[go: up one dir, main page]

WO2016024790A1 - 무선 통신 시스템에서 하향링크 데이터 전송을 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 하향링크 데이터 전송을 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016024790A1
WO2016024790A1 PCT/KR2015/008394 KR2015008394W WO2016024790A1 WO 2016024790 A1 WO2016024790 A1 WO 2016024790A1 KR 2015008394 W KR2015008394 W KR 2015008394W WO 2016024790 A1 WO2016024790 A1 WO 2016024790A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
mme
downlink data
message
bearer
Prior art date
Application number
PCT/KR2015/008394
Other languages
English (en)
French (fr)
Inventor
류진숙
김현숙
김래영
김재현
김태훈
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to US15/503,280 priority Critical patent/US10420029B2/en
Priority to EP15831455.9A priority patent/EP3182754B1/en
Publication of WO2016024790A1 publication Critical patent/WO2016024790A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for performing or supporting transmission of downlink data to a terminal that is not accessible (reachable) and an apparatus for supporting the same.
  • Machine Type Communications refers to a communication method including one or more machines, and may also be referred to as machine-to-machine (M2M) communication or thing communication.
  • M2M machine-to-machine
  • a machine refers to an entity that does not require human direct manipulation or intervention.
  • a device such as a meter or vending machine equipped with a mobile communication module, as well as a user device such as a smartphone that can automatically connect and communicate with a network without a user's operation / intervention, This may correspond to an example.
  • MTC devices or terminals that is, MTC means communication performed by one or more machines (ie, MTC devices) without human intervention / intervention.
  • the MTC may include communication between MTC devices (eg, device-to-device (D2D) communication), and communication between an MTC device and an MTC application server.
  • MTC devices eg, device-to-device (D2D) communication
  • Examples of the communication between the MTC device and the MTC application server may include a communication between an automatic selling price and a server, a point of sale (POS) device and a server, an electric, gas or water meter, and a server.
  • applications based on MTC may include security, transportation, health care, and the like.
  • An object of the present invention is a terminal, in particular, a limited device (Constrained Device) having characteristics such as low complexity (Low complexity), such as low energy (for example, devices for IoT (Inter of Things), devices for M2M,
  • Constrained Device having characteristics such as low complexity (Low complexity), such as low energy (for example, devices for IoT (Inter of Things), devices for M2M
  • the present invention proposes a method for efficiently transmitting downlink data (or packets) to a category 0 terminal having a single antenna and the like and reducing complexity.
  • the present invention proposes a method for improving a method of transmitting and receiving downlink data between a mobile management entity (MME) and a serving gateway (S-GW).
  • MME mobile management entity
  • S-GW serving gateway
  • a mobile management entity receives a downlink data notification message from a serving gateway (S-GW). And transmitting, by the MME, a response message for instructing buffering of downlink data to the S-GW when the MME detects that the UE is in a sleep state, wherein the response message includes the downlink.
  • a buffering time of the data may be included, and the buffering time may be a time when the terminal is expected to switch from the sleep state to the accessible state.
  • the MME may receive the downlink data notification message from the S-GW.
  • the MME may send an Initial Context Setup Request message to the base station to set up the S1 bearer.
  • the MME may transmit a paging message to the base station belonging to the tracking area (the tracking area) that the terminal most recently registered.
  • Another aspect of the present invention is a method for transmitting downlink data to a terminal in a wireless communication system, wherein a S-GW (Serving Gateway) receives downlink data to be transmitted to a terminal from a P-GW (Packet Gateway)
  • the S-GW transmits a downlink data notification message to a mobile management entity (MME) and the response message for instructing the S-GW to instruct buffering of the downlink data from the MME.
  • MME mobile management entity
  • receiving, and the response message may include a buffering time of the downlink data.
  • the buffering time may be a time when the terminal is expected to switch from the sleep state to the accessible state.
  • the S-GW may transmit the downlink data notification message to the MME.
  • downlink data can be efficiently transmitted to a terminal, in particular, a constrained device having characteristics such as low complexity and low energy.
  • signaling load can be minimized by improving a downlink data notification transmission and reception procedure between a mobile management entity (MME) and a serving gateway (S-GW). .
  • MME mobile management entity
  • S-GW serving gateway
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • E-UTRAN evolved universal terrestrial radio access network
  • FIG. 3 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows an S1 interface protocol structure in a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram illustrating EMM and ECM states in a wireless communication system to which the present invention can be applied.
  • FIG. 6 illustrates a bearer structure in a wireless communication system to which the present invention can be applied.
  • FIG. 7 is a diagram illustrating transmission paths of a control plane and a user plane in an EMM registration state in a wireless communication system to which the present invention can be applied.
  • FIG. 8 is a diagram briefly illustrating an attach procedure in a wireless communication system to which the present invention may be applied.
  • FIG. 9 is a diagram briefly illustrating a periodic tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 10 is a diagram briefly illustrating a terminal trigger service request procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 11 is a diagram exemplarily illustrating a terminal trigger service request procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 12 illustrates a downlink data notification procedure for a UE in a power saving mode in a wireless communication system to which the present invention can be applied.
  • FIG. 13 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • 15 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • 16 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • 17 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • FIG. 18 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • UMTS Universal Mobile Telecommunications System
  • GSM Global System for Mobile Communication
  • Evolved Packet System A network system consisting of an Evolved Packet Core (EPC), which is a packet switched core network based on Internet Protocol (IP), and an access network such as LTE and UTRAN.
  • EPC Evolved Packet Core
  • IP Internet Protocol
  • UMTS is an evolutionary network.
  • NodeB base station of UMTS network. It is installed outdoors and its coverage is macro cell size.
  • eNodeB base station of EPS network. It is installed outdoors and its coverage is macro cell size.
  • a terminal may be referred to in terms of terminal, mobile equipment (ME), mobile station (MS), and the like.
  • the terminal may be a portable device such as a laptop, a mobile phone, a personal digital assistant (PDA), a smartphone, a multimedia device, or the like, or may be a non-portable device such as a personal computer (PC) or a vehicle-mounted device.
  • the term "terminal” or “terminal” in the MTC related content may refer to an MTC terminal.
  • IMS IP Multimedia Subsystem
  • IMSI International Mobile Subscriber Identity
  • Machine Type Communication Communication performed by a machine without human intervention. It may also be referred to as M2M (Machine to Machine) communication.
  • MTC terminal (MTC UE or MTC device or MTC device): a terminal having a communication function through a mobile communication network and performing an MTC function (for example, a vending machine, a meter reading device, etc.).
  • MTC server A server on a network that manages an MTC terminal. It may exist inside or outside the mobile communication network. It may have an interface that an MTC user can access. In addition, the MTC server may provide MTC related services to other servers (Services Capability Server (SCS)), or the MTC server may be an MTC application server.
  • SCS Services Capability Server
  • MTC mobile broadband
  • services e.g., remote meter reading, volume movement tracking, weather sensors, etc.
  • (MTC) application server a server on a network where (MTC) applications run
  • MTC feature A function of a network to support an MTC application.
  • MTC monitoring is a feature for preparing for loss of equipment in an MTC application such as a remote meter reading
  • low mobility is a feature for an MTC application for an MTC terminal such as a vending machine.
  • MTC subscriber An entity having a connection relationship with a network operator and providing a service to one or more MTC terminals.
  • MTC group A group of MTC terminals that share at least one MTC feature and belongs to an MTC subscriber.
  • SCS Services Capability Server
  • External Identifier An identifier used by an external entity (e.g., an SCS or application server) of a 3GPP network to point to (or identify) an MTC terminal (or a subscriber to which the MTC terminal belongs). Globally unique.
  • the external identifier is composed of a domain identifier and a local identifier as follows.
  • Domain Identifier An identifier for identifying a domain in a control term of a mobile communication network operator.
  • One provider may use a domain identifier for each service to provide access to different services.
  • Local Identifier An identifier used to infer or obtain an International Mobile Subscriber Identity (IMSI). Local identifiers must be unique within the application domain and are managed by the mobile telecommunications network operator.
  • IMSI International Mobile Subscriber Identity
  • RAN Radio Access Network: a unit including a Node B, a Radio Network Controller (RNC), and an eNodeB controlling the Node B in a 3GPP network. It exists at the terminal end and provides connection to the core network.
  • RNC Radio Network Controller
  • HLR Home Location Register
  • HSS Home Subscriber Server
  • RANAP RAN Application Part: between the RAN and the node in charge of controlling the core network (ie, Mobility Management Entity (MME) / Serving General Packet Radio Service (GPRS) Supporting Node) / MSC (Mobile Switching Center) Interface.
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • MSC Mobile Switching Center
  • PLMN Public Land Mobile Network
  • Non-Access Stratum A functional layer for transmitting and receiving signaling and traffic messages between a terminal and a core network in a UMTS and EPS protocol stack. The main function is to support the mobility of the terminal and to support the session management procedure for establishing and maintaining an IP connection between the terminal and the PDN GW.
  • FIG. 1 is a diagram briefly illustrating an EPS (Evolved Packet System) to which the present invention may be applied.
  • EPS Evolved Packet System
  • the network structure diagram of FIG. 1 briefly reconstructs a structure of an EPS (Evolved Packet System) including an Evolved Packet Core (EPC).
  • EPS Evolved Packet System
  • EPC Evolved Packet Core
  • EPC Evolved Packet Core
  • SAE System Architecture Evolution
  • SAE is a research project to determine network structure supporting mobility between various kinds of networks.
  • SAE aims to provide an optimized packet-based system, for example, supporting various radio access technologies on an IP basis and providing improved data transfer capability.
  • the EPC is a core network of an IP mobile communication system for a 3GPP LTE system and may support packet-based real-time and non-real-time services.
  • a conventional mobile communication system i.e., a second generation or third generation mobile communication system
  • the core network is divided into two distinct sub-domains of circuit-switched (CS) for voice and packet-switched (PS) for data.
  • CS circuit-switched
  • PS packet-switched
  • the function has been implemented.
  • the sub-domains of CS and PS have been unified into one IP domain.
  • the EPC may include various components, and in FIG. 1, some of them correspond to a serving gateway (SGW), a packet data network gateway (PDN GW), a mobility management entity (MME), and a serving general packet (SGRS) Radio Service (Supporting Node) and Enhanced Packet Data Gateway (ePDG) are shown.
  • SGW serving gateway
  • PDN GW packet data network gateway
  • MME mobility management entity
  • SGRS serving general packet
  • Radio Service Upporting Node
  • ePDG Enhanced Packet Data Gateway
  • the SGW acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB and the PDN GW.
  • the SGW serves as a local mobility anchor point. That is, packets may be routed through the SGW for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • SGW also provides mobility with other 3GPP networks (RANs defined before 3GPP Release-8, such as UTRAN or GERAN (Global System for Mobile Communication (GSM) / Enhanced Data rates for Global Evolution (EDGE) Radio Access Network). It can also function as an anchor point.
  • GSM Global System for Mobile Communication
  • EDGE Enhanced Data rates for Global Evolution
  • the PDN GW corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW may support policy enforcement features, packet filtering, charging support, and the like.
  • untrusted networks such as 3GPP networks and non-3GPP networks (e.g., Interworking Wireless Local Area Networks (I-WLANs), trusted divisions such as Code Division Multiple Access (CDMA) networks or Wimax). It can serve as an anchor point for mobility management with the network.
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA Code Division Multiple Access
  • FIG. 1 shows that the SGW and the PDN GW are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option.
  • the MME is an element that performs signaling and control functions for supporting access to a network connection, allocation of network resources, tracking, paging, roaming, handover, and the like.
  • the MME controls the control plane functions related to subscriber and session management.
  • the MME manages a number of eNodeBs and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME also performs functions such as security procedures, terminal-to-network session handling, and idle terminal location management.
  • SGSN handles all packet data, such as user's mobility management and authentication to other 3GPP networks (eg GPRS networks).
  • 3GPP networks eg GPRS networks.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability includes an IP service network provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an operator ie, an operator
  • 3GPP access based on 3GPP access as well as non-3GPP access.
  • IMS IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • various reference points may exist according to the network structure.
  • S2a and S2b correspond to non-3GPP interfaces.
  • S2a is a reference point that provides the user plane with relevant control and mobility resources between trusted non-3GPP access and PDN GW.
  • S2b is a reference point that provides the user plane with relevant control and mobility support between the ePDG and the PDN GW.
  • E-UTRAN evolved universal terrestrial radio access network
  • the E-UTRAN system is an evolution from the existing UTRAN system and may be, for example, a 3GPP LTE / LTE-A system.
  • the E-UTRAN consists of base stations (eNBs) that provide a control plane and a user plane protocol to the terminal, and the base stations are connected through an X2 interface.
  • An X2 user plane interface (X2-U) is defined between base stations.
  • the X2-U interface provides non guaranteed delivery of user plane packet data units (PDUs).
  • An X2 control plane interface (X2-CP) is defined between two neighboring base stations. X2-CP performs functions such as context transfer between base stations, control of a user plane tunnel between a source base station and a target base station, transfer of handover related messages, and uplink load management.
  • the base station is connected to the terminal through a wireless interface and is connected to the evolved packet core (EPC) through the S1 interface.
  • the S1 user plane interface (S1-U) is defined between the base station and the serving gateway (S-GW).
  • the S1 control plane interface (S1-MME) is defined between the base station and the mobility management entity (MME).
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • MME mobility management entity
  • the S1 interface performs an evolved packet system (EPS) bearer service management function, a non-access stratum (NAS) signaling transport function, network sharing, and MME load balancing function.
  • EPS evolved packet system
  • NAS non-access stratum
  • MME mobility management entity
  • the S1 interface supports a many-to-many-relation between the base station
  • FIG. 3 shows a structure of a radio interface protocol between a terminal and an E-UTRAN in a wireless communication system to which the present invention can be applied.
  • FIG. 3 (a) shows a radio protocol structure for a control plane
  • FIG. 3 (b) shows a radio protocol structure for a user plane.
  • the layers of the air interface protocol between the terminal and the E-UTRAN are based on the lower three layers of the well-known open system interconnection (OSI) standard model known in the art of communication systems. It may be divided into a first layer L1, a second layer L2, and a third layer L3.
  • the air interface protocol between the UE and the E-UTRAN consists of a physical layer, a data link layer, and a network layer horizontally, and vertically stacks a protocol stack for transmitting data information. (protocol stack) It is divided into a user plane and a control plane, which is a protocol stack for transmitting control signals.
  • the control plane refers to a path through which control messages used by the terminal and the network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • an application layer for example, voice data or Internet packet data
  • a physical layer which is a first layer (L1), provides an information transfer service to a higher layer by using a physical channel.
  • the physical layer is connected to a medium access control (MAC) layer located at a higher level through a transport channel, and data is transmitted between the MAC layer and the physical layer through the transport channel.
  • Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • data is transmitted between different physical layers through a physical channel between a physical layer of a transmitter and a physical layer of a receiver.
  • the physical layer is modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel is a resource allocation of a paging channel (PCH) and a downlink shared channel (DL-SCH) and uplink shared channel (UL-SCH) to the UE.
  • PCH paging channel
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • the PDCCH may carry an UL grant that informs the UE of resource allocation of uplink transmission.
  • PDFICH physical control format indicator channel informs the UE of the number of OFDM symbols used for PDCCHs and is transmitted every subframe.
  • a physical HARQ indicator channel (PHICH) carries a HARQ acknowledgment (ACK) / non-acknowledge (NACK) signal in response to uplink transmission.
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NACK, downlink request and channel quality indicator (CQI) for downlink transmission.
  • a physical uplink shared channel (PUSCH) carries a UL-SCH.
  • the MAC layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the MAC layer multiplexes / demultiplexes into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • SDU MAC service data unit
  • the RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • the RLC layer In order to guarantee the various quality of service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM) and an acknowledgment mode (AM). There are three modes of operation: acknowledge mode.
  • AM RLC provides error correction through an automatic repeat request (ARQ). Meanwhile, when the MAC layer performs an RLC function, the RLC layer may be included as a functional block of the MAC layer.
  • the packet data convergence protocol (PDCP) layer of the second layer (L2) performs user data transmission, header compression, and ciphering functions in the user plane.
  • Header compression is relatively large and large in order to allow efficient transmission of Internet protocol (IP) packets, such as IPv4 (internet protocol version 4) or IPv6 (internet protocol version 6), over a small bandwidth wireless interface. It means the function to reduce the IP packet header size that contains unnecessary control information.
  • IP Internet protocol
  • IPv4 Internet protocol version 4
  • IPv6 Internet protocol version 6
  • a radio resource control (RRC) layer located at the lowest part of the third layer L3 is defined only in the control plane.
  • the RRC layer serves to control radio resources between the terminal and the network.
  • the UE and the network exchange RRC messages with each other through the RRC layer.
  • the RRC layer controls the logical channel, transport channel and physical channel with respect to configuration, re-configuration and release of radio bearers.
  • the radio bearer means a logical path provided by the second layer (L2) for data transmission between the terminal and the network.
  • Establishing a radio bearer means defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the radio bearer may be further divided into two signaling radio bearers (SRBs) and data radio bearers (DRBs).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • One cell constituting the base station is set to one of the bandwidth, such as 1.25, 2.5, 5, 10, 20Mhz to provide a downlink or uplink transmission service to multiple terminals.
  • Different cells may be configured to provide different bandwidths.
  • a downlink transport channel for transmitting data from a network to a terminal includes a broadcast channel (BCH) for transmitting system information, a PCH for transmitting a paging message, and a DL-SCH for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH for transmitting a paging message
  • DL-SCH for transmitting user traffic or control messages.
  • Traffic or control messages of the downlink multicast or broadcast service may be transmitted through the DL-SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transport channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message, and an UL-SCH (uplink shared) for transmitting user traffic or a control message. channel).
  • RACH random access channel
  • UL-SCH uplink shared
  • the logical channel is on top of the transport channel and is mapped to the transport channel.
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • a broadcast control channel BCCH
  • PCCH paging control channel
  • CCCH common control channel
  • DCCH dedicated control channel
  • MCCH multicast control channel
  • DTCH dedicated traffic channel
  • MTCH multicast traffic channel
  • FIG. 4 shows an S1 interface protocol structure in a wireless communication system to which the present invention can be applied.
  • FIG. 4 (a) illustrates a control plane protocol stack in an S1 interface
  • FIG. 4 (b) shows a user plane interface protocol structure in an S1 interface.
  • the S1 control plane interface (S1-MME) is defined between the base station and the MME. Similar to the user plane, the transport network layer is based on IP transport. However, it is added to the SCTP (Stream Control Transmission Protocol) layer above the IP layer for reliable transmission of message signaling.
  • SCTP Stream Control Transmission Protocol
  • the application layer signaling protocol is referred to as S1-AP (S1 application protocol).
  • the SCTP layer provides guaranteed delivery of application layer messages.
  • Point-to-point transmission is used at the transport IP layer for protocol data unit (PDU) signaling transmission.
  • PDU protocol data unit
  • a single SCTP association per S1-MME interface instance uses a pair of stream identifiers for the S-MME common procedure. Only some pairs of stream identifiers are used for the S1-MME dedicated procedure.
  • the MME communication context identifier is assigned by the MME for the S1-MME dedicated procedure, and the eNB communication context identifier is assigned by the eNB for the S1-MME dedicated procedure.
  • the MME communication context identifier and the eNB communication context identifier are used to distinguish the UE-specific S1-MME signaling transmission bearer. Communication context identifiers are each carried in an S1-AP message.
  • the MME changes the state of the terminal that used the signaling connection to the ECM-IDLE state. And, the eNB releases the RRC connection of the terminal.
  • S1 user plane interface (S1-U) is defined between the eNB and the S-GW.
  • the S1-U interface provides non-guaranteed delivery of user plane PDUs between the eNB and the S-GW.
  • the transport network layer is based on IP transmission, and a GPRS Tunneling Protocol User Plane (GTP-U) layer is used above the UDP / IP layer to transfer user plane PDUs between the eNB and the S-GW.
  • GTP-U GPRS Tunneling Protocol User Plane
  • EMM EPS mobility management
  • ECM EPS connection management
  • FIG. 5 is a diagram illustrating EMM and ECM states in a wireless communication system to which the present invention can be applied.
  • an EMM registered state (EMM-REGISTERED) according to whether a terminal is attached or detached from a network in order to manage mobility of the terminal in a NAS layer located in a control plane of the terminal and the MME.
  • EMM deregistration state (EMM-DEREGISTERED) may be defined.
  • the EMM-REGISTERED state and the EMM-DEREGISTERED state may be applied to the terminal and the MME.
  • the initial terminal is in the EMM-DEREGISTERED state, and the terminal performs a process of registering with the corresponding network through an initial attach procedure to access the network. If the access procedure is successfully performed, the UE and the MME are transitioned to the EMM-REGISTERED state. In addition, when the terminal is powered off or the radio link fails (when the packet error rate exceeds the reference value on the wireless link), the terminal is detached from the network and transitioned to the EMM-DEREGISTERED state.
  • ECM-connected state and an ECM idle state may be defined to manage a signaling connection between the terminal and the network.
  • ECM-CONNECTED state and ECM-IDLE state may also be applied to the UE and the MME.
  • the ECM connection consists of an RRC connection established between the terminal and the base station and an S1 signaling connection established between the base station and the MME. In other words, when the ECM connection is set / released, it means that both the RRC connection and the S1 signaling connection are set / released.
  • the RRC state indicates whether the RRC layer of the terminal and the RRC layer of the base station are logically connected. That is, when the RRC layer of the terminal and the RRC layer of the base station is connected, the terminal is in the RRC connected state (RRC_CONNECTED). If the RRC layer of the terminal and the RRC layer of the base station is not connected, the terminal is in the RRC idle state (RRC_IDLE).
  • the network can grasp the existence of the terminal in the ECM-CONNECTED state in units of cells and can effectively control the terminal.
  • the network cannot grasp the existence of the UE in the ECM-IDLE state, and manages the core network (CN) in a tracking area unit that is a larger area than the cell.
  • the terminal When the terminal is in the ECM idle state, the terminal performs Discontinuous Reception (DRX) set by the NAS using an ID assigned only in the tracking area. That is, the UE may receive broadcast of system information and paging information by monitoring a paging signal at a specific paging occasion every UE-specific paging DRX cycle.
  • DRX Discontinuous Reception
  • the network does not have context information of the terminal. Accordingly, the UE in the ECM-IDLE state may perform a terminal-based mobility related procedure such as cell selection or cell reselection without receiving a command from the network.
  • the terminal In the ECM idle state, when the location of the terminal is different from the location known by the network, the terminal may inform the network of the location of the terminal through a tracking area update (TAU) procedure.
  • TAU tracking area update
  • the network knows the cell to which the UE belongs. Accordingly, the network may transmit and / or receive data to or from the terminal, control mobility such as handover of the terminal, and perform cell measurement on neighbor cells.
  • the terminal needs to transition to the ECM-CONNECTED state in order to receive a normal mobile communication service such as voice or data.
  • the initial terminal is in the ECM-IDLE state as in the EMM state, and when the terminal is successfully registered in the network through an initial attach procedure, the terminal and the MME are in the ECM connection state. Transition is made.
  • the terminal is registered in the network but the traffic is inactivated and the radio resources are not allocated, the terminal is in the ECM-IDLE state, and if a new traffic is generated uplink or downlink to the terminal, a service request procedure UE and MME is transitioned to the ECM-CONNECTED state through.
  • FIG. 6 illustrates a bearer structure in a wireless communication system to which the present invention can be applied.
  • PDN packet date network
  • EPS Packet Data Network
  • PDN peer entity in FIG. 6
  • EPS Packet Data Network
  • a PDN connection is generated, and the PDN connection may also be referred to as an EPS session.
  • PDN is a service provider's external or internal IP (internet protocol) network to provide service functions such as the Internet or IMS (IP Multimedia Subsystem).
  • IMS IP Multimedia Subsystem
  • the EPS bearer is a transmission path of traffic generated between the UE and the PDN GW in order to deliver user traffic in EPS.
  • One or more EPS bearers may be set per terminal.
  • Each EPS bearer may be divided into an E-UTRAN radio access bearer (E-RAB) and an S5 / S8 bearer, and the E-RAB is divided into a radio bearer (RB: radio bearer) and an S1 bearer. Can lose. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively.
  • E-RAB E-UTRAN radio access bearer
  • S5 / S8 bearer an S5 / S8 bearer
  • RB radio bearer
  • the E-RAB delivers the packet of the EPS bearer between the terminal and the EPC. If there is an E-RAB, the E-RAB bearer and the EPS bearer are mapped one-to-one.
  • a data radio bearer (DRB) transfers a packet of an EPS bearer between a terminal and an eNB. If the DRB exists, the DRB and the EPS bearer / E-RAB are mapped one-to-one.
  • the S1 bearer delivers the packet of the EPS bearer between the eNB and the S-GW.
  • the S5 / S8 bearer delivers an EPS bearer packet between the S-GW and the P-GW.
  • the UE binds a service data flow (SDF) to the EPS bearer in the uplink direction.
  • SDF is an IP flow or collection of IP flows that classifies (or filters) user traffic by service.
  • a plurality of SDFs may be multiplexed onto the same EPS bearer by including a plurality of uplink packet filters.
  • the terminal stores mapping information between the uplink packet filter and the DRB in order to bind between the SDF and the DRB in the uplink.
  • P-GW binds SDF to EPS bearer in downlink direction.
  • a plurality of SDFs may be multiplexed on the same EPS bearer by including a plurality of downlink packet filters.
  • the P-GW stores the mapping information between the downlink packet filter and the S5 / S8 bearer to bind between the SDF and the S5 / S8 bearer in the downlink.
  • the eNB stores a one-to-one mapping between the DRB and the S1 bearer to bind between the DRB and the S1 bearer in the uplink / downlink.
  • S-GW stores one-to-one mapping information between S1 bearer and S5 / S8 bearer in order to bind between S1 bearer and S5 / S8 bearer in uplink / downlink.
  • EPS bearers are classified into two types: a default bearer and a dedicated bearer.
  • the terminal may have one default bearer and one or more dedicated bearers per PDN.
  • the minimum default bearer of the EPS session for one PDN is called a default bearer.
  • the EPS bearer may be classified based on an identifier.
  • EPS bearer identity is assigned by the terminal or the MME.
  • the dedicated bearer (s) is combined with the default bearer by Linked EPS Bearer Identity (LBI).
  • LBI Linked EPS Bearer Identity
  • a PDN connection is generated by assigning an IP address, and a default bearer is generated in the EPS section. Even if there is no traffic between the terminal and the corresponding PDN, the default bearer is not released unless the terminal terminates the PDN connection, and the default bearer is released when the corresponding PDN connection is terminated.
  • the bearer of all sections constituting the terminal and the default bearer is not activated, the S5 bearer directly connected to the PDN is maintained, the E-RAB bearer (ie DRB and S1 bearer) associated with the radio resource is Is released. When new traffic is generated in the corresponding PDN, the E-RAB bearer is reset to deliver the traffic.
  • the terminal uses a service (for example, the Internet, etc.) through a default bearer
  • the terminal may use an insufficient service (for example, Videon on Demand (VOD), etc.) to receive a Quality of Service (QoS) with only the default bearer.
  • Dedicated bearer is generated when the terminal requests (on-demand). If there is no traffic of the terminal dedicated bearer is released.
  • the terminal or the network may generate a plurality of dedicated bearers as needed.
  • the IP flow may have different QoS characteristics depending on what service the UE uses.
  • the network determines the allocation of network resources or a control policy for QoS at the time of establishing / modifying an EPS session for the terminal and applies it while the EPS session is maintained. This is called PCC (Policy and Charging Control). PCC rules are determined based on operator policy (eg, QoS policy, gate status, charging method, etc.).
  • PCC rules are determined in units of SDF. That is, the IP flow may have different QoS characteristics according to the service used by the terminal, IP flows having the same QoS are mapped to the same SDF, and the SDF becomes a unit for applying the PCC rule.
  • PCC Policy and Charging Control Function
  • PCEF Policy and Charging Enforcement Function
  • PCRF determines PCC rules for each SDF when creating or changing EPS sessions and provides them to the P-GW (or PCEF). After setting the PCC rule for the SDF, the P-GW detects the SDF for each IP packet transmitted and received and applies the PCC rule for the SDF. When the SDF is transmitted to the terminal via the EPS, it is mapped to an EPS bearer capable of providing a suitable QoS according to the QoS rules stored in the P-GW.
  • PCC rules are divided into dynamic PCC rules and pre-defined PCC rules. Dynamic PCC rules are provided dynamically from PCRF to P-GW upon EPS session establishment / modification. On the other hand, the predefined PCC rule is preset in the P-GW and activated / deactivated by the PCRF.
  • the EPS bearer includes a QoS Class Identifier (QCI) and Allocation and Retention Priority (ARP) as basic QoS parameters.
  • QCI QoS Class Identifier
  • ARP Allocation and Retention Priority
  • QCI is a scalar that is used as a reference to access node-specific parameters that control bearer level packet forwarding treatment, and the scalar value is pre-configured by the network operator.
  • a scalar may be preset to any one of integer values 1-9.
  • ARP The main purpose of ARP is to determine if a bearer's establishment or modification request can be accepted or rejected if resources are limited.
  • ARP can be used to determine which bearer (s) to drop by the eNB in exceptional resource constraints (eg, handover, etc.).
  • the EPS bearer is classified into a guaranteed bit rate (GBR) type bearer and a non-guaranteed bit rate (non-GBR) type bearer according to the QCI resource type.
  • the default bearer may always be a non-GBR type bearer, and the dedicated bearer may be a GBR type or non-GBR type bearer.
  • GBR bearer has GBR and Maximum Bit Rate (MBR) as QoS parameters in addition to QCI and ARP.
  • MBR means that fixed resources are allocated to each bearer (bandwidth guarantee).
  • MBR MBR: Aggregated MBR
  • AMBR Aggregated MBR
  • the QoS of the EPS bearer is determined as above, the QoS of each bearer is determined for each interface. Since the bearer of each interface provides QoS of the EPS bearer for each interface, the EPS bearer, the RB, and the S1 bearer all have a one-to-one relationship.
  • FIG. 7 is a diagram illustrating transmission paths of a control plane and a user plane in an EMM registration state in a wireless communication system to which the present invention can be applied.
  • Figure 7 (a) illustrates the ECM-CONNECTED state
  • Figure 7 (b) illustrates the ECM-IDLE.
  • the terminal When the terminal successfully attaches to the network and becomes the EMM-Registered state, the terminal receives the service using the EPS bearer.
  • the EPS bearer is configured by divided into DRB, S1 bearer, S5 bearer for each interval.
  • a NAS signaling connection that is, an ECM connection (that is, an RRC connection and an S1 signaling connection) is established.
  • an S11 GTP-C (GPRS Tunneling Protocol Control Plane) connection is established between the MME and the SGW, and an S5 GTP-C connection is established between the SGW and the PDN GW.
  • GTP-C GPRS Tunneling Protocol Control Plane
  • the DRB, S1 bearer, and S5 bearer are all configured (ie, radio or network resource allocation).
  • the ECM connection (that is, the RRC connection and the S1 signaling connection) is released.
  • the S11 GTP-C connection between the MME and the SGW and the S5 GTP-C connection between the SGW and the PDN GW are maintained.
  • both the DRB and the S1 bearer are released, but the S5 bearer maintains the configuration (ie, radio or network resource allocation).
  • an ECM connection (ECM (EPS connection management))-CONNECTED state and an ECM idle (ECM-IDLE) state are defined to manage a signaling connection between a terminal and a network.
  • ECM connection state and the ECM idle state may also be applied to the terminal and the MME.
  • the ECM connection consists of an RRC connection established between the terminal and the base station and an S1 signaling connection established between the base station and the MME.
  • the RRC state indicates whether the RRC layer of the terminal and the RRC layer of the base station are logically connected. That is, when the RRC layer of the terminal and the RRC layer of the base station is connected, the terminal is in an RRC_CONNECTED state. If the RRC layer of the terminal and the RRC layer of the base station is not connected, the terminal is in the RRC idle (RRC_IDLE) state.
  • the RRC_CONNECTED state refers to a state in which the terminal can receive service in units of cells while the terminal is connected to a specific cell, and the terminal is managed in units of cells.
  • the terminal does not have a connection with a base station and maintains only a connection with a mobility management entity (MME), and the terminal is managed in a tracking area (TA) unit that is larger than a cell. . That is, the RRC_IDLE state terminal wakes up intermittently and monitors a paging channel (PCH) in order to check whether there is a paging message transmitted to it. That is, the terminal performs a discontinuous reception (DRX) set by a non-access stratum (NAS) using a uniquely assigned ID in the tracking area.
  • the terminal may receive a broadcast of system information and paging information by monitoring a paging signal at a particular paging opportunity every terminal-specific paging DRX cycle.
  • the terminal needs to transition to the ECM connection state in order to receive a normal mobile communication service such as voice or data.
  • the initial terminal is in the ECM idle state, and when the terminal successfully registers with the corresponding network through an initial attach procedure, the terminal and the MME transition to the ECM connected state.
  • the terminal is registered in the network but the traffic is deactivated and the radio resources are not allocated, the terminal is in the ECM idle state, and if new uplink or downlink traffic is generated in the terminal, a service request procedure is performed.
  • the UE and the MME are transitioned to the ECM connected state.
  • the 3GPP LTE / LTE-A system defines a sleep mode and an active mode even in the RRC_CONNECTED state in order to minimize power consumption of the UE.
  • the wireless communication system uses a discontinuous reception (DRX) technique of the terminal to minimize the power of the terminal.
  • DRX discontinuous reception
  • the DRX defined in the 3GPP LTE / LTE-A system can be used in both the human mode and the RRC_IDLE state of the terminal, and the DRX technique used for each state is as follows.
  • Short DRX short DRX cycle (2ms ⁇ 640ms)
  • Paging DRX paging DRX cycle (320ms to 2560ms)
  • the UE may monitor the PDCCH based on an RNTI (eg, C-RNTI, SI-RNTI, P-RNTI, etc.) which is a unique identifier of the UE.
  • RNTI eg, C-RNTI, SI-RNTI, P-RNTI, etc.
  • Monitoring of the PDCCH can be controlled by the DRX operation, the parameters related to the DRX is transmitted by the base station to the terminal by the RRC message.
  • the UE should always receive the SI-RNTI, P-RNTI and the like regardless of the DRX operation configured by the RRC message.
  • the remaining PDCCHs except for the PDCCH scrambled with C-RNTI are always received through a common search space of the main serving cell (eg, P cell).
  • the terminal If the terminal has a DRX parameter configured in the RRC connected state, the terminal performs discontinuous monitoring on the PDCCH based on the DRX operation. On the other hand, if the DRX parameter is not configured, the UE monitors the continuous PDCCH.
  • the UE searches for the PDCCH by performing blind decoding in a UE-specific search space in the PDCCH region based on the DRX operation.
  • the UE unmasks the CRC of the PDCCH using the RNTI, if the CRC error is not detected, the UE determines that the corresponding PDCCH transmits its control information.
  • Discontinuous PDCCH monitoring may mean that the UE monitors the PDCCH only in a specific subframe, and continuous PDCCH monitoring may mean that the UE monitors the PDCCH in all subframes.
  • PDCCH monitoring is required in a DRX independent operation such as a random access procedure, the UE monitors the PDCCH according to the requirements of the corresponding operation.
  • the terminal receiving the paging message may perform DRX for the purpose of reducing power consumption.
  • the network configures a plurality of paging occasions (paging occasions) for each time period called a paging cycle, a specific terminal receives a paging message only at a time of a specific paging opportunity, and a terminal at a time other than the specific paging opportunity. Do not receive a paging channel.
  • one paging opportunity may correspond to one TTI.
  • the attach procedure is generally used to establish a connection to a network when the UE enters an E-UTRAN cell. It may also be used in case of handover from the non-3GPP network to the E-UTRAN.
  • FIG. 8 is a diagram briefly illustrating an attach procedure in a wireless communication system to which the present invention may be applied.
  • the UE initiates the attach procedure by sending an Attach Request message to the MME.
  • the attach request message includes an International Mobile Subscriber Identity (IMSI) of the terminal.
  • IMSI International Mobile Subscriber Identity
  • the Attach Request message is included in the RRC Connection Setup Complete message in the RRC connection and delivered, and is included in the Initial UE message in the S1 signaling connection.
  • the MME requests and receives information for authentication from the HSS for terminal authentication, and performs mutual authentication with the terminal.
  • the MME registers the location of the terminal with the HSS and receives user subscription information (ie, subscribed QoS Profile) from the HSS in order to create a default bearer for the terminal.
  • user subscription information ie, subscribed QoS Profile
  • the MME requests the creation of a default bearer by sending a Create Session Request message to the S-GW, and the S-GW delivers a Create Session Request message to the P-GW.
  • the Create Session Request message includes a QoS profile, 'S5 S-GW Tunnel Endpoint Identifier (TEID)', etc. from the HSS.
  • the P-GW allocates an Internet Protocol (IP) address to be used by the terminal and performs a PCRF and IP connectivity access network (IP-CAN) session establishment / modification procedure.
  • IP Internet Protocol
  • IP-CAN IP connectivity access network
  • the P-GW sends a Create Session Response message to the S-GW in response to the Create Session Request message.
  • the Create Session Response message includes a QoS profile to apply to the default bearer, 'S5 P-GW TEID', and the like.
  • the generation of the S5 bearer between the S-GW and the P-GW is completed, and the S-GW may transmit uplink traffic to the P-GW or receive downlink traffic from the P-GW.
  • the S-GW transmits a Create Session Response message including 'S1 S-GW TEID' to the MME in response to the Create Session Request message.
  • the MME In response to an Attach Request message, the MME sends an Attach Accept message that includes an IP address assigned by the P-GW, a Tracking Area Identity (TAI) list, and a TAU timer. Send to the terminal.
  • TAI Tracking Area Identity
  • the attach accept message is included in the initial context setup request message in the S1 signaling connection.
  • the Initial Context Setup Request message includes 'S1 S-GW TEID'.
  • the base station After completing this procedure, the generation of the uplink S1 bearer between the base station and the S-GW is completed, the base station can transmit the uplink traffic to the S-GW.
  • the terminal may transmit the uplink traffic to the base station or receive downlink traffic from the base station.
  • the base station transmits an initial context setup response message to the MME in response to the initial context setup request message.
  • the initial context setup response message includes an 'S1 eNB TEID'.
  • the terminal transmits an Attach Complete message to the MME in response to the Attach Accept message.
  • the Attach Complete message is included in the UL Information Transfer message in the RRC connection and transmitted, and is included in the Uplink NAS Transport message in the S1 signaling connection.
  • the terminal may transmit the uplink data to the P-GW.
  • the MME transfers the 'S1 eNB TEID' received from the base station to the S-GW through a Modify Bearer Request message.
  • the base station can receive the downlink traffic from the S-GW.
  • bearers are updated between the S-GW and the P-GW.
  • the S-GW sends a Modify Bearer Response message to the MME in response to the Modify Bearer Request message.
  • the P-GW may transmit the downlink data to the terminal.
  • the tracking area update (TAU) procedure is performed when the UE in ECM-IDLE state attempts to register a new location or when the TAU timer elapses.
  • FIG. 9 is a diagram briefly illustrating a periodic tracking area update procedure in a wireless communication system to which the present invention can be applied.
  • P-TAU periodic TAU
  • the UE initiates the P-TAU procedure by sending a TAU Request message to the MME.
  • the TAU Request message is included in the RRC Connection Setup Complete message in the RRC connection and transmitted, and is included in the Initial UE message in the S1 signaling connection.
  • the MME receiving the TAU Request message resets the TAU timer, modifies bearer request including the E-UTRAN Cell Global Identifier (ECGI) and the TAI. request) Send a message to the S-GW.
  • EGI E-UTRAN Cell Global Identifier
  • TAI TAI. request
  • the S-GW sends a notification to the P-GW by sending a Modify Bearer Request message.
  • the P-GW performs an EPS session modification procedure and transmits a Modify Bearer Response message to the S-GW in response to a Modify Bearer Request message.
  • the S-GW sends a Modify Bearer Response message to the MME in response to the Modify Bearer Request message.
  • the MME transmits a TAU Accept message to the UE in response to the TAU Request message.
  • the TAU Accept message may include a TAU timer or the like.
  • the TAU Accept message is included in the Downlink NAS Transport message in the S1 signaling connection and transmitted, and is included in the DL Information Transfer message in the RRC connection.
  • the MME releases the connection with the terminal used for periodic TAU-related message transmission and reception to the base station eNB to release the user context set in the E-UTRAN. Context Release Command) message.
  • the base station deletes the context of the terminal and releases the resources allocated to the terminal.
  • the base station releases an RRC connection release message to the terminal by transmitting an RRC connection release message.
  • the base station transmits a UE context release complete message to the MME in response to the UE context release command message, thereby releasing the S1 signaling connection between the base station and the MME.
  • the UE transitions back to the ECM-IDLE state.
  • a UE-triggered Service Request procedure is generally performed when a UE initiates a new service by initiation and tries to transmit uplink data as a response of paging.
  • FIG. 10 is a diagram briefly illustrating a terminal trigger service request procedure in a wireless communication system to which the present invention can be applied.
  • the UE initiates a UE-triggered Service Request procedure by sending a Service Request message to the MME.
  • the Service Request message is included in the RRC Connection Setup Complete message in the RRC connection and transmitted, and is included in the Initial UE message in the S1 signaling connection.
  • the MME requests and receives information for authentication from the HSS for terminal authentication, and performs mutual authentication with the terminal.
  • the MME transmits an Initial Context Setup Request message to the base station so that the base station eNB can configure the S-GW and the S1 bearer and set up the UE and the DRB.
  • the base station transmits an RRC connection reconfiguration message to the terminal to generate a DRB.
  • all uplink EPS bearer is configured from the terminal to the P-GW.
  • the terminal may transmit uplink traffic to the P-GW.
  • the base station transmits an initial context setup complete message including the 'S1 eNB TEID' to the MME in response to the initial context setup request message.
  • the MME delivers the 'S1 eNB TEID' received from the base station to the S-GW through a Modify Bearer Request message.
  • the generation of the downlink S1 bearer between the base station and the S-GW is completed, so that all the downlink EPS bearers are configured from the P-GW to the UE.
  • the terminal may receive downlink traffic from the P-GW.
  • the S-GW sends a notification to the P-GW by sending a Modify Bearer Request message.
  • the P-GW may perform a PCRF and IP connectivity access network (IP-CAN) session modification procedure.
  • IP-CAN IP connectivity access network
  • the P-GW If the P-GW receives a Modify Bearer Request message from the S-GW, the P-GW sends a Modified Bearer Response message to the S-GW in response.
  • the S-GW sends a Modify Bearer Response message to the MME in response to the Modify Bearer Request message.
  • a network-triggered service request procedure is generally performed when a downlink data is to be transmitted to a UE in an ECM-IDLE state in a network.
  • FIG. 11 is a diagram exemplarily illustrating a terminal trigger service request procedure in a wireless communication system to which the present invention can be applied.
  • the P-GW forwards the downlink data to the S-GW.
  • the S-GW receives the received downlink. Buffer the data.
  • the S-GW transmits a downlink data notification message to the MME in which the UE is registered for signaling connection and bearer setup for the UE.
  • the MME sends a downlink data notification ACK message to the S-GW in response to the downlink data notification message.
  • the MME transmits a paging message to the base station (eNB) belonging to the tracking area where the terminal most recently registered.
  • the base station When the base station receives a paging message from the MME, the base station broadcasts a paging message.
  • the UE When the UE recognizes that there is downlink data directed to the UE, it performs a service request procedure and establishes an ECM connection.
  • the service request procedure may be performed in the same manner as the procedure of FIG. 10, and when the procedure is completed, the terminal may receive downlink data from the S-GW.
  • Power Saving Mode is one of 3GPP Release-12 (rel-12) advanced MTC (Enhancements for MTC) features, which allows the terminal to receive paging and mobility management.
  • TAU the network agrees or is provided with an active time and a periodic TAU timer (P-TAU).
  • the UE When receiving the Active Time value in the network, the UE receives the paging by maintaining the ECM-IDLE state for the corresponding Active Time when the switch from ECM-CONNECTED to ECM-IDLE.
  • the PSM enters into the PSM and stops all AS (Access Stratrum) operations.
  • the MME starts an active timer with an Active Time value whenever the UE enters the ECM-IDLE mode.
  • the active timer expires, the MME infers that the terminal is unreachable.
  • the active time means a time for which a terminal supporting a state using a power saving function (eg, a power saving mode (PSM), etc.) maintains an ECM-IDLE (or RRC_IDLE) state.
  • a power saving function eg, a power saving mode (PSM), etc.
  • the UE When the UE expires the periodic TAU timer, the UE enables the AS operation again and performs the TAU, and the network stops the implicit detach timer of the UE.
  • the UE may wake up whenever desired for a mobile originated call (eg, uplink data packet transfer).
  • the user wakes up every P-TAU cycle to perform a TAU, and during this time, the paging reception operation is performed. After executing, it enters PSM mode again and sleeps.
  • FIG. 12 illustrates a downlink data notification procedure for a UE in a power saving mode in a wireless communication system to which the present invention can be applied.
  • PPF packet progress flag
  • the AS (or SCS) generates downlink data to be transmitted to the UE
  • the downlink data is transmitted to the P-GW
  • the P-GW transmits the received downlink data to the S-GW.
  • the S-GW When the S-GW receives downlink data from the P-GW, if there is no active S1-U connection of the corresponding UE (ie, the S1 bearer is released), the S-GW notifies the downlink data to the MME (DDN: Downlink Data Notification). ) Transmits a message and buffers the received downlink data.
  • the DDN message may indicate that downlink data to be transmitted to the terminal exists.
  • the S-GW receiving the DDN Reject message discards the downlink data.
  • the AS transmits downlink data without knowing whether the UE sleeps (ie, enters PSM)
  • the downlink data is discarded in the S-GW and the AS responds to the downlink data. Since not receiving, the AS takes a retransmission operation on the downlink data.
  • the present invention proposes a method for efficiently supporting downlink data (or downlink packet, downlink packet data) transmission to a terminal.
  • the complexity of a limited device having low characteristics such as low complexity and low energy (for example, a device for IoT (Inter IoT), a device for M2M, and having only one antenna)
  • a method for efficiently transmitting downlink data is proposed when the reduced Category 0 terminals, etc.) sleep for a long time to minimize power consumption.
  • the unreachable state of the terminal is a state in which the terminal uses a power saving function (for example, a power saving mode (PSM) or an extended idle mode DRX). ), Etc.).
  • a power saving function for example, a power saving mode (PSM) or an extended idle mode DRX).
  • PSM power saving mode
  • DRX extended idle mode
  • Etc. the unreachable state of the terminal is collectively described as a 'sleep' state.
  • Extended DRX is a function to minimize the power consumption of the terminal by increasing the existing maximum 2.56 seconds paging DRX cycle from minutes to minutes.
  • the eDRX may be applied to an idle mode and a connected mode.
  • an unreachable state of the terminal may refer to a state of entering the PSM.
  • an unreachable state of the UE may mean an unreachable state (that is, a DRX interval in which the UE does not monitor a paging channel) by paging. have.
  • a state in which the terminal is accessible may refer to an ECM-IDLE mode in which the terminal applies an ECM-CONNECTED mode or a normal DRX period (eg, 2.56 seconds or less) of the terminal.
  • the terminal supporting the PSM may maintain the idle mode for the active time, and thus may refer to the state of the terminal in the connection mode or the duration of the active time.
  • it means a state that is immediately accessible to the UE by paging in the ECM-CONNECTED mode and / or ECM-IDLE mode (that is, a period in which the UE monitors a paging channel). can do.
  • the eDRX may determine that the DRX interval is relatively longer than the normal DRX mode and thus may not be temporarily accessible even in the idle interval.
  • support for generic DRX (2.56 seconds) enables data delivery up to 2.56 seconds, but with eDRX (10 minutes), instantaneous data delivery is not possible because the maximum delay is 10 minutes. It can be considered to be practically unreachable.
  • the D-DN transmitted by the S-GW is rejected from the MME (that is, the DDN is rejected) and the S-GW is downlinked. Discard the link data.
  • the terminal does not support the power saving function, such as PSM, eDRX
  • the situation that the PPF is clear (clear) is a general situation, even if the P-TAU timer expires, the terminal does not perform the TAU procedure, so the MME This is a case where the terminal determines that it is not accessible.
  • the S-GW sends a DDN to the MME
  • the MME checks the PPF and sends a reject to the S-GW, which in turn causes the S-GW to discard the downlink data again.
  • Handshaking situations can occur frequently, adding to the signaling load load between the MME and the S-GW.
  • the present invention proposes a method for improving an inefficient downlink data notification (DDN) operation for downlink data processing received by the S-GW when the terminal sleeps.
  • DDN downlink data notification
  • the S-GW proposes a condition and notification procedure for suspending DDN transmission from the MME to the MME to enable the DDN procedure efficiently.
  • an MME proposes a method capable of efficient downlink data handling by adding a procedure for instructing buffering and DDN retry rather than discarding downlink data. .
  • the MME has information such as whether the terminal is in a sleep state (for example, a state that is not accessible by paging in the PSM or eDRX mode) and a time when the terminal is accessible (reachable).
  • the MME When the MME allocates an active time to the UE, the MME starts an active timer with an Active Time value whenever the UE enters the ECM-IDLE mode. When the active timer expires in the MME, the MME may infer that the terminal is not accessible and clear the PPF flag in the MME.
  • the MME determines whether the UE is in a sleep state (that is, unreachable) by paging according to a paging cycle set in the UE. It can be seen.
  • the EMM-REGISTERED terminal When the P-TAU timer expires, the EMM-REGISTERED terminal performs a periodic TAU (P-TAU) procedure with the network.
  • the P-TAU timer of the terminal is restarted to the initial value every time the terminal enters the ECM-IDLE mode.
  • the MME drives a UE reachable timer. Whenever the terminal enters the ECM-IDLE mode, the terminal accessible timer is restarted, and the terminal accessible timer has a value similar to that of the P-TAU timer of the terminal.
  • the MME may infer that the terminal is not reachable.
  • the MME since the MME knows information such as whether the terminal is in a sleep state and a time when the terminal is accessible (reachable), etc., the MME proposes an operation of suppressing DDN transmission of the S-GW. This will be described with reference to the drawings below.
  • FIG. 13 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • a UE is in a sleep state (for example, a state that is not accessible by paging in a PSM or eDRX mode).
  • the MME clears the PPF when it recognizes that the UE enters a sleep state.
  • the SCS / AS (application server) wants to transmit downlink data (for example, downlink data packet or downlink control signaling) to the UE, the SCS / AS downlinks to the P-GW. Data is transmitted (S1301).
  • downlink data for example, downlink data packet or downlink control signaling
  • the P-GW transmits downlink data received from the SCS / AS to the S-GW (S1302).
  • the S-GW When the S-GW receives downlink data from the P-GW and the corresponding UE does not have an active S1-U connection (that is, the S1 bearer is released), the S-GW buffers the received downlink data and serves the terminal. Identifies the MME.
  • the S-GW transmits a downlink data notification (DDN) message to the MME (S1303).
  • DDN downlink data notification
  • the MME that detects that the UE is in a sleep state may detect a downlink data notification (DDN) message.
  • DDN downlink data notification
  • a DDN reject message indicating a DDN failure is transmitted to the S-GW (S1304).
  • the reject cause may be set to a terminal sleep state (for example, the UE is in a PSM state).
  • the MME may then set the reachable interval of the UE to a DDN suppression time value to include in the DDN reject message in the S-GW and transmit it.
  • the reachable time of the terminal may mean a period before the terminal enters the reachable state from the time when the MME receives the DDN message from the S-GW or when the DDN reject message is transmitted. Can be. For example, this may correspond to the remaining P-TAU section or the remaining paging section.
  • the S-GW Upon receiving the DDN reject message from the MME, the S-GW discards downlink data (S1305).
  • the S-GW then drives a DDN suppression time. Thereafter, the S-GW discards all downlink data for the corresponding UE received from the P-GW before the DDN suppression time expires and does not transmit the DDN to the MME.
  • the S-GW may select whether to buffer the corresponding downlink data (ie, downlink data triggering DDN transmission) according to the received DDN suppression time.
  • the S-GW may determine the buffering of the corresponding downlink data.
  • the S-GW receives the DDN rejection message and buffers the corresponding downlink data (as determined by the S-GW itself), when the DDN suppression time expires, the S-GW is the corresponding downlink buffered.
  • the DDN for the data may be retransmitted to the MME.
  • the S-GW may determine the discard of the downlink data.
  • the MME instructs (or instructs) the DDN suppression and discarding of downlink data to the S-GW through a DDN reject message, and also a suppression time in the DDN reject message.
  • the present invention is not limited thereto. That is, the MME instructs (or commands) the DDN suppression and discarding of the downlink data to the S-GW through a downlink data notification ACK message as shown in the example of FIG. 11, and notifies the downlink data.
  • a downlink data notification acknowledgment (ACK) message may also include a suppression time.
  • FIG. 14 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • a UE is in a sleep state (for example, a state that is not accessible by paging in a PSM or eDRX mode).
  • the MME When the MME recognizes that the terminal has entered a sleep state (for example, a state not accessible by paging in the PSM or eDRX mode), the MME clears the PPF and indicates a DDN failure (or DDN). A DDN reject message (including a DDN reject indication) is transmitted to the S-GW (S1401).
  • a sleep state for example, a state not accessible by paging in the PSM or eDRX mode
  • the MME transmits a DDN reject message to the S-GW when detecting the entry of the sleep state of the UE regardless of receiving the DDN message from the S-GW.
  • the reject cause may be set to a terminal sleep state (for example, the UE is in a PSM state).
  • the MME may then set the reachable interval of the UE to a DDN suppression time value to include in the DDN reject message in the S-GW and transmit it.
  • the reachable time of the terminal may mean a period before the terminal enters the reachable state from the time when the MME receives the DDN message from the S-GW or when the DDN reject message is transmitted. Can be. For example, this may correspond to the remaining P-TAU section or the remaining paging section.
  • the S-GW that receives the DDN reject message from the MME runs the DDN suppression time and receives the PDN from the P-GW before the DDN suppression time expires. Discarding all downlink data for the terminal and does not transmit the DDN to the MME (S1402).
  • the S-GW may select whether to buffer the corresponding downlink data (ie, downlink data triggering DDN transmission) according to the received DDN suppression time.
  • the S-GW may determine the buffering of the corresponding downlink data.
  • the S-GW receives the DDN rejection message and buffers the corresponding downlink data (as determined by the S-GW itself), when the DDN suppression time expires, the S-GW is the corresponding downlink buffered.
  • the DDN for the data may be retransmitted to the MME.
  • the S-GW may determine the discard of the downlink data.
  • the start and end of DDN suppression and downlink data discard for the UE in which the MME is in sleep state is explicitly S-. You can also tell GW.
  • the MME receiving the DDN message from the S-GW detects that the UE is in a sleep state (for example, not accessible by paging in the PSM or eDRX mode)
  • the MME The S-GW may be explicitly requested (or instructed) to start DDN suppression instead of the suppression time.
  • the MME detects that the UE has come out of a sleep state that is, transitions to a wake-up state (or an active state)
  • the suppression time is suppressed to the S-GW. Instead of time, it may explicitly request (or indicate) to terminate DDN suppression.
  • the S-GW may recognize that the UE has exited the sleep state when S1-U is set up or the signaling of the corresponding UE is transmitted as a service request of the UE, and may again transmit a DDN for downlink data transmission to the MME. have.
  • the S1-U is not set up due to a service request of the terminal or the TAU in which the MME / S-GW is relocated
  • the S-GW recognizes whether the terminal has exited the sleep state. I can't. Therefore, since the S-GW cannot correctly recognize whether the UE is in a sleep state, when the MME explicitly transmits the DDN suppression, the MME wakes up the terminal in order to cancel the DDN suppression. You can send a message to inform the GW.
  • the S-GW may explicitly recognize a situation in which the UE exits the sleep state. In order to be able to do so, the S-GW should send a message indicating a wake-up state of the UE (ie, a message indicating the end of DDN suppression).
  • the MME may suppress the transmission of the DDN of the S-GW, thereby minimizing the DDN procedure (ie, signaling according to the DDN procedure) between the MME and the S-GW.
  • the MME buffers downlink data to the S-GW (ie, unreachable) by the MME in a sleep state (eg, unreachable by paging in PSM or eDRX mode). , DDN postponed) may be instructed (or commanded).
  • 15 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • a terminal is in a sleep state (for example, a state that is not accessible by paging in a PSM or eDRX mode).
  • the MME clears the PPF when it recognizes that the UE enters a sleep state.
  • the SCS / AS when the SCS / AS wants to transmit downlink data (eg, downlink data packet or downlink control signaling) to the UE, the SCS / AS downlinks to the P-GW. Data is transmitted (S1501).
  • downlink data eg, downlink data packet or downlink control signaling
  • the P-GW transmits downlink data received from the SCS / AS to the S-GW (S1502).
  • the S-GW When the S-GW receives downlink data from the P-GW and there is no active S1-U connection of the corresponding UE (i.e., the S1 bearer is released), the S-GW buffers the received downlink data and services the UE. serving) Identifies the MME.
  • the S-GW transmits a downlink data notification (DDN) message to the MME (S1503).
  • DDN downlink data notification
  • the MME which detects that the UE is in a sleep state (for example, not accessible by paging in PSM or eDRX mode), sends an S-GW response message for instructing buffering of downlink data. It transmits to (S1504).
  • the MME instructs (or commands) buffering downlink data by sending a buffering request message (ie, a response message) to the S-GW.
  • a buffering request message ie, a response message
  • the MME may include a buffering time (or valid time) for buffering (or maintaining) corresponding downlink data in the S-GW in a buffering request message.
  • the buffering time (or valid time) may be a time when the terminal is expected to switch from the sleep state to the accessible state (reachable) again.
  • the buffering time may indicate the time until the terminal is expected to wake up from the sleep state (for example, in a state not accessible by paging in the PSM or eDRX mode). Accordingly, the MME buffers downlink data to the S-GW by indicating a time until the terminal is expected to wake up from a sleep state (eg, not accessible by paging in the PSM or eDRX mode). Request (or instruct) to do so.
  • the buffering time may be calculated as the remaining P-TAU time of the terminal.
  • the buffering time may be calculated in the DRX cycle of the terminal.
  • the MME instructs (or commands) the S-GW to buffer corresponding downlink data through a buffering request message, and also provides a buffering time (or valid time) in the buffering request message.
  • a buffering time or valid time
  • the MME instructs (or commands) the S-GW to buffer the downlink data through a downlink data notification ACK message as shown in the example of FIG. 11, and the downlink data notification ACK ( A downlink data notification Ack message may be transmitted by including a buffering time (or valid time).
  • the S-GW When the S-GW receives a buffering instruction (or command) for downlink data from the MME, the S-GW buffers (or maintains) the corresponding downlink packet until the buffering time (or valid time) expires (S1505).
  • the S-GW may retransmit the DDN to the MME. That is, the S-GW does not transmit the DDN to the MME until the S-GW expires the buffering time (or valid time).
  • the buffering time (or valid time) may be indicated as an expected time until the terminal switches back to a reachable state, when the terminal switches to a reachable state.
  • the MME sets up S1-U (ie, S1 bearer setup) or optionally the MME (or eNB) transmits paging to the UE
  • the S-GW may transmit downlink data buffered in the UE.
  • the S-GW is buffered to the terminal through the base station by setting up S1-U in the MME Downlink data can be transmitted.
  • the MME or eNB transmits paging to the paging occasion (paging occasion) of the terminal through the network-triggered service request procedure (Network-triggered Service Request procedure)
  • the S-GW may transmit downlink data buffered to the corresponding terminal through the base station.
  • the MME may send an Initial Context Setup Request message to the base station in order to set up S1-U (ie, S1 bearer setup) between the base station and the S-GW. Since the process of setting up S1-U between the base station and the S-GW is the same as the description of FIG. 8 or 10, detailed description thereof will be omitted.
  • S1-U ie, S1 bearer setup
  • the MME may transmit a paging message to a base station (eNB) belonging to a tracking area that the terminal has most recently registered. Since the paging procedure is the same as the description of FIG. 11 above, a detailed description thereof will be omitted.
  • eNB base station
  • the MME instructs the S-GW to buffer the downlink data for a time when the UE is expected to switch to the accessible state
  • the UE is switched to the accessible state without loss of the corresponding downlink data. Can be sent quickly.
  • the embodiment according to FIG. 15 may be more useful when the terminal wakes up soon because the P-TAU timer is short.
  • 16 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • a network node receives a downlink data notification message from another network node (eg, S-GW) (S1601).
  • S-GW network node
  • a network node e.g., an MME
  • the network node detects that the terminal is in a sleep state (e.g., not accessible by paging in PSM or eDRX mode)
  • the network node e.g., For example, the MME transmits a response message to the other network node (eg, S-GW) (S1602).
  • the response message may include a DDN suppression time and / or a buffering time (or valid time).
  • the MME then sets the reachable interval of the UE to the DDN suppression time value and includes the SDN in the DDN reject message in the S-GW.
  • the reachable time of the terminal may mean a period before the terminal enters the reachable state from the time when the MME receives the DDN message from the S-GW or when the DDN reject message is transmitted. Can be. For example, this may correspond to the remaining P-TAU section or the remaining paging section.
  • the MME must buffer (or maintain) the corresponding downlink data in the S-GW in the buffering request message. valid time).
  • the buffering time (or valid time) may be a time when the terminal is expected to switch from the sleep state to the accessible state (reachable) again. That is, the buffering time (or valid time) may indicate the time until the terminal is expected to wake up from the sleep state (for example, in a state not accessible by paging in the PSM or eDRX mode).
  • the MME buffers downlink data to the S-GW by indicating a time until the terminal is expected to wake up from a sleep state (eg, not accessible by paging in the PSM or eDRX mode). Request (or instruct) to do so.
  • a sleep state eg, not accessible by paging in the PSM or eDRX mode.
  • the buffering time may be calculated as the remaining P-TAU time of the terminal.
  • the buffering time may be calculated in the DRX cycle of the terminal.
  • a DDN reject message or a downlink data notification acknowledgment (ACK) message may be used, but the present invention is not limited thereto and a message having a different format may be used.
  • ACK downlink data notification acknowledgment
  • 17 is a diagram illustrating a method for downlink data transmission according to an embodiment of the present invention.
  • a network node receives downlink data from another network node (eg, P-GW) (S1701).
  • another network node eg, P-GW
  • the network node eg, S-GW transmits a downlink data notification (DDN) message to another network node (eg, MME) (S1702).
  • DDN downlink data notification
  • the network node receives a response message for a downlink data notification (DDN) message from the other network node (eg, MME) (S1703).
  • DDN downlink data notification
  • the response message may include a DDN suppression time and / or a buffering time (or valid time).
  • the network node may determine all downlinks received for the UE before the DDN suppression time expires.
  • the data may be discarded and a downlink data notification (DDN) message may not be transmitted.
  • DDN downlink data notification
  • the network node e.g., S-GW
  • the network node may discard the corresponding downlink packet until the buffering time (or valid time) expires. Can be buffered (or maintained).
  • the S-GW may retransmit the DDN to the MME when the buffering time expires, but S-U is set by the MME when the buffering time expires (ie, the terminal is accessible).
  • the GW may transmit the downlink data that has been buffered to the terminal through the base station.
  • the S-GW is buffered to the terminal through the base station by setting up S1-U in the MME Downlink data can be transmitted.
  • the MME or eNB transmits paging to the paging occasion (paging occasion) of the terminal through the network-triggered service request procedure (Network-triggered Service Request procedure)
  • the S-GW may transmit downlink data buffered to the corresponding terminal through the base station.
  • FIG. 18 illustrates a block diagram of a communication device according to an embodiment of the present invention.
  • a wireless communication system includes a network node 1810 and a plurality of terminals (UEs) 1820.
  • UEs terminals
  • the network node 1810 includes a processor 1811, a memory 1812, and a communication module 1813.
  • the processor 1811 implements the functions, processes, and / or methods proposed in FIGS. 1 to 17. Layers of the wired / wireless interface protocol may be implemented by the processor 1811.
  • the memory 1812 is connected to the processor 1811 and stores various information for driving the processor 1811.
  • the communication module 1813 is connected to the processor 1811 to transmit and / or receive wired / wireless signals.
  • a base station, an MME, an S-GW, a P-GW, an HSS, an AS, or an SCS may correspond thereto.
  • the communication module 1813 may include a radio frequency unit (RF) for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 1820 includes a processor 1821, a memory 1822, and a communication module (or RF unit) 1823.
  • the processor 1821 implements the functions, processes, and / or methods proposed in FIGS. 1 to 17. Layers of the air interface protocol may be implemented by the processor 1821.
  • the memory 1822 is connected to the processor 1821 and stores various information for driving the processor 1821.
  • the communication module 1823 is connected to the processor 1821 to transmit and / or receive a radio signal.
  • the memories 1812 and 1822 may be inside or outside the processors 1811 and 1821, and may be connected to the processors 1811 and 1821 by various well-known means.
  • the network node 1810 in the case of a base station
  • the terminal 1820 may have one antenna or multiple antennas.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the scheme for downlink data transmission in the wireless communication system of the present invention has been described with reference to the example applied to the 3GPP LTE / LTE-A system, but can be applied to various wireless communication systems in addition to the 3GPP LTE / LTE-A system. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 하향링크 데이터 전송을 위한 방법 및 이를 위한 장치가 개시된다. 구체적으로, 무선 통신 시스템에서 단말에게 하향링크 데이터 전송을 위한 방법에 있어서, MME(Mobile Management Entity)가 S-GW(Serving Gateway)로부터 하향링크 데이터 통지(Downlink Data Notification) 메시지를 수신하는 단계 및 상기 MME가 단말이 슬립 상태인 것을 감지한 경우, 상기 MME가 하향링크 데이터의 버퍼링을 지시하기 위한 응답 메시지를 상기 S-GW에게 전송하는 단계를 포함하고, 상기 응답 메시지는 상기 하향링크 데이터의 버퍼링 시간을 포함하고, 상기 버퍼링 시간은 상기 단말이 상기 슬립 상태에서 접근 가능한 상태로의 전환이 예상되는 시간일 수 있다.

Description

무선 통신 시스템에서 하향링크 데이터 전송을 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 접근 가능(reachable)하지 않은 단말에게 하향링크 데이터의 전송을 수행 또는 지원하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
MTC(Machine Type Communications)는 하나 이상의 머신(Machine)이 포함되는 통신 방식을 의미하며, M2M(Machin-to-Machine) 통신이나 사물 통신으로 지칭되기도 한다. 여기서, 머신이란 사람의 직접적인 조작이나 개입을 필요로 하지 않는 개체(entity)를 의미한다. 예를 들어, 이동 통신 모듈이 탑재된 검침기(meter)나 자동 판매기와 같은 장치는 물론, 사용자의 조작/개입 없이 자동으로 네트워크에 접속하여 통신을 수행할 수 있는 스마트폰과 같은 사용자 기기도 머신의 일례에 해당할 수 있다. 이러한 머신의 다양한 예시들은 본 문서에서는 MTC 장치(devie) 또는 단말이라고 지칭한다. 즉, MTC는 사람의 조작/개입 없이 하나 이상의 머신(즉, MTC 장치)에 의해서 수행되는 통신을 의미한다.
MTC는 MTC 장치 간의 통신(예를 들어, D2D(Device-to-Device) 통신), MTC 장치와 MTC 어플리케이션 서버(application server) 간의 통신을 포함할 수 있다. MTC 장치와 MTC 어플리케이션 서버 간의 통신의 예시로, 자동 판매가와 서버, POS(Point of Sale) 장치와 서버, 전기, 가스 또는 수도 검침기와 서버 간의 통신을 들 수 있다. 그 외에도 MTC에 기반한 어플리케이션(application)에는 보안(security), 운송(transportation), 헬스 케어(health care) 등이 포함될 수 있다.
본 발명의 목적은 단말 특히, 저 복잡도(Low complexity), 저 에너지(Low Energy) 등의 특성을 가지는 제한된 장치(Constrained Device)(예를 들어, IoT(Inter of Things) 용 장치, M2M 용 장치, 하나의 안테나만을 가지는 등 복잡도를 줄인 카테고리 0 단말 등)에게 하향링크 데이터(또는 패킷)을 효율적으로 전송하기 위한 방법을 제안한다.
또한, 본 발명에서는 MME(Mobile Management Entity)와 S-GW(Serving Gateway) 간의 하향링크 데이터 송수신 방법을 개선하기 위한 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 양상은, 무선 통신 시스템에서 단말에게 하향링크 데이터 전송을 위한 방법에 있어서, MME(Mobile Management Entity)가 S-GW(Serving Gateway)로부터 하향링크 데이터 통지(Downlink Data Notification) 메시지를 수신하는 단계 및 상기 MME가 단말이 슬립 상태인 것을 감지한 경우, 상기 MME가 하향링크 데이터의 버퍼링을 지시하기 위한 응답 메시지를 상기 S-GW에게 전송하는 단계를 포함하고, 상기 응답 메시지는 상기 하향링크 데이터의 버퍼링 시간을 포함하고, 상기 버퍼링 시간은 상기 단말이 상기 슬립 상태에서 접근 가능한 상태로의 전환이 예상되는 시간일 수 있다.
바람직하게, 상기 버퍼링 시간이 만료되면, 상기 MME가 상기 S-GW로부터 상기 하향링크 데이터 통지(Downlink Data Notification) 메시지를 수신할 수 있다.
바람직하게, 상기 MME가 S1 베어러를 설정하기 위하여 기지국에게 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 전송할 수 있다.
바람직하게, 상기 MME가 상기 단말이 가장 최근에 등록했던 트래킹 영역(tracking area)에 속하는 기지국에게 페이징 메시지를 전송할 수 있다.
본 발명의 다른 일 양상은, 무선 통신 시스템에서 단말에게 하향링크 데이터 전송을 위한 방법에 있어서, S-GW(Serving Gateway)가 P-GW(Packet Gateway)로부터 단말에게 전송될 하향링크 데이터를 수신하는 단계, 상기 S-GW가 MME(Mobile Management Entity)에게 하향링크 데이터 통지(Downlink Data Notification) 메시지를 전송하는 단계 및 상기 S-GW가 상기 MME로부터 상기 하향링크 데이터의 버퍼링을 지시하기 위한 응답 메시지를 수신하는 단계를 포함하고, 상기 응답 메시지는 상기 하향링크 데이터의 버퍼링 시간을 포함할 수 있다.
바람직하게, 상기 버퍼링 시간은 상기 단말이 상기 슬립 상태에서 접근 가능한 상태로의 전환이 예상되는 시간일 수 있다.
바람직하게, 상기 버퍼링 시간이 만료되면, 상기 S-GW가 상기 하향링크 데이터 통지(Downlink Data Notification) 메시지를 상기 MME에게 전송할 수 있다.
본 발명의 실시예에 따르면, 단말 특히, 저 복잡도(Low complexity), 저 에너지(Low Energy) 등의 특성을 가지는 제한된 장치(Constrained Device)에게 하향링크 데이터를 효율적으로 전송할 수 있다.
또한, 본 발명의 실시예에 따르면, MME(Mobile Management Entity)와 S-GW(Serving Gateway) 간의 하향링크 데이터 통지(Downlink Data Notification) 송수신 절차를 개선함으로써 시그널링 로드(signaling load)를 최소화할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 인터페이스 프로토콜 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 EMM 및 ECM 상태를 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 베어러 구조를 예시한다.
도 7은 본 발명의 적용될 수 있는 무선 통신 시스템에서 EMM 등록 상태에서 제어 평면(control plane) 및 사용자 평면(user plane)의 전송 경로를 예시하는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 어태치(attach) 절차를 간략히 예시하는 도면이다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 주기적인 트래킹 영역 업데이트 절차를 간략히 예시하는 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말 트리거 서비스 요청 절차를 간략히 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말 트리거 서비스 요청 절차를 간략히 예시하는 도면이다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 파워 세이빙 모드의 단말에 대한 하향링크 데이터 통지 절차를 예시한다.
도 13은 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 14는 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 15는 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 16은 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 17은 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 18은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 문서에서 사용될 수 있는 용어들은 다음과 같이 정의된다.
- UMTS(Universal Mobile Telecommunications System): 3GPP에 의해서 개발된, GSM(Global System for Mobile Communication) 기반의 3 세대(Generation) 이동 통신 기술
- EPS(Evolved Packet System): IP(Internet Protocol) 기반의 패킷 교환(packet switched) 코어 네트워크인 EPC(Evolved Packet Core)와 LTE, UTRAN 등의 액세스 네트워크로 구성된 네트워크 시스템. UMTS가 진화된 형태의 네트워크이다.
- NodeB: UMTS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- eNodeB: EPS 네트워크의 기지국. 옥외에 설치하며 커버리지는 매크로 셀(macro cell) 규모이다.
- 단말(User Equipment): 사용자 기기. 단말은 단말(terminal), ME(Mobile Equipment), MS(Mobile Station) 등의 용어로 언급될 수 있다. 또한, 단말은 노트북, 휴대폰, PDA(Personal Digital Assistant), 스마트폰, 멀티미디어 기기 등과 같이 휴대 가능한 기기일 수 있고, 또는 PC(Personal Computer), 차량 탑재 장치와 같이 휴대 불가능한 기기일 수도 있다. MTC 관련 내용에서 단말 또는 단말이라는 용어는 MTC 단말을 지칭할 수 있다.
- IMS(IP Multimedia Subsystem): 멀티미디어 서비스를 IP 기반으로 제공하는 서브시스템.
- IMSI(International Mobile Subscriber Identity): 이동 통신 네트워크에서 국제적으로 고유하게 할당되는 사용자 식별자.
- MTC(Machine Type Communication): 사람의 개입 없이 머신에 의해 수행되는 통신. M2M(Machine to Machine) 통신이라고 지칭할 수도 있다.
- MTC 단말(MTC UE 또는 MTC device 또는 MTC 장치): 이동 통신 네트워크를 통한 통신 기능을 가지고, MTC 기능을 수행하는 단말(예를 들어, 자판기, 검침기 등).
- MTC 서버(MTC server): MTC 단말을 관리하는 네트워크 상의 서버. 이동 통신 네트워크의 내부 또는 외부에 존재할 수 있다. MTC 사용자가 접근(access)할 수 있는 인터페이스를 가질 수 있다. 또한, MTC 서버는 다른 서버들에게 MTC 관련 서비스를 제공할 수도 있고(SCS(Services Capability Server) 형태), 자신이 MTC 어플리케이션 서버일 수도 있다.
- (MTC) 어플리케이션(application): (MTC가 적용되는) 서비스(예를 들어, 원격 검침, 물량 이동 추적, 기상 관측 센서 등)
- (MTC) 어플리케이션 서버: (MTC) 어플리케이션이 실행되는 네트워크 상의 서버
- MTC 특징(MTC feature): MTC 어플리케이션을 지원하기 위한 네트워크의 기능. 예를 들어, MTC 모니터링(monitoring)은 원격 검침 등의 MTC 어플리케이션에서 장비 분실 등을 대비하기 위한 특징이고, 낮은 이동성(low mobility)은 자판기와 같은 MTC 단말에 대한 MTC 어플리케이션을 위한 특징이다.
- MTC 가입자(MTC subscriber): 네트워크 오퍼레이터와 접속 관계를 가지고 있으며, 하나 이상의 MTC 단말에게 서비스를 제공하는 엔티티(entity)이다.
- MTC 그룹(MTC group): 적어도 하나 이상의 MTC 특징을 공유하며, MTC 가입자에 속한 MTC 단말의 그룹을 의미한다.
- 서비스 역량 서버(SCS: Services Capability Server): HPLMN(Home PLMN) 상의 MTC-IWF(MTC InterWorking Function) 및 MTC 단말과 통신하기 위한 엔티티로서, 3GPP 네트워크와 접속되어 있다.
- 외부 식별자(External Identifier): 3GPP 네트워크의 외부 엔티티(예를 들어, SCS 또는 어플리케이션 서버)가 MTC 단말(또는 MTC 단말이 속한 가입자)을 가리키기(또는 식별하기) 위해 사용하는 식별자(identifier)로서 전세계적으로 고유(globally unique)하다. 외부 식별자는 다음과 같이 도메인 식별자(Domain Identifier)와 로컬 식별자(Local Identifier)로 구성된다.
- 도메인 식별자(Domain Identifier): 이동 통신 네트워크 사업자의 제어 항에 있는 도메인을 식별하기 위한 식별자. 하나의 사업자는 서로 다른 서비스로의 접속을 제공하기 위해 서비스 별로 도메인 식별자를 사용할 수 있다.
- 로컬 식별자(Local Identifier): IMSI(International Mobile Subscriber Identity)를 유추하거나 획득하는데 사용되는 식별자. 로컬 식별자는 어플리케이션 도메인 내에서는 고유(unique)해야 하며, 이동 통신 네트워크 사업자에 의해 관리된다.
- RAN(Radio Access Network): 3GPP 네트워크에서 Node B 및 이를 제어하는 RNC(Radio Network Controller), eNodeB를 포함하는 단위. 단말 단에 존재하며 코어 네트워크로의 연결을 제공한다.
- HLR(Home Location Register)/HSS(Home Subscriber Server): 3GPP 네트워크 내의 가입자 정보를 가지고 있는 데이터베이스. HSS는 설정 저장(configuration storage), 식별자 관리(identity management), 사용자 상태 저장 등의 기능을 수행할 수 있다.
- RANAP(RAN Application Part): RAN과 코어 네트워크의 제어를 담당하는 노드(즉, MME(Mobility Management Entity)/SGSN(Serving GPRS(General Packet Radio Service) Supporting Node)/MSC(Mobile Switching Center)) 사이의 인터페이스.
- PLMN(Public Land Mobile Network): 개인들에게 이동 통신 서비스를 제공할 목적으로 구성된 네트워크. 오퍼레이터 별로 구분되어 구성될 수 있다.
- NAS(Non-Access Stratum): UMTS, EPS 프로토콜 스택에서 단말과 코어 네트워크 간의 시그널링, 트래픽 메시지를 주고 받기 위한 기능적인 계층. 단말의 이동성을 지원하고, 단말과 PDN GW 간의 IP 연결을 수립 및 유지하는 세션 관리 절차를 지원하는 것을 주된 기능으로 한다.
이하, 위와 같이 정의된 용어를 바탕으로 본 발명에 대하여 기술한다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 EPS (Evolved Packet System)을 간략히 예시하는 도면이다.
도 1의 네트워크 구조도는 EPC(Evolved Packet Core)를 포함하는 EPS(Evolved Packet System)의 구조를 이를 간략하게 재구성 한 것이다.
EPC(Evolved Packet Core)는 3GPP 기술들의 성능을 향상하기 위한 SAE(System Architecture Evolution)의 핵심적인 요소이다. SAE는 다양한 종류의 네트워크 간의 이동성을 지원하는 네트워크 구조를 결정하는 연구 과제에 해당한다. SAE는, 예를 들어, IP 기반으로 다양한 무선 접속 기술들을 지원하고 보다 향상된 데이터 전송 능력을 제공하는 등의 최적화된 패킷-기반 시스템을 제공하는 것을 목표로 한다.
구체적으로, EPC는 3GPP LTE 시스템을 위한 IP 이동 통신 시스템의 코어 네트워크(Core Network)이며, 패킷-기반 실시간 및 비실시간 서비스를 지원할 수 있다. 기존의 이동 통신 시스템(즉, 2 세대 또는 3 세대 이동 통신 시스템)에서는 음성을 위한 CS(Circuit-Switched) 및 데이터를 위한 PS(Packet-Switched)의 2 개의 구별되는 서브-도메인을 통해서 코어 네트워크의 기능이 구현되었다. 그러나, 3 세대 이동 통신 시스템의 진화인 3GPP LTE 시스템에서는, CS 및 PS의 서브-도메인들이 하나의 IP 도메인으로 단일화되었다. 즉, 3GPP LTE 시스템에서는, IP 능력(capability)을 가지는 단말과 단말 간의 연결이, IP 기반의 기지국(예를 들어, eNodeB(evolved Node B)), EPC, 애플리케이션 도메인(예를 들어, IMS)을 통하여 구성될 수 있다. 즉, EPC는 단-대-단(end-to-end) IP 서비스 구현에 필수적인 구조이다.
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, SGW(Serving Gateway), PDN GW(Packet Data Network Gateway), MME(Mobility Management Entity), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
SGW는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB와 PDN GW 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말이 eNodeB에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, SGW는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 SGW를 통해서 패킷들이 라우팅될 수 있다. 또한, SGW는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종단점(termination point)에 해당한다. PDN GW는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP(non-3GPP) 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 Wimax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 SGW와 PDN GW가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME는, 단말의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME는 가입자 및 세션 관리에 관련된 제어 평면 기능들을 제어한다. MME는 수많은 eNodeB들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 3GPP 네트워크(예를 들어, GPRS 네트워크)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트(reference point)들이 존재할 수 있다.
Figure PCTKR2015008394-appb-T000001
도 1에 도시된 레퍼런스 포인트 중에서 S2a 및 S2b는 비-3GPP 인터페이스에 해당한다. S2a는 신뢰되는 비-3GPP 액세스 및 PDN GW 간의 관련 제어 및 이동성 자원을 사용자 플레인에 제공하는 레퍼런스 포인트이다. S2b는 ePDG 및 PDN GW 간의 관련 제어 및 이동성 지원을 사용자 플레인에 제공하는 레퍼런스 포인트이다.
도 2는 본 발명이 적용될 수 있는 E-UTRAN(evolved universal terrestrial radio access network)의 네트워크 구조의 일 예를 나타낸다.
E-UTRAN 시스템은 기존 UTRAN 시스템에서 진화한 시스템으로, 예를 들어, 3GPP LTE/LTE-A 시스템일 수 있다. E-UTRAN은 단말에게 제어 평면(control plane)과 사용자 평면(user plane) 프로토콜을 제공하는 기지국(eNB)들로 구성되고, 기지국들은 X2 인터페이스를 통해 연결된다. X2 사용자 평면 인터페이스(X2-U)는 기지국들 사이에 정의된다. X2-U 인터페이스는 사용자 평면 PDU(packet data unit)의 보장되지 않은 전달(non guaranteed delivery)을 제공한다. X2 제어 평면 인터페이스(X2-CP)는 두 개의 이웃 기지국 사이에 정의된다. X2-CP는 기지국 간의 컨텍스트(context) 전달, 소스 기지국과 타겟 기지국 사이의 사용자 평면 터널의 제어, 핸드오버 관련 메시지의 전달, 상향링크 부하 관리 등의 기능을 수행한다. 기지국은 무선인터페이스를 통해 단말과 연결되고 S1 인터페이스를 통해 EPC(evolved packet core)에 연결된다. S1 사용자 평면 인터페이스(S1-U)는 기지국과 서빙 게이트웨이(S-GW: serving gateway) 사이에 정의된다. S1 제어 평면 인터페이스(S1-MME)는 기지국과 이동성 관리 개체(MME: mobility management entity) 사이에 정의된다. S1 인터페이스는 EPS(evolved packet system) 베어러 서비스 관리 기능, NAS(non-access stratum) 시그널링 트랜스포트 기능, 네트워크 쉐어링, MME 부하 밸런싱 기능 등을 수행한다. S1 인터페이스는 기지국과 MME/S-GW 간에 다수-대-다수 관계(many-to-many-relation)를 지원한다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(radio interface protocol) 구조를 나타낸다.
도 3(a)는 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타내고, 도 3(b)는 사용자 평면(user plane)에 대한 무선 프로토콜 구조를 나타낸다.
도 3을 참조하면, 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜의 계층들은 통신 시스템의 기술분야에 공지된 널리 알려진 개방형 시스템 간 상호접속(OSI: open system interconnection) 표준 모델의 하위 3 계층에 기초하여 제1 계층(L1), 제2 계층 (L2) 및 제3 계층 (L3)으로 분할될 수 있다. 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜은 수평적으로 물리계층(physical layer), 데이터링크 계층(data link layer) 및 네트워크 계층(network layer)으로 이루어지며, 수직적으로는 데이터 정보 전송을 위한 프로토콜 스택(protocol stack) 사용자 평면(user plane)과 제어신호(signaling) 전달을 위한 프로토콜 스택인 제어 평면(control plane)으로 구분된다.
제어평면은 단말과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자 평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다. 이하, 무선 프로토콜의 제어평면과 사용자평면의 각 계층을 설명한다.
제1 계층(L1)인 물리 계층(PHY: physical layer)은 물리 채널(physical channel)을 사용함으로써 상위 계층으로의 정보 송신 서비스(information transfer service)를 제공한다. 물리 계층은 상위 레벨에 위치한 매체 접속 제어(MAC: medium access control) 계층으로 전송 채널(transport channel)을 통하여 연결되고, 전송 채널을 통하여 MAC 계층과 물리 계층 사이에서 데이터가 전송된다. 전송 채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 그리고, 서로 다른 물리 계층 사이, 송신단의 물리 계층과 수신단의 물리 계층 간에는 물리 채널(physical channel)을 통해 데이터가 전송된다. 물리 계층은 OFDM(orthogonal frequency division multiplexing) 방식으로 변조되며, 시간과 주파수를 무선 자원으로 활용한다.
물리 계층에서 사용되는 몇몇 물리 제어 채널들이 있다. 물리 하향링크 제어 채널(PDCCH: physical downlink control channel)는 단말에게 페이징 채널(PCH: paging channel)와 하향링크 공유 채널(DL-SCH: downlink shared channel)의 자원 할당 및 상향링크 공유 채널(UL-SCH: uplink shared channel)과 관련된 HARQ(hybrid automatic repeat request) 정보를 알려준다. 또한, PDCCH는 단말에게 상향링크 전송의 자원 할당을 알려주는 상향링크 승인(UL grant)를 나를 수 있다. 물리 제어 포맷 지시자 채널(PDFICH: physical control format indicator channel)는 단말에게 PDCCH들에 사용되는 OFDM 심볼의 수를 알려주고, 매 서브프레임마다 전송된다. 물리 HARQ 지시자 채널(PHICH: physical HARQ indicator channel)는 상향링크 전송의 응답으로 HARQ ACK(acknowledge)/NACK(non-acknowledge) 신호를 나른다. 물리 상향링크 제어 채널(PUCCH: physical uplink control channel)은 하향링크 전송에 대한 HARQ ACK/NACK, 스케줄링 요청 및 채널 품질 지시자(CQI: channel quality indicator) 등과 같은 상향링크 제어 정보를 나른다. 물리 상향링크 공유 채널(PUSCH: physical uplink shared channel)은 UL-SCH을 나른다.
제2 계층(L2)의 MAC 계층은 논리 채널(logical channel)을 통하여 상위 계층인 무선 링크 제어(RLC: radio link control) 계층에게 서비스를 제공한다. 또한, MAC 계층은 논리 채널과 전송 채널 간의 맵핑 및 논리 채널에 속하는 MAC 서비스 데이터 유닛(SDU: service data unit)의 전송 채널 상에 물리 채널로 제공되는 전송 블록(transport block)으로의 다중화/역다중화 기능을 포함한다.
제2 계층(L2)의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. 무선 베어러(RB: radio bearer)가 요구하는 다양한 QoS(quality of service)를 보장하기 위해, RLC 계층은 투명 모드(TM: transparent mode), 비확인 모드(UM: unacknowledged mode) 및 확인 모드(AM: acknowledge mode)의 세 가지의 동작 모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류 정정을 제공한다. 한편, MAC 계층이 RLC 기능을 수행하는 경우에 RLC 계층은 MAC 계층의 기능 블록으로 포함될 수 있다.
제2 계층(L2)의 패킷 데이터 컨버전스 프로토콜(PDCP: packet data convergence protocol) 계층은 사용자 평면에서 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering) 기능을 수행한다. 헤더 압축 기능은 작은 대역폭을 가지는 무선 인터페이스를 통하여 IPv4(internet protocol version 4) 또는 IPv6(internet protocol version 6)와 같은 인터넷 프로토콜(IP: internet protocol) 패킷을 효율적으로 전송되게 하기 위하여 상대적으로 크기가 크고 불필요한 제어 정보를 담고 있는 IP 패킷 헤더 사이즈를 줄이는 기능을 의미한다. 제어 평면에서의 PDCP 계층의 기능은 제어 평면 데이터의 전달 및 암호화/무결정 보호(integrity protection)을 포함한다.
제3 계층(L3)의 최하위 부분에 위치한 무선 자원 제어(RRC: radio resource control) 계층은 제어 평면에만 정의된다. RRC 계층은 단말과 네트워크 간의 무선 자원을 제어하는 역할을 수행한다. 이를 위해 단말과 네트워크는 RRC 계층을 통해 RRC 메시지를 서로 교환한다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련하여 논리 채널, 전송 채널 및 물리 채널을 제어한다. 무선 베어러는 단말과 네트워크 사이의 데이터 전송을 위하여 제2 계층(L2)에 의하여 제공되는 논리적인 경로를 의미한다. 무선 베어러가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 것을 의미한다. 무선 베어러는 다시 시그널링 무선 베어러(SRB: signaling RB)와 데이터 무선 베어러(DRB: data RB) 두 가지로 나눠 질 수 있다. SRB는 제어 평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.
RRC 계층 상위에 위치하는 NAS(non-access stratum) 계층은 세션 관리(session management)와 이동성 관리(mobility management) 등의 기능을 수행한다.
기지국을 구성하는 하나의 셀은 1.25, 2.5, 5, 10, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널(downlink transport channel)은 시스템 정보를 전송하는 방송 채널(BCH: broadcast channel), 페이징 메시지를 전송하는 PCH, 사용자 트래픽이나 제어메시지를 전송하는 DL-SCH 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어메시지의 경우 DL-SCH를 통해 전송될 수도 있고, 또는 별도의 하향 멀티캐스트 채널(MCH: multicast channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널(uplink transport channel)로는 초기 제어메시지를 전송하는 랜덤 액세스 채널(RACH: random access channel), 사용자 트래픽이나 제어메시지를 전송하는 UL-SCH(uplink shared channel)가 있다.
논리 채널(logical channel)은 전송 채널의 상위에 있으며, 전송 채널에 맵핑된다. 논리 채널은 제어 영역 정보의 전달을 위한 제어 채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 구분될 수 있다. 논리채널로는 방송 제어 채널(BCCH: broadcast control channel), 페이징 제어 채널(PCCH: paging control channel), 공통 제어 채널(CCCH: common control channel), 전용 제어 채널(DCCH: dedicated control channel), 멀티캐스트 제어 채널(MCCH: multicast control channel), 전용 트래픽 채널(DTCH: dedicated traffic channel), 멀티캐스트 트래픽 채널(MTCH: multicast traffic channel) 등이 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 S1 인터페이스 프로토콜 구조를 나타낸다.
도 4(a)는 S1 인터페이스에서 제어 평면(control plane) 프로토콜 스택을 예시하고, 도 4(b)는 S1 인터페이스에서 사용자 평면(user plane) 인터페이스 프로토콜 구조를 나타낸다.
도 4를 참조하면, S1 제어 평면 인터페이스(S1-MME)는 기지국과 MME 간에 정의된다. 사용자 평면과 유사하게 전송 네트워크 계층(transport network layer)은 IP 전송에 기반한다. 다만, 메시지 시그널링의 신뢰성이 있는 전송을 위해 IP 계층 상위에 SCTP(Stream Control Transmission Protocol) 계층에 추가된다. 어플리케이션 계층(application layer) 시그널링 프로토콜은 S1-AP(S1 application protocol)로 지칭된다.
SCTP 계층은 어플리케이션 계층 메시지의 보장된(guaranteed) 전달을 제공한다.
프로토콜 데이터 유닛(PDU: Protocol Data Unit) 시그널링 전송을 위해 전송 IP 계층에서 점대점 (point-to-point) 전송이 사용된다.
S1-MME 인터페이스 인스턴스(instance) 별로 단일의 SCTP 연계(association)는 S-MME 공통 절차를 위한 한 쌍의 스트림 식별자(stream identifier)를 사용한다. 스트림 식별자의 일부 쌍만이 S1-MME 전용 절차를 위해 사용된다. MME 통신 컨텍스트 식별자는 S1-MME 전용 절차를 위한 MME에 의해 할당되고, eNB 통신 컨텍스트 식별자는 S1-MME 전용 절차를 위한 eNB에 의해 할당된다. MME 통신 컨텍스트 식별자 및 eNB 통신 컨텍스트 식별자는 단말 특정한 S1-MME 시그널링 전송 베어러를 구별하기 위하여 사용된다. 통신 컨텍스트 식별자는 각각 S1-AP 메시지 내에서 전달된다.
S1 시그널링 전송 계층이 S1AP 계층에게 시그널링 연결이 단절되었다고 통지한 경우, MME는 해당 시그널링 연결을 사용하였던 단말의 상태를 ECM-IDLE 상태로 변경한다. 그리고, eNB은 해당 단말의 RRC 연결을 해제한다.
S1 사용자 평면 인터페이스(S1-U)는 eNB과 S-GW 간에 정의된다. S1-U 인터페이스는 eNB와 S-GW 간에 사용자 평면 PDU의 보장되지 않은(non guaranteed) 전달을 제공한다. 전송 네트워크 계층은 IP 전송에 기반하고, eNB와 S-GW 간의 사용자 평면 PDU를 전달하기 위하여 UDP/IP 계층 상위에 GTP-U(GPRS Tunneling Protocol User Plane) 계층이 이용된다.
EMM 및 ECM 상태
EMM(EPS mobility management), ECM(EPS connection management) 상태에 대하여 살펴본다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 EMM 및 ECM 상태를 예시하는 도면이다.
도 5를 참조하면, 단말과 MME의 제어 평면에 위치한 NAS 계층에서 단말의 이동성을 관리하기 위하여 단말이 네트워크에 어태치(attach)되었는지 디태치(detach)되었는지에 따라 EMM 등록 상태(EMM-REGISTERED) 및 EMM 등록 해제 상태(EMM-DEREGISTERED)가 정의될 수 있다. EMM-REGISTERED 상태 및 EMM-DEREGISTERED 상태는 단말과 MME에게 적용될 수 있다.
단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM-DEREGISTERED 상태에 있으며, 이 단말이 네트워크에 접속하기 위해서 초기 접속(initial attach) 절차를 통해 해당 네트워크에 등록하는 과정을 수행한다. 접속 절차가 성공적으로 수행되면 단말 및 MME는 EMM-REGISTERED 상태로 천이(transition)된다. 또한, 단말의 전원이 꺼지거나 무선 링크 실패인 경우(무선 링크 상에서 패킷 에러율이 기준치를 넘은 경우), 단말은 네트워크에서 디태치(detach)되어 EMM-DEREGISTERED 상태로 천이된다.
또한, 단말과 네트워크 간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM 연결 상태(ECM-CONNECTED) 및 ECM 아이들 상태(ECM-IDLE)가 정의될 수 있다. ECM-CONNECTED 상태 및 ECM-IDLE 상태 또한 단말과 MME에게 적용될 수 있다. ECM 연결은 단말과 기지국 간에 설정되는 RRC 연결과 기지국과 MME 간에 설정되는 S1 시그널링 연결로 구성된다. 즉, ECM 연결이 설정/해제되었다는 것은 RRC 연결과 S1 시그널링 연결이 모두 설정/해제되었다는 것을 의미한다.
RRC 상태는 단말의 RRC 계층과 기지국의 RRC 계층이 논리적으로 연결(connection)되어 있는지 여부를 나타낸다. 즉, 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있는 경우, 단말은 RRC 연결 상태(RRC_CONNECTED)에 있게 된다. 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있지 않은 경우, 단말은 RRC 아이들 상태(RRC_IDLE)에 있게 된다.
네트워크는 ECM-CONNECTED 상태에 있는 단말의 존재를 셀 단위에서 파악할 수 있고, 단말을 효과적으로 제어할 수 있다.
반면, 네트워크는 ECM-IDLE 상태에 있는 단말의 존재를 파악할 수 없으며, 코어 네트워크(CN: core network)가 셀보다 더 큰 지역 단위인 트래킹 영역(tracking area) 단위로 관리한다. 단말이 ECM 아이들 상태에 있을 때에는 단말은 트래킹 영역에서 유일하게 할당된 ID를 이용하여 NAS에 의해 설정된 불연속 수신(DRX: Discontinuous Reception)을 수행한다. 즉, 단말은 단말-특정 페이징 DRX 사이클 마다 특정 페이징 시점(paging occasion)에 페이징 신호를 모니터링함으로써 시스템 정보 및 페이징 정보의 브로드캐스트를 수신할 수 있다.
또한, 단말이 ECM-IDLE 상태에 있을 때에는 네트워크는 단말의 컨텍스트(context) 정보를 가지고 있지 않다. 따라서 ECM-IDLE 상태의 단말은 네트워크의 명령을 받을 필요 없이 셀 선택(cell selection) 또는 셀 재선택(cell reselection)과 같은 단말 기반의 이동성 관련 절차를 수행할 수 있다. ECM 아이들 상태에서 단말의 위치가 네트워크가 알고 있는 위치와 달라지는 경우, 단말은 트래킹 영역 업데이트(TAU: tracking area update) 절차를 통해 네트워크에 해당 단말의 위치를 알릴 수 있다.
반면, 단말이 ECM-CONNECTED 상태에 있을 때에는 단말의 이동성은 네트워크의 명령에 의해서 관리된다. ECM-CONNECTED 상태에서 네트워크는 단말이 속한 셀을 안다. 따라서, 네트워크는 단말로 또는 단말로부터 데이터를 전송 및/또는 수신하고, 단말의 핸드오버와 같은 이동성을 제어하고, 주변 셀에 대한 셀 측정을 수행할 수 있다.
위와 같이, 단말이 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 ECM-CONNECTED 상태로 천이하여야 한다. 단말의 전원을 최초로 켠 경우와 같이 초기 단말은 EMM 상태와 마찬가지로 ECM-IDLE 상태에 있으며, 단말이 초기 접속(initial attach) 절차를 통해 해당 네트워크에 성공적으로 등록하게 되면 단말 및 MME는 ECM 연결 상태로 천이(transition)된다. 또한, 단말이 네트워크에 등록되어 있으나 트래픽이 비활성화되어 무선 자원이 할당되어 있지 않은 경우 단말은 ECM-IDLE 상태에 있으며, 해당 단말에 상향링크 혹은 하향링크 새로운 트래픽이 발생되면 서비스 요청(service request) 절차를 통해 단말 및 MME는 ECM-CONNECTED 상태로 천이(transition)된다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 베어러 구조를 예시한다.
단말이 패킷 데이터 네트워크(PDN: Packet Date Network)(도 6에서 피어 엔티티(peer entity))에 연결될 때 PDN 연결(PDN connection)이 생성되고, PDN connection은 EPS 세션(session)으로도 불릴 수 있다. PDN은 사업자 외부 또는 내부 IP (internet protocol) 망으로 인터넷이나 IMS(IP Multimedia Subsystem)와 같은 서비스 기능을 제공한다.
EPS session은 하나 이상의 EPS 베어러(bearer)를 가진다. EPS bearer는 EPS에서 사용자 트래픽을 전달하기 위하여 단말과 PDN GW 간에 생성되는 트래픽의 전송 경로(transmission path)이다. EPS bearer는 단말 당 하나 이상 설정될 수 있다.
각 EPS bearer는 E-UTRAN 무선 액세스 베어러(E-RAB: E-UTRAN Radio Access Bearer) 및 S5/S8 bearer로 나누어질 수 있고, E-RAB 는 무선 베어러(RB: radio bearer), S1 bearer로 나누어질 수 있다. 즉, 하나의 EPS bearer는 각각 하나의 RB, S1 bearer, S5/S8 bearer 에 대응된다.
E-RAB 는 단말과 EPC 간에 EPS bearer의 패킷을 전달한다. E-RAB가 존재하면, E-RAB bearer와 EPS bearer는 일대일로 매핑된다. 데이터 무선 베어러(DRB: data radio bearer)는 단말과 eNB 간에 EPS bearer의 패킷을 전달한다. DRB가 존재하면, DRB와 EPS bearer/E-RAB 는 일대일로 매핑된다. S1 bearer는 eNB와 S-GW 간에 EPS bearer의 패킷을 전달한다. S5/S8 bearer는 S-GW와 P-GW 간에 EPS bearer 패킷을 전달한다.
단말은 상향링크 방향의 EPS bearer 에 서비스 데이터 플로우(SDF: service data flow)를 바인딩(binding) 한다. SDF는 사용자 트래픽을 서비스 별로 분류(또는 필터링) 한 IP 플로우(flow) 또는 IP flow들의 모임이다. 복수의 SDF들은 복수의 상향링크 패킷 필터들을 포함함으로써 동일한 EPS bearer에 다중화될 수 있다. 단말은 상향링크에서 SDF와 DRB 간 binding하기 위하여 상향링크 패킷 필터와 DRB 간 매핑 정보를 저장한다.
P-GW 은 하향링크 방향의 EPS bearer에 SDF를 binding한다. 복수의 SDF들은 복수의 하향링크 패킷 필터들을 포함함으로써 동일한 EPS bearer에 다중화될 수 있다. P-GW는 하향링크에서 SDF와 S5/S8 bearer 간 binding 하기 위하여 하향링크 패킷 필터와 S5/S8 bearer 간 매핑 정보를 저장한다.
eNB은 상/하향링크에서 DRB와 S1 bearer 간 binding 하기 위하여 DRB와 S1 bearer 간 일대일 매핑을 저장한다. S-GW는 상/하향링크에서 S1 bearer와 S5/S8 bearer 간 binding 하기 위하여 S1 bearer와 S5/S8 bearer 간 일대일 매핑 정보를 저장한다.
EPS bearer는 기본 베어러(default bearer)와 전용 베어러(dedicated bearer) 두 종류로 구분된다. 단말은 PDN 당 하나의 default bearer와 하나 이상의 dedicated bearer 를 가질 수 있다. 하나의 PDN에 대하여 EPS 세션이 갖는 최소한의 기본 베어러를 default bearer라 한다.
EPS bearer는 식별자(identity)를 기반으로 구분될 수 있다. EPS bearer identity는 단말 또는 MME에 의해 할당된다. dedicated bearer(s)은 LBI(Linked EPS Bearer Identity)에 의해 default bearer와 결합된다.
단말은 초기 어태치 절차(initial attach procedure)를 통해 네트워크에 초기 접속하면, IP 주소를 할당 받아 PDN connection이 생성되고, EPS 구간에서 default bearer가 생성된다. default bearer는 단말과 해당 PDN 간 트래픽이 없는 경우에도 단말이 PDN 연결이 종료되지 않는 한 해제되지 않고 유지되며, 해당 PDN 연결을 종료될 때 default bearer도 해제된다. 여기서, 단말과 default bearer를 구성하는 모든 구간의 bearer가 활성화되는 것은 아니고, PDN과 직접 연결되어 있는 S5 bearer는 유지되고, 무선 자원과 연관이 있는 E-RAB bearer (즉, DRB and S1 bearer)는 해제된다. 그리고, 해당 PDN에서 새로운 트래픽이 발생되면 E-RAB bearer가 재설정되어 트래픽을 전달한다.
단말이 default bearer를 통해 서비스(예를 들어, 인터넷 등)를 이용하는 중에, default bearer만으로 QoS(Quality of Service)를 제공 받기 불충분한 서비스(예를 들어, VoD(Videon on Demand) 등)를 이용하게 되면 단말에서 요구할 때(on-demand)로 dedicated bearer가 생성된다. 단말의 트래픽이 없는 경우 dedicated bearer는 해제된다. 단말이나 네트워크는 필요에 따라 복수의 dedicated bearer를 생성할 수 있다.
단말이 어떠한 서비스를 이용하는지에 따라 IP flow는 다른 QoS 특성을 가질 수 있다. 네트워크는 단말을 위한 EPS session을 확립/변경(establish/modification) 시 네트워크 자원의 할당 내지 QoS 에 대한 제어 정책을 결정하여 EPS session이 유지되는 동안 이를 적용한다. 이를 PCC (Policy and Charging Control)라 한다. PCC 규칙(PCC rule)은 오퍼레이터 정책(예를 들어, QoS 정책, 게이트 상태(gate status), 과금 방법 등)을 기반으로 결정된다.
PCC 규칙은 SDF 단위로 결정된다. 즉, 단말이 이용하는 서비스에 따라 IP flow는 다른 QoS 특성을 가질 수 있으며, 동일한 QoS를 가진 IP flow들은 동일한 SDF로 맵핑되고, SDF는 PCC 규칙을 적용하는 단위가 된다.
이와 같은 PCC 기능을 수행하는 주요 엔터티로 PCRF(Policy and Charging Control Function)와 PCEF(Policy and Charging Enforcement Function)가 이에 해당될 수 있다.
PCRF는 EPS session을 생성 또는 변경할 때 SDF 별로 대해 PCC 규칙을 결정하여 P-GW(또는 PCEF)로 제공한다. P-GW는 해당 SDF에 대해 PCC 규칙을 설정한 뒤, 송/수신되는 IP 패킷마다 SDF를 검출하여 해당 SDF에 대한 PCC 규칙을 적용한다. SDF가 EPS을 거쳐 단말에게 전송될 때 P-GW에 저장되어 있는 QoS 규칙에 따라 적합한 QoS를 제공해 줄 수 있는 EPS bearer로 맵핑된다.
PCC 규칙은 동적 PCC 규칙(dynamic PCC rule)과 미리 정의된 PCC 규칙(pre-defined PCC rule)으로 구분된다. 동적 PCC 규칙은 EPS session 확립/변경(establish/modification) 시 PCRF에서 P-GW로 동적으로 제공된다. 반면, 미리 정의된 PCC 규칙은 P-GW에 미리 설정되어 있어 PCRF에 의해 활성화/비활성화된다.
EPS 베어러는 기본 QoS 파라미터로 QoS 클래스 식별자(QCI: QoS Class Identifier)와 할당 및 보유 우선 순위(ARP: Allocation and Retention Priority)를 포함한다.
QCI는 bearer 레벨 패킷 포워딩 처리(treatment)를 제어하는 노드-특정(node-specific) 파라미터들에 접근하기 위한 기준으로 사용되는 스칼라(scalar)로서, 스칼라 값은 네트워크 오퍼레이터에 의하여 미리 설정(pre-configured)되어 있다. 예를 들어, 스칼라는 정수값 1 내지 9 중 어느 하나로 미리 설정될 수 있다.
ARP의 주된 목적은 자원이 제한되는 경우, bearer의 establishment 또는 modification 요청이 받아들여질 수 있는지 또는 거절되어야 하는지 결정하기 위함이다. 또한, ARP는 예외적인 자원 제한(예를 들어, 핸드오버 등) 상황에서, eNB에 의해 어떠한 bearer(s)를 드랍(drop)할 지 결정하는데 사용될 수 있다.
EPS bearer는 QCI 자원 형태에 따라 보장된 비트율(GBR: Guaranteed Bit Rate)형 bearer와 비 보장된 비트율(non-GBR) 형 bearer로 구분된다. Default bearer는 항상 non-GBR 형 bearer이고, dedicated bearer는 GBR형 또는 non-GBR형 bearer일 수 있다.
GBR 형 베어러는 QCI와 ARP 외에 QoS 파라미터로서 GBR과 최대 비트율(MBR: Maximum Bit Rate)를 가진다. MBR은 bearer별로 고정된 자원을 할당(대역폭 보장) 받는 것을 의미한다. 반면, non-GBR형 bearer는 QCI와 ARP 이외에 QoS 파라미터로서 결합된 MBR(AMBR: Aggregated MBR)을 가진다. AMBR은 자원을 bearer 별로 할당 받지 못하는 대신 다른 non-GBR형 bearer들과 같이 사용할 수 있는 최대 대역폭을 할당 받는 것을 의미한다.
위와 같이 EPS bearer의 QoS가 정해지면, 각 인터페이스마다 각각의 bearer의 QoS가 정해진다. 각 인터페이스의 bearer는 EPS bearer의 QoS를 인터페이스 별로 제공하므로, EPS bearer와 RB, S1 bearer 등은 모두 일대일 관계를 가진다.
단말이 default bearer를 통해 서비스를 이용하는 중에, default bearer만으로 QoS를 제공 받기 불충분한 서비스를 이용하게 되면 단말의 요청에 의해(on-demand)로 dedicated bearer가 생성된다.
도 7은 본 발명의 적용될 수 있는 무선 통신 시스템에서 EMM 등록 상태에서 제어 평면(control plane) 및 사용자 평면(user plane)의 전송 경로를 예시하는 도면이다.
도 7(a)는 ECM-CONNECTED 상태를 예시하고, 도 7(b)는 ECM-IDLE를 예시한다.
단말이 네트워크에 성공적으로 어태치(attach)하여 EMM-Registered 상태가 되면 EPS 베어러를 이용하여 서비스를 제공받는다. 상술한 바와 같이, EPS 베어러는 구간 별로 DRB, S1 베어러, S5 베어러로 나뉘어져 구성된다.
도 7(a)와 같이, 사용자 트래픽이 있는 ECM-CONNECTED 상태에서는 NAS 시그널링 연결 즉, ECM 연결(즉, RRC 연결과 S1 시그널링 연결)이 설정된다. 또한, MME와 SGW 간에 S11 GTP-C(GPRS Tunneling Protocol Control Plane) 연결이 설정되고, SGW와 PDN GW 간에 S5 GTP-C 연결이 설정된다.
또한, ECM-CONNECTED 상태에서는 DRB, S1 베어러 및 S5 베어러가 모두 설정(즉, 무선 또는 네트워크 자원 할당)된다.
도 7(b)와 같이, 사용자 트래픽이 없는 ECM-IDLE 상태에서는 ECM 연결(즉, RRC 연결과 S1 시그널링 연결)은 해제된다. 다만, MME와 SGW 간의 S11 GTP-C 연결 및 SGW와 PDN GW 간의 S5 GTP-C 연결은 설정이 유지된다.
또한, ECM-IDLE 상태에서는 DRB와 S1 베어러는 모두 해제되나, S5 베어러는 설정(즉, 무선 또는 네트워크 자원 할당)을 유지한다.
DRX (Discontinuous Reception) 모드 단말에서 하향링크 제어 채널 모니터링 방법
3GPP LTE/LTE-A 시스템에서는 단말과 네트워크 간 시그널링 연결(signaling connection)을 관리하기 위하여 ECM 연결(ECM((EPS connection management))-CONNECTED) 상태 및 ECM 아이들(ECM-IDLE) 상태를 정의한다. ECM 연결 상태 및 ECM 아이들 상태 또한 단말과 MME에게 적용될 수 있다. ECM 연결은 단말과 기지국 간에 설정되는 RRC 연결과 기지국과 MME 간에 설정되는 S1 시그널링 연결로 구성된다. RRC 상태는 단말의 RRC 계층과 기지국의 RRC 계층이 논리적으로 연결(connection)되어 있는지 여부를 나타낸다. 즉, 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있는 경우, 단말은 RRC 연결(RRC_CONNECTED) 상태에 있게 된다. 단말의 RRC 계층과 기지국의 RRC 계층이 연결되어 있지 않은 경우, 단말은 RRC 아이들(RRC_IDLE) 상태에 있게 된다.
여기서, RRC_CONNECTED 상태는 단말이 특정 셀에 연결된 상태로 단말이 셀 단위로 서비스를 받을 수 있는 상태를 의미하고, 셀 단위로 단말이 관리된다.
RRC_IDLE 상태는 단말이 기지국과의 연결은 없고, 이동성 관리 개체(MME: Mobility Management Entity)와의 연결만을 유지한 상태로 셀보다 더 큰 지역 단위인 트래킹 영역(TA: Tracking Area) 단위로 단말이 관리된다. 즉, RRC_IDLE 상태 단말은 자신에게 전송되는 페이징 메시지가 있는지 확인하기 위해 간헐적으로 깨어나 페이징 채널(PCH: paging channel)을 모니터링 한다. 즉, 단말은 트래킹 영역에서 유일하게 할당된 ID를 이용하여 NAS(non-access stratum)에 의해 설정된 불연속 수신(DRX: Discontinuous Reception)을 수행한다. 단말은 단말-특정 페이징 DRX 사이클 마다 특정 페이징 기회에 페이징 신호를 모니터링함으로써 시스템 정보 및 페이징 정보의 브로드캐스트를 수신할 수 있다. 이와 같은 네트워크 상태 정의를 통해 활성화된 서비스가 없는 단말은 자신의 전력 소모를 최소화하고 기지국은 자원을 효율적으로 사용할 수 있다.
위와 같이, 단말이 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 ECM 연결 상태로 천이하여야 한다. 단말의 전원을 최초로 켠 경우와 같이 초기 단말은 ECM 아이들 상태에 있으며, 단말이 초기 접속(initial attach) 절차를 통해 해당 네트워크에 성공적으로 등록하게 되면 단말 및 MME는 ECM 연결 상태로 천이(transition)된다. 또한, 단말이 네트워크에 등록되어 있으나 트래픽이 비활성화되어 무선 자원이 할당되어 있지 않은 경우 단말은 ECM 아이들 상태에 있으며, 해당 단말에 상향링크 혹은 하향링크 새로운 트래픽이 발생되면 서비스 요청(service request) 절차를 통해 단말 및 MME는 ECM 연결 상태로 천이(transition)된다.
3GPP LTE/LTE-A 시스템은 단말의 전력 소모를 최소화하기 위해 RRC_CONNECTED 상태에서도 휴면 모드(Dormant mode)와 활성 모드(Active mode)를 정의한다.
이는 RRC_CONNECTED 상태 단말이 일정 시간 동안 송/수신되는 데이터가 없는 경우, 셀 연결은 그대로 유지하고 단말이 휴면 모드(Dormant mode)로 진입할 수 있도록 한다. Dormant mode 단말은 자신에게 전송될 수 있는 데이터를 수신하기 위해 간헐적으로 깨어나 물리 제어 채널을 모니터링 해야 한다.
이와 같이, 단말의 전력을 최소화하기 위해 무선 통신 시스템은 단말의 불연속 수신(DRX: discontinuous reception) 기법을 사용한다.
3GPP LTE/LTE-A 시스템에서 정의된 DRX는 단말의 휴먼 모드와 RRC_IDLE 상태에서 모두 사용될 수 있으며, 각 상태 별로 사용되는 DRX 기법은 다음과 같다.
1) RRC_CONNECTED 상태에서 휴먼 모드
- 단기 DRX(Short DRX): 단기 DRX 사이클(short DRX cycle) (2ms ~ 640ms)
- 장기 DRX(Long DRX): 장기 DRX 사이클(long DRX cycle) (10ms ~ 2560ms)
2) RRC_IDLE 상태
- 페이징 DRX(Paging DRX): 페이징 DRX 사이클(paging DRX cycle) (320ms ~ 2560ms)
단말은 단말의 고유한 식별자인 RNTI(예를 들어, C-RNTI, SI-RNTI, P-RNTI 등)를 기반으로 PDCCH의 모니터링(monitoring)을 수행할 수 있다.
PDCCH의 모니터링은 DRX 동작에 의해 제어될 수 있으며, DRX에 관한 파라미터는 기지국이 RRC 메시지에 의해 단말로 전송해준다. 특히, 단말은 SI-RNTI, P-RNTI 등은 RRC 메시지에 의해 구성된 DRX 동작과는 무관하게 항상 수신하여야 한다. 여기서 C-RNTI로 스크램블링된 PDCCH를 제외한 나머지 PDCCH들은 항상 주서빙셀(예를 들어, P셀)의 공용 서치 스페이스(common search space)를 통해 수신된다.
단말이 RRC 연결 상태(connected state)에서 DRX 파라미터가 구성되어 있다면, 단말은 DRX 동작에 기반하여 PDCCH에 대한 불연속적인(discontinuous) 모니터링을 수행한다. 반면, 만일 DRX 파라미터가 구성되어 있지 않다면 단말은 연속적인 PDCCH의 모니터링을 수행한다.
즉, 단말은 DRX 동작에 기반하여 PDCCH 영역에서 단말 특정 서치 스페이스(UE-specific search space)에서 블라인드 디코딩(blind deconding)을 수행하여 PDCCH를 탐색한다. 단말은 RNTI를 사용하여 PDCCH의 CRC를 언마스크(unmask)할 때 CRC 에러가 검출되지 않으면, 단말은 해당 PDCCH가 자신의 제어 정보를 전달한다고 결정한다.
불연속적인 PDCCH 모니터링이란 단말이 정해진 특정한 서브프레임에서만 PDCCH를 모니터링함을 의미하고, 연속적인 PDCCH 모니터링이란 단말이 모든 서브프레임에서 PDCCH를 모니터링함을 의미할 수 있다. 한편, 랜덤 액세스(random access) 절차와 같은 DRX와 무관한 동작에서 PDCCH 모니터링이 필요한 경우, 단말은 해당 동작의 요구사항에 따라 PDCCH를 모니터한다.
또한, 상술한 바와 같이 페이징 메시지를 수신하는 단말은 전력 소비 감소를 목적으로 DRX을 수행할 수 있다.
이를 위해 네트워크는 페이징 사이클(paging cycle)라 불리는 시간 주기마다 복수의 페이징 기회(paging occasion)를 구성하고, 특정 단말은 특정 페이징 기회의 시간에만 페이징 메시지를 수신하고, 단말은 특정 페이징 기회 외의 시간에는 페이징 채널을 수신하지 않는다. 또한, 하나의 페이징 기회는 하나의 TTI에 대응될 수 있다.
어태치 절차(Attach Procedure)
어태치 절차(Attach procedure)는 일반적으로 단말이 E-UTRAN 셀(cell)에 진입하였을 때 네트워크에 연결(connection)을 맺기 위하여 이용된다. 또한, non-3GPP 네트워크로부터 E-UTRAN으로 핸드오버(handover)되는 경우에도 이용될 수 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 어태치(attach) 절차를 간략히 예시하는 도면이다.
1-2. 단말(UE)은 어태치 요청(Attach Request) 메시지를 MME에게 전송함으로써 어태치 절차를 개시한다. 어태치 요청(Attach Request) 메시지는 단말의 IMSI(International Mobile Subscriber Identity) 등을 포함한다.
어태치 요청(Attach Request) 메시지는 RRC 연결에서 RRC 연결 셋업 완료(RRC Connection Setup Complete) 메시지에 포함되어 전달되고, S1 시그널링 연결에서 초기 UE 메시지(Initial UE message)에 포함되어 전달된다.
3. MME는 단말 인증을 위해 HSS에게 인증을 위한 정보를 요청하여 수신하고, 단말과 상호 인증을 수행한다.
4. MME는 HSS에게 단말의 위치를 등록하고, 단말에게 디폴트 베어러(default bearer)를 생성하기 위하여 HSS로부터 사용자 가입 정보(즉, 가입된 QoS 프로파일(subscribed QoS Profile))를 수신한다.
5-6. MME는 S-GW에게 세션 생성 요청(Create Session Request) 메시지를 전송함으로써 디폴트 베어러(default bearer) 생성을 요청하고, S-GW는 P-GW에게 세션 생성 요청(Create Session Request) 메시지를 전달한다. 세션 생성 요청(Create Session Request) 메시지는 HSS로부터 QoS 프로파일(QoS Profile), 'S5 S-GW TEID(Tunnel Endpoint Identifier)' 등을 포함한다.
7. P-GW는 단말이 사용할 IP(Internet Protocol) 주소를 할당하고, PCRF와 IP-CAN(IP connectivity access network) 세션 확립(establishment)/수정(modification) 절차를 수행한다.
8. P-GW는 세션 생성 요청(Create Session Request) 메시지에 대한 응답으로 세션 생성 응답(Create Session Response) 메시지를 S-GW에게 전송한다. 세션 생성 응답(Create Session Response) 메시지는 디폴트 베어러(default bearer)에 적용할 QoS 프로파일, 'S5 P-GW TEID' 등을 포함한다.
이 절차를 마치면 S-GW와 P-GW 간에 S5 베어러의 생성이 완료되어, S-GW는 P-GW로 상향링크 트래픽을 전송하거나 P-GW로부터 하향링크 트래픽을 수신할 수 있다.
9. S-GW는 세션 생성 요청(Create Session Request) 메시지에 대한 응답으로 'S1 S-GW TEID' 등을 포함하는 세션 생성 응답(Create Session Response) 메시지를 MME에게 전송한다.
10-11. MME는 어태치 요청(Attach Request) 메시지에 대한 응답으로 P-GW에서 할당한 IP 주소, 트래킹 영역 식별자(TAI: Tracking Area Identity) 리스트, TAU 타이머 등을 포함하는 어태치 승인(Attach Accept) 메시지를 단말에게 전송한다.
어태치 승인(Attach Accept) 메시지는 S1 시그널링 연결에서 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지에 포함되어 전달된다. 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지는 'S1 S-GW TEID' 등을 포함한다.
이 절차를 마치면, 기지국과 S-GW 간에 상향링크 S1 베어러의 생성이 완료되고, 기지국은 S-GW에게 상향링크 트래픽을 전송할 수 있다.
어태치 승인(Attach Accept) 메시지 RRC 연결에서 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지에 포함되어 전달된다.
이 절차를 마치면, 단말과 기지국 간에 DRB의 생성이 완료되어, 단말은 기지국으로 상향링크 트래픽을 전송하거나 기지국으로부터 하향링크 트래픽을 수신할 수 있다.
12. 기지국은 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지에 대한 응답으로 초기 컨텍스트 셋업 응답(Initial Context Setup Response) 메시지를 MME에게 전송한다. 초기 컨텍스트 셋업 응답(Initial Context Setup Response) 메시지는 'S1 eNB TEID' 등을 포함한다.
13-14. 단말은 어태치 승인(Attach Accept) 메시지에 대한 응답으로 어태치 완료(Attach Complete) 메시지를 MME에게 전송한다.
어태치 완료(Attach Complete) 메시지는 RRC 연결에서 상향링크 정보 전달(UL Information Transfer) 메시지에 포함되어 전달되고, S1 시그널링 연결에서 상향링크 NAS 전달(Uplink NAS Transport) 메시지에 포함되어 전달된다.
이 절차를 마치면, 단말과 P-GW 간 상향링크 디폴트 EPS 베어러의 생성이 완료되어 단말은 P-GW로 상향링크 데이터를 전송할 수 있다.
15. MME는 기지국으로부터 수신한 'S1 eNB TEID'를 수정 베어러 요청(Modify Bearer Request) 메시지를 통해 S-GW에게 전달한다.
이 절차를 마치면, 기지국과 S-GW 간에 하향링크 S1 베어러의 생성이 완료되고, 기지국은 S-GW로부터 하향링크 트래픽을 수신할 수 있다.
16-17. 필요에 따라 S-GW와 P-GW 간에 베어러가 갱신(update) 된다.
18. S-GW는 수정 베어러 요청(Modify Bearer Request) 메시지에 대한 응답으로 수정 베어러 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
이 절차를 마치면, 단말과 P-GW 간 하향링크 디폴트 EPS 베어러의 생성이 완료되어 P-GW는 단말로 하향링크 데이터를 전송할 수 있다.
주기적 TAU 절차(Periodic TAU Procedure)
트래킹 영역 업데이트(TAU) 절차는 ECM-IDLE 상태인 단말이 새로운 위치 등록을 시도할 때 또는 TAU 타이머가 경과하였을 때 수행된다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 주기적인 트래킹 영역 업데이트 절차를 간략히 예시하는 도면이다.
1-2. ECM-IDLE 상태인 단말(UE)의 TAU 타이머가 경과하면, MME에게 트래킹 영역(TA: Tracking Area)를 보고하기 위한 주기적인 TAU(P-TAU: Periodic TAU) 절차가 트리거(trigger)된다.
단말은 TAU 요청(TAU Request) 메시지를 MME에게 전송함으로써 P-TAU 절차를 개시한다.
TAU 요청(TAU Request) 메시지는 RRC 연결에서 RRC 연결 셋업 완료(RRC Connection Setup Complete) 메시지에 포함되어 전달되고, S1 시그널링 연결에서 초기 UE 메시지(Initial UE message)에 포함되어 전달된다.
3. TAU 요청(TAU Request) 메시지를 수신한 MME는 TAU 타이머를 리셋(reset)하고, E-UTRAN 셀 글로벌 식별자(ECGI: E-UTRAN Cell Global Identifier), TAI를 포함하는 수정 베어러 요청(Modify bearer request) 메시지를 S-GW에게 전송한다.
4-5. 단말이 위치한 셀(ECGI) 또는 트래킹 영역(TAI)이 변경된 경우, S-GW는 수정 베어러 요청(Modify Bearer Request) 메시지를 P-GW에게 전송하여 알린다.
P-GW는 EPS 세션 수정 절차를 수행하고, 수정 베어러 요청(Modify Bearer Request) 메시지에 대한 응답으로 수정 베어러 응답(Modify Bearer Response) 메시지를 S-GW에게 전송한다.
6. S-GW는 수정 베어러 요청(Modify Bearer Request) 메시지에 대한 응답으로 수정 베어러 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
7-8. MME는 TAU 요청(TAU Request) 메시지에 대한 응답으로 TAU 승인(TAU Accept) 메시지를 단말에게 전송한다.
TAU 승인(TAU Accept) 메시지는 TAU 타이머 등을 포함할 수 있다.
TAU 승인(TAU Accept) 메시지는 S1 시그널링 연결에서 하향링크 NAS 전달(Downlink NAS Transport) 메시지에 포함되어 전달되고, RRC 연결에서 하향링크 정보 전달(DL Information Transfer) 메시지에 포함되어 전달된다.
9. 단말의 위치 업데이트를 완료한 MME는 주기적 TAU 관련 메시지 송수신에 사용한 단말과의 연결을 해제하고, E-UTRAN 내 설정되어 있는 사용자 컨텍스트를 해제하기 위하여 기지국(eNB)에게 단말 컨텍스트 해제 명령(UE Context Release Command) 메시지를 전송한다.
10. 기지국은 단말의 컨텍스트를 삭제하고, 단말에게 할당하였던 자원을 해제한다. 그리고, 기지국은 단말에게 RRC 연결 해제(RRC Connection Release) 메시지를 전송하여 단말과의 RRC 연결을 해제한다.
11. 기지국은 단말 컨텍스트 해제 명령(UE Context Release Command) 메시지에 대한 응답으로 MME에게 단말 컨텍스트 해제 완료(UE Context Release Complete) 메시지를 전송함으로써, 기지국과 MME 간 S1 시그널링 연결이 해제된다.
이 절차를 마치면, 단말은 다시 ECM-IDLE 상태로 천이한다.
서비스 요청 절차(Service Request Procedure)
단말 트리거 서비스 요청 절차(UE-triggered Service Request procedure)는 일반적으로 단말이 개시(initiation)하여 새로운 서비스를 시작하거나, 페이징(paging)의 응답(response)으로써 상향링크 데이터를 전송하고자 할 때 수행된다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말 트리거 서비스 요청 절차를 간략히 예시하는 도면이다.
1-2. 단말(UE)은 서비스 요청(Service Request) 메시지를 MME에게 전송함으로써 단말 트리거 서비스 요청 절차(UE-triggered Service Request procedure)를 개시한다.
서비스 요청(Service Request) 메시지는 RRC 연결에서 RRC 연결 셋업 완료(RRC Connection Setup Complete) 메시지에 포함되어 전달되고, S1 시그널링 연결에서 초기 UE 메시지(Initial UE message)에 포함되어 전달된다.
3. MME는 단말 인증을 위해 HSS에게 인증을 위한 정보를 요청하여 수신하고, 단말과 상호 인증을 수행한다.
4. MME는 기지국(eNB)이 S-GW와 S1 베어러를 설정하고, 단말과 DRB를 설정할 수 있도록 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 기지국에게 전송한다.
5. 기지국은 DRB를 생성하기 위하여 단말에게 RRC 연결 재설정(RRC Connection Reconfiguration) 메시지를 전송한다.
이 절차를 마치면, 기지국과 단말 간 DRB의 생성이 완료되어, 단말로부터 P-GW까지 상향링크 EPS 베어러가 모두 설정된다. 단말은 P-GW로 상향링크 트래픽을 전송할 수 있다.
6. 기지국은 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지에 대한 응답으로 'S1 eNB TEID'를 포함하는 초기 컨텍스트 셋업 완료(Initial Context Setup Complete) 메시지를 MME에게 전송한다.
7. MME는 기지국으로부터 수신한 'S1 eNB TEID'를 수정 베어러 요청(Modify Bearer Request) 메시지를 통해 S-GW에게 전달한다.
이 절차를 마치면, 기지국과 S-GW 간에 하향링크 S1 베어러의 생성이 완료됨으로써 P-GW에서 단말까지 하향링크 EPS 베어러가 모두 설정된다. 단말은 P-GW로부터 하향링크 트래픽을 수신할 수 있다.
8. 단말이 위치한 셀(ECGI) 또는 트래킹 영역(TAI)이 변경된 경우, S-GW는 수정 베어러 요청(Modify Bearer Request) 메시지를 P-GW에게 전송하여 알린다.
9. 필요한 경우, P-GW는 PCRF와 IP-CAN(IP connectivity access network) 세션 수정(modification) 절차를 수행할 수 있다.
10. P-GW는 S-GW로부터 수정 베어러 요청(Modify Bearer Request) 메시지를 수신한 경우, 이에 대한 응답으로 수정 베어러 응답(Modify Bearer Response) 메시지를 S-GW에게 전송한다.
11. S-GW는 수정 베어러 요청(Modify Bearer Request) 메시지에 대한 응답으로 수정 베어러 응답(Modify Bearer Response) 메시지를 MME에게 전송한다.
네트워크 트리거 서비스 요청 절차(Network-triggered Service Request procedure)는 일반적으로 네트워크에서 ECM-IDLE 상태에 있는 단말에게 하향링크 데이터를 전송하고자 할 때 수행된다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 단말 트리거 서비스 요청 절차를 간략히 예시하는 도면이다.
1. 하향링크 데이터(Downlink Data)가 외부 네트워크(external network)로부터 P-GW에 도달하면, P-GW는 하향링크 데이터를 S-GW에게 전달한다.
2. 하향링크 S1 베어러가 해제되어 하향링크 데이터를 기지국(eNB)에게 전송할 수 없는 경우(즉, S-GW에 'S1 eNB TEID' 값이 존재하지 않는 경우), S-GW는 수신한 하향링크 데이터를 버퍼링한다. 그리고, S-GW는 해당 단말(UE)에 대한 시그널링 연결 및 베어러 설정을 위하여 단말이 등록되어 있는 MME에게 하향링크 데이터 통지(Downlink Data Notification) 메시지를 전송한다.
MME는 하향링크 데이터 통지(Downlink Data Notification) 메시지에 대한 응답으로 하향링크 데이터 통지 ACK(Downlink Data Notification ACK) 메시지를 S-GW에게 전송한다.
3. MME는 단말이 가장 최근에 등록했던 트래킹 영역에 속하는 기지국(eNB)에게 페이징(paging) 메시지를 전송한다.
4. 기지국은 MME로부터 페이징(paging) 메시지를 수신하면, 기지국은 페이징(paging) 메시지를 브로드캐스팅한다.
5. 자신에게 향하는 하향링크 데이터가 있음을 인지한 단말은 서비스 요청(Service Request) 절차를 수행하여, ECM 연결을 설정한다.
서비스 요청(Service Request) 절차는 앞서 도 10의 절차와 동일하게 진행될 수 있으며, 이러한 절차가 완료되면 단말은 S-GW로부터 하향링크 데이터를 수신할 수 있다.
파워 세이빙 모드 (Power Saving Mode)
파워 세이빙 모드(PSM: Power Saving Mode)는 3GPP 릴리즈-12(rel-12) 진보된 MTC(MTCe(Enhancements for MTC) 특징(feature) 중 하나로 단말이 페이징(paging) 수신 및 이동성 관리(mobility management) 등의 액세스 스트라텀(AS: Access Stratum) 동작을 모두 비활성화(disable)하는 구간을 정의하여 단말의 파워 소모를 최소화 하는 기능이다. 즉, PSM을 지원하는 단말은 어태치(Attach) 및 트래킹 영역 업데이트(TAU) 시에 네트워크와 액티브 시간(Active Time) 및 주기적 TAU 타이머(P-TAU(Periodic TAU) timer)를 합의하거나 또는 제공받는다.
네트워크에서 Active Time 값을 수신한 경우, 단말은 ECM-CONNECTED에서 ECM-IDLE로 전환 된 경우 해당 Active Time 동안 ECM-IDLE 상태를 유지하여 페이징을 수신한다. 그리고, Active Time이 만료되면 PSM으로 진입하고, 모든 AS(Access Stratrum) 동작을 중지한다.
또한, MME는 단말이 ECM-IDLE 모드로 진입할 때마다 Active Time 값으로 액티브 타이머(Active timer)를 시작한다. 그리고, Active timer가 만료하면, MME는 단말이 접근 가능하지 않다(unreachable)고 추론(deduce)한다.
즉, Active Time은 파워 세이빙 기능을 이용하는 상태(예를 들어, 파워 세이빙 모드(PSM) 등)를 지원하는 단말이 ECM-IDLE(또는 RRC_IDLE) 상태를 유지하는 시간을 의미한다.
단말은 주기적 TAU 타이머가 만료되면, 다시 단말은 AS 동작을 활성화(enable)하고 TAU를 수행하고, 네트워크는 해당 단말의 암묵적인 디태치 타이머(Implicit detach timer)를 중단(stop)한다. 단말은 단말 발신호(Mobile originated Call)(예를 들어, 상향링크 데이터 패킷 전송(Uplink Data packet transfer)) 등을 위해서 원하는 때에 언제나 깨어날 수 있다.
반면, 단말 수신호(Mobile terminated Call)(예를 들어, 하향링크 데이터 패킷 수신(Downlink Data packet receiving)) 등을 위해서는 P-TAU 주기마다 깨어나 TAU를 수행하고 이 때 수신 받은 Active Time 동안 페이징 수신 동작을 수행한 후, 다시 PSM 모드로 들어가 슬립(Sleep)한다.
단말이 PSM로 진입한 경우, 해당 단말에게 전송할 하향링크 데이터가 발생한 경우 다음과 같은 과정이 진행될 수 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 파워 세이빙 모드의 단말에 대한 하향링크 데이터 통지 절차를 예시한다.
도 12에서는 단말이 PSM에 진입한 경우를 가정한다. MME는 단말이 PSM으로 진입한 것을 인지한 경우 패킷 진행 플래그(PPF: Packet Proceed Flag)를 클리어(clear)한다(즉, PPF=0).
1. AS(application server)(또는 SCS)는 단말에게 전송할 하향링크 데이터가 발생하면, 하향링크 데이터를 P-GW에게 전송하고, P-GW는 수신한 하향링크 데이터를 S-GW에게 전송한다.
2. S-GW는 P-GW로부터 하향링크 데이터를 수신한 경우, 해당 단말의 액티브한 S1-U 연결이 없으면(즉, S1 베어러가 해제), MME로 하향링크 데이터 통지(DDN: Downlink Data Notification) 메시지를 전송하고, 수신한 하향링크 데이터를 버퍼링한다. DDN 메시지는 단말에게 전송할 하향링크 데이터가 존재함으로 지시할 수 있다.
3. MME는 S-GW로부터 DDN을 수신하면 PPF를 체크한다. 도 12와 같이, MME가 PPF를 클리어(clear)한 경우(즉, PPF=0인 경우), MME는 S-GW로부터 수신한 DDN에 대한 응답으로 DDN 실패(DDN failure)를 지시하는(또는 DDN 실패 지시(DDN reject indication)을 포함하는) DDN 거절(DDN Reject) 메시지를 전송한다. DDN 거절(DDN Reject) 메시지는 거절 이유(reject cause)를 포함할 수 있다.
4. DDN 거절(DDN Reject) 메시지를 수신한 S-GW는 해당 하향링크 데이터를 폐기(discard)하게 된다.
위와 같이 AS가 단말의 슬립(sleep) 여부(즉, PSM 진입 여부)를 알지 못한 채 하향링크 데이터를 송신하는 경우, 결국 하향링크 데이터는 S-GW에서 폐기(Discard)되고 AS는 그에 대한 응답을 받지 못하기 때문에 AS는 해당 하향링크 데이터에 대한 재전송 동작을 취하게 된다.
하향링크 데이터 전송을 위한 방법
본 발명에서는 단말에게 하향링크 데이터(Downlink Data)(또는 하향링크 패킷(Packet), 하향링크 패킷 데이터) 전송을 효율적으로 지원하기 위한 방법을 제안한다.
특히, 본 발명에서는 낮은 복잡도(Low complexity), 저에너지(Low Energy) 등의 특성을 가지는 제한된 장치(예를 들어, IoT(Inter of Things) 용 장치, M2M 용 장치, 하나의 안테나만을 가지는 등 복잡도를 줄인 카테고리 0 단말 등)들이 전력 소모를 최소화하기 위해 장시간 슬립(Sleeping)하는 경우 하향링크 데이터를 효율적으로 전송하기 위한 방법을 제안한다.
이하, 본 발명의 설명에 있어서, 단말이 접근 가능하지 않은(unreachable) 상태는 단말이 파워 세이빙 기능을 이용하는 상태(예를 들어, 파워 세이빙 모드(PSM) 또는 확장된 아이들 모드 DRX(extended idle mode DRX) 등)를 의미한다. 이하, 설명의 편의를 위해 단말이 접근 가능하지 않은(unreachable) 상태를 '슬립(sleep)' 상태로 통칭하여 설명한다.
Extended DRX(eDRX)는 기존의 최대의 2.56 초 페이징 DRX 사이클(paging DRX cycle)을 수 분(minute)에서 최대 수십 분(minute)로 늘려 단말의 전력 소모를 최소화하기 위한 기능이다. eDRX는 아이들 모드(Idle mode) 및 연결 모드(Connected Mode)에 적용될 수 있다.
즉, PSM을 지원하는 단말의 경우 단말이 접근 가능하지 않은(unreachable) 상태는 PSM에 진입한 상태를 의미할 수 있다. 또한, eDRX 모드를 지원하는 단말의 경우 단말이 접근 가능하지 않은(unreachable) 상태는 페이징에 의해 접근 가능하지 않은(unreachable) 상태(즉, 단말이 페이징 채널을 모니터링하지 않는 DRX 구간)를 의미할 수 있다.
반대로, 단말이 접근 가능(reachable)한 상태는 단말이 ECM-CONNECTED 모드이거나 단말의 일반 DRX 주기(normal DRX period)(예를 들어, 2.56초 이하)를 적용하는 ECM-IDLE 모드를 의미한다. 예를 들어, PSM을 지원하는 단말의 경우, Active Time 동안 아이들 모드를 유지할 수 있으므로 연결 모드 또는 Active Time이 지속되는 구간에서의 단말의 상태를 의미할 수 있다. 또한, eDRX 모드를 지원하는 단말의 경우, ECM-CONNECTED 모드 및/또는 ECM-IDLE 모드에서 페이징에 의해 단말에 즉각적으로 접근 가능한(reachable) 상태(즉, 단말이 페이징 채널을 모니터링 하는 구간)를 의미할 수 있다. 다시 말해, eDRX는 DRX 구간이 일반 DRX 모드에 비하여 상대적으로 길어 아이들(idle) 구간에서도 일시적으로 접근 가능(reachable)하지 않다고 판단할 수 있다. 즉, 일반 DRX (2.56 초)을 지원하면 최대 2.56 초 후에 데이터 전달(data delivery)이 가능하지만 eDRX (10 분)을 적용하면 최대 지연이 10분이기 때문에 즉각적인 데이터 전달(data delivery)이 불가능하고 이를 실질적으로 접근 가능하지 않다(unreachable)고 간주할 수 있다.
앞서 도 12의 예시에 따른 설명과 같이 단말이 PSM 등을 이유로 슬립(sleep)하는 경우, S-GW가 송신하는 DDN이 MME로부터 거절(reject)(즉, DDN 거절)되면서 S-GW는 해당 하향링크 데이터를 폐기(discard)한다.
또한, 단말이 PSM, eDRX 등 파워 세이빙 기능을 지원하지 않는 경우, PPF가 클리어(clear)되는 상황은 일반적이지 않은 상황이며, P-TAU 타이머가 만료되어도 단말이 TAU 절차를 수행하지 않아 MME가 해당 단말이 접근 가능(reachable)하지 않다고 판단한 경우이다.
하지만, AS(application server)/SCS(Services Capability Server)가 슬립(sleep) 상태인 단말에게 하향링크 데이터를 전송하는 것은 충분히 발생 가능한 시나리오이다.
이러한 시나리오에서, AS/SCS가 하향링크 데이터의 재전송을 계속 시도하거나 오 동작으로 하향링크 데이터를 지속적으로 보내는 상황들이 발생될 가능성이 있다.
또한, 이러한 시나리오에서 S-GW는 MME로 DDN을 보내고, MME는 PPF를 확인해서 S-GW로 거절(reject)을 전송하고, 이에 따라 다시 다시 S-GW가 해당 하향링크 데이터를 폐기하는 비효율적인 핸드쉐이킹(handshaking) 상황이 빈번히 발생하여 MME와 S-GW사이의 시그널링 로드(signaling load) 부하를 가중시킬 수 있다.
이에 따라, 본 발명에서는 단말이 슬립(Sleep)하고 있는 경우, S-GW가 수신한 하향링크 데이터 처리를 위한 비효율적인 DDN(Downlink Data Notification) 동작을 개선하기 위한 방법을 제안한다.
특히, S-GW에서 MME로 DDN 송신을 중단(Suppression)하는 조건 및 통지(Notification)하는 절차를 제안하여 효율적으로 DDN 절차를 가능하게 한다. 또한, 경우에 따라 MME가 하향링크 데이터의 폐기(discard)가 아닌 버퍼링(Buffering) 유지 및 DDN 재시도(retry)를 명령하는 절차를 추가함으로써 효율적인 하향링크 데이터 제어(handling)이 가능한 방법을 제안한다.
MME는 단말의 슬립 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태) 여부 및 이후 해당 단말이 접근 가능(reachable)한 시간 등의 정보를 가지고 있다.
MME가 액티브 시간(Active Time)을 단말에게 할당하면, MME는 해당 단말이 ECM-IDLE 모드로 진입할 때마다 Active Time의 값을 가지고 액티브 타이머(Active timer)를 시작한다. 그리고, MME 내에서 Active timer가 만료되면, MME는 단말이 접근 가능(reachable)하지 않다고 추론(deduce)할 수 있으며, MME 내 PPF 플래그를 클리어(clear)한다.
또한, eDRX 모드가 설정된 단말의 경우, MME는 해당 단말에 설정된 페이징 주기에 따라 해당 단말이 슬립 상태(즉, 페이징에 의해 접근 가능하지 않은(unreachable) 상태)인지 페이징에 의해 접근 가능한 상태(reachable)인지 알 수 있다.
EMM-REGISTERED인 단말은 P-TAU 타이머가 만료하면 네트워크와 주기적인 TAU(P-TAU) 절차를 수행한다. 단말의 P-TAU 타이머는 단말이 ECM-IDLE 모드로 진입할 때마다 초기 값으로 재시작한다. MME는 단말 접근 가능 타이머(UE reachable timer)를 구동시킨다. 단말이 ECM-IDLE 모드로 진입할 때마다 단말 접근 가능 타이머가 재시작되고, 단말 접근 가능 타이머는 단말의 P-TAU 타이머와 유사한 값을 가진다. MME 내에서 단말 접근 가능 타이머가 만료되면, MME는 단말이 접근 가능(reachable)하지 않다고 추론(deduce)할 수 있다.
위와 같이, MME는 단말의 슬립 상태 여부 및 이후 해당 단말이 접근 가능(reachable)한 시간 등의 정보를 알고 있으므로, MME가 S-GW의 DDN 송신을 억제(suppression)하는 동작을 제안한다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 13은 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 13에서는 단말(UE)가 슬립(sleep) 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)인 경우를 가정한다. MME는 단말이 슬립(sleep) 상태에 진입한 것을 인지하면, PPF를 클리어(clear)한다.
도 13을 참조하면, SCS/AS(application server)는 단말에게 하향링크 데이터(예를 들어, 하향링크 데이터 패킷 또는 하향링크 제어 시그널링)를 전송하길 원하는 경우, SCS/AS는 P-GW에게 하향링크 데이터를 전송한다(S1301).
P-GW는 SCS/AS로부터 수신한 하향링크 데이터를 S-GW에게 전송한다(S1302).
S-GW는 P-GW로부터 하향링크 데이터를 수신할 때 해당 단말이 액티브한 S1-U 연결이 없으면(즉, S1 베어러가 해제), 수신한 하향링크 데이터를 버퍼링하고, 단말를 서비스하는(serving) MME를 식별한다.
그리고, S-GW는 하향링크 데이터 통지(DDN: Downlink Data Notification) 메시지를 MME에게 전송한다(S1303).
해당 단말이 슬립(sleep) 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)인 것을 감지(detect)한 MME는 하향링크 데이터 통지(DDN: Downlink Data Notification) 메시지에 대한 응답으로 DDN 실패를 지시하는(또는 DDN 실패 지시(DDN reject indication)을 포함하는) DDN 거절(DDN reject) 메시지를 S-GW에게 전송한다(S1304).
이때, 거절 이유(reject cause)는 '단말 슬립 상태(예를 들어, 단말이 PSM 상태(UE is in PSM))'로 셋팅될 수 있다.
또한, MME는 이후 단말의 접근 가능(Reachable)한 구간을 DDN 억제 시간(suppression time) 값으로 셋팅하여 S-GW에 DDN 거절(DDN reject) 메시지에 포함시켜 전송할 수 있다. 여기서, 단말의 접근 가능(Reachable)한 시간은 MME가 S-GW로부터 DDN 메시지를 수신한 시점 혹은 DDN 거절 메시지를 전송하는 시점으로부터 단말이 접근 가능한(reachable) 상태로 진입하기 전까지의 구간을 의미할 수 있다. 예를 들어, 앞으로 남은 P-TAU 구간 또는 앞으로 남은 paging 가능 구간 등이 이에 해당될 수 있다.
MME로부터 DDN 거절(DDN reject) 메시지를 수신한 S-GW는 하향링크 데이터를 폐기한다(S1305).
그리고, S-GW는 DDN 억제 시간(DDN suppression time)을 구동(running)한다. 이후, S-GW는 DDN 억제 시간(DDN suppression time)이 만료되기 전에 P-GW로부터 수신되는 해당 단말에 대한 모든 하향링크 데이터를 폐기하고 DDN을 MME에게 전송하지 않는다.
이때, S-GW는 수신한 DDN 억제 시간(DDN suppression time)의 크기에 따라 해당 하향링크 데이터(즉, DDN 전송을 트리거한 하향링크 데이터)를 버퍼링할 지 여부를 선택할 수 있다.
예를 들어, DDN 억제 시간(DDN suppression time)가 상대적으로 작은 경우(예를 들어, 미리 정해진 임계치보다 작은 경우), S-GW는 해당 하향링크 데이터의 버퍼링을 결정할 수 있다. 이처럼 S-GW가 DDN 거절 메시지를 수신하고 해당 하향링크 데이터를 버퍼링한 경우(S-GW가 자체적으로 판단하여), DDN 억제 시간(DDN suppression time)이 만료되면 S-GW는 버퍼링된 해당 하향링크 데이터에 대한 DDN을 MME에게 재전송할 수 있다.
반면, DDN 억제 시간(DDN suppression time)가 상대적으로 큰 경우(예를 들어, 미리 정해진 임계치보다 큰 경우), S-GW는 해당 하향링크 데이터의 폐기를 결정할 수 있다.
도 13에서는 MME가 DDN 거절(DDN reject) 메시지를 통해 S-GW에게 DDN 억제 및 해당 하향링크 데이터의 폐기를 지시(혹은 명령)하고, 또한 DDN 거절(DDN reject) 메시지에 억제 시간(suppression time)을 포함시키는 경우를 예시하고 있으나, 본 발명이 이에 한정되는 것은 아니다. 즉, MME는 앞서 도 11의 예시와 같이 하향링크 데이터 통지 ACK(Downlink Data Notification Ack) 메시지를 통해 S-GW에게 DDN 억제 및 해당 하향링크 데이터의 폐기를 지시(또는 명령)하고, 하향링크 데이터 통지 ACK(Downlink Data Notification Ack) 메시지에 억제 시간(suppression time)을 포함시켜 전송할 수도 있다.
도 14는 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 14에서는 단말(UE)가 슬립(sleep) 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)인 경우를 가정한다.
MME는 단말이 슬립(sleep) 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)에 진입한 것을 인지하면, PPF를 클리어(clear)하고 DDN 실패를 지시하는(또는 DDN 실패 지시(DDN reject indication)을 포함하는) DDN 거절(DDN reject) 메시지를 S-GW에게 전송한다(S1401).
즉, MME는 S-GW로부터 DDN 메시지를 수신하는 것과는 무관하게 단말의 슬립 상태의 진입을 감지(detect)하면, S-GW에게 DDN 거절(DDN reject) 메시지를 전송한다.
이때, 거절 이유(reject cause)는 '단말 슬립 상태(예를 들어, 단말이 PSM 상태(UE is in PSM))'로 셋팅될 수 있다.
또한, MME는 이후 단말의 접근 가능(Reachable)한 구간을 DDN 억제 시간(suppression time) 값으로 셋팅하여 S-GW에 DDN 거절(DDN reject) 메시지에 포함시켜 전송할 수 있다. 여기서, 단말의 접근 가능(Reachable)한 시간은 MME가 S-GW로부터 DDN 메시지를 수신한 시점 혹은 DDN 거절 메시지를 전송하는 시점으로부터 단말이 접근 가능한(reachable) 상태로 진입하기 전까지의 구간을 의미할 수 있다. 예를 들어, 앞으로 남은 P-TAU 구간 또는 앞으로 남은 paging 가능 구간 등이 이에 해당될 수 있다.
MME로부터 DDN 거절(DDN reject) 메시지를 수신한 S-GW는 DDN 억제 시간(DDN suppression time)을 구동(running)하고, DDN 억제 시간(DDN suppression time)이 만료되기 전에 P-GW로부터 수신되는 해당 단말에 대한 모든 하향링크 데이터를 폐기하고 DDN을 MME에게 전송하지 않는다(S1402).
이때, S-GW는 수신한 DDN 억제 시간(DDN suppression time)의 크기에 따라 해당 하향링크 데이터(즉, DDN 전송을 트리거한 하향링크 데이터)를 버퍼링할 지 여부를 선택할 수 있다.
예를 들어, DDN 억제 시간(DDN suppression time)가 상대적으로 작은 경우(예를 들어, 미리 정해진 임계치보다 작은 경우), S-GW는 해당 하향링크 데이터의 버퍼링을 결정할 수 있다. 이처럼 S-GW가 DDN 거절 메시지를 수신하고 해당 하향링크 데이터를 버퍼링한 경우(S-GW가 자체적으로 판단하여), DDN 억제 시간(DDN suppression time)이 만료되면 S-GW는 버퍼링된 해당 하향링크 데이터에 대한 DDN을 MME에게 재전송할 수 있다.
반면, DDN 억제 시간(DDN suppression time)가 상대적으로 큰 경우(예를 들어, 미리 정해진 임계치보다 큰 경우), S-GW는 해당 하향링크 데이터의 폐기를 결정할 수 있다.
한편, 도 13 및 도 14의 예시와 상이하게 DDN 억제 시간(DDM suppression time) 대신에 MME가 슬립 상태인 단말에 대한 DDN 억제 및 하향링크 데이터 폐기의 시작과 종료를 명시적(Explicit)으로 S-GW에게 알려줄 수도 있다.
즉, S-GW로부터 DDN 메시지를 수신한 MME가 해당 단말이 슬립(sleep) 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)인 것을 감지(detect)하면, MME는 S-GW에게 억제 시간(suppression time) 대신 DDN 억제(suppression)를 시작할 것을 명시적으로 요청(혹은 지시)할 수 있다. 그리고, MME가 해당 단말이 슬립(sleep) 상태에서 빠져 나온 것(즉, 웨이크업(wake-up) 상태(또는 액티브 상태)로 변환)을 감지(detect)하면, S-GW에게 억제 시간(suppression time) 대신 DDN 억제(suppression)를 종료할 것을 명시적으로 요청(혹은 지시)할 수 있다.
S-GW는 단말의 서비스 요청(service request)로 S1-U가 셋업되거나 해당 단말에 대한 시그널링이 송신되면 단말이 슬립 상태에서 빠져 나온 것을 인지하고 다시 하향링크 데이터 전송을 위한 DDN을 MME에게 전송할 수 있다. 다만, 단말의 서비스 요청(service request)에 의한 S1-U 셋업이 아니거나 또는 MME/S-GW가 재배치(relocation)되는 TAU가 아닌 경우에는 S-GW는 단말이 슬립 상태에서 빠져 나왔는지 여부를 인지할 수가 없다. 따라서, S-GW가 단말이 슬립 상태인지 여부를 정확히 인지할 수 없으므로 MME가 이전에 DDN 억제(suppression) 할 것을 명시적으로 전송한 경우에는 DDN 억제를 해지하지 위하여 MME는 단말이 깨어났음 S-GW에 알리기 위한 message를 송신할 수 있다.
즉, MME가 S-GW에게 단말의 슬립 상태를 알리는 메시지(즉, DDN 억제의 시작을 지시하는 메시지)를 전송한 경우, 단말이 슬립 상태에서 빠져 나온 상황을 명시적으로 S-GW가 인지할 수 있도록, S-GW에게 단말의 웨이크업(wake-up) 상태를 알리는 메시지(즉, DDN 억제의 끝을 지시하는 메시지)를 전송하여야 한다.
앞서 설명한 실시예에 따라 MME가 S-GW의 DDN의 전송을 억제(suppression)함으로써 MME와 S-GW 사이의 DDN 절차(즉, DDN 절차에 따른 시그널링)를 최소화할 수 있다.
본 발명의 또 다른 실시예로서, MME가 슬립 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은(unreachable) 상태)인 단말에 대한 하향링크 데이터를 S-GW에게 버퍼링(즉, DDN 연기(DDN postponed))할 것을 지시(또는 명령)할 수 있다.
도 15는 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 15에서는 단말이 슬립(sleep) 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)인 경우를 가정한다. MME는 단말이 슬립(sleep) 상태에 진입한 것을 인지하면, PPF를 클리어(clear)한다.
도 15를 참조하면, SCS/AS(application server)는 단말에게 하향링크 데이터(예를 들어, 하향링크 데이터 패킷 또는 하향링크 제어 시그널링)를 전송하길 원하는 경우, SCS/AS는 P-GW에게 하향링크 데이터를 전송한다(S1501).
P-GW는 SCS/AS로부터 수신한 하향링크 데이터를 S-GW에게 전송한다(S1502).
S-GW는 P-GW로부터 하향링크 데이터를 수신할 때 해당 단말의 액티브한 S1-U 연결이 없으면(즉, S1 베어러가 해제), 수신한 하향링크 데이터를 버퍼링하고, 해당 단말을 서비스하는(serving) MME를 식별한다.
그리고, S-GW는 하향링크 데이터 통지(DDN: Downlink Data Notification) 메시지를 MME에게 전송한다(S1503).
단말이 슬립(sleep) 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)인 것을 감지(detect)한 MME는 하향링크 데이터의 버퍼링을 지시하기 위한 응답 메시지를 S-GW에게 전송한다(S1504).
예를 들어, MME는 버퍼링 요청(Buffering Request) 메시지(즉, 응답 메시지)를 S-GW에게 전송함으로써 하향링크 데이터의 버퍼링을 지시(혹은 명령)한다.
여기서, MME는 버퍼링 요청(Buffering Request) 메시지 내 S-GW에서 해당 하향링크 데이터를 버퍼링(혹은 유지)해야 하는 버퍼링 시간(혹은 유효(valid) 시간)을 포함시켜 전송할 수 있다.
여기서, 버퍼링 시간(혹은 유효 시간)은 단말이 슬립 상태에서 다시 접근 가능(reachable)한 상태로의 전환이 예상되는 시간일 수 있다.
즉, 버퍼링 시간(혹은 유효 시간)은 단말이 슬립 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)에서 깨어날 것이 예상되는 때까지 시간을 지시할 수 있다. 따라서, MME는 단말이 슬립 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)에서 깨어날 것이 예상되는 때까지 시간을 지시함으로써 S-GW에게 하향링크 데이터를 버퍼(buffer)하도록 요청(혹은 지시)할 수 있다.
예를 들어, PSM 적용으로 단말이 접근 가능하지 않은(unreachable) 경우, 버퍼링 시간은 단말의 남은 P-TAU 시간으로 계산될 수 있다. 또는, 단말이 eDRX 적용으로 접근 가능하지 않은(unreachable) 경우, 버퍼링 시간은 단말의 DRX 주기로 계산될 수 있다.
도 15에서는 MME가 버퍼링 요청(Beffering Request) 메시지를 통해 S-GW에게 해당 하향링크 데이터를 버퍼링할 것을 지시(혹은 명령)하고, 또한 버퍼링 요청(Beffering Request) 메시지에 버퍼링 시간(또는 유효 시간)을 포함시키는 경우를 예시하고 있으나, 본 발명이 이에 한정되는 것은 아니다. 즉, MME는 앞서 도 11의 예시와 같이 하향링크 데이터 통지 ACK(Downlink Data Notification Ack) 메시지를 통해 S-GW에게 해당 하향링크 데이터를 버퍼링할 것을 지시(혹은 명령)하고, 하향링크 데이터 통지 ACK(Downlink Data Notification Ack) 메시지에 버퍼링 시간(또는 유효 시간)을 포함시켜 전송할 수도 있다.
S-GW는 MME로부터 하향링크 데이터에 대한 버퍼링 지시(혹은 명령)를 수신하면, 버퍼링 시간(또는 유효 시간)이 만료할 때까지 해당 하향링크 패킷을 버퍼링(또는 유지)한다(S1505).
여기서, S-GW는 버퍼링 시간(또는 유효 시간)이 만료하면, S-GW는 DDN을 MME에게 재전송할 수 있다. 즉, S-GW는 S-GW는 버퍼링 시간(또는 유효 시간)이 만료할 때까지 DDN을 MME에게 전송하지 않는다. 또는, 상술한 바와 같이, 버퍼링 시간(또는 유효 시간)은 단말이 다시 접근 가능(reachable)한 상태로 전환하기까지 예상되는 시간으로 지시될 수 있으므로, 단말이 접근 가능(reachable) 상태로 전환한 때 MME가 S1-U를 셋업(즉, S1 베어러 설정)하거나 경우에 따라 MME(또는 eNB)가 페이징을 단말에게 전송함으로써, S-GW는 해당 단말에 버퍼링되어 있던 하향링크 데이터를 전송할 수 있다.
보다 구체적으로, 단말이 PSM 적용으로 접근 가능하지 않은(unreachable) 경우, P-TAU 타이머가 만료되는 등 TAU가 트리거링되면, MME에서 S1-U를 셋업함으로써 S-GW는 기지국을 통해 해당 단말로 버퍼링하고 있던 하향링크 데이터를 전송할 수 있다.
또는, 단말이 eDRX 적용으로 접근 가능하지 않은(unreachable) 경우, MME 혹은 eNB에서 단말의 페이징 기회(paging occasion)에 페이징을 전송하여 단말이 네트워크 트리거 서비스 요청 절차(Network-triggered Service Request procedure)를 통해 S1-U를 셋업함으로써, S-GW는 기지국을 통해 해당 단말로 버퍼링하고 있던 하향링크 데이터를 전송할 수 있다.
MME는 기지국과 S-GW 간의 S1-U를 셋업(즉, S1 베어러 설정)하기 위하여 기지국에게 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 전송할 수 있다. 기지국과 S-GW 간의 S1-U를 셋업하는 과정은 앞서 도 8 또는 도 10의 설명과 동일하므로 자세한 설명은 생략한다.
또한, MME는 단말이 가장 최근에 등록했던 트래킹 영역에 속하는 기지국(eNB)에게 페이징(paging) 메시지를 전송할 수 있다. 페이징 절차는 앞서 도 11의 설명과 동일하므로 자세한 설명은 생략한다.
앞서 설명한 실시예와 같이 MME가 S-GW에게 단말이 접근 가능한 상태로의 전환이 예상되는 시간 동안 하향링크 데이터의 버퍼링을 지시함으로써 해당 하향링크 데이터의 손실 없이 단말이 접근 가능한 상태로 전환되었을 때 단말에게 신속하게 전송할 수 있다. 특히, 앞서 도 15에 따른 실시예는 P-TAU 타이머가 얼마 남지 않아 단말이 곧 웨이크 업(Wake-up)하는 경우 보다 유용할 수 있다.
도 16은 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 16을 참조하면, 네트워크 노드(예를 들어, MME)는 다른 네트워크 노드(예를 들어, S-GW)로부터 하향링크 데이터 통지(Downlink Data Notification) 메시지 수신한다(S1601).
네트워크 노드(예를 들어, MME)가 단말이 슬립(sleep) 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)인 것을 감지(detect)한 경우, 네트워크 노드(예를 들어, MME)는 상기 다른 네트워크 노드(예를 들어, S-GW)에게 응답 메시지를 전송한다(S1602).
여기서, 응답 메시지는 DDN 억제 시간(suppression time) 및/또는 버퍼링 시간(buffering time)(또는 유효 시간)을 포함할 수 있다.
DDN 억제 시간(suppression time)이 포함되는 경우, MME는 이후 단말의 접근 가능(Reachable)한 구간을 DDN 억제 시간(suppression time) 값으로 셋팅하여 S-GW에 DDN 거절(DDN reject) 메시지에 포함시켜 전송할 수 있다. 여기서, 단말의 접근 가능(Reachable)한 시간은 MME가 S-GW로부터 DDN 메시지를 수신한 시점 혹은 DDN 거절 메시지를 전송하는 시점으로부터 단말이 접근 가능한(reachable) 상태로 진입하기 전까지의 구간을 의미할 수 있다. 예를 들어, 앞으로 남은 P-TAU 구간 또는 앞으로 남은 paging 가능 구간 등이 이에 해당될 수 있다.
또한, 버퍼링 시간(buffering time)(또는 유효 시간)이 포함되는 경우, MME는 버퍼링 요청(Buffering Request) 메시지 내 S-GW에서 해당 하향링크 데이터를 버퍼링(혹은 유지)해야 하는 버퍼링 시간(혹은 유효(valid) 시간)을 포함시켜 전송할 수 있다. 여기서, 버퍼링 시간(혹은 유효 시간)은 단말이 슬립 상태에서 다시 접근 가능(reachable)한 상태로의 전환이 예상되는 시간일 수 있다. 즉, 버퍼링 시간(혹은 유효 시간)은 단말이 슬립 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)에서 깨어날 것이 예상되는 때까지 시간을 지시할 수 있다. 따라서, MME는 단말이 슬립 상태(예를 들어, PSM 또는 eDRX 모드에서 페이징에 의해 접근 가능하지 않은 상태)에서 깨어날 것이 예상되는 때까지 시간을 지시함으로써 S-GW에게 하향링크 데이터를 버퍼(buffer)하도록 요청(혹은 지시)할 수 있다. 예를 들어, PSM 적용으로 단말이 접근 가능하지 않은(unreachable) 경우, 버퍼링 시간은 단말의 남은 P-TAU 시간으로 계산될 수 있다. 또는, 단말이 eDRX 적용으로 접근 가능하지 않은(unreachable) 경우, 버퍼링 시간은 단말의 DRX 주기로 계산될 수 있다.
응답 메시지의 일례로 DDN 거절(DDN reject) 메시지 또는 하향링크 데이터 통지 ACK(Downlink Data Notification Acknowledgement) 메시지가 이용될 수 있으나, 이에 한정되는 것은 아니며 이와 다른 포맷의 메시지가 이용될 수 있다.
도 17은 본 발명의 일 실시예에 따른 하향링크 데이터 전송을 위한 방법을 예시하는 도면이다.
도 17을 참조하면, 네트워크 노드(예를 들어, S-GW)는 다른 네트워크 노드(예를 들어, P-GW)로부터 하향링크 데이터를 수신한다(S1701).
네트워크 노드(예를 들어, S-GW)는 하향링크 데이터 통지(DDN: Downlink Data Notification) 메시지를 다른 네트워트 노드(예를 들어, MME)에게 전송한다(S1702).
네트워크 노드(예를 들어, S-GW)는 상기 다른 네트워트 노드(예를 들어, MME)로부터 하향링크 데이터 통지(DDN: Downlink Data Notification) 메시지에 대한 응답 메시지를 수신한다(S1703).
여기서, 응답 메시지는 DDN 억제 시간(suppression time) 및/또는 버퍼링 시간(buffering time)(또는 유효 시간)을 포함할 수 있다.
만약, 응답 메시지가 DDN 억제 시간(suppression time)을 포함하는 경우, 네트워크 노드(예를 들어, S-GW)는 DDN 억제 시간(DDN suppression time)이 만료되기 전에 해당 단말에 대해 수신되는 모든 하향링크 데이터를 폐기하고 하향링크 데이터 통지(DDN: Downlink Data Notification) 메시지를 전송하지 않을 수 있다.
또한, 응답 메시지가 버퍼링 시간(buffering time)(또는 유효 시간)을 포함하는 경우, 네트워크 노드(예를 들어, S-GW)는 버퍼링 시간(또는 유효 시간)이 만료할 때까지 해당 하향링크 패킷을 버퍼링(또는 유지)할 수 있다.
이 경우, 이후 S-GW는 버퍼링 시간이 만료되면 MME에게 DDN을 재전송할 수도 있으나, 버퍼링 시간이 만료(즉, 단말이 접근 가능한 상태로 진입)될 때 MME에 의해 S1-U가 셋팅됨으로써 S-GW는 버퍼링하고 있던 하향링크 데이터른 기지국을 통해 단말에게 전송할 수 있다.
보다 구체적으로, 단말이 PSM 적용으로 접근 가능하지 않은(unreachable) 경우, P-TAU 타이머가 만료되는 등 TAU가 트리거링되면, MME에서 S1-U를 셋업함으로써 S-GW는 기지국을 통해 해당 단말로 버퍼링하고 있던 하향링크 데이터를 전송할 수 있다.
또는, 단말이 eDRX 적용으로 접근 가능하지 않은(unreachable) 경우, MME 혹은 eNB에서 단말의 페이징 기회(paging occasion)에 페이징을 전송하여 단말이 네트워크 트리거 서비스 요청 절차(Network-triggered Service Request procedure)를 통해 S1-U를 셋업함으로써, S-GW는 기지국을 통해 해당 단말로 버퍼링하고 있던 하향링크 데이터를 전송할 수 있다.
본 발명이 적용될 수 있는 장치 일반
도 18은 본 발명의 일 실시예에 따른 통신 장치의 블록 구성도를 예시한다.
도 18을 참조하면, 무선 통신 시스템은 네트워크 노드(1810)와 다수의 단말(UE)(1820)을 포함한다.
네트워크 노드(1810)는 프로세서(processor, 1811), 메모리(memory, 1812) 및 통신 모듈(communication module, 1813)을 포함한다. 프로세서(1811)는 앞서 도 1 내지 도 17에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1811)에 의해 구현될 수 있다. 메모리(1812)는 프로세서(1811)와 연결되어, 프로세서(1811)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1813)은 프로세서(1811)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다. 네트워크 노드(1810)의 일례로, 기지국, MME, S-GW, P-GW, HSS, AS 또는 SCS 등이 이에 해당될 수 있다. 특히, 네트워크 노드(1810)가 기지국인 경우, 통신 모듈(1813)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1820)은 프로세서(1821), 메모리(1822) 및 통신 모듈(또는 RF부)(1823)을 포함한다. 프로세서(1821)는 앞서 도 1 내지 도 17에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1821)에 의해 구현될 수 있다. 메모리(1822)는 프로세서(1821)와 연결되어, 프로세서(1821)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1823)는 프로세서(1821)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1812, 1822)는 프로세서(1811, 1821) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1811, 1821)와 연결될 수 있다. 또한, 네트워크 노드(1810)(기지국인 경우) 및/또는 단말(1820)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 하향링크 데이터 전송을 위한 방안은 3GPP LTE/LTE-A 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (7)

  1. 무선 통신 시스템에서 단말에게 하향링크 데이터 전송을 위한 방법에 있어서,
    MME(Mobile Management Entity)가 S-GW(Serving Gateway)로부터 하향링크 데이터 통지(Downlink Data Notification) 메시지를 수신하는 단계; 및
    상기 MME가 단말이 슬립 상태인 것을 감지한 경우, 상기 MME가 하향링크 데이터의 버퍼링을 지시하기 위한 응답 메시지를 상기 S-GW에게 전송하는 단계를 포함하고,
    상기 응답 메시지는 상기 하향링크 데이터의 버퍼링 시간을 포함하고,
    상기 버퍼링 시간은 상기 단말이 상기 슬립 상태에서 접근 가능한 상태로의 전환이 예상되는 시간인 하향링크 데이터 전송 방법.
  2. 제1항에 있어서,
    상기 버퍼링 시간이 만료되면, 상기 MME가 상기 S-GW로부터 상기 하향링크 데이터 통지(Downlink Data Notification) 메시지를 수신하는 단계를 더 포함하는 하향링크 데이터 전송 방법.
  3. 제2항에 있어서,
    상기 MME가 S1 베어러를 설정하기 위하여 기지국에게 초기 컨텍스트 셋업 요청(Initial Context Setup Request) 메시지를 전송하는 단계를 더 포함하는 하향링크 데이터 전송 방법.
  4. 제2항에 있어서,
    상기 MME가 상기 단말이 가장 최근에 등록했던 트래킹 영역(tracking area)에 속하는 기지국에게 페이징 메시지를 전송하는 단계를 더 포함하는 하향링크 데이터 전송 방법.
  5. 무선 통신 시스템에서 단말에게 하향링크 데이터 전송을 위한 방법에 있어서,
    S-GW(Serving Gateway)가 P-GW(Packet Gateway)로부터 단말에게 전송될 하향링크 데이터를 수신하는 단계;
    상기 S-GW가 MME(Mobile Management Entity)에게 하향링크 데이터 통지(Downlink Data Notification) 메시지를 전송하는 단계; 및
    상기 S-GW가 상기 MME로부터 상기 하향링크 데이터의 버퍼링을 지시하기 위한 응답 메시지를 수신하는 단계를 포함하고,
    상기 응답 메시지는 상기 하향링크 데이터의 버퍼링 시간을 포함하는 하향링크 데이터 전송 방법.
  6. 제5항에 있어서,
    상기 버퍼링 시간은 상기 단말이 상기 슬립 상태에서 접근 가능한 상태로의 전환이 예상되는 시간인 하향링크 데이터 전송 방법.
  7. 제6항에 있어서,
    상기 버퍼링 시간이 만료되면, 상기 S-GW가 상기 하향링크 데이터 통지(Downlink Data Notification) 메시지를 상기 MME에게 전송하는 단계를 더 포함하는 하향링크 데이터 전송 방법.
PCT/KR2015/008394 2014-08-11 2015-08-11 무선 통신 시스템에서 하향링크 데이터 전송을 위한 방법 및 이를 위한 장치 WO2016024790A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/503,280 US10420029B2 (en) 2014-08-11 2015-08-11 Method for transmitting downlink data in a wireless communication system, and device for same
EP15831455.9A EP3182754B1 (en) 2014-08-11 2015-08-11 Method for transmitting downlink data in a wireless communication system, and device for same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462035516P 2014-08-11 2014-08-11
US62/035,516 2014-08-11
US201462077924P 2014-11-11 2014-11-11
US62/077,924 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016024790A1 true WO2016024790A1 (ko) 2016-02-18

Family

ID=55304359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008394 WO2016024790A1 (ko) 2014-08-11 2015-08-11 무선 통신 시스템에서 하향링크 데이터 전송을 위한 방법 및 이를 위한 장치

Country Status (4)

Country Link
US (1) US10420029B2 (ko)
EP (1) EP3182754B1 (ko)
TW (1) TWI580299B (ko)
WO (1) WO2016024790A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171451A1 (ko) * 2016-03-30 2017-10-05 엘지전자(주) 무선 통신 시스템에서의 버퍼링된 데이터 전송 방법 및 이를 위한 장치
WO2017179801A1 (ko) * 2016-04-12 2017-10-19 엘지전자 주식회사 Cp ciot eps 최적화를 사용시 nas 메시지를 전송하는 방법 및 무선 기기
CN110754112A (zh) * 2017-06-14 2020-02-04 三星电子株式会社 终端的网络接入方法以及用于移动性支持和数据传送的方法和装置
EP3603310A1 (en) * 2017-03-20 2020-02-05 Qualcomm Incorporated Enhanced session and mobility management interaction for mobile initiated connection only mode user equipments

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072814A1 (en) 2014-11-07 2016-05-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting group message to user equipment (ue)
US10555218B2 (en) * 2015-04-07 2020-02-04 Nokia Solutions And Networks Oy Method and apparatus to address user equipment power consumption
US9930516B2 (en) 2015-05-15 2018-03-27 Samsung Electronics Co., Ltd. UE monitoring configuration method and apparatus
CN112040453A (zh) * 2015-08-14 2020-12-04 寰发股份有限公司 寻呼和rar调度方法
CN109982299B (zh) * 2015-10-28 2020-08-21 华为技术有限公司 一种数据传输的方法及装置
KR101893917B1 (ko) * 2016-01-25 2018-08-31 에스케이 텔레콤주식회사 기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법
JP2018074522A (ja) * 2016-11-02 2018-05-10 日本電気株式会社 ゲートウェイ装置、移動管理装置、基地局、通信方法、制御方法、ページング方法、及びプログラム
US10721027B2 (en) * 2017-07-27 2020-07-21 Qualcomm Incorporated Radio vehicle-to-anything negative acknowledgement based multicast
CN109673008B (zh) 2017-10-17 2022-04-22 华为技术有限公司 终端设备的状态的确定方法、装置及设备
WO2019161456A1 (en) * 2018-02-23 2019-08-29 Agsensio Pty Ltd Power conserving local wireless network
EP3782426B1 (en) * 2018-04-17 2023-07-19 Telefonaktiebolaget LM Ericsson (publ) Wireless device, network node, core node and methods for handling radio communication of data
CN111510996B (zh) * 2019-01-30 2024-01-09 瑞昱半导体股份有限公司 无线通讯电路以及控制无线通讯电路的方法
CN112787696B (zh) 2019-11-07 2024-07-26 苹果公司 多trp传输的无线设备功率节省
CN115734317A (zh) * 2021-08-30 2023-03-03 华为技术有限公司 通信方法及装置
CN113938512B (zh) * 2021-10-15 2023-06-09 四川启睿克科技有限公司 一种基于可配置网关的多设备联动控制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310804A1 (en) * 2010-06-21 2011-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and Arrangement for Paging in a Wireless Communications System
US20120252481A1 (en) * 2011-04-01 2012-10-04 Cisco Technology, Inc. Machine to machine communication in a communication network
WO2013119021A1 (ko) * 2012-02-06 2013-08-15 삼성전자 주식회사 단말의 휴면 모드 동작 방법 및 장치
US20130343309A1 (en) * 2010-09-15 2013-12-26 Cicso Technology, Inc. Paging control in communication networks
WO2014058242A1 (ko) * 2012-10-10 2014-04-17 엘지전자 주식회사 페이징 처리 방법 및 다운링크 데이터 전달 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013260295B2 (en) 2012-05-10 2017-05-04 Samsung Electronics Co., Ltd. Method and system for connectionless transmission during uplink and downlink of data packets
CN103458505B (zh) * 2012-05-29 2018-05-11 中兴通讯股份有限公司 一种节电模式下控制信令发送的方法和系统
CN110461030B (zh) * 2013-04-07 2020-08-07 华为技术有限公司 一种通信方法及装置
US9681354B2 (en) * 2013-08-08 2017-06-13 Intel IP Corporation Signaling radio bearer optimizations and other techniques for supporting small data transmissions
MX355704B (es) * 2014-06-25 2018-04-27 Ericsson Telefon Ab L M Nodo y metodo para almacenar temporalmente datos de enlace descendente.
KR102151031B1 (ko) * 2014-06-30 2020-09-02 삼성전자주식회사 저전력 단말의 통신 효과를 높이는 방법 및 장치
EP3018945B1 (en) * 2014-11-04 2021-03-10 Alcatel Lucent Support of mobile-terminated communication in an evolved packet system
WO2016114611A1 (ko) * 2015-01-14 2016-07-21 엘지전자(주) 무선 통신 시스템에서 영역 업데이트 방법 및 이를 위한 장치
CN106162705B (zh) * 2015-03-31 2020-02-04 电信科学技术研究院 一种控制用户面承载建立的方法及设备
US10555218B2 (en) * 2015-04-07 2020-02-04 Nokia Solutions And Networks Oy Method and apparatus to address user equipment power consumption
US12261756B2 (en) * 2016-06-15 2025-03-25 Qualcomm Incorporated Data packet store, forward, and monitoring functionality for network node or modem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310804A1 (en) * 2010-06-21 2011-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and Arrangement for Paging in a Wireless Communications System
US20130343309A1 (en) * 2010-09-15 2013-12-26 Cicso Technology, Inc. Paging control in communication networks
US20120252481A1 (en) * 2011-04-01 2012-10-04 Cisco Technology, Inc. Machine to machine communication in a communication network
WO2013119021A1 (ko) * 2012-02-06 2013-08-15 삼성전자 주식회사 단말의 휴면 모드 동작 방법 및 장치
WO2014058242A1 (ko) * 2012-10-10 2014-04-17 엘지전자 주식회사 페이징 처리 방법 및 다운링크 데이터 전달 방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017171451A1 (ko) * 2016-03-30 2017-10-05 엘지전자(주) 무선 통신 시스템에서의 버퍼링된 데이터 전송 방법 및 이를 위한 장치
US10616810B2 (en) 2016-03-30 2020-04-07 Lg Electronics Inc. Method for transmitting buffered data in wireless communication system, and apparatus therefor
WO2017179801A1 (ko) * 2016-04-12 2017-10-19 엘지전자 주식회사 Cp ciot eps 최적화를 사용시 nas 메시지를 전송하는 방법 및 무선 기기
US10764937B2 (en) 2016-04-12 2020-09-01 Lg Electronics Inc. Method and wireless device for transmitting RRC message when using CP CIOT EPS optimization
EP3603310A1 (en) * 2017-03-20 2020-02-05 Qualcomm Incorporated Enhanced session and mobility management interaction for mobile initiated connection only mode user equipments
CN110754112A (zh) * 2017-06-14 2020-02-04 三星电子株式会社 终端的网络接入方法以及用于移动性支持和数据传送的方法和装置
CN110754112B (zh) * 2017-06-14 2023-11-03 三星电子株式会社 网络接入方法以及移动性支持和数据传送的方法和装置

Also Published As

Publication number Publication date
TWI580299B (zh) 2017-04-21
EP3182754B1 (en) 2020-01-29
US20180242246A1 (en) 2018-08-23
EP3182754A1 (en) 2017-06-21
US10420029B2 (en) 2019-09-17
EP3182754A4 (en) 2018-01-03
TW201618585A (zh) 2016-05-16

Similar Documents

Publication Publication Date Title
WO2016024790A1 (ko) 무선 통신 시스템에서 하향링크 데이터 전송을 위한 방법 및 이를 위한 장치
WO2016024789A1 (ko) 무선 통신 시스템에서 단말 접근성 모니터링을 위한 방법 및 이를 위한 장치
WO2016114611A1 (ko) 무선 통신 시스템에서 영역 업데이트 방법 및 이를 위한 장치
WO2018147698A1 (ko) 무선 통신 시스템에서 nas 메시지 송수신 방법 및 이를 위한 장치
WO2017188758A1 (ko) 무선 통신 시스템에서 nas 시그널링 유보/재개를 수행하기 위한 방법 및 이를 위한 장치
WO2017200269A1 (ko) 무선 통신 시스템에서 착신 데이터 제어 방법 및 이를 위한 장치
WO2017171451A1 (ko) 무선 통신 시스템에서의 버퍼링된 데이터 전송 방법 및 이를 위한 장치
WO2018174524A1 (ko) 무선 통신 시스템에서 계층간 상호작용 방법 및 이를 위한 장치
WO2017164679A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 방법 및 이를 위한 장치
WO2018080230A1 (ko) 무선 통신 시스템에서 emm 모드를 결정하는 방법 및 이를 위한 장치
WO2017048042A1 (ko) 무선 통신 시스템에서의 페이징 절차를 수행하는 방법 및 이를 위한 장치
WO2018169244A1 (ko) 무선 통신 시스템에서 이동성 이벤트 통지 방법 및 이를 위한 장치
WO2018008980A1 (ko) 무선 통신 시스템에서 사용자가 선호하는 자원 운용 선택 방법 및 이를 위한 장치
WO2017003235A1 (ko) 무선 통신 시스템에서 그룹 메시지를 전송하기 위한 방법 및 이를 위한 장치
WO2016208997A1 (ko) 무선 통신 시스템에서 단말의 영역 관리 방법 및 이를 위한 장치
WO2016099138A1 (ko) 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치
WO2016153316A1 (ko) 무선 통신 시스템에서 단말 접근성 모니터링 방법 및 이를 위한 장치
WO2016163723A1 (ko) 무선 통신 시스템에서 트래킹 영역 업데이트 타이밍을 조절하기 위한 방법 및 이를 위한 장치
WO2016111591A1 (ko) 무선 통신 시스템에서 페이징 전송 방법 및 이를 위한 장치
WO2017086717A1 (ko) 무선 통신 시스템에서 확장된 아이들 모드 불연속 수신 활성화 지원 방법 및 이를 위한 장치
WO2016190641A1 (ko) 무선 통신 시스템에서 데이터 송수신 방법 및 이를 위한 장치
WO2018097599A1 (ko) 무선 통신 시스템에서의 등록 해제 방법 및 이를 위한 장치
WO2018164552A1 (ko) 무선 통신 시스템에서 릴레이를 통한 데이터 송수신 방법 및 이를 위한 장치
WO2018070689A1 (ko) 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치
WO2018131984A1 (ko) 무선 통신 시스템에서 ue 설정 업데이트 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15503280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015831455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015831455

Country of ref document: EP