WO2016021390A1 - 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法 - Google Patents
流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法 Download PDFInfo
- Publication number
- WO2016021390A1 WO2016021390A1 PCT/JP2015/070502 JP2015070502W WO2016021390A1 WO 2016021390 A1 WO2016021390 A1 WO 2016021390A1 JP 2015070502 W JP2015070502 W JP 2015070502W WO 2016021390 A1 WO2016021390 A1 WO 2016021390A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow rate
- fuel
- ratio
- parameter
- calculator
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 316
- 238000004364 calculation method Methods 0.000 title claims abstract description 107
- 238000000034 method Methods 0.000 title claims description 16
- 238000002485 combustion reaction Methods 0.000 claims abstract description 124
- 239000007789 gas Substances 0.000 claims abstract description 88
- 239000000567 combustion gas Substances 0.000 claims abstract description 42
- 238000011144 upstream manufacturing Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/32—Control of fuel supply characterised by throttling of fuel
- F02C9/34—Joint control of separate flows to main and auxiliary burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/28—Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C7/00—Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
- F02C7/22—Fuel supply systems
- F02C7/228—Dividing fuel between various burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C9/00—Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
- F02C9/26—Control of fuel supply
- F02C9/32—Control of fuel supply characterised by throttling of fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/303—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/306—Mass flow
Definitions
- the present invention relates to a technique for calculating a flow ratio of each fuel supplied from a plurality of fuel systems to a combustor.
- the gas turbine includes a compressor that compresses air, a combustor that generates combustion gas by burning fuel in the air compressed by the compressor, and a turbine that is driven by the combustion gas.
- Some combustors have a pilot burner that diffuses and burns fuel and a main burner that premixes and burns fuel. In such a combustor, it is necessary to manage the ratio of the fuel flow rate supplied to each burner for the purpose of improving the combustion stability of the fuel.
- the ratio of the fuel flow rate supplied to each burner according to the value indicated by the combustion load command in which the inlet temperature of the turbine into which combustion gas from the combustor flows is dimensionless. Is stipulated.
- an object of the present invention is to provide a technique capable of improving combustion stability in a combustor.
- the flow rate ratio calculation device as one aspect according to the invention for achieving the above object is as follows: A plurality of fuel systems, a compressor that compresses air to generate compressed air, a combustor that generates combustion gas by burning fuel from the plurality of fuel systems in the compressed air, and the combustion gas In a flow rate ratio calculation device for calculating a flow rate ratio of the fuel flowing through a plurality of the fuel systems, a value of two parameters that can represent a combustion state in the combustor And a calculator that calculates the flow rate ratio with respect to the values of the received two parameters using a predetermined relationship between the two parameters and the flow rate ratio.
- the combustion state in the combustor can be expressed by two parameters.
- the flow rate ratio calculation device values of two parameters that can represent the combustion state are received, and a flow rate ratio corresponding to these values is obtained. For this reason, the flow rate ratio calculation device can grasp the combustion state more accurately than obtaining the flow rate ratio according to the combustion state determined only by the combustion load command value, and the flow rate ratio according to the combustion state. Can be requested.
- the combustion load command value is a value obtained by making the inlet temperature of the turbine into which combustion gas from the combustor flows dimensionless. Therefore, in the flow rate ratio calculation device, the fuel combustion stability can be further improved by setting the flow rate ratio of the fuel flowing through the plurality of fuel systems to the flow rate ratio calculated by the flow rate ratio calculation device.
- the first parameter among the two parameters received by the calculator changes in correlation with an inlet temperature change of the combustion gas in the turbine.
- the second parameter may be a flow velocity correlation value that changes in correlation with a flow velocity change of the combustion gas in the combustor.
- the flow velocity correlation value includes the output of the gas turbine, a load factor that is a ratio of the current load to the maximum load allowed by the gas turbine, and fuel supplied to the combustor from a plurality of fuel systems. Any one of the total flow rate and the flow rate of the air sucked by the compressor may be used.
- the first parameter is a total flow rate of fuel supplied from the plurality of fuel systems to the combustor
- the second parameter may be a flow rate of the air sucked by the compressor.
- the calculator uses the predetermined relationship between the first parameter and the flow rate ratio, and the flow rate ratio with respect to the value of the received first parameter.
- a correction value calculator for determining a correction value according to the value of the received second parameter using a predetermined relationship between the second parameter and the correction value of the flow ratio.
- a corrector that corrects the flow rate ratio determined by the flow rate ratio calculator with the correction value determined by the correction value calculator.
- the predetermined relationship used by the correction value calculator is that the second parameter and the flow rate ratio when the first parameter is constant. Relationship may be.
- the combustor includes a first burner that diffuses and burns fuel and a second burner that premixes and burns fuel
- the gas turbine includes:
- the fuel system has a first fuel system that supplies fuel to the first burner and a second fuel system that supplies fuel to the second burner
- the flow rate ratio is a plurality of fuel systems.
- a ratio of a flow rate of fuel supplied from the first fuel system to the fuel device with respect to a total flow rate of fuel supplied from the fuel system to the combustor may be included.
- the combustor includes a burner that injects fuel, and the gas turbine serves as a plurality of fuel systems to supply fuel to the burner.
- the flow rate ratio is the total flow rate of fuel supplied to the combustor from a plurality of fuel systems
- the ratio of the flow rate of fuel supplied from the burner system to the fuel device may be included.
- the flow rate ratio calculation device as one aspect according to the invention for achieving the above object is as follows: Any of the above flow rate ratio calculation devices, a total flow rate calculator for determining the total flow rate of fuel supplied from the plurality of fuel systems to the combustor, and the total flow rate determined by the total flow rate calculator, A system flow rate calculator for obtaining a fuel flow rate for each of a plurality of fuel systems using the flow rate ratio calculated by the flow rate ratio calculation device, and a fuel flow rate for each of the plurality of fuel systems is obtained by the system flow rate calculator. And a valve controller for outputting a control signal to a fuel flow rate adjusting valve provided for each of the plurality of fuel systems so as to achieve the fuel flow rate.
- a gas turbine plant as one aspect according to the invention for achieving the above object is as follows: The control device and the gas turbine are provided.
- the flow rate ratio calculation method as one aspect according to the invention for achieving the above object is as follows: A plurality of fuel systems, a compressor that compresses air to generate compressed air, a combustor that generates combustion gas by burning fuel from the plurality of fuel systems in the compressed air, and the combustion gas
- a flow ratio calculation method for calculating a flow ratio of the fuel flowing through a plurality of the fuel systems in a gas turbine comprising a driving turbine values of two parameters that can represent a combustion state in the combustor
- a receiving step for receiving and a calculation step for obtaining the flow rate ratio with respect to the values of the two parameters received in the receiving step using a predetermined relationship between the two parameters and the flow rate ratio are executed.
- the first parameter changes with a correlation with a change in the inlet temperature of the combustion gas in the turbine.
- the inlet temperature correlation value that is the inlet temperature, and the second parameter may be a flow velocity correlation value that changes in correlation with a flow velocity change of the combustion gas in the combustor.
- the flow velocity correlation value includes the output of the gas turbine, a load factor that is a ratio of the current load to the maximum load allowed by the gas turbine, and fuel supplied to the combustor from a plurality of fuel systems. Any one of the total flow rate and the flow rate of the air sucked by the compressor may be used.
- the first parameter is a total flow rate of fuel supplied from the plurality of fuel systems to the combustor
- the second parameter may be a flow rate of the air sucked by the compressor.
- the calculation step uses a predetermined relationship between the first parameter and the flow rate ratio to the value of the first parameter received in the reception step.
- a correction value corresponding to the value of the second parameter received in the receiving step using a predetermined relationship between the flow rate ratio calculating step for obtaining the flow rate ratio and the second parameter and the correction value of the flow rate ratio.
- the predetermined relationship used in the correction value calculation step may be a relationship between the second parameter and the flow rate ratio when the first parameter is constant.
- a fuel system control method as one aspect according to the invention for achieving the above object is as follows: While performing any one of the above flow rate ratio calculation methods, a total flow rate calculating step for obtaining a total flow rate of fuel supplied to the combustor from a plurality of fuel systems, and the total flow rate obtained in the total flow rate calculating step And a system flow rate calculation step for obtaining a fuel flow rate for each of a plurality of fuel systems using the flow rate ratio calculated by the flow rate ratio calculation method, and a fuel flow rate for each of the plurality of fuel systems is calculated by the system flow rate calculation step. And a valve control step of outputting a control signal to the fuel flow rate control valves provided for each of the plurality of fuel systems so as to achieve the fuel flow rate obtained in step (b).
- the combustion stability of fuel in the combustor can be improved.
- the relationship between the top hat ratio before correction (TH 0 ratio), the corrected top hat ratio (TH ratio) and the load factor% Load, and the correction value Ct of the top hat ratio and the load factor in one embodiment according to the present invention It is a graph which shows the relationship with% Load. It is a graph which shows the change of various parameters accompanying the state change of the gas turbine in one embodiment concerning the present invention. Specifically, (a) of the figure is a graph showing the relationship between the load factor% Load and the IGV opening. (B) of the same figure is a graph which shows the relationship between load factor% Load and combustion load command value CLCSO.
- FIG (c) is a graph showing the relationship between the pilot ratio before correction and the combustion load command value CLCSO (PL 0 ratio).
- FIG (d) is a graph showing the relationship between the load factor% Load the uncorrected pilot ratio (PL 0 ratio).
- FIG. 5E is a graph showing the relationship between the load factor% Load and the correction value Cp.
- FIG (f) is a graph showing the relationship between the load factor% Load the pilot ratio after correction (PL ratio) and uncorrected pilot ratio (PL 0 ratio).
- the gas turbine plant of the present embodiment includes a gas turbine 10 and a generator 29 that generates electric power by driving the gas turbine 10 as shown in FIG.
- the gas turbine 10 includes a compressor 11 that compresses air, a combustor 31 that burns fuel F in the air compressed by the compressor 11 to generate combustion gas, and a turbine 21 that is driven by high-temperature and high-pressure combustion gas. And.
- the compressor 11 includes a compressor rotor 13 that rotates about an axis, a compressor casing 12 that covers the compressor rotor 13 in a rotatable manner, and an IGV (inlet guide) provided at a suction port of the compressor casing 12. vane) 14.
- the IGV 14 includes a plurality of guide vanes 15 and a driver 16 that drives the plurality of guide vanes 15. The IGV 14 adjusts the flow rate of air sucked into the compressor casing 12.
- the turbine 21 includes a turbine rotor 23 that rotates about an axis by combustion gas from the combustor 31, and a turbine casing 22 that rotatably covers the turbine rotor 23.
- the turbine rotor 23 and the compressor rotor 13 rotate about the same axis, and are connected to each other to form a gas turbine rotor 28.
- a rotor of a generator 29 is connected to the gas turbine rotor 28.
- the combustor 31 includes an outer cylinder 32 fixed to the turbine casing 22, and a combustion cylinder 33 (inside the turbine casing 22, which sends combustion gas into the combustion gas flow path of the turbine 21. (Or a tail cylinder) 33 and a fuel supply device 41 for supplying fuel and air into the combustion cylinder 33.
- the fuel supplier 41 includes an inner cylinder 42, a pilot burner (first burner) 43 disposed on the central axis of the inner cylinder 42, and the pilot burner 43 as a center.
- a plurality of main burners (second burners) 53 arranged at equal intervals in the circumferential direction and a top hat nozzle 51 arranged on the outer peripheral side of the inner cylinder 42 on the inner peripheral side of the outer cylinder 32 are provided.
- the side in which the combustion gas G flows in the combustion cylinder 33 is defined as the downstream side, and the opposite side is defined as the upstream side.
- the pilot burner 43 has a pilot nozzle 44 disposed on the central axis of the inner cylinder 42 and a cylindrical pilot air cylinder 45 surrounding the outer periphery of the pilot nozzle 44.
- the downstream side of the pilot air cylinder 45 forms a pilot cone 46 that gradually increases in diameter toward the downstream side.
- a pilot air flow path 48 through which the compressed air Ac from the compressor 11 flows as pilot air Ap is formed on the inner peripheral side of the pilot air cylinder 45.
- the pilot fuel Fp injected from the pilot nozzle 44 is combusted (diffusion combustion) in the pilot air Ap ejected from the pilot air flow path 48 to form a diffusion flame 49.
- the main burner 53 includes a cylindrical main air cylinder 55 surrounding the outer periphery of the pilot air cylinder 45, a cylindrical main air outer cylinder 56 surrounding the outer periphery of the main air cylinder 55, and a plurality of partition plates. 57 and a main nozzle 54 disposed between the plurality of partition plates 57.
- the plurality of partition plates 57 divide the annular space between the outer peripheral side of the main air inner cylinder 55 and the inner peripheral side of the main air outer cylinder 56 into a plurality in the circumferential direction.
- a plurality of spaces defined by the main air inner cylinder 55, the main air outer cylinder 56, and the plurality of partition plates 57 form a main air flow path 58 through which the compressed air Ac from the compressor 11 flows as the main air Am.
- Main fuel Fm is injected into the main air Am flowing through the main air flow path 58 from the main nozzle 54 disposed in the main air flow path 58. For this reason, the premixed gas in which the main air Am and the main fuel Fm are mixed flows in the main air flow path 58 downstream of the front end (downstream end) of the main nozzle 54. When this premixed gas flows out of the main air flow path 58, it is burned (premixed combustion) to form a premixed flame 59.
- the aforementioned diffusion flame 49 plays a role of holding the premixed flame 59.
- the space between the inner peripheral side of the outer cylinder 32 and the outer peripheral side of the inner cylinder 42 forms a compressed air flow path 52 that guides the compressed air Ac from the compressor 11 into the inner cylinder 42.
- the top hat nozzle 51 injects the top hat fuel Ft into the compressed air flow path 52. For this reason, when the top hat fuel Ft is injected into the compressed air flow path 52, the top hat fuel Ft is mixed into the main air Am and the pilot air Ap.
- the gas turbine plant of the present embodiment further includes a pilot fuel line (first fuel system) 61 that sends pilot fuel Fp to the pilot nozzle 44, and main fuel Fm to the main nozzle 54.
- a main fuel line (second fuel system) 62 to be sent a top hat fuel line (upstream supply system) 63 for sending the top hat fuel Ft to the top hat nozzle 51, a pilot fuel valve 65 for adjusting the flow rate of the pilot fuel Fp, A main fuel valve 66 for adjusting the flow rate of the main fuel Fm, a top hat fuel valve 67 for adjusting the flow rate of the top hat fuel Ft, and a control device 100 for controlling the operation of these fuel valves 65, 66, 67, etc. Is provided.
- the pilot fuel line 61, the main fuel line 62, and the top hat fuel line 63 are all branched from the fuel line 60.
- the pilot fuel valve 65 is provided in the pilot fuel line 61
- the main fuel valve 66 is provided in the main fuel line 62
- the top hat fuel valve 67 is provided in the top hat fuel line 63.
- the gas turbine plant of the present embodiment further includes a rotational speed meter 71 that detects the rotational speed N of the gas turbine rotor 28, an output meter 72 that detects the output PW of the generator 29, and a compression
- An intake air temperature meter 73 that detects the intake air temperature Ti that is the temperature of the air A that the compressor 11 sucks
- an intake pressure meter 74 that detects the intake pressure (atmospheric pressure) Pi that is the pressure of the air that the compressor 11 sucks
- the blade path temperature A blade path thermometer 75 that detects Tb and an exhaust gas thermometer 76 that detects the temperature Te of the exhaust gas are provided.
- the blade path temperature Tb detected by the blade path thermometer 75 is the temperature of the combustion gas immediately after the final stage of the turbine 21.
- the exhaust gas temperature Te detected by the exhaust gas thermometer 76 is the temperature of the exhaust gas in the exhaust duct downstream of the final stage of the turbine 21.
- the control device 100 includes an interface 180 that receives detection values and the like from each detector, a combustion load command generator 110 that generates a combustion load command value CLCSO, and a current load factor of the gas turbine 10.
- a load factor calculator 120 for obtaining% Load, a fuel flow rate command generator 130 for generating a fuel flow rate command value CSO, and a pilot ratio for calculating a pilot ratio (PL ratio) that is a ratio of the pilot fuel flow rate Fpf to the total fuel flow rate
- a calculator 140p, a top hat ratio calculator 140t for calculating a top hat ratio (TH ratio) which is a ratio of the top hat fuel flow rate Ftf to the total fuel flow rate, and a system flow rate for determining the flow rate of each fuel line 61, 62, 63
- the fuel valve 65, 66, 67 is controlled according to the flow rate of the arithmetic unit 160 and each fuel line 61, 62, 63. It comprises a valve controller 170 which outputs a degree
- the combustion load command value CLCSO is a parameter obtained by making the inlet temperature of the combustion gas in the turbine 21 dimensionless, and has a positive correlation with the inlet temperature.
- the combustion load command value CLCSO is set to be 0% when the inlet temperature is the lower limit value and 100% when the inlet temperature is the upper limit value. For example, when the lower limit value of the inlet temperature is 700 ° C. and the upper limit value of the inlet temperature is 1500 ° C., the combustion load command value CLCSO is expressed by the following equation.
- CLCSO (%) ⁇ (Actual value of generator output -700 ° C MW) / (1500 ° C MW -700 ° C MW) ⁇ ⁇ 100
- 700 MW is a generator output when the inlet temperature is 700 ° C., which is the lower limit value
- 1500 ° C. MW is a generator output when the inlet temperature is 1500 ° C., which is the upper limit value.
- the combustion load command generator 110 includes a first output calculator 111a, a second output calculator 111b, a standard atmospheric pressure generator 112, a first divider 113, and a first multiplier. 114a, a second multiplier 114b, a first subtractor 115a, a second subtractor 115b, a second divider 116, and a limiter 117.
- the first output calculator 111a obtains a generator output 700 ° C. MW when the inlet temperature is 700 ° C., which is the lower limit value.
- the second output calculator 111b obtains a generator output of 700 ° C.MW when the inlet temperature is 1500 ° C., which is the upper limit value.
- the standard atmospheric pressure generator 112 generates a preset standard atmospheric pressure Ps.
- the first divider 113 obtains an intake pressure ratio Pr that is a ratio of the intake pressure Pi detected by the intake pressure gauge 74 to the standard atmospheric pressure (standard intake pressure) Ps.
- the first multiplier 114a multiplies the generator output 700 ° C. MW obtained by the first output calculator 111a by the intake pressure ratio Pr.
- the second multiplier 114b multiplies the generator output 1500 ° C. MW obtained by the second output computing unit 111b by the intake pressure ratio Pr.
- the first subtractor 115 a subtracts the multiplication result in the first multiplier 114 a from the actual measurement output PW of the generator 29 detected by the output meter 72.
- the second subtractor 115b subtracts the multiplication result in the first multiplier 114a from the multiplication result in the second multiplier 114b.
- the second divider 116 divides the subtraction result from the first subtractor 115a by the subtraction result from the second subtractor 115b.
- the limiter 117 limits the increase / decrease rate of the output from the second divider 116.
- the first output calculator 111a uses the function H 1 x to determine the generator output 700 ° C.MW when the inlet temperature is 700 ° C. using the intake air temperature Ti and the IGV opening command value as fluctuation parameters.
- the second output calculator 111b uses the function H 2 x to determine the generator output 700 ° C. MW when the inlet temperature is 1500 ° C. using the intake air temperature Ti and the IGV opening command value as fluctuation parameters.
- the IGV opening command value is a command value given to the driver 16 of the IGV 14 by the control device 100 and is a command value indicating the IGV opening.
- This IGV opening command value is obtained from, for example, the atmospheric pressure Pi, which is the pressure at the inlet of the compressor 11, the pressure at the outlet of the compressor 11, the current load factor% Load of the gas turbine 10, and the like.
- the relationship between the load factor% Load and the IGV opening is a relationship in which the IGV opening increases as the load factor% Load increases, for example, as shown in FIG.
- the increase amount of the IGV opening relative to the increase amount of the load factor% Load, the load factor% Load where the IGV opening starts to increase, and the like depend on the operation plan of the gas turbine 10, the atmospheric pressure Pi that is the inlet pressure of the compressor 11, etc. Be changed.
- the IGV opening is determined using the load factor% Load, but the IGV opening is determined using the output PW of the generator 29, which is the output of the gas turbine 10, instead of the load factor% Load. You may do it.
- the output calculators 111a and 111b of the combustion load command generator 110 use known values of 700 ° C.MW and 1500 ° C.MW when the intake air temperature and the IGV opening command value are reference values, and the actual intake air temperature Ti and The value is changed to a value corresponding to the IGV opening command value, and the changed value is output as 700 ° C. MW and 1500 ° C. MW.
- the first divider 113 is an intake pressure ratio that is the ratio of the intake pressure (atmospheric pressure) Pi detected by the intake pressure gauge 74 to the standard intake pressure (standard atmospheric pressure) Ps from the standard atmospheric pressure generator 112. Obtain Pr.
- the first multiplier 114a multiplies the 700 ° C. MW from the first output computing unit 111a by the intake pressure ratio Pr to correct 700 ° C. MW to a value corresponding to the intake pressure ratio Pr.
- the second multiplier 114b multiplies the 1500 ° C.
- the first subtractor 115a subtracts 700 ° C. MW corrected by the intake pressure ratio Pr from the measured output PW of the generator 29 detected by the output meter 72. That is, the first subtractor 115a obtains the numerator value of the above formula.
- the second subtractor 115b subtracts 700 ° C. MW corrected with the intake pressure ratio Pr from 1500 ° C. MW corrected with the intake pressure ratio Pr. That is, the second subtractor 115b obtains the denominator value of the above equation.
- the second divider 116 divides the numerator value obtained by the first subtractor 115a by the denominator value obtained by the second subtractor 115b, and uses this value as the combustion load command value. Output.
- the limiter 117 limits the increase / decrease rate of the combustion load command value so that the increase / decrease rate, which is the amount of change per unit time of the combustion load command value from the second divider 116, is equal to or less than a predetermined value.
- the lower limit value of the combustion gas inlet temperature in the turbine 21 is set to 700 ° C.
- the upper limit value thereof is set to 1500 ° C., but depending on the type of the combustor 31, the lower limit value of the combustion gas inlet temperature in the turbine 21
- the upper limit value may be different from the above example.
- the combustion load command generator 110 outputs a combustion load command value CLCSO whose rate of increase / decrease is limited by the limiter 117.
- the load factor% Load of the gas turbine 10 is a ratio of the current load PW to the maximum load PWmax allowed in the current state of the gas turbine 10.
- the load factor calculator 120 includes a maximum load calculator 121 for obtaining a maximum load PWmax allowed in the current state of the gas turbine 10, and an output of the generator 29 detected by the output meter 72.
- a divider 127 that divides the actually measured load PW by the maximum load PWmax.
- the maximum load calculator 121 includes a first load coefficient calculator 122 for obtaining a maximum load coefficient Ip according to the intake pressure Pi, a second load coefficient calculator 123 for obtaining a maximum load coefficient It according to the intake air temperature Ti, The first multiplier 124 that multiplies the load coefficient Ip and the maximum load coefficient It, the deterioration coefficient generator 125 that generates the deterioration coefficient K according to the operation time of the gas turbine 10, and the multiplication result of the first multiplier 124. And a second multiplier 126 that multiplies the deterioration coefficient K by.
- the maximum load calculator 121 determines the maximum load PWmax according to the actually measured intake pressure Pi detected by the intake pressure gauge 74, the actually measured intake air temperature Ti detected by the intake thermometer 73, and the deterioration coefficient K of the gas turbine 10. Ask for.
- the divider 127 divides the measured load PW, which is the output of the generator 29 detected by the output meter 72, by the maximum load PWmax, and outputs this as the load factor% Load.
- the fuel flow rate command value CSO is a value indicating the total flow rate of fuel supplied to the combustor 31 (hereinafter referred to as the total fuel flow rate). Therefore, the fuel flow rate command generator 130 functions as a total flow rate calculator. For this reason, the fuel flow rate command generator 130 executes a total fuel flow rate calculation step for obtaining the total fuel flow rate, as will be described later.
- the fuel flow rate command generator 130 includes a governor controller 131, a load controller 132, a first temperature controller 133, a second temperature controller 134, a low value selector 135, And a limiter 136.
- the governor controller 131 outputs a command value for controlling the total fuel flow rate so that the rotational speed N of the gas turbine rotor 28 becomes the target rotational speed.
- the load controller 132 outputs a command value for controlling the total fuel flow rate so that the generator output PW matches the generator output command value.
- the first temperature controller 133 outputs a command value for controlling the total fuel flow rate so that the blade path temperature Tb of the gas turbine does not exceed the upper limit value.
- the second temperature controller 134 outputs a command value for controlling the total fuel flow rate so that the exhaust gas temperature Te does not exceed the upper limit value.
- the low value selector 135 outputs the command value of the minimum or the lowest value among the command values from the controllers 131 to 134.
- the limiter 136 limits the increase / decrease rate of the command from the low value selector 135.
- the governor controller 131 receives the rotational speed N of the gas turbine rotor 28 from the rotational speed meter 71, and a command value for controlling the total fuel flow rate so that the rotational speed N of the gas turbine rotor 28 matches the target rotational speed. GVCSO is output. Specifically, the governor controller 131 compares the actually measured rotational speed N of the gas turbine rotor 28 with a preset GV set value, and outputs a proportional control signal as a command value GVCSO.
- the load controller 132 receives the measured output PW of the generator 29 from the output meter 72 and the generator output command value from the host controller 90 (see FIG. 1).
- the load controller 132 outputs a command value LDCSO for controlling the total fuel flow rate so that the actual measurement output PW matches the generator output command value.
- the load controller 132 compares the actual measurement output PW with the generator output command value, performs a proportional integration calculation, and outputs the result as the command value LDCSO.
- the first temperature controller 133 receives the blade path temperature Tb from the blade path thermometer 75 and outputs a command value BPCSO for controlling the total fuel flow rate so that the blade path temperature Tb does not exceed the upper limit value. Specifically, the first temperature controller 133 compares the measured blade path temperature Tb with its upper limit value, performs a proportional integration calculation, and outputs the result as a command value BPCSO.
- the second temperature controller 134 receives the exhaust gas temperature Te from the exhaust gas thermometer 76, and outputs a command value EXCSO for controlling the total fuel flow rate so that the exhaust gas temperature Te does not exceed the upper limit value. Specifically, the second temperature controller 134 compares the actually measured exhaust gas temperature Te with its upper limit value, performs a proportional integration calculation, and outputs the result as a command value EXCSO.
- the low value selector 135 selects the lowest or lowest command value from the command values from the controllers 131 to 134, and outputs this command value.
- the limiter 136 limits the increase / decrease rate of the command from the low value selector 135 and outputs this as the fuel flow rate command value CSO.
- the pilot ratio (PL ratio) is a ratio of the pilot fuel flow rate Fpf to the total fuel flow rate.
- the pilot ratio calculator 140p includes a PL 0 ratio calculator (flow rate calculator) 141p for obtaining a PL 0 ratio which is a pilot ratio according to the combustion load command value CLCSO, and a load factor% Load.
- the PL 0 ratio calculator 141p has a function F 1 x that defines the relationship between the combustion load command value CLCSO and the PL 0 ratio having a positive correlation with the combustion gas inlet temperature in the turbine 21.
- the function F 1 x is a function in which the PL 0 ratio gradually decreases as the combustion load command value CLCSO increases, that is, as the combustion gas inlet temperature increases.
- the PL 0 ratio calculator 141p receives the combustion load command value CLCSO from the combustion load command generator 110, and obtains a PL 0 ratio corresponding to the combustion load command value CLCSO using the function F 1 x.
- the relationship between the combustion load command value CLCSO and the PL 0 ratio is defined by the function F 1 x, but this relationship may be defined by a map.
- the correction value calculator 142p has a function G 1 x that defines the relationship between the load factor% Load and the correction value Cp.
- the correction value calculator 142p receives the load factor% Load from the load factor calculator 120 and obtains a correction value Ci according to the current load factor% Load using the function G 1 x.
- the relationship between the load factor% Load and the correction value Cp is defined by the function G 1 x, but this relationship may be defined by a map.
- the top hat ratio is the ratio of the top hat fuel flow rate Ftf to the total fuel flow rate.
- the top hat ratio calculator 140t includes a TH 0 ratio calculator (flow rate calculator) 141t for obtaining a TH 0 ratio that is a top hat ratio corresponding to the combustion load command value CLCSO, and a load factor%.
- a correction value calculator 142t that calculates a correction value according to Load, a fluctuation detector 144 that detects fluctuations in the fuel flow rate command value CSO, and a corrector 144t that corrects the TH 0 ratio with the correction value Ct.
- the TH 0 ratio calculator 141t has a function F 2 x that defines the relationship between the combustion load command value CLCSO and the TH 0 ratio.
- the function F 2 x is a function in which the TH 0 ratio gradually increases as the combustion load command value CLCSO increases, that is, as the combustion gas inlet temperature increases.
- the TH 0 ratio calculator 141t receives the combustion load command value CLCSO from the combustion load command generator 110, and obtains a TH 0 ratio corresponding to the combustion load command CLCSO using the function F 2 x.
- the relationship between the combustion load command value CLCSO and the TH 0 ratio is defined by the function F 2 x, but this relationship may be defined by a map.
- the correction value calculator 142t has a function G 2 x that defines the relationship between the load factor% Load and the correction value Ct.
- the correction value calculator 142t receives the load factor% Load from the load factor calculator 120, and obtains a correction value Ct corresponding to the current load factor% Load using the function G 2 x.
- the relationship between the load factor% Load and the correction value Ct is defined by the function G 2 x, but this relationship may be defined by a map.
- the system flow rate calculator 160 includes a first multiplier 161 that obtains the pilot fuel flow rate Fpf using the PL ratio obtained by the pilot ratio calculator 140 p and a TH that is obtained by the top hat ratio calculator 140 t.
- a second multiplier 162 for determining the top hat fuel flow rate Ftf using the ratio a first subtractor 163 for subtracting the top hat fuel flow rate Ftf from the fuel flow rate command value CSO indicating the total fuel flow rate, and a first subtractor 163 And a second subtractor 164 for further subtracting the pilot fuel flow rate Fpf from the subtraction result.
- the first multiplier 161 obtains the pilot fuel flow rate Fpf by multiplying the fuel flow rate command value CSO indicating the total fuel flow rate by the PL ratio obtained by the pilot ratio calculator 140p, and outputs this to the valve controller 170.
- the second multiplier 162 multiplies the fuel flow rate command value CSO indicating the total fuel flow rate by the TH ratio obtained by the top hat ratio calculator 140t to obtain a top hat fuel flow rate Ftf, and outputs this to the valve controller 170.
- the first subtracter 163 subtracts the top hat fuel flow rate Ftf from the fuel flow rate command value CSO indicating the total fuel flow rate.
- the second subtractor 164 further subtracts the pilot fuel flow rate Fpf from the subtraction result of the first subtractor 163, and outputs the subtraction result to the valve controller 170 as the main fuel flow rate Fmf. That is, the system flow rate calculator 160 executes a system flow rate calculation step for obtaining each fuel flow rate.
- the valve controller 170 includes a valve drive amount calculator 171 for determining the drive amount of the pilot fuel valve 65, a valve control signal output unit 175 for outputting a control signal to the pilot fuel valve 65, and a top hat.
- a valve drive amount calculator 172 that calculates the drive amount of the fuel valve 67
- a valve control signal output unit 176 that outputs a control signal to the top hat fuel valve 67
- a valve drive amount calculator 173 that calculates the drive amount of the main fuel valve 66
- a valve control signal output unit 177 that outputs a control signal to the main fuel valve 66.
- the valve drive amount calculator 171 for determining the drive amount of the pilot fuel valve 65 determines the drive amount of the pilot fuel valve 65 according to the pilot fuel flow rate Fpf determined by the system flow rate calculator 160.
- the valve control signal output unit 175 creates a control signal corresponding to the driving amount of the pilot fuel valve 65 and outputs this control signal to the pilot fuel valve 65.
- the valve drive amount calculator 172 for determining the drive amount of the top hat fuel valve 67 determines the drive amount of the top hat fuel valve 67 according to the top hat fuel flow rate Ftf determined by the system flow rate calculator 160.
- the valve control signal output unit 176 creates a control signal corresponding to the driving amount of the top hat fuel valve 67 and outputs the control signal to the top hat fuel valve 67.
- a valve drive amount calculator 173 for determining the drive amount of the main fuel valve 66 determines the drive amount of the main fuel valve 66 according to the main fuel flow rate Fmf determined by the system flow rate calculator 160.
- the valve control signal output unit 177 creates a control signal corresponding to the driving amount of the main fuel valve 66 and outputs this control signal to the main fuel valve 66. That is, the valve controller 170 executes a valve control process for outputting a control signal to each fuel valve.
- the combustion load command generator 110 detects the actual output PW of the generator 29 detected by the output meter 72, the IGV opening command value, the intake pressure Pi detected by the intake pressure gauge 74, and the intake air temperature.
- Combustion load command value CLCSO which is a parameter having a positive correlation with the combustion gas inlet temperature in turbine 21 is obtained using intake air temperature Ti in total 73 (S10: inlet temperature correlation value calculation step).
- the load factor calculator 120 calculates the current load factor% Load of the gas turbine 10 (S20: load factor calculation step). At this time, the load factor calculator 120 uses the intake pressure Pi detected by the intake pressure gauge 74 and the intake air temperature Ti detected by the intake thermometer 73, as described above, and the current intake pressure Pi and intake air. A maximum load PWmax of the gas turbine 10 corresponding to the temperature Ti is obtained. The load factor calculator 120 divides the actual load PW, which is the output of the generator 29 detected by the output meter 72, by this maximum load PWmax, and outputs this value as the load factor% Load.
- the fuel flow rate command generator 130 obtains a fuel flow rate command value CSO indicating the total flow rate of fuel supplied to the combustor of the gas turbine 10 (S30: total flow rate calculation step). At this time, as described above, the fuel flow rate command generator 130 obtains a plurality of command values and outputs the command value having the smallest or lowest value among the plurality of command values as the fuel flow rate command value CSO.
- the above inlet temperature correlation value calculation step (S10), load factor calculation step (S20), and total flow rate calculation step (S30) are executed before or after each other.
- the flow rate calculation device calculates the flow rate ratio of the fuel flowing through each fuel line 61, 62, 63 (S40: flow rate calculation step).
- This flow ratio calculation step (S40) includes a PL ratio calculation step (S40p) for calculating a pilot ratio (PL ratio), which is a ratio of the pilot fuel flow rate Fpf to the total fuel flow rate, and a top hat fuel flow rate Ftf for the total fuel flow rate.
- a TH ratio calculating step (S40t) for calculating a top hat ratio (TH ratio) as a ratio.
- the pilot ratio calculator 140p receives the combustion load command value CLCCSO output from the combustion load command generator 110 and the load factor% Load output from the load factor calculator 120 (S41p: (Reception process), PL ratio is calculated
- the PL 0 ratio calculator 141p uses the function F 1 x to obtain the PL 0 ratio corresponding to the previously received combustion load command value CLCSO ( S43p: PL 0 ratio calculation step).
- the correction value calculator 142p uses the function G 1 x to determine the correction value Cp corresponding to the previously accepted load factor% Load (S44p). : Correction value Cp calculation step). Then, the corrector 144p adds the correction value Cp to the PL 0 ratio and outputs this value as a corrected pilot ratio (PL ratio) (S45p: correction process).
- the top hat ratio calculator 140t receives the combustion load command value CLCCSO output from the combustion load command generator 110 and the load factor% Load output from the load factor calculator 120 (S41t). : Receiving step), and using these, the TH ratio is obtained (S42t: TH ratio calculating step).
- the TH ratio calculation step (S42t) uses the function F 2 x to obtain a TH 0 ratio corresponding to the previously received combustion load command value CLCSO ( S43t: TH 0 ratio calculation step).
- the correction value calculator 142t uses the function G 2 x to determine the correction value Ct corresponding to the previously accepted load factor% Load (S44t). : Correction value Ct calculation step). Then, the corrector 144t adds the correction value Ct to the TH 0 ratio, and outputs this value as a corrected pilot ratio (PL ratio) (S45t: correction process).
- the system flow rate calculator 160 uses the PL ratio obtained by the pilot ratio calculator 140p and the TH ratio obtained by the top hat ratio calculator 140t, to the total fuel flow rate indicated by the fuel flow rate command value CSO.
- the pilot fuel flow rate Fpf, the top hat fuel flow rate Ftf, and the main fuel flow rate Fmf are obtained and output to the valve controller 170 (S50: system flow rate calculation step).
- the valve controller 170 obtains the driving amount of the pilot fuel valve 65 at which the pilot fuel flow rate Fpf is obtained, and outputs a control signal indicating this driving amount to the pilot fuel valve 65.
- the valve controller 170 obtains a drive amount of the main fuel valve 66 at which the main fuel flow rate Fmf is obtained, and outputs a control signal indicating this drive amount to the main fuel valve 66.
- the valve controller 170 obtains the drive amount of the top hat fuel valve 67 from which the top hat fuel flow rate Ftf is obtained, and outputs a control signal indicating this drive amount to the top hat fuel valve 67 (S60: valve control step). .
- each fuel valve 65, 66, 67 is driven according to the drive amount indicated by the control signal. .
- pilot fuel Fp having a flow rate Fpf corresponding to the PL ratio obtained by the pilot ratio calculator 140p flows through the pilot fuel line 61.
- the top hat fuel line 63 the top hat fuel Ft having a flow rate Ftf corresponding to the TH ratio obtained by the top hat ratio calculator 140t flows.
- the main fuel line 62 flows through the main fuel Fm at a flow rate Fmf obtained by subtracting the pilot fuel flow rate Fpf and the top hat fuel flow rate Ftf from the total fuel flow rate.
- the IGV opening is constant at the minimum opening until the load factor% Load is in a medium load factor state S4 of about 50%, for example. It is.
- the load factor% Load exceeds the medium load factor
- the IGV opening increases as the load factor% Load increases. This tendency continues until the state S5 immediately before the load factor% Load becomes 100%. In state S5, the IGV opening is 100%. For this reason, between the state S5 immediately before the load factor% Load becomes 100% and the state S6 where the load factor% Load is 100%, the IGV opening is constant at 100%.
- the graph shown to (a) of the figure is the same as the graph shown in FIG.
- the combustion gas inlet temperature in the turbine 21 and the combustion load command value CLCSO having a positive correlation therewith increase as the fuel-air ratio (fuel / air) increases. Therefore, even if the load factor% Load increases, if the fuel-air ratio (fuel / air) is substantially constant, the inlet temperature and the combustion load command value CLCSO are also substantially constant. Further, when the fuel / air ratio (fuel / air) increases, the inlet temperature and the combustion load command value CLCSO also increase regardless of the increase / decrease in the load factor% Load.
- the IGV opening is constant at the minimum opening, and the intake air flow rate of the compressor 11 is substantially constant. Further, the flow rate of the fuel supplied to the combustor 31 of the gas turbine 10 is not limited to this, and increases with an increase in the load factor% Load. Therefore, during this period, as shown in FIG. 15B, the combustion load command value CLCSO also increases.
- the IGV opening increases with the increase in the load factor% Load between the medium load factor state S4 and the state S5 immediately before the load factor% Load becomes 100%.
- the intake air flow rate of the compressor 11 also increases.
- the flow rate of the fuel supplied to the combustor 31 of the gas turbine 10 increases as the load factor% Load increases. Therefore, during this period, even if the load factor% Load increases, the fuel-air ratio hardly changes and the combustion load command value CLCSO hardly changes. That is, during this period, the combustion load command value CLCSO is substantially constant.
- the PL 0 ratio before correction is determined so as to become gradually smaller as the combustion load command value CLCSO increases as described with reference to FIG. 11 (see FIG. 15C). For this reason, while the combustion load command value CLCSO increases as the load factor% Load increases, as shown in the minimum load factor state S1 to the medium load factor state S4, it is shown in FIG. Thus, the PL 0 ratio before correction gradually decreases as the load factor% Load increases. On the other hand, as in the state S5 immediately before the load factor% Load becomes 100% from the medium load factor state S4, the load is not increased while the combustion load command value CLCSO is substantially constant even if the load factor% Load increases. Even if the rate% Load increases, the PL 0 ratio before correction is substantially constant. Note that the graph shown in FIG. 15C is the same as the graph shown in FIG.
- the combustion state in the combustion cylinder 33 (see FIG. 2) of the combustor 31 changes if the load factor% Load changes even if the combustion load command value CLCSO, that is, the inlet temperature of the combustion gas in the turbine 21 is constant.
- the pilot ratio (PL ratio) is one of the operating parameters of the gas turbine 10 that is changed to ensure combustion stability while the exhaust gas from the gas turbine 10 satisfies the environmental regulation value.
- the load factor% Load changes and the combustion state in the combustion cylinder 33 changes, when the combustion load command value CLCSO is constant, the PL 0 ratio before correction is also constant. Therefore, if the PL 0 ratio before correction is applied as it is, combustion stability may not be ensured.
- the combustion state is unstable, for example, combustion vibration occurs when the load factor% Load changes.
- the PL 0 ratio is corrected with the correction value Cp so that the PL ratio is set in a region that avoids Ri (region determined by the PL ratio and load factor% Load) Ri.
- the correction value Cp is determined as follows. First, when the combustion load command value CLCSO is kept constant and the load factor% Load is changed, a region where the combustion state becomes unstable (region determined by the PL ratio and the load factor% Load) Ri is previously tested. Determine. Next, the relationship between the PL ratio that can avoid the region Ri in which the combustion state becomes unstable when the combustion load command value CLCSO is constant and the load factor% Load is determined. Then, as shown in FIG. 15E, the difference between the PL ratio with respect to the load factor% Load determined by this relationship and the PL 0 ratio determined according to the combustion load command value CLCSO is set as a correction value Cp. Note that the graph shown in FIG. 15E is the same as the graph shown in FIG.
- the correction value Cp corresponding to the current load factor% Load is added to the PL 0 ratio before correction, and this value is made the final PL ratio, thereby improving the combustion stability. be able to.
- TH ratio top hat ratio
- Ri region determined by TH ratio and load factor% Load
- the correction value Ct is also determined as follows, similarly to the correction value Cp described above. First, when the combustion load command value CLCSO is kept constant and the load factor% Load is changed, a region where the combustion state becomes unstable (region determined by the TH ratio and the load factor% Load) Ri is previously measured. Determine. Next, the relationship between the TH ratio and the load factor% Load that can avoid the region Ri in which the combustion state becomes unstable when the combustion load command value CLCSO is constant is determined. Then, the TH ratio load ratio% Load determined by this relation, the difference between TH 0 ratio determined in accordance with the combustion load command value CLCSO the correction value Ct.
- the combustion state of the fuel in the combustion cylinder 33 of the combustor 31 can be represented by the inlet temperature of the combustion gas in the turbine 21 and the gas flow velocity in the combustion cylinder 33.
- the combustion load command value CLCSO has a positive correlation with the combustion gas inlet temperature in the turbine 21.
- the load factor% Load has a positive correlation with the gas flow rate in the combustion cylinder 33, it can be said that the load factor% Load has a positive correlation with the gas flow rate in the combustion cylinder 33.
- the PL ratio or the like corresponding to the combustion state is determined from the load command value CLCSO and the load factor% Load, the PL ratio corresponding to the combustion state determined only by the combustion load command value CLCSO.
- the combustion state can be grasped more accurately than the determination of etc., and the PL ratio according to the combustion state can be determined. Therefore, in this embodiment, generation
- the combustion state of the fuel in the combustion cylinder 33 (see FIG. 17) of the combustor 31 can be expressed by two parameters.
- the first parameter is a parameter that also has a correlation with the combustion gas inlet temperature in the turbine 21, and the second parameter has a correlation with the gas flow velocity in the combustion cylinder 33. It is a parameter that has.
- the combustion gas inlet temperature in the turbine 21 may be used instead of the combustion load command value CLCSO.
- the gas flow rate in the combustion cylinder 33 has a positive correlation with the gas flow rate in the combustion cylinder 33.
- this gas flow rate includes the output of the gas turbine 10, the total flow rate Gf of the fuel F supplied to the combustor 31 from a plurality of fuel systems, There is a flow rate Ga of air A sucked by the compressor 11.
- the output of the gas turbine 10 can be represented by the output PW of the generator 29 connected to the gas turbine 10. Therefore, the output PW of the generator 29 detected by the output meter 72 can be used as the second parameter.
- the total flow Gf of the fuel F supplied from the plurality of fuel systems to the combustor 31 can be detected by providing a flow meter 78 in the fuel line 60 before the plurality of fuel systems branch. Further, the total flow rate Gf of the fuel F supplied from the plurality of fuel systems to the combustor 31 can also be detected from the valve opening degree of the flow rate adjustment valve 79 of the fuel flowing through the fuel line 60. Therefore, the fuel flow rate detected by the flow meter 78 provided in the fuel line 60 or the fuel flow rate indicated by the valve opening command value of the flow rate control valve 79 can be used as the second parameter.
- the flow rate of the air A sucked by the compressor 11 can be directly detected by a flow meter, but such a flow meter is not installed in many plants. For this reason, for example, the relationship between the mass flow rate Ga of the air A sucked by the compressor 11, the IGV opening, and the intake air temperature is examined in advance, and using this relationship, the IGV opening indicated by the IGV opening command
- the mass flow rate Ga of the air A sucked by the compressor 11 may be obtained from the intake air temperature detected by the intake thermometer 73.
- the mass flow rate Ga of the air A sucked by the compressor 11 is such that the generator 29 connected to the gas turbine 10 is connected to the power system, and the rotational speeds of the generator 29 and the gas turbine 10 are the system frequency. This is the mass flow rate at the corresponding rotation speed.
- the combustion state of the fuel in the combustion cylinder 33 of the combustor 31 is the total flow rate of fuel supplied to the combustor 31 and the flow rate of air supplied to the combustor 31, that is, the flow rate of air sucked by the compressor 11. Can be represented. For this reason, the total flow rate of the fuel supplied to the combustor 31 can be used as the first parameter, and the flow rate of the air sucked by the compressor 11 can be used as the second parameter. Therefore, as described above, the flow rate of fuel detected by the flow meter 78 provided in the fuel line 60 or the flow rate of fuel indicated by the valve opening command value of the flow rate control valve 79 is used as the first parameter. As the two parameters, the flow rate of the air sucked by the compressor 11 obtained by the above-described method can be used.
- the flow rate ratio calculation device 141A of the present modification example receives the values of the first parameter and the second parameter exemplified above, and calculates the PL ratio, and the pilot ratio calculator 140Ap exemplified above.
- a top hat ratio calculator 140At that receives the values of the first parameter and the second parameter and calculates the TH ratio.
- the pilot ratio calculator 140Ap is a PL 0 ratio calculator (flow rate calculator) 141Ap that calculates the PL 0 ratio according to the value of the first parameter, and a correction value that calculates the correction value Cp according to the value of the second parameter.
- PL 0 ratio calculator 141Ap like the PL 0 ratio calculator 141p of the above embodiments has a function defining the relationship between the first parameter and the PL 0 ratio.
- the correction value calculator 142Ap has a function that defines the relationship between the second parameter and the correction value Cp, like the correction value calculator 142p of the above embodiment.
- the top hat ratio calculator 140At is a TH 0 ratio calculator (flow rate calculator) 141tA that calculates a TH 0 ratio according to the value of the first parameter, and a correction that calculates a correction value Ct according to the value of the second parameter.
- TH 0 ratio calculator 141At like the TH 0 ratio calculator 141t of the above embodiments has a function defining the relationship between the first parameter and the TH 0 ratio.
- the correction value calculator 142At has a function that defines the relationship between the second parameter and the correction value Ct, like the correction value calculator 142t of the above embodiment.
- the combustion stability of fuel in the combustor can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Turbines (AREA)
Abstract
Description
本願は、2014年8月6日に、日本国に出願された特願2014-160606号に基づき優先権を主張し、この内容をここに援用する。
複数の燃料系統と、空気を圧縮して圧縮空気を生成する圧縮機と、複数の前記燃料系統からの燃料を前記圧縮空気中で燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスにより駆動するタービンと、を備えるガスタービンで、複数の前記燃料系統を流れる前記燃料の流量比を算出する流量比算出装置において、前記燃焼器での燃焼状態を表すことができる二つのパラメータの値を受け付け、二つの前記パラメータと前記流量比との予め定められた関係を用いて、受け付けた二つの前記パラメータの値に対する前記流量比を算出する算出器を備える。
以上のいずれかの前記流量比算出装置と、複数の前記燃料系統から前記燃焼器に供給する燃料の全流量を求める全流量演算器と、前記全流量演算器で求められた前記全流量と、前記流量比算出装置で算出された前記流量比とを用いて、複数の燃料系統毎の燃料流量を求める系統流量演算器と、複数の前記燃料系統毎の燃料流量が前記系統流量演算器で求められた前記燃料流量になるよう、複数の前記燃料系統毎に設けられている燃料流量調節弁に対して制御信号を出力する弁制御器と、を備えている。
前記制御装置と、前記ガスタービンと、を備えている。
複数の燃料系統と、空気を圧縮して圧縮空気を生成する圧縮機と、複数の前記燃料系統からの燃料を前記圧縮空気中で燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスにより駆動するタービンと、を備えるガスタービンで、複数の前記燃料系統を流れる前記燃料の流量比を算出する流量比算出方法において、前記燃焼器での燃焼状態を表すことができる二つのパラメータの値を受け付ける受付工程と、二つの前記パラメータと前記流量比との予め定められた関係を用いて、前記受付工程で受け付けた二つの前記パラメータの値に対する前記流量比を求める演算工程と、を実行する。
以上のいずれかの前記流量比算出方法を実行すると共に、複数の燃料系統から前記燃焼器に供給する燃料の全流量を求める全流量演算工程と、前記全流量演算工程で求められた前記全流量と、前記流量比算出方法で算出された前記流量比とを用いて、複数の燃料系統毎の燃料流量を求める系統流量演算工程と、複数の前記燃料系統毎の燃料流量が前記系統流量演算工程で求められた前記燃料流量になるよう、複数の前記燃料系統毎に設けられている燃料流量調節弁に対して制御信号を出力する弁制御工程と、を実行する。
以下、本発明に係る流量比算出装置、制御装置、この制御装置を備えているガスタービンプラントの一実施形態について、図面を用いて説明する。
-700℃MW)}×100
なお、700℃MWは、入口温度が下限値である700℃のときにおける発電機出力であり、1500℃MWは、入口温度が上限値である1500℃のときにおける発電機出力である。
まず、燃焼負荷指令値CLCSOを一定にして、負荷率%Loadを変化させた場合に、燃焼状態が不安定になる領域(PL比と負荷率%Loadとで定まる領域)Riを試験等で予め定める。次に、燃焼負荷指令値CLCSOが一定のときに、燃焼状態が不安定になる領域Riを避け得るPL比と負荷率%Loadとの関係を定める。そして、図15の(e)に示すように、この関係で定まる負荷率%Loadに対するPL比と、燃焼負荷指令値CLCSOに応じて定まるPL0比との差分を補正値Cpとする。なお、図15の(e)に示すグラフは、図12に示すグラフと同一である。
まず、燃焼負荷指令値CLCSOを一定にして、負荷率%Loadを変化させた場合に、燃焼状態が不安定になる領域(TH比と負荷率%Loadとで定まる領域)Riを試験等で予め定める。次に、燃焼負荷指令値CLCSOが一定のときに、燃焼状態が不安定になる領域Riを避け得るTH比と負荷率%Loadとの関係を定める。そして、この関係で定まる負荷率%Loadに対するTH比と、燃焼負荷指令値CLCSOに応じて定まるTH0比との差分を補正値Ctとする。
以上で説明した流量比算出装置の変形例について、図17及び図18を用いて説明する。
Claims (17)
- 複数の燃料系統と、空気を圧縮して圧縮空気を生成する圧縮機と、複数の前記燃料系統からの燃料を前記圧縮空気中で燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスにより駆動するタービンと、を備えるガスタービンで、複数の前記燃料系統を流れる前記燃料の流量比を算出する流量比算出装置において、
前記燃焼器での燃焼状態を表すことができる二つのパラメータの値を受け付け、二つの前記パラメータと前記流量比との予め定められた関係を用いて、受け付けた二つの前記パラメータの値に対する前記流量比を算出する算出器を、
備える流量比算出装置。 - 請求項1に記載の流量比算出装置において、
前記算出器が受け付ける二つのパラメータのうち、第一パラメータは、前記タービンにおける前記燃焼ガスの入口温度変化に対して相関性を持って変化する値、又は前記入口温度である入口温度相関値であり、第二パラメータは、前記燃焼器内における前記燃焼ガスの流速変化に対して相関性を持って変化する流速相関値である、
流量比算出装置。 - 請求項2に記載の流量比算出装置において、
前記流速相関値は、前記ガスタービンの出力と、前記ガスタービンが許容する最大負荷に対する現在の負荷の割合である負荷率と、複数の前記燃料系統から前記燃焼器に供給される燃料の全流量と、前記圧縮機が吸い込む前記空気の流量とのうち、いずれか一つである、
流量比算出装置。 - 請求項1に記載の流量比算出装置において、
前記算出器が受け付ける二つのパラメータのうち、第一パラメータは、複数の前記燃料系統から前記燃焼器に供給される燃料の全流量であり、第二パラメータは、前記圧縮機が吸い込む前記空気の流量である、
流量比算出装置。 - 請求項1から4のいずれか一項に記載の流量比算出装置において、
前記算出器は、
前記第一パラメータと前記流量比との予め定められた関係を用いて、受け付けた前記第一パラメータの値に対する前記流量比を求める流量比演算器と、
前記第二パラメータと前記流量比の補正値との予め定められた関係を用いて、受け付けた前記第二パラメータの値に応じた補正値を求める補正値演算器と、
前記流量比演算器が求めた前記流量比を前記補正値演算器が求めた前記補正値で補正する補正器と、
を有する、
流量比算出装置。 - 請求項5に記載の流量比算出装置において、
前記補正値演算器が用いる前記予め定められた関係は、前記第一パラメータが一定の時の前記第二パラメータと前記流量比との関係である、
流量比算出装置。 - 請求項1から6のいずれか一項に記載の流量比算出装置において、
前記燃焼器は、燃料を拡散燃焼させる第一バーナと、燃料を予混合燃焼させる第二バーナとを有しており、
前記ガスタービンは、複数の前記燃料系統として、前記第一バーナに燃料を供給する第一燃料系統と、前記第二バーナに燃料を供給する第二燃料系統とを有しており、
前記流量比は、複数の前記燃料系統から前記燃焼器に供給される燃料の全流量に対する前記第一燃料系統から前記燃料器に供給される燃料の流量の比を含む、
流量比算出装置。 - 請求項1から6のいずれか一項に記載の流量比算出装置において、
前記燃焼器は、燃料を噴射するバーナを有しており、
前記ガスタービンは、複数の前記燃料系統として、前記バーナに燃料を供給するバーナ系統と、前記バーナに送られる前記圧縮空気中に燃料を供給する上流供給系統とを有しており、
前記流量比は、複数の前記燃料系統から前記燃焼器に供給される燃料の全流量に対する前記バーナ系統から前記燃料器に供給される燃料の流量の比を含む、
流量比算出装置。 - 請求項1から8のいずれか一項に記載の流量比算出装置と、
複数の前記燃料系統から前記燃焼器に供給する燃料の全流量を求める全流量演算器と、
前記全流量演算器で求められた前記全流量と、前記流量比算出装置で算出された前記流量比とを用いて、複数の燃料系統毎の燃料流量を求める系統流量演算器と、
複数の前記燃料系統毎の燃料流量が前記系統流量演算器で求められた前記燃料流量になるよう、複数の前記燃料系統毎に設けられている燃料流量調節弁に対して制御信号を出力する弁制御器と、
を備えている制御装置。 - 請求項9に記載の制御装置と、
前記ガスタービンと、
を備えているガスタービンプラント。 - 複数の燃料系統と、空気を圧縮して圧縮空気を生成する圧縮機と、複数の前記燃料系統からの燃料を前記圧縮空気中で燃焼させて燃焼ガスを生成する燃焼器と、前記燃焼ガスにより駆動するタービンと、を備えるガスタービンで、複数の前記燃料系統を流れる前記燃料の流量比を算出する流量比算出方法において、
前記燃焼器での燃焼状態を表すことができる二つのパラメータの値を受け付ける受付工程と、
二つの前記パラメータと前記流量比との予め定められた関係を用いて、前記受付工程で受け付けた二つの前記パラメータの値に対する前記流量比を求める演算工程と、
を実行する流量比算出方法。 - 請求項11に記載の流量比算出方法において、
前記受付工程で受け付ける二つのパラメータのうち、第一パラメータは、前記タービンにおける前記燃焼ガスの入口温度変化に対して相関性を持って変化する値、又は前記入口温度である入口温度相関値であり、第二パラメータは、前記燃焼器内における前記燃焼ガスの流速変化に対して相関性を持って変化する流速相関値である、
流量比算出方法。 - 請求項12に記載の流量比算出方法において、
前記流速相関値は、前記ガスタービンの出力と、前記ガスタービンが許容する最大負荷に対する現在の負荷の割合である負荷率と、複数の前記燃料系統から前記燃焼器に供給される燃料の全流量と、前記圧縮機が吸い込む前記空気の流量とのうち、いずれか一つである、
流量比算出方法。 - 請求項11に記載の流量比算出方法において、
前記受付工程で受け付ける二つのパラメータのうち、第一パラメータは、複数の前記燃料系統から前記燃焼器に供給される燃料の全流量であり、第二パラメータは、前記圧縮機が吸い込む前記空気の流量である、
流量比算出方法。 - 請求項11から14のいずれか一項に記載の流量比算出方法において、
前記演算工程は、
前記第一パラメータと前記流量比との予め定められた関係を用いて、前記受付工程で受け付けた前記第一パラメータの値に対する前記流量比を求める流量比演算工程と、
前記第二パラメータと前記流量比の補正値との予め定められた関係を用いて、前記受付工程で受け付けた前記第二パラメータの値に応じた補正値を求める補正値演算工程と、
前記流量比演算工程で求められた前記流量比を前記補正値演算工程で求めた前記補正値で補正する補正工程と、
を含む、
流量比算出方法。 - 請求項15に記載の流量比算出方法において、
前記補正値演算工程で用いる前記予め定められた関係は、前記第一パラメータが一定の時の前記第二パラメータと前記流量比との関係である、
流量比算出方法。 - 請求項11から16のいずれか一項に記載の流量比算出方法を実行すると共に、
複数の燃料系統から前記燃焼器に供給する燃料の全流量を求める全流量演算工程と、
前記全流量演算工程で求められた前記全流量と、前記流量比算出方法で算出された前記流量比とを用いて、複数の燃料系統毎の燃料流量を求める系統流量演算工程と、
複数の前記燃料系統毎の燃料流量が前記系統流量演算工程で求められた前記燃料流量になるよう、複数の前記燃料系統毎に設けられている燃料流量調節弁に対して制御信号を出力する弁制御工程と、
を実行する燃料系統の制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112015003596.6T DE112015003596T5 (de) | 2014-08-06 | 2015-07-17 | Strömungsvolumenverhältniszahl-berechnungsvorrichtung, mit selbiger ausgestattete steuervorrichtung, mit dieser steuervorrichtung ausgestattete gasturbinenanlage, strömungsvolumenverhältniszahl-berechnungsverfahren, und brennstoffleitung-steuerverfahren |
KR1020167035114A KR101885453B1 (ko) | 2014-08-06 | 2015-07-17 | 유량비 산출 장치, 이것을 구비하고 있는 제어 장치, 이 제어 장치를 구비하고 있는 가스 터빈 플랜트, 유량비 산출 방법 및 연료 계통의 제어 방법 |
CN201580032071.2A CN106460678B (zh) | 2014-08-06 | 2015-07-17 | 流量比计算装置、具备其的控制装置、具备该控制装置的燃气轮机成套设备、流量比计算方法、以及燃料系统的控制方法 |
US15/321,459 US11773789B2 (en) | 2014-08-06 | 2015-07-17 | Flow volume ratio calculation device, control device equipped with same, gas turbine plant equipped with this control device, flow volume ratio calculation method, and fuel line control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-160606 | 2014-08-06 | ||
JP2014160606A JP6332747B2 (ja) | 2014-08-06 | 2014-08-06 | 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021390A1 true WO2016021390A1 (ja) | 2016-02-11 |
Family
ID=55263663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/070502 WO2016021390A1 (ja) | 2014-08-06 | 2015-07-17 | 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11773789B2 (ja) |
JP (1) | JP6332747B2 (ja) |
KR (1) | KR101885453B1 (ja) |
CN (1) | CN106460678B (ja) |
DE (1) | DE112015003596T5 (ja) |
WO (1) | WO2016021390A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6223847B2 (ja) * | 2014-02-05 | 2017-11-01 | 三菱日立パワーシステムズ株式会社 | ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法 |
JP6173367B2 (ja) | 2015-02-03 | 2017-08-02 | 三菱日立パワーシステムズ株式会社 | 状態判定装置、運転制御装置、ガスタービン及び状態判定方法 |
KR101971337B1 (ko) * | 2017-04-24 | 2019-04-22 | 두산중공업 주식회사 | 가스터빈 시스템 및 제어 방법 |
KR101898386B1 (ko) | 2017-04-24 | 2018-09-12 | 두산중공업 주식회사 | 가스터빈 시스템 및 제어 방법 |
JP6935327B2 (ja) | 2017-12-28 | 2021-09-15 | 三菱パワー株式会社 | 制御装置、ガスタービン、制御方法及びプログラム |
EP3530912A1 (en) * | 2018-02-23 | 2019-08-28 | Siemens Aktiengesellschaft | Controller and method |
EP3530913A1 (en) | 2018-02-23 | 2019-08-28 | Siemens Aktiengesellschaft | Controller and method |
JP7176932B2 (ja) | 2018-11-08 | 2022-11-22 | 三菱重工業株式会社 | ガスタービンの制御装置、ガスタービン設備、ガスタービンの制御方法、及びガスタービンの制御プログラム |
WO2022091505A1 (ja) * | 2020-10-30 | 2022-05-05 | 三菱パワー株式会社 | ガスタービンの最大出力作成方法、ガスタービンの制御用出力作成方法、ガスタービンの制御方法、これらの方法を実行する装置、及びこれらの方法をコンピュータに実行させるプログラム |
WO2023181616A1 (ja) * | 2022-03-25 | 2023-09-28 | 三菱パワー株式会社 | ガスタービン設備の運転方法、この運転方法を実行するための制御装置及び制御プログラム |
JP2024067373A (ja) * | 2022-11-04 | 2024-05-17 | 三菱重工業株式会社 | ガスタービン燃焼器の制御装置、制御方法及び始動方法 |
JP2024114180A (ja) * | 2023-02-13 | 2024-08-23 | 三菱重工業株式会社 | 制御装置、制御量計算方法及びプログラム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004108315A (ja) * | 2002-09-20 | 2004-04-08 | Toshiba Corp | ガスタービンシステムおよびその運転方法 |
JP2007077866A (ja) * | 2005-09-14 | 2007-03-29 | Mitsubishi Heavy Ind Ltd | ガスタービンの燃焼制御装置 |
JP2010127242A (ja) * | 2008-11-28 | 2010-06-10 | Mitsubishi Heavy Ind Ltd | ガスタービン制御装置 |
JP2013096303A (ja) * | 2011-10-31 | 2013-05-20 | Mitsubishi Heavy Ind Ltd | ガスタービン及びガスタービンの燃焼制御方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4119909B2 (ja) * | 2005-09-14 | 2008-07-16 | 三菱重工業株式会社 | ガスタービンの燃焼制御装置 |
JP5517870B2 (ja) | 2010-09-30 | 2014-06-11 | 三菱重工業株式会社 | ガスタービンの制御装置、ガスタービン、及びガスタービンの制御方法 |
JP5452634B2 (ja) * | 2012-01-06 | 2014-03-26 | 株式会社日立製作所 | 高湿分空気利用ガスタービンに設置されるガスタービン燃焼器の燃料制御方法及び燃料制御装置 |
JP5486619B2 (ja) * | 2012-02-28 | 2014-05-07 | 株式会社日立製作所 | ガスタービン燃焼器及びその運転方法 |
US9970360B2 (en) * | 2012-03-05 | 2018-05-15 | Siemens Aktiengesellschaft | Gas turbine engine configured to shape power output |
JP5957251B2 (ja) * | 2012-03-19 | 2016-07-27 | 株式会社東芝 | 自動改札装置および自動改札装置の制御方法 |
-
2014
- 2014-08-06 JP JP2014160606A patent/JP6332747B2/ja active Active
-
2015
- 2015-07-17 WO PCT/JP2015/070502 patent/WO2016021390A1/ja active Application Filing
- 2015-07-17 US US15/321,459 patent/US11773789B2/en active Active
- 2015-07-17 KR KR1020167035114A patent/KR101885453B1/ko active Active
- 2015-07-17 CN CN201580032071.2A patent/CN106460678B/zh active Active
- 2015-07-17 DE DE112015003596.6T patent/DE112015003596T5/de active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004108315A (ja) * | 2002-09-20 | 2004-04-08 | Toshiba Corp | ガスタービンシステムおよびその運転方法 |
JP2007077866A (ja) * | 2005-09-14 | 2007-03-29 | Mitsubishi Heavy Ind Ltd | ガスタービンの燃焼制御装置 |
JP2010127242A (ja) * | 2008-11-28 | 2010-06-10 | Mitsubishi Heavy Ind Ltd | ガスタービン制御装置 |
JP2013096303A (ja) * | 2011-10-31 | 2013-05-20 | Mitsubishi Heavy Ind Ltd | ガスタービン及びガスタービンの燃焼制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US20170292458A1 (en) | 2017-10-12 |
CN106460678B (zh) | 2018-08-28 |
KR20170007424A (ko) | 2017-01-18 |
KR101885453B1 (ko) | 2018-08-03 |
US11773789B2 (en) | 2023-10-03 |
JP2016037883A (ja) | 2016-03-22 |
DE112015003596T5 (de) | 2017-06-08 |
CN106460678A (zh) | 2017-02-22 |
JP6332747B2 (ja) | 2018-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016021390A1 (ja) | 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法 | |
JP6331138B2 (ja) | 流量比算出装置、これを備えている制御装置、この制御装置を備えているガスタービンプラント、流量比算出方法、及び燃料系統の制御方法 | |
US10208678B2 (en) | Gas turbine combustion control device and combustion control method and program therefor | |
KR102008604B1 (ko) | 연료 유량 설정 방법, 이 방법을 실행하는 장치, 이 장치를 구비하는 가스 터빈 플랜트 | |
JP2017031876A5 (ja) | ||
JP2010285955A (ja) | ガスタービンの制御装置及び発電システム | |
JP6134616B2 (ja) | 2軸ガスタービン | |
US12152541B2 (en) | Method for creating maximum output in gas turbine, method for creating output for controlling gas turbine, method for controlling gas turbine, device for executing said methods, and program for causing computer to execute said methods | |
CA3089687A1 (en) | Controller and method | |
JP6267087B2 (ja) | 動力制御装置、ガスタービン及び動力制御方法 | |
JP2017180134A (ja) | 圧縮機の修正回転数算出方法、圧縮機の制御方法、これらの方法を実行する装置、及びこの装置を備えるガスタービンプラント | |
CN108119237A (zh) | 无模型燃烧动力自动调谐 | |
US11959424B2 (en) | Gas turbine output correcting method, control method, device for executing said methods, and program causing computer to execute said methods | |
JP5605200B2 (ja) | ガスタービン制御装置 | |
US20250215835A1 (en) | Method for operating gas turbine equipment, control device and control program for executing said operating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15829856 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167035114 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015003596 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15321459 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15829856 Country of ref document: EP Kind code of ref document: A1 |