[go: up one dir, main page]

WO2016026086A1 - 同步信号发送装置、接收装置及方法与系统 - Google Patents

同步信号发送装置、接收装置及方法与系统 Download PDF

Info

Publication number
WO2016026086A1
WO2016026086A1 PCT/CN2014/084727 CN2014084727W WO2016026086A1 WO 2016026086 A1 WO2016026086 A1 WO 2016026086A1 CN 2014084727 W CN2014084727 W CN 2014084727W WO 2016026086 A1 WO2016026086 A1 WO 2016026086A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
synchronization
signal
candidate
determining
Prior art date
Application number
PCT/CN2014/084727
Other languages
English (en)
French (fr)
Inventor
汲桐
吴毅凌
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/084727 priority Critical patent/WO2016026086A1/zh
Priority to CN201480003173.7A priority patent/CN105723783B/zh
Priority to EP14894186.7A priority patent/EP3026967A1/en
Publication of WO2016026086A1 publication Critical patent/WO2016026086A1/zh
Priority to US15/082,508 priority patent/US20160212568A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/60Subscription-based services using application servers or record carriers, e.g. SIM application toolkits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • Synchronization signal transmitting device receiving device and method and system
  • the present invention relates to the field, and in particular, to a synchronization signal transmitting method, a receiving method, and a device and system. Background technique
  • Machine-to-Machine (M2M) technology is a networked application and service with machine as the terminal and intelligent interaction as the core.
  • M2M technology enables machine-to-machine collaboration through data transfer between machines and machines, greatly increasing productivity.
  • applications based on M2M technology such as smart meter reading, vehicle condition monitoring, vehicle networking, industrial monitoring, etc., have gradually become popular application services.
  • the application scenario of the M2M technology determines that the terminal in the M2M technology must use a communication method that meets the requirements of low power consumption, deep coverage, and low cost when communicating.
  • the use of narrowband transmission to reduce the uplink and downlink channel transmission bandwidth is an extremely effective technical method to meet the requirements of low power consumption, deep coverage, low cost, etc. Therefore, in the M2M technology, narrowband transmission technology can be used to implement communication between different devices. Further, different devices, different cells, or different cell groups may also adopt the same frequency networking, and different transmitting devices may use frequency multiplexing to communicate, thereby improving spectrum utilization and system capacity.
  • the terminal when transmitting data using narrow-band communication technology, the terminal is more sensitive to carrier frequency offset and phase interference in the channel, and in the case of co-frequency networking, neighbor cell interference can be easily introduced. Therefore, in M2M technology How to eliminate neighbor cell interference and distinguish the synchronization signals of different transmitting devices or different cells becomes a problem to be solved. Summary of the invention
  • the embodiment of the invention provides a synchronization signal sending method, a receiving method, a device and a system, which can distinguish signals of different transmitting end devices or different cells very simply.
  • an embodiment of the present invention provides a synchronization signal sending apparatus, where a determining unit is configured to determine a synchronization signal of a first transmitting end, where the synchronization signal is a signal obtained by performing differential processing on a synchronization sequence,
  • the synchronization sequence is a product of a base sequence and a first feature sequence, and the base sequence is a sequence of a sequence set having cross-correlation, the first feature sequence corresponding to a cell identifier of a cell in which the first transmitting end is located, and Second sender And the second transmitting end is in a different cell from the first sending end, and the sending unit is configured to send the synchronization signal, so as to receive
  • the terminal uses the synchronization signal to complete signal synchronization.
  • the determining unit is specifically configured to determine a synchronization signal of the first transmitting end, where the synchronization signal is obtained by performing differential processing on the synchronization sequence.
  • a signal the synchronization sequence is a product of a base sequence and a first feature sequence
  • the base sequence is a sequence of a sequence set having cross-correlation
  • the first feature sequence corresponds to a cell identifier of a cell where the first transmitting end is located
  • the base sequence is pseudo A random sequence, a gold sequence or a ZC sequence, the first characteristic sequence being a Hadamard sequence or a Walsh sequence.
  • the determining unit includes: an identifier determining subunit, configured to determine a cell identifier of a cell where the first transmitting end is located; a unit, configured to determine a base sequence corresponding to the cell identifier, a feature sequence determining subunit, configured to determine a first feature sequence corresponding to the cell identity, and a synchronization sequence generation subunit, configured to: The first characteristic sequence is subjected to dot multiplication or conjugate multiplication to obtain a synchronization sequence; a synchronization signal generation subunit is configured to perform differential processing on the synchronization sequence to obtain a synchronization signal.
  • the base sequence determining subunit specifically for using an initialization seed corresponding to the cell identifier
  • the generated pseudo-random sequence or the gold sequence is used as the base sequence; or, the ZC sequence corresponding to the root sequence number corresponding to the cell identifier is used as the base sequence.
  • the feature sequence determining subunit specifically for Determining a Hadamard sequence or a Walsh sequence corresponding to the cell identifier as a first feature sequence.
  • an embodiment of the present invention provides a synchronization signal sending apparatus, including: a receiving unit, configured to receive, by a receiving end, a receiving signal that includes a synchronization signal; and a determining unit, configured to determine, to generate the synchronization signal, a sequence group, the sequence group comprising a base sequence and a feature sequence; a synchronization unit, configured to perform synchronization using the sequence group and the received signal.
  • the determining unit includes: an identifier determining subunit, configured to determine a cell identifier of a cell where the sending end is located; And a unit, configured to determine the sequence group corresponding to the cell identifier.
  • the determining unit includes: determining a subunit, configured to determine all candidate sequence combinations, each of the candidate sequence combinations being one The candidate feature sequence is composed of an alternative base sequence; a calculation subunit for respectively calculating a correlation peak between each of the candidate sequence combinations and the received signal; and selecting a subunit for using the maximum correlation peak Corresponding alternative sequence combinations are used as the sequence set.
  • the calculating subunit includes: a sliding window operation subunit, configured to perform a sliding window operation on the received signal Determining at least one sliding window, the length of the sliding window being one bit of the length of the candidate synchronization sequence; a correlation value determining subunit, configured to calculate a sliding window signal in each sliding window of the received signal and the A correlation value between alternative sequence combinations; a correlation peak determination subunit for using the largest correlation value as a correlation peak between the candidate sequence combination and the received signal.
  • the correlation value determining subunit includes: a solution difference molecular unit, configured to solve a sliding window signal Differentiating a first sequence; de-characterizing sub-units for de-characterizing the first sequence using the candidate feature sequence to obtain a second sequence, the de-characterization process being a point multiplication or a conjugate phase Multiplying; a correlation value calculation subunit for calculating a correlation value between the second sequence and the candidate base sequence.
  • the synchronization unit is specifically used to The position of the correlation peak between the sequence group and the received signal is taken as the start position of the synchronization signal in the received signal, thereby completing the symbol timing synchronization.
  • the synchronization unit includes: an estimation subunit, And performing carrier frequency offset estimation on the third sequence by using the base sequence to obtain a carrier frequency offset estimation value, where the third sequence is a sequence obtained by performing de-characteristic processing on the synchronization sequence by using the feature sequence.
  • the synchronization sequence is obtained by decomposing the synchronization signal; the compensation subunit is configured to perform frequency compensation on the received signal by using a carrier frequency offset estimation value, thereby completing carrier frequency synchronization.
  • an embodiment of the present invention provides a synchronization signal sending apparatus, including: a determining unit, configured to determine a synchronization signal of a first transmitting end, where the synchronization signal is a pair corresponding to a first sending end a signal obtained by performing differential processing on a synchronization sequence, where the first synchronization sequence is a sequence in a sequence set with cross-correlation, the first synchronization sequence corresponding to a cell identifier of a cell where the first transmitting end is located, and the second sending Corresponding to The second synchronization sequence is a different sequence in the sequence set, the second transmitting end is in a different cell from the first sending end, and the sending unit is configured to send the synchronization signal, so that the receiving end uses the synchronization.
  • Signal completion signal synchronization
  • the determining unit includes: an identifier determining subunit, configured to determine a cell identifier of a cell where the sending end is located; a unit, configured to determine a first synchronization sequence corresponding to the cell identifier, and a synchronization signal generation subunit, configured to perform differential processing on the first synchronization sequence to obtain a synchronization signal.
  • the synchronization sequence determining subunit is specifically configured to determine that the cell identifier is associated with The first synchronization sequence, the first synchronization sequence is a pseudo random sequence, a gold sequence or a ZC sequence.
  • an embodiment of the present invention provides a synchronization signal receiving apparatus, including: a receiving unit, configured to receive, by a receiving end, a receiving signal that includes a synchronization signal; and a determining unit, configured to determine, to generate the synchronization signal, a synchronization sequence; a synchronization unit, configured to perform synchronization using the synchronization sequence and the received signal.
  • the determining unit includes: an identifier determining subunit, configured to determine a cell identifier of a cell where the sending end is located; And a unit, configured to determine a synchronization sequence corresponding to the cell identifier.
  • the determining unit includes: determining a subunit, configured to determine all candidate synchronization sequences; and calculating a subunit, configured to separately calculate each a correlation peak between the candidate synchronization sequence and the received signal; a selection subunit for using the candidate synchronization sequence corresponding to the maximum correlation peak as the synchronization sequence.
  • the calculating subunit includes: a sliding window operation subunit, configured to perform a sliding window operation on the received signal Determining at least one sliding window, the length of the sliding window being one bit of the length of the candidate synchronization sequence; a correlation value determining subunit, configured to calculate a sliding window signal in each sliding window of the received signal and the A correlation value between the alternative synchronization sequences; a correlation peak determination subunit for using the largest correlation value as a correlation peak between the candidate synchronization sequence and the received signal.
  • the related value determining subunit includes: a solution difference molecular unit, configured to solve a sliding window signal The difference obtains a first sequence; a correlation value calculation subunit is configured to calculate a correlation value between the first sequence and the candidate synchronization sequence.
  • the synchronization unit is specifically used to The position of the correlation peak between the synchronization sequence and the received signal is taken as the start position of the synchronization signal in the received signal, so that the completion of the symbol timing is small.
  • the synchronization unit includes: an estimation subunit, Performing carrier frequency offset estimation on the second sequence using the synchronization sequence to obtain a carrier frequency offset estimation value, the second sequence is obtained by using the synchronization signal to obtain a difference; and a compensation subunit for using a carrier frequency offset estimation value pair The received signal is frequency compensated to complete carrier frequency synchronization.
  • an embodiment of the present invention provides a synchronization signal sending method, including:
  • determining a synchronization signal of the first transmitting end where the synchronization signal is a signal obtained by differentially processing a synchronization sequence, where the synchronization sequence is a product of a base sequence and a first feature sequence, and the base sequence is cross-correlated Sequence of the sequence set, the first feature sequence is orthogonal to the cell identifier of the cell in which the first transmitting end is located, and the second feature sequence corresponding to the second transmitting end satisfies orthogonality at any time delay.
  • the second transmitting end is in a different cell from the first transmitting end; and the synchronization signal is sent, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the base sequence is a pseudo random sequence, a gold sequence or a ZC sequence
  • the first feature sequence is a Hadamard sequence or a Walsh sequence.
  • the determining the synchronization signal of the sending end of the present invention includes: determining a cell identifier of a cell where the first transmitting end is located; determining and identifying the cell identifier Corresponding base sequence; determining a first feature sequence corresponding to the cell identifier; multiplying the base sequence by the dot-multiplication or conjugate by the first feature sequence to obtain a synchronization sequence; performing differential processing on the synchronization sequence Get the sync signal.
  • the determining, by using the base sequence corresponding to the cell identifier that: The pseudo-random sequence or the gold sequence generated by the initialization seed is used as the base sequence; or, the ZC sequence corresponding to the root sequence number corresponding to the cell identifier is used as the base sequence.
  • the determining, corresponding to the cell identifier, A sequence of features includes: determining a Hadamard sequence or a Walsh sequence corresponding to the cell identifier as a first feature sequence.
  • an embodiment of the present invention provides a synchronization signal receiving method, including: receiving, by a receiving end, a receiving signal including a synchronization signal; determining a sequence group used to generate the synchronization signal, where the sequence group includes a base a sequence and a sequence of features; synchronizing is accomplished using the set of sequences and the received signal.
  • the determining, by the determining, the sequence group used by the generating the synchronization signal is: determining a cell identifier of a cell where the sending end is located; determining The sequence identifier corresponding to the cell identifier.
  • the determining, by using the sequence group used for generating the synchronization signal, the determining, by using, determining, Combining is performed by an candidate feature sequence and an candidate base sequence; calculating correlation peaks between each of the candidate sequence combinations and the received signal respectively; combining the candidate sequences corresponding to the maximum correlation peaks as Sequence group.
  • the correlation peak between each candidate sequence combination and the received signal is separately calculated as follows: Performing a sliding window operation on the received signal to determine at least one sliding window, the length of the sliding window being one bit longer than the length of the candidate synchronization sequence; calculating a sliding window signal in each sliding window of the received signal and the preparation The correlation value between the sequence combinations is selected; the largest correlation value is used as the correlation peak between the candidate sequence combination and the received signal.
  • the method for calculating a sliding window signal in each sliding window and the candidate sequence combination is calculated as follows Correlation peaks: de-differentiating the sliding window signal to obtain a first sequence; de-charging the first sequence using the candidate feature sequence to obtain a second sequence, the de-characterization processing being point multiplication or total The yoke is multiplied; a correlation value between the second sequence and the candidate base sequence is calculated.
  • the using the sequence group and the receiving signal to complete synchronization includes: The position of the correlation peak between the received signals is taken as the start position of the synchronization signal in the received signal, thereby completing the symbol timing synchronization.
  • the using the sequence group and the receiving The signal completion synchronization includes: performing carrier frequency offset estimation on the third sequence by using the base sequence to obtain a carrier frequency offset estimation value, where the third sequence is to de-characterize the synchronization sequence by using the feature sequence. And the synchronization sequence is obtained by de-differentiating the synchronization signal; frequency-compensating the received signal by using a carrier frequency offset estimation value, thereby completing carrier frequency synchronization.
  • an embodiment of the present invention provides a synchronization signal sending method, including: determining a synchronization signal of a first transmitting end, where the synchronization signal is to differentiate a first synchronization sequence corresponding to the first transmitting end. Processing the obtained signal, the first synchronization sequence is a sequence in a sequence set having cross-correlation, the first synchronization sequence corresponding to a cell identifier of a cell where the first transmitting end is located, and corresponding to the second transmitting end The second synchronization sequence is a different sequence in the sequence set, and the second transmitting end is in a different cell from the first transmitting end; the synchronization signal is sent, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the determining, by the first sending end, the synchronization signal includes: determining a cell identifier of a cell where the transmitting end is located; determining the cell identifier Corresponding first synchronization sequence; performing differential processing on the first synchronization sequence to obtain a synchronization signal.
  • the first synchronization sequence is a pseudo random sequence, a gold sequence or a ZC sequence.
  • the eighth aspect of the present invention provides a synchronization signal receiving method, including: receiving, by a receiving end, a receiving signal including a synchronization signal; determining a synchronization sequence used to generate the synchronization signal; using the synchronization sequence and The received signal completes synchronization.
  • the determining, by using the synchronization sequence used to generate the synchronization signal includes: determining all candidate synchronization sequences; separately calculating each candidate synchronization A correlation peak between the sequence and the received signal; an alternate synchronization sequence corresponding to the maximum correlation peak is used as the synchronization sequence.
  • the correlation peak between each candidate synchronization sequence and the received signal is separately calculated as follows: Performing a sliding window operation on the received signal to determine at least one sliding window, the length of the sliding window being one bit longer than the length of the candidate synchronization sequence; calculating a sliding window signal in each sliding window of the received signal and the preparation The correlation value between the synchronization sequences is selected; the largest correlation value is used as the correlation peak between the candidate synchronization sequence and the received signal.
  • the method for calculating a sliding window signal in each sliding window and the candidate synchronization sequence is calculated as follows Correlation value: de-differentiating the sliding window signal to obtain a first sequence; calculating a correlation between the first sequence and the candidate synchronization sequence Value.
  • the using the synchronization sequence and the receiving The signal completion synchronization includes: using a position of a correlation peak between the synchronization sequence and the received signal as a synchronization signal start position in the received signal, thereby completing symbol timing synchronization.
  • the using the synchronization sequence and the receiving Completing the synchronization of the signal includes: performing carrier frequency offset estimation on the second sequence using the synchronization sequence to obtain a carrier frequency offset estimation value, wherein the second sequence is obtained by using the synchronization signal to obtain a difference; using the carrier frequency offset estimation value for the receiving The signal is frequency compensated to complete carrier frequency synchronization.
  • the synchronization signal transmitting apparatus includes a determining unit and a transmitting unit, and the determining unit is configured to determine a synchronization signal of the first transmitting end, where the synchronization signal is a signal obtained by performing differential processing on the synchronization sequence.
  • the synchronization sequence is a product of a base sequence and a first feature sequence, and the base sequence is a sequence of a sequence set having cross-correlation, the first feature sequence corresponding to a cell identifier of a cell in which the first transmitting end is located, and The second feature sequence corresponding to the second transmitting end satisfies the orthogonality at any time delay, and the second transmitting end and the first transmitting end are in different cells.
  • the transmitting unit is configured to send the synchronization signal, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the synchronization signal is in the form of a differential signal, and has strong anti-frequency offset capability, and the synchronization signals of different transmitting ends satisfy a predetermined relationship characteristic. Therefore, when the receiving end synchronizes using the synchronization signal, The interference signal between the synchronization signals of different transmitting ends can be used to remove the interference signal, thereby achieving the purpose of distinguishing different transmitting ends or distinguishing signals of different cells.
  • FIG. 1A is a schematic diagram of an embodiment of a synchronization signal transmitting apparatus according to the present invention.
  • FIG. 1B is a schematic diagram of an embodiment of a synchronization signal transmitting apparatus determining unit according to the present invention
  • FIG. 2 is a schematic diagram of an embodiment of a synchronization signal receiving apparatus according to the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of a synchronization signal transmitting apparatus according to the present invention
  • [57] 4 is a schematic diagram of an embodiment of a synchronization signal receiving apparatus of the present invention
  • FIG. 5 is a flowchart of a method for transmitting a synchronization signal according to an embodiment of the present invention
  • FIG. 6 is a flowchart of an embodiment of a synchronization signal receiving method according to the present invention.
  • FIG. 7 is a flowchart of a method for transmitting a synchronization signal according to the present invention.
  • FIG. 8 is a flowchart of an embodiment of a method for receiving a synchronization signal according to the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a signal transmission system of the present invention.
  • Figure 10 is a schematic diagram of a signal transmission system of the present invention: an embodiment
  • Figure 11 is a schematic diagram of an embodiment of a synchronization signal transmitting apparatus of the present invention.
  • Figure 12 is a schematic diagram of an embodiment of a synchronization signal receiving apparatus of the present invention.
  • Figure 13 is a schematic diagram of an embodiment of a synchronization signal transmitting apparatus of the present invention.
  • Figure 14 is a schematic diagram of an embodiment of a synchronization signal receiving apparatus of the present invention. detailed description
  • the transmitting end in the embodiment of the present invention may refer to a device having a transmitting function in the communication system, for example, may be an M2M terminal, a UE, an AP, a Ralay node, a base station, etc.
  • the receiving end may refer to a communication system.
  • a device having a receiving function for example, may be an M2M terminal, a UE, an AP, a Ralay node, a base station, etc.;
  • a first transmitting end refers to a device that performs data transmission according to the present invention; and a second transmitting end refers to performing with a first transmitting end.
  • Other devices that are differentiated, for example, the first transmitting end and the second transmitting end may be base stations in different cells.
  • FIG. 1A it is a schematic diagram of an embodiment of a synchronization signal transmitting apparatus according to the present invention.
  • the transmitting device can be set on the transmitting end or the transmitting end itself.
  • the apparatus includes a determining unit 101 and a transmitting unit 102.
  • the determining unit 101 is configured to determine a synchronization signal of the first transmitting end, where the synchronization signal is a pair
  • the synchronization sequence is a differentially processed signal
  • the synchronization sequence is a product of a base sequence and a first feature sequence
  • the base sequence is a sequence of a sequence set having cross-correlation
  • the first feature sequence and the first transmitting end The cell identifier of the cell is located, and the second feature sequence corresponding to the second sender meets the orthogonality of any delay, and the second sender and the first sender are in different cells.
  • the determining unit 101 may generate a synchronization signal, and may also acquire a synchronization signal that has been generated by the synchronization signal transmitting device or other device.
  • the determining unit 101 includes: an identifier determining subunit 1011, configured to determine a cell identifier of a cell where the first transmitting end is located; a base sequence determining subunit 1012, configured to determine a base sequence corresponding to the cell identifier; a sub-unit 1013, configured to determine a first feature sequence corresponding to the cell identifier, and a synchronization sequence generation sub-unit 1014, configured to perform point-multiplication or conjugate multiplication on the base sequence and the first feature sequence to obtain synchronization
  • the synchronization signal generation sub-unit 1015 is configured to perform differential processing on the synchronization sequence to obtain a synchronization signal.
  • the base sequence determining sub-unit 1012 may be configured to use a pseudo-random sequence or a gold sequence generated by using an initialization seed corresponding to the cell identifier as a base sequence; or, The ZC sequence corresponding to the corresponding root number is used as the base sequence.
  • the feature sequence determining sub-unit 1013 may be configured to determine that the Hadamard sequence or the Walsh sequence corresponding to the cell identifier is the first feature sequence.
  • the Hadamard sequence or the Walsh sequence corresponding to the cell identifier of the cell in which the first transmitting end is located may be determined as the first feature sequence.
  • the first feature sequence and the second feature sequence satisfy the orthogonality at any time delay, and the formula can be used.
  • the synchronization signal M consult +1 obtained by differential processing is: u t °: (1 ⁇ where c is a preset fixed constant, eg Can be 1.
  • the transmitting unit 102 is configured to send the synchronization signal, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the first transmitting end may directly send the synchronization signal, or may also The synchronization signal is further processed and then sent.
  • the synchronization signal may be sampled, resource mapped, etc., and then sent. The specific process is not described here.
  • the base sequence 3 ⁇ 4 ⁇ may select an M sequence
  • the feature sequence ⁇ may select a Hadamard sequence
  • different cells may use different row sequences in a Hadamard matrix.
  • the local synchronization sequence selects a sequence of 255 long, assuming that the feature sequence needs to distinguish three cells
  • the feature sequence group of the three cells selects the first 255 elements of the three row sequences of the 256x 256 Had code matrix. It can be verified that there are more than 600 line sequence combinations that can satisfy cor/i ⁇ 0.2xcorr 2 at any time delay, so the above requirements can be satisfied.
  • the synchronization signal transmitting apparatus includes a determining unit and a transmitting unit.
  • the synchronization signal since the synchronization signal is in the form of a differential signal, it has strong anti-frequency offset capability, and at the same time, since the synchronization signals of different transmitting ends contain different characteristic sequences, the orthogonal characteristics of the arbitrary delays are satisfied between the characteristic sequences. Therefore, when the receiving end uses the synchronization signal for synchronization, the interference signal can be removed by using the orthogonality between the characteristic sequences of different transmitting ends with arbitrary delay, thereby achieving the purpose of distinguishing different transmitting ends or distinguishing different cell signals. .
  • FIG. 2 is a schematic diagram of an embodiment of a synchronization signal receiving apparatus according to the present invention.
  • the apparatus includes: a receiving unit 201, a determining unit 202, and a synchronizing unit 203.
  • the receiving unit 201 is configured to receive, by the receiving end, a received signal that includes a synchronization signal.
  • the receiving unit 201 first receives the synchronization signal transmitted by the transmitting end. ⁇ , the synchronization signal . ⁇ can be represented by ⁇ ..., / ⁇ . Therefore, the received signal received by the receiving unit 201 may include other signals of the local cell, such as a broadcast signal of the local cell, in addition to the synchronization signal, or may include signals of other cells, for example, synchronization signals of other cells, etc. Therefore the received signal is usually not . ⁇ .
  • the determining unit 202 is configured to determine a sequence group used to generate the synchronization signal, where the sequence group includes a base sequence and a feature sequence.
  • the base sequence and the feature sequence are sequences used when the sender generates a synchronization sequence.
  • the determining unit 202 may determine a sequence group according to the cell identifier, or may determine the sequence group by using a maximum likelihood search method.
  • the determining unit 202 may include: an identifier determining subunit, configured to determine a cell identifier of a cell where the sender is located; Determining a subunit, configured to determine the sequence group corresponding to the cell identifier. In this implementation manner, the determining unit 202 may determine the synchronization sequence according to the cell identity. [90] In another possible implementation manner, if all candidate sequence combinations have been determined, a sequence group composed of a base sequence and a feature sequence may be selected from the candidate sequences by a maximum likelihood search method. Wherein each of the candidate sequence combinations consists of an candidate feature sequence and an alternative base sequence.
  • the determining unit may include: a determining subunit, configured to determine all candidate sequence combinations, each of the candidate sequence combinations being composed of one candidate feature sequence and one candidate base sequence; calculating subunits for separately calculating Each of the candidate sequences combines a correlation peak with the received signal; a selection subunit is used to combine the candidate sequences corresponding to the maximum correlation peak as the sequence group.
  • the calculation subunit may include: a sliding window operation subunit, configured to perform a sliding window operation on the received signal to determine at least one sliding window, the length of the sliding window being the length of the candidate synchronization sequence plus one bit a correlation value determining subunit, configured to calculate a correlation value between the sliding window signal in each sliding window of the received signal and the candidate sequence combination; a correlation peak determining subunit, configured to use the largest correlation value as The candidate sequence combines a correlation peak with the received signal.
  • the length of the sliding window is the length of the candidate base sequence plus 1. For example, if the candidate base sequence is 64 bits, the length of the sliding window is 65 bits, and the number of sliding windows depends on the structure of the received signal and the length.
  • the correlation value determining subunit may include: a solution difference molecular unit, configured to de-differ the sliding window signal to obtain a first sequence; and a de-characterization sub-unit, configured to use the candidate feature sequence to De-charging the first sequence to obtain a second sequence, the de-characterization process is point multiplication or conjugate multiplication, specifically, if the transmitting end uses dot multiplication when generating the synchronization sequence, then the The first sequence is conjugate multiplied with the candidate feature sequence; if the transmitting end uses conjugate multiplication when generating the synchronization sequence, the first sequence is dot-multiplied with the candidate feature sequence;
  • a correlation value calculation subunit is configured to calculate a correlation value between the second sequence and the candidate base sequence.
  • the first sequence after the difference processing is: ⁇ ⁇ ⁇ (il, ).
  • the synchronization unit 203 uses the received signal for synchronization, typically including symbol timing synchronization and carrier frequency synchronization.
  • the synchronization unit 203 may be configured to use the position of the correlation peak between the sequence group and the received signal as a synchronization signal in the received signal. Position, thereby completing symbol timing synchronization. [98] If the receiving end has completed the symbol timing synchronization in other manners, and only needs to perform carrier frequency synchronization, the synchronization unit 203 includes: an estimation subunit, configured to perform carrier on the third sequence by using the base sequence.
  • the frequency offset estimation obtains a carrier frequency offset estimation value
  • the third sequence is a sequence obtained by performing de-characteristic processing on the synchronization sequence by using the feature sequence, where the synchronization sequence is obtained by using the synchronization signal to obtain a difference;
  • the wave frequency offset estimation value can be calculated as follows. If the third sequence after the difference difference processing and the de-characterization process is r ⁇ , r 2 ".., rquaint , the base sequence is lr n , then the carrier The frequency offset estimated value cfo ⁇ ⁇ - angle ⁇ ⁇ ) , where B is the signal bandwidth, angle ( X ) represents the phase of x; frequency compensation, and the signal to be compensated is the frequency offset value f to be compensated, then the compensation
  • the way of solving the difference and de-characterizing has been explained in the previous embodiment, and is no longer here. Narration.
  • the synchronization signal receiving apparatus includes a receiving unit, a determining unit, and a synchronizing unit, and can remove signals other than the synchronizing signal during signal synchronization by utilizing a relationship between feature sequences adopted by different transmitting ends. The effect is to achieve the purpose of distinguishing between different senders or distinguishing between different cell signals.
  • 3 is a schematic diagram of another embodiment of a synchronization signal transmitting apparatus according to the present invention. Since this embodiment is similar to the foregoing embodiment, it will be briefly described. For specific reference, reference may be made to the foregoing embodiment.
  • the apparatus includes: a determining unit 301 and a transmitting unit 302.
  • the determining unit 301 is configured to determine a synchronization signal of the first transmitting end, where the synchronization signal is a signal obtained by performing differential processing on a first synchronization sequence corresponding to the first transmitting end, where the first
  • the synchronization sequence is a sequence in a sequence set with cross-correlation
  • the first synchronization sequence is corresponding to the cell identifier of the cell where the first transmitting end is located
  • the second synchronization sequence corresponding to the second transmitting end is the sequence set.
  • Different sequences, the second sending end and the first sending end are in different cells.
  • the determining unit 301 may generate a synchronization signal, and may also acquire a synchronization signal that has been generated by the synchronization signal transmitting device or other device.
  • the determining unit 301 includes: an identifier determining subunit, configured to determine a cell identifier of a cell where the sending end is located; a synchronization sequence determining subunit, configured to determine a first synchronization sequence corresponding to the cell identifier; a subunit, configured to perform differential processing on the first synchronization sequence to obtain a synchronization signal.
  • the synchronization sequence determining subunit may be configured to use a pseudo random sequence or a gold sequence generated by using an initialization seed corresponding to the cell identifier as a base sequence; or, the corresponding identifier used by the cell identifier is used.
  • the ZC sequence corresponding to the root number is used as the base sequence.
  • the transmitting unit 302 is configured to send the synchronization signal, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the synchronization signal transmitting apparatus in this embodiment is similar to the synchronization signal transmitting apparatus in the foregoing embodiment, the description is relatively simple. For details, refer to the foregoing embodiment.
  • the synchronization signal transmitting apparatus includes a determining unit and a transmitting unit.
  • the synchronization signal since the synchronization signal is in the form of a differential signal, it has strong anti-frequency offset capability, and at the same time, since the synchronization signals of different transmitting ends contain different synchronization sequences, the synchronization sequences have cross-correlation, and the receiving end is
  • the interference signal can be removed by using the cross-correlation property between the synchronization sequences of different transmitting ends, thereby achieving the purpose of distinguishing different transmitting ends or distinguishing different cell signals.
  • FIG. 4 it is a schematic diagram of another embodiment of a synchronization signal receiving apparatus according to the present invention. Since this embodiment is similar to the foregoing embodiment, it will be briefly described. For specific reference, reference may be made to the foregoing embodiment.
  • the apparatus includes: a receiving unit 401, a determining unit 402, and a synchronizing unit 403.
  • the receiving unit 401 is configured to receive, by the receiving end, a received signal that includes a synchronization signal.
  • the determining unit 402 is configured to determine a synchronization sequence used to generate the synchronization signal.
  • the determining unit 402 may determine the synchronization sequence according to the cell identity, or may determine the synchronization sequence by using a maximum likelihood search method.
  • the determining unit 402 includes: an identifier determining subunit, configured to determine a cell identifier of a cell where the sender is located; And a unit, configured to determine a synchronization sequence corresponding to the cell identifier.
  • the receiving sequence may determine the synchronization sequence according to the cell identifier.
  • the maximum likelihood search method selects a synchronization sequence from the candidate synchronization sequences.
  • the determining unit 402 includes: a determining subunit, configured to determine all candidate synchronization sequences; a calculating subunit, configured to separately calculate a correlation peak between each candidate synchronization sequence and the received signal; The candidate synchronization sequence corresponding to the maximum correlation peak is used as the synchronization sequence.
  • the calculation subunit includes: a sliding window operation subunit, configured to perform a sliding window operation on the received signal to determine at least one sliding window, the length of the sliding window being one bit longer than the length of the candidate synchronization sequence; a correlation value determining subunit, configured to calculate a correlation value between the sliding window signal in each sliding window of the received signal and the candidate synchronization sequence; a correlation peak determining subunit, configured to use the largest correlation value as a A correlation peak between the alternate synchronization sequence and the received signal.
  • the correlation value determining subunit includes: a solution difference molecular unit, configured to de-differ the sliding window signal to obtain a first sequence; a correlation value calculation subunit, configured to calculate the first sequence and the candidate The correlation value between synchronization sequences.
  • the synchronization unit 403 is configured to complete synchronization using the synchronization sequence and the received signal.
  • the synchronization unit 403 is specifically configured to use a position of a correlation peak between the synchronization sequence and the received signal as a synchronization signal in the received signal. Position, thereby completing symbol timing synchronization.
  • the synchronization unit 403 includes: an estimation subunit, configured to perform carrier frequency offset estimation on the second sequence using the synchronization sequence to obtain a carrier frequency offset estimation value, where The second sequence is obtained by demultiplexing the synchronization signal; and a compensation subunit is configured to perform frequency compensation on the received signal by using a carrier frequency offset estimation value, thereby completing carrier frequency synchronization.
  • the synchronization signal receiving apparatus includes a receiving unit, a determining unit, and a synchronization unit, and can use the cross-correlation relationship between the synchronization sequences adopted by different transmitting ends to remove the synchronization signal during the signal synchronization process. The influence of other signals, so as to distinguish between different transmitting ends or distinguishing signals of different cells.
  • FIG. 5 it is a flowchart of an embodiment of a signal generating method according to the present invention. Since this embodiment is similar to the foregoing embodiment, it will be briefly described. For specific reference, reference may be made to the foregoing embodiment. As shown in FIG. 5, this embodiment includes the following steps:
  • Step 501 determining a synchronization signal of the first transmitting end, where the synchronization signal is to differentiate the synchronization sequence
  • the obtained signal is a product of a base sequence and a first feature sequence
  • the base sequence is a sequence of a sequence set having cross-correlation, the first feature sequence and a cell in which the first transmitting end is located
  • the orthogonality of any delay is satisfied between the second feature sequence corresponding to the second transmitting end, and the second transmitting end is in a different cell from the first transmitting end.
  • the first transmitting end may generate a synchronization signal when determining the synchronization signal, or may directly acquire the generated synchronization signal.
  • the cell identifier of the cell where the first transmitting end is located may be first determined, and then the base sequence corresponding to the cell identifier and the first feature sequence corresponding to the cell identifier may be determined; And multiplying the base sequence by the dot-multiplication or conjugate by the first feature sequence to obtain a synchronization sequence; and performing differential processing on the synchronization sequence to obtain a synchronization signal.
  • the first feature sequence or the base sequence is a sequence of the form o, 1, then processing is required, for example, adjustment is performed, and the first feature sequence or the base sequence is converted into a sequence other than 0, 1 in order to Perform dot multiplication or conjugate multiplication.
  • the first transmitting end may determine the cell identifier according to the cell in which the base station is located.
  • the base station may determine the cell identifier of the cell according to the cell in which the base station is located.
  • a pseudo-random sequence or a gold sequence generated using an initialization seed corresponding to the cell identifier may be used as a base sequence; or, a root sequence number corresponding to the cell identifier may be used.
  • the corresponding ZC sequence is used as the base sequence.
  • the first base station and the second source end may use the same base sequence or different base sequences.
  • the base sequence can be a different sequence in a sequence set having cross-correlation.
  • Step 502 Send the synchronization signal, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the first transmitting end may directly send the synchronization signal, or may perform transmission after further processing the synchronization signal, for example, sampling, resource mapping, etc. of the synchronization signal may be performed. After processing, send it again. The specific process will not be described here.
  • the synchronization signal is transmitted by using the embodiment of the present invention, and the synchronization signal is a differential signal, which has good anti-frequency offset characteristics.
  • the receiving end uses the received signal to complete synchronization.
  • the relationship between the synchronization sequences used by different transmitting ends can be used to remove the interference of signals sent by other transmitting ends, thereby achieving the purpose of distinguishing different transmitting ends or distinguishing signals of different cells.
  • the present invention also provides an embodiment of the synchronization signal receiving method.
  • 6 is a flow chart of an embodiment of a synchronization signal receiving method according to the present invention. Due to the present embodiment and the former The embodiments are similar, and therefore are only briefly described. For specific reference, reference may be made to the foregoing embodiments. As shown in FIG. 6, the embodiment includes the following steps:
  • Step 601 The receiving end receives the received signal including the synchronization signal.
  • Step 602 determining a sequence group used to generate the synchronization signal, the sequence group including a base sequence and a feature sequence.
  • the base sequence and the feature sequence generally correspond to the cell identity, usually a sequence set according to a predetermined rule, the sequence group used to generate the synchronization signal is determined, the sequence group including the base sequence and the feature sequence. There are many ways.
  • the receiving end may first determine the cell identifier of the sending end; and then determine the base sequence and the feature sequence according to the cell identifier, thereby determining the sequence group.
  • a sequence group consisting of a base sequence and a feature sequence can be selected from the candidate sequences by a maximum likelihood search. Wherein each of the candidate sequence combinations consists of an candidate feature sequence and an alternative base sequence.
  • correlation peaks between each candidate sequence combination and the received signal may be separately calculated; and candidate sequences corresponding to the maximum correlation peaks are combined as a sequence group.
  • the alternative base sequence and the candidate feature sequence in the sequence set are the feature sequence and the base sequence.
  • the correlation peak between the candidate sequence combination and the received signal may be calculated as follows: performing a sliding window operation on the received signal to determine at least one sliding window, wherein the length of the sliding window is the candidate base sequence The length is increased by 1. For example, if the candidate base sequence is 64 bits, the length of the sliding window is 65 bits, the number of sliding windows depends on the structure, length, etc. of the received signal; and the sliding window in each sliding window of the received signal is calculated. a correlation value between the signal and the candidate sequence combination; the largest correlation value is used as a correlation peak between the candidate sequence combination and the received signal.
  • the correlation value between the sliding window signal in the sliding window and the candidate sequence combination can be calculated as follows: de-differentiating the sliding window signal to obtain a first sequence; using the candidate characteristic sequence De-characterizing the first sequence to obtain a second sequence, wherein the de-characterization process is point multiplication or conjugate multiplication, specifically, if the transmitting end uses dot multiplication when generating the synchronization sequence, then The first sequence is conjugate multiplied with the candidate feature sequence; if the transmitting end uses conjugate multiplication when generating the synchronization sequence, then the first sequence and the candidate feature sequence are pointd Multiplying; After the second sequence is generated, a correlation value between the second sequence and the candidate base sequence is calculated.
  • Step 603 using the sequence group and the received signal to complete synchronization.
  • the receiving end can use the base sequence and the feature sequence for synchronization processing.
  • the receiving end uses the received signal for synchronization, it needs to complete symbol timing synchronization and carrier frequency synchronization.
  • symbol timing synchronization after the feature sequence and the base sequence are determined, the position of the correlation peak between the sequence group and the received signal is the start position of the synchronization signal in the received signal, so that the symbol timing can be completed less. .
  • the correlation peak between the sequence group and the received signal may be calculated, and the position of the correlation peak is used as the synchronization signal in the received signal. position.
  • calculating the correlation peak performing a sliding window operation on the received signal to determine at least one sliding window; calculating a correlation value between the sliding window signal in each sliding window of the received signal and the sequence group; using the largest correlation value as A correlation peak between the sequenced set and the received signal.
  • the maximum correlation peak obtained in the maximum likelihood search process can be directly determined, and the position of the sliding window signal corresponding to the maximum correlation peak is taken as The starting position of the sync signal.
  • the base sequence may be used to perform carrier frequency offset estimation on the third sequence to obtain a carrier frequency offset estimation value, and the third sequence is to de-characterize the synchronization sequence by using the feature sequence.
  • the processing is obtained, and the synchronization sequence is obtained by de-differentiating the synchronization signal; then the received signal is frequency-compensated using a carrier frequency offset estimation value, thereby completing carrier frequency synchronization.
  • the relationship between the feature sequences used by different transmitting ends can be used to remove the interference of signals sent by other transmitting ends, thereby distinguishing different transmitting ends. Or distinguish the purpose of different cell signals.
  • FIG. 7 a flowchart of another embodiment of a signal generating method according to the present invention is shown. Since this embodiment is similar to the foregoing embodiment, it is only briefly described, and the specific embodiment can be referred to the foregoing embodiment.
  • Step 701 determining a synchronization signal of the first transmitting end, where the synchronization signal is a signal obtained by differentially processing a first synchronization sequence corresponding to the first transmitting end, where the first synchronization sequence has cross-correlation a sequence of the sequence set, the first synchronization sequence corresponding to the cell identifier of the cell in which the first transmitting end is located, and the second synchronization sequence corresponding to the second transmitting end is a different sequence in the sequence set, the second The transmitting end is in a different cell from the first sending end.
  • the synchronization signal may be generated, or the generated synchronization signal may be directly acquired.
  • the first synchronization sequence is a pseudo random sequence, a gold sequence or a ZC sequence.
  • Step 702 Send the synchronization signal, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the first transmission may directly transmit the synchronization signal, or may be further processed after further processing the synchronization signal, and the specific process will not be described herein.
  • the synchronization signal is transmitted by using the embodiment, and the synchronization signal is a differential signal, which has a good anti-frequency offset characteristic.
  • the receiving end is When the synchronization is completed by using the received signal, the characteristics of the synchronization sequence can be used to remove the interference of signals transmitted by other transmitting ends, thereby achieving the purpose of distinguishing different transmitting ends or distinguishing signals of different cells.
  • FIG. 8 is a flowchart of another embodiment of a method for receiving a synchronization signal according to the present invention. Since this embodiment is similar to the foregoing embodiment, it is only briefly described. For specific reference, reference may be made to the foregoing embodiment.
  • Step 801 the receiving end receives the received signal including the synchronization signal.
  • Step 802 determining a synchronization sequence used to generate the synchronization signal.
  • the synchronization sequence generally corresponds to the cell identity and is a sequence set according to a predetermined rule, there are various ways of determining the synchronization sequence used to generate the synchronization signal.
  • the receiving end may first determine, by the receiving end, a cell identifier of the cell in which the transmitting end is located; and then determine a synchronization sequence corresponding to the cell identifier. For example, if the initialization seed corresponding to the cell identifier and the generation rule are already known, the synchronization sequence may be directly generated; or the synchronization sequence sent by the sender may be obtained in a specified manner.
  • the synchronization sequence can be determined in a manner of maximum likelihood search. Specifically, when the maximum likelihood search is employed, a correlation peak between each candidate synchronization sequence and the received signal may be separately calculated; an alternate synchronization sequence corresponding to the maximum correlation peak is used as the synchronization sequence. .
  • the synchronization sequence includes synchronization sequences used by all originators.
  • the correlation peak between the alternate synchronization sequence and the received signal can be calculated as follows: [167] performing a sliding window operation on the received signal to determine at least one sliding window, wherein the length of the sliding window is the candidate Adding a length of the synchronization sequence by 1; calculating a correlation value between the sliding window signal in each sliding window of the received signal and the candidate synchronization sequence; using the largest correlation value as the candidate synchronization sequence and the receiving The correlation peak between the signals.
  • Step 803 using the synchronization sequence and the received signal to complete synchronization.
  • the synchronization signal can be synchronized using the synchronization sequence.
  • the position of the correlation peak between the synchronization sequence and the received signal can be used as the synchronization signal start position in the received signal, thereby completing symbol timing synchronization. .
  • the carrier frequency offset estimation may be first performed by using the synchronization sequence to perform carrier frequency offset estimation on the second sequence, where the second sequence is obtained by the synchronization signal solution difference;
  • the received signal is frequency compensated using a carrier frequency offset estimate to complete carrier frequency synchronization.
  • the relationship between the synchronization sequences used by different transmitting ends can be used to remove the interference of signals sent by other transmitting ends, thereby distinguishing different transmitting ends. Or distinguish the purpose of different cell signals.
  • FIG. 9 there is shown a schematic diagram of an embodiment of a signal transmission system of the present invention.
  • the system includes a transmitting end and a receiving end 901.
  • the sending end includes at least a first sending end 902 and a second sending end 903.
  • the transmitting end is configured to determine a synchronization signal of the first transmitting end 902, where the synchronization signal is a signal obtained by differential processing of a synchronization sequence, where the synchronization sequence is a product of a base sequence and a first feature sequence.
  • the base sequence is a sequence in a sequence set with cross-correlation, the first feature sequence is corresponding to the cell identifier of the cell where the first transmitting end 902 is located, and the second feature sequence corresponding to the second sending end 903 is Having orthogonality under any delay, the second transmitting end 903 and the first transmitting end 902 are in different cells; transmitting the synchronization signal, so that the receiving end 901 uses the synchronization signal to complete signal synchronization.
  • the base sequence may be a pseudo random sequence, a gold sequence or a ZC sequence, and the first characteristic sequence may be a Hadamard sequence or a Walsh sequence.
  • the receiving end 901 is configured to receive a received signal including a synchronization signal, and determine a sequence group used to generate the synchronization signal, where the sequence group includes a base sequence and a feature sequence; using the sequence group and the received signal to complete Less.
  • the base sequence is a pseudo random sequence, a gold sequence or a ZC sequence
  • the first characteristic sequence is a Hadamard sequence or a Walsh sequence.
  • the first sending end 902 is further configured to determine a cell identifier of a cell where the first transmitting end is located, determine a base sequence corresponding to the cell identifier, and determine a first feature sequence corresponding to the cell identifier; multiplying the base sequence by the dot-multiplication or conjugate by the first feature sequence to obtain a synchronization sequence; performing differential processing on the synchronization sequence to obtain a synchronization signal.
  • the first sending end 902 is further configured to use, as a base sequence, a pseudo random sequence or a gold sequence that is to be generated using an initialization seed corresponding to the cell identifier; or A ZC sequence corresponding to the root sequence number corresponding to the cell identifier is used as a base sequence.
  • the first sending end 902 is further configured to determine that the Hadamard sequence or the Walsh sequence corresponding to the cell identifier is the first feature sequence.
  • the receiving end 901 is further configured to determine a cell identifier of a cell where the sending end is located, and determine a sequence group corresponding to the cell identifier. [185] In another possible implementation manner, the receiving end 901 is further configured to determine all candidate sequence combinations, where each candidate sequence combination is composed of one candidate feature sequence and one candidate base sequence; Correlating peaks between each of the candidate sequence combinations and the received signal are respectively calculated; and the candidate sequences corresponding to the maximum correlation peaks are combined as the sequence group.
  • the receiving end 901 is further configured to perform a sliding window operation on the received signal. Determining at least one sliding window, the length of the sliding window being one bit longer than the length of the candidate synchronization sequence; calculating a correlation between the sliding window signal in each sliding window of the received signal and the candidate sequence combination a value; a maximum correlation value is used as a correlation peak between the candidate sequence combination and the received signal.
  • the receiving end 901 is further configured to perform a de-differentiation on the sliding window signal to obtain a first sequence, and de-characterize the first sequence by using the candidate feature sequence. Processing results in a second sequence, the de-characterization process being a point multiplication or conjugate multiplication; calculating a correlation value between the second sequence and the candidate base sequence.
  • the receiving end 901 is further configured to use a position of a correlation peak between the sequence group and the received signal as a synchronization signal start position in the received signal, thereby completing the symbol. Timing synchronization.
  • the receiving end 901 is further configured to perform carrier frequency offset estimation on the third sequence by using the base sequence to obtain a carrier frequency offset estimation value, where the third sequence is a sequence obtained by de-characterizing the synchronization sequence using the feature sequence, the synchronization sequence being de-differentiated from the synchronization signal to IJ; using a carrier frequency offset estimation value to frequency compensate the received signal, thereby Complete carrier frequency synchronization.
  • the synchronization signal is a differential signal, which has strong anti-frequency offset characteristics, and the receiving end uses different orthogonal characteristics under any delay, so the receiving end This feature of the feature sequence can be used to distinguish different senders, so as to distinguish between different senders or distinguish between different cell signals.
  • FIG. 10 it is a schematic diagram of another embodiment of a signal transmission system of the present invention.
  • the system includes a transmitting end and a receiving end 1001.
  • the sending end includes at least a first sending end 1002 and a second sending end 1003.
  • the transmitting end is configured to determine a synchronization signal of the first transmitting end 1002, where the synchronization signal is a signal obtained by performing differential processing on a first synchronization sequence corresponding to the first transmitting end 1002, where the a synchronization sequence is a sequence in a sequence set with cross-correlation, the first synchronization sequence is corresponding to the cell identifier of the cell where the first transmitting end 1002 is located, and the second synchronization sequence corresponding to the second transmitting end 1003 is the Different sequences in the sequence set, the second transmitting end 1003 and the first transmitting end 1002 are in different cells; sending the synchronization signal, so that the receiving end 1001 uses the synchronization signal to complete signal synchronization.
  • the receiving end 1001 is configured to receive, by the receiving end 1001, a receiving signal including a synchronization signal; determine a synchronization sequence used to generate the synchronization signal; and complete synchronization by using the synchronization sequence and the received signal.
  • the sending end 1001 is further configured to determine a synchronization signal of the first transmitting end, where the synchronization signal is to perform differential processing on the first synchronization sequence corresponding to the first transmitting end.
  • the first synchronization sequence is a sequence in a sequence set with cross-correlation, the first synchronization sequence is corresponding to a cell identifier of a cell where the first transmitting end is located, and a second corresponding to the second transmitting end
  • the synchronization sequence is a different sequence in the sequence set, and the second transmitting end is in a different cell from the first transmitting end; and the synchronization signal is sent, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the receiving end 1001 is further configured to determine a cell identifier of a cell where the sending end is located, and determine a first synchronization sequence corresponding to the cell identifier; A synchronization sequence performs differential processing to obtain a synchronization signal.
  • the first synchronization sequence is a pseudo random sequence, a gold sequence or a ZC sequence.
  • the receiving end 1001 is further configured to determine a cell identifier of a cell where the sending end is located, and determine a synchronization sequence corresponding to the cell identifier.
  • the receiving end 1001 is further configured to determine all candidate synchronization sequences; respectively calculate a correlation peak between each candidate synchronization sequence and the received signal; An alternate synchronization sequence corresponding to the peak is used as the synchronization sequence.
  • the receiving end 1001 is further configured to perform a sliding window operation on the received signal to determine at least one sliding window, where the length of the sliding window is the length of the candidate synchronization sequence plus Calculating a correlation value between the sliding window signal in each sliding window of the received signal and the candidate synchronization sequence; using a maximum correlation value as the candidate synchronization sequence and the received signal Relevant peaks.
  • the receiving end 1001 is further configured to perform a difference between the sliding window signals to obtain a first sequence, and calculate a correlation between the first sequence and the candidate synchronization sequence. value.
  • the receiving end 1001 is further configured to use a position of a correlation peak between the synchronization sequence and the received signal as a synchronization signal starting position in the received signal, thereby Complete symbol timing synchronization.
  • the receiving end 1001 is further configured to perform carrier frequency offset estimation on the second sequence by using the synchronization sequence to obtain a carrier frequency offset estimation value, where the second sequence is The synchronization signal is demultiplexed to IJ; the received signal is frequency compensated using a carrier frequency offset estimate to complete carrier frequency synchronization.
  • the synchronization signal is a differential signal, which has strong anti-frequency offset characteristics, and since the synchronization sequences used by different transmitting ends have cross-correlation, the receiving end can utilize the synchronization sequence.
  • the feature distinguishes different senders, so as to distinguish between different senders or distinguish between different cell signals.
  • FIG. 11 a schematic diagram of another embodiment of a signal transmitting apparatus of the present invention is shown.
  • the device includes modules such as a processor 1101, a memory 1102, and a transceiver 1103, and the modules are connected to each other.
  • modules such as a processor 1101, a memory 1102, and a transceiver 1103, and the modules are connected to each other.
  • the memory 1102 is used to store programs.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1102 may include a random access memory (RAM) memory 1102, and may also include a non-volatile memory 1102, such as at least one disk storage 1102.
  • RAM random access memory
  • non-volatile memory 1102 such as at least one disk storage 1102.
  • the processor 1101 may execute the program code, configured to determine a synchronization signal of the first transmitting end, where the synchronization signal is a signal obtained by performing differential processing on the synchronization sequence, where the synchronization sequence is a base sequence and a a product of a feature sequence, the base sequence being a sequence of a sequence set having cross-correlation, the first feature sequence corresponding to a cell identifier of a cell in which the first transmitting end is located, and a second corresponding to the second transmitting end
  • the orthogonality of the arbitrary sequence is satisfied between the feature sequences, and the second transmitting end and the first transmitting end are in different cells.
  • the transceiver 1103 is configured to send the synchronization signal, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • the processor 1101 is further configured to determine a cell identifier of a cell where the first transmitting end is located, determine a base sequence corresponding to the cell identifier, and determine the cell identifier. Corresponding first feature sequence; multiplying the base sequence by the dot-multiplication or conjugate by the first feature sequence to obtain a synchronization sequence; performing differential processing on the synchronization sequence to obtain a synchronization signal.
  • the processor 1101 is further configured to use a pseudo random sequence or a gold sequence generated by using an initialization seed corresponding to the cell identifier as a base sequence; or, The ZC sequence corresponding to the root sequence number corresponding to the cell identifier is used as the base sequence.
  • the processor 1101 is further configured to determine that the Hadamard sequence or the Walsh sequence corresponding to the cell identifier is the first feature sequence.
  • the device includes modules such as a processor 1201, a memory 1202, and a transceiver 1203, and the modules are connected to each other.
  • modules such as a processor 1201, a memory 1202, and a transceiver 1203, and the modules are connected to each other.
  • the memory 1202 is used to store programs.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1202 may include a random access memory (RAM) memory 1202, and may also include a non-volatile memory 1202 (non-volatile Memory), such as at least one disk storage 1202
  • the transceiver 1203 is configured to receive, by the receiving end, a received signal that includes a synchronization signal.
  • the processor 1201 may execute the program code, configured to determine a sequence group used to generate the synchronization signal, the sequence group includes a base sequence and a feature sequence; using the sequence group and the receiving The signal is synchronized.
  • the processor 1201 is further configured to determine a cell identifier of a cell where the sending end is located, and determine a sequence group corresponding to the cell identifier.
  • the processor 1201 is further configured to determine all candidate sequence combinations, where each candidate sequence combination is composed of one candidate feature sequence and one candidate base sequence; Correlating peaks between each of the candidate sequence combinations and the received signal are respectively calculated; and the candidate sequences corresponding to the maximum correlation peaks are combined as the sequence group.
  • the processor 1201 is further configured to perform a sliding window operation on the received signal to determine at least one sliding window, where the length of the sliding window is the length of the candidate synchronization sequence plus 1 bit; calculating a correlation value between the sliding window signal in each sliding window of the received signal and the candidate sequence combination; using the largest correlation value as the candidate sequence combination and the received signal Relevant peaks.
  • the processor 1201 is further configured to perform de-differentiation on the sliding window signal to obtain a first sequence; de-characterizing the first sequence by using the candidate feature sequence Processing results in a second sequence, the de-characterization process being a point multiplication or conjugate multiplication; calculating a correlation value between the second sequence and the candidate base sequence.
  • the processor 1201 is further configured to use a position of a correlation peak between the sequence group and the received signal as a synchronization signal start position in the received signal, thereby completing the symbol.
  • the timing is the same.
  • the processor 1201 is further configured to perform carrier frequency offset estimation on the third sequence by using the base sequence to obtain a carrier frequency offset estimation value, where the third sequence is a sequence obtained by de-characterizing the synchronization sequence using the feature sequence, the synchronization sequence being de-differentiated from the synchronization signal to IJ; using a carrier frequency offset estimation value to frequency compensate the received signal, thereby Complete carrier frequency synchronization.
  • FIG. 13 there is shown a schematic diagram of another embodiment of a signal transmitting apparatus of the present invention.
  • the apparatus includes modules such as a processor 1301, a memory 1302, and a transceiver 1303, and the modules are connected to each other.
  • the memory 1302 is used to store programs.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1302 may include a random access memory (RAM) memory 1302, and may also include a non-volatile memory, such as at least one disk storage 1302.
  • the processor 1301 may execute the program code, configured to determine a synchronization signal of the first transmitting end, where the synchronization signal is obtained by performing differential processing on the first synchronization sequence corresponding to the first transmitting end.
  • a signal the first synchronization sequence is a sequence in a sequence set having cross-correlation, the first synchronization sequence is corresponding to a cell identifier of a cell where the first transmitting end is located, and a second synchronization sequence corresponding to the second transmitting end
  • the second sending end and the first sending end are in different cells.
  • the processor 1301 is further configured to determine a cell identifier of a cell where the sending end is located;
  • the processor 1301 is further configured to determine a first synchronization sequence corresponding to the cell identifier
  • the processor 1301 is further configured to perform differential processing on the first synchronization sequence to obtain a synchronization signal.
  • the transceiver 1303 is configured to send the synchronization signal, so that the receiving end uses the synchronization signal to complete signal synchronization.
  • FIG. 14 there is shown a schematic diagram of another embodiment of the signal receiving apparatus of the present invention.
  • the apparatus includes modules such as a processor 1401, a memory 1402, and a transceiver 1403, and the modules are connected to each other.
  • modules such as a processor 1401, a memory 1402, and a transceiver 1403, and the modules are connected to each other.
  • the memory 1402 is used to store programs.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 1402 may include a random access memory (RAM) memory 1402, and may also include a non-volatile memory 1402, such as at least one disk storage 1402.
  • RAM random access memory
  • non-volatile memory 1402 such as at least one disk storage 1402.
  • the transceiver 1403 is configured to receive, by the receiving end, a received signal that includes a synchronization signal.
  • the processor 1401 may execute the program code for determining a synchronization sequence used to generate the synchronization signal; and using the synchronization sequence and the received signal to complete synchronization.
  • the processor 1401 is further configured to determine a cell where the sending end is located. a cell identity; determining a synchronization sequence corresponding to the cell identity.
  • the processor 1401 is further configured to determine all candidate synchronization sequences; separately calculate a correlation peak between each candidate synchronization sequence and the received signal; An alternate synchronization sequence corresponding to the peak is used as the synchronization sequence.
  • the processor 1401 is further configured to perform a sliding window operation on the received signal to determine at least one sliding window, where the length of the sliding window is the length of the candidate synchronization sequence plus Calculating a correlation value between the sliding window signal in each sliding window of the received signal and the candidate synchronization sequence; using a maximum correlation value as the candidate synchronization sequence and the received signal Relevant peaks.
  • the processor 1401 is further configured to perform a difference between the sliding window signals to obtain a first sequence, and calculate a correlation between the first sequence and the candidate synchronization sequence. value.
  • the processor 1401 is further configured to use a position of a correlation peak between the synchronization sequence and the received signal as a synchronization signal start position in a received signal, thereby Complete symbol timing synchronization.
  • the processor 1401 is further configured to perform carrier frequency offset estimation on the second sequence by using the synchronization sequence to obtain a carrier frequency offset estimation value, where the second sequence is The synchronization signal is demultiplexed to IJ; the received signal is frequency compensated using a carrier frequency offset estimate to complete carrier frequency synchronization.
  • the auto-correlation of the base sequence can be used to remove interference of other signals of the transmitting end and signals transmitted by other transmitting ends.
  • the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, and the program may include some or all of the steps in each embodiment of the calling method provided by the present invention.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).
  • the techniques in the embodiments of the present invention can be implemented by means of software plus the necessary general hardware platform. Based on such understanding, the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a ROM/RAM. , a disk, an optical disk, etc., comprising instructions for causing a computer transmitting device (which may be a personal computer, a server, or a network transmitting device, etc.) to perform the various embodiments of the present invention or portions of the embodiments described herein. method.
  • a computer transmitting device which may be a personal computer, a server, or a network transmitting device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了同步信号发送装置、接收装置及方法与系统。信号发送装置包括确定单元与发送单元。采用本发明实施例,同步信号为差分信号形式,具有较强的抗频偏能力,不同发送端的同步信号满足预定的关系特性,因此,接收端在使用同步信号进行同步时,可以利用不同发送端的同步信号之间的关系特性去除干扰信号,从而达到区分不同发送端或区分不同小区信号的目的。

Description

同步信号发送装置、 接收装置及方法与系统 技术领域
[01] 本发明涉及领域, 尤其涉及同步信号发送方法、 接收方法及装置与系统。 背景技术
[02] 机器对机器 (Machine-To-Machine , 简称 M2M) 技术是一种以机器作为终端, 以智能交互作为核心的、 网络化的应用与服务。 M2M技术通过机器与机器之间的数 据传输, 实现机器与机器之间协同工作, 极大地提高生产效率。 随着移动通信技术的 发展, 基于 M2M技术的应用, 例如智能抄表、 车况监控、 车联网、 工业监控等, 逐 渐成为了热门应用业务。
[03] M2M技术的应用场景决定了 M2M技术中的终端在进行通信时, 必须采用符合 低功耗、深覆盖、低成本等要求的通信方式。 由于采用窄带传输减少上下行的信道传 输带宽是满足低功耗、 深覆盖、 低成本等要求极为有效的技术方法, 因此, 在 M2M 技术中可以采用窄带传输技术实现不同设备之间的通信。进一步, 不同设备、 不同小 区或不同的小区组之间也可以采用同频组网,不同发送端设备可能采用频率复用的方 式进行通信, 提高频谱利用率及系统容量。
[04] 但是, 在采用窄带通信技术传输数据时, 终端对载波频偏及信道中的相位干扰 比较敏感, 而同频组网的情况下又会很容易引入邻小区干扰, 因此, 在 M2M技术中 如何消除邻小区干扰, 区分不同发送端设备或不同小区的同步信号, 就成为需要解决 的问题。 发明内容
[05] 本发明实施例提供了同步信号发送方法、 接收方法及装置与系统, 可非常简单 的对不同发送端设备或不同小区的信号进行区分。
[06] 第一方面, 本发明实施例提供了一种同步信号发送装置, 确定单元, 用于确定 第一发送端的同步信号,所述同步信号为对同步序列进行差分处理得到的信号,所述 同步序列为基序列与第一特征序列的乘积,所述基序列为具有互相关性的序列集中的 序列,所述第一特征序列与第一发送端所处小区的小区标识对应, 且与第二发送端所 对应的第二特征序列之间满足任意时延下的正交性,所述第二发送端与所述第一发送 端处于不同的小区; 发送单元, 用于发送所述同步信号, 以便于接收端使用所述同步 信号完成信号同步。
[07] 结合第一方面, 在第一方面第一种可能的实现方式中, 所述确定单元, 具体用 于确定第一发送端的同步信号, 所述同步信号为对同步序列进行差分处理得到的信 号,所述同步序列为基序列与第一特征序列的乘积,所述基序列为具有互相关性的序 列集中的序列,所述第一特征序列与第一发送端所处小区的小区标识对应, 且与第二 发送端所对应的第二特征序列之间满足任意时延下的正交性,所述第二发送端与所述 第一发送端处于不同的小区, 所述基序列为伪随机序列、 gold序列或 ZC序列, 所述 第一特征序列为 Hadamard序列或 Walsh序列。
[08] 结合第一方面, 在第一方面第二种可能的实现方式中, 所述确定单元包括: 标 识确定子单元, 用于确定第一发送端所处小区的小区标识; 基序列确定子单元, 用于 确定与所述小区标识对应的基序列; 特征序列确定子单元,用于确定与所述小区标识 对应的第一特征序列; 同步序列生成子单元,用于将所述基序列与所述第一特征序列 进行点乘或共轭相乘得到同步序列; 同步信号生成子单元,用于对所述同步序列进行 差分处理得到同步信号。
[09] 结合第一方面第二种可能的实现方式, 在第一方面第三种可能的实现方式中, 所述基序列确定子单元,具体用于将使用与所述小区标识对应的初始化种子生成的伪 随机序列或 gold序列作为基序列; 或者, 将使用与所述小区标识相对应的根序号所 对应的 ZC序列作为基序列。
[10] 结合第一方面第二种可能的实现方式或第一方面第三种可能的实现方式, 在第 一方面第四种可能的实现方式中,所述特征序列确定子单元, 具体用于确定与所述小 区标识对应的 Hadamard序列或 Walsh序列为第一特征序列。
[11] 第二方面, 本发明实施例提供了一种同步信号发送装置, 包括: 接收单元, 用 于接收端接收包含同步信号的接收信号; 确定单元,用于确定生成所述同步信号所使 用的序列组, 所述序列组包括基序列与特征序列; 同步单元, 用于使用所述序列组及 所述接收信号完成同步。
[12] 结合第二方面, 在第二方面第一种可能的实现方式中, 所述确定单元包括: 标 识确定子单元, 用于确定所述发送端所处小区的小区标识; 序列组确定子单元, 用于 确定与所述小区标识对应的所述序列组。 [13] 结合第二方面, 在第二方面第二种可能的实现方式中, 所述确定单元包括: 确 定子单元,用于确定所有备选序列组合, 每一个所述备选序列组合由一个备选特征序 列与一个备选基序列构成; 计算子单元,用于分别计算每一个所述备选序列组合与所 述接收信号之间的相关峰值; 选择子单元,用于将最大相关峰值所对应的备选序列组 合作为所述序列组。
[14] 结合第二方面第二种可能的实现方式, 在第二方面第三种可能的实现方式中, 所述计算子单元包括: 滑窗操作子单元,用于对接收信号进行滑窗操作确定至少一个 滑窗, 所述滑窗的长度为所述备选同步序列的长度加 1位; 相关值确定子单元, 用于 计算所述接收信号每一个滑窗内的滑窗信号与所述备选序列组合之间的相关值;相关 峰值确定子单元,用于将最大的相关值作为所述备选序列组合与所述接收信号之间的 相关峰值。
[15] 结合第二方面第三种可能的实现方式, 在第二方面第四种可能的实现方式中, 所述相关值确定子单元包括: 解差分子单元,用于对滑窗信号进行解差分得到第一序 列; 去特征化子单元,用于使用所述备选特征序列对所述第一序列进行去特征化处理 得到第二序列, 所述去特征化处理为点乘或共轭相乘; 相关值计算子单元, 用于计算 所述第二序列与所述备选基序列之间的相关值。
[16] 结合第二方面或第二方面第一至四种可能的实现方式中的任意一种, 在第二方 面第五种可能的实现方式中,所述同步单元, 具体用于将所述序列组与所述接收信号 之间的相关峰值的位置作为接收信号中的同步信号起始位置, 从而完成符号定时同 步。
[17] 结合第二方面或第二方面第一至四种可能的实现方式中的任意一种, 在第二方 面第五种可能的实现方式中, 所述同步单元包括: 估计子单元, 用于使用所述基序列 对所述第三序列进行载波频偏估计得到载波频偏估计值,所述第三序列为使用所述特 征序列对所述同步序列进行去特征化处理得到的序列,所述同步序列由所述同步信号 解差分得到; 补偿子单元, 用于使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同步。
[18] 第三方面, 本发明实施例提供了一种同步信号发送装置, 包括: 确定单元, 用 于确定第一发送端的同步信号,所述同步信号为对与第一发送端相对应的第一同步序 列进行差分处理得到的信号, 所述第一同步序列为具有互相关性的序列集中的序列, 所述第一同步序列与第一发送端所处小区的小区标识对应且与第二发送端所对应的 第二同步序列为所述序列集中的不同序列,所述第二发送端与所述第一发送端处于不 同的小区; 发送单元, 用于发送所述同步信号, 以便于接收端使用所述同步信号完成 信号同步。
[19] 结合第三方面, 在第三方面第一种可能的实现方式中, 所述确定单元包括: 标 识确定子单元, 用于确定所述发送端所处小区的小区标识; 同步序列确定子单元, 用 于确定与所述小区标识对应的第一同步序列; 同步信号生成子单元,用于对所述第一 同步序列进行差分处理得到同步信号。
[20] 结合第三方面或第三方面第一种可能的实现方式, 在第三方面第二种可能的实 现方式中,所述同步序列确定子单元, 具体用于确定与所述小区标识对应的第一同步 序列, 所述第一同步序列为伪随机序列、 gold序列或 ZC序列。
[21] 第四方面, 本发明实施例提供了一种同步信号接收装置, 包括: 接收单元, 用 于接收端接收包含同步信号的接收信号; 确定单元,用于确定生成所述同步信号所使 用的同步序列; 同步单元, 用于使用所述同步序列及所述接收信号完成同步。
[22] 结合第四方面, 在第四方面第一种可能的实现方式中, 所述确定单元包括: 标 识确定子单元, 用于确定所述发送端所处小区的小区标识; 同步序列确定子单元, 用 于确定与所述小区标识对应的同步序列。
[23] 结合第四方面, 在第四方面第二种可能的实现方式中, 所述确定单元包括: 确 定子单元, 用于确定所有备选同步序列; 计算子单元, 用于分别计算每一个备选同步 序列与所述接收信号之间的相关峰值; 选择子单元,用于将最大相关峰值所对应的备 选同步序列作为所述同步序列。
[24] 结合第四方面第二种可能的实现方式, 在第四方面第三种可能的实现方式中, 所述计算子单元包括: 滑窗操作子单元,用于对接收信号进行滑窗操作确定至少一个 滑窗, 所述滑窗的长度为所述备选同步序列的长度加 1位; 相关值确定子单元, 用于 计算所述接收信号每一个滑窗内的滑窗信号与所述备选同步序列之间的相关值;相关 峰值确定子单元,用于将最大的相关值作为所述备选同步序列与所述接收信号之间的 相关峰值。
[25] 结合第四方面第三种可能的实现方式, 在第四方面第四种可能的实现方式中, 所述相关值确定子单元包括: 解差分子单元,用于对滑窗信号进行解差分得到第一序 列; 相关值计算子单元, 用于计算所述第一序列与所述备选同步序列之间的相关值。 [26] 结合第四方面或第四方面第一至四种可能的实现方式中的任意一种, 在第四方 面第五种可能的实现方式中,所述同步单元, 具体用于将所述同步序列与所述接收信 号之间的相关峰值的位置作为接收信号中的同步信号起始位置,从而完成符号定时同 少。 [27] 结合第四方面或第四方面第一至四种可能的实现方式中的任意一种, 在第四方 面第六种可能的实现方式中, 所述同步单元包括: 估计子单元, 用于使用所述同步序 列对第二序列进行载波频偏估计得到载波频偏估计值,所述第二序列由所述同步信号 解差分得到; 补偿子单元, 用于使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同步。 [28] 第五方面, 本发明实施例提供了一种同步信号发送方法, 包括:
[29] 确定第一发送端的同步信号, 所述同步信号为对同步序列进行差分处理得到的 信号,所述同步序列为基序列与第一特征序列的乘积,所述基序列为具有互相关性的 序列集中的序列,所述第一特征序列与第一发送端所处小区的小区标识对应且与第二 发送端所对应的第二特征序列之间满足任意时延下的正交性,所述第二发送端与所述 第一发送端处于不同的小区; 发送所述同步信号, 以便于接收端使用所述同步信号完 成信号同步。
[30] 结合第五方面, 在第五方面第一种可能的实现方式中, 所述基序列为伪随机序 列、 gold序列或 ZC序列, 所述第一特征序列为 Hadamard序列或 Walsh序列。
[31] 结合第五方面, 在第五方面第二种可能的实现方式中, 所述确定本发明发送端 的同步信号包括: 确定第一发送端所处小区的小区标识; 确定与所述小区标识对应的 基序列; 确定与所述小区标识对应的第一特征序列; 将所述基序列与所述第一特征序 列进行点乘或共轭相乘得到同步序列; 对所述同步序列进行差分处理得到同步信号。
[32] 结合第五方面第二种可能的实现方式, 在第五方面第三种可能的实现方式中, 所述确定与所述小区标识对应的基序列包括:将使用与所述小区标识对应的初始化种 子生成的伪随机序列或 gold序列作为基序列; 或者, 将使用与所述小区标识相对应 的根序号所对应的 ZC序列作为基序列。
[33] 结合第五方面第二种可能的实现方式或第五方面第三种可能的实现方式, 在第 五方面第四种可能的实现方式中, 所述确定与所述小区标识对应的第一特征序列包 括: 确定与所述小区标识对应的 Hadamard序列或 Walsh序列为第一特征序列。 [34] 第六方面, 本发明实施例提供了一种同步信号接收方法, 包括: 接收端接收包 含同步信号的接收信号; 确定生成所述同步信号所使用的序列组,所述序列组包括基 序列与特征序列; 使用所述序列组及所述接收信号完成同步。
[35] 结合第六方面, 在第六方面第一种可能的实现方式中, 所述确定生成所述同步 信号所使用的序列组包括: 确定所述发送端所处小区的小区标识; 确定与所述小区标 识对应的序列组。
[36] 结合第六方面, 在第六方面第二种可能的实现方式中, 所述确定生成所述同步 信号所使用的序列组包括: 确定所有备选序列组合, 每一个所述备选序列组合由一个 备选特征序列与一个备选基序列构成;分别计算每一个所述备选序列组合与所述接收 信号之间的相关峰值; 将最大相关峰值所对应的备选序列组合作为所述序列组。
[37] 结合第六方面第二种可能的实现方式, 在第六方面第三种可能的实现方式中, 采用如下方式分别计算每一个备选序列组合与所述接收信号之间的相关峰值:对接收 信号进行滑窗操作确定至少一个滑窗,所述滑窗的长度为所述备选同步序列的长度加 1 位; 计算所述接收信号每一个滑窗内的滑窗信号与所述备选序列组合之间的相关 值; 将最大的相关值作为所述备选序列组合与所述接收信号之间的相关峰值。
[38] 结合第六方面第三种可能的实现方式, 在第六方面第四种可能的实现方式中, 采用如下方式计算每一个滑窗内的滑窗信号与所述备选序列组合之间的相关峰值:对 滑窗信号进行解差分得到第一序列;使用所述备选特征序列对所述第一序列进行去特 征化处理得到第二序列,所述去特征化处理为点乘或共轭相乘; 计算所述第二序列与 所述备选基序列之间的相关值。
[39] 结合第六方面第四种可能的实现方式, 在第六方面第五种可能的实现方式中, 所述使用所述序列组及所述接收信号完成同步包括:将序列组与所述接收信号之间的 相关峰值的位置作为接收信号中的同步信号起始位置, 从而完成符号定时同步。
[40] 结合第六方面或第六方面第一至五种可能的实现方式中的任意一种, 在第六方 面第六种可能的实现方式中,所述使用所述序列组及所述接收信号完成同步包括: 使 用所述基序列对所述第三序列进行载波频偏估计得到载波频偏估计值,所述第三序列 为使用所述特征序列对所述同步序列进行去特征化处理得到的序列,所述同步序列由 所述同步信号解差分得到; 使用载波频偏估计值对所述接收信号进行频率补偿, 从而 完成载波频率同步。 [41] 第七方面, 本发明实施例提供了一种同步信号发送方法, 包括: 确定第一发送 端的同步信号,所述同步信号为对与第一发送端相对应的第一同步序列进行差分处理 得到的信号,所述第一同步序列为具有互相关性的序列集中的序列,所述第一同步序 列与第一发送端所处小区的小区标识对应且与第二发送端所对应的第二同步序列为 所述序列集中的不同序列,所述第二发送端与所述第一发送端处于不同的小区; 发送 所述同步信号, 以便于接收端使用所述同步信号完成信号同步。
[42] 结合第七方面, 在第七方面第一种可能的实现方式中, 所述确定第一发送端的 同步信号包括: 确定所述发送端所处小区的小区标识; 确定与所述小区标识对应的第 一同步序列; 对所述第一同步序列进行差分处理得到同步信号。 [43] 结合第七方面或第七方面第一种可能的实现方式, 在第七方面第二种可能的实 现方式中, 所述第一同步序列为伪随机序列、 gold序列或 ZC序列。
[44] 第八方面, 本发明实施例提供了一种同步信号接收方法, 包括: 接收端接收包 含同步信号的接收信号; 确定生成所述同步信号所使用的同步序列; 使用所述同步序 列及所述接收信号完成同步。 [45] 结合第八方面, 在第八方面第一种可能的实现方式中, 所述确定生成所述同步 信号所使用的同步序列包括: 确定所述发送端所处小区的小区标识; 确定与所述小区 标识对应的同步序列。
[46] 结合第八方面, 在第八方面第二种可能的实现方式中, 所述确定生成所述同步 信号所使用的同步序列包括: 确定所有备选同步序列; 分别计算每一个备选同步序列 与所述接收信号之间的相关峰值;将最大相关峰值所对应的备选同步序列作为所述同 步序列。
[47] 结合第八方面第二种可能的实现方式, 在第八方面第三种可能的实现方式中, 采用如下方式分别计算每一个备选同步序列与所述接收信号之间的相关峰值:对接收 信号进行滑窗操作确定至少一个滑窗,所述滑窗的长度为所述备选同步序列的长度加 1 位; 计算所述接收信号每一个滑窗内的滑窗信号与所述备选同步序列之间的相关 值; 将最大的相关值作为所述备选同步序列与所述接收信号之间的相关峰值。
[48] 结合第八方面第三种可能的实现方式, 在第八方面第四种可能的实现方式中, 采用如下方式计算每一个滑窗内的滑窗信号与所述备选同步序列之间的相关值:对滑 窗信号进行解差分得到第一序列;计算所述第一序列与所述备选同步序列之间的相关 值。
[49] 结合第八方面或第八方面第一至四种可能的实现方式中的任意一种, 在第八方 面第五种可能的实现方式中, 所述使用所述同步序列及所述接收信号完成同步包括: 将所述同步序列与所述接收信号之间的相关峰值的位置作为接收信号中的同步信号 起始位置, 从而完成符号定时同步。
[50] 结合第八方面或第八方面第一至四种可能的实现方式中的任意一种, 在第八方 面第六种可能的实现方式中, 所述使用所述同步序列及所述接收信号完成同步包括: 使用所述同步序列对第二序列进行载波频偏估计得到载波频偏估计值,所述第二序列 由所述同步信号解差分得到; 使用载波频偏估计值对所述接收信号进行频率补偿, 从 而完成载波频率同步。
[51] 采用本发明实施例, 同步信号发送装置包括确定单元与发送单元, 所述确定单 元用于确定第一发送端的同步信号,所述同步信号为对同步序列进行差分处理得到的 信号,所述同步序列为基序列与第一特征序列的乘积,所述基序列为具有互相关性的 序列集中的序列,所述第一特征序列与第一发送端所处小区的小区标识对应, 且与第 二发送端所对应的第二特征序列之间满足任意时延下的正交性,所述第二发送端与所 述第一发送端处于不同的小区。所述发送单元用于发送所述同步信号, 以便于接收端 使用所述同步信号完成信号同步。从本发明实施例可以看出,本发明中同步信号为差 分信号形式, 具有较强的抗频偏能力, 不同发送端的同步信号满足预定的关系特性, 因此,接收端在使用同步信号进行同步时,可以利用不同发送端的同步信号之间的关 系特性去除干扰信号, 从而达到区分不同发送端或区分不同小区信号的目的。 附图说明
[52] 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或 现有技术描述中所需要使用的附图作简单地介绍, 显而易见地,对于本领域普通技术 人员而言, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其它的附图。 [53] 图 1A为本发明同步信号发送装置一个实施例的示意图;
[54] 图 1B为本发明同步信号发送装置确定单元一个实施例的示意图;
[55] 图 2为本发明同步信号接收装置一个实施例的示意图;
[56] 图 3为本发明同步信号发送装置一个实施例的示意图; [57] 4为本发明同步信号接收装置 -个实施例的示意图;
[58] 图 5为本发明同步信号发送方法 -个实施例的流程图;
[59] 图 6为本发明同步信号接收方法 -个实施例的流程图;
[60] 图 7为本发明同步信号发送方法 -个实施例的流程图; [61] 图 8为本发明同步信号接收方法 -个实施例的流程图;
[62] 图 9为本发明信号传输系统一个实施例的示意图;
[63] 图 10为本发明信号传输系统一个:实施例的示意图;
[64] 图 11为本发明同步信号发送装置-一个实施例的示意图;
[65] 图 12为本发明同步信号接收装置-一个实施例的示意图;
[66] 图 13为本发明同步信号发送装置-一个实施例的示意图;
[67] 图 14为本发明同步信号接收装置-一个实施例的示意图。 具体实施方式
[68] 为了使本领域技术人员更好地理解本发明方案, 下面将结合本发明实施例中的 附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所述描述的实施 例仅是本发明一部分实施例, 而不是全部的实施例。基于本发明中的实施例, 本领域 普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明 保护的范围。
[69] 本发明实施例中的发送端可以指通信系统中具有发送功能的设备, 例如, 可以 为 M2M终端、 UE、 AP、 Ralay节点、 基站等, 同样的, 接收端可以是指通信系统中 具有接收功能的设备, 例如, 可以为 M2M终端、 UE、 AP、 Ralay节点、 基站等; 第 一发送端是指执行本发明进行数据发送的设备;第二发送端是指与第一发送端进行区 分的其它设备, 例如, 第一发送端和第二发送端可以是处于不同小区内的基站。
[70] 参见图 1A, 为本发明同步信号发送装置一个实施例的示意图。 该发送装置可以 设置在发送端上, 也可以是发送端本身。 [71] 如图 1A所示, 所述装置包括确定单元 101与发送单元 102。
[72] 其中, 所述确定单元 101, 用于确定第一发送端的同步信号, 所述同步信号为对 同步序列进行差分处理得到的信号, 所述同步序列为基序列与第一特征序列的乘积, 所述基序列为具有互相关性的序列集中的序列,所述第一特征序列与第一发送端所处 小区的小区标识对应,且与第二发送端所对应的第二特征序列之间满足任意时延下的 正交性, 所述第二发送端与所述第一发送端处于不同的小区。 [73] 在不同的实现方式中, 所述确定单元 101可以生成同步信号, 也可以获取同步 信号发送装置或其它设备已生成的同步信号。
[74] 如图 1B所示, 在一种可能的实现方式中。所述确定单元 101包括: 标识确定子 单元 1011, 用于确定第一发送端所处小区的小区标识; 基序列确定子单元 1012, 用 于确定与所述小区标识对应的基序列; 特征序列确定子单元 1013, 用于确定与所述 小区标识对应的第一特征序列; 同步序列生成子单元 1014, 用于将所述基序列与所 述第一特征序列进行点乘或共轭相乘得到同步序列; 同步信号生成子单元 1015, 用 于对所述同步序列进行差分处理得到同步信号。
[75] 其中, 所述基序列确定子单元 1012, 可以用于将使用与所述小区标识对应的初 始化种子生成的伪随机序列或 gold序列作为基序列; 或者, 将使用与所述小区标识 相对应的根序号所对应的 ZC序列作为基序列。
[76] 所述特征序列确定子单元 1013,可以用于确定与所述小区标识对应的 Hadamard 序列或 Walsh序列为第一特征序列。
[77] 在确定第一特征序列时, 可以确定与第一发送端所处小区的小区标识对应的 Hadamard序列或 Walsh序列为第一特征序列。 以 ^,^,..., w„表示特征序列为例, 第 一特征序列与第二特征序列满足在任意时延下的正交性, 可以用公式
Figure imgf000011_0001
x¾ D « χ^?)来表示, 其中, 为第一特征序列, 为第二特征 序列 ^为时延, Α≠ 在此需要说明的是,在本发明中, 2表示 的共轭,如果 S < 4 则可认为 5 Π A , 其中 0 < χ < 1, 例如如果 JC = 0.2, 那么当 S < 0.2v4时, 就可认为 B U
[78] 如果同步序列为 ^^,..., , 则对其差分处理后得到的同步信号 M+1的生成 公式为: ut °:(1 ^ 其中 c为预置固定常数, 例如可以为 1。
bM , (i = 2,3, ...,n+l)
[79] 所述发送单元 102,用于发送所述同步信号, 以便于接收端使用所述同步信号完 成信号同步。
[80] 在同步信号确定之后, 第一发送端可以直接发送所述同步信号, 或者也可以在 对所述同步信号进行进一步处理后再做发送, 例如, 可以对同步信号做采样、 资源映 射等处理后再做发送, 具体过程在此就不再赘述。
[81] 经过验证, 满足在任意时延下的互相关性的特征序列有多种。 例如, 基序列序 列 ¾ }可选取 M序列,特征序列 }可选取 Hadamard序列,不同小区可使用 Hadamard 矩阵中的不同行序列。经过仿真验证, 若本地同步序列选取 255长的 序列, 假设需 要特征序列区分 3个小区,则 3小区的特征序列组选取 256x 256的哈德码矩阵的其中 三个行序列中的前 255个元素,可以验证,有超过 600个行序列组合可以满足在任意 时延下都有 cor/i < 0.2xcorr2, 故上述要求可以满足。
[82] 在本实施例中, 同步信号发送装置包括确定单元与发送单元。 采用本实施例, 由于同步信号为差分信号形式, 具有较强的抗频偏能力, 同时由于不同发送端的同步 信号中包含不同的特征序列, 而特征序列之间又满足任意时延的正交特性, 因此, 接 收端在使用同步信号进行同步时,可以利用不同发送端的特征序列之间具有任意时延 下正交性这一性质去除干扰信号,从而达到区分不同发送端或区分不同小区信号的目 的。
[83] 参见图 2为本发明同步信号接收装置一个实施例的示意图。
[84] 如图 2所示, 所述装置包括: 接收单元 201, 确定单元 202, 同步单元 203。
[85] 其中, 所述接收单元 201, 用于接收端接收包含同步信号的接收信号。
[86] 接收单元 201 首先接收发送端发送的同步信号 . }, 同步信号 . }可以用 ^..., /^表示。 所以接收单元 201接收到的接收信号除包含同步信号外还可能包含本 小区的其它信号, 例如本小区的广播信号等信号; 或者也可以包括其他小区的信号, 例如, 其它小区的同步信号等, 因此接收信号通常不为 . }。
[87] 所述确定单元 202,用于确定生成所述同步信号所使用的序列组,所述序列组包 括基序列与特征序列。其中,所述基序列与所述特征序列均为发送端生成同步序列时 所使用的序列。
[88] 在不同的实现方式中, 所述确定单元 202可以根据小区标识确定序列组, 也可 以采用最大似然搜索方法确定序列组。
[89] 在一种可能的实现方式中, 如果可以获取发送端的小区标识, 那么所述确定单 元 202可以包括: 标识确定子单元, 用于确定所述发送端所处小区的小区标识; 序列 组确定子单元, 用于确定与所述小区标识对应的所述序列组。在本实现方式中, 确定 单元 202可以根据小区标识确定同步序列。 [90] 在另一可能的实现方式中, 如果已经确定了所有备选序列组合, 那么可以通过 最大似然搜索方式从备选序列中选择出有基序列和特征序构成的序列组。其中, 每一 个所述备选序列组合由一个备选特征序列与一个备选基序列构成。所述确定单元可以 包括: 确定子单元, 用于确定所有备选序列组合, 每一个所述备选序列组合由一个备 选特征序列与一个备选基序列构成; 计算子单元,用于分别计算每一个所述备选序列 组合与所述接收信号之间的相关峰值; 选择子单元,用于将最大相关峰值所对应的备 选序列组合作为所述序列组。
[91] 所述计算子单元可以包括: 滑窗操作子单元, 用于对接收信号进行滑窗操作确 定至少一个滑窗,所述滑窗的长度为所述备选同步序列的长度加 1位; 相关值确定子 单元,用于计算所述接收信号每一个滑窗内的滑窗信号与所述备选序列组合之间的相 关值; 相关峰值确定子单元,用于将最大的相关值作为所述备选序列组合与所述接收 信号之间的相关峰值。 其中, 滑窗的长度为所述备选基序列的长度加 1, 例如, 如果 备选基序列为 64位, 那么滑窗的长度为 65位, 滑窗数量取决于接收信号的结构、 长
[92] 所述相关值确定子单元可以包括: 解差分子单元, 用于对滑窗信号进行解差分 得到第一序列; 去特征化子单元,用于使用所述备选特征序列对所述第一序列进行去 特征化处理得到第二序列, 所述去特征化处理为点乘或共轭相乘, 具体来说, 如果发 送端在生成同步序列时采用的是点乘,那么将所述第一序列与所述备选特征序列进行 共轭相乘; 如果发送端在生成同步序列时采用的是共轭相乘,那么将所述第一序列与 所述备选特征序列进行点乘; 相关值计算子单元,用于计算所述第二序列与所述备选 基序列之间的相关值。
[93] 其中, 对于解差分处理, 如果滑窗信号用^. 表示, 则解差分处理后的第一 序列 为: ^^ ^ ^ (i l, ... ) 。 对于去特征化处理, 如果备选特征序列为 Wl, ..., w„,第二序列 , ..., Λ,则有,如果发送端在生成同步序列时采用的是共轭相乘, 那么 . = χ^, 或如果发送端在生成同步序列时采用的是点乘, 那么 >,. = ^ 。
[94] 对于相关值计算, 如果基序列为 则相关值 corr
Figure imgf000013_0001
所述同步单元 203, 用于使用所述序列组及所述接收信号完成同步 t [96] 接收端使用接收信号进行同步, 通常包括符号定时同步和载波频率同步。
[97] 当使用所述同步信号进行符号定时同步时,所述同步单元 203,可以用于将所述 序列组与所述接收信号之间的相关峰值的位置作为接收信号中的同步信号起始位置, 从而完成符号定时同步。 [98] 如果接收端已经使用其它方式完成了符号定时同步, 仅需要进行载波频率同步 时, 所述同步单元 203包括: 估计子单元, 用于使用所述基序列对所述第三序列进行 载波频偏估计得到载波频偏估计值,所述第三序列为使用所述特征序列对所述同步序 列进行去特征化处理得到的序列,所述同步序列由所述同步信号解差分得到; 补偿子 单元,用于使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同 步。
[99] 波频偏估计值可以采用如下方式计算, 如果经过解差分处理和去特征化处理的 第三序列 为 r\, r2".., r„ , 基序列 为 , lrn , 则载波 频偏估计值 cfo^ ^- angle^ ^) , 其中, B为信号带宽, angle(X)表示 x的相位; 频率补偿, 设需要补偿的信号为 需要补偿的频偏值为 f , 则补偿后的信号为 c CSl,...,CSn为, CSi = e B Si,(i = l .,n 。解差分和去特征化的方式在前述实施例中 已经进行了说明, 在此就不再赘述。
[100]在本实施例中, 同步信号接收装置包括接收单元、 确定单元与同步单元, 可以 利用不同发送端所采用的特征序列之间的关系,在信号同步过程中去除同步信号之外 其它信号的影响, 从而达到区分不同发送端或区分不同小区信号的目的。 [101]参见图 3,为本发明同步信号发送装置另一个实施例的示意图。由于本实施例与 前述实施例较为类似, 因此仅作简要说明, 具体指出可以参见前述实施例。
[102]如图 3所示, 所述装置包括: 确定单元 301与发送单元 302。
[103]其中, 所述确定单元 301, 用于确定第一发送端的同步信号, 所述同步信号为对 与第一发送端相对应的第一同步序列进行差分处理得到的信号,所述第一同步序列为 具有互相关性的序列集中的序列,所述第一同步序列与第一发送端所处小区的小区标 识对应且与第二发送端所对应的第二同步序列为所述序列集中的不同序列,所述第二 发送端与所述第一发送端处于不同的小区。
[104]在不同的实现方式中, 所述确定单元 301可以生成同步信号, 也可以获取同步 信号发送装置或其它设备已生成的同步信号。 [105]如图所示, 在一种可能的实现方式中。 所述确定单元 301包括: 标识确定子单 元, 用于确定所述发送端所处小区的小区标识; 同步序列确定子单元, 用于确定与所 述小区标识对应的第一同步序列; 同步信号生成子单元,用于对所述第一同步序列进 行差分处理得到同步信号。 [106]其中, 所述同步序列确定子单元, 可以用于将使用与所述小区标识对应的初始 化种子生成的伪随机序列或 gold序列作为基序列; 或者, 将使用与所述小区标识相 对应的根序号所对应的 ZC序列作为基序列。
[107]所述发送单元 302,用于发送所述同步信号, 以便于接收端使用所述同步信号完 成信号同步。
[108]由于本实施例中的同步信号发送装置与前述实施例中的同步信号发送装置较为 类似, 因此描述较为简单, 具体之处可以参见前述实施例。
[109]在本实施例中, 同步信号发送装置包括确定单元与发送单元。 采用本实施例, 由于同步信号为差分信号形式, 具有较强的抗频偏能力, 同时由于不同发送端的同步 信号中包含不同的同步序列, 而同步序列之间又具有互相关性,接收端在使用同步信 号进行同步时,可以利用不同发送端的同步序列之间具有互相关性这一性质去除干扰 信号, 从而达到区分不同发送端或区分不同小区信号的目的。
[110]参见图 4,为本发明同步信号接收装置另一个实施例的示意图。由于本实施例与 前述实施例较为类似, 因此仅作简要说明, 具体指出可以参见前述实施例。
[111]如图 4所示, 所述装置包括: 接收单元 401, 确定单元 402, 同步单元 403。
[112]其中, 所述接收单元 401, 用于接收端接收包含同步信号的接收信号。
[113]所述确定单元 402, 用于确定生成所述同步信号所使用的同步序列。
[114]所述确定单元 402可以根据小区标识确定同步序列, 也可以采用最大似然搜索 方法确定同步序列。
[115]在一种可能的实现方式中,如果可以获取发送端的小区标识,所述确定单元 402 包括: 标识确定子单元, 用于确定所述发送端所处小区的小区标识; 同步序列确定子 单元, 用于确定与所述小区标识对应的同步序列。在本实现方式中, 接收单可以根据 小区标识确定同步序列。
[116]在另一可能的实现方式中, 如果已经确定了所有备选同步序列, 那么可以通过 最大似然搜索方式从备选同步序列中选出同步序列。所述确定单元 402包括: 确定子 单元, 用于确定所有备选同步序列; 计算子单元, 用于分别计算每一个备选同步序列 与所述接收信号之间的相关峰值; 选择子单元,用于将最大相关峰值所对应的备选同 步序列作为所述同步序列。
[117]所述计算子单元包括: 滑窗操作子单元, 用于对接收信号进行滑窗操作确定至 少一个滑窗,所述滑窗的长度为所述备选同步序列的长度加 1位;相关值确定子单元, 用于计算所述接收信号每一个滑窗内的滑窗信号与所述备选同步序列之间的相关值; 相关峰值确定子单元,用于将最大的相关值作为所述备选同步序列与所述接收信号之 间的相关峰值。
[118]所述相关值确定子单元包括: 解差分子单元, 用于对滑窗信号进行解差分得到 第一序列; 相关值计算子单元,用于计算所述第一序列与所述备选同步序列之间的相 关值。
[119]所述同步单元 403, 用于使用所述同步序列及所述接收信号完成同步。
[120]当使用所述同步信号进行符号定时同步时,所述同步单元 403,具体用于将所述 同步序列与所述接收信号之间的相关峰值的位置作为接收信号中的同步信号起始位 置, 从而完成符号定时同步。
[121]当使用所述同步信号进行载波频率同步时, 所述同步单元 403包括: 估计子单 元,用于使用所述同步序列对第二序列进行载波频偏估计得到载波频偏估计值,所述 第二序列由所述同步信号解差分得到; 补偿子单元,用于使用载波频偏估计值对所述 接收信号进行频率补偿, 从而完成载波频率同步。
[122]由于, 本实施例中的同步信号接收装置与前述实施例中的同步信号接收装置相 类似, 因此在本实施例中描述较为简单, 具体内容可以参见前述实施例。
[123]在本实施例中, 同步信号接收装置包括接收单元、 确定单元与同步单元, 可以 利用不同发送端所采用的同步序列之间的互相关性关系,在信号同步过程中去除同步 信号之外其它信号的影响, 从而达到区分不同发送端或区分不同小区信号的目的。
[124]参见图 5,为本发明信号生成方法一个实施例的流程图。由于本实施例与前述实 施例较为类似, 因此仅作简要说明, 具体指出可以参见前述实施例。 如图 5所示, 本 实施例包括如下步骤:
[125]步骤 501,确定第一发送端的同步信号,所述同步信号为对同步序列进行差分处 理得到的信号,所述同步序列为基序列与第一特征序列的乘积,所述基序列为具有互 相关性的序列集中的序列,所述第一特征序列与第一发送端所处的小区相对应且与第 二发送端所对应的第二特征序列之间满足任意时延下的正交性,所述第二发送端为与 所述第一发送端处于不同小区。 [126]第一发送端在确定同步信号时, 可以生成同步信号, 也可以直接获取已生成的 同步信号。
[127]在生成所述同步信号信号时, 可以首先确定第一发送端所处小区的小区标识, 然后确定与所述小区标识对应的基序列及与所述小区标识对应的第一特征序列;将所 述基序列与所述第一特征序列进行点乘或共轭相乘得到同步序列;再对所述同步序列 进行差分处理得到同步信号。 其中, 如果所述第一特征序列或所述基序列为 o、 1形 式的序列, 则需要进行处理, 例如进行调整, 将第一特征序列或基序列转化为非 0、 1形式的序列, 以便于执行点乘或共轭相乘。
[128]第一发送端可以根据其所在的小区确定小区标识, 例如, 基站可以根据基站所 在的小区确定该小区的小区标识。
[129]在确定基序列时, 可以将使用与所述小区标识对应的初始化种子生成的伪随机 序列或 gold序列作为基序列; 或者, 也可以将使用与所述小区标识相对应的根序号 所对应的 ZC序列作为基序列。 在此需要说明的是, 第一发送端和第二发送端可以采 用同样的基序列, 也可以采用不同的基序列。 当采用不同的基序列时, 基序列可以为 具有互相关性的序列集中的不同序列。
[130]步骤 502, 发送所述同步信号, 以便于接收端使用所述同步信号完成信号同步。
[131]在同步信号确定之后, 第一发送端可以直接发送所述同步信号, 或者也可以在 对所述同步信号进行进一步处理后再做发送, 例如, 可以对同步信号做采样、 资源映 射等处理后再做发送, 具体过程在此就不再赘述。
[132]采用本发明实施例发送同步信号, 同步信号为差分信号, 具有良好的抗频偏特 性, 同时由于同步序列为基序列与特征序列的成绩,接收端在使用接收到的信号完成 同步时,可以利用不同发送端所采用的同步序列之间的关系去除其它发送端所发送信 号的干扰, 从而达到区分不同发送端或区分不同小区信号的目的。
[133]与本发明同步信号发送方法的实施例相对应, 本发明还提供了同步信号接收方 法的实施例。 [134]参见图 6,为本发明同步信号接收方法一个实施例的流程图。由于本实施例与前 述实施例较为类似, 因此仅作简要说明, 具体指出可以参见前述实施例。 如图 6所示 本实施例包括如下步骤:
[135]步骤 601, 接收端接收包含同步信号的接收信号。
[136]步骤 602,确定生成所述同步信号所使用的序列组,所述序列组包括基序列与特 征序列。
[137]由于基序列和特征序列通常与小区标识相对应, 通常为按照预定规则设定的序 列, 因此确定生成所述同步信号所使用的序列组,所述序列组包括基序列与特征序列 的方式有多种。
[138]在一种可能的实现方式中, 接收端可以首先确定所述发送端的小区标识; 然后 根据小区标识确定基序列与特征序列, 从而确定序列组。
[139]在一种可能的实现方式中, 如果已经确定了所有备选序列组合, 那么可以通过 最大似然搜索方式从备选序列中选出由基序列和特征序构成的序列组。其中, 每一个 所述备选序列组合由一个备选特征序列与一个备选基序列构成。
[140]具体来说, 当采用最大似然搜索时, 可以分别计算每一个备选序列组合与所述 接收信号之间的相关峰值; 将最大相关峰值所对应的备选序列组合作为序列组,序列 组中的备选基序列与备选特征序列即为所述特征序列与所述基序列。
[141]备选序列组合与所述接收信号之间的相关峰值可以采用如下方式计算: 对接收 信号进行滑窗操作确定至少一个滑窗,其中,滑窗的长度为所述备选基序列的长度加 1, 例如, 如果备选基序列为 64位, 那么滑窗的长度为 65位, 滑窗数量取决于接收 信号的结构、长度等; 计算所述接收信号每一个滑窗内的滑窗信号与所述备选序列组 合之间的相关值;将最大的相关值作为所述备选序列组合与所述接收信号之间的相关 峰值。
[142]滑窗内的滑窗信号与所述备选序列组合之间的相关值可以采用如下方式计算: 对滑窗信号进行解差分得到第一序列;使用所述备选特征序列对所述第一序列进行去 特征化处理得到第二序列, 其中, 所述去特征化处理为点乘或共轭相乘, 具体来说, 如果发送端在生成同步序列时采用的是点乘,那么将所述第一序列与所述备选特征序 列进行共轭相乘; 如果发送端在生成同步序列时采用的是共轭相乘,那么将所述第一 序列与所述备选特征序列进行点乘; 在第二序列生成后, 计算所述第二序列与所述备 选基序列之间的相关值。
[143]采用最大似然搜索方式确定序列组的过程可以参见前述实施例, 在此就不再赘 述。 [144]步骤 603, 使用所述序列组及所述接收信号完成同步。
[145]在特征序列和基序列都确定之后, 接收端可以使用所述基序列和所述特征序列 进行同步处理。接收端使用接收信号进行同步时, 需要完成符号定时同步和载波频率 同步。 [146]对于符号定时同步, 在特征序列与基序列确定之后, 序列组与所述接收信号之 间的相关峰值的位置即为接收信号中的同步信号起始位置,从而可以完成符号定时同 少。
[147]如果所述基序列与特征序列是根据小区标识获取到的, 那么可以计算序列组与 所述接收信号之间的相关峰值,并将相关峰值的位置作为接收信号中的同步信号起始 位置。在计算相关峰值时, 对接收信号进行滑窗操作确定至少一个滑窗; 计算所述接 收信号每一个滑窗内的滑窗信号与所述序列组之间的相关值;将最大的相关值作为所 序列组与所述接收信号之间的相关峰值。滑窗确定方法和相关值计算方法在前述实施 例中已经进行了说明, 在此就不再赘述。
[148]如果所述基序列与特征序列是通过最大似然搜索方式得到的, 那么可以直接确 定在最大似然搜索过程中得到的最大相关峰值,将最大相关峰值对应的滑窗信号的位 置作为同步信号的起始位置。
[149]对于载波频率同步, 可以使用所述基序列对第三序列进行载波频偏估计得到载 波频偏估计值,所述第三序列为使用所述特征序列对所述同步序列进行去特征化处理 得到,所述同步序列由所述同步信号解差分得到; 然后使用载波频偏估计值对所述接 收信号进行频率补偿, 从而完成载波频率同步。
[150]采用本实施例, 接收端在使用接收到的信号完成同步时, 可以利用不同发送端 所采用的特征序列之间的关系去除其它发送端所发送信号的干扰,从而达到区分不同 发送端或区分不同小区信号的目的。
[151]参见图 7,为本发明信号生成方法另一个实施例的流程图。由于本实施例与前述 实施例较为类似, 因此仅作简要说明, 具体指出可以参见前述实施例。
[152]步骤 701,确定第一发送端的同步信号,所述同步信号为对与第一发送端相对应 的第一同步序列进行差分处理得到的信号,所述第一同步序列为具有互相关性的序列 集中的序列,所述第一同步序列与第一发送端所处小区的小区标识对应且与第二发送 端所对应的第二同步序列为所述序列集中的不同序列,所述第二发送端与所述第一发 送端处于不同的小区。 [153]第一发送端在确定同步信号时, 可以生成同步信号, 也可以直接获取已生成的 同步信号。
[154]在生成所述同步信号时, 可以首先确定第一发送端所处小区的小区标识, 然后 确定与所述小区标识对应的第一同步序列;再对所述第一同步序列进行差分处理得到 同步信号。 其中, 第一同步序列为伪随机序列、 gold序列或 ZC序列。
[155]在确定同步序列时, 可以将使用与所述小区标识对应的初始化种子生成的伪随 机序列或 gold序列作为同步序列; 或者, 也可以将使用与所述小区标识相对应的根 序号对应的 ZC序列作为同步序列。在此需要说明的是第一同步序列与第二同步序列 为具有互相关性的序列集中的不同序列。 [156]步骤 702, 发送所述同步信号, 以便于接收端使用所述同步信号完成信号同步。
[157]在同步信号生成之后, 第一发送以可以直接发送所述同步信号, 或者也可以在 对所述同步信号进行进一步处理后再做发送, 具体过程在此就不再赘述。
[158]采用本实施例发送同步信号, 同步信号为差分信号, 具有良好的抗频偏特性, 同时由于需要区分的不同发送端之间采用的是具有互相关性的同步序列,因此接收端 在使用接收到的信号完成同步时,可以利用同步序列的特性去除其它发送端所发送信 号的干扰, 从而达到区分不同发送端或区分不同小区信号的目的。
[159]参见图 8,为本发明信同步信号接收方法另一个实施例的流程图。由于本实施例 与前述实施例较为类似, 因此仅作简要说明, 具体指出可以参见前述实施例。
[160]步骤 801, 接收端接收包含同步信号的接收信号。 [161]步骤 802, 确定生成所述同步信号所使用的同步序列。
[162]由于同步序列通常与小区标识相对应, 并且为按照预定规则设定的序列, 因此 确定生成所述同步信号所使用的同步序列的方式有多种。
[163]在一种可能的实现方式中, 接收端可以接收端可以首先确定所述发送端所处小 区的小区标识; 然后确定与所述小区标识对应的同步序列。例如, 如果已经知道与小 区标识对应的初始化种子以及生成规则,那么可以直接生成同步序列; 或者也可以按 照指定的方式获取发送端所发送的同步序列。
[164]在一种可能的实现方式中, 如果已经确定了所有备选同步序列, 那么可以采用 最大似然搜索的方式确定同步序列。 [165]具体来说, 当采用最大似然搜索时, 可以分别计算每一个备选同步序列与所述 接收信号之间的相关峰值; 最大相关峰值所对应的备选同步序列作为所述同步序列。 其中, 所述同步序列包含所有发端所使用的同步序列。
[166]备选同步序列与所述接收信号之间的相关峰值可以采用如下方式计算: [167]对接收信号进行滑窗操作确定至少一个滑窗, 其中, 滑窗的长度为所述备选同 步序列的长度加 1 ; 计算所述接收信号每一个滑窗内的滑窗信号与所述备选同步序列 之间的相关值;将最大的相关值作为所述备选同步序列与所述接收信号之间的相关峰 值。
[168]其中, 滑窗内的滑窗信号与所述备选同步序列之间的相关值可以采用如下方式 计算:
[169]对滑窗信号进行解差分得到第一序列; 计算所述第一序列与所述备选同步序列 之间的相关值。 相关值的具体计算过程可以参见前述实施例, 在此就不再赘述。
[170]步骤 803, 使用所述同步序列及所述接收信号完成同步。
[171]在同步序列确定之后, 可以使用所述同步序列对同步信号进行同步处理。 [172]对于符号定时同步来说, 在同步序列确定后, 可以将所述同步序列与所述接收 信号之间的相关峰值的位置作为接收信号中的同步信号起始位置,从而完成符号定时 同步。
[173]对于载波频率同步来说, 可以首先使用所述同步序列对第二序列进行载波频偏 估计得到载波频偏估计值, 其中, 所述第二序列由所述同步信号解差分得到; 然后使 用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同步。
[174]相关峰值和载波频偏估计值的具体确定过程可以参见前述实施例, 在此就不再 赘述。
[175]采用本实施例, 接收端在使用接收到的信号完成同步时, 可以利用不同发送端 所采用的同步序列之间的关系去除其它发送端所发送信号的干扰,从而达到区分不同 发送端或区分不同小区信号的目的。
[176]参见图 9, 为本发明信号传输系统一个实施例的示意图。
[177]如图 9所示, 所述系统包括发送端和接收端 901。其中, 所述发送端至少包括第 一发送端 902和第二发送端 903。 [178]其中, 所述发送端用于确定第一发送端 902的同步信号, 所述同步信号为对同 步序列进行差分处理得到的信号,所述同步序列为基序列与第一特征序列的乘积,所 述基序列为具有互相关性的序列集中的序列, 所述第一特征序列与第一发送端 902 所处小区的小区标识对应且与第二发送端 903 所对应的第二特征序列之间满足任意 时延下的正交性,所述第二发送端 903与所述第一发送端 902处于不同的小区; 发送 所述同步信号, 以便于接收端 901使用所述同步信号完成信号同步。其中, 所述基序 列可以为伪随机序列、 gold序列或 ZC序列, 所述第一特征序列可以为 Hadamard序 列或 Walsh序列。
[179]接收端 901,用于接收包含同步信号的接收信号确定生成所述同步信号所使用的 序列组,所述序列组包括基序列与特征序列; 使用所述序列组及所述接收信号完成同 少。
[180]在另一种可能的实现方式中, 所述基序列为伪随机序列、 gold序列或 ZC序列, 所述第一特征序列为 Hadamard序列或 Walsh序列。
[181]在另一种可能的实现方式中, 所述第一发送端 902还用于确定第一发送端所处 小区的小区标识; 确定与所述小区标识对应的基序列; 确定与所述小区标识对应的第 一特征序列; 将所述基序列与所述第一特征序列进行点乘或共轭相乘得到同步序列; 对所述同步序列进行差分处理得到同步信号。
[182]在另一种可能的实现方式中, 所述第一发送端 902还用于与将使用与所述小区 标识对应的初始化种子生成的伪随机序列或 gold序列作为基序列; 或者, 将使用与 所述小区标识相对应的根序号所对应的 ZC序列作为基序列。
[183]在另一种可能的实现方式中, 所述第一发送端 902还用于确定与所述小区标识 对应的 Hadamard序列或 Walsh序列为第一特征序列。
[184]在另一种可能的实现方式中, 所述接收端 901还用于确定所述发送端所处小区 的小区标识; 确定与所述小区标识对应的序列组。 [185]在另一种可能的实现方式中, 所述接收端 901还用于确定所有备选序列组合, 每一个所述备选序列组合由一个备选特征序列与一个备选基序列构成;分别计算每一 个所述备选序列组合与所述接收信号之间的相关峰值;将最大相关峰值所对应的备选 序列组合作为所述序列组。
[186]在另一种可能的实现方式中, 所述接收端 901还用于对接收信号进行滑窗操作 确定至少一个滑窗,所述滑窗的长度为所述备选同步序列的长度加 1位; 计算所述接 收信号每一个滑窗内的滑窗信号与所述备选序列组合之间的相关值;将最大的相关值 作为所述备选序列组合与所述接收信号之间的相关峰值。
[187]在另一种可能的实现方式中, 所述接收端 901还用于对滑窗信号进行解差分得 到第一序列; 使用所述备选特征序列对所述第一序列进行去特征化处理得到第二序 列,所述去特征化处理为点乘或共轭相乘; 计算所述第二序列与所述备选基序列之间 的相关值。
[188]在另一种可能的实现方式中, 所述接收端 901还用于将序列组与所述接收信号 之间的相关峰值的位置作为接收信号中的同步信号起始位置, 从而完成符号定时同 步。
[189]在另一种可能的实现方式中, 所述接收端 901还用于使用所述基序列对所述第 三序列进行载波频偏估计得到载波频偏估计值,所述第三序列为使用所述特征序列对 所述同步序列进行去特征化处理得到的序列,所述同步序列由所述同步信号解差分得 至 IJ ; 使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同步。 [190]采用本实施例, 同步信号为差分信号, 具有较强的抗频偏特性, 而且由于不同 的发送端所采用的特征序列之间满足在任意时延下的正交特性,因此接收端可以利用 特征序列的这一特性区分不同的发送端,从而达到区分不同发送端或区分不同小区信 号的目的。
[191]参见图 10, 为本发明信号传输系统另一个实施例的示意图。 [192]如图 10所示, 所述系统包括发送端和接收端 1001。其中, 所述发送端至少包括 第一发送端 1002和第二发送端 1003。
[193]其中, 所述发送端用于确定第一发送端 1002的同步信号, 所述同步信号为对与 第一发送端 1002相对应的第一同步序列进行差分处理得到的信号, 所述第一同步序 列为具有互相关性的序列集中的序列, 所述第一同步序列与第一发送端 1002所处小 区的小区标识对应且与第二发送端 1003所对应的第二同步序列为所述序列集中的不 同序列,所述第二发送端 1003与所述第一发送端 1002处于不同的小区; 发送所述同 步信号, 以便于接收端 1001使用所述同步信号完成信号同步。
[194]所述接收端 1001用于接收端 1001接收包含同步信号的接收信号; 确定生成所 述同步信号所使用的同步序列; 使用所述同步序列及所述接收信号完成同步。 [195]在另一种可能的实现方式中,所述发送端 1001还用于确定第一发送端的同步信 号, 所述同步信号为对与第一发送端相对应的第一同步序列进行差分处理得到的信 号,所述第一同步序列为具有互相关性的序列集中的序列,所述第一同步序列与第一 发送端所处小区的小区标识对应且与第二发送端所对应的第二同步序列为所述序列 集中的不同序列,所述第二发送端与所述第一发送端处于不同的小区; 发送所述同步 信号, 以便于接收端使用所述同步信号完成信号同步。
[196]在另一种可能的实现方式中,所述接收端 1001还用于确定所述发送端所处小区 的小区标识; 确定与所述小区标识对应的第一同步序列; 对所述第一同步序列进行差 分处理得到同步信号。 所述第一同步序列为伪随机序列、 gold序列或 ZC序列。 [197]在另一种可能的实现方式中,所述接收端 1001还用于确定所述发送端所处小区 的小区标识; 确定与所述小区标识对应的同步序列。
[198]在另一种可能的实现方式中, 所述接收端 1001还用于确定所有备选同步序列; 分别计算每一个备选同步序列与所述接收信号之间的相关峰值;将最大相关峰值所对 应的备选同步序列作为所述同步序列。 [199]在另一种可能的实现方式中,所述接收端 1001还用于对接收信号进行滑窗操作 确定至少一个滑窗,所述滑窗的长度为所述备选同步序列的长度加 1位; 计算所述接 收信号每一个滑窗内的滑窗信号与所述备选同步序列之间的相关值;将最大的相关值 作为所述备选同步序列与所述接收信号之间的相关峰值。
[200]在另一种可能的实现方式中,所述接收端 1001还用于对滑窗信号进行解差分得 到第一序列; 计算所述第一序列与所述备选同步序列之间的相关值。
[201]在另一种可能的实现方式中,所述接收端 1001还用于将所述同步序列与所述接 收信号之间的相关峰值的位置作为接收信号中的同步信号起始位置,从而完成符号定 时同步。
[202]在另一种可能的实现方式中,所述接收端 1001还用于使用所述同步序列对第二 序列进行载波频偏估计得到载波频偏估计值,所述第二序列由所述同步信号解差分得 至 IJ ; 使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同步。
[203]采用本实施例, 同步信号为差分信号, 具有较强的抗频偏特性, 而且由于不同 的发送端所采用的同步序列之间具有互相关性,因此接收端可以利用同步序列这一特 性区分不同的发送端, 从而达到区分不同发送端或区分不同小区信号的目的。 [204]参见图 11, 为本发明信号发送装置另一个实施例的示意图。
[205]如图 11所示,所述装置包括:处理器 1101、存储器 1102及收发器 1103等模块, 各个模块之间相互连接。
[206]所述存储器 1102用于存放程序。 具体地, 程序可以包括程序代码, 所述程序代 码包括计算机操作指令。 存储器 1102可能包含随机存取存储器 1102 (random access memory, 简称 RAM)存储器 1102, 也可能还包括非易失性存储器 1102 (non-volatile memory), 例如至少一个磁盘存储器 1102。
[207]所述处理器 1101, 可以执行所述程序代码, 用于确定第一发送端的同步信号, 所述同步信号为对同步序列进行差分处理得到的信号,所述同步序列为基序列与第一 特征序列的乘积,所述基序列为具有互相关性的序列集中的序列,所述第一特征序列 与第一发送端所处小区的小区标识对应且与第二发送端所对应的第二特征序列之间 满足任意时延下的正交性, 所述第二发送端与所述第一发送端处于不同的小区。
[208]所述收发器 1103, 用于发送所述同步信号, 以便于接收端使用所述同步信号完 成信号同步。
[209]在另一中可能的实现方式中, 所述处理器 1101还用于确定第一发送端所处小区 的小区标识; 确定与所述小区标识对应的基序列; 确定与所述小区标识对应的第一特 征序列; 将所述基序列与所述第一特征序列进行点乘或共轭相乘得到同步序列; 对所 述同步序列进行差分处理得到同步信号。
[210]在另一中可能的实现方式中, 所述处理器 1101还用于将使用与所述小区标识对 应的初始化种子生成的伪随机序列或 gold序列作为基序列; 或者, 将使用与所述小 区标识相对应的根序号所对应的 ZC序列作为基序列。
[211]在另一中可能的实现方式中, 所述处理器 1101还用于确定与所述小区标识对应 的 Hadamard序列或 Walsh序列为第一特征序列。
[212]参见图 12, 为本发明信号接收装置另一个实施例的示意图。 [213]如图 12所示,所述装置包括:处理器 1201、存储器 1202及收发器 1203等模块, 各个模块之间相互连接。
[214]所述存储器 1202用于存放程序。 具体地, 程序可以包括程序代码, 所述程序代 码包括计算机操作指令。 存储器 1202可能包含随机存取存储器 1202 (random access memory, 简称 RAM)存储器 1202, 也可能还包括非易失性存储器 1202 ( non- volatile memory) , 例如至少一个磁盘存储器 1202
[215]所述收发器 1203, 用于接收端接收包含同步信号的接收信号。
[216]所述处理器 1201, 可以执行所述程序代码, 用于确定生成所述同步信号所使用 的序列组,所述序列组包括基序列与特征序列; 使用所述序列组及所述接收信号完成 同步。
[217]在另一中可能的实现方式中,所述处理器 1201还用于确定所述发送端所处小区 的小区标识; 确定与所述小区标识对应的序列组。
[218]在另一中可能的实现方式中, 所述处理器 1201还用于确定所有备选序列组合, 每一个所述备选序列组合由一个备选特征序列与一个备选基序列构成;分别计算每一 个所述备选序列组合与所述接收信号之间的相关峰值;将最大相关峰值所对应的备选 序列组合作为所述序列组。
[219]在另一中可能的实现方式中,所述处理器 1201还用于对接收信号进行滑窗操作 确定至少一个滑窗,所述滑窗的长度为所述备选同步序列的长度加 1位; 计算所述接 收信号每一个滑窗内的滑窗信号与所述备选序列组合之间的相关值;将最大的相关值 作为所述备选序列组合与所述接收信号之间的相关峰值。
[220]在另一中可能的实现方式中,所述处理器 1201还用于对滑窗信号进行解差分得 到第一序列; 使用所述备选特征序列对所述第一序列进行去特征化处理得到第二序 列,所述去特征化处理为点乘或共轭相乘; 计算所述第二序列与所述备选基序列之间 的相关值。
[221]在另一中可能的实现方式中,所述处理器 1201还用于将序列组与所述接收信号 之间的相关峰值的位置作为接收信号中的同步信号起始位置, 从而完成符号定时同 少。
[222]在另一中可能的实现方式中,所述处理器 1201还用于使用所述基序列对所述第 三序列进行载波频偏估计得到载波频偏估计值,所述第三序列为使用所述特征序列对 所述同步序列进行去特征化处理得到的序列,所述同步序列由所述同步信号解差分得 至 IJ ; 使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同步。
[223]参见图 13, 为本发明信号发送装置另一个实施例的示意图。
[224]如图 13所示,所述装置包括:处理器 1301、存储器 1302及收发器 1303等模块, 各个模块之间相互连接。 [225]所述存储器 1302用于存放程序。 具体地, 程序可以包括程序代码, 所述程序代 码包括计算机操作指令。 存储器 1302可能包含随机存取存储器 1302 (random access memory, 简称 RAM)存储器 1302, 也可能还包括非易失性存储器 1302 ( non- volatile memory), 例如至少一个磁盘存储器 1302。
[226]所所述处理器 1301,可以执行所述程序代码,用于确定第一发送端的同步信号, 所述同步信号为对与第一发送端相对应的第一同步序列进行差分处理得到的信号,所 述第一同步序列为具有互相关性的序列集中的序列,所述第一同步序列与第一发送端 所处小区的小区标识对应且与第二发送端所对应的第二同步序列为所述序列集中的 不同序列, 所述第二发送端与所述第一发送端处于不同的小区。
[227]在另一中可能的实现方式中,所述处理器 1301还用于确定所述发送端所处小区 的小区标识;
[228]在另一中可能的实现方式中,所述处理器 1301还用于确定与所述小区标识对应 的第一同步序列;
[229]在另一中可能的实现方式中,所述处理器 1301还用于对所述第一同步序列进行 差分处理得到同步信号。
[230]所述收发器 1303, 用于发送所述同步信号, 以便于接收端使用所述同步信号完 成信号同步。
[231]参见图 14, 为本发明信号接收装置另一个实施例的示意图。
[232]如图 14所示,所述装置包括:处理器 1401、存储器 1402及收发器 1403等模块, 各个模块之间相互连接。
[233]所述存储器 1402用于存放程序。 具体地, 程序可以包括程序代码, 所述程序代 码包括计算机操作指令。 存储器 1402可能包含随机存取存储器 1402 (random access memory, 简称 RAM)存储器 1402, 也可能还包括非易失性存储器 1402 ( non- volatile memory), 例如至少一个磁盘存储器 1402。
[234]所述收发器 1403, 用于接收端接收包含同步信号的接收信号。
[235]所述处理器 1401, 可以执行所述程序代码, 用于确定生成所述同步信号所使用 的同步序列; 使用所述同步序列及所述接收信号完成同步。
[236]在另一中可能的实现方式中,所述处理器 1401还用于确定所述发送端所处小区 的小区标识; 确定与所述小区标识对应的同步序列。
[237]在另一中可能的实现方式中, 所述处理器 1401还用于确定所有备选同步序列; 分别计算每一个备选同步序列与所述接收信号之间的相关峰值;将最大相关峰值所对 应的备选同步序列作为所述同步序列。 [238]在另一中可能的实现方式中,所述处理器 1401还用于对接收信号进行滑窗操作 确定至少一个滑窗,所述滑窗的长度为所述备选同步序列的长度加 1位; 计算所述接 收信号每一个滑窗内的滑窗信号与所述备选同步序列之间的相关值;将最大的相关值 作为所述备选同步序列与所述接收信号之间的相关峰值。
[239]在另一中可能的实现方式中,所述处理器 1401还用于对滑窗信号进行解差分得 到第一序列; 计算所述第一序列与所述备选同步序列之间的相关值。
[240]在另一中可能的实现方式中,所述处理器 1401还用于将所述同步序列与所述接 收信号之间的相关峰值的位置作为接收信号中的同步信号起始位置,从而完成符号定 时同步。
[241]在另一中可能的实现方式中,所述处理器 1401还用于使用所述同步序列对第二 序列进行载波频偏估计得到载波频偏估计值,所述第二序列由所述同步信号解差分得 至 IJ ; 使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同步。
[242]采用本实施例, 接收端在使用接收到的信号完成同步时, 可以利用基序列的自 相关性去除本发送端的其它信号和其它发送端所发送信号的干扰。
[243]具体实现中, 本发明还提供一种计算机存储介质, 其中, 该计算机存储介质可 存储有程序,该程序执行时可包括本发明提供的呼叫方法的各实施例中的部分或全部 步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM) 或随机存储记忆体 (Random Access Memory, RAM) 等。
[244]本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需 的通用硬件平台的方式来实现。基于这样的理解,本发明实施例中的技术方案本质上 或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产 品可以存储在存储介质中, 如 ROM/RAM、磁碟、光盘等, 包括若干指令用以使得一 台计算机发送端设备(可以是个人计算机, 服务器, 或者网络发送端设备等)执行本 发明各个实施例或者实施例的某些部分所述的方法。
[245]本说明书中的各个实施例均采用递进的方式描述, 各个实施例之间相同相似的 部分互相参见即可, 每个实施例重点说明的都是与其它实施例的不同之处。尤其, 对 于装置、 服务器、 系统实施例而言, 由于其基本相似于方法实施例, 所以描述的比较 简单, 相关之处参见方法实施例的部分说明即可。
[246]以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。 任何在本发 明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的保护范围 之内。

Claims

权 利 要 求
1.一种同步信号发送装置, 其特征在于, 包括:
确定单元, 用于确定第一发送端的同步信号, 所述同步信号为对同步序列进 行差分处理得到的信号, 所述同步序列为基序列与第一特征序列的乘积, 所述基 序列为具有互相关性的序列集中的序列,所述第一特征序列与第一发送端所处小 区的小区标识对应,且与第二发送端所对应的第二特征序列之间满足任意时延下 的正交性, 所述第二发送端与所述第一发送端处于不同的小区;
发送单元, 用于发送所述同步信号, 以便于接收端使用所述同步信号完成信 号同步。
2.如权利要求 1所述的装置, 其特征在于,
所述确定单元, 具体用于确定第一发送端的同步信号, 所述同步信号为对同 步序列进行差分处理得到的信号, 所述同步序列为基序列与第一特征序列的乘 积, 所述基序列为具有互相关性的序列集中的序列, 所述第一特征序列与第一发 送端所处小区的小区标识对应,且与第二发送端所对应的第二特征序列之间满足 任意时延下的正交性, 所述第二发送端与所述第一发送端处于不同的小区, 所述 基序列为伪随机序列、 gold序列或 ZC序列, 所述第一特征序列为 Hadamard序 列或 Walsh序列。
3.如权利要求 1所述的装置, 其特征在于, 所述确定单元包括:
标识确定子单元, 用于确定第一发送端所处小区的小区标识;
基序列确定子单元, 用于确定与所述小区标识对应的基序列;
特征序列确定子单元, 用于确定与所述小区标识对应的第一特征序列; 同步序列生成子单元,用于将所述基序列与所述第一特征序列进行点乘或共 轭相乘得到同步序列;
同步信号生成子单元, 用于对所述同步序列进行差分处理得到同步信号。
4.如权利要求 3所述的装置, 其特征在于,
所述基序列确定子单元,具体用于将使用与所述小区标识对应的初始化种子 生成的伪随机序列或 gold序列作为基序列; 或者, 将使用与所述小区标识相对 应的根序号所对应的 ZC序列作为基序列。
5.如权利要求 3或 4所述的装置, 其特征在于,
所述特征序列确定子单元, 具体用于确定与所述小区标识对应的 Hadamard 序列或 Walsh序列为第一特征序列。
6.—种同步信号接收装置, 其特征在于, 包括:
接收单元, 用于接收端接收包含同步信号的接收信号;
确定单元, 用于确定生成所述同步信号所使用的序列组, 所述序列组包括基 序列与特征序列;
同步单元, 用于使用所述序列组及所述接收信号完成同步。
7.如权利要求 6所述的装置, 其特征在于, 所述确定单元包括:
标识确定子单元, 用于确定所述发送端所处小区的小区标识;
序列组确定子单元, 用于确定与所述小区标识对应的所述序列组。
8.如权利要求 6所述的装置, 其特征在于, 所述确定单元包括:
确定子单元, 用于确定所有备选序列组合, 每一个所述备选序列组合由一个 备选特征序列与一个备选基序列构成;
计算子单元,用于分别计算每一个所述备选序列组合与所述接收信号之间的 相关峰值;
选择子单元, 用于将最大相关峰值所对应的备选序列组合作为所述序列组。
9.如权利要求 8所述的装置, 其特征在于, 所述计算子单元包括: 滑窗操作子单元, 用于对接收信号进行滑窗操作确定至少一个滑窗, 所述滑 窗的长度为所述备选同步序列的长度加 1位;
相关值确定子单元,用于计算所述接收信号每一个滑窗内的滑窗信号与所述 备选序列组合之间的相关值;
相关峰值确定子单元,用于将最大的相关值作为所述备选序列组合与所述接 收信号之间的相关峰值。
10.如权利要求 9所述的装置, 其特征在于, 所述相关值确定子单元包括: 解差分子单元, 用于对滑窗信号进行解差分得到第一序列; 去特征化子单元,用于使用所述备选特征序列对所述第一序列进行去特征化 处理得到第二序列, 所述去特征化处理为点乘或共轭相乘;
相关值计算子单元, 用于计算所述第二序列与所述备选基序列之间的相关 值。
11.如权利要求 6至 10任一权利要求所述的装置, 其特征在于,
所述同步单元,具体用于将所述序列组与所述接收信号之间的相关峰值的位 置作为接收信号中的同步信号起始位置, 从而完成符号定时同步。
12.如权利要求 6至 10任一权利要求所述的装置, 其特征在于, 所述同步单 元包括:
估计子单元,用于使用所述基序列对所述第三序列进行载波频偏估计得到载 波频偏估计值,所述第三序列为使用所述特征序列对所述同步序列进行去特征化 处理得到的序列, 所述同步序列由所述同步信号解差分得到;
补偿子单元, 用于使用载波频偏估计值对所述接收信号进行频率补偿, 从而 完成载波频率同步。
13.—种同步信号发送装置, 其特征在于, 包括:
确定单元, 用于确定第一发送端的同步信号, 所述同步信号为对与第一发送 端相对应的第一同步序列进行差分处理得到的信号,所述第一同步序列为具有互 相关性的序列集中的序列,所述第一同步序列与第一发送端所处小区的小区标识 对应且与第二发送端所对应的第二同步序列为所述序列集中的不同序列,所述第 二发送端与所述第一发送端处于不同的小区;
发送单元, 用于发送所述同步信号, 以便于接收端使用所述同步信号完成信 号同步。
14.如权利要求 13所述的装置, 其特征在于, 所述确定单元包括: 标识确定子单元, 用于确定所述发送端所处小区的小区标识;
同步序列确定子单元, 用于确定与所述小区标识对应的第一同步序列; 同步信号生成子单元, 用于对所述第一同步序列进行差分处理得到同步信 号。
15.如权利要求 13或 14所述的装置, 其特征在于,
所述同步序列确定子单元,具体用于确定与所述小区标识对应的第一同步序 列, 所述第一同步序列为伪随机序列、 gold序列或 ZC序列。
16.—种同步信号接收装置, 其特征在于, 包括:
接收单元, 用于接收端接收包含同步信号的接收信号;
确定单元, 用于确定生成所述同步信号所使用的同步序列;
同步单元, 用于使用所述同步序列及所述接收信号完成同步。
17.如权利要求 16所述的装置, 其特征在于, 所述确定单元包括: 标识确定子单元, 用于确定所述发送端所处小区的小区标识;
同步序列确定子单元, 用于确定与所述小区标识对应的同步序列。
18.如权利要求 16所述的装置, 其特征在于, 所述确定单元包括: 确定子单元, 用于确定所有备选同步序列;
计算子单元,用于分别计算每一个备选同步序列与所述接收信号之间的相关 峰值;
选择子单元, 用于将最大相关峰值所对应的备选同步序列作为所述同步序 列。
19.如权利要求 18所述的装置, 其特征在于, 所述计算子单元包括: 滑窗操作子单元, 用于对接收信号进行滑窗操作确定至少一个滑窗, 所述滑 窗的长度为所述备选同步序列的长度加 1位;
相关值确定子单元,用于计算所述接收信号每一个滑窗内的滑窗信号与所述 备选同步序列之间的相关值;
相关峰值确定子单元,用于将最大的相关值作为所述备选同步序列与所述接 收信号之间的相关峰值。
20.如权利要求 19所述的装置, 其特征在于, 所述相关值确定子单元包括: 解差分子单元, 用于对滑窗信号进行解差分得到第一序列;
相关值计算子单元,用于计算所述第一序列与所述备选同步序列之间的相关 值。
21.如权利要求 16至 20任一权利要求所述的装置, 其特征在于,
所述同步单元,具体用于将所述同步序列与所述接收信号之间的相关峰值的 位置作为接收信号中的同步信号起始位置, 从而完成符号定时同步。
22.如权利要求 16至 20任一权利要求所述的装置, 其特征在于, 所述同步 单元包括:
估计子单元,用于使用所述同步序列对第二序列进行载波频偏估计得到载波 频偏估计值, 所述第二序列由所述同步信号解差分得到;
补偿子单元, 用于使用载波频偏估计值对所述接收信号进行频率补偿, 从而 完成载波频率同步。
23.—种同步信号发送方法, 其特征在于, 包括:
确定第一发送端的同步信号,所述同步信号为对同步序列进行差分处理得到 的信号, 所述同步序列为基序列与第一特征序列的乘积, 所述基序列为具有互相 关性的序列集中的序列,所述第一特征序列与第一发送端所处小区的小区标识对 应且与第二发送端所对应的第二特征序列之间满足任意时延下的正交性,所述第 二发送端与所述第一发送端处于不同的小区;
发送所述同步信号, 以便于接收端使用所述同步信号完成信号同步。
24.如权利要求 23所述的方法,其特征在于,所述基序列为伪随机序列、 gold 序列或 ZC序列, 所述第一特征序列为 Hadamard序列或 Walsh序列。
25.如权利要求 23所述的方法, 其特征在于, 所述确定本发明发送端的同步 信号包括:
确定第一发送端所处小区的小区标识;
确定与所述小区标识对应的基序列;
确定与所述小区标识对应的第一特征序列;
将所述基序列与所述第一特征序列进行点乘或共轭相乘得到同步序列; 对所述同步序列进行差分处理得到同步信号。
26.如权利要求 25所述的方法, 其特征在于, 所述确定与所述小区标识对应 的基序列包括:
将使用与所述小区标识对应的初始化种子生成的伪随机序列或 gold序列作 为基序列;
或者,将使用与所述小区标识相对应的根序号所对应的 ZC序列作为基序列。
27.如权利要求 25或 26所述的方法, 其特征在于, 所述确定与所述小区标 识对应的第一特征序列包括:
确定与所述小区标识对应的 Hadamard序列或 Walsh序列为第一特征序列。
28.—种同步信号接收方法, 其特征在于, 包括:
接收端接收包含同步信号的接收信号;
确定生成所述同步信号所使用的序列组, 所述序列组包括基序列与特征序 列;
使用所述序列组及所述接收信号完成同步。
29.如权利要求 28所述的方法, 其特征在于, 所述确定生成所述同步信号所 使用的序列组包括:
确定所述发送端所处小区的小区标识;
确定与所述小区标识对应的序列组。
30.如权利要求 28所述的方法, 其特征在于, 所述确定生成所述同步信号所 使用的序列组包括:
确定所有备选序列组合,每一个所述备选序列组合由一个备选特征序列与一 个备选基序列构成;
分别计算每一个所述备选序列组合与所述接收信号之间的相关峰值; 将最大相关峰值所对应的备选序列组合作为所述序列组。
31.如权利要求 30所述的方法, 其特征在于, 采用如下方式分别计算每一个 备选序列组合与所述接收信号之间的相关峰值:
对接收信号进行滑窗操作确定至少一个滑窗,所述滑窗的长度为所述备选同 步序列的长度加 1位;
计算所述接收信号每一个滑窗内的滑窗信号与所述备选序列组合之间的相 关值;
将最大的相关值作为所述备选序列组合与所述接收信号之间的相关峰值。
32.如权利要求 31所述的方法, 其特征在于, 采用如下方式计算每一个滑窗 内的滑窗信号与所述备选序列组合之间的相关峰值:
对滑窗信号进行解差分得到第一序列;
使用所述备选特征序列对所述第一序列进行去特征化处理得到第二序列,所 述去特征化处理为点乘或共轭相乘;
计算所述第二序列与所述备选基序列之间的相关值。
33.如权利要求 28至 32任一权利要求所述的方法, 其特征在于, 所述使用 所述序列组及所述接收信号完成同步包括:
将序列组与所述接收信号之间的相关峰值的位置作为接收信号中的同步信 号起始位置, 从而完成符号定时同步。
34.如权利要求 28至 32任一权利要求所述的方法, 其特征在于, 所述使用 所述序列组及所述接收信号完成同步包括:
使用所述基序列对所述第三序列进行载波频偏估计得到载波频偏估计值,所 述第三序列为使用所述特征序列对所述同步序列进行去特征化处理得到的序列, 所述同步序列由所述同步信号解差分得到;
使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同 少。
35.—种同步信号发送方法, 其特征在于, 包括:
确定第一发送端的同步信号,所述同步信号为对与第一发送端相对应的第一 同步序列进行差分处理得到的信号,所述第一同步序列为具有互相关性的序列集 中的序列,所述第一同步序列与第一发送端所处小区的小区标识对应且与第二发 送端所对应的第二同步序列为所述序列集中的不同序列,所述第二发送端与所述 第一发送端处于不同的小区;
发送所述同步信号, 以便于接收端使用所述同步信号完成信号同步。
36.如权利要求 35所述的方法, 其特征在于, 所述确定第一发送端的同步信 号包括:
确定所述发送端所处小区的小区标识;
确定与所述小区标识对应的第一同步序列;
对所述第一同步序列进行差分处理得到同步信号。
37.如权利要求 35或 36所述的方法, 其特征在于, 所述第一同步序列为伪 随机序列、 gold序列或 ZC序列。
38.—种同步信号接收方法, 其特征在于, 包括:
接收端接收包含同步信号的接收信号;
确定生成所述同步信号所使用的同步序列;
使用所述同步序列及所述接收信号完成同步。
39.如权利要求 38所述的方法, 其特征在于, 所述确定生成所述同步信号所 使用的同步序列包括:
确定所述发送端所处小区的小区标识;
确定与所述小区标识对应的同步序列。
40.如权利要求 38所述的方法, 其特征在于, 所述确定生成所述同步信号所 使用的同步序列包括:
确定所有备选同步序列;
分别计算每一个备选同步序列与所述接收信号之间的相关峰值; 将最大相关峰值所对应的备选同步序列作为所述同步序列。
41.如权利要求 40所述的方法, 其特征在于, 采用如下方式分别计算每一个 备选同步序列与所述接收信号之间的相关峰值:
对接收信号进行滑窗操作确定至少一个滑窗,所述滑窗的长度为所述备选同 步序列的长度加 1位;
计算所述接收信号每一个滑窗内的滑窗信号与所述备选同步序列之间的相 关值;
将最大的相关值作为所述备选同步序列与所述接收信号之间的相关峰值。
42.权利要求 41所述的方法, 其特征在于, 采用如下方式计算每一个滑窗内 的滑窗信号与所述备选同步序列之间的相关值:
对滑窗信号进行解差分得到第一序列;
计算所述第一序列与所述备选同步序列之间的相关值。
43.如权利要求 38至 42任一权利要求所述的方法, 其特征在于, 所述使用 所述同步序列及所述接收信号完成同步包括:
将所述同步序列与所述接收信号之间的相关峰值的位置作为接收信号中的 同步信号起始位置, 从而完成符号定时同步。
44.如权利要求 38至 42任一权利要求所述的方法, 其特征在于, 所述使用 所述同步序列及所述接收信号完成同步包括:
使用所述同步序列对第二序列进行载波频偏估计得到载波频偏估计值,所述 第二序列由所述同步信号解差分得到;
使用载波频偏估计值对所述接收信号进行频率补偿, 从而完成载波频率同 少。
PCT/CN2014/084727 2014-08-19 2014-08-19 同步信号发送装置、接收装置及方法与系统 WO2016026086A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/084727 WO2016026086A1 (zh) 2014-08-19 2014-08-19 同步信号发送装置、接收装置及方法与系统
CN201480003173.7A CN105723783B (zh) 2014-08-19 2014-08-19 同步信号发送装置、接收装置及方法与系统
EP14894186.7A EP3026967A1 (en) 2014-08-19 2014-08-19 Synchronization signal transmitting device, receiving device, method, and system
US15/082,508 US20160212568A1 (en) 2014-08-19 2016-03-28 Synchronization signal sending apparatus, sending method, receiving apparatus, and receiving method, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/084727 WO2016026086A1 (zh) 2014-08-19 2014-08-19 同步信号发送装置、接收装置及方法与系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/082,508 Continuation US20160212568A1 (en) 2014-08-19 2016-03-28 Synchronization signal sending apparatus, sending method, receiving apparatus, and receiving method, and system

Publications (1)

Publication Number Publication Date
WO2016026086A1 true WO2016026086A1 (zh) 2016-02-25

Family

ID=55350079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084727 WO2016026086A1 (zh) 2014-08-19 2014-08-19 同步信号发送装置、接收装置及方法与系统

Country Status (4)

Country Link
US (1) US20160212568A1 (zh)
EP (1) EP3026967A1 (zh)
CN (1) CN105723783B (zh)
WO (1) WO2016026086A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187078A1 (zh) * 2019-03-18 2020-09-24 电信科学技术研究院有限公司 时间同步方法及网络节点

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11570597B2 (en) * 2016-02-08 2023-01-31 Qualcomm Incorporated Pilot design for uplink (UL) narrow-band internet of things (NB-IoT)
EP3539268A1 (en) * 2016-11-11 2019-09-18 Telefonaktiebolaget LM Ericsson (PUBL) Reference signal design with zadoff-chu sequences
WO2018127319A1 (en) * 2017-01-05 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Allocation of sync signals with alternative features
CN111355568B (zh) * 2018-12-21 2022-03-25 深圳市中兴微电子技术有限公司 具有时间重复特性的同步码的差分处理方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375570A (zh) * 2006-01-20 2009-02-25 高通股份有限公司 用于无线通信系统中导频多路复用的方法和装置
CN101772148A (zh) * 2009-01-05 2010-07-07 中兴通讯股份有限公司 辅同步信道的配置方法和装置、子载波映射方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150709C (zh) * 2001-02-28 2004-05-19 信息产业部电信传输研究所 Cdma蜂窝系统两级变码片速率扩频和解扩方法
US20080118016A1 (en) * 2006-11-20 2008-05-22 Yu-Min Chuang Synchronous circuit of receiving device of wireless transmission system
KR100921769B1 (ko) * 2007-07-12 2009-10-15 한국전자통신연구원 하향링크 프레임 생성 방법 및 셀 탐색 방법
CN101222275B (zh) * 2008-01-22 2011-06-22 中兴通讯股份有限公司 下行同步系统中同步序列携带系统信息方法及其接收方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101375570A (zh) * 2006-01-20 2009-02-25 高通股份有限公司 用于无线通信系统中导频多路复用的方法和装置
CN101772148A (zh) * 2009-01-05 2010-07-07 中兴通讯股份有限公司 辅同步信道的配置方法和装置、子载波映射方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187078A1 (zh) * 2019-03-18 2020-09-24 电信科学技术研究院有限公司 时间同步方法及网络节点

Also Published As

Publication number Publication date
CN105723783B (zh) 2019-10-18
CN105723783A (zh) 2016-06-29
EP3026967A1 (en) 2016-06-01
US20160212568A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
CN101536336B (zh) 用于快速小区搜索的方法和装置
US9179478B2 (en) Method and arrangement in a telecommunication system
US8681730B2 (en) Method and system for using sign based synchronization sequences in a correlation process to reduce correlation complexity in an OFDM system
TWI380607B (en) Scrambling codes for secondary synchronization codes in wireless communication systems
TWI380606B (en) Pseudo-random sequence mapping in wireless communications
CN110301123B (zh) 大物理随机接入控制信道(prach)延迟的相干检测
Lin et al. SS/PBCH block design in 5G new radio (NR)
CN102307167B (zh) 调整上行定时提前量的方法、装置及基站系统
KR101065236B1 (ko) 수신기 다중경로 cdma 신호의 채널 추정
CN101601221A (zh) 提供导频或前导信号中zadoff-chu序列的有限使用的设备、方法和计算机程序产品
TW200818794A (en) Method of transmitting data in a mobile communication system
CN101473585A (zh) 用于无线通信系统的反向链路导频传输
TW200421766A (en) Pilot transmission schemes for wireless multi-carrier communication systems
WO2016026086A1 (zh) 同步信号发送装置、接收装置及方法与系统
WO2019028793A1 (zh) 随机接入前导码传输方法及装置
WO2013104293A1 (zh) 一种通信系统中的随机接入方法及装置
CN110830212B (zh) 一种参考信号发送、接收方法及装置
US20170111083A1 (en) Devices and methods employing hermetic transforms for encoding and decoding digital information in spread-spectrum communication systems
WO2016026085A1 (zh) 同步信号发送方法、接收方法以及相关装置
WO2016150241A1 (zh) 一种数据传输方法及装置
CN114731701B (zh) 一种序列检测方法及设备
CN102098259A (zh) 多子带正交频分复用系统中的信号发射方法
WO2018171507A1 (zh) 一种收发物理随机接入信道前导码序列的方法及装置
KR20120015851A (ko) 이동통신시스템에서 otdoa 추정 장치 및 방법
CN109802784B (zh) 一种pucch传输方法、移动通信终端及网络侧设备

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014894186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014894186

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894186

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE