline, it was represented by the following structural formula.
- Example 19 ⁇ Synthesis of N-Aromatic Substituted Indenoindole Compound 2-9> Instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole, 7,7-dimethyl-7,12-dihydrobenzo Except that furo [3,2-g] indeno [1,2-b] indole was used, the reaction was carried out under the same conditions as in Example 12 and represented by the following structural formula.
- Example 21> Synthesis of N-Aromatic Substituted Indenoindole Compound 2-11> Instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole, 13,13-dimethyl-8,13-dihydrobenzo Except for using furo [3,2-e] indeno [1,2-b] indole, the reaction is carried out under the same conditions as in Example 11 and is represented by the following structural formula.
- Example 22> Synthesis of N-Aromatic Substituted Indenoindole Compound 2-12>
- 2-chloro-4,6-diphenylquinazoline was used instead of 2-chloro-4-phenylquinazoline, it was represented by the following structural formula. 13,13-Dimethyl-8- (4,6-diphenylquinazolin-2-yl) -8,13-dihydrobenzofuro [3,2-e] indeno [1,2-b] indole (Compound 2-12) 3.2 g (yield 38%) was obtained.
- Example 23 ⁇ Synthesis of N-Aromatic Substituted Carbazole Compound 3-1> Instead of 13,13-dimethyl-8,13-dihydrobenzofuro [3,2-e] indeno [1,2-b] indole, 7,7-dimethyl-7,13-dihydroindeno [2 ′, 1 ′: 4,5] Except for using thieno [2,3-a] carbazole, the reaction was carried out under the same conditions as in Example 22 to obtain the following structural formula.
- Example 29> Synthesis of N-Aromatic Substituted Carbazole Compound 3-7> Instead of 7,7-dimethyl-7,13-dihydroindeno [2 ′, 1 ′: 4,5] thieno [2,3-a] carbazole, 8,8-dimethyl-5,8-dihydroindeno [2 ′, 1 ′: 4,5] The reaction is carried out under the same conditions as in Example 28 except that thieno [3,2-c] carbazole is used.
- Example 30> Synthesis of N-Aromatic Substituted Carbazole Compound 3-8> Instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole, 7,7-dimethyl-7,13-dihydroindene Except for using [2 ′, 1 ′: 4,5] furo [2,3-a] carbazole, the reaction is carried out under the same conditions as in Example 11 and is represented by the following structural formula.
- Example 33> Synthesis of N-Aromatic Substituted Carbazole Compound 3-11> Instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole, 7,7-diphenyl-7,13-dihydroindene The reaction is carried out under the same conditions as in Example 11 except that [2 ′, 1 ′: 4,5] thieno [2,3-a] carbazole is used.
- Example 34> Synthesis of N-Aromatic Substituted Carbazole Compound 3-12> Instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole, 9,9-dimethyl-9,15-dihydrobenzo [A] Except that indeno [2 ′, 1 ′: 4,5] thieno [3,2-i] carbazole was used, the reaction was carried out under the same conditions as in Example 11 and represented by the following structural formula.
- Example 35> ⁇ Synthesis of N-Aromatic Substituted Carbazole Compound 3-13> Instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole, 7-phenyl-7,13-dihydroindolo [ 2 ′, 3 ′: 4,5] Except for the use of thieno [2,3-a] carbazole, the reaction is carried out under the same conditions as in Example 11 and is represented by the following structural formula.
- Example 36> Synthesis of N-Aromatic Substituted Carbazole Compound 3-14> Instead of 7,7-dimethyl-7,12-dihydrobenzo [4,5] thieno [3,2-g] indeno [1,2-b] indole, 12,12-dimethyl-1,12-dihydroindene The reaction is carried out under the same conditions as in Example 11 except that [1 ′, 2 ′: 4,5] thieno [2,3-a] carbazole is used.
- Example 38 The organic EL element having the element configuration shown in FIG. 1 was produced by vapor deposition according to the following procedure.
- a glass substrate with ITO in which an ITO electrode (transparent anode 2) having a film thickness of 150 nm was formed on a glass substrate (transparent substrate 1) was prepared.
- the glass substrate 1 was ultrasonically washed in isopropyl alcohol for 20 minutes, and then dried on a hot plate heated to 200 ° C. for 10 minutes. Then, after performing UV ozone treatment for 15 minutes, this glass substrate with ITO was attached in a vacuum evaporation machine, and pressure was reduced to 0.001 Pa or less.
- a compound (HIM-1) having the following structural formula was formed to a thickness of 5 nm as a hole injection layer 3 so as to cover the transparent anode 2.
- a first hole transport layer 5a having a film thickness of 60 nm is formed on the hole injection layer 3 using an arylamine compound (5-1) having two triphenylamine structures in the molecule of the following structural formula. did. (5-1)
- the second hole transport layer 5b having a thickness of 5 nm was formed. Formed.
- the compound EMD-1 having the following structural formula and the N-aromatic substituted indenoindole compound (2-2) synthesized in Example 12 were deposited at a deposition rate ratio of EMD.
- ⁇ 1: Dual vapor deposition was performed at a vapor deposition rate of compound (2-2) 5: 95 to form a light-emitting layer 6 having a thickness of 20 nm.
- an anthracene derivative (4a-1) having the following structural formula and ETM-1 having the following structural formula are formed, and the deposition rate ratio is anthracene derivative (4a-1):
- ETM-1 50 Binary vapor deposition was performed at a vapor deposition rate of 50 to form an electron transport layer 7 having a thickness of 30 nm.
- an electron injection layer 8 having a thickness of 1 nm was formed using lithium fluoride. Finally, aluminum was deposited to 100 nm to form the cathode 9.
- the characteristic measurement was performed at normal temperature in the atmosphere.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- the device life is 6790 cd / m 2 (97% when the initial luminance is 100%). Equivalent: 97% attenuation).
- Example 39 An organic EL device was produced in the same manner as in Example 38 except that the 5 nm-thick second hole transport layer 5b was formed using the indenoacridan compound (1-3) synthesized in Example 2. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 40 An organic EL device was produced in the same manner as in Example 38 except that the 5 nm-thick second hole transport layer 5b was formed using the indenoacridan compound (1-4) synthesized in Example 3. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 41 An organic EL device was produced in the same manner as in Example 38, except that the 5 nm-thick second hole transport layer 5b was formed using the indenoacridan compound (1-5) synthesized in Example 4. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 42 An organic EL device was produced in the same manner as in Example 38 except that the second hole transport layer 5b having a thickness of 5 nm was formed using the indenoacridan compound (1-6) synthesized in Example 5. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 43 An organic EL device was produced in the same manner as in Example 38, except that the 5 nm-thick second hole transport layer 5b was formed using the indenoacridan compound (1-7) synthesized in Example 6. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- An organic EL device was produced under the same conditions as in Example 38, except that binary vapor deposition was performed to form the light-emitting layer 6 having a thickness of 20 nm.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 45 An organic EL device was produced under the same conditions as in Example 44, except that the second hole transport layer 5b having a thickness of 5 nm was formed using the indenoacridan compound (1-3) synthesized in Example 2. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 46 An organic EL device was produced under the same conditions as in Example 44, except that the second hole transport layer 5b having a thickness of 5 nm was formed using the indenoacridan compound (1-4) synthesized in Example 3. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 47 An organic EL device was produced under the same conditions as in Example 44 except that the indenoacridan compound (1-5) synthesized in Example 4 was used to form the second hole transport layer 5b having a thickness of 5 nm. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 48 An organic EL device was produced under the same conditions as in Example 44, except that the indenoacridan compound (1-6) synthesized in Example 5 was used to form the second hole transport layer 5b having a thickness of 5 nm. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- Example 49 An organic EL device was produced under the same conditions as in Example 44, except that the second hole transport layer 5b having a thickness of 5 nm was formed using the indenoacridan compound (1-7) synthesized in Example 6. did.
- the layer structure of this organic EL element is shown in Table 1, and the measurement results of the light emission characteristics when a DC voltage is applied to this organic EL element are shown in Table 3.
- An organic EL device was produced under the same conditions as in Example 38, except that binary vapor deposition was performed to form the light-emitting layer 6 having a thickness of 20 nm. (3-16)
- the layer configuration of this organic EL element is shown in Table 2, and the measurement results of the light emission characteristics when a DC voltage is applied to the organic EL element are shown in Table 4.
- Example 51 An organic EL device was produced under the same conditions as in Example 50 except that the indenoacridan compound (1-3) synthesized in Example 2 was used to form the second hole transport layer 5b having a thickness of 5 nm. did.
- the layer configuration of this organic EL element is shown in Table 2, and the measurement results of the light emission characteristics when a DC voltage is applied to the organic EL element are shown in Table 4.
- Example 52 An organic EL device was produced under the same conditions as in Example 50 except that the indenoacridan compound (1-4) synthesized in Example 3 was used to form the second hole transport layer 5b having a thickness of 5 nm. did.
- the layer configuration of this organic EL element is shown in Table 2, and the measurement results of the light emission characteristics when a DC voltage is applied to the organic EL element are shown in Table 4.
- Example 53 An organic EL device was produced under the same conditions as in Example 50 except that the indenoacridan compound (1-5) synthesized in Example 4 was used to form the second hole transport layer 5b having a thickness of 5 nm. did.
- the layer configuration of this organic EL element is shown in Table 2, and the measurement results of the light emission characteristics when a DC voltage is applied to the organic EL element are shown in Table 4.
- Example 54 An organic EL device was produced under the same conditions as in Example 50 except that the indenoacridan compound (1-6) synthesized in Example 5 was used to form the second hole transport layer 5b having a thickness of 5 nm. did.
- the layer configuration of this organic EL element is shown in Table 2, and the measurement results of the light emission characteristics when a DC voltage is applied to the organic EL element are shown in Table 4.
- Example 55 An organic EL device was produced under the same conditions as in Example 50 except that the indenoacridan compound (1-7) synthesized in Example 6 was used to form the second hole transport layer 5b having a thickness of 5 nm. did.
- the layer configuration of this organic EL element is shown in Table 2, and the measurement results of the light emission characteristics when a DC voltage is applied to the organic EL element are shown in Table 4.
- a first hole transport layer 5a having a film thickness of 60 nm is formed using an arylamine compound (5′-2) represented by the following structural formula, and a film is formed using the arylamine compound (5′-2).
- An organic EL device was produced in the same manner as in Example 38 except that the second hole transport layer 5b having a thickness of 5 nm was formed.
- the layer configuration of this organic EL element is shown in Table 2, and the measurement results of the light emission characteristics when a DC voltage is applied to the organic EL element are shown in Table 4.
- the organic EL elements of Examples 38 to 43 were highly efficient at 26.04 to 27.10 cd / A, compared to 23.90 cd / A of the organic EL element of Comparative Example 1. Further, in terms of power efficiency, the organic EL elements of Examples 38 to 43 were all highly efficient, 18.61 to 20.79 lm / W, compared to 18.40 lm / W of the organic EL element of Comparative Example 1. .
- the element life (97% attenuation) it can be seen that the organic EL elements of Examples 38 to 43 have a long life of 117 to 197 hours compared to 49 hours of the organic EL element of Comparative Example 1.
- the organic EL element of the present invention combines the material of the hole transport layer and the material of the light emitting layer so that the carrier balance inside the organic EL element is improved and further the carrier balance matches the characteristics of the light emitting material, Compared with a conventional organic EL element, an organic EL element with high luminous efficiency and long life can be realized.
- the organic EL device of the present invention exhibits high luminous efficiency and excellent durability, and is expected to be used for home appliances and lighting applications, for example.
- Transparent substrate 2 Transparent anode 3: Hole injection layer 5: Hole transport layer 5a: First hole transport layer 5b: Second hole transport layer 6: Light emitting layer 7: Electron transport layer 8: Electron injection layer 9: Cathode
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electroluminescent Light Sources (AREA)
- Other In-Based Heterocyclic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
さらに、熱活性化遅延蛍光(TADF)による発光を利用する素子も開発されている。例えば、2011年に九州大学の安達らは、熱活性化遅延蛍光材料を用いた素子によって5.3%の外部量子効率を実現させている。
また、特許文献1,2に記載の芳香族アミン誘導体の中には、正孔の移動度が10-3cm2/Vs以上と優れた移動度を有する化合物もあるが、電子阻止性が不十分であるため、電子の一部が発光層を通り抜けてしまい、発光効率の向上が期待できないなど、更なる高効率化のため、より電子阻止性が高く、薄膜がより安定で耐熱性の高い材料が求められていた。
さらに、耐久性の高い芳香族アミン誘導体も報告されているが(例えば、特許文献3参照)、電子写真感光体に用いられる電荷輸送材料として用いたもので、有機EL素子として用いた例はなかった。
式中、
A1は、2価の芳香族炭化水素基、2価の芳香族複素環基、または単結合を示し、
Bは、1価の芳香族炭化水素基;1価の芳香族複素環基;または置換基として、1価の芳香族炭化水素基、1価の芳香族複素環基もしくは置換基を有していてもよいビニル基を有するジ置換アミノ基;を示し、
ここで、Bがジ置換アミノ基である場合、A1は単結合でないものとし、A1が単結合でない場合には、A1とBとは、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよく、
R1~R10は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基またはアリールオキシ基であって、これらの基は、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよく、
R11~R14は、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基またはアリールオキシ基であって、R11とR12、或いはR13とR14とは、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
式中、
A2は、2価の芳香族炭化水素基、2価の芳香族複素環基、または単結合を示し、
Ar1は、1価の芳香族炭化水素基または1価の芳香族複素環基を示し、
R15~R22は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基、アリールオキシ基、または、置換基として1価の芳香族炭化水素基もしくは1価の芳香族複素環基を有するジ置換アミノ基であって、これらの基は、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよいし、さらには、R15~R18の一部あるいはR19~R22の一部が脱離しており、この脱離により生じた空位に、R15~R18の他の基あるいはR19~R22の他の基が、置換基を有していてもよいメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成していてもよく、
R23及びR24は、炭素数1ないし6のアルキル基、1価の芳香族炭化水素基、1価の芳香族複素環基またはアラルキル基であって、これらの基は、単結合、置換基を有していてもよいメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成していてもよい。
式中、
A3は、2価の芳香族炭化水素基、2価の芳香族複素環基、または単結合を示し、
Ar2は、1価の芳香族炭化水素基または1価の芳香族複素環基を示し、
R25~R32は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基、アリールオキシ基、または、置換基として1価の芳香族炭化水素基もしくは1価の芳香族複素環基を有するジ置換アミノ基であって、これらの基は、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよいし、さらには、R25~R28の一部あるいはR29~R32の一部が脱離し、この脱離により生じた空位に、R25~R28の他の基あるいはR29~R32の他の基が、置換基を有していてもよいメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成していてもよい。
式中、
A4は、2価の芳香族炭化水素基、2価の芳香族複素環基または単結合を示し、
Eは、1価の芳香族複素環基を示し、
Cは、1価の芳香族炭化水素基または1価の芳香族複素環基を示し、
Dは、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基または炭素数1ないし6のアルキル基であり、
p及びqは、両者の合計が9であることを条件として、pが7または8の整数であり、qが1または2の整数である。
式中、
A4は、前記式(4)に示すとおりであり、
Ar3、Ar4及びAr5は、それぞれ、1価の芳香族炭化水素基または1価の芳香族複素環基であり、
R33~R39は、それぞれ、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基またはアリールオキシ基であって、これらの基は、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよく、
X1、X2、X3及びX4は、これらのいずれか1つのみが窒素原子であることを条件として、それぞれ、炭素原子または窒素原子を表し、該窒素原子には、水素原子を含めてR33~R36の何れも結合していないものとする。
A4は、前記式(4)に示すとおりであり、
Ar9、Ar10及びAr11は、それぞれ、1価の芳香族炭化水素基または1価の芳香族複素環基であり、
R40は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基またはアリールオキシ基である。
(1)前記正孔輸送層が、第一正孔輸送層および第二正孔輸送層の2層構造を有しており、該第二正孔輸送層が前記発光層側に位置しており且つ一般式(1)で表されるインデノアクリダン誘導体を含有していること、
(2)前記発光層が、さらに、燐光性の発光材料を含有していること、
(3)前記燐光性の発光材料がイリジウムまたは白金を含む金属錯体であること、
(4)前記燐光性の発光材料が赤色発光性ドーパントであること、
がより好ましい。
(1)正孔の注入・輸送特性が良い、
(2)電子阻止能力に優れている、
(3)薄膜状態が安定である、
(4)耐熱性に優れている、
という特性を有している。しかも、本発明の有機EL素子は、このようなインデノアクリダン誘導体が正孔輸送層に含まれていることに加え、発光層にN-芳香族置換インデノインドール化合物或いはN-芳香族置換カルバゾール化合物を含んでおり、これにより、上記インデノアクリダン誘導体の優れた特性が十分に発揮され、発光層に正孔を効率良く注入・輸送でき、高効率、低駆動電圧での発光を実現でき、さらには、素子の長寿命化も実現できる。
以下、本発明の有機EL素子を構成する各層について説明する。
陽極2は、ITOや金のような仕事関数の大きな電極材料の蒸着により、透明基板1上に形成されるものである。
陽極2と正孔輸送層5との間には、必要に応じて、正孔注入層3が適宜形成される。かかる正孔注入層3は、それ自体公知の材料、例えば、スターバースト型のトリフェニルアミン誘導体、種々のトリフェニルアミン4量体などの材料;銅フタロシアニンに代表されるポルフィリン化合物;ヘキサシアノアザトリフェニレンのようなアクセプター性の複素環化合物や塗布型の高分子材料;などを用いて形成することができる。また、トリスブロモフェニルアミンヘキサクロルアンチモン、ラジアレン誘導体(例えば、国際公開第2014/009310号参照)などをPドーピングしたものや、TPDなどのベンジジン誘導体の構造をその部分構造に有する高分子化合物なども用いることができる。
正孔輸送層5は、上記の陽極2と発光層6との間に設けられるものであり、本発明においては、この正孔輸送層は、下記の一般式(1)で表されるインデノアクリダン誘導体を含んでいる。
ここで、2価の芳香族炭化水素基は、2つの結合手を有する芳香族炭化水素環から形成されているものであり、このような芳香族炭化水素環としては、ベンゼン、ビフェニル、ターフェニル、テトラキスフェニル、スチレン、ナフタレン、アントラセン、アセナフタレン、フルオレン、フェナントレン、インダン、ピレン、トリフェニレン、フルオランテンなどを挙げることができる。
また、2価の芳香族複素環基は、2つの結合手を有する芳香族複素環から形成されているものであり、このような芳香族複素環としては、ピリジン、ピリミジン、トリアジン、ピロール、フラン、チオフェン、キノリン、イソキノリン、ベンゾフラン、ベンゾチオフェン、インドリン、カルバゾール、カルボリン、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾイミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、ナフチリジン、フェナントロリン、アクリジン、キナゾリン、ベンゾキナゾリンなどをあげることができる。
上記の1価の芳香族炭化水素基は、1つの結合手を有する芳香族炭化水素環から形成されているものであり、上記の1価の芳香族複素環基は1つの結合手を有する芳香族複素環から形成されているものであり、これらの例としては、以下のものを例示することができる。
フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基等。
1価の芳香族複素環基;
ピリジル基、ピリミジニル基、トリアジニル基、フリル基、ピロリル基、チエニル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、キナゾリニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ベンゾキナゾリニル基、ピリドピリミジニル基、ピラゾリル基、ナフトピリミジニル基、ジベンゾフラニル基、ジベンゾチエニル基、ナフチリジニル基、フェナントロリニル基、アクリジニル基、カルボリニル基等。
特に、Bが示すジ置換アミノ基がビニル基を有する場合、このビニル基は、単結合を介して、A1が有する芳香族環或いはジ置換アミノ基が有する他方の置換基が有する芳香族環と結合して、さらに芳香族環を形成していることが好ましい(後述する化合物No.1-22、1-23、1-42参照)。
即ち、上記一般式(1)で表されるインデノアクリダン誘導体は、アクリダン環中の窒素原子に、芳香族炭化水素環或いは芳香族複素環が結合しているN-芳香族置換体であることが望ましい。
このような置換基(ジ置換アミノ基のビニル基が有していてよい置換基を含む)としては、重水素原子、シアノ基、ニトロ基などに加え、以下のものを例示することができる。
ハロゲン原子、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子;
炭素数1ないし6のアルキル基、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基など;
炭素数1ないし6のアルキルオキシ基、例えば、メチルオキシ基、エチルオキシ基、プロピルオキシ基など;
アルケニル基、例えば、ビニル基、アリル基など;
アリール基、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基など;
アリールオキシ基、例えば、フェニルオキシ基、トリルオキシ基など;
アラルキル基、例えば、ベンジル基、フェネチル基など;
アリールアルキルオキシ基、例えば、ベンジルオキシ基、フェネチルオキシ基;
芳香族複素環基、例えば、ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、キナゾリニル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ベンゾキナゾリニル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基など;
アリールビニル基、例えば、スチリル基、ナフチルビニル基など;
アシル基、例えば、アセチル基、ベンゾイル基など;
シリル基、例えば、トリメチルシリル基、トリフェニルシリル基など;
これらの置換基は、さらに、ここで例示している置換基をさらに有していてもよい。
また、上記で例示した置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
炭素数1ないし6のアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基などをあげることができる。
炭素数5ないし10のシクロアルキル基の例としては、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基などをあげることができる。
炭素数2ないし6のアルケニル基の例としては、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などをあげることができる。
炭素数1ないし6のアルキルオキシ基の例としては、メチルオキシ基、エチルオキシ基、プロピルオキシ基などをあげることができる。
炭素数5ないし10のシクロアルキルオキシ基の例としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基などをあげることができる。
1価の芳香族炭化水素基及び1価の芳香族複素環基は、前記の“B”について例示したものと同じである。
アラルキル基としては、ベンジル基、フェネチル基などをあげることができる。
アリールオキシ基としては、フェニルオキシ基、トリルオキシ基、ビフェニルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
上記の各基は、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
また、これらの置換基は、それぞれ、独立して存在していてもよいし、これらの置換基同士が、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
これらの基の具体例としては、前記R1~R10について例示したものとおなじ基をあげることができ、これらの基は、前記R1~R10が有する置換基と同様、さらに置換基を有していてもよい。
このようなインデノアクリダン誘導体は、それぞれ1種単独で使用することもできるし、2種以上を混合して使用することもでき、さらには、かかるインデノアクリダン誘導体が有する優れた特性が損なわれない範囲において、公知の正孔輸送材料と併用して正孔輸送層5を形成することもできる。
このような正孔輸送層5の厚みは、通常25~60nm程度であるが、低い駆動電圧で発光させることができるため、その厚みを例えば100nm以上に厚くした場合にも駆動電圧の上昇を抑えることができる。即ち、正孔輸送層の厚みの自由度が高く、例えば、20~300nm、特に20~200nmの厚みで実用駆動電圧を維持できる。
このような二層構造の正孔輸送層5については、後述する。
発光層6は、用いる材料の種類に応じて、蒸着法、スピンコート法、インクジェット法等の公知の方法によって形成することができるが、本発明においては、特に、N-芳香族置換インデノインドール化合物或いはN-芳香族置換カルバゾール化合物を含んでいることが重要である。即ち、発光材料と共に、これらの化合物が発光層6中に存在していることにより、前述した正孔輸送層5に含まれているインデノアクリダン誘導体の正孔輸送・注入性が活かされ、発光層6に効率よく正孔を注入することができ、高効率、低駆動電圧での発光を実現できる。
かかる2価の芳香族炭化水素基及び2価の芳香族複素環基としては、一般式(1)におけるA1について例示したものと同様の基を例示することができ、またA1について例示されている基と同様の置換基を有していてよく、さらに、かかる置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
さらに、R15~R18の一部あるいはR19~R22の一部が脱離しており、この脱離により生じた空位に、R15~R18の他の基あるいはR19~R22の他の基(これら他の基は上記であげた基である)が、置換基を有していてもよいメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環(即ち、縮合環)を形成していてもよい(例えば、後述する一般式(2a)~(2c)参照)。
尚、下記の一般式(2a)~(2e)において、A2、Ar1、R15~R24は、前記一般式(2)で示したとおりの意味を表し、Xは、2価の連結基であり、置換基を有していてもよいメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を表す。
上記一般式(2a)は、一般式(2)中のR15が脱離して空位となっている位置に、R15と隣接しているR16が連結基Xを介してベンゼン環に結合して縮合環を形成している構造を有している。
上記一般式(2b)は、一般式(2)中のR17が脱離して空位となっている位置に、R17と隣接しているR18が連結基Xを介してベンゼン環に結合して縮合環を形成している構造を有している。
上記一般式(2c)は、一般式(2)中のR16が脱離して空位となっている位置に、R16と隣接しているR17が連結基Xを介してベンゼン環に結合して縮合環を形成している構造を有している。
かかる2価の芳香族炭化水素基及び2価の芳香族複素環基としては、一般式(1)におけるA1及び一般式(2)におけるA2について示したものと同様の基を例示することができ、これらの基は、A1について例示されている基と同様の置換基を有していてよく、さらに、かかる置換基同士が単結合、置換もしくは無置換のメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
尚、下記の一般式(3a-1)~(3a-4)及び(3b-1)において、A3、Ar2、R25~R32は、前記一般式(3)で示したとおりの意味を表し、Xは、2価の連結基であり、置換基を有していてもよいメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を表す。
燐光発光体としては、イリジウムや白金などの金属錯体が代表的であり、この金属錯体の燐光発光体には、ビス(3-メチル-2-フェニルキノリン)イリジウム(III)アセチルアセトナート(Ir(3‘-Mepq)2(acac))、Ir(piq)3、Btp2Ir(acac)などの赤色の燐光発光体、Ir(ppy)3などの緑色の燐光発光体、FIrpic、FIr6などの青色の燐光発光体などがある。
本発明では、上記の燐光発光体の中でも特に赤色の燐光発光体が好適である。
燐光性の発光材料のホスト材料へのドープは濃度消光を避けるため、発光層6の全体に対して1~30重量パーセントの範囲で、共蒸着によってドープすることが好ましい。
本発明において、最も好適な発光層6は、ドーパントとして赤色発光性のもの(即ち、赤色の燐光発光体)を用いたものである。
本発明において、上述した発光層6の上に設けられる電子輸送層7は、公知の電子輸送性材料を用いての蒸着法、スピンコート法、インクジェット法などの公知の方法によって形成することができる。
式中、
A4は、2価の芳香族炭化水素基、2価の芳香族複素環基または単結合を示し、
Eは、1価の芳香族複素環基を示し、
Cは、1価の芳香族炭化水素基または1価の芳香族複素環基を示し、
Dは、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基または炭素数1ないし6のアルキル基であり、
p及びqは、両者の合計が9であることを条件として、pが7または8の数であり、qが1または2の数である。
また、2価の芳香族複素環基は、2つの結合手を有する芳香族複素環から形成されているものであり、このような芳香族複素環としては、ピリジン、ピリミジン、トリアジン、ピロール、フラン、チオフェン、キノリン、イソキノリン、ベンゾフラン、ベンゾチオフェン、インドリン、カルバゾール、カルボリン、ベンゾオキサゾール、ベンゾチアゾール、キノキサリン、ベンゾイミダゾール、ピラゾール、ジベンゾフラン、ジベンゾチオフェン、ナフチリジン、フェナントロリン、アクリジニンなどをあげることができる。
このような置換基は、前述した一般式(1)中の基R1~R10が示す1価の芳香族炭化水素基或いは1価の芳香族複素環基が有していてよい置換基と同様のものである。
本発明において、特に好適な2価の基は、置換または未置換のベンゼン環、ビフェニル環、ナフタレン環及びフェナントレン環に由来するものである。
ハロゲン原子、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;
炭素数1ないし6のアルキル基、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基;
炭素数5ないし10のシクロアルキル基、例えば、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基;
炭素数1ないし6のアルキルオキシ基、例えば、メチルオキシ基、エチルオキシ基、プロピルオキシ基;
炭素数5ないし10のシクロアルキルオキシ基、例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基;
アルケニル基、例えば、ビニル基、アリル基;
アリールオキシ基、例えば、フェニルオキシ基、トリルオキシ基、ビフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基;
アリールアルキルオキシ基、例えば、ベンジルオキシ基、フェネチルオキシ基;
芳香族炭化水素基、例えば、フェニル基、ビフェニリル基、ターフェニリル基、ナフチル基、アントラセニル基、フェナントレニル基、フルオレニル基、インデニル基、ピレニル基、ペリレニル基、フルオランテニル基、トリフェニレニル基;
芳香族複素環基、例えば、ピリジル基、ピリミジニル基、トリアジニル基、チエニル基、フリル基、ピロリル基、キノリル基、イソキノリル基、ベンゾフラニル基、ベンゾチエニル基、インドリル基、カルバゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、キノキサリニル基、ベンゾイミダゾリル基、ピラゾリル基、ジベンゾフラニル基、ジベンゾチエニル基、カルボリニル基;
アリールビニル基、例えば、スチリル基、ナフチルビニル基;
アシル基、例えば、アセチル基、ベンゾイル基;
上記で例示した置換基は、それぞれ、独立して存在していてもよいし、これらの置換基同士が、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
尚、かかる基Cが分子中に2個存在する場合(式(4)中のq=2)、二つの基Cは、同一でも異なっていてもよい。
これらのアルキル基も、例えば、重水素原子、フッ素原子、塩素原子、シアノ基等の置換基を有していてもよい。
また、複数個存在するDは、互いに同一でも異なってもよい。
本発明において、最も好適なDは、水素原子である。
上記式(4a)中のX1、X2、X3及びX4は、上記の含窒素複素環の一部を構成する環内元素であり、これらのいずれか1つのみが窒素原子であることを条件として、それぞれ、炭素原子または窒素原子を示す。
また、R33~R39及びAr3は、この含窒素複素環に結合している基を示している。
即ち、X1、X2、X3及びX4が形成している環には、置換基としてR33~R36が示されているが、この環内元素が窒素原子であるときには、この窒素原子には、R33~R36の何れも(水素原子を含めて)結合していないものとする。例えば、X1が窒素原子である場合はR33が存在せず、X2が窒素原子である場合は、R34が存在せず、X3が窒素原子である場合はR35が存在せず、X4が窒素原子である場合は、R36が存在しないことを意味する。
上記の炭素数1ないし6のアルキル基としては、前記一般式(4)のDについて、例示したものと同じものをあげることができる。
上記の炭素数5ないし10のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基を例示することができる。
上記の炭素数2ないし6のアルケニル基としては、ビニル基、アリル基、イソプロペニル基、2-ブテニル基などをあげることができる。
炭素数1ないし6のアルキルオキシ基としては、メチルオキシ基、エチルオキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基をあげることができる。
上記の炭素数5ないし10のシクロアルキルオキシ基としては、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基、シクロオクチルオキシ基、1-アダマンチルオキシ基、2-アダマンチルオキシ基をあげることができる。
さらに、1価の芳香族炭化水素基及び1価の芳香族複素環基としては、一般式(1)における基R1~R10に関して例示したものと同じ基をあげることができる。
アリールオキシ基としては、フェニルオキシ基、ビフェニリルオキシ基、ターフェニリルオキシ基、ナフチルオキシ基、アントラセニルオキシ基、フェナントレニルオキシ基、フルオレニルオキシ基、インデニルオキシ基、ピレニルオキシ基、ペリレニルオキシ基などをあげることができる。
また、これらの置換基は、それぞれ、独立して存在していてもよいし、これらの置換基同士が、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
このようなAr3~Ar5は、1価の芳香族炭化水素基または1価の芳香族複素環基を示すが、これらの基としては、一般式(1)中のR1~R10について例示したものと同様の基をあげることができる。また、これらの1価の芳香族炭化水素基及び1価の芳香族複素環基も、前述したR1~R10が示す芳香族基と同様、置換基を有していてよい。
上記の一般式(4a’)において、R33~R39、Ar3~Ar5は、一般式(4a)で述べたとおりの意味である。
このようなAr6~Ar8は、1価の芳香族炭化水素基または1価の芳香族複素環基を示すが、これらの基の具体例としては、一般式(1)中のR1~R10が示す1価の芳香族炭化水素基或いは1価の芳香族複素環基と同様のものを例示することができる。また、これらの1価の芳香族炭化水素基及び1価の芳香族複素環基も、一般式(1)中のR1~R10が示す基と同様、置換基を有していてよい。
R40が示す上記各基も、一般式(1)におけるR1~R10が示す基と同様の置換基を有していてもよく、この置換基が複数存在している場合、複数の置換基は、独立して存在していることが好ましいが、複数の置換基同士が、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。
これらのアントラセン誘導体は、それぞれ、単独で電子輸送層を形成していてもよいし、複数種が混合されて電子輸送層を形成していてもよい。
電子注入層;
陰極9と電子輸送層7との間には、電子注入層8が適宜設けられる。かかる電子注入層8は、フッ化リチウム、フッ化セシウムなどのアルカリ金属塩、フッ化マグネシウムなどのアルカリ土類金属塩、酸化アルミニウムなどの金属酸化物などを用いて形成することができる。
本発明の有機EL素子の陰極9としては、アルミニウムのような仕事関数の低い金属や、マグネシウム銀合金、マグネシウムインジウム合金、アルミニウムマグネシウム合金のような、より仕事関数の低い合金が電極材料として用いられる。
本発明の有機EL素子は、必要に応じてその他の層を有していてもよい。例えば、図1には示されていないが、正孔輸送層5と発光層6との間には電子阻止層を設けることができるし、発光層6と電子輸送層7との間に正孔阻止層を設けることもできる。
適宜設けられる各層は、それ自体公知の材料から形成されていてよく、何れも用いる材料の種類に応じて、蒸着法、スピンコート法、インクジェット法等の公知の方法によって形成される。
電子阻止層は、図1では示されていないが、正孔輸送層5と発光層6との間に設けられるものであり、発光層6からの電子の透過を阻止し、発光効率を高めるために形成される。電子阻止層を形成するための材料としては、電子阻止性を有する種々の化合物を使用することができ、下記のカルバゾール誘導体が代表的である。
4,4’,4’’-トリ(N-カルバゾリル)トリフェニルアミン
(TCTA);
9,9-ビス[4-(カルバゾール-9-イル)フェニル]フルオレン;
1,3-ビス(カルバゾール-9-イル)ベンゼン(mCP);
2,2-ビス(4-カルバゾール-9-イルフェニル)アダマンタン
(Ad-Cz);
正孔阻止層も、図1には示されていないが、電子輸送層7と発光層6との間に適宜設けられるものであり、発光層6からの正孔の透過を阻止し、発光効率を高めるために形成される。正孔阻止層を形成するための材料としては、バソクプロイン(BCP)などのフェナントロリン誘導体、アルミニウム(III)ビス(2-メチル-8-キノリナート)-4-フェニルフェノレート(BAlq)などのキノリノール誘導体の金属錯体の他、各種の希土類錯体、トリアゾール誘導体、トリアジン誘導体、オキサジアゾール誘導体など、正孔阻止作用を有する化合物により形成される。
特に本発明においては、前述した一般式(1)のインデノアクリダン誘導体の優れた特性を発揮させるため、図1に示されているように、正孔輸送層5を第一正孔輸送層5aと第二正孔輸送層5bとの2層構造とすることが好適である。
以下、この2層構造の正孔輸送層5について説明する。
本発明の有機EL素子においては、正孔輸送層5の形成に一般式(1)で表されるインデノアクリダン誘導体が使用されるが、好ましくは、このようなインデノアクリダン誘導体を含む正孔輸送層5が2層構造とする。
即ち、図1に示されているように、正孔輸送層5を、陽極2側に位置している第一正孔輸送層5aと発光層6側に位置している第二正孔輸送層5bとに分割した2層構造とし、前記一般式(1)で表されるインデノアクリダン誘導体を第二正孔輸送層5bに含有させることが好適である。この場合、第一正孔輸送層5aの形成には、第二正孔輸送層5bに用いるインデノアクリダン誘導体とは異なる正孔輸送材料が使用される。
かかる正孔輸送材料は、第二正孔輸送層5bの形成に使用しているものと異なっていれば、前記一般式(1)で表されるインデノアクリダン誘導体であってもよいが、一般的には、トリアリールアミン誘導体を用いて形成されることが望ましい。トリアリールアミン誘導体は、電子阻止性の点では、上記のインデノアクリダン誘導体に劣るものの、正孔輸送性の点では、該インデノアクリダン誘導体と同等或いはそれ以上の性能を示し、しかも、発光層6と直接接触していない第一正孔輸送層5aには、電子阻止性はあまり要求されないからである。
本発明においては、正孔輸送性に加え、薄膜安定性や耐熱性に優れていること及び合成が容易であるという観点から、下記一般式(5)または(6)で表されるトリアリールアミン誘導体を用いて第一正孔輸送層5aを形成することが好適であり、かかるトリアリールアミン誘導体は、1種単独で使用することもできるし、2種以上を混合して使用することもできる。
これらの置換基が同一のベンゼン環に複数存在している場合、複数存在している置換基は、互いに独立して存在していることが好ましいが、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。例えば、複数の置換基が結合してナフタレン環を形成していてもよい。
また、基R41~R46は、R33~R39或いはR1~R10が示す基と同様、さらに置換基を有していてもよく、このような置換基は、互いに独立して存在していることが好ましいが、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。
また、r49、r50、r52、r53、r55及びr56は、それぞれ、0~4の整数である。
これらの置換基が同一のベンゼン環に複数存在している場合、複数存在している置換基は、互いに独立して存在していることが好ましいが、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよい。例えば、複数の置換基が結合してナフタレン環を形成していてもよい。
このように本発明によれば、高効率、低駆動電圧、長寿命の有機EL素子を実現することが可能となった。
<インデノアクリダン化合物1-1の合成>
工程1;
2-アミノ安息香酸メチル 35.4g
2-ヨード-9,9-ジメチル-9H-フルオレン 50.0g
tert-ブトキシナトリウム 22.51g
キシレン 500ml
窒素置換した反応容器に、上記各成分を加え、1時間窒素ガスを通気した。
次いで、
トリス(ジベンジリデンアセトン)ジパラジウム(0) 2.9g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 3.8g
を加えて加熱し、115℃で5時間撹拌した。室温まで冷却し、水、トルエンを加えた後、分液操作によって有機層を採取した。
有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、
2-{(9,9-ジメチル-9H-フルオレン-2-イル)アミノ}安息香酸メチルの黄色粉体25.8g(収率48%)
を得た。
上記のようにして、2-{(9,9-ジメチル-9H-フルオレン-2-イル)アミノ}安息香酸メチルの黄色粉体(以下、単に安息香酸メチル誘導体と略す)を多量に合成し、次の合成を行った。
窒素置換した反応容器に、
上記で得られた安息香酸メチル誘導体 31.0g
THF 310ml
を加え、メチルマグネシウムクロライドのTHF溶液(3モル/L)108mlを滴下した。室温で1時間撹拌した後、20%塩化アンモニウム水溶液300mlを加え、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって、
2-[2-{(9,9-ジメチル-9H-フルオレン-2-イル)
アミノ}フェニル]プロパン-2-オールの薄黄色の油状物
31.0g(収率100%)
を得た。
窒素置換した反応容器に、
上記で得られた薄黄色の油状物 31.0g
りん酸 62ml
を加え、室温で2時間撹拌した。続いて、トルエン300ml、水300mlを加えて撹拌し、生成する析出物をろ過によって採取し、
7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-
インデノ[1,2-b]アクリジンの薄黄色粉体
26.2g(収率89%)
を得た。
窒素置換した反応容器に、
上記の工程3で得られたアクリジンの薄黄色粉体 8.0g
2-(4-ブロモフェニル)-9,9-ジメチルフルオレン
9.4g
tert-ブトキシナトリウム 4.6g
トルエン 100ml
を加え、1時間窒素ガスを通気した。
次いで、
酢酸パラジウム(II) 0.2g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 0.2g
を加えて加熱し、100℃で15時間撹拌した。
室温まで冷却し、水100mlを加えた後、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、下記構造式を有するインデノアクリダン化合物1-1の白色粉体6.4g(収率43%)を得た。
また、1H-NMR(THF-d8)で以下の39個の水素のシグナルを検出した。
δ(ppm)=8.11(2H)
8.00(1H)
7.92(2H)
7.83(2H)
7.72(1H)
7.48-7.58(4H)
7.30-7.40(3H)
7.27(1H)
7.17(1H)
6.89-7.00(2H)
6.53(1H)
6.38(1H)
1.78(6H)
1.58(6H)
1.28(6H)
<インデノアクリダン化合物1-3の合成>
実施例1の工程3で得られる7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-インデノ[1,2-b]アクリジンを用いて次の合成を行った。
窒素置換した反応容器に、
上記のアクリジン 9.0g
2-(3-ブロモフェニル)-9,9-ジメチル
フルオレン 10.4g
tert-ブトキシナトリウム 5.3g
トルエン 100ml
を加え、1時間窒素ガスを通気した。
次いで、
酢酸パラジウム(II) 0.3g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 0.3g
を加えて加熱し、100℃で15時間撹拌した。
室温まで冷却し、水100mlを加えた後、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、下記構造式を有するインデノアクリダン化合物1-3の白色粉体7.0g(収率43%)を得た。
また、1H-NMR(THF-d8)で以下の39個の水素のシグナルを検出した。
δ(ppm)=7.99(1H)
7.93(1H)
7.70-7.90(7H)
7.45-7.56(2H)
7.41(1H)
7.22-7.39(4H)
7.16(1H)
6.88-7.00(2H)
6.53(1H)
6.38(1H)
1.78(6H)
1.58(6H)
1.28(6H)
<インデノアクリダン化合物1-4の合成>
実施例1の工程3で得られる7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-インデノ[1,2-b]アクリジンを用いて次の合成を行った。
窒素置換した反応容器に、
上記のアクリジン 8.0g
tert-ブトキシナトリウム 4.6g
トルエン100ml
を加え、1時間窒素ガスを通気した。
次いで、
酢酸パラジウム(II) 0.2g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 0.2g
を加えて加熱し、100℃で14時間撹拌した。
室温まで冷却し、水100mlを加えた後、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、下記構造式で表されるインデノアクリダン化合物1-4の白色粉体6.1g(収率41%)を得た。
また、1H-NMR(THF-d8)で以下の39個の水素のシグナルを検出した。
δ(ppm)=8.11(1H)
7.95(1H)
7.89(1H)
7.83(1H)
7.62-7.76(4H)
7.58(1H)
7.40-7.52(3H)
7.28-7.40(3H)
7.22(1H)
7.12(1H)
6.84-6.96(2H)
6.38-6.43(2H)
1.77(6H)
1.61(6H)
1.22(6H)
<インデノアクリダン化合物1-5の合成>
実施例1の工程3で得られる7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-インデノ[1,2-b]アクリジンを用いて次の合成を行った。
窒素置換した反応容器に、
上記のアクリジン 8.0g
2-ブロモ-7-(9,9-ジメチルフルオレン-2-イル)-
9,9-ジメチルフルオレン 11.5g
tert-ブトキシナトリウム 3.5g
トルエン 100ml
を加え、1時間窒素ガスを通気した。
次いで、
酢酸パラジウム(II) 0.3g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 0.2g
を加えて加熱し、100℃で15時間撹拌した。
室温まで冷却し、水100mlを加えた後、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、下記構造式で表されるインデノアクリダン化合物1-5の白色粉体5.2g(収率29%)を得た。
また、1H-NMR(THF-d8)で以下の47個の水素のシグナルを検出した。
δ(ppm)=8.12(1H)
7.97(1H)
7.82-7.91(4H)
7.65-7.82(4H)
7.59(1H)
7.45-7.55(2H)
7.17-7.40(5H)
7.12(1H)
6.85-6.97(2H)
6.39-6.46(2H)
1.77(6H)
1.63(6H)
1.57(6H)
1.22(6H)
<インデノアクリダン化合物1-6の合成>
実施例1の工程3で得られる7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-インデノ[1,2-b]アクリジンを用いて次の合成を行った。
窒素置換した反応容器に、
上記のアクリジン 5.3g
2-(4-ブロモフェニル-1-イル)-7-フェニル-
9,9-ジメチルフルオレン 7.0g
tert-ブトキシナトリウム 3.1g
トルエン 100ml
を加え、1時間窒素ガスを通気した。
次いで、
酢酸パラジウム(II) 0.2g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 0.2g
を加えて加熱し、100℃で14時間撹拌した。
室温まで冷却し、水100mlを加えた後、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、下記構造式で表される化合物1-6の白色粉体6.5g(収率59%)を得た。
また、1H-NMR(THF-d8)で以下の43個の水素のシグナルを検出した。
δ(ppm)=8.09(2H)
7.99(1H)
7.73-7.94(5H)
7.60-7.73(4H)
7.37-7.53(5H)
7.28-7.37(2H)
7.23(1H)
7.13(1H)
6.85-6.97(2H)
6.51(1H)
6.35(1H)
1.76(6H)
1.65(6H)
1.27(6H)
<インデノアクリダン化合物1-7の合成>
実施例1の工程3で得られる7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-インデノ[1,2-b]アクリジンを用いて次の合成を行った。
窒素置換した反応容器に、
上記のアクリジン 7.5g
2-ブロモ-7-(ナフチル-1-イル)-9,9-
ジメチルフルオレン 10.1g
tert-ブトキシナトリウム 4.4g
トルエン 100ml
を加え、1時間窒素ガスを通気した。
次いで、
酢酸パラジウム(II) 0.2g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 0.2g
を加えて加熱し、100℃で14時間撹拌した。
室温まで冷却し、水100mlを加えた後、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、下記構造式で表されるインデノアクリダン化合物1-7の白色粉体6.7g(収率45%)
を得た。
また、1H-NMR(THF-d8)で以下の41個の水素のシグナルを検出した。
δ(ppm)=8.16(1H)
7.85-8.05(5H)
7.65-7.72(2H)
7.35-7.64(8H)
7.31(1H)
7.23(1H)
7.13(1H)
6.85-6.98(2H)
6.39-6.46(2H)
1.77(6H)
1.62(6H)
1.24(6H)
<インデノアクリダン化合物1-8の合成>
実施例1の工程3で得られる7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-インデノ[1,2-b]アクリジンを用いて次の合成を行った。
窒素置換した反応容器に、
上記のアクリジン 9.0g
1-ブロモ-4-フェニルナフタレン 9.4g
tert-ブトキシナトリウム 5.2g
トルエン 100ml
を加え、1時間窒素ガスを通気した。
次いで、
酢酸パラジウム(II) 0.3g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 0.3g
を加えて加熱し、100℃で16時間撹拌した。
室温まで冷却し、水100mlを加えた後、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)により精製し、下記構造式で表されるインデノアクリダン化合物1-8の白色粉体4.3g(収率29%)を得た。
また、1H-NMR(THF-d8)で以下の33個の水素のシグナルを検出した。
δ(ppm)=8.07(1H)
7.95(1H)
7.62-7.75(6H)
7.52-7.60(3H)
7.48(2H)
7.36(1H)
7.18-7.30(2H)
7.11(1H)
6.78-6.90(2H)
6.22(1H)
6.06(1H)
1.94(3H)
1.79(3H)
1.17(3H)
1.02(3H)
<インデノアクリダン化合物1-9の合成>
実施例1の工程3で得られる7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-インデノ[1,2-b]アクリジンを用いて次の合成を行った。
窒素置換した反応容器に、
上記のアクリジン 9.5g
1-ブロモ-4,1’:2’,1’’-ターフェニル 9.9g
tert-ブトキシナトリウム 5.6g
トルエン100ml
を加え、1時間窒素ガスを通気した。
次いで、
酢酸パラジウム(II) 0.3g
トリ-tert-ブチルホスフィンのトルエン溶液
(50%、w/v) 0.3g
を加えて加熱し、100℃で16時間撹拌した。
室温まで冷却し、水100mlを加えた後、トルエンを用いた抽出操作を行うことによって有機層を採取した。有機層を無水硫酸マグネシウムで脱水した後、減圧下で濃縮することによって粗製物を得た。粗製物をカラムクロマトグラフ(担体:シリカゲル、溶離液:トルエン/n-ヘキサン)によって精製し、下記構造式で表されるインデノアクリダン化合物1-9の白色粉体4.2g(収率27%)を得た。
また、1H-NMR(THF-d8)で以下の35個の水素のシグナルを検出した。
δ(ppm)=7.89(1H)
7.67(1H)
7.59(1H)
7.42-7.50(6H)
7.10-7.38(10H)
6.83-6.97(2H)
6.39(1H)
6.25(1H)
2.48(6H)
1.31(6H)
上記の実施例1~8で得られたインデノアクリダン化合物について、高感度示差走査熱量計(ブルカー・エイエックスエス製、DSC3100SA)によってガラス転移点を求めた。その結果は、以下のとおりである。
ガラス転移点
実施例1(化合物1-1) 126℃
実施例2(化合物1-3) 116℃
実施例3(化合物1-4) 127℃
実施例4(化合物1-5) 154℃
実施例5(化合物1-6) 141℃
実施例6(化合物1-7) 143℃
実施例7(化合物1-8) 115℃
実施例8(化合物1-9) 167℃
上記の実施例1~8で得られたインデノアクリダン化合物を用いて、ITO基板の上に膜厚100nmの蒸着膜を作製して、イオン化ポテンシャル測定装置(住友重機械工業製、PYS-202型)で仕事関数を測定した。
その結果は、以下のとおりである。
仕事関数
実施例1(化合物1-1) 5.66eV
実施例2(化合物1-3) 5.68eV
実施例3(化合物1-4) 5.66eV
実施例4(化合物1-5) 5.68eV
実施例5(化合物1-6) 5.69eV
実施例6(化合物1-7) 5.67eV
実施例7(化合物1-8) 5.68eV
実施例8(化合物1-9) 5.69eV
<N-芳香族置換インデノインドール化合物2-1の合成>
窒素置換した反応容器に、
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ
[3,2-g]インデノ[1,2-b]インドール 4.9g
2-クロロ-4-フェニルキナゾリン 5.7g
トリス(ジベンジリデンアセトン)ジパラジウム 0.3g
トリ-tert-ブチルホスホニウムテトラフルオロボレート
0.4g
tert-ブトキシナトリウム 4.0g
キシレン 74ml
を加えて加熱し、12時間還流撹拌した。
室温まで冷却した後、酢酸エチル、水を加え、分液操作によって有機層を採取した。有機層を濃縮し、カラムクロマトグラフによる精製を行うことによって、下記構造式で表される、
7,7-ジメチル-12-(4-フェニルキナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-1)
の粉体3.0g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-2の合成>
2-クロロ-4-フェニルキナゾリンに代えて、2-クロロ-4-フェニルベンゾ[h]キナゾリンを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-2)
の粉体3.2g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-3の合成>
2-クロロ-4-フェニルキナゾリンに代えて、2-クロロ-4,7-ジフェニルキナゾリンを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
12-(4,7-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-3)
の粉体3.3g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-4の合成>
2-クロロ-4-フェニルキナゾリンに代えて、2-クロロ-4,6-ジフェニルキナゾリンを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
12-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドール(化合物2-4)
の粉体3.3g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-5の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、13,13-ジメチル-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドールを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
13,13-ジメチル-8-(4-フェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドール(化合物2-5)
の粉体3.0g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-6の合成>
2-クロロ-4-フェニルキナゾリンに代えて、2-クロロ-4,6-ジフェニルキナゾリンを用いた以外は、実施例15と同様の条件で反応を行うことによって、下記構造式で表される、
8-(4,6-ジフェニルキナゾリン-2-イル)-13,13-ジメチル-8,13-ジヒドロベンゾ[4,5]チエノ[3,2-e]インデノ[1,2-b]インドール(化合物2-6)
の粉体3.3g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-7の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、7,7,13,13-テトラメチル-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドールを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
7,7,13,13-テトラメチル-5-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドール(化合物2-7)
の粉体3.0g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-8の合成>
2-クロロ-4-フェニルキナゾリンに代えて、2-(3-ブロモフェニル)-4-フェニルキナゾリンを用いた以外は、実施例17と同様の条件で反応を行うことによって、下記構造式で表される、
7,7,13,13-テトラメチル-5-[3-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロ-5H-ジインデノ[1,2-b:1’,2’-f]インドール(化合物2-8)
の粉体3.4g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-9の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、7,7-ジメチル-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドールを用いた以外は、実施例12と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-12-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドール(化合物2-9)
の粉体3.0g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-10の合成>
2-クロロ-4-フェニルベンゾ[h]キナゾリンに代えて、2-クロロ-4,6-ジフェニルベンゾ[h]キナゾリンを用いた以外は、実施例19と同様の条件で反応を行うことによって、下記構造式で表される、
12-(4,6-ジフェニルベンゾ[h]キナゾリン-2-イル)-7,7-ジメチル-7,12-ジヒドロベンゾフロ[3,2-g]インデノ[1,2-b]インドール(化合物2-10)
の粉体3.5g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-11の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、13,13-ジメチル-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドールを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
13,13-ジメチル-8-(4-フェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドール(化合物2-11)
の粉体3.0g(収率38%)を得た。
<N-芳香族置換インデノインドール化合物2-12の合成>
2-クロロ-4-フェニルキナゾリンに代えて、2-クロロ-4,6-ジフェニルキナゾリンを用いた以外は、実施例21と同様の条件で反応を行うことによって、下記構造式で表される、
13,13-ジメチル-8-(4,6-ジフェニルキナゾリン-2-イル)-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドール(化合物2-12)
の粉体3.2g(収率38%)を得た。
<N-芳香族置換カルバゾール化合物3-1の合成>
13,13-ジメチル-8,13-ジヒドロベンゾフロ[3,2-e]インデノ[1,2-b]インドールに代えて、7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールを用いた以外は、実施例22と同様の条件で反応を行うことによって、下記構造式で表される、
13-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-1)
の粉体7.0g(収率38%)を得た。
<N-芳香族置換カルバゾール化合物3-2の合成>
2-クロロ-4,6-ジフェニルキナゾリンに代えて、4-(ビフェニル-4-イル)-2-クロロキナゾリンを用いた以外は、実施例23と同様の条件で反応を行うことによって、下記構造式で表される、
13-[4-(ビフェニル-4-イル)キナゾリン-2-イル]-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-2)
の粉体6.7g(収率37%)を得た。
<N-芳香族置換カルバゾール化合物3-3の合成>
2-クロロ-4,6-ジフェニルキナゾリンに代えて、2-クロロ-4-(フェニル-d5)キナゾリンを用いた以外は、実施例23と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-13-[4-(フェニル-d5)キナゾリン-2-イル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-3)
の粉体8.4g(収率32%)を得た。
<N-芳香族置換カルバゾール化合物3-4の合成>
2-クロロ-4,6-ジフェニルキナゾリンに代えて、2-(4-ブロモフェニル)-4-フェニルキナゾリンを用いた以外は、実施例23と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-13-[4-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-4)
の粉体5.2g(収率28%)を得た。
<N-芳香族置換カルバゾール化合物3-5の合成>
2-クロロ-4,6-ジフェニルキナゾリンに代えて、2-(3-ブロモフェニル)-4-フェニルキナゾリンを用いた以外は、実施例23と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-13-[3-(4-フェニルキナゾリン-2-イル)フェニル]-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-5)
の粉体8.4g(収率32%)を得た。
<N-芳香族置換カルバゾール化合物3-6の合成>
2-クロロ-4,6-ジフェニルキナゾリンに代えて、2-クロロ-4-フェニルベンゾ[h]キナゾリンを用いた以外は、実施例23と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-13-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-6)
の粉体8.4g(収率32%)を得た。
<N-芳香族置換カルバゾール化合物3-7の合成>
7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールに代えて、8,8-ジメチル-5,8-ジヒドロインデノ[2’,1’:4,5]チエノ[3,2-c]カルバゾールを用いた以外は、実施例28と同様の条件で反応を行うことによって、下記構造式で表される、
8,8-ジメチル-5-(4-フェニルベンゾ[h]キナゾリン-2-イル)-5,8-ジヒドロインデノ[2’,1’:4,5]チエノ[3,2-c]カルバゾール(化合物3-7)
の粉体9.3g(収率35%)を得た。
<N-芳香族置換カルバゾール化合物3-8の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾールを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾール(化合物3-8)
の粉体6.2g(収率32%)を得た。
<N-芳香族置換カルバゾール化合物3-9の合成>
2-クロロ-4-フェニルキナゾリンに代えて、2-クロロ-4-フェニルベンゾ[h]キナゾリンを用いた以外は、実施例30と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-13-(4-フェニルベンゾ[h]キナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾール(化合物3-9)
の粉体8.6g(収率30%)を得た。
<N-芳香族置換カルバゾール化合物3-10の合成>
2-クロロ-4-フェニルキナゾリンに代えて、2-クロロ-4,6-ジフェニルキナゾリンを用いた以外は、実施例30と同様の条件で反応を行うことによって、下記構造式で表される、
13-(4,6-ジフェニルキナゾリン-2-イル)-7,7-ジメチル-7,13-ジヒドロインデノ[2’,1’:4,5]フロ[2,3-a]カルバゾール(化合物3-10)
の粉体7.2g(収率29%)を得た。
<N-芳香族置換カルバゾール化合物3-11の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、7,7-ジフェニル-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾールを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジフェニル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-11)
の粉体6.7g(収率37%)を得た。
<N-芳香族置換カルバゾール化合物3-12の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、9,9-ジメチル-9,15-ジヒドロベンゾ[a]インデノ[2’,1’:4,5]チエノ[3,2-i]カルバゾールを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
9,9-ジメチル-15-(4-フェニルキナゾリン-2-イル)-9,15-ジヒドロベンゾ[a]インデノ[2’,1’:4,5]チエノ[3,2-i]カルバゾール(化合物3-12)
の粉体4.8g(収率42%)を得た。
<N-芳香族置換カルバゾール化合物3-13の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、7-フェニル-7,13-ジヒドロインドロ[2’,3’:4,5]チエノ[2,3-a]カルバゾールを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
7-フェニル-13-(4-フェニルキナゾリン-2-イル)-7,13-ジヒドロインドロ[2’,3’:4,5]チエノ[2,3-a]カルバゾール(化合物3-13)
の粉体4.3g(収率43%)を得た。
<N-芳香族置換カルバゾール化合物3-14の合成>
7,7-ジメチル-7,12-ジヒドロベンゾ[4,5]チエノ[3,2-g]インデノ[1,2-b]インドールに代えて、12,12-ジメチル-1,12-ジヒドロインデノ[1’,2’:4,5]チエノ[2,3-a]カルバゾールを用いた以外は、実施例11と同様の条件で反応を行うことによって、下記構造式で表される、
12,12-ジメチル-1-(4-フェニルキナゾリン-2-イル)-1,12-ジヒドロインデノ[1’,2’:4,5]チエノ[2,3-a]カルバゾール(化合物3-14)
の粉体6.3g(収率44%)を得た。
<N-芳香族置換カルバゾール化合物3-15の合成>
2-クロロ-4,6-ジフェニルキナゾリンに代えて、2-ブロモナフタレンを用いた以外は、実施例23と同様の条件で反応を行うことによって、下記構造式で表される、
7,7-ジメチル-13-(ナフタレン-2-イル)-7,13-ジヒドロインデノ[2’,1’:4,5]チエノ[2,3-a]カルバゾール(化合物3-15)
の粉体5.4g(収率47%)を得た。
図1に示されている素子構成の有機EL素子を、下記の手順にしたがい蒸着により作製した。
このガラス基板1をイソプロピルアルコール中にて20分間、超音波洗浄した後、200℃に加熱したホットプレート上にて10分間乾燥を行った。その後、UVオゾン処理を15分間行った後、このITO付きガラス基板を真空蒸着機内に取り付け、0.001Pa以下まで減圧した。
続いて、透明陽極2を覆うように正孔注入層3として、下記構造式の化合物(HIM-1)を膜厚5nmとなるように形成した。
この第二正孔輸送層5bの上に、下記構造式の化合物EMD-1と実施例12で合成されたN-芳香族置換インデノインドール化合物(2-2)とを、蒸着速度比がEMD-1:化合物(2-2)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmの発光層6を形成した。
最後に、アルミニウムを100nm蒸着して陰極9を形成した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
尚、素子寿命は、発光開始時の発光輝度(初期輝度)を7000cd/m2として定電流駆動を行った時、発光輝度が6790cd/m2(初期輝度を100%とした時の97%に相当:97%減衰)に減衰するまでの時間として測定した。
膜厚5nmの第二正孔輸送層5bを、実施例2で合成されたインデノアクリダン化合物(1-3)を用いて形成した以外は、実施例38と同様にして有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
膜厚5nmの第二正孔輸送層5bを、実施例3で合成されたインデノアクリダン化合物(1-4)を用いて形成した以外は、実施例38と同様にして有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
膜厚5nmの第二正孔輸送層5bを、実施例4で合成されたインデノアクリダン化合物(1-5)を用いて形成した以外は、実施例38と同様にして有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
膜厚5nmの第二正孔輸送層5bを、実施例5で合成されたインデノアクリダン化合物(1-6)を用いて形成した以外は、実施例38と同様にして有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
膜厚5nmの第二正孔輸送層5bを、実施例6で合成されたインデノアクリダン化合物(1-7)を用いて形成した以外は、実施例38と同様にして有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
実施例31で合成されたN-芳香族置換カルバゾール化合物(3-9)を使用し、この化合物(3-9)とEMD-1とを、蒸着速度比がEMD-1:化合物(3-9)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmの発光層6を形成した以外は、実施例38と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
実施例2で合成されたインデノアクリダン化合物(1-3)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例44と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
実施例3で合成されたインデノアクリダン化合物(1-4)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例44と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
実施例4で合成されたインデノアクリダン化合物(1-5)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例44と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
実施例5で合成されたインデノアクリダン化合物(1-6)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例44と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
実施例6で合成されたインデノアクリダン化合物(1-7)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例44と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表1に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表3に示した。
下記構造式で表されるN-芳香族置換カルバゾール化合物(3-16)を使用し、この化合物(3-16)とEMD-1とを、蒸着速度比がEMD-1:化合物(3-16)=5:95となる蒸着速度で二元蒸着を行い、膜厚20nmの発光層6を形成した以外は、実施例38と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
実施例2で合成されたインデノアクリダン化合物(1-3)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例50と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
実施例3で合成されたインデノアクリダン化合物(1-4)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例50と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
実施例4で合成されたインデノアクリダン化合物(1-5)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例50と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
実施例5で合成されたインデノアクリダン化合物(1-6)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例50と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
実施例6で合成されたインデノアクリダン化合物(1-7)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例50と同様の条件で有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
下記構造式で表されるアリールアミン化合物(5’-2)を用いて膜厚60nmの第一正孔輸送層5aを形成し、さらに、このアリールアミン化合物(5’-2)を用いて膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例38と同様にして有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
比較例1で用いたアリールアミン化合物(5’-2)を使用して、膜厚60nmの第一正孔輸送層5aと膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例44と同様にして有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
比較例1で用いたアリールアミン化合物(5’-2)を使用して、膜厚60nmの第一正孔輸送層5aと膜厚5nmの第二正孔輸送層5bを形成した以外は、実施例50と同様にして有機EL素子を作製した。
この有機EL素子の層構成を表2に示し、この有機EL素子に直流電圧を印加したときの発光特性の測定結果を表4に示した。
また、電力効率においても、比較例1の有機EL素子の18.40lm/Wに対し、実施例38~43の有機EL素子では18.61~20.79lm/Wといずれも高効率であった。
一方、素子寿命(97%減衰)においては、比較例1の有機EL素子の49時間に対し、実施例38~43の有機EL素子では117~197時間と大きく長寿命化していることが分かる。
また、電力効率においても、比較例2の有機EL素子の21.52lm/Wに対し、実施例44~49の有機EL素子では22.20~25.12lm/Wといずれも高効率であった。
一方、素子寿命(97%減衰)においては、比較例2の有機EL素子の44時間に対し、実施例44~49の有機EL素子では130~196時間と大きく長寿命化していることが分かる。
また、電力効率においても、比較例3の有機EL素子の16.86lm/Wに対し、実施例50~55の有機EL素子では18.48~20.69lm/Wといずれも高効率であった。一方、素子寿命(97%減衰)においては、比較例3の有機EL素子の63時間に対し、実施例50~55の有機EL素子では150~215時間と大きく長寿命化していることが分かる。
2:透明陽極
3:正孔注入層
5:正孔輸送層
5a:第一正孔輸送層
5b:第二正孔輸送層
6:発光層
7:電子輸送層
8:電子注入層
9:陰極
Claims (11)
- 陽極、正孔輸送層、発光層、電子輸送層及び陰極をこの順に有する有機エレクトロルミネッセンス素子において、前記正孔輸送層が下記一般式(1)で表されるインデノアクリダン誘導体を含有し、前記発光層が、N-芳香族置換インデノインドール化合物及び/またはN-芳香族置換カルバゾール化合物を含有していることを特徴とする有機エレクトロルミネッセンス素子;
式中、
A1は、2価の芳香族炭化水素基、2価の芳香族複素環基、または単結合を示し、
Bは、1価の芳香族炭化水素基;1価の芳香族複素環基;または置換基として、1価の芳香族炭化水素基、1価の芳香族複素環基もしくは置換基を有していてもよいビニル基を有するジ置換アミノ基;を示し、
ここで、Bがジ置換アミノ基である場合、A1は単結合でないものとし、A1が単結合でない場合には、A1とBとは、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよく、
R1~R10は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基またはアリールオキシ基であって、これらの基は、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよく、
R11~R14は、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基またはアリールオキシ基であって、R11とR12、或いはR13とR14とは、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成していてもよい。 - 前記N-芳香族置換インデノインドール化合物が、下記一般式(2)で表される請求項1記載の有機エレクトロルミネッセンス素子;
式中、
A2は、2価の芳香族炭化水素基、2価の芳香族複素環基、または単結合を示し、
Ar1は、1価の芳香族炭化水素基または1価の芳香族複素環基を示し、
R15~R22は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基、アリールオキシ基、または、置換基として1価の芳香族炭化水素基もしくは1価の芳香族複素環基を有するジ置換アミノ基であって、これらの基は、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよいし、さらには、R15~R18の一部あるいはR19~R22の一部が脱離しており、この脱離により生じた空位に、R15~R18の他の基あるいはR19~R22の他の基が、置換基を有していてもよいメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成していてもよく、
R23及びR24は、炭素数1ないし6のアルキル基、1価の芳香族炭化水素基、1価の芳香族複素環基またはアラルキル基であって、これらの基は、単結合、置換基を有していてもよいメチレン基、酸素原子、または硫黄原子を介して互いに結合して環を形成していてもよい。 - 前記N-芳香族置換カルバゾール化合物が、下記一般式(3)で表される請求項1記載の有機エレクトロルミネッセンス素子;
式中、
A3は、2価の芳香族炭化水素基、2価の芳香族複素環基、または単結合を示し、
Ar2は、1価の芳香族炭化水素基または1価の芳香族複素環基を示し、
R25~R32は、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基、アリールオキシ基、または、置換基として1価の芳香族炭化水素基もしくは1価の芳香族複素環基を有するジ置換アミノ基であって、これらの基は、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよいし、さらには、R25~R28の一部あるいはR29~R32の一部が脱離し、この脱離により生じた空位に、R25~R28の他の基あるいはR29~R32の他の基が、置換基を有していてもよいメチレン基、酸素原子、硫黄原子またはモノアリールアミノ基を介して結合して環を形成していてもよい。 - 前記アントラセン誘導体が、下記一般式(4a)で表される請求項4記載の有機エレクトロルミネッセンス素子;
式中、
A4は、前記式(4)に示すとおりであり、
Ar3、Ar4及びAr5は、それぞれ、1価の芳香族炭化水素基または1価の芳香族複素環基であり、
R33~R39は、それぞれ、水素原子、重水素原子、フッ素原子、塩素原子、シアノ基、ニトロ基、炭素数1ないし6のアルキル基、炭素数5ないし10のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数1ないし6のアルキルオキシ基、炭素数5ないし10のシクロアルキルオキシ基、1価の芳香族炭化水素基、1価の芳香族複素環基、アラルキル基またはアリールオキシ基であって、これらの基は、単結合、置換基を有していてもよいメチレン基、酸素原子または硫黄原子を介して互いに結合して環を形成してもよく、
X1、X2、X3及びX4は、これらのいずれか1つのみが窒素原子であることを条件として、それぞれ、炭素原子または窒素原子を表し、該窒素原子には、水素原子を含めてR33~R36の何れも結合していないものとする。 - 前記正孔輸送層が、第一正孔輸送層および第二正孔輸送層の2層構造を有しており、該第二正孔輸送層が前記発光層側に位置しており且つ一般式(1)で表されるインデノアクリダン誘導体を含有している請求項1記載の有機エレクトロルミネッセンス素子。
- 前記発光層が、さらに、燐光性の発光材料を含有している請求項1記載の有機エレクトロルミネッセンス素子。
- 前記燐光性の発光材料がイリジウムまたは白金を含む金属錯体である請求項9記載の有機エレクトロルミネッセンス素子。
- 前記燐光性の発光材料が赤色発光性ドーパントである請求項10記載の有機エレクトロルミネッセンス素子。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177007519A KR102327538B1 (ko) | 2014-08-20 | 2015-08-06 | 유기 일렉트로 루미네선스 소자 |
EP15834378.0A EP3185324B1 (en) | 2014-08-20 | 2015-08-06 | Organic electroluminescent element |
US15/504,804 US10424742B2 (en) | 2014-08-20 | 2015-08-06 | Organic electroluminescent device |
JP2015552705A JP5875743B1 (ja) | 2014-08-20 | 2015-08-06 | 有機エレクトロルミネッセンス素子 |
CN201580044758.8A CN106796993B (zh) | 2014-08-20 | 2015-08-06 | 有机电致发光器件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-167249 | 2014-08-20 | ||
JP2014167249 | 2014-08-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016027687A1 true WO2016027687A1 (ja) | 2016-02-25 |
Family
ID=55350633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/072386 WO2016027687A1 (ja) | 2014-08-20 | 2015-08-06 | 有機エレクトロルミネッセンス素子 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10424742B2 (ja) |
EP (1) | EP3185324B1 (ja) |
JP (1) | JP5875743B1 (ja) |
KR (1) | KR102327538B1 (ja) |
CN (1) | CN106796993B (ja) |
WO (1) | WO2016027687A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106892915A (zh) * | 2017-02-23 | 2017-06-27 | 南京高光半导体材料有限公司 | 有机化合物、有机电致发光器件及其应用 |
JP2017204492A (ja) * | 2016-05-09 | 2017-11-16 | 保土谷化学工業株式会社 | 有機エレクトロルミネッセンス素子 |
JPWO2020137724A1 (ja) * | 2018-12-25 | 2020-07-02 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6752226B2 (ja) * | 2015-12-08 | 2020-09-09 | 保土谷化学工業株式会社 | 有機エレクトロルミネッセンス素子 |
US11456432B2 (en) * | 2017-11-01 | 2022-09-27 | Idemitsu Kosan Co., Ltd. | Top emission organic electroluminescent element, organic electroluminescent light emitting device, and electronic device |
CN114276366A (zh) * | 2021-04-20 | 2022-04-05 | 北京八亿时空液晶科技股份有限公司 | 一种吲哚衍生物及其应用 |
CN114805386B (zh) * | 2022-06-08 | 2024-02-09 | 上海钥熠电子科技有限公司 | 有机化合物、主体材料和有机光电器件 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311411A (ja) * | 2003-03-26 | 2004-11-04 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置および表示装置 |
JP2006219393A (ja) * | 2005-02-09 | 2006-08-24 | Canon Inc | 化合物、発光素子及び画像表示装置 |
JP2009535815A (ja) * | 2006-04-27 | 2009-10-01 | イーストマン コダック カンパニー | アントラセン誘導体を含むエレクトロルミネッセンス・デバイス |
JP2009299049A (ja) * | 2008-05-16 | 2009-12-24 | Semiconductor Energy Lab Co Ltd | 組成物、薄膜の作製方法、及び発光素子の作製方法 |
KR20120084238A (ko) * | 2011-01-19 | 2012-07-27 | (주)씨에스엘쏠라 | 유기발광화합물 및 이를 이용한 유기 광소자 |
KR101216004B1 (ko) * | 2009-08-17 | 2012-12-27 | 에스에프씨 주식회사 | 안트라센 유도체 및 이를 포함하는 유기전계발광소자 |
WO2013054764A1 (ja) * | 2011-10-14 | 2013-04-18 | 保土谷化学工業株式会社 | 新規なベンゾトリアゾール誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子 |
WO2014061960A1 (ko) * | 2012-10-18 | 2014-04-24 | 덕산하이메탈(주) | 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
WO2014112360A1 (ja) * | 2013-01-17 | 2014-07-24 | 保土谷化学工業株式会社 | インデノアクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子 |
JP2014519541A (ja) * | 2011-06-17 | 2014-08-14 | メルク パテント ゲーエムベーハー | 有機エレクトロルミネッセントデバイスのための材料 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4943840B1 (ja) | 1970-12-25 | 1974-11-25 | ||
JP3194657B2 (ja) | 1993-11-01 | 2001-07-30 | 松下電器産業株式会社 | 電界発光素子 |
EP0650955B1 (en) | 1993-11-01 | 1998-08-19 | Hodogaya Chemical Co., Ltd. | Amine compound and electro-luminescence device comprising same |
JP3828595B2 (ja) | 1994-02-08 | 2006-10-04 | Tdk株式会社 | 有機el素子 |
EP0666298A3 (en) | 1994-02-08 | 1995-11-15 | Tdk Corp | Organic electroluminescent element and compound used therein. |
KR100691543B1 (ko) * | 2002-01-18 | 2007-03-09 | 주식회사 엘지화학 | 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자 |
EP2759531A1 (en) | 2004-05-25 | 2014-07-30 | Hodogaya Chemical Co., Ltd. | P-Terphenyl compound and electrophotographic photoconductor using the same |
KR100648050B1 (ko) | 2004-09-24 | 2006-11-23 | 주식회사 엘지화학 | 유기 발광 소자 |
KR101243917B1 (ko) * | 2005-12-19 | 2013-03-14 | 삼성디스플레이 주식회사 | 전도성 고분자 조성물 및 이로부터 얻은 막을 구비한 전자소자 |
EP1840120B1 (de) | 2006-03-27 | 2013-04-24 | Novaled AG | N-Heterozyklische Verbindungen und deren Verwendung in elektronischen, optoelektronischen und elektroluminiszenten Bauelementen. |
JP5621187B2 (ja) | 2008-08-06 | 2014-11-05 | コニカミノルタ株式会社 | 有機エレクトロルミネッセンス素子、表示装置、照明装置 |
KR101120892B1 (ko) | 2009-06-19 | 2012-02-27 | 주식회사 두산 | 아크리딘 유도체 및 이를 포함하는 유기 전계 발광 소자 |
WO2011059000A1 (ja) * | 2009-11-12 | 2011-05-19 | 保土谷化学工業株式会社 | 置換されたアントラセン環構造とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子 |
JP5938175B2 (ja) | 2011-07-15 | 2016-06-22 | 出光興産株式会社 | 含窒素芳香族複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子 |
WO2014034092A1 (ja) * | 2012-09-03 | 2014-03-06 | 保土谷化学工業株式会社 | インデノアクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子 |
KR102069722B1 (ko) * | 2012-10-11 | 2020-01-23 | 덕산네오룩스 주식회사 | 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
JP3194657U (ja) | 2014-09-19 | 2014-12-04 | 恵美子 青柳 | 温熱首巻 |
-
2015
- 2015-08-06 WO PCT/JP2015/072386 patent/WO2016027687A1/ja active Application Filing
- 2015-08-06 EP EP15834378.0A patent/EP3185324B1/en active Active
- 2015-08-06 KR KR1020177007519A patent/KR102327538B1/ko active Active
- 2015-08-06 CN CN201580044758.8A patent/CN106796993B/zh active Active
- 2015-08-06 US US15/504,804 patent/US10424742B2/en active Active
- 2015-08-06 JP JP2015552705A patent/JP5875743B1/ja active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311411A (ja) * | 2003-03-26 | 2004-11-04 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置および表示装置 |
JP2006219393A (ja) * | 2005-02-09 | 2006-08-24 | Canon Inc | 化合物、発光素子及び画像表示装置 |
JP2009535815A (ja) * | 2006-04-27 | 2009-10-01 | イーストマン コダック カンパニー | アントラセン誘導体を含むエレクトロルミネッセンス・デバイス |
JP2009299049A (ja) * | 2008-05-16 | 2009-12-24 | Semiconductor Energy Lab Co Ltd | 組成物、薄膜の作製方法、及び発光素子の作製方法 |
KR101216004B1 (ko) * | 2009-08-17 | 2012-12-27 | 에스에프씨 주식회사 | 안트라센 유도체 및 이를 포함하는 유기전계발광소자 |
KR20120084238A (ko) * | 2011-01-19 | 2012-07-27 | (주)씨에스엘쏠라 | 유기발광화합물 및 이를 이용한 유기 광소자 |
JP2014519541A (ja) * | 2011-06-17 | 2014-08-14 | メルク パテント ゲーエムベーハー | 有機エレクトロルミネッセントデバイスのための材料 |
WO2013054764A1 (ja) * | 2011-10-14 | 2013-04-18 | 保土谷化学工業株式会社 | 新規なベンゾトリアゾール誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子 |
WO2014061960A1 (ko) * | 2012-10-18 | 2014-04-24 | 덕산하이메탈(주) | 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
WO2014112360A1 (ja) * | 2013-01-17 | 2014-07-24 | 保土谷化学工業株式会社 | インデノアクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017204492A (ja) * | 2016-05-09 | 2017-11-16 | 保土谷化学工業株式会社 | 有機エレクトロルミネッセンス素子 |
CN106892915A (zh) * | 2017-02-23 | 2017-06-27 | 南京高光半导体材料有限公司 | 有机化合物、有机电致发光器件及其应用 |
CN106892915B (zh) * | 2017-02-23 | 2019-02-22 | 南京高光半导体材料有限公司 | 有机化合物、有机电致发光器件及其应用 |
JPWO2020137724A1 (ja) * | 2018-12-25 | 2020-07-02 | ||
JP7397005B2 (ja) | 2018-12-25 | 2023-12-12 | 保土谷化学工業株式会社 | 有機エレクトロルミネッセンス素子 |
Also Published As
Publication number | Publication date |
---|---|
EP3185324A4 (en) | 2018-01-10 |
KR102327538B1 (ko) | 2021-11-16 |
JPWO2016027687A1 (ja) | 2017-04-27 |
EP3185324B1 (en) | 2023-10-04 |
CN106796993B (zh) | 2019-05-28 |
KR20170043620A (ko) | 2017-04-21 |
CN106796993A (zh) | 2017-05-31 |
US10424742B2 (en) | 2019-09-24 |
JP5875743B1 (ja) | 2016-03-02 |
EP3185324A1 (en) | 2017-06-28 |
US20170271599A1 (en) | 2017-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013157367A1 (ja) | 新規なトリフェニレン誘導体及び該誘導体が使用されている有機エレクトロルミネッセンス素子 | |
JP5875743B1 (ja) | 有機エレクトロルミネッセンス素子 | |
KR102459260B1 (ko) | 유기 일렉트로루미네선스 소자 | |
US20130126856A1 (en) | Compound having indenocarbazole ring structure, and organic electroluminescent device | |
KR102058262B1 (ko) | 인데노 아크리단 환 구조를 가지는 화합물 및 유기 일렉트로루미네선스 소자 | |
JP6814156B2 (ja) | 有機エレクトロルミネッセンス素子 | |
KR102319951B1 (ko) | 유기 전계발광 소자 | |
KR20150061022A (ko) | 비스카바졸 유도체 및 그것을 이용한 유기 전기발광 소자 | |
KR102440766B1 (ko) | 유기 일렉트로루미네센스 소자 | |
KR20180075559A (ko) | 유기 일렉트로루미네선스 소자 | |
KR20180017130A (ko) | 아릴아민 화합물 및 유기 전계발광 소자 | |
WO2019059334A1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP2021192441A (ja) | 有機エレクトロルミネッセンス素子用材料 | |
KR20190128169A (ko) | 유기 일렉트로루미네선스 소자 | |
KR102654994B1 (ko) | 유기 전계발광 소자 | |
KR20230088341A (ko) | 아릴아민 화합물, 유기 일렉트로 루미네선스 소자, 및 전자 기기 | |
KR20220086562A (ko) | 유기 일렉트로루미네센스 소자 | |
WO2014065300A1 (ja) | アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015552705 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15834378 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015834378 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015834378 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15504804 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177007519 Country of ref document: KR Kind code of ref document: A |