WO2016023462A1 - 一种钢混组合梁斜拉桥胶接缝连接方法 - Google Patents
一种钢混组合梁斜拉桥胶接缝连接方法 Download PDFInfo
- Publication number
- WO2016023462A1 WO2016023462A1 PCT/CN2015/086623 CN2015086623W WO2016023462A1 WO 2016023462 A1 WO2016023462 A1 WO 2016023462A1 CN 2015086623 W CN2015086623 W CN 2015086623W WO 2016023462 A1 WO2016023462 A1 WO 2016023462A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- section
- steel
- bridge
- beam section
- concrete
- Prior art date
Links
- 239000004567 concrete Substances 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000002131 composite material Substances 0.000 title claims abstract description 17
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 43
- 239000010959 steel Substances 0.000 claims abstract description 43
- 238000010276 construction Methods 0.000 claims abstract description 32
- 238000004026 adhesive bonding Methods 0.000 claims abstract description 3
- 238000009417 prefabrication Methods 0.000 claims description 13
- 238000005266 casting Methods 0.000 claims description 10
- 239000004568 cement Substances 0.000 claims description 10
- 238000011900 installation process Methods 0.000 claims description 8
- 238000010008 shearing Methods 0.000 claims description 8
- 239000003292 glue Substances 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 7
- 238000005096 rolling process Methods 0.000 claims description 5
- 238000009415 formwork Methods 0.000 claims description 4
- 229920001971 elastomer Polymers 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000005304 joining Methods 0.000 claims 5
- 238000003466 welding Methods 0.000 abstract description 3
- 238000003032 molecular docking Methods 0.000 description 3
- 230000002860 competitive effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229920006335 epoxy glue Polymers 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D1/00—Bridges in general
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D15/00—Movable or portable bridges; Floating bridges
- E01D15/12—Portable or sectional bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/06—Arrangement, construction or bridging of expansion joints
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2/00—Bridges characterised by the cross-section of their bearing spanning structure
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2/00—Bridges characterised by the cross-section of their bearing spanning structure
- E01D2/04—Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
Definitions
- the invention relates to the technical field of bridge construction, in particular to a cement joint connection method of a steel-reinforced composite beam cable-stayed bridge.
- the steel-concrete composite girder cable-stayed bridge is widely used.
- the composite beam is composed of a steel structural part and a concrete structural part, wherein the steel structural part and the concrete structural part are connected by a shear connecting piece (shearing nail).
- the steel structure is first installed, and then the concrete structure-concrete slab is installed.
- the lower part shown in Fig. 1 is the prefabricated steel structure part 1 in the factory, and the upper part shown in Fig. 1 is For the concrete slab 2, the end faces of the concrete slab 2 are provided with shear connectors 2.1 for the connection of the concrete slabs 2 to each other.
- the steel structure part 1 is usually prefabricated in the factory and then transported to the construction site for welding assembly; then the concrete slab 2 is applied over the installed steel structure.
- the concrete slab 2 construction generally has the following methods: 1.
- the stencil-integrated cast-in-place concrete slab 2 is erected on the installed steel structure portion 1; 2.
- the prefabricated concrete slab 2 is laid to the steel structure portion On the 1st, the notch 3 is reserved, and the wet joints in the notch 3 are joined to the steel structure part.
- the object of the present invention is to solve the deficiencies of the above background art, and to provide a cement joint joint method of a steel-mixed composite beam cable-stayed bridge integrally installed with a steel structure part and a concrete structure part.
- the technical solution of the present invention is: a steel-spliced composite beam cable-stayed bridge joint connection method, characterized in that it comprises the following steps:
- step 6 hoist the remaining beam body segments in turn, repeat the beam body segment installation process shown in step 5) until all bridge segments are installed.
- step 3 the steel structure portion of the n-th beam beam segment and the n+1 block beam segment is temporarily butt-fixed, and the end face of the concrete plate of the n-piece beam beam segment is used as the pouring n+1 block beam segment.
- the end formwork of the concrete slab is matched with the bottom plate of the concrete slab of the n+1 block beam section and the other side of the formwork, and the concrete is poured to form the n+1 block beam section.
- the step 2 includes: preparation of a lower steel structure, prefabrication of the upper concrete slab; the prefabrication of the upper concrete slab comprises: prefabrication of the intermediate concrete slab of the section and prefabrication of the concrete slab between the section and the section, wherein the intermediate concrete slab of the section Prefabrication is a one-time pouring molding; the bridge deck between the segment and the segment needs to be poured twice to match the prefabrication; after half of the previous pouring, the side to be poured first is used as the side mold for the post-casting half, and the pouring is continued. The other half is formed to form a shear bond in which the sections are engaged with each other.
- the step 3 includes: after the bridge deck is stored for more than 6 months, the steel-mixed combination construction is performed; the multi-section rolling assembly process is adopted, and one segment is used as a transition section for rolling assembly, including steel beam support and steel beam linear adjustment; A bridge deck is installed on the steel beam; the bridge deck joint is wet jointed.
- the shearing keys forming the cross-sections of the cross-sections are: the end faces of the bridge deck are provided with continuous convex-concave joint faces for splicing.
- the cement joint joint method of the steel-mixed composite beam cable-stayed bridge of the invention is prepared by prefabricating each beam body segment which is composed of the beam body and matched with each other at the factory, and the lower steel structure part of the adjacent beam body segment is welded and fixed adjacent to each other during construction.
- the upper concrete slabs of the beam section are connected by glue joints, which can minimize the on-site construction tasks and ensure the construction quality; the standardization of each component and the high degree of factoryization can reduce the demand for labor, and the construction conditions on the site are bad (cold, Many typhoons, dry, etc.) are extremely competitive in the environment.
- FIG. 1 is a schematic view showing the structure of a composite beam in the background art
- FIG. 2 is a schematic view showing the connection of adjacent concrete slabs 2 by using cast-in-place wet joints in the construction of composite beams in the background art;
- Fig. 3 is a schematic view showing the section of the beam body of n+1 block with the section of the n-beam as the matching section in the present invention.
- Figure 4 is a schematic view of the end face of the bridge deck of adjacent beam sections.
- Figure 5 is a partial schematic view of the deck of adjacent beam sections.
- a cement joint beam-stayed bridge rubber joint connection method of the present embodiment includes the following steps:
- the whole bridge is split into a plurality of beam sections in the factory, and the beam sections are combined with the upper concrete slab 2 and the lower steel structure part 1 of the integrated structure shown in FIG. 1;
- the starting beam body segment is first made, marked as block n, and the beam body segment labeled as block n is also formed by combining the upper concrete slab 2 and the lower steel structure portion 1 into a unitary structure;
- Bridge deck manufacturing is carried out in the factory. There are two types of bridge decks.
- the bridge deck in the middle of the section is made in one piece and cast in one time.
- the bridge deck between the section and the section needs to be poured twice to match the prefabrication; After half of the previous pouring, the side to be poured first is used as the side mold for the half-casting, and the casting is continued to form the other half, forming the shearing keys of the cross-sections;
- the shearing force forming the cross-section of the cross-section is: the end face of the bridge panel is provided with continuous convex for splicing Concave joint surface. Between the end faces of the bridge decks (adjacent matching faces) of adjacent beam sections, one concave surface and one convex surface are engaged with each other at the joint. Between the end faces of the bridge decks (adjacent matching faces) of the adjacent beam sections, a concave surface, and one convex surface, as shown in FIGS. 4 and 5, the concrete bridge deck 201 of the concrete is placed with a plurality of outwardly protruding portions.
- the protruding structure 202, the protruding protrusion structure 202 is a shear key.
- An inwardly concave slot (not shown) is provided at an end face of the bridge deck on the other beam section adjacent to the concrete deck 201.
- a steel sleeve 203 for positioning of two adjacent bridge panels is provided at an end face of the bridge deck 201.
- the deformation of the matching section of the beam to be installed and the installed beam section is poor, and the concrete board needs to be prefabricated.
- the gap between the shearing keys of the adjacent beam segments is increased to ensure the smooth docking during the installation period; that is, in the structural part: the deformation between the convex and concave connecting faces for splicing between the end faces of the adjacent beam segments Make up the gap.
- the deformation compensation gap is such that the dimension of the inwardly concave slot perpendicular to the transverse section of the deck is greater than the dimension of the protruding structure 202 (shear bond) connected thereto perpendicular to the transverse section of the deck.
- the dimension of the inwardly recessed slot perpendicular to the transverse section of the deck is such that the protruding structure 202 (shearing key) connected thereto after the deck is deformed can smoothly enter the inwardly recessed slot.
- the multi-section rolling assembly process is adopted, generally adopting the 4+1 or 5+1 process, and one segment is used as the transition section to roll and assemble, and four or five segments of steel-mixed construction are sequentially performed in one supporting device. Including steel beam support and steel beam linear adjustment; installation of bridge decks on steel beams; bridge deck joints for wet joint casting.
- the adjacent five beam segments are sequentially stored on the concrete buttress by the beam truck, and the steel beam shape is adjusted according to the monitoring instruction.
- the first beam segment is selected as the reference, and then the beam segments on both sides are respectively adjusted.
- the steel beam linear adjustment is carried out by a three-way jack arranged above the temporary pier.
- the bridge deck is placed on the corresponding steel beam by the gantry crane according to the numbered position. Before installing the bridge deck, a 1cm thick neoprene block should be glued to the steel top plate with special glue. After the bridge deck is installed, check whether the rubber strip is pressed around the joint to avoid the phenomenon of slurry leakage in the concrete of the joint.
- wet joint casting is performed.
- the longitudinal bridge on one side of the side web is poured into the longitudinal cast-in-place joint with polypropylene fiber concrete or epoxy mortar, and the remaining joints are all poured into the expanded concrete.
- the matching faces of the plates are connected by glue joints, and the n+1th beam body segment and the steel structure portion of the nth block beam segment are welded and connected; the matching faces of the concrete plates are set for the end face of the bridge deck for splicing. Continuous convex and concave connection surface. Between the end faces of the bridge decks (adjacent matching faces) of adjacent beam sections, one concave surface and one convex surface are engaged with each other at the joint. In order to ensure the smooth joint connection between the end faces of the bridge decks of adjacent beam sections for splicing, in the installation process, the deformation of the matching section of the beam to be installed and the installed beam section is poor, and the concrete board needs to be prefabricated.
- the gap between the shearing keys of the adjacent beam segments is increased to ensure the smooth docking during the installation period; that is, in the structural part: the deformation between the convex and concave connecting faces for splicing between the end faces of the adjacent beam segments Make up the gap.
- step 6 hoist the remaining beam body segments in turn, repeat the beam body segment installation process shown in step 5) until all bridge segments are installed.
- the cement joint joint method of the steel-concrete composite beam cable-stayed bridge of the embodiment is obtained by prefabricating the beam sections which are composed of the beam bodies and matched with each other at the factory, and the lower steel structure part 1 of the adjacent beam body sections is welded and fixed during construction.
- the upper concrete slabs 2 of adjacent beam sections are connected by glue joints.
- the concrete slabs are connected or the concrete slabs are connected by casting, which can minimize the on-site construction tasks, and the work of the steel-mixing combination is put Completed in the factory, the construction quality is easy to guarantee; in addition, due to various structures
- the standardization and high degree of factoryization also reduce the demand for labor, and it is extremely competitive in the environment where the construction conditions are harsh (cold, typhoon, dry, etc.).
- step 3 the n-section beam section and the n+1-piece beam section are prefabricated in the factory, and the n-piece beam section and the n+1-piece beam section 1 need to be temporarily docked and fixed.
- the method of docking and fixing can be temporarily fixed by means of bolts and partial welding in the steel structure part 1 of the beam body section to facilitate the factory prefabrication of the concrete slab 2; then the end surface of the concrete slab 2 of the n-piece beam section is used as the pouring n
- the end formwork of the concrete slab of the No. +1 beam beam section is matched with the template of the bottom surface of the concrete slab 2 of the n+1 block beam section and other side surfaces, and concrete is poured to form the n+1 block beam section.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
一种钢混组合梁斜拉桥胶接缝连接方法,其通过在工厂预制组成梁体并相互匹配各个梁体节段,施工时相邻梁体节段的下部钢结构部分(1)采用焊接固定,相邻梁体节段的上部混凝土板(2)通过胶接缝进行连接,可减少现场施工任务,保证施工质量;各个构件标准化、工厂化程度高。
Description
本发明涉及桥梁施工技术领域,具体地指一种钢混组合梁斜拉桥胶接缝连接方法。
钢混组合梁斜拉桥广泛应用,组合梁由钢结构部分和混凝土结构部分构成,其中钢结构部分和混凝土结构部分通过剪力连接件(剪力钉)连接在一起。
一般组合梁施工均采用先安装钢结构部分,然后再安装混凝土结构-混凝土板,参考图1,图1所示的下部即为在工厂预制好的钢结构部分1,图1所示的上部即为混凝土板2,混凝土板2的端面设有用于混凝土板2相互的连接的剪力连接件2.1。施工时,钢结构部分1通常在工厂分段预制,随后被运至施工现场焊接拼装;然后在安装好的钢结构上面施工混凝土板2。
混凝土板2施工一般有以下几种方法:1、在安装好的钢结构部分1上架设模板整体现浇混凝土板2;2、参考图2,把预制好的混凝土板2铺装到钢结构部分1上,预留槽口3,在槽口3中现浇湿接缝与钢结构部分连接到一起。
采用方法1现浇工作较多,施工质量不易保证;采用方法2则安装构件多,现场施工工序多,安装质量也不容易保证。
发明内容
本发明的目的就是要解决上述背景技术的不足,提供一种钢结构部分和混凝土结构部分整体安装的钢混组合梁斜拉桥胶接缝连接方法。
本发明的技术方案为:一种钢混组合梁斜拉桥胶接缝连接方法,其特征在于,它包括以下步骤:
1)、在工厂内将整个桥梁分拆制作成多个梁体节段,所述梁体节段为已成整体结构的上部混凝土板和下部钢结构部分组合而成;
2)、工厂制作时,先制作起始梁体节段,标记为n号块;
3)、以已经制作好的起始梁体节段作为匹配节段,浇筑下一梁体节段,并将下一梁体节段标记为n+1号块;
4)、重复上一步,制作n+2、n+3号块等剩余所有梁体节段,随后将所有制作好的梁体节段运至桥梁施工现场;
5)、开始梁体节段安装工序:首先安装第n号块梁体节段,完成第n号块梁体节段的斜拉桥施工相关工序后,随后吊装第n+1号块梁体节段,第n+1号块梁体节段调试好后,第n+1号块梁体节段和第n号块梁体节段的钢结构部分焊接连接,第n+1号块梁体节段和第n号块梁体节段的混凝土板的匹配面通过胶接缝连接;或首先安装第n号块梁体节段,完成第n号块梁体节段的斜拉桥施工相关工序后,随后吊装第n+1号块梁体节段,第n+1号块梁体节段调试好后,第n+1号块梁体节段和第n号块梁体节段的混凝土板的匹配面通过胶接缝连接,第n+1号块梁体节段和第n号块梁体节段的钢结构部分焊接连接;
6)、依次吊装剩余梁体节段,重复步骤5)所示的梁体节段安装工序,直至所有桥梁节段安装完成。
进一步地,步骤3)中,n号块梁体节段与n+1号块梁体节段的钢结构部分临时对接固定,并以n号块梁体节段的混凝土板的端面作为浇筑n+1号块梁体节段混凝土板的端模板,配以n+1号块梁体节段混凝土板底面及其他侧面的模板,浇筑混凝土,形成n+1号块梁体节段。
所述步骤2包括:下部钢结构的制备,上部混凝土板预制;所述上部混凝土板预制包括:节段中间混凝土板预制和节段与节段之间的混凝土板预制,其中节段中间混凝土板预制是一次浇筑成型;节段与节段之间的桥面板,则需两次浇筑,匹配预制;前一次浇筑完成一半后,将先浇筑完成的侧面作为后浇筑一半的侧模,继续浇筑,形成另一半,形成断面相互咬合的剪力键。
所述步骤3包括:待桥面板存放超过6个月后,进行钢混组合施工;采用多节段滚动拼装工艺,以一个节段作为过渡段滚动拼装,包括钢梁支撑及钢梁线形调整;在钢梁上安装桥面板;桥面板接缝进行湿接缝浇筑。
所述形成断面相互咬合的剪力键是:桥面板的端面设置用于拼接的连续的凸凹连接面。
相邻梁段的桥面板端面之间用于拼接的凸凹连接面之间具有变形弥补间隙。
本发明的一种钢混组合梁斜拉桥胶接缝连接方法,通过在工厂预制组成梁体并相互匹配的各个梁体节段,施工时相邻梁体节段的下部钢结构部分采用焊接固定,相邻梁体节段的上部混凝土板通过胶接缝进行连接,可以最大程度减少现场施工任务,保证施工质量;各个构件标准化、工厂化程度高,能减少对人工的需求,且在现场施工条件恶劣(寒冷、多台风、干燥等)环境中具有极大竞争力。
图1为背景技术中组合梁结构示意图;
图2为背景技术中组合梁施工时采用现浇湿接缝将相邻混凝土板2连接示意图;
图3为本发明中以n号梁体节段为匹配节段,浇筑n+1号块梁体节段示意图。
图4相邻梁段的桥面板端面示意图。
图5相邻梁段的桥面板局部示意图。
下面结合附图和具体实施例对本发明作进一步的详细说明。
参考图3,本实施例所展示的一种钢混组合梁斜拉桥胶接缝连接方法,它包括以下步骤:
1)、先在工厂内将整个桥梁分拆制作成多个梁体节段,梁体节段为图1所示的已成整体结构的上部混凝土板2和下部钢结构部分1组合而成;
2)、工厂制作时,先制作起始梁体节段,标记为n号块,标记为n号块的梁体节段也是由成整体结构的上部混凝土板2和下部钢结构部分1组合而成;
在工厂进行桥面板制造,桥面板分为两种,节段中间的桥面板为整块制造,一次浇筑成型;而节段与节段之间的桥面板,则需两次浇筑,匹配预制;前一次浇筑完成一半后,将先浇筑完成的侧面作为后浇筑一半的侧模,继续浇筑,形成另一半,形成断面相互咬合的剪力键;
所述形成断面相互咬合的剪力键是:桥面板的端面设置用于拼接的连续的凸
凹连接面。相邻梁段的桥面板端面(相邻匹配面)之间,一个凹面,一个为凸面,在接缝处相互咬合。所述相邻梁段的桥面板端面(相邻匹配面)之间,一个凹面,一个为凸面如图4、5所示,浇筑的混凝土的桥面板201一个端面间隔浇筑有多个向外突出的突起结构202,外突出的突起结构202即为剪力键。在与该混凝土的桥面板201相邻的另一梁段的上的桥面板的端面上与突起结构202相对应的位置上设有向内凹的槽孔(图中未示)。在桥面板201一个端面间隔设有用于两相邻桥面板定位的钢套筒203。
为了保证相邻梁段的桥面板端面之间用于拼接的凸凹连接面顺利拼合连接,由于在安装工序中,待安装梁段与已安装梁段匹配口存在变形差,需在混凝土板匹配预制过程中,增加相邻梁段剪力键齿之间的间隙,保证安装期的顺利对接;即在结构部分:相邻梁段的桥面板端面之间用于拼接的凸凹连接面之间具有变形弥补间隙。所述变形弥补间隙是向内凹的槽孔的垂直于桥面板横向截面的尺寸大于与之相连接的突起结构202(剪力键)垂直于桥面板横向截面的尺寸。向内凹的槽孔的垂直于桥面板横向截面的尺寸满足当桥面板变形后与之相连接的突起结构202(剪力键)能顺利的进入向内凹的槽孔内。
3)、以已经制作好的起始梁体节段作为匹配节段,浇筑下一梁体节段,并将下一梁体节段标记为n+1号块:待桥面板存放超过6个月后,进行钢混组合施工。采用多节段滚动拼装工艺,一般采用4+1或者5+1工艺,以一个节段作为过渡段滚动拼装,在一个支撑装置中依次进行4个或5个节段钢混组合施工。包括钢梁支撑及钢梁线形调整;在钢梁上安装桥面板;桥面板接缝进行湿接缝浇筑。
(1)钢梁就位及线形调整
通过运梁车将相邻的5个梁段依次存放于混凝土支墩上,并根据监控指令调整钢梁线形,调整时选择第一个梁段作为基准,然后分别调整两侧的梁段。钢梁线形调整通过布置于临时墩上方三向千斤顶进行。
(2)桥面板安装
通过龙门吊将桥面板按照编号位置安放在相应钢梁上。桥面板安装前,应将1cm厚的氯丁橡胶垫块采用专用胶水粘贴在钢顶板上。桥面板安装后应检查橡胶条四周是否压紧,避免出现浇筑接缝混凝土出现漏浆现象。
(3)湿接缝浇筑
在采取横向预应力施加措施之后,进行湿接缝浇筑。边腹板一侧纵桥向纵向现浇缝采用聚丙烯纤维混凝土浇筑,或环氧砂浆浇筑,余下接缝均为膨胀混凝土浇筑。
4)、重复上一步,制作n+2、n+3号块等剩余所有梁体节段,随后将所有制作好的梁体节段运至桥梁施工现场;
5)、开始梁体节段安装工序:首先安装第n号块梁体节段,完成第n号块梁体节段的斜拉桥施工相关工序后,随后吊装第n+1号块梁体节段,第n+1号块梁体节段调试好后,第n+1号块梁体节段和第n号块梁体节段的钢结构部分1焊接连接,第n+1号块梁体节段和第n号块梁体节段的混凝土板2的匹配面抹环氧胶,即第n+1号块梁体节段和第n号块梁体节段的混凝土板2通过胶接缝进行连接;或首先安装第n号块梁体节段,完成第n号块梁体节段的斜拉桥施工相关工序后,随后吊装第n+1号块梁体节段,第n+1号块梁体节段调试好后,第n+1号块梁体节段和第n号块梁体节段的混凝土板的匹配面通过胶接缝连接,第n+1号块梁体节段和第n号块梁体节段的钢结构部分焊接连接;所述的混凝土板的匹配面为桥面板的端面设置用于拼接的连续的凸凹连接面。相邻梁段的桥面板端面(相邻匹配面)之间,一个凹面,一个为凸面,在接缝处相互咬合。为了保证相邻梁段的桥面板端面之间用于拼接的凸凹连接面顺利拼合连接,由于在安装工序中,待安装梁段与已安装梁段匹配口存在变形差,需在混凝土板匹配预制过程中,增加相邻梁段剪力键齿之间的间隙,保证安装期的顺利对接;即在结构部分:相邻梁段的桥面板端面之间用于拼接的凸凹连接面之间具有变形弥补间隙。
6)、依次吊装剩余梁体节段,重复步骤5)所示的梁体节段安装工序,直至所有桥梁节段安装完成。
本实施例的一种钢混组合梁斜拉桥胶接缝连接方法,通过在工厂预制组成梁体并相互匹配的各个梁体节段,施工时相邻梁体节段的下部钢结构部分1采用焊接固定,相邻梁体节段的上部混凝土板2通过胶接缝进行连接,相比于背景技术中采用浇筑的方式铺设混凝土板或连接混凝土板,可以最大程度减少现场施工任务,且钢混组合的工作放到工厂内完成,施工质量容易保证;另外,由于各个构
件标准化、工厂化程度高,还能减少对人工的需求,且在现场施工条件恶劣(寒冷、多台风、干燥等)环境中具有极大竞争力。
步骤3)中,n号块梁体节段与n+1号块梁体节段均在工厂内预制而成,n号块梁体节段与n+1号块梁体节段的钢结构部分1需临时对接固定,临时对接固定的方式可以采用在梁体节段的钢结构部分1通过螺栓、局部焊接的方式进行临时固定,以方便混凝土板2的工厂预制;随后以n号块梁体节段的混凝土板2的端面作为浇筑n+1号块梁体节段混凝土板的端模板,配以n+1号块梁体节段混凝土板2底面及其他侧面的模板,浇筑混凝土,即可形成n+1号块梁体节段。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的结构做任何形式上的限制。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明的技术方案的范围内。
Claims (6)
- 一种钢混组合梁斜拉桥胶接缝连接方法,其特征在于,它包括以下步骤:1)、在工厂内将整个桥梁分拆制作成多个梁体节段,所述梁体节段为已成整体结构的上部混凝土板和下部钢结构部分组合而成;2)、工厂制作时,先制作起始梁体节段,标记为n号块;3)、以已经制作好的起始梁体节段作为匹配节段,浇筑下一梁体节段,并将下一梁体节段标记为n+1号块;4)、重复上一步,制作n+2、n+3号块等剩余所有梁体节段,随后将所有制作好的梁体节段运至桥梁施工现场;5)、开始梁体节段安装工序:首先安装第n号块梁体节段,完成第n号块梁体节段的斜拉桥施工相关工序后,随后吊装第n+1号块梁体节段,第n+1号块梁体节段调试好后,第n+1号块梁体节段和第n号块梁体节段的钢结构部分焊接连接,第n+1号块梁体节段和第n号块梁体节段的混凝土板的匹配面通过胶接缝连接;或首先安装第n号块梁体节段,完成第n号块梁体节段的斜拉桥施工相关工序后,随后吊装第n+1号块梁体节段,第n+1号块梁体节段调试好后,第n+1号块梁体节段和第n号块梁体节段的混凝土板的匹配面通过胶接缝连接,第n+1号块梁体节段和第n号块梁体节段的钢结构部分焊接连接;6)、依次吊装剩余梁体节段,重复步骤5)所示的梁体节段安装工序,直至所有桥梁节段安装完成。
- 根据权利要求1所述的一种钢混组合梁斜拉桥胶接缝连接方法,其特征在于:步骤3)中,n号块梁体节段与n+1号块梁体节段的钢结构部分临时对接固定,并以n号块梁体节段的混凝土板的端面作为浇筑n+1号块梁体节段混凝土板的端模板,配以n+1号块梁体节段混凝土板底面及其他侧面的模板,浇筑混凝土,形成n+1号块梁体节段。
- 根据权利要求1所述的一种钢混组合梁斜拉桥胶接缝连接方法,其特征在 于:所述步骤2包括:下部钢结构的制备,上部混凝土板预制;所述上部混凝土板预制包括:节段中间混凝土板预制和节段与节段之间的混凝土板预制,其中节段中间混凝土板预制是一次浇筑成型;节段与节段之间的桥面板,则需两次浇筑,匹配预制;前一次浇筑完成一半后,将先浇筑完成的侧面作为后浇筑一半的侧模,继续浇筑,形成另一半,形成断面相互咬合的剪力键。
- 根据权利要求1所述的一种钢混组合梁斜拉桥胶接缝连接方法,其特征在于:所述步骤3包括:待桥面板存放超过6个月后,进行钢混组合施工;采用多节段滚动拼装工艺,以一个节段作为过渡段滚动拼装,包括钢梁支撑及钢梁线形调整;在钢梁上安装桥面板;桥面板接缝进行湿接缝浇筑。
- 根据权利要求3所述的一种钢混组合梁斜拉桥胶接缝连接方法,其特征在于:所述形成断面相互咬合的剪力键是:桥面板的端面设置用于拼接的连续的凸凹连接面。
- 根据权利要求3或5所述的一种钢混组合梁斜拉桥胶接缝连接方法,其特征在于:相邻梁段的桥面板端面之间用于拼接的凸凹连接面之间具有变形弥补间隙。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410403571.X | 2014-08-15 | ||
CN201410403571.XA CN104195950A (zh) | 2014-08-15 | 2014-08-15 | 一种钢混组合梁斜拉桥胶接缝连接方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016023462A1 true WO2016023462A1 (zh) | 2016-02-18 |
Family
ID=52081303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/086623 WO2016023462A1 (zh) | 2014-08-15 | 2015-08-11 | 一种钢混组合梁斜拉桥胶接缝连接方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104195950A (zh) |
WO (1) | WO2016023462A1 (zh) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106049258A (zh) * | 2016-08-04 | 2016-10-26 | 河北省交通规划设计院 | 一种用于混凝土梁桥的铰缝钢筋连接件结构及布置方法 |
CN106869012A (zh) * | 2017-03-28 | 2017-06-20 | 上海市城市建设设计研究总院(集团)有限公司 | 采用体内预应力系统的预制薄壁盖梁 |
CN106894328A (zh) * | 2017-02-20 | 2017-06-27 | 重庆大学 | 一种π形结合梁剪力滞的处理方法 |
CN107794834A (zh) * | 2017-09-06 | 2018-03-13 | 中铁宝桥集团有限公司 | 大节段钢箱梁分幅匹配结构及制作方法 |
CN108301261A (zh) * | 2018-04-28 | 2018-07-20 | 中国建筑第五工程局有限公司 | 一种跨座式单轨预制装配式钢-hpc组合轨道梁 |
CN108342974A (zh) * | 2018-04-28 | 2018-07-31 | 中国建筑第五工程局有限公司 | 跨座式单轨预制装配式钢-hpc组合轨道梁 |
CN108755442A (zh) * | 2018-08-21 | 2018-11-06 | 中水电第十工程局(郑州)有限公司 | 用于大型钢构件高空安装的导向与定位装置 |
CN110485250A (zh) * | 2019-05-27 | 2019-11-22 | 天津城建大学 | 一种悬臂拼装桥的节段预制梁及其拼接结构和施工方法 |
CN112239997A (zh) * | 2020-10-26 | 2021-01-19 | 湖南大学 | 一种型钢-uhpc组合板的纵桥向接缝连接构造 |
CN112796202A (zh) * | 2021-01-27 | 2021-05-14 | 广东省交通规划设计研究院股份有限公司 | 桥梁拼装结构及其施工方法 |
CN113005874A (zh) * | 2021-04-16 | 2021-06-22 | 中国铁路设计集团有限公司 | 一种采用钢桁-砼预制结合梁段的梁拱组合桥及施工方法 |
CN113202029A (zh) * | 2021-04-13 | 2021-08-03 | 中铁六局集团有限公司 | 上跨营业线桥梁湿接缝、跨中横隔板兜底防护施工方法 |
CN113336087A (zh) * | 2021-05-31 | 2021-09-03 | 中国一冶集团有限公司 | 一种桥梁横向湿接缝模板的吊装工具及模板安装方法 |
CN113737647A (zh) * | 2021-08-20 | 2021-12-03 | 中铁宝桥集团有限公司 | 钢混组合塔节段临时吊点装置及实施方法 |
CN113931054A (zh) * | 2021-08-07 | 2022-01-14 | 中铁宝桥(扬州)有限公司 | 超大偏心半幅钢混组合箱梁制造方法 |
CN114000409A (zh) * | 2021-08-07 | 2022-02-01 | 中铁宝桥(扬州)有限公司 | 偏心半幅钢混组合箱梁总拼结构 |
CN114032788A (zh) * | 2021-12-20 | 2022-02-11 | 中铁大桥局第七工程有限公司 | 一种钢系杆拱桥桥面滞后焊接快速施工方法 |
CN114086459A (zh) * | 2021-08-20 | 2022-02-25 | 中交一公局集团有限公司 | 一种钢混组合梁结构及施工方法 |
CN114150568A (zh) * | 2021-12-06 | 2022-03-08 | 广西路桥工程集团有限公司 | 一种装配式轻型组合梁纵缝加强结构 |
CN114277673A (zh) * | 2021-12-24 | 2022-04-05 | 中交三公局第三工程有限公司 | 大跨大倾角提篮式钢梁、拱节段拼装方法 |
CN114934436A (zh) * | 2022-05-16 | 2022-08-23 | 江西省水利科学院 | 装配式渡槽湿接缝钢筋锚固结构 |
CN115354683A (zh) * | 2022-08-19 | 2022-11-18 | 中国铁路设计集团有限公司 | 一种基于胶拼理论的小分块装配式地铁车站结构 |
CN116341073A (zh) * | 2023-03-25 | 2023-06-27 | 中交第二公路勘察设计研究院有限公司 | 一种钢-uhpc组合梁斜拉桥主跨跨中桥面板的预压应力施加设计方法及其实施方法 |
CN117021299A (zh) * | 2023-09-14 | 2023-11-10 | 山东铁鹰建设工程有限公司 | 一种用于水利工程的段梁预制模板设备 |
CN119933044A (zh) * | 2025-04-08 | 2025-05-06 | 湖南省交通规划勘察设计院有限公司 | 一种pk断面组合梁斜拉桥异步施工的线形控制方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104195950A (zh) * | 2014-08-15 | 2014-12-10 | 中交第二航务工程局有限公司 | 一种钢混组合梁斜拉桥胶接缝连接方法 |
CN105113425B (zh) * | 2015-09-24 | 2017-12-26 | 中交第二航务工程局有限公司 | 一种高效装配式钢混组合梁的施工方法 |
CN109629419B (zh) * | 2019-01-18 | 2024-04-19 | 中铁第四勘察设计院集团有限公司 | 高效施加预应力的后结合钢-混结合梁和桥梁及施工方法 |
CN110700103B (zh) * | 2019-10-16 | 2022-04-08 | 中铁工程服务有限公司 | 一种连续性组合梁施工方法 |
CN111595307B (zh) * | 2020-04-30 | 2022-11-25 | 中交二航局第四工程有限公司 | 一种基于无线网络的短线匹配测量方法 |
CN112695634B (zh) * | 2020-12-18 | 2022-04-08 | 中铁大桥局集团有限公司 | 一种钢桁梁胶拼桥面板预制长度控制方法 |
CN114991018B (zh) * | 2022-07-04 | 2024-10-22 | 浙江交工集团股份有限公司 | 现浇箱梁的施工方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2204644C2 (ru) * | 2001-05-23 | 2003-05-20 | Сибирская государственная автомобильно-дорожная академия | Дощато-клееное пролетное строение |
CN101424073A (zh) * | 2008-12-04 | 2009-05-06 | 中铁大桥局股份有限公司 | 整孔预制的钢-混凝土组合连续箱梁的桥面板与钢梁的二次结合方法 |
CN201268827Y (zh) * | 2008-09-18 | 2009-07-08 | 钟宝驹 | 改变道路通行格局的框架构件 |
CN102605719A (zh) * | 2012-04-17 | 2012-07-25 | 江阴大桥(北京)工程有限公司 | 混凝土预制梁节段拼装及架设的施工方法 |
CN103898831A (zh) * | 2014-04-04 | 2014-07-02 | 长沙理工大学 | 一种超高性能混凝土的预制拼装式拱肋及其制作安装方法 |
CN203768784U (zh) * | 2013-12-31 | 2014-08-13 | 湖南大学 | 一种超高韧性混凝土板-钢梁轻型组合桥梁结构 |
CN104195950A (zh) * | 2014-08-15 | 2014-12-10 | 中交第二航务工程局有限公司 | 一种钢混组合梁斜拉桥胶接缝连接方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4537906B2 (ja) * | 2005-07-29 | 2010-09-08 | 前田建設工業株式会社 | 橋脚と横桁との接合構造、橋の建設方法及び橋 |
KR100947306B1 (ko) * | 2007-12-04 | 2010-03-16 | 한국건설기술연구원 | 콘크리트 전단연결부를 갖는 합성형 교량 구조 및 그시공방법 |
CN103774541B (zh) * | 2012-10-17 | 2016-08-03 | 上海市政工程设计研究总院(集团)有限公司 | 一种多片式组合梁桥上下部整体式结构及其施工方法 |
-
2014
- 2014-08-15 CN CN201410403571.XA patent/CN104195950A/zh active Pending
-
2015
- 2015-08-11 WO PCT/CN2015/086623 patent/WO2016023462A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2204644C2 (ru) * | 2001-05-23 | 2003-05-20 | Сибирская государственная автомобильно-дорожная академия | Дощато-клееное пролетное строение |
CN201268827Y (zh) * | 2008-09-18 | 2009-07-08 | 钟宝驹 | 改变道路通行格局的框架构件 |
CN101424073A (zh) * | 2008-12-04 | 2009-05-06 | 中铁大桥局股份有限公司 | 整孔预制的钢-混凝土组合连续箱梁的桥面板与钢梁的二次结合方法 |
CN102605719A (zh) * | 2012-04-17 | 2012-07-25 | 江阴大桥(北京)工程有限公司 | 混凝土预制梁节段拼装及架设的施工方法 |
CN203768784U (zh) * | 2013-12-31 | 2014-08-13 | 湖南大学 | 一种超高韧性混凝土板-钢梁轻型组合桥梁结构 |
CN103898831A (zh) * | 2014-04-04 | 2014-07-02 | 长沙理工大学 | 一种超高性能混凝土的预制拼装式拱肋及其制作安装方法 |
CN104195950A (zh) * | 2014-08-15 | 2014-12-10 | 中交第二航务工程局有限公司 | 一种钢混组合梁斜拉桥胶接缝连接方法 |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106049258A (zh) * | 2016-08-04 | 2016-10-26 | 河北省交通规划设计院 | 一种用于混凝土梁桥的铰缝钢筋连接件结构及布置方法 |
CN106894328B (zh) * | 2017-02-20 | 2018-11-23 | 重庆大学 | 一种π形结合梁剪力滞的处理方法 |
CN106894328A (zh) * | 2017-02-20 | 2017-06-27 | 重庆大学 | 一种π形结合梁剪力滞的处理方法 |
CN106869012B (zh) * | 2017-03-28 | 2018-06-26 | 上海市城市建设设计研究总院(集团)有限公司 | 采用体内预应力系统的预制薄壁盖梁 |
CN106869012A (zh) * | 2017-03-28 | 2017-06-20 | 上海市城市建设设计研究总院(集团)有限公司 | 采用体内预应力系统的预制薄壁盖梁 |
CN107794834B (zh) * | 2017-09-06 | 2023-10-27 | 中铁宝桥集团有限公司 | 大节段钢箱梁分幅匹配结构及制作方法 |
CN107794834A (zh) * | 2017-09-06 | 2018-03-13 | 中铁宝桥集团有限公司 | 大节段钢箱梁分幅匹配结构及制作方法 |
CN108301261A (zh) * | 2018-04-28 | 2018-07-20 | 中国建筑第五工程局有限公司 | 一种跨座式单轨预制装配式钢-hpc组合轨道梁 |
CN108342974A (zh) * | 2018-04-28 | 2018-07-31 | 中国建筑第五工程局有限公司 | 跨座式单轨预制装配式钢-hpc组合轨道梁 |
CN108755442A (zh) * | 2018-08-21 | 2018-11-06 | 中水电第十工程局(郑州)有限公司 | 用于大型钢构件高空安装的导向与定位装置 |
CN108755442B (zh) * | 2018-08-21 | 2023-12-22 | 中电建十一局工程有限公司 | 用于大型钢构件高空安装的导向与定位装置 |
CN110485250A (zh) * | 2019-05-27 | 2019-11-22 | 天津城建大学 | 一种悬臂拼装桥的节段预制梁及其拼接结构和施工方法 |
CN112239997A (zh) * | 2020-10-26 | 2021-01-19 | 湖南大学 | 一种型钢-uhpc组合板的纵桥向接缝连接构造 |
CN112796202A (zh) * | 2021-01-27 | 2021-05-14 | 广东省交通规划设计研究院股份有限公司 | 桥梁拼装结构及其施工方法 |
CN113202029A (zh) * | 2021-04-13 | 2021-08-03 | 中铁六局集团有限公司 | 上跨营业线桥梁湿接缝、跨中横隔板兜底防护施工方法 |
CN113005874A (zh) * | 2021-04-16 | 2021-06-22 | 中国铁路设计集团有限公司 | 一种采用钢桁-砼预制结合梁段的梁拱组合桥及施工方法 |
CN113336087A (zh) * | 2021-05-31 | 2021-09-03 | 中国一冶集团有限公司 | 一种桥梁横向湿接缝模板的吊装工具及模板安装方法 |
CN113931054A (zh) * | 2021-08-07 | 2022-01-14 | 中铁宝桥(扬州)有限公司 | 超大偏心半幅钢混组合箱梁制造方法 |
CN114000409A (zh) * | 2021-08-07 | 2022-02-01 | 中铁宝桥(扬州)有限公司 | 偏心半幅钢混组合箱梁总拼结构 |
CN113737647A (zh) * | 2021-08-20 | 2021-12-03 | 中铁宝桥集团有限公司 | 钢混组合塔节段临时吊点装置及实施方法 |
CN114086459A (zh) * | 2021-08-20 | 2022-02-25 | 中交一公局集团有限公司 | 一种钢混组合梁结构及施工方法 |
CN114150568A (zh) * | 2021-12-06 | 2022-03-08 | 广西路桥工程集团有限公司 | 一种装配式轻型组合梁纵缝加强结构 |
CN114032788A (zh) * | 2021-12-20 | 2022-02-11 | 中铁大桥局第七工程有限公司 | 一种钢系杆拱桥桥面滞后焊接快速施工方法 |
CN114277673A (zh) * | 2021-12-24 | 2022-04-05 | 中交三公局第三工程有限公司 | 大跨大倾角提篮式钢梁、拱节段拼装方法 |
CN114934436A (zh) * | 2022-05-16 | 2022-08-23 | 江西省水利科学院 | 装配式渡槽湿接缝钢筋锚固结构 |
CN114934436B (zh) * | 2022-05-16 | 2023-10-20 | 江西省水利科学院 | 装配式渡槽湿接缝钢筋锚固结构 |
CN115354683A (zh) * | 2022-08-19 | 2022-11-18 | 中国铁路设计集团有限公司 | 一种基于胶拼理论的小分块装配式地铁车站结构 |
CN116341073A (zh) * | 2023-03-25 | 2023-06-27 | 中交第二公路勘察设计研究院有限公司 | 一种钢-uhpc组合梁斜拉桥主跨跨中桥面板的预压应力施加设计方法及其实施方法 |
CN116341073B (zh) * | 2023-03-25 | 2024-04-02 | 中交第二公路勘察设计研究院有限公司 | 一种钢-uhpc组合梁斜拉桥主跨跨中桥面板的预压应力施加设计方法及其实施方法 |
CN117021299A (zh) * | 2023-09-14 | 2023-11-10 | 山东铁鹰建设工程有限公司 | 一种用于水利工程的段梁预制模板设备 |
CN119933044A (zh) * | 2025-04-08 | 2025-05-06 | 湖南省交通规划勘察设计院有限公司 | 一种pk断面组合梁斜拉桥异步施工的线形控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104195950A (zh) | 2014-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016023462A1 (zh) | 一种钢混组合梁斜拉桥胶接缝连接方法 | |
CN106677049B (zh) | 装配式钢-混凝土组合结构桥梁及施工方法 | |
CN205711743U (zh) | 一种干湿接缝的钢‑混凝土组合桥面板 | |
CN108360721B (zh) | 预制混凝土超薄型双向受力装配式钢筋桁架叠合楼板 | |
CN104213505B (zh) | 钢-超高性能纤维混凝土轻型组合梁的接缝结构及应用 | |
CN105839846A (zh) | 预制装配式钢筋混凝土叠合梁 | |
CN111305440A (zh) | 装配式钢结构梁柱构件与楼承板无缝连接体系及施工方法 | |
CN104929034A (zh) | 一种模块化钢-混快速施工小箱梁桥及其施工方法 | |
CN109137727B (zh) | 一种基于早强uhpc的干湿组合节段预制拼装接缝系统及方法 | |
CN108222347A (zh) | 一种带平面桁架临时支撑的装配式大模块焊接叠合梁板 | |
CN113481826A (zh) | 一种预制装配式波形钢腹板组合箱梁 | |
CN108301546B (zh) | 一种带平面桁架临时支撑的装配式大模块叠合梁板结构 | |
CN114457669B (zh) | 一种钢混组合的钢桁梁桥施工方法及钢桁梁桥 | |
CN104088221A (zh) | 一种基于钢桁架与组合桥面板的t形板桁节段预制单元 | |
CN108360722A (zh) | 一种带平面桁架临时支撑的装配式大模块半焊接叠合梁板结构 | |
CN113699876A (zh) | 一种竖向连续带榫卯结构的节段预制拼装桥墩 | |
JP7658056B2 (ja) | プレキャストコンクリート部材製作用の妻型枠の製作方法と、プレキャストコンクリート部材の製作方法 | |
CN112227404A (zh) | 预制叠合基础与预制叠合剪力墙的连接系统和连接方法 | |
CN108842594B (zh) | 一种预制拼装钢混组合梁及其施工方法 | |
CN111469267B (zh) | 一种木-uhpc组合箱梁及其制备方法 | |
CN211548061U (zh) | 一种叠合拱壳结构 | |
CN106012808B (zh) | 一种波形钢腹板‑压型钢板组合梁及其施工方法 | |
CN220224903U (zh) | 钢内芯-混凝土组合梁的节段连接系统 | |
CN218345930U (zh) | 一种桥梁结构 | |
CN113585037B (zh) | 一种模块化预制波形钢腹板组合箱梁及其现场拼装工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15832468 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15832468 Country of ref document: EP Kind code of ref document: A1 |