[go: up one dir, main page]

WO2016027363A1 - Transmission cable - Google Patents

Transmission cable Download PDF

Info

Publication number
WO2016027363A1
WO2016027363A1 PCT/JP2014/071982 JP2014071982W WO2016027363A1 WO 2016027363 A1 WO2016027363 A1 WO 2016027363A1 JP 2014071982 W JP2014071982 W JP 2014071982W WO 2016027363 A1 WO2016027363 A1 WO 2016027363A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric wire
wire
layer
core
transmission cable
Prior art date
Application number
PCT/JP2014/071982
Other languages
French (fr)
Japanese (ja)
Inventor
聖友 西郷
Original Assignee
合同会社33
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社33 filed Critical 合同会社33
Priority to PCT/JP2014/071982 priority Critical patent/WO2016027363A1/en
Publication of WO2016027363A1 publication Critical patent/WO2016027363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables

Definitions

  • the present invention relates to a transmission cable used for transmitting electric signals and electric power.
  • Patent Document 1 discloses an invention that improves the transmission characteristics as described above.
  • the present invention includes parallel first and second conductive wires, and third and fourth conductive wires that are intertwined with each other by forming an intersection with the first and second conductive wires, and these first to fourth conductive wires.
  • patent document 1 it has confirmed by experiment that a phase delay can be improved when the electrical signal is transmitted with the said transmission medium.
  • the transmission medium of Patent Document 1 is also used to improve transmission efficiency by being configured in a coil shape and inserted in series between a solar cell and an inverter. It is done.
  • Patent Document 3 since it has a network structure in which the first to fourth conductive wires are intertwined in a complicated manner, for example, a dedicated manufacturing apparatus shown in Patent Document 3 is required, and thus in terms of manufacturing and cost. Improvement is required and handling is not easy. Further, in the state where the mesh structure is exposed, there are concerns about the performance in terms of durability such as wear resistance and heat resistance, and it is necessary to devise such as providing a coating material according to the usage environment.
  • the present invention has been made in view of the above-described conventional circumstances, and a problem to be solved by the present invention is to provide a transmission cable that can obtain good durability performance and transmission characteristics with a simpler and easier-to-handle structure. It is in.
  • the inventor of the present application diligently studied to solve this problem, and as a result of repeated trial and error, the inventors succeeded in greatly improving the transmission characteristics by the following technical means with a simple structure and confirmed the experiment.
  • this technical means for each of the first electric wire and the second electric wire, a layer in which a large number of graphite cluster diamond particles are dispersed in an insulating synthetic resin material is formed on the outer periphery of the core wire made of a conductor.
  • the core wire of the first electric wire is formed thicker than the core wire of the second electric wire, and the first electric wire and the second electric wire are bundled substantially in parallel.
  • the present invention is configured as described above, it is possible to obtain good durability performance and transmission characteristics with a simpler and easier-to-handle structure as compared with the prior art.
  • FIG. 5 is a diagram showing a pulse waveform on the output side in the experimental circuit shown in FIG. 4. It is a table
  • top view which shows the other example of a transmission cable It is a perspective view which shows an example of the transmission apparatus using the transmission cable. It is a perspective view which shows an example of the transmission circuit using the transmission apparatus. It is a table
  • the first feature of the present embodiment is that for each of the first electric wire and the second electric wire, a large number of graphite cluster diamond particles are dispersed in an insulating synthetic resin material on the outer periphery of the core wire made of a conductor. A layer is formed, the core wire of the first electric wire is formed thicker than the core wire of the second electric wire, and the first electric wire and the second electric wire are bundled substantially in parallel.
  • the second feature is that the layer is a second layer, and includes a first layer that covers the core wire on an inner peripheral side of the second layer, and a third layer that covers the outer periphery of the second layer.
  • These first and third layers were formed from an insulating synthetic resin material.
  • the third feature is that the core wires of the two electric wires are connected to each other on one end side and the other end side of the first and second electric wires.
  • the fourth feature is that the first electric wire and the core wire of the second electric wire are connected to each other at one end side of the first and second electric wires, and the second end is connected to the core wire of the first electric wire at the other end side.
  • the core wire of the electric wire was in a non-contact state.
  • the fifth feature is that the core wire in the first and second electric wires is a copper wire, and the synthetic resin material of each layer is a urethane resin.
  • the transmission cable 10 is formed by bundling a first electric wire 11 and a second electric wire 12 substantially in parallel, and the core wires 11 a and 12 a are connected to each other at one end side and the other end side. Electrically connected.
  • the 1st electric wire 11 has a coating
  • This coating is formed by laminating a first layer 11b, a second layer 11c, and a third layer 11d in order from the inside.
  • the second electric wire 12 has a coating on the outer periphery of the core wire 12a made of a conductor over the entire periphery.
  • the coating includes the first layer 12b, the second layer 12c, and the third layer. 12d are laminated in order from the inside.
  • These first electric wires 11 and second electric wires 12 have different thicknesses, but have the same cross-sectional structure as shown in FIG.
  • the core wires 11a and 12a of the first and second electric wires 11 and 12 are both single copper wires.
  • the core wire 11 a of the first electric wire 11 is formed thicker than the core wire 12 a of the second electric wire 12. More specifically, in this example, the diameter d of the core wire 11a of the first electric wire 11 is about three times the diameter d of the core wire 12a of the second electric wire 12, and the diameter d of the core wire 11a is ⁇ 0.
  • the diameter d of the core wire 12a is ⁇ 0.1 mm.
  • the first layer 11b is a layer made of an insulating synthetic resin material, and covers the outer periphery of the core wire 11a (or 12b) in a cylindrical shape over the entire circumference.
  • the second layer 11c (or 12c) is a layer in which a large number of graphite cluster diamond particles are scattered in an insulating synthetic resin material, and the outer periphery of the first layer 11b (or 12b) is cylindrical over the entire circumference. Covered.
  • the third layer 11d is a layer made of an insulating synthetic resin material, and covers the outer periphery of the second layer 11c (or 12c) in a cylindrical shape over the entire circumference.
  • the synthetic resin material constituting the first to third layers 11b to 11d (or 12b to 12d) is the same type of synthetic resin material, and urethane resin is used in one example of this embodiment.
  • the total thickness t of the coating composed of the first to third layers 11b, 11c, 11d is 390 ⁇ m (about 400 ⁇ m).
  • the breakdown is that the thickness t1 of the first layer 11b is 20 ⁇ m, the thickness t2 of the second layer 11c is 350 ⁇ m, and the thickness t3 of the third layer 11d is 20 ⁇ m.
  • the thickness t of the entire coating composed of the first to third layers 12b, 12c, 12d is 114 ⁇ m.
  • the breakdown is that the thickness t1 of the first layer 11b is 7 ⁇ m, the thickness t2 of the second layer 11c is 100 ⁇ m, and the thickness t3 of the third layer 11d is 7 ⁇ m.
  • Each of the layers is formed by repeating the process of passing the core wire 11a (or 12a) through the molten coating material a plurality of times.
  • the graphite cluster diamond particles X contained in the second layers 11c and 12c have a pure diamond x1 in the center covered with diamond-like carbon x2 and further covered with graphite carbon x3.
  • the crystal has a three-layer structure and has a diameter of about 15 nm.
  • the particle X has electrical conductivity.
  • the blending ratio of the graphite cluster diamond particles X contained in the second layers 11c and 12c is within a range of 0.75 to 5% by weight. If it is smaller than this range, sufficient performance in durability and electrical characteristics cannot be exhibited, and if it exceeds the above range, variation in the layer thickness occurs in the longitudinal direction of the electric wire, and it is difficult to stabilize the electrical characteristics.
  • a more preferable range of the blending ratio is within a range of 0.75 to 1%, and in the example of this embodiment, it is about 1%.
  • An experimental circuit 100 shown in FIG. 4 is an electric circuit in which a pulse wave output from the signal transmission device 101 is caused to flow through a 50 ⁇ resistor 102. Each output terminal of the signal transmission device 101 and each terminal of the resistor 102 are connected to each other. In between, the sample 110 is connected in series.
  • reference numerals 111 and 111 denote input terminals of two samples 110 and 110.
  • Reference numerals 112 and 112 are output terminals of the two samples 110 and 110.
  • As the signal transmission device 101 a signal generator AFG3102 manufactured by Tektronix was used.
  • an unillustrated oscilloscope (DSC-9506, manufactured by Techio Technology Co., Ltd.) is connected to the input terminals 111 and 111 and the output terminals 112 and 112, and the input waveform (reference waveform W0) and output waveform W1 are connected by the oscilloscope. Were measured simultaneously. Then, as shown in FIG. 5, the delay time T of the output waveform W1 was calculated with respect to the reference waveform W0.
  • Sample 110 is any one of Examples 1 and 2 and Comparative Examples 1 to 3 shown in the table of FIG. In the example of FIG. 4, each sample 110 is arranged in a straight line. However, due to the experimental space and the like, the experiment is actually performed with each sample 110 wound around a bobbin (not shown). went.
  • Example 1 is the transmission cable 10 which has the said cross-sectional structure.
  • the second layers 11c and 12c and the third layers 11d and 12d are omitted from the transmission cable 10 having the cross-sectional structure.
  • the core wire 11a of the first electric wire 11 and the core wire 12a of the second electric wire 12 have the same thickness with respect to the transmission cable 10 having the above-described cross-sectional structure.
  • Comparative Example 2 only the second layers 11c and 12c are omitted from the transmission cable 10 having the cross-sectional structure.
  • the core wire 11a of the first electric wire 11 and the core wire 12a of the second electric wire 12 have the same thickness with respect to the transmission cable 10 having the cross-sectional structure, and only the second layers 11c and 12c are omitted. It was. That is, the comparative example 3 is a bundle of two general electric wires having the same thickness.
  • the coating including the graphite cluster diamond can improve the performance in terms of durability such as wear resistance and heat resistance, and the electrical energy is transmitted as shown in the above experimental results. Speed can be improved.
  • the transmission cable 20 shown in FIG. 7 connects the core wires 11a and 12a to each other at one end side (right end side according to the illustrated example) of the first and second electric wires 11 and 12 bundled substantially in parallel. On the end side (the left end side in the illustrated example), the core wire 12 a of the second electric wire 12 is not in contact with the core wire 11 a of the first electric wire 11.
  • the other structure of the transmission cable 20 is the same as that of the transmission cable 10 described above. According to this transmission cable 20, since the current directions are different between the substantially parallel first electric wire 11 and second electric wire 12, the magnetic field generated by these electric wires is canceled out. Moreover, since the 1st electric wire 11 and the 2nd electric wire 12 are adjoining in the insulated state, a floating capacity exists between these electric wires.
  • the transmission cable 20 is used to configure the transmission device 1 and the transmission circuit 200 as shown in FIGS.
  • the transmission device 1 includes a magnetic core 30 and the transmission cable 20 wound around the magnetic core 30 in a coil shape.
  • the transmission cable 20 has a portion between the one end side (the right end side according to FIG. 8) that connects the core wires 11 a and 12 a and the other end side that is opposite to the one end side.
  • a so-called bifilar winding coil is formed by winding the body core 30 in a coil shape.
  • the magnetic core 30 is a magnetic core material made of a magnetic material, and for example, an EI type core made of ferrite is used.
  • the transmission device 1 having the above-described configuration is connected in series in an electrical wiring that supplies power in which a direct current component and a harmonic component are superimposed.
  • the transmission circuit 200 illustrated in FIG. 9 includes a DC power supply 40 and an inverter device 50 that inputs power from the DC power supply 40 and outputs AC power, and electrical wiring between the DC power supply 40 and the inverter device 50.
  • the transmission device 1 is connected in series.
  • the direct current power source 40 is obtained by electrically connecting a plurality (three in the illustrated example) of solar cells 41, 42, and 43 in series between output terminals.
  • Each solar cell 41, 42 or 43 is a semiconductor solar cell having a known structure in which an n-type semiconductor and a p-type semiconductor are stacked.
  • a general silicon solar cell, an organic solar cell, a group IIIV solar cell, or the like is used. be able to.
  • the inverter device 50 converts the DC power input from the DC power source 40 into AC power having a necessary frequency and voltage and outputs it, and uses a known device called a power conditioner or the like.
  • the transmission device 1 having the above-described configuration is inserted in series in the minus-side electrical wiring between the DC power supply 40 and the inverter device 50.
  • This transmission device 1 uses an EI type core as the magnetic core 30, and a predetermined number of the transmission cables 20 having the above configuration are wound around the outer periphery of the core.
  • the number of turns of the coiled portion in the transmission cable 20 is appropriately set so as to have a resonance frequency corresponding to the harmonic component of the transmission circuit 200.
  • a PC40 (TDK company name), EI30 type (length 30 mm, width 30 mm) core was used as the magnetic core 30, and the number of turns was 9T.
  • the embodiment in FIG. 10 is a circuit in which the inverter device 50 is replaced with an electronic load device 50 ′ in the transmission circuit 200 (see FIG. 9).
  • 10 is a circuit in which the transmission apparatus 1 is omitted from the circuit of the above embodiment.
  • the EI30 type core was used as the magnetic core 30, and the number of turns of the transmission cable 20 was 9T.
  • a multi-function DC electronic load device (model number: PLZ164W) manufactured by Kikusui Electronics Co., Ltd. was used in the constant voltage mode.
  • This multi-function DC electronic load device converts an input voltage into a predetermined voltage, applies a load to the converted DC voltage, and measures and displays the load side voltage, current, power, and the like.
  • the transmission cable 20 and the transmission device 1 according to the present invention improve the influence of the high-frequency component, resistance component, capacitance component, inductance component, etc. in the transmission path caused by the internal circuit of the electronic load device 50 ′, It is considered that transmission characteristics, transmission efficiency, and the like have been improved.
  • the dimension of each part of the 1st electric wire 11 and the 2nd electric wire 12, the dimension of the magnetic body core 30, the winding number of the transmission cable 20, etc. used the use of the transmission cable 10 or 20, and this transmission cable. Changes can be made as appropriate according to the capacity of the apparatus.
  • the first electric wire 11 and the second electric wire 12 are bundled without bonding, but as another example, handling of the plurality of electric wires is facilitated.
  • they may be integrated by bonding in a parallel state or by being inserted into another tubular coating.
  • the core wire 11a and the core wire 12a were made into the copper wire which is a single wire as a particularly preferable example, as another example, the copper wire which is a twisted wire, and the conductor of another material can also be used. Is possible.
  • the transmission apparatus 1 was connected in series in the electrical wiring between the solar cells 41,42,43 and the inverter apparatus 50 as a particularly preferable example, If it is connected in series in an electrical wiring through which electric power in which a direct current component and a harmonic component are superimposed is passed, the above-mentioned effect is exhibited. It is also possible to adopt a mode in which the transmission device 1 is connected in series in the electrical wiring, a mode in which the transmission device 1 is connected in series to another transmission line containing harmonic components, or the like.
  • Transmission device 10 Transmission cable 11: First electric wire 12: Second electric wire 11a, 12a: Core wire 11b, 12b: First layer 11c, 12c: Second layer 11d, 12d: Third Layer X: Particles of graphite cluster diamond 30: Magnetic core 40: DC power supply 41, 42, 43: Solar cell 50: Inverter device 50 ': Electronic load device 100: Experimental circuit 200: Transmission circuit

Landscapes

  • Communication Cables (AREA)

Abstract

The purpose of the present invention is to improve transmission characteristics through a simpler structure. For each of a first electric wire 11 and a second electric wire 12, a layer in which a plurality of graphite cluster diamond particles X are dispersed in an insulative synthetic resin material is formed on the outer circumferences of core wires 11a, 12a made of a conductor. The core wire 11a of the first electric wire 11 is formed thicker than the core wire 12a of the second electric wire 12. The first electric wire 11 and the second electric wire 12 are bundled approximately parallel to each other to form a transmission cable.

Description

伝送ケーブルTransmission cable
 本発明は、電気信号や電力を伝送するのに用いられる伝送ケーブルに関するものである。 The present invention relates to a transmission cable used for transmitting electric signals and electric power.
 近年、電気信号により伝送される情報量は増大の一途をたどっており、このことに伴い、LANケーブルや、USBメモリ、ハードディスクなどにおいては、電気エネルギーの伝わる速さ等の伝送特性が問題になる。
 例えば、パルス波を伝送ケーブルによって伝送し、前記伝送ケーブルの入力側で前記パルス波が立ち上がった時刻と、前記伝送ケーブルの出力側で同パルス波が立ち上がった時刻とを測定した場合では、前者時刻に対し後者時刻は遅延する。この遅延時間は、伝送ケーブルの材質や構造等に起因して異なるものと考えられる。
In recent years, the amount of information transmitted by electric signals has been increasing, and accordingly, transmission characteristics such as the speed at which electric energy is transmitted become a problem in LAN cables, USB memories, hard disks, and the like. .
For example, when transmitting a pulse wave by a transmission cable and measuring the time when the pulse wave rises on the input side of the transmission cable and the time when the pulse wave rises on the output side of the transmission cable, the former time On the other hand, the latter time is delayed. This delay time is considered to be different due to the material and structure of the transmission cable.
 前記のような伝送特性を改善した発明には、例えば、特許文献1に記載されるものがある。
 この発明は、平行な第1及び第2の導線と、第1及び第2の導線に対し交差部を形成して絡み合う第3及び第4の導線とを備え、これら第1~第4の導線の入力端側と出力端側とを、それぞれ共通接続した伝送媒体である。
 そして、特許文献1では、前記伝送媒体により、電気信号を伝送した場合に位相遅れを改善できることを、実験により確認している。
 また、特許文献1の前記伝送媒体は、特許文献2に記載されるように、コイル状に構成し太陽電池とインバータとの間に直列に挿入することで、伝送効率を向上するのにも用いられる。
For example, Patent Document 1 discloses an invention that improves the transmission characteristics as described above.
The present invention includes parallel first and second conductive wires, and third and fourth conductive wires that are intertwined with each other by forming an intersection with the first and second conductive wires, and these first to fourth conductive wires. A transmission medium in which the input end side and the output end side of each are connected in common.
And in patent document 1, it has confirmed by experiment that a phase delay can be improved when the electrical signal is transmitted with the said transmission medium.
Further, as described in Patent Document 2, the transmission medium of Patent Document 1 is also used to improve transmission efficiency by being configured in a coil shape and inserted in series between a solar cell and an inverter. It is done.
 しかしながら、前記従来技術によれば、第1~第4の導線を複雑に絡み合わせた網線構造であるため、例えば特許文献3に示す専用製造装置を要する等、製造面やコスト面等での改善が求められる上、取扱いも容易ではない。
 また、前記網線構造を露出した状態では、耐摩耗性や耐熱性等の耐久面での性能が懸念され、別途使用環境に応じた被覆材を設ける等の工夫を要する。
However, according to the prior art, since it has a network structure in which the first to fourth conductive wires are intertwined in a complicated manner, for example, a dedicated manufacturing apparatus shown in Patent Document 3 is required, and thus in terms of manufacturing and cost. Improvement is required and handling is not easy.
Further, in the state where the mesh structure is exposed, there are concerns about the performance in terms of durability such as wear resistance and heat resistance, and it is necessary to devise such as providing a coating material according to the usage environment.
特許第4335974号公報Japanese Patent No. 4335974 特許第4390852号公報Japanese Patent No. 4390852 特開2009-4283号公報JP 2009-4283 A
 本発明は上記従来事情に鑑みてなされたものであり、その課題とする処は、より簡素で取扱いの容易な構造でもって良好な耐久性能及び伝送特性を得ることができる伝送ケーブルを提供することにある。 The present invention has been made in view of the above-described conventional circumstances, and a problem to be solved by the present invention is to provide a transmission cable that can obtain good durability performance and transmission characteristics with a simpler and easier-to-handle structure. It is in.
 本願の発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、以下のような簡素構造の技術的手段によって、伝送特性を大幅に改善することに成功し、実験確認した。
 この技術的手段は、第1の電線と第2の電線とのそれぞれについて、導体からなる芯線の外周に、絶縁性の合成樹脂材料にグラファイトクラスターダイヤモンドの粒子を多数散在させた層を形成し、第1の電線の芯線を、第2の電線の芯線よりも太く形成し、これら第1の電線と第2の電線とを略平行に束ねてなることを特徴とする。
The inventor of the present application diligently studied to solve this problem, and as a result of repeated trial and error, the inventors succeeded in greatly improving the transmission characteristics by the following technical means with a simple structure and confirmed the experiment.
In this technical means, for each of the first electric wire and the second electric wire, a layer in which a large number of graphite cluster diamond particles are dispersed in an insulating synthetic resin material is formed on the outer periphery of the core wire made of a conductor. The core wire of the first electric wire is formed thicker than the core wire of the second electric wire, and the first electric wire and the second electric wire are bundled substantially in parallel.
 本発明は、以上のとおり構成されているので、従来技術に比べ、より簡素で取扱いの容易な構造でもって良好な耐久性能及び伝送特性を得ることができる。 Since the present invention is configured as described above, it is possible to obtain good durability performance and transmission characteristics with a simpler and easier-to-handle structure as compared with the prior art.
伝送ケーブルの一例を示す平面図である。It is a top view which shows an example of a transmission cable. 同伝送ケーブルを構成する電線の断面図である。It is sectional drawing of the electric wire which comprises the transmission cable. グラファイトクラスターダイヤモンドの結晶構造を模式的に示す断面図である。It is sectional drawing which shows typically the crystal structure of a graphite cluster diamond. 同伝送ケーブルの伝送特性を測定するための実験回路図である。It is an experimental circuit diagram for measuring the transmission characteristic of the transmission cable. 図4に示す実験回路において、出力側のパルス波形を示す図である。FIG. 5 is a diagram showing a pulse waveform on the output side in the experimental circuit shown in FIG. 4. 図4に示す実験回路によって遅延時間を測定した比較実験の結果を示す表である。It is a table | surface which shows the result of the comparative experiment which measured delay time with the experimental circuit shown in FIG. 伝送ケーブルの他例を示す平面図である。It is a top view which shows the other example of a transmission cable. 同伝送ケーブルを用いた伝送装置の一例を示す斜視図である。It is a perspective view which shows an example of the transmission apparatus using the transmission cable. 同伝送装置を用いた伝送回路の一例を示す斜視図である。It is a perspective view which shows an example of the transmission circuit using the transmission apparatus. 図9に示す伝送回路を用いて発電電力量を測定した比較実験の結果を示す表である。It is a table | surface which shows the result of the comparative experiment which measured the electric power generation amount using the transmission circuit shown in FIG.
 本実施の形態の第一の特徴は、第1の電線と第2の電線とのそれぞれについて、導体からなる芯線の外周に、絶縁性の合成樹脂材料にグラファイトクラスターダイヤモンドの粒子を多数散在させた層を形成し、第1の電線の芯線を、第2の電線の芯線よりも太く形成し、これら第1の電線と第2の電線とを略平行に束ねてなる。 The first feature of the present embodiment is that for each of the first electric wire and the second electric wire, a large number of graphite cluster diamond particles are dispersed in an insulating synthetic resin material on the outer periphery of the core wire made of a conductor. A layer is formed, the core wire of the first electric wire is formed thicker than the core wire of the second electric wire, and the first electric wire and the second electric wire are bundled substantially in parallel.
 第二の特徴は、前記層を第2の層とし、この第2の層の内周側で前記芯線を覆う第1の層と、第2の層の外周を覆う第3の層とを備え、これら第1及び第3の層を、絶縁性の合成樹脂材料から形成した。 The second feature is that the layer is a second layer, and includes a first layer that covers the core wire on an inner peripheral side of the second layer, and a third layer that covers the outer periphery of the second layer. These first and third layers were formed from an insulating synthetic resin material.
 第三の特徴は、第1及び第2の電線の一端側と他端側のそれぞれについて、2本の前記電線の芯線同士を接続した。 The third feature is that the core wires of the two electric wires are connected to each other on one end side and the other end side of the first and second electric wires.
 第四の特徴は、第1及び第2の電線の一端側において第1の電線と第2の電線の芯線同士を接続し、その他端側においては、第1の電線の芯線に対し第2の電線の芯線を非接触状態とした。 The fourth feature is that the first electric wire and the core wire of the second electric wire are connected to each other at one end side of the first and second electric wires, and the second end is connected to the core wire of the first electric wire at the other end side. The core wire of the electric wire was in a non-contact state.
 第五の特徴は、第1及び第2の電線における前記芯線を銅線とし、前記各層の合成樹脂材料をウレタン樹脂とした。 The fifth feature is that the core wire in the first and second electric wires is a copper wire, and the synthetic resin material of each layer is a urethane resin.
 次に、本発明に係る好ましい実施例を、図面に基づいて詳細に説明する。 Next, a preferred embodiment according to the present invention will be described in detail with reference to the drawings.
 図1に示すように、伝送ケーブル10は、第1の電線11と第2の電線12とを、略平行に束ねてなり、その一端側と他端側の各々において、芯線11a,12a同士を電気的に接続している。 As shown in FIG. 1, the transmission cable 10 is formed by bundling a first electric wire 11 and a second electric wire 12 substantially in parallel, and the core wires 11 a and 12 a are connected to each other at one end side and the other end side. Electrically connected.
 第1の電線11は、図2に示すように、導体からなる芯線11aの外周に、全周にわたって被覆を有する。この被覆は、第1の層11bと、第2の層11cと、第3の層11dとを、内側から順に積層してなる。
 略同様に、第2の電線12は、導体からなる芯線12aの外周に、全周にわたって被覆を有し、この被覆は、第1の層12bと、第2の層12cと、第3の層12dとを、内側から順に積層してなる。
 これら第1の電線11と第2の電線12とは、太さが異なるが、図2に示すように、同様の断面構造を有している。
As shown in FIG. 2, the 1st electric wire 11 has a coating | cover over the outer periphery of the core wire 11a consisting of a conductor. This coating is formed by laminating a first layer 11b, a second layer 11c, and a third layer 11d in order from the inside.
In a similar manner, the second electric wire 12 has a coating on the outer periphery of the core wire 12a made of a conductor over the entire periphery. The coating includes the first layer 12b, the second layer 12c, and the third layer. 12d are laminated in order from the inside.
These first electric wires 11 and second electric wires 12 have different thicknesses, but have the same cross-sectional structure as shown in FIG.
 第1及び第2の電線11,12の芯線11a,12aは、本実施の一例によれば、いずれも銅製の単線である。
 そして、第1の電線11の芯線11aは、第2の電線12の芯線12aよりも太く形成される。詳細に説明すれば、本実施の一例では、第1の電線11の芯線11aの直径dを、第2の電線12の芯線12aの直径dの約3倍としており、芯線11aの直径dがφ0.3mm、芯線12aの直径dがφ0.1mmである。
According to an example of the present embodiment, the core wires 11a and 12a of the first and second electric wires 11 and 12 are both single copper wires.
The core wire 11 a of the first electric wire 11 is formed thicker than the core wire 12 a of the second electric wire 12. More specifically, in this example, the diameter d of the core wire 11a of the first electric wire 11 is about three times the diameter d of the core wire 12a of the second electric wire 12, and the diameter d of the core wire 11a is φ0. The diameter d of the core wire 12a is φ0.1 mm.
 第1の層11b(又は12b)は、絶縁性の合成樹脂材料からなる層であり、芯線11a(又は12b)の外周を全周にわたって筒状に覆っている。
 第2の層11c(又は12c)は、絶縁性の合成樹脂材料にグラファイトクラスターダイヤモンドの粒子を多数散在してなる層であり、第1の層11b(又は12b)の外周を全周にわたって筒状に覆っている。
 第3の層11d(又は12d)は、絶縁性の合成樹脂材料からなる層であり、第2の層11c(又は12c)の外周を全周にわたって筒状に覆っている。
The first layer 11b (or 12b) is a layer made of an insulating synthetic resin material, and covers the outer periphery of the core wire 11a (or 12b) in a cylindrical shape over the entire circumference.
The second layer 11c (or 12c) is a layer in which a large number of graphite cluster diamond particles are scattered in an insulating synthetic resin material, and the outer periphery of the first layer 11b (or 12b) is cylindrical over the entire circumference. Covered.
The third layer 11d (or 12d) is a layer made of an insulating synthetic resin material, and covers the outer periphery of the second layer 11c (or 12c) in a cylindrical shape over the entire circumference.
 第1~第3の層11b~11d(又は12b~12d)を構成する前記合成樹脂材料は、同種類の合成樹脂材料であり、本実施の一例では、ウレタン樹脂を用いている。 The synthetic resin material constituting the first to third layers 11b to 11d (or 12b to 12d) is the same type of synthetic resin material, and urethane resin is used in one example of this embodiment.
 第1の電線11において、第1~第3の層11b,11c,11dからなる被覆全体の厚みtは、390μm(約400μm)である。その内訳は、第1の層11bの厚みt1が20μm、第2の層11cの厚みt2が350μm、第3の層11dの厚みt3が20μmである。
 第2の電線12において、第1~第3の層12b,12c,12dからなる被覆全体の厚みtは、114μmである。その内訳は、第1の層11bの厚みt1が7μm、第2の層11cの厚みt2が100μm、第3の層11dの厚みt3が7μmである。
 前記各層は、芯線11a(又は12a)を、溶融した被覆材料に通過させる工程を複数回繰り返すことで成形される。
In the first electric wire 11, the total thickness t of the coating composed of the first to third layers 11b, 11c, 11d is 390 μm (about 400 μm). The breakdown is that the thickness t1 of the first layer 11b is 20 μm, the thickness t2 of the second layer 11c is 350 μm, and the thickness t3 of the third layer 11d is 20 μm.
In the second electric wire 12, the thickness t of the entire coating composed of the first to third layers 12b, 12c, 12d is 114 μm. The breakdown is that the thickness t1 of the first layer 11b is 7 μm, the thickness t2 of the second layer 11c is 100 μm, and the thickness t3 of the third layer 11d is 7 μm.
Each of the layers is formed by repeating the process of passing the core wire 11a (or 12a) through the molten coating material a plurality of times.
 第2の層11c,12cに含まれるグラファイトクラスターダイヤモンドの粒子Xは、図3に示すように、中心部のピュアダイヤモンドx1がダイヤモンドライクカーボンx2に覆われ、さらにその外周がグラファイトカーボンx3によって覆われた3層構造の結晶体であり、その直径が約15nmである。この粒子Xは、導通性を有する。 As shown in FIG. 3, the graphite cluster diamond particles X contained in the second layers 11c and 12c have a pure diamond x1 in the center covered with diamond-like carbon x2 and further covered with graphite carbon x3. The crystal has a three-layer structure and has a diameter of about 15 nm. The particle X has electrical conductivity.
 また、第2の層11c,12cに含まれるグラファイトクラスターダイヤモンドの粒子Xの配合比率は、重量比にて、0.75~5%の範囲内とする。この範囲よりも小さい場合には、耐久性能や電気特性において十分な性能を発揮できず、また前記範囲を超える場合には、電線長手方向において層厚のばらつきを生じ電気特性も安定し難い。
 なお、前記配合比率のより好ましい範囲としては、0.75~1%の範囲内とし、本実施の一例では約1%としている。
The blending ratio of the graphite cluster diamond particles X contained in the second layers 11c and 12c is within a range of 0.75 to 5% by weight. If it is smaller than this range, sufficient performance in durability and electrical characteristics cannot be exhibited, and if it exceeds the above range, variation in the layer thickness occurs in the longitudinal direction of the electric wire, and it is difficult to stabilize the electrical characteristics.
A more preferable range of the blending ratio is within a range of 0.75 to 1%, and in the example of this embodiment, it is about 1%.
 次に、上記構成の伝送ケーブル10の伝送特性について比較実験を行った結果を説明する。
 図4に示す実験回路100は、信号発信装置101から出力されるパルス波を、50Ωの抵抗102に流すようにした電気回路であり、信号発信装置101の各出力端子と抵抗102の各端子との間に、試料110が直列に接続される。図中、符号111,111は、二つの試料110,110の入力端子である。また、符号112,112は、二つの試料110,110の出力端子である。
 信号発信装置101には、テクトロニクス社製の信号発生器AFG3102を用いた。
 また、入力端子111,111と出力端子112,112には、図示しないオシロスコープ(テクシオ・テクノロジー社製、DSC-9506)を接続し、該オシロスコープによって、入力波形(基準波形W0)と出力波形W1とを同時に測定した。そして、図5に示すように、基準波形W0に対し、出力波形W1の遅延時間Tを計算した。
Next, the results of a comparative experiment on the transmission characteristics of the transmission cable 10 having the above configuration will be described.
An experimental circuit 100 shown in FIG. 4 is an electric circuit in which a pulse wave output from the signal transmission device 101 is caused to flow through a 50Ω resistor 102. Each output terminal of the signal transmission device 101 and each terminal of the resistor 102 are connected to each other. In between, the sample 110 is connected in series. In the figure, reference numerals 111 and 111 denote input terminals of two samples 110 and 110. Reference numerals 112 and 112 are output terminals of the two samples 110 and 110.
As the signal transmission device 101, a signal generator AFG3102 manufactured by Tektronix was used.
Further, an unillustrated oscilloscope (DSC-9506, manufactured by Techio Technology Co., Ltd.) is connected to the input terminals 111 and 111 and the output terminals 112 and 112, and the input waveform (reference waveform W0) and output waveform W1 are connected by the oscilloscope. Were measured simultaneously. Then, as shown in FIG. 5, the delay time T of the output waveform W1 was calculated with respect to the reference waveform W0.
 試料110は、図6の表に示す実施例1,2及び比較例1~3の何れかであり、それぞれ、線長を29mとしている。なお、図4の例示によれば各試料110を直線状に配設しているが、実験スペース等の関係で、実際には各試料110をボビン(図示せず)に巻いた状態で実験を行った。 Sample 110 is any one of Examples 1 and 2 and Comparative Examples 1 to 3 shown in the table of FIG. In the example of FIG. 4, each sample 110 is arranged in a straight line. However, due to the experimental space and the like, the experiment is actually performed with each sample 110 wound around a bobbin (not shown). went.
 実施例1は、上記断面構造を有する伝送ケーブル10である。
 実施例2は、上記断面構造の伝送ケーブル10から、第2の層11c,12c及び第3の層11d,12dを省いたものである。
 比較例1は、上記断面構造の伝送ケーブル10に対し、第1の電線11の芯線11aと第2の電線12の芯線12aとを同じ太さにしたものである。
 比較例2は、上記断面構造の伝送ケーブル10に対し、第2の層11c,12cのみを省いたものである。
 比較例3は、上記断面構造の伝送ケーブル10に対し、第1の電線11の芯線11aと第2の電線12の芯線12aとを同じ太さにし、且つ第2の層11c,12cのみを省いたものである。すなわち、この比較例3は、一般的な同じ太さの二本の電線を束ねたものである。
Example 1 is the transmission cable 10 which has the said cross-sectional structure.
In the second embodiment, the second layers 11c and 12c and the third layers 11d and 12d are omitted from the transmission cable 10 having the cross-sectional structure.
In Comparative Example 1, the core wire 11a of the first electric wire 11 and the core wire 12a of the second electric wire 12 have the same thickness with respect to the transmission cable 10 having the above-described cross-sectional structure.
In Comparative Example 2, only the second layers 11c and 12c are omitted from the transmission cable 10 having the cross-sectional structure.
In Comparative Example 3, the core wire 11a of the first electric wire 11 and the core wire 12a of the second electric wire 12 have the same thickness with respect to the transmission cable 10 having the cross-sectional structure, and only the second layers 11c and 12c are omitted. It was. That is, the comparative example 3 is a bundle of two general electric wires having the same thickness.
 上記実験の結果、図6に示すように、実施例1及び2では、比較例1~3に比較して、遅延時間Tが顕著に短くなることを確認できた。 As a result of the above experiment, as shown in FIG. 6, it was confirmed that in Examples 1 and 2, the delay time T was remarkably shortened as compared with Comparative Examples 1 to 3.
 よって、本発明に係る伝送ケーブル10によれば、グラファイトクラスターダイヤモンドを含む被覆により、耐摩耗性や耐熱性等の耐久面での性能を向上できる上、上記実験結果に示すとおり、電気エネルギーが伝達する速度を向上することもできる。 Therefore, according to the transmission cable 10 according to the present invention, the coating including the graphite cluster diamond can improve the performance in terms of durability such as wear resistance and heat resistance, and the electrical energy is transmitted as shown in the above experimental results. Speed can be improved.
 次に、本発明に係る伝送ケーブルの他例について説明する。
 図7に示す伝送ケーブル20は、略平行に束ねられた第1及び第2の電線11,12について、その一端側(図示例によれば右端側)で芯線11a,12a同士を接続し、その他端側(図示例によれば左端側)においては、第1の電線11の芯線11aに対し第2の電線12の芯線12aを非接触状態としている。
 この伝送ケーブル20について、他の構造等は、上述した伝送ケーブル10と同様である。
 この伝送ケーブル20によれば、略平行な第1の電線11と第2の電線12とで電流方向が異なるため、これら電線により発生する磁界は打ち消される。また、第1の電線11と第2の電線12とは、絶縁された状態で近接しているための、これら電線の間には浮遊容量が存在する。
 この伝送ケーブル20は、図8及び図9に示すように、伝送装置1及び伝送回路200を構成するために用いられる。
Next, another example of the transmission cable according to the present invention will be described.
The transmission cable 20 shown in FIG. 7 connects the core wires 11a and 12a to each other at one end side (right end side according to the illustrated example) of the first and second electric wires 11 and 12 bundled substantially in parallel. On the end side (the left end side in the illustrated example), the core wire 12 a of the second electric wire 12 is not in contact with the core wire 11 a of the first electric wire 11.
The other structure of the transmission cable 20 is the same as that of the transmission cable 10 described above.
According to this transmission cable 20, since the current directions are different between the substantially parallel first electric wire 11 and second electric wire 12, the magnetic field generated by these electric wires is canceled out. Moreover, since the 1st electric wire 11 and the 2nd electric wire 12 are adjoining in the insulated state, a floating capacity exists between these electric wires.
The transmission cable 20 is used to configure the transmission device 1 and the transmission circuit 200 as shown in FIGS.
 伝送装置1は、磁性体コア30と、該磁性体コア30にコイル状に巻き付けられた上記伝送ケーブル20とを具備してなる。
 この伝送装置1において、伝送ケーブル20は、芯線11a,12a同士を接続した前記一端側(図8によれば右端側)と、その反対側である前記他端側との間の部分を、磁性体コア30にコイル状に巻き付けて、いわゆるバイファイラ巻きコイルとして構成される。
The transmission device 1 includes a magnetic core 30 and the transmission cable 20 wound around the magnetic core 30 in a coil shape.
In this transmission device 1, the transmission cable 20 has a portion between the one end side (the right end side according to FIG. 8) that connects the core wires 11 a and 12 a and the other end side that is opposite to the one end side. A so-called bifilar winding coil is formed by winding the body core 30 in a coil shape.
 磁性体コア30は、磁性体からなる磁芯材であり、例えば、フェライト製のEI型コアを用いる。 The magnetic core 30 is a magnetic core material made of a magnetic material, and for example, an EI type core made of ferrite is used.
 上記構成の伝送装置1は、直流成分と高調波成分とが重畳された電力を流す電気配線中に、直列に接続される。
 例えば、図9に示す伝送回路200は、直流電源40と、該直流電源40の電力を入力して交流電力を出力するインバータ装置50とを備え、直流電源40とインバータ装置50の間の電気配線中に上記伝送装置1を直列に接続している。
The transmission device 1 having the above-described configuration is connected in series in an electrical wiring that supplies power in which a direct current component and a harmonic component are superimposed.
For example, the transmission circuit 200 illustrated in FIG. 9 includes a DC power supply 40 and an inverter device 50 that inputs power from the DC power supply 40 and outputs AC power, and electrical wiring between the DC power supply 40 and the inverter device 50. The transmission device 1 is connected in series.
 直流電源40は、複数(図示例によれば三つ)の太陽電池41,42,43を、出力端子間で電気的に直列に接続したものである。
 各太陽電池41,42又は43は、n型半導体とp型半導体を積み重ねた周知構造の半導体太陽電池であり、例えば、一般的なシリコン太陽電池や有機系太陽電池、IIIV族太陽電池等を用いことができる。
The direct current power source 40 is obtained by electrically connecting a plurality (three in the illustrated example) of solar cells 41, 42, and 43 in series between output terminals.
Each solar cell 41, 42 or 43 is a semiconductor solar cell having a known structure in which an n-type semiconductor and a p-type semiconductor are stacked. For example, a general silicon solar cell, an organic solar cell, a group IIIV solar cell, or the like is used. be able to.
 インバータ装置50は、直流電源40から入力される直流電力を、必要な周波数及び電圧の交流電力に変換し出力するものであり、パワーコンディショナー等と呼称される周知の装置を用いる。 The inverter device 50 converts the DC power input from the DC power source 40 into AC power having a necessary frequency and voltage and outputs it, and uses a known device called a power conditioner or the like.
 伝送回路200において、上述した構成の伝送装置1は、直流電源40とインバータ装置50との間のマイナス側電気配線中に、直列に挿入される。
 この伝送装置1は、磁性体コア30としてEI型コアを用いており、該コアの外周に、上記構成の伝送ケーブル20を所定数巻き付けている。
In the transmission circuit 200, the transmission device 1 having the above-described configuration is inserted in series in the minus-side electrical wiring between the DC power supply 40 and the inverter device 50.
This transmission device 1 uses an EI type core as the magnetic core 30, and a predetermined number of the transmission cables 20 having the above configuration are wound around the outer periphery of the core.
 伝送ケーブル20におけるコイル状の部分の巻き数は、伝送回路200の高調波成分に対応した共振周波数となるように適宜に設定される。
 本実施の一例では、磁性体コア30に、PC40(TDK社材質名)、EI30タイプ(縦寸法30mm、横寸法30mm)のコアを用い、前記巻き数を9Tとした。
 また、他例としては、磁性体コア30に、PC40、EI48タイプ(縦寸法48mm、横寸法48mm)のコアを用い、前記巻き数を48Tとした。
The number of turns of the coiled portion in the transmission cable 20 is appropriately set so as to have a resonance frequency corresponding to the harmonic component of the transmission circuit 200.
In an example of this embodiment, a PC40 (TDK company name), EI30 type (length 30 mm, width 30 mm) core was used as the magnetic core 30, and the number of turns was 9T.
As another example, a PC40, EI48 type (longitudinal dimension 48 mm, lateral dimension 48 mm) core is used for the magnetic core 30 and the number of turns is set to 48T.
 次に、上記伝送回路200を用いて伝送特性を測定するようにした比較実験の結果について説明する(図10参照)。
 図10中の実施例は、上記伝送回路200(図9参照)において、インバータ装置50を電子負荷装置50’に置換した回路である。また、同図10中の比較例は、前記実施例の回路から伝送装置1を省いた回路である。
Next, the result of a comparative experiment in which transmission characteristics are measured using the transmission circuit 200 will be described (see FIG. 10).
The embodiment in FIG. 10 is a circuit in which the inverter device 50 is replaced with an electronic load device 50 ′ in the transmission circuit 200 (see FIG. 9). 10 is a circuit in which the transmission apparatus 1 is omitted from the circuit of the above embodiment.
 本実験の実施例とした伝送装置1は、磁性体コア30に上記EI30タイプのコアを用い、伝送ケーブル20の巻き数を9Tとした。 In the transmission apparatus 1 as an example of this experiment, the EI30 type core was used as the magnetic core 30, and the number of turns of the transmission cable 20 was 9T.
 この実験では、太陽電池41,42,43として、以下の仕様の単一の太陽電池モジュールを用いた。
[太陽電池モジュール仕様]
 公称最大出力(Pm):20W
 公称開放電圧(Voc):21.6V
 公称短絡電流(Isc):1.25A
 公称最大出力動作電圧(Vpm):17.0V
 公称最大出力動作電流(Ipm):1.18A
 最大システム電圧:30V
 (試験条件:日射強度1000W/m2 、モジュール温度25℃)
In this experiment, a single solar cell module having the following specifications was used as the solar cells 41, 42, and 43.
[Solar cell module specifications]
Nominal maximum output (Pm): 20W
Nominal open circuit voltage (Voc): 21.6V
Nominal short circuit current (Isc): 1.25A
Nominal maximum output operating voltage (Vpm): 17.0V
Nominal maximum output operating current (Ipm): 1.18A
Maximum system voltage: 30V
(Test conditions: solar radiation intensity 1000 W / m 2 , module temperature 25 ° C.)
 また、電子負荷装置50’としては、菊水電子工業(株)製の多機能直流電子負荷装置(型番:PLZ164W)を定電圧モードで用いた。この多機能直流電子負荷装置は、入力電圧を所定電圧に変換し、その変換後の直流電圧に負荷をかけ、負荷側の電圧、電流及び電力等を測定し表示する。 As the electronic load device 50 ', a multi-function DC electronic load device (model number: PLZ164W) manufactured by Kikusui Electronics Co., Ltd. was used in the constant voltage mode. This multi-function DC electronic load device converts an input voltage into a predetermined voltage, applies a load to the converted DC voltage, and measures and displays the load side voltage, current, power, and the like.
 そして、本実験では、前記実施例と前記比較例とのそれぞれについて、略同一の測定条件(例えば、日照量等)にて、電子負荷装置50’により表示される負荷側の電圧、電流、電力を記録した(図10参照)。 In this experiment, the voltage, current, and power on the load side displayed by the electronic load device 50 ′ under substantially the same measurement conditions (for example, the amount of sunlight) for each of the example and the comparative example. Was recorded (see FIG. 10).
 図10に示す表より、実施例では、比較例に対し電流及び電力が顕著に増加している。
 すなわち、本発明に係る伝送ケーブル20及び伝送装置1によって、電子負荷装置50’の内部回路等に起因する伝送経路中の高周波成分や、抵抗成分、容量成分、インダクタンス成分等の影響が改善され、伝送特性や伝送効率等が向上したものと考えられる。
From the table | surface shown in FIG. 10, in an Example, an electric current and electric power have increased notably compared with the comparative example.
That is, the transmission cable 20 and the transmission device 1 according to the present invention improve the influence of the high-frequency component, resistance component, capacitance component, inductance component, etc. in the transmission path caused by the internal circuit of the electronic load device 50 ′, It is considered that transmission characteristics, transmission efficiency, and the like have been improved.
 なお、第1の電線11及び第2の電線12の各部の寸法や、磁性体コア30の寸法、伝送ケーブル20の巻き数等は、伝送ケーブル10又は20の用途や、該伝送ケーブルを用いた装置の容量等に応じて、適宜に変更が可能である。 In addition, the dimension of each part of the 1st electric wire 11 and the 2nd electric wire 12, the dimension of the magnetic body core 30, the winding number of the transmission cable 20, etc. used the use of the transmission cable 10 or 20, and this transmission cable. Changes can be made as appropriate according to the capacity of the apparatus.
 また、図示例によれば、第1の電線11と第2の電線12とを接着することなく二本束ねた構造としたが、他例としては、これら複数の電線の扱いを容易にする等のために、平行な状態で接着したり、他の管状被覆内に挿入したりして一体化してもよい。 Further, according to the illustrated example, the first electric wire 11 and the second electric wire 12 are bundled without bonding, but as another example, handling of the plurality of electric wires is facilitated. For this purpose, they may be integrated by bonding in a parallel state or by being inserted into another tubular coating.
 また、上記実施例によれば、特に好ましい一例として芯線11a及び芯線12aを単線である銅線としたが、他例としては、より線である銅線や、他の材質の導体を用いることも可能である。 Moreover, according to the said Example, although the core wire 11a and the core wire 12a were made into the copper wire which is a single wire as a particularly preferable example, as another example, the copper wire which is a twisted wire, and the conductor of another material can also be used. Is possible.
 また、上記実施例によれば、特に好ましい一例として、太陽電池41,42,43とインバータ装置50との間の電気配線中に伝送装置1を直列に接続するようにしたが、伝送装置1は直流成分と高調波成分とが重畳された電力を流す電気配線中に直列に接続すれば上記作用効果を発揮するものであり、他例としては、太陽電池以外の電源装置とインバータ装置との間の電気配線中に伝送装置1を直列に接続した態様や、高調波成分を含む他の伝送ラインに伝送装置1を直列に接続した態様等とすることも可能である。 Moreover, according to the said Example, although the transmission apparatus 1 was connected in series in the electrical wiring between the solar cells 41,42,43 and the inverter apparatus 50 as a particularly preferable example, If it is connected in series in an electrical wiring through which electric power in which a direct current component and a harmonic component are superimposed is passed, the above-mentioned effect is exhibited. It is also possible to adopt a mode in which the transmission device 1 is connected in series in the electrical wiring, a mode in which the transmission device 1 is connected in series to another transmission line containing harmonic components, or the like.
 1:伝送装置
 10,20:伝送ケーブル
 11:第1の電線
 12:第2の電線
 11a,12a:芯線
 11b,12b:第1の層
 11c,12c:第2の層
 11d,12d:第3の層
 X:グラファイトクラスターダイヤモンドの粒子
 30:磁性体コア
 40:直流電源
 41,42,43:太陽電池
 50:インバータ装置
 50’:電子負荷装置
 100:実験回路
 200:伝送回路
1: Transmission device 10, 20: Transmission cable 11: First electric wire 12: Second electric wire 11a, 12a: Core wire 11b, 12b: First layer 11c, 12c: Second layer 11d, 12d: Third Layer X: Particles of graphite cluster diamond 30: Magnetic core 40: DC power supply 41, 42, 43: Solar cell 50: Inverter device 50 ': Electronic load device 100: Experimental circuit 200: Transmission circuit

Claims (5)

  1.  第1の電線と第2の電線とのそれぞれについて、導体からなる芯線の外周に、絶縁性の合成樹脂材料にグラファイトクラスターダイヤモンドの粒子を多数散在させた層を形成し、
     第1の電線の芯線を、第2の電線の芯線よりも太く形成し、
     これら第1の電線と第2の電線とを略平行に束ねてなることを特徴とする伝送ケーブル。
    For each of the first electric wire and the second electric wire, a layer in which a large number of graphite cluster diamond particles are dispersed in an insulating synthetic resin material is formed on the outer periphery of the core wire made of a conductor.
    The core wire of the first electric wire is formed thicker than the core wire of the second electric wire,
    A transmission cable, wherein the first electric wire and the second electric wire are bundled substantially in parallel.
  2.  前記層を第2の層とし、
     この第2の層の内周側で前記芯線を覆う第1の層と、第2の層の外周を覆う第3の層とを備え、これら第1及び第3の層を、絶縁性の合成樹脂材料から形成したことを特徴とする請求項1記載の伝送ケーブル。
    The layer is the second layer,
    A first layer that covers the core wire on the inner peripheral side of the second layer and a third layer that covers the outer periphery of the second layer, and the first and third layers are made of an insulating compound The transmission cable according to claim 1, wherein the transmission cable is made of a resin material.
  3.  第1及び第2の電線の一端側と他端側のそれぞれについて、2本の前記電線の芯線同士を接続したことを特徴とする請求項1又は2記載の伝送ケーブル。 The transmission cable according to claim 1 or 2, wherein the core wires of the two electric wires are connected to each other on one end side and the other end side of the first and second electric wires.
  4.  第1及び第2の電線の一端側において第1の電線と第2の電線の芯線同士を接続し、その他端側においては、第1の電線の芯線に対し第2の電線の芯線を非接触状態としたことを特徴とする請求項1又は2記載の伝送ケーブル。 The core wires of the first electric wire and the second electric wire are connected to each other at one end side of the first and second electric wires, and the core wire of the second electric wire is not contacted with the core wire of the first electric wire at the other end side. The transmission cable according to claim 1, wherein the transmission cable is in a state.
  5.  第1及び第2の電線における前記芯線を銅線とし、前記各層の合成樹脂材料をウレタン樹脂としたことを特徴とする請求項1乃至4何れか1項記載の伝送ケーブル。 The transmission cable according to any one of claims 1 to 4, wherein the core wire in the first and second electric wires is a copper wire, and the synthetic resin material of each layer is a urethane resin.
PCT/JP2014/071982 2014-08-22 2014-08-22 Transmission cable WO2016027363A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071982 WO2016027363A1 (en) 2014-08-22 2014-08-22 Transmission cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071982 WO2016027363A1 (en) 2014-08-22 2014-08-22 Transmission cable

Publications (1)

Publication Number Publication Date
WO2016027363A1 true WO2016027363A1 (en) 2016-02-25

Family

ID=55350340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071982 WO2016027363A1 (en) 2014-08-22 2014-08-22 Transmission cable

Country Status (1)

Country Link
WO (1) WO2016027363A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047284A1 (en) * 2016-09-09 2018-03-15 株式会社京楽産業ホールディングス Electric wire and method for manufacturing same
WO2018047285A1 (en) * 2016-09-09 2018-03-15 株式会社京楽産業ホールディングス Solar power amplifier and solar power generation system
WO2019123664A1 (en) * 2017-12-23 2019-06-27 徹 金城 Transmission medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896625A (en) * 1994-07-29 1996-04-12 Fujikura Ltd Insulating electric wire
JPH1087396A (en) * 1996-09-10 1998-04-07 Sumitomo Electric Ind Ltd Hard carbon film
JP2003317547A (en) * 2002-04-26 2003-11-07 Totoku Electric Co Ltd Square section magnet wire and method of manufacturing the same
US20040135660A1 (en) * 2002-03-27 2004-07-15 Holdahl Jimmy D. Low profile high current multiple gap inductor assembly
JP2005150245A (en) * 2003-11-12 2005-06-09 Hitachi Ltd Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JP2006245298A (en) * 2005-03-03 2006-09-14 Nittoku Eng Co Ltd Multilayer coil, and winding method and winding device thereof
WO2008129756A1 (en) * 2007-04-12 2008-10-30 Okayama Giken Co., Ltd. Aligned multilayer-wound coil
JP2012043535A (en) * 2010-08-12 2012-03-01 Hitachi Cable Ltd Electric wire cable

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896625A (en) * 1994-07-29 1996-04-12 Fujikura Ltd Insulating electric wire
JPH1087396A (en) * 1996-09-10 1998-04-07 Sumitomo Electric Ind Ltd Hard carbon film
US20040135660A1 (en) * 2002-03-27 2004-07-15 Holdahl Jimmy D. Low profile high current multiple gap inductor assembly
JP2003317547A (en) * 2002-04-26 2003-11-07 Totoku Electric Co Ltd Square section magnet wire and method of manufacturing the same
JP2005150245A (en) * 2003-11-12 2005-06-09 Hitachi Ltd Permanent current switch, superconducting magnet, and magnetic resonance imaging apparatus
JP2006245298A (en) * 2005-03-03 2006-09-14 Nittoku Eng Co Ltd Multilayer coil, and winding method and winding device thereof
WO2008129756A1 (en) * 2007-04-12 2008-10-30 Okayama Giken Co., Ltd. Aligned multilayer-wound coil
JP2012043535A (en) * 2010-08-12 2012-03-01 Hitachi Cable Ltd Electric wire cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047284A1 (en) * 2016-09-09 2018-03-15 株式会社京楽産業ホールディングス Electric wire and method for manufacturing same
WO2018047285A1 (en) * 2016-09-09 2018-03-15 株式会社京楽産業ホールディングス Solar power amplifier and solar power generation system
WO2019123664A1 (en) * 2017-12-23 2019-06-27 徹 金城 Transmission medium

Similar Documents

Publication Publication Date Title
JP4057038B2 (en) Power transmission method, method for selecting and using coil of power transmission device
US9859486B2 (en) Thermoelectric conversion element and manufacturing method for same
CN104885319B (en) Bus bar, bus bar module and method for manufacturing bus bar
CN208315366U (en) transformer
JP5987835B2 (en) Thermoelectric conversion element
CN103282972B (en) Conductor shielding structure
US9013260B2 (en) Cable and electromagnetic device comprising the same
WO2016143149A1 (en) Noise filter
WO2016027363A1 (en) Transmission cable
US20140292353A1 (en) Line impedance stabilization network
WO2016027362A1 (en) Transmission device and transmission circuit
JP2021077568A (en) Laminated bus bar, method for designing laminated bus bar, and battery module
KR100997258B1 (en) High Conductivity Wires and Manufacturing Method Thereof
JP6241618B2 (en) Thermoelectric conversion element, thermoelectric conversion system, and method of manufacturing thermoelectric conversion element
JP4390852B1 (en) Transmission equipment
AU2012208366B2 (en) Interconnection for connecting a switched mode inverter to a load
CN105051841A (en) Magnetic device
CN203056721U (en) Rich-resin mold-pressed thinned optimized structure of 15.75kV generator stator
US20170040100A1 (en) Core piece and reactor
US20130335103A1 (en) Line impedance stabilization network
CN212084830U (en) transformer
JP2010246247A (en) Insulating coil and rotary electric machine apparatus
WO2016143207A1 (en) Noise filter
CN206250028U (en) A kind of integrated high frequency transformer of single-phase high-power magnetic
WO2013054473A1 (en) Wound element coil and wound element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016543771

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14899975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP